

On the Influence of Representation Type and Gender on Program Comprehension

Zohreh Sharafi

Département de Génie Informatique et Génie Logiciel Polytechnique Montréal

and Evolution Research

Program Comprehension

"Programming is far more complex than usual human mental activities studied by psychologists" (Weinberg and Schulman, 1974)

Program Comprehension

- Over 35 years of research
- Rich with diverse theories

Think-aloud

Observational studies

Questionnaires

Eye-tracking Technology

EyeLink II

(SR Research)

faceLAB 5

(Seeing Machines)

SMI Eye Tracking Glasses

(Sensomotoric Instruments)

5

Scan-path = 1,2,3,4,5,6,7,8,9

Hawthorn Effect

Representation Type (Graphical vs. Textual)

Vs.

- RoundRed or Yellow
 - •Edible fruit

Developers' Characteristics

• Expertise (novices vs. experts)

There is still a great divergence between developers' abilities that cannot be detected only by their level of expertise. (Storey, 2005).

Representation type and gender:

- To impact the cognitive process
- To impact developers' efficiency and effectiveness
- To be proxy for developers' viewing strategies
 - To be inferred partly from the developers' eyemovements

Systematic Literature Review (SLR)

A Systematic Literature Review on the Usage of Eye-tracking in Software Engineering

A Systematic Literature Review Descriptive Statistics

A Systematic Literature Review Topics

- Code comprehension (12)
- Model comprehensions (10)
- Debugging (9)
- Collaborative interaction (3)
- Traceability (2)

A Systematic Literature Review Metrics

• Effort:

- Fixation, Saccades
- Visited AOIs
- Visual gaze behaviour
- Scan-path

A Systematic Literature Review Limitation

- Technology
- Data analysis
- Participant & material selection
- Experimental setting

A Systematic Literature Review Conclusion

- To provide descriptive statistics
- To present an annotated bibliography
- To summarise all the metrics and tools
- To present limitations
- To provide a unified terminology for reporting

A Systematic Literature Review Lesson Learned

Picture Is Worth a Thousand Word

The Impact of Representation Type

Only a few works compare textual vs. graphical representations for program comprehension

RQ1: Developers' preferred representation

RQ2: Impact of representation type of time, accuracy, and effort

The Impact of Representation Type Task

Session 1

Session 2

Session 3

The Impact of Representation Type Participants

RQ1: Is Graphical More Effective?

Strongly Agree
Agree
Not certain
Disagree

RQ2: Impacts on Developers' Efficiency

	Accuracy %		e
	Correct	Wrong	tim
Graphical	97%	3%	×1 ×1
Textual	98%	2%	Tas
Mixed	96%	4%	•

RQ2: Impacts on Developers' Efficiency

M: Model Re: Relevant Ir: Irrelevant Q: Question

The Impact of Representation Type Conclusion

The Impact of Representation Type Conclusion

- Prefer graphical
- Work with graphical in mixed stimulus
- Find relevant parts faster

Start time of the first fixation on relevant AOIs

The Impact of Representation Type Lesson Learned

Importance of Layout Source code as structures text

Women Take a Wider View

M. Czerwinski, D. S. Tan, and G. G. Robertson, "Women take a wider view," in *Proceedings of the SIGCHI Conference on Human Factors in Computing Systems*, ser. CHI '02. New York, NY, USA: ACM, 2002,

The Impact of Gender Why Do We Care?

- Studying the need of one sub-population can benefit both sides
- Design tools better adapted to different developers
- Support different program understanding strategies

The Impact of Gender Experiment 1: The Impact of Identifier Style

✓ Previous work, such as (Binkley et al., 2012) and (Sharif and Maletic, 2010c), reported contradictory findings.

RQ1: The impact of identifier style on effort, the task time, and accuracy

RQ2: The impact of gender on effort, the task time, accuracy, and viewing strategies

The Impact of Gender Experiment 1: Task

The Impact of Representation Type Participants

Total: Acad	Total: 24 Academic Background			Gender	
PhD	Masters	BSc	Male	Female	
11	10	3	15	9	

The Impact of Gender Experiment 1: Results

	Accuracy	Time (min)
Male	74%	5.94
Female	82%	7.18

The Impact of Gender Experiment1: Conclusion

Effort

Men and women use different strategies to select the correct answer

The Impact of Gender Lesson Learned

Different Attention Distribution

The Impact of Gender Experiment 2: the Impact of SCEs

- Previous studies suggest that developers:
 - Avoid understanding the entire system
 - Focus on some parts

• Source code entities

Class name

Method name

Comments

Variables

The Impact of Gender Experiment 2: the impact of SCEs

RQ3: What are the important source code entities (SCEs) RQ4: Impact of gender on developers' viewing strategies

The Impact of Gender Experiment 2: Task

The Impact of Representation Type Participants

Total: 2 Acad	Total: 24 Academic Background			Gender	
PhD	Masters	BSc	Male	Female	
20	4	0	17	7	

The Impact of Gender Experiment 2: Viewing Strategies

The Impact of Gender Experiment 2: Viewing Strategies

Path: 1,2,1,2,3,4

Path: 1,2,3,2,3,1,2,4,3,1,3,4,3

56

Average length of scan-paths

The Impact of Gender Further Analysis

Method name is the most preferred type of SCEs.

```
// This class accesses all files of a directory and
// finds files with specific type.
public class FileUtil
    //create a FileFilter and override its accept-method
    FileFilter filefilter = new FileFilter() {
        public boolean accept(File file) {
            if (file.getName().endsWith(".csv")) {
                return true;
            return false;
        }
    };
    public void listFilesMethod(String dir) {
       File directory = new File(dir);
```

```
// This class accesses all files of a directory and
// finds files with specific type.
public class FileUtil
    //create a FileFilter and override its accept-method
    FileFilter filefilter = new FileFilter() {
        public boolean accept(File file) {
            if (file.getName().endsWith(".csv")) {
                return true;
            return false;
        }
    };
   public void listFilesMethod(String dir) {
       File directory = new File(dir);
```

The Impact of Gender Further Analysis

- No difference between MiB and CiB
- Participants start looking at the **Bigger** SCE
- Method name, method name, method name ...

The Impact of Gender Lesson Learned

• Do not rush into adaptation

The Impact of Gender Conclusion

Our findings raise two significant new open questions:

- 1. Are there differences between viewing strategies of male and female developers while performing program comprehension tasks and whether these strategies impact their efficiency and effectiveness or not?
- 2. To which extent do current programming environments support these strategies?

Short term

- Analyze the impact of layout on developers' performance
- Scan-path and AOI analysis
- Image processing approaches to analyze heatmaps

Long term

- Study developers' viewing strategies and reading behaviour
- Analyze the applicability of our gender differences findings

 Le Fonds de recherche du Québec, Nature et technologies (FRQNT)

Journal Papers

- 1. Taupe: Visualizing and Analysing Eyetracking Data. SCP, 2011
- 2. An empirical study on the importance of source code entities for requirements traceability. **EMSE, 2014**
- **3.** Systematic Literature Review on the Use of Eye-tracking Technique in Software Engineering. Under revision, **IST**, **2014**

Conference Papers

- Women & Men: Different but Equal: A Study on the Impact of Identifiers on Source Code Understanding. ICPC, 2012
- 2. Professional Status or Expertise for UML Class Diagram Comprehension: An Empirical Study Systematic. ICPC 2012
- **3**. An Empirical Study on Requirements Traceability Using Eye-Tracking. **ICSM, 2012**
- An Empirical Study on the Efficiency of Graphical vs. Textual in Requirements Comprehension. ICPC, 2013

