
UNIVERSITÉ DE MONTRÉAL

ON THE INFLUENCE OF REPRESENTATION TYPE AND GENDER
ON RECOGNITION TASKS OF PROGRAM COMPREHENSION

ZOHREH SHARAFI TAFRESHI MOGHADDAM
DÉPARTEMENT DE GÉNIE INFORMATIQUE ET GÉNIE LOGICIEL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

THÈSE PRÉSENTÉE EN VUE DE L’OBTENTION
DU DIPLÔME DE PHILOSOPHIÆ DOCTOR

(GÉNIE INFORMATIQUE)
APRIL 2015

c© Zohreh Sharafi Tafreshi Moghaddam, 2015.

UNIVERSITÉ DE MONTRÉAL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

Cette thèse intitulée :

ON THE INFLUENCE OF REPRESENTATION TYPE AND GENDER
ON RECOGNITION TASKS OF PROGRAM COMPREHENSION

présentée par : SHARAFI TAFRESHI MOGHADDAM Zohreh
en vue de l’obtention du diplôme de : Philosophiæ Doctor
a été dûment acceptée par le jury d’examen constitué de :

Mme NICOLESCU Gabriela, Ph.D., présidente
M. ANTONIOL Giuliano, Ph.D., membre et directeur de recherche
M. GUÉHÉNEUC Yann-Gaël, Ph.D., membre et codirecteur de recherche
M. ROBILLARD Pierre, Ph.D., membre
Mme STOREY Margaret-Anne, Ph.D., membre externe

iii

To my mom and dad . . .

iv

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisor, Dr. Giuliano Antoniol for
the continuous support of my Ph.D study and research, for his patience, motivation, and
immense knowledge. Thank you Giulio for believing in me and challenging me, I could not
have imagined having a better advisor and mentor for my Ph.D study.

I would like to gratefully and sincerely thank my co-supervisor, Dr. Yann-Gaël Guéhéneuc
for his understanding, and enthusiasm during my study. Without his guidance and persistent
help this dissertation would not have been possible. Thanks a lot for pushing me farther that
I thought I could go.

During my Ph.D., I also had the chance to work with great researchers from whom I lear-
ned a lot, Dr. Alessandro Marchetto and Dr. Angelo Susi. Thanks a lot for giving me the
opportunity to collaborate and share great ideas.

The members of the SoccerLab, Ptidej, MCIS and SWAT groups have contributed excep-
tionally to my personal and professional time at École Polytechnique de Montréal. These
groups have been the source of friendships as well as good advice and collaboration. My
special thanks to my colleagues, Zéphyrin, Laleh, and Venera for all the helps, discussions,
and feedbacks.

I also warmly thank my best friend and best teammate, Parisa, for all the support, camara-
derie, and encouragement. Cheers to all the projects, the deadlines we met a minute before
midnight, and all the passionate discussions.

This dissertation is also dedicated to Ali - my husband, soul-mate, partner in life who gave
me home in Canada while I’m living far away from my homeland. Thanks a lot for unfailing
love, for sharing this entire amazing journey with me, and for believing in me when I didn’t
believe in myself. I love you dearly.

Last, but certainly not least, I owe my loving and sincere thanks to the most influential people
in my life : my mother, Dr. Mahnaz Jafaripour for constant love, hope, and perspective
and my father, Dr. Aliakbar Sharafi on whose shoulders I stand. Thanks for your endless
support, enduring love, constant guidance, motivation, and encouragement. Your strong and
kind-hearted personalities taught me to be dedicated and never bend to difficulty.

My twin sister, Azadeh, for being always beside me, helping me, giving me love in every
situation, listening to me, and finding me the light, whenever it was far away. I’m so proud
and fortunate beyond measure in having you by my side all these years.

v

RÉSUMÉ

L’objectif de la maintenance logicielle est d’améliorer les logiciels existants en préservant
leur intégrité. La maintenance peut représenter jusqu’à 60% du budget d’un logiciel. Ainsi,
améliorer la maintenabilité des logiciels est bénéfique aussi bien pour les fournisseurs que
les utilisateurs de logiciels. Les développeurs de logiciels consacrent un effort considérable
à la compréhension des programmes, qui est une étape primordiale à la maintenance logi-
cielle. Nous faisons l’hypothèque que le genre des développeurs de logiciels et le type de
représentation peut affecter leur effort et leur efficacité. Ces facteurs doivent être considérés
et minutieusement analysés dans la mesure où ils peuvent cacher certains effets significatifs
pouvant être identifiés en analysant le processus de compréhension.

Dans cette thèse, nous nous inspirons de l’utlisation de l’occulomètre pour l’étude du proces-
sus cognitif lors de la résolution des problèmes. Nous avons effectué une étude fonctionnelle
pour évaluer tous les travaux de recherche faisant usage de l’occulomètre en génie logiciel. Les
résultats obtenus nous ont motivé à utiliser l’occulomètre pour effectuer un ensemble d’études
afin analyser l’effet de deux facteurs importants sur la compréhension des programmes : le
type de représentation (textuelle ou graphique) et le genre du développeur. Afin de com-
prendre comment les différents types de représentations et le genre influencent les stratégies
de visualisation, nous avons étudié la différence de strategie entre développeurs.

Les résultats obtenus montrent que, comparé à une représentation graphique, la représen-
tation sous forme de texte structuré aide mieux le développeur dans son processus cognitif
lors de la compréhension des programmes de petite taille. Ainsi, la représentation textuelle
requiert moins de temps et d’effort aux participants. Par contre, la représentation graphique
est celle préférée par les développeurs. Nos résultats montrent que la structure topologique
de la représentation graphique aide les développeurs à mémoriser l’emplacement des éléments
et à retrouver plus rapidement les éléments pertinents comparé à la représentation textuelle.
En plus, la structure hiérarchique de la représentation graphique guide les développeurs à
suivre une stratégie de visualisation spécifique.

Nous avons observé que les femmes et les hommes ont des stratégies de visualisation diffé-
rentes lors de la lecture du code ou de la mémoririsation des noms des identificateurs. Les
femmes ont tendance à inspecter minutieusement toutes les options afin de procéder à l’élimi-
nation de la mauvaise réponse. Au contraire, les hommes ont tendance à inspecter brièvement
certaines réponses. Pendant que les femmes consacrent plus de temps à analyser chaque type
d’entité l’un après l’autre, les hommes alternent leur attention entre différents type d’entité.

vi

ABSTRACT

The purpose of software maintenance is to correct and enhance an existing software system
while preserving its integrity. Software maintenance can cost more than 60% of the budget
of a software system, thus improving the maintainability of software is important for both
the software industry and its customers. Program comprehension is the initial step of soft-
ware maintenance that requires the major amount of maintenance’s time and effort. We
conjuncture that developers’ gender and the type of representations that developers utilize
to perform program comprehension impact their efficiency and effectiveness. These factors
must be considered and carefully studied, because they may hide some significant effects to
be found by analyzing the comprehension process.

In this dissertation, inspired by the literature on the usefulness of eye-trackers to study the
cognitive process involved in problem solving activities, we perform a mapping study and
evaluate all research relevant to the use of eye-tracking technique in software engineering.
The results motivate us to perform a set of eye-tracking studies to analyze the impact of two
important factors on program comprehension: representation type (textual vs. graphical)
and developers’ gender. Moreover, we investigate and compare viewing strategies variabil-
ity amongst developers to understand how the representation type and gender differences
influence viewing strategies.

Overall, our results indicate that structured text provides more cognitive support for devel-
opers while performing program comprehension with small systems compared to a graphical
representation. Developers spend less time and effort working with textual representations.
However, developers mostly preferred to use graphical representations and our results con-
firm that the topological structure of graphical representations helps developers to memorize
the location of the elements and to find the relevant ones faster in comparison with textual
representation. Moreover, the hierarchical structure of the representation guides developers
to follow specific viewing strategies while working with representations.

Regarding the impact of gender, our results emphasize that male and female developers
exploit different viewing strategies while reading source code or recalling the names of iden-
tifiers. Female developers seem to carefully weigh all options and rule out wrong answers,
while male developers seem to quickly set their minds on some answers and move forward.
Moreover, female developers spend more time on each source code entity and analyze it be-
fore going to the next one. In contrast, male developers utilize several attention switching
strategies between different source code entities.

vii

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

RÉSUMÉ . v

ABSTRACT . vi

LIST OF TABLES . xi

LIST OF FIGURES . xiv

LIST OF ACRONYMS AND ABBREVIATIONS . xvii

CHAPTER 1 INTRODUCTION . 1
1.1 Research Context and Problem Statement 1
1.2 Thesis Statement . 4
1.3 Contributions . 4

1.3.1 Mapping Study on the Usage of Eye-tracking Technique in Software
Engineering . 4

1.3.2 Impact of Representation Type on Program Comprehension 5
1.3.3 Impact of Gender on Program Comprehension 6

1.4 Organization of the Dissertation . 7

CHAPTER 2 BACKGROUND . 10
2.1 Eye-tracking Technique . 10

2.1.1 Assumptions . 11
2.1.2 Devices . 11
2.1.3 Tools . 12
2.1.4 Metrics . 14

2.2 Experiment Process . 22
2.2.1 Definition . 22
2.2.2 Planning . 24
2.2.3 Operation . 26
2.2.4 Analysis and Interpretation . 27

viii

2.2.5 Presentation and Packaging . 27

CHAPTER 3 MAPPING STUDYON THE USE OF EYE-TRACKING TECHNIQUES
IN SOFTWARE ENGINEERING . 28
3.1 Introduction . 28
3.2 Related Work . 30
3.3 Study Design . 31

3.3.1 Research Questions . 31
3.3.2 Search Process . 32
3.3.3 Selection Process . 33
3.3.4 Inclusion and Exclusion Criteria . 34
3.3.5 Data Collection . 35

3.4 Study Results . 36
3.4.1 RQ3.1: How Many Articles Have Reported on the Use of Eye-tracking

Techniques in Software Engineering Research Since 1990? 36
3.4.2 RQ3.2: Which Research Topics Have Been Explored and Examined in

Eye-tracking Studies? . 39
3.4.3 RQ3.3: How Much Have Eye-tracking Studies Contributed to Software

Engineering? . 57
3.4.4 RQ3.4: How Have Researchers Used Eye-trackers to Collect Quantita-

tive Measurement? . 67
3.4.5 RQ3.5: What Are the Limitations of Current Research? 73
3.4.6 RQ3.6: Which Eye-trackers Are Most Frequently Used in Software

Engineering Research? . 77
3.5 Threats to Validity . 79
3.6 Discussions and Conclusion . 80

CHAPTER 4 IMPACT OF REPRESENTATION TYPE ON PROGRAM COMPRE-
HENSION . 83
4.1 Introduction . 83
4.2 Related Work . 84
4.3 Study Design . 85

4.3.1 Research Questions . 85
4.3.2 Research Hypotheses . 85
4.3.3 Data Collection . 86
4.3.4 Task . 87
4.3.5 Material . 87

ix

4.3.6 Study Variables . 91
4.3.7 Participants’ Demographics . 94
4.3.8 Procedure . 95

4.4 Study Results . 95
4.4.1 RQ4.1: Does the Type of Representations Impact Developers’ Effort,

Task Time, and Accuracy in Comprehension Tasks? 96
4.4.2 RQ4.2: Does the Structure of the Representations Lead Developers to

Use Specific Task-solving Strategies (Top-down vs. Bottom-up) During
Comprehension Tasks? . 102

4.4.3 RQ4.3: Given a Graphical and Textual Representations of a Compre-
hension Task, Is There any Preferred Representation by the Participants?105

4.4.4 Impact of the Mitigating Variables 106
4.5 Threats to Validity . 107
4.6 Discussions and Conclusion . 108

CHAPTER 5 IMPACTOF GENDERON PROGRAMCOMPREHENSION ON IDEN-
TIFIER RECALL . 110
5.1 Introduction . 111
5.2 Related Work . 112

5.2.1 Gender Differences in Problem Solving Activities 112
5.2.2 Impact of Identifiers on Program Comprehension 115

5.3 Study Design . 116
5.3.1 Research Questions . 116
5.3.2 Research Hypotheses . 116
5.3.3 Data Collection . 117
5.3.4 Task . 117
5.3.5 Material . 118
5.3.6 Study Variables . 118
5.3.7 Participants’ Demographics . 121
5.3.8 Procedure . 122

5.4 Study Results . 124
5.4.1 RQ5.1 Does the Identifier Style Impact the Effort, the Time, and the

Accuracy in Source Code Reading? 124
5.4.2 RQ5.2: Does Developers’ gender Impact the Effort, the Time, and

Accuracy in Source Code Reading? 124
5.4.3 Impact of the Mitigating Variables 131

x

5.5 Threats to Validity . 132
5.6 Discussions and Conclusion . 133

CHAPTER 6 IMPACTOFGENDERON PROGRAMCOMPREHENSION ON SOURCE
CODE ENTITIES . 135
6.1 Introduction . 135
6.2 Related Work . 136
6.3 Study Design . 137

6.3.1 Research Questions . 137
6.3.2 Research Hypotheses . 137
6.3.3 Data Collection . 138
6.3.4 Task . 139
6.3.5 Material . 139
6.3.6 Study Variables . 140
6.3.7 Participants’ Demographics . 141
6.3.8 Procedure . 141

6.4 Analysis and Results . 142
6.4.1 RQ6.1: What Are the Important Source Code Entities (SCEs) to

Which Developers Pay More Visual Attention When Reading Source
Code? . 143

6.4.2 RQ6.2: Does Developers’ Gender Impact the Viewing Strategies of
Developers While Reading Source Code? 145

6.4.3 RQ6.3: Are Some Types of SCEs Preferred by Developers Because of
Their Semantic Content or Because of Their Very Presence in Source
Code? . 147

6.4.4 Impact of the Mitigating Variables 150
6.4.5 Further Remarks . 150

6.5 Threats to Validity . 151
6.6 Discussion and Conclusion . 152

CHAPTER 7 CONCLUSION AND FUTURE DIRECTIONS 153
7.1 Contributions . 153
7.2 Limitations . 156
7.3 Future Work . 156

REFERENCES . 159

xi

LIST OF TABLES

Table 2.1 Metrics for visual effort calculation based on the number of fixations. 15
Table 2.2 Metrics for visual effort calculation based on the duration of fixations. 16
Table 2.3 Metrics for visual effort calculation based on saccades. 18
Table 2.4 Metrics for visual effort calculation based on scan-paths. 19
Table 3.1 Data extraction form. 37
Table 3.2 Journals, conference, and workshop proceedings of the selected papers. 38
Table 3.3 List of selected papers. 40
Table 3.4 List of selected papers - continued. 41
Table 3.5 Topic domains, artifacts, participants (S = Students, FM = Faculty

members, P = Professionals, and NM = Not mentioned), sources, and
the eye-tracker for the selected papers. 42

Table 3.6 Topic domains, artifacts, participants (S = Students, FM = Faculty
members, P = Professionals, and NM = Not mentioned), sources, and
the eye-tracker for the selected papers - continued. 43

Table 3.7 Classification of the selected papers based on category. 44
Table 3.8 Types of artifacts used in eye-tracking studies. 57
Table 3.9 Summary of the results for model comprehension. 58
Table 3.10 Summary of the results for model comprehension (continued). 59
Table 3.11 Summary of the results for code comprehension. 62
Table 3.12 Summary of the results for debugging. 65
Table 3.13 Summary of the results for collaborative interactions. 66
Table 3.14 Summary of the results for traceability. 67
Table 3.15 List of metrics for visual effort calculation based on fixation number

along with selected studies - Part 1. 68
Table 3.16 List of metrics for visual effort calculation based on fixation duration

along with selected studies - Part 2. 68
Table 3.17 Metrics for visual effort calculation based on saccades. 69
Table 3.18 Metrics for visual effort calculation based on scan-paths along with

selected studies. 69
Table 3.19 List of eye-trackers used in the selected papers with their accuracy

values and sampling rates. 78
Table 4.1 Overview of the eye-tracking experiment. 86
Table 4.2 Design groups for assigning models to different participants. 90

xii

Table 4.3 Two groups for comprehension questions. 92
Table 4.4 Participants’ demographics . 95
Table 4.5 Main features of the experiment. 98
Table 4.6 Participants’ contingency table for textual, graphical, and mixed re-

presentations. 98
Table 4.7 Average time and effort spent by participants on Models A, B while

performing the requirements understanding tasks with graphical (G)
or textual (T) representations. 99

Table 4.8 Average time and effort spent by participants on Model C while per-
forming the requirements understanding tasks with graphical (G) or
textual (T) representations. 100

Table 4.9 Two-tailed Wilcoxon p-value (α = 0.05) and Cohen-d for the Average
Fixation Duration (AFD) metrics of different AOIs. 103

Table 4.10 Language grouping and distance. Language is self-reported by our
participants, the score is reported in (Hart-Gonzalez and Lindemann,
1993) while the distance is 1/score as reported in (Chiswick and Miller,
2005) . 107

Table 5.1 Overview of the eye-tracking experiment. 117
Table 5.2 Design groups for assigning source codes to participants. 119
Table 5.3 List of identifiers used in the three Java programs. 120
Table 5.4 Participants’ demographics . 123
Table 5.5 Main features of the experiment. 126
Table 5.6 Participants’ contingency table for CC and US identifiers. 126
Table 5.7 Best logistic regression on the experiment population (AIC 370.01) . 127
Table 5.8 Alternative logistic regression on the experiment population (AIC 373.59)127
Table 5.9 Logistic regression on the female sub-population (AIC 116.83) 128
Table 5.10 Logistic regression on the male sub-population (AIC 244.25) 128
Table 5.11 Values for percentages of correct answers and required time to compare

male and female participants’ accuracy and speed. 129
Table 5.12 Wilcoxon p-values (α = 0.05) for accuracy and required time. 129
Table 5.13 Wilcoxon p-values (α = 0.05) for each visual effort measure 131
Table 5.14 Effort–accuracy model for the female sub-population with no interac-

tion (adjusted R2 of 0.45) . 132
Table 5.15 Effort–accuracy model for the female sub-population (adjusted R2 of

0.84) . 133
Table 6.1 An overview of the eye-tracking experiment. 138

xiii

Table 6.2 List of questions answered by participants to perform program com-
prehension task. 139

Table 6.3 Participants’ years of general and Java programming experience. . . . 142
Table 6.4 Participants’ demographics. 142
Table 6.5 Average fixation time spent on each type of SCEs. Rankings of each

type of SCEs are based on the average fixation time (1 means the most
important). 144

Table 6.6 Average length and standard deviation of the scan-paths for male and
female participants, working on six questions. Two-tailed Wilcoxon
p-value (α = 0.05) for the average path length are presented while
comparing male and female participants. 146

Table 6.7 Participants’ contingency table for answers. 147
Table 6.8 Values for the amount of time that spent by male and female partici-

pants on each stimulus separately. The wilcoxon p-value (α = 0.05) is
presented after comparing male and female participants’ accuracy. . . 147

Table 6.9 List of questions answered by participants to perform program com-
prehension task. 148

Table 6.10 Participants’ demographics. 149
Table 6.11 Average fixation times spent on each type of SCEs for CiB source code.

Rankings of each type of SCEs are based on the average fixation times
(1 means the most important). 150

Table 6.12 Average fixation times spent on each type of SCEs for MiB source code.
Rankings of each type of SCEs are based on the average fixation times
(1 means the most important). 150

Table 6.13 Accuracy, total fixation time, and the amount of effort put forth by
participants while working with CiB and MiB stimuli. 151

Table 6.14 The average length and standard deviation of scan-paths for male and
female participants, working with CiB and MiB source codes. Two-
tailed Wilcoxon p-value (α = 0.05) for the average path length is shown
for each questions while comparing male and female participants. . . 151

xiv

LIST OF FIGURES

Figure 1.1 Increase of software maintenance costs as percentage of total cost (adap-
ted from TIOBE Software (2014)). 1

Figure 1.2 Overview of the dissertation chapters. 9
Figure 2.1 Example of goggle used in intrusive eye-trackers (adapted from (Du-

chowski, 2007)). 12
Figure 2.2 1) FaceLAB is an example of video-based eye-tracker that we used in

this work (adapted from FaceLAB manual (Seeing Machine, 2010)). 2)
Participant sits in front of the computer and a video-based eye-tracker
captures the eye-gaze data. 13

Figure 2.3 Example of scan-path and corresponding transition matrix (De Smet
et al., 2012). 18

Figure 2.4 (1) shows the gaze plots of an expert for the Observer pattern for ortho-
gonal and multi-cluster layouts (Sharif and Maletic, 2010a). (2) shows
gaze plots for underscore and two camel case 3-word code identifiers
(Binkley et al., 2013). 23

Figure 2.5 Color-coded attention allocation map based on the number of fixations
per word (Busjahn et al., 2011). 23

Figure 3.1 Search query. 34
Figure 3.2 Selection process adapted to choose appropriate related papers. The

numbers on the left are the numbers of papers remaining after each
step has been performed. 34

Figure 3.3 Number of published papers per year. 39
Figure 3.4 Total number of participants for the selected papers. 60
Figure 3.5 Example of scan-path and corresponding transition matrix (De Smet

et al., 2012). 67
Figure 3.6 (1) shows the heat-map of a participant working with (a) multi-cluster

and (b) orthogonal layouts (Sharif and Maletic, 2010a). (2) presents
areas of source code that attracts higher interests (Busjahn et al., 2011). 69

Figure 3.7 (1) shows a heat-map of (a) a female participant and (b) a male par-
ticipant (Sharafi et al., 2012). (2) shows a heat-map that presents the
cumulative fixations of a participant on different source code entities,
including class name, method name, variables, and comment (Ali et al.,
2012). 70

xv

Figure 3.8 (1) shows the gaze plots of an expert for the Observer pattern for ortho-
gonal and multi-cluster layouts (Sharif and Maletic, 2010a). (2) shows
gaze plots for underscore and two camel case 3-word code identifiers
(Binkley et al., 2013). 72

Figure 3.9 Color-coded attention allocation map based on the number of fixations
per word (Busjahn et al., 2011). 72

Figure 4.1 Portion of the graphical stimulus that contains five AOIs: 1) model
area contains: 2) model relevant, 3) model irrelevant; 4) question area,
and 5) help area. 88

Figure 4.2 Portion of the textual stimulus that contains four AOIs: 1) model area
contains 2) model relevant and 3) model irrelevant areas; 4) question
area. 89

Figure 4.3 Participants’ self assessment of object-oriented modeling experience. . 92
Figure 4.4 Participants’ self assessment of UML and modeling knowledge. 93
Figure 4.5 Workflow of data analysis. 97
Figure 4.6 Descriptive statistics for task time for graphical and textual represen-

tations. 99
Figure 4.7 Percentage of time that our participants spend on different part of

graphical and textual representations. 100
Figure 4.8 Start time of the first fixation on relevant AOIs for all participants

answering six questions of Model A presented in graphical (top) and
textual (bottom) representation. 101

Figure 4.9 Descriptive statistics of AFD for graphical and textual models. 102
Figure 4.10 Set of five AOIs including: 1) goal level, 2) task level, 3) resource level,

4) question, and 5) helper areas for TROPOS graphical representation. 103
Figure 4.11 STG graph which shows the navigation sequence of AOIs for a parti-

cipant using top-down and bottom-up strategies. 105
Figure 4.12 Participants’ self reported preferences about working with graphical vs.

textual representations. 106
Figure 5.1 (Left) source code stimulus; (right) question stimulus. 120
Figure 5.2 Source code stimulus that contains a convex hull (See Section 2.1.4).

The convex hull is shown by red lines with the fixations represented by
black dots. 121

Figure 5.3 Question stimulus that contains four areas of interest: 1) entire stimu-
lus, 2) question, 3) correct answer, 4) distractors. 122

Figure 5.4 Participants’ self assessment of Java knowledge. 123

xvi

Figure 5.5 Workflow of data analysis. 125
Figure 5.6 Speed-Accuracy tradeoff for male and female participants. 130
Figure 5.7 Data distribution for visual effort of male and female participants. . . 131
Figure 5.8 Heatmap illustration of 1) a female participant, and 2) a male participant.132
Figure 6.1 Stimulus that contains five AOIs: 1) comment, 2) class name, 3) va-

riables, 4) method name, and 5) question. 140
Figure 6.2 Distribution of average fixation time for SCEs. 143
Figure 6.3 Heatmap showing the cumulative fixations of participants. The colors

red, orange, green, and blue indicate the decrease in the number and
duration of fixations from highest to lowest. 145

Figure 6.4 Example of a source code stimulus in which the class name is written
in bold using a larger font size. 149

xvii

LIST OF ACRONYMS AND ABBREVIATIONS

ACM ICMI ACM International Conference on Multimodel Interaction
AFD Average Fixation Duration
AOI Area of Interest
BPMN Business Process Model and Notation
BRM Journal of Behavior research methods
CAiSE Conference on Advanced Information Systems Engineering
CASCON Centre for Advanced Studies Conference
CC Camel Case
CiB Class name in Bold
CSCL Computer supported Collaborative Learning Conference
CSCW Computer Supported Cooperative Work
DV Dependent Variable
EBSE Evidence Based Software Engineering
EMSE Empirical Software Engineering Journal
ERD Entity Relationship Diagram
ETRA Eye-tracking Research and Application
ESEM Symposium on Software Engineering and Measurement
FC Fixation Count
FT Fixation Time
FR Fixation Rate
HICSS Hawaii International Conference on System Sciences
HCI Human Computer Interaction
HUM-COMPUT Journal of Human Computer Studies
IEEE Computer IEEE Computer Journal
ICPC International Conference on Program Comprehension
ICSM International Conference on Software Maintenance
IV Independent Variable
JSS Journal of Systems and Software
LNCS Lecture Notes in Computer Science
LOC Line Of Code
MiB Method name in Bold
MV Mitigating Variable
MVC Model View Controller

xviii

PFT Proportional Fixation Time
PPIG Workshop of Psychology of Programming interest group
RFV Restricted Focus Viewer
ROAFT Ratio of “On_targer:All_target” Fixation Time
RQ Research Question
RTA Retrospective Think-aloud
SCE Source Code Entity
SCP Science of Computer Programming Journal
SETP Conference on Software Engineering Theory and Practice
SLR Systematic Literature Review
SPAM Sequential PAttern Mining
SD Spatial Density
SPP Scan-path Precision
SPR Scan-path Recall
SPF Scan-path F-measure
TEFSE Workshop on Traceability in Emerging Forms of Software Engineering
TM Transitional Matrix
US Under Score
UML Unified Modeling Language
VISSOFT Working Conference on Software Visualization

1

CHAPTER 1 INTRODUCTION

“Programming is far more complex than usual human mental activities studied by psychol-
ogists” (Weinberg and Schulman, 1974).

1.1 Research Context and Problem Statement

As a software system evolves over time, the quality of the system’s usefulness declines and its
complexity increases (Lehman, 1996). Therefore, software maintenance activities are required
to preserve the usefulness of the system. It is reported that 50 % to 75% of the overall cost
of a software system is dedicated to its maintenance (Lientz and Swanson, 1980; Davis, 1995;
Pressman, 2001) and this cost is rising drastically (TIOBE Software, 2014) (see Figure 1.1).

Program comprehension is the foremost step for developers to perform any maintenance task
and plays a vital role in software maintenance (Littman et al., 1987; Roehm et al., 2012a).
During maintenance, developers spend at least half their time reading software artifacts to
understand systems (Corbi, 1989). Any advancement in program comprehension can have
real subsequent effects in improving education, training, and the design and evaluation of
tools and development environments (Siegmund et al., 2014).

Program comprehension is based on a developer’s cognitive model of the program. A cognitive
model describes the cognitive processes along with different types of information that helps
to create this model (Navarro-Prieto and Cañas, 2001; Storey, 2005; LaToza et al., 2006).
Therefore, to ease program comprehension, we must first understand the cognitive model
underlying comprehension activity.

Figure 1.1 Increase of software maintenance costs as percentage of total cost (adapted
from TIOBE Software (2014)).

2

The think-aloud method (verbal protocol) and observational studies (video-taping) along
with other methods, such as questionnaires, surveys, and interviews, have been used as the
main data collection methods for program comprehension studies (Fan, 2010; Bednarik, 2012;
Siegmund et al., 2014). These methods, when skilfully used, can provide valuable insights
regarding program comprehension. However, they have limitations (Siegmund et al., 2014).
These methods rely on self-reporting and suffer more or less from the Hawthorn (Observer)
effect (Eteläpelto, 1993; Fan, 2010) in which participants tend to work harder and to be
under pressure to deliver an understandable response to study conductors. These methods
also require considerable manual transcription and analysis to obtain results.

With the emergence of modern eye-trackers, researchers in the software engineering commu-
nity have started to perform eye-tracking studies to study the cognitive processes underlying
program comprehension. Compared to the aforementioned traditional methods, eye-trackers
are cost-effective way of collecting data at a fine level of details with less intrusion in a de-
veloper’s cognitive processes (Just and Carpenter, 1980; Bednarik and Tukiainen, 2006). An
eye-tracker also provides information that are not available from the above-mentioned tradi-
tional methods, including the developers’ extent and patterns of visual attention (Duchowski,
2007; Calitz et al., 2009; Kara Pernice, 2009; Bednarik, 2012). Analyzing developers’ visual
attention helps us to better understand the cognitive process behind program comprehen-
sion (Rayner, 1978; Duchowski, 2007) by explaining on which parts of stimulus material do
participants focus and how they go back and forth between these parts.

Consequently, to examine the evidence and identify the advantages and problems associated
with eye-trackers, we perform a mapping study and evaluate all research relevant to the
usage of eye-tracking technique in software engineering. We identify 36 relevant publications
out of which 22 focused on program comprehension (either code or model comprehension).
The results of this mapping study emphasize that the eye-movement data provided by an
eye-tracker is exploited as a proxy of visual attention by different studies and it has been
used to provide additional insights on how developers perform different tasks. However, we
identified the following gaps that we aim to address in this dissertation:

1. To perform program comprehension, in addition to source code, developers benefit
from other artifacts (if any are available) to better understand the system. These
artifacts can impact the cognitive process by providing different levels of cognitive
support (Walenstein, 2002, 2003). Cognitive support refers to the mental assistance
provided by different tools or artifacts to ease the cognitive process of developers per-
forming a comprehension task (Walenstein, 2002, 2003).
Software artifacts take the forms of graphical (diagrams) and textual representations.

3

Graphical representations (e.g., UML diagrams) play an important role in presenting
software artifacts and they are effective tools (Moody, 2009) (1) to provide a quick
understanding of data, (2) to enhance data comparison and processing, and (3) to
improve and facilitate the communication process between end-users and developers.
Conventional wisdom assumes that graphical representations carry information more
effectively to non-technical people than textual ones (Moody, 2009).
Thus, a huge amount of work has been dedicated to propose different graphical repre-
sentations under the assumption that developers prefer to work with graphical represen-
tations rather than text to understand systems. Only a handful of studies investigated
the effectiveness of graphical vs. textual representations or the developers’ preferences
(i.e., textual vs. graphical representations) in program understanding tasks (Somervell
et al., 2002; Snook and Harrison, 2007; Heijstek et al., 2011; Ottensooser et al., 2012).

2. Developers’ individual characteristics influence the way a developer performs program
comprehension (Brooks, 1980; Storey, 2005). Differences in the performance of novices
and experts are well studied and studying these differences is a well-recognized, accepted
way to study program comprehension (Ormerod, 1990).
However, there is still a great divergence between developers’ abilities that cannot be
detected and measured only by their level of expertise (Brooks, 1980; Storey, 2005).
This observation by Storey (2005) along with the work of Burnett and her colleagues
in the Gender HCI project 1 inspire us to take into account gender differences while
studying program comprehension using eye-tracking technique.
Although a significant amount of research has been dedicated to the impact of education
and society on the success of women in technology, the possibility of gender issues in
software engineering has only started to receive attention recently (Grigoreanu et al.,
2009; Burnett et al., 2011). Moreover, no previous studies take into account gender
differences as a factor that can impact program comprehension.

3. Developers explore software system using different strategies to obtain the relevant
information. Strategy refers to a reasoned plan or method for achieving a specific
goal (Grigoreanu et al., 2009). As the eye-tracker allows us to identify the areas of
interest in which developers spent more time, it also helps to highlight different cognitive
strategies by exhibiting the patterns employed by developers to explore these areas (i.e.,
viewing strategies). Therefore, several eye-tracking studies used eye-movement data to
identify the viewing strategies deployed by developers to perform the tasks (Crosby and
Stelovsky, 1990; Crosby et al., 2002; Hejmady and Narayanan, 2012; De Smet et al.,

1. http://eusesconsortium.org/gender/

4

2012). However, no study investigated the impact of gender and representation type
on developers’ viewing strategies during program comprehension.

1.2 Thesis Statement

Representation type (graphical vs. textual) and gender impact the cognitive process underly-
ing comprehension activity. Therefore, they influence developers’ efficiency and effectiveness.
Representation type and gender are also proxy for developers’ viewing strategies, which can
be inferred partly from the developers’ eye-movements while developers perform program
comprehension tasks.

1.3 Contributions

While researching to validate our thesis statement, we perform the following contributions:

1.3.1 Mapping Study on the Usage of Eye-tracking Technique in Software En-
gineering

We perform a mapping study to provide a comprehensive view of the usage and usefulness
of eye-tracking technique in software engineering. Our mapping study covers eye-tracking
studies in software engineering published from 1990 up to the end of 2013. To search all
recognized resources, instead of applying manual search, we perform an extensive automated
search using Engineering Village 1. We identify 36 relevant publications including nine journal
articles, two workshop articles, and 25 conference articles. Our results show that the software
engineering community started to use eye-trackers in 1990 and that have become increasingly
recognized as useful tools to conduct empirical studies from 2006. We observe that researchers
use eye-trackers to study model comprehension, code comprehension, debugging, collaborative
interaction, traceability, and usability.

Moreover, we find that the studies use different metrics based on eye-movement data to collect
quantitative measurements. We classify these metrics in three groups: (1) visual effort and
efficiency metrics to measure developers’ visual efficiency; (2) visualize gaze behaviour metrics
to visualize and display developers’ eye-movements; and (3) scan-path metrics to identify,
compare, and display developers’ viewing strategies.

In addition, we discuss in details threats to the validity of experiments using eye-trackers
along with suggestions on how to mitigates these threats. However, acknowledging these

1. http://www.ei.org/engineering-village

5

threats and setting limits on what is realistically possible, we conclude that the advent
of new eye-trackers makes the use of these tools easier and unobtrusive and the software
engineering community should use them more to perform empirical studies.

Furthermore, we identify gaps in current research that inspires us to perform a set of empiri-
cal studies, presented in this dissertation. Using eye-tracking data, we measure and quantify
the cognitive effort involved in program comprehension and correlate it with gender, repre-
sentations types, and developers’ viewing strategies.

Our results are currently under review in the Journal of Information and Software Technology:

– Zohreh Sharafi, Zéphyrin Soh, Yann-Gaël Guéhéneuc. Systematic Literature Review on the
Usage of Eye-tracking Technique in Software Engineering. Submitted to The Journal of
Information and Software Technology (IST), December 2014, Under revision as of February,
12th, 2015.

1.3.2 Impact of Representation Type on Program Comprehension

We undertake an empirical study to measure the amount of cognitive supports provided
by different representation types (graphical vs. textual) for comprehension tasks along with
the viewing strategies deployed by developers to perform the tasks using these representa-
tions. To assess the amount of cognitive support, we measure developers’ effectiveness by
the percentages of correct answers and their efficiency based on the time and the effort that
developers spend to perform the tasks. We also consider effort as the amount of visual atten-
tion that developers must spend to perform their tasks: less attention and less time means
less effort. We detect and compare viewing strategies based on the exact location and the
duration of eye-movement data using a novel quantitative approach.

Our results confirms the superiority of structured text over a graphical representation for
comprehension tasks of a small system regarding developers’ spent time and effort. However,
we do not observe a significance difference between the accuracy obtained when the graphical
representation was used vs. the textual representation.

Surprisingly, the developers’ preference is largely in favor of the graphical representation, even
though it requires a higher effort. Moreover, our participants spent significantly less time and
less effort while working with a mixed representation in which both graphical and textual
information are available at the same time compared to working with only one representation
type. This finding confirms that the formalism of a graphical representation must be learnt
by users and that training is required before the benefits of a graphical representation can
materialise. Additionally, our results imply that a structured text can be more effective than

6

a graphical representation while dealing with comprehension of small systems. Our findings
help developers and maintainers to choose the right type of artifact for a given problem.

Moreover, we use a quantitative method to identify the viewing strategies of developers
while using graphical representations. Using this method, we detect developers’ viewing
strategies and compare them with each other. We find that the hierarchical structure of
the representation lead developers to deploy different viewing strategies, either top-down or
bottom-up. This observation emphasizes the importance of the the layout of representation
in comprehension.

This finding encourages us to take one step back and look at the very first phase of program
comprehension, which is source code reading, and analyze source code as a type of structured
textual representation. Moreover, because our developers’ preference is not consistent with
our finding regarding the effectiveness of textual over graphical representations, we also
investigate whether gender differences play a role in program comprehension or not.

Our study have resulted in the following conference publication:
– Zohreh Sharafi, Alessandro Marchetto, Angelo Susi, Giuliano Antoniol, and Yann-Gaël
Guéhéneuc. An Empirical Study on the Efficiency of Graphical vs. Textual Representations
in Requirements Comprehension. Proceedings of the 21st International Conference on
Program Comprehension (ICPC), May 2013, IEEE Computer Society Press.

1.3.3 Impact of Gender on Program Comprehension

Thus, we conduct a set of empirical studies with eye-tracker to analyze the impact of gender on
developers’ efficiency and effectiveness while performing program comprehension tasks. We
analyze the impact of the location of identifiers (i.e., Source Code Entities (SCE) including:
class name vs. method name vs. variable names along with comments) and the identifier style
(camel case vs. underscore) on male and female developers’ efficiency and effectiveness while
performing program comprehension.

We find no difference between camel case and underscore regarding developers’ effectiveness,
efficiency, and viewing strategies. In addition, our results bring evidence that no difference
exists between male and female developers regarding accuracy and efficiency for a given task.
Our results also show that developers, both males and females, spend more visual attention
on method names, comments, variable names, and class names, respectively.

We also investigate the different viewing strategies used by male and female developers to
read the source code and answer comprehension questions. We observe that female developers
follow different viewing strategies compared to male developers. Female developers are more

7

careful and spend more visual effort (attention) on selecting and ruling out wrong identifiers,
although, the average time to complete the task and accuracy of female developers are not
statistically different to that of the male developers. In addition, with regards to viewing
strategies deployed during source code reading, our results emphasize that male and female
developers use different strategies. Female developers spend more time on different SCEs to
carefully analyze them, then go to the next one. However, male developers scan the source
code rapidly, then, go back and forth between different SCEs and spend time on the SCEs
that they find useful.

Our studies shed light on the viewing strategies that male and female developers perform
during program comprehension, in addition to the areas of code on which they focus. Yet,
we cannot generalize our findings because our population is not large enough. Our findings
at the moment should be considered more as an additional call with respect to previous
work (Storey, 2005; Grigoreanu et al., 2009; Burnett et al., 2011), for further studies con-
cerning the role of gender in software engineering in general and program comprehension in
particular.

Our results have been published in Empirical Software Engineering Journal (EMSE) and also
resulted in two conference publications:
– Nasir Ali, Zohreh Sharafi, Yann-Gaël Guéhéneuc, and Giuliano Antoniol, An empirical
study on the importance of source code entities for requirements traceability, Empirical
software engineering Journal (EMSE), July 2014, Springer.

– Zohreh Sharafi, Zéphyrin Soh, Yann-Gaël Guéhéneuc, and Giuliano Antoniol. Women &
Men: Different but Equal: A Study on the Impact of Identifiers on Source Code Under-
standing. Proceedings of the 20th International Conference on Program Comprehension
(ICPC), June 2012, IEEE Computer Society Press.

– Nasir Ali, Zohreh Sharafi, Yann-Gaël Guéhéneuc, and Giuliano Antoniol. An Empirical
Study on Requirements Traceability Using Eye-Tracking. Proceedings of the 28th IEEE
International Conference on Software Maintenance (ICSM), September 2012, IEEE.

1.4 Organization of the Dissertation

Figure 1.2 provides an overview of the chapters of this dissertation along with the main ques-
tions that drove this research and our major conclusions. The reminder of this dissertation
is organized as follows:

Chapter 2: We provide the necessary background for this dissertation. This chapters starts
with background on eye-tracking technique followed by discussion on different eye-trackers

8

and metrics. It also summarizes the experiment process in general and planning and analysis
steps in particular.

Chapter 3: We present the mapping study that we undertook to investigate the usefulness
of eye-trackers in software engineering.

Chapter 4: We analyze the impact of representation type (graphical vs. textual) on devel-
opers’ efficiency and effectiveness while performing model comprehension tasks.

Chapter 5: We provide necessary background and presents our motivation and provides
prelude about our work analyzing the impact of gender in program comprehension. In this
chapter, we also report the results of a study investigates the effect of gender in developers’
ability to recall identifiers in program comprehension.

Chapter 6: We present the results of a study contains two experiments that report the
differences between male and female developers’ viewing strategies while performing com-
prehension tasks. We also identify the most important source code entities, including class
name, method name, variable name, or comment to which male and female developers pay
more visual attention while reading source code to perform these tasks.

Chapter 7: We conclude the dissertation by summarizing the contributions of our work and
outlining future directions.

9

Figure 1.2 Overview of the dissertation chapters.

10

CHAPTER 2 BACKGROUND

In this chapter, we discuss the necessary background to this dissertation, starting with eye-
tracking in Section 2.1 followed by experiment process in Section 2.2.

2.1 Eye-tracking Technique

Eye-trackers are designed to collect a participant’s visual attention by recording eye-movement
data (Rayner, 1978; Duchowski, 2007). Visual attention can trigger the mental processes re-
quired for comprehension and solving a given task. Therefore, eye-trackers are useful to study
the cognitive behavior and effort involved in solving the task (Duchowski, 2007).

Eye-gaze data is studied with respect to certain areas on the stimuli (e.g., diagram or source
code) that are called Areas of Interest (AOIs). An AOI can be relevant to the participant
while answering a question or can be irrelevant. For example, if we consider a class diagram
as a stimuli, an irrelevant AOI can be any class or any notation while a relevant AOI could
be a specific class that is relevant to the given task.

Eye-gaze data are classified based on the following significant indicators of ocular behav-
ior (Rayner, 1978; Duchowski, 2007), namely:
– Fixation: it is described as a spatially stable eye-gaze that lasts for approximately 200-300
ms (on average, three eye fixations happen per second during active looking). During
a fixation, the visual attention is focused on a specific area of display. Researchers in
psychology claim that most of the information acquisition and processing occur during
fixations. In addition, only a small set of fixations is enough for human brain to acquire
and process a complex visual input (Privitera and Stark, 2000). Interpreting the meaning of
fixations are completely context-dependent. Higher fixation rate on specific AOI indicates
great interest in encoding tasks such as browsing a web-pages. However, a cluster of
fixations indicate uncertainty for a search task (Poole and Ball, 2005).

– Saccade: it is a continuous and rapid eye-gaze movement that occurs between fixations.
Saccadic eye-movements are extremely rapid (within 40-50 ms). Therefore, the cognitive
process that is happening during saccades is very limited.

– Pupil dilation: it is dilation of the pupil of the eye. Larger pupils may indicate more
cognitive effort (Poole and Ball, 2005).

– Scan-path: it is a series of fixations (fixation-based) or visited AOIs (AOI-based) in chrono-
logical order. An AOI is visited if there is at least one fixation in it. However, the fixation-

11

based scan-paths become very long and complex due to the large quantity of fixation
data. Therefore, analysing the fixation-based scan-paths is laborious and complex to rea-
son about (Lorigo et al., 2006) and, also most of the time, it is impossible to recognize the
path that is visualised.
Thus, several researchers calculate and visualise AOI-based scan-paths to examine how
participants scan the stimulus and find relevant AOIs (Lorigo et al., 2006; De Smet et al.,
2012; Sharafi et al., 2013). Using AOI-based scanpaths, the large quantities of data can be
significantly reduced without losing meaningful information and make the analysis of the
data more efficient. In addition, because an AOI-based scan-path shows how participants
switch their focus of attention from one AOI to another, it helps to reason about the trend
in which different AOIs are visited and focused.

2.1.1 Assumptions

The relation between eye-movements and comprehension is defined based on two assumptions:
the immediacy assumption and the eye-mind assumption (Just and Carpenter, 1980). The
immediacy assumption is that as soon as a reader sees the word, she tries to interpret it. The
eye-mind assumption is that reader fixated her attention on the word until she comprehends
the word (Just and Carpenter, 1980).

Our dissertation along with other previous works (Crosby and Stelovsky, 1990; Crosby et al.,
2002; Fan, 2010) support these assumptions and use them to interpret fixations that are
recorded during program comprehension. Obviously, we also assume that a participant is
not day dreaming during given tasks.

2.1.2 Devices

With the emergence of eye-trackers, researchers in different disciplines start analysing the
relationship between eye movements and cognitive processes. Eye-trackers are divided into
two main categories:
– Intrusive eye-trackers: these devices consist of three miniature cameras that are mounted
on a padded headband (a heavy goggle and wires as shown in Figure 2.1). Two infrared
eye cameras are used to track the eyes’ movements, while an optical head-tracking camera
that is integrated into the headband allows an accurate tracking of the participant’s head.
Instability is the major problem of these devices in which even a light head movement of
participants may result in an inaccurate detection of eye movement. Therefore, the head
of participants must be fixed when wearing the padded headband. The Eye-link II from
SR Research Ltd (2006) is an intrusive eye-tracker that has the resolution (noise limited

12

Figure 2.1 Example of goggle used in intrusive eye-trackers (adapted from (Duchowski, 2007)).

at < 0:01 degree) and data rate (500 samples per second).
– Non-intrusive Eye-tracker: these devices consist of one computer (either a desktop PC or
a laptop) and two miniature cameras and one infra-red pad as shown in Figure 2.2. By
tracking the position of the participant’s head using her eye-brows, nose, and lips, the
device tracks the participant’s gaze. To avoid capturing head movement instead of eye-
gaze data, these systems use two features, namely corneal reflection (of an infra-red beam)
and pupil center to distinguish head movement from eye-rotation.

In this dissertation, we use FaceLAB from Seeing Machine (2010), which is a non-intrusive,
video-based eye-tracker to capture eye-gaze data.

2.1.3 Tools

An eye-tracker captures the eye-gaze data and records them in the files. These files mainly
contains the start and the end time of the fixations along with the duration of fixations and
the position of eye pupils. These data must be processed and sometimes filtered or corrected.
Most of the eye-trackers are accompanied by analysis tools to visualise, modify, and analyse
the data recorded by eye-trackers. In the following, we present two commercial analysis tools
along with an open-source tool, called Taupe, which is designed and developed in our research
group (Ptidej Team) 1.

– Eye-link II Windows Developer Kit: Eye-link II eye-tracker has been accompanied by this
development kit, which provides sample display programs, C source code, and instructions

1. http://www.ptidej.net/research/taupe

13

Figure 2.2 1) FaceLAB is an example of video-based eye-tracker that we used in this work
(adapted from FaceLAB manual (Seeing Machine, 2010)). 2) Participant sits in front of the
computer and a video-based eye-tracker captures the eye-gaze data.

for creating experimental programs. To display eye fixations and scan-paths on top of the
stimulus, the kit uses Data Viewer 3 2 and also stored files containing eye-gaze data in the
Host PC. One output file contains eye fixations, saccades and the information related to
the AOIs.

– GazeTracker : it receives eye-gaze data from FaceLAB device via network. This tool pro-
vides a list of visualizations and analysis for the eye-gaze data.

– Taupe (De Smet et al., 2012): Taupe can import and analyse eye-gaze data provided by
different eye-trackers including Eye-link II and FaceLAB. Taupe is enhanced with a user-
friendly GUI that allows researchers to analyse and edit eye-gaze data separately based
on different criteria, e.g., participants’ expertise or gender. It supports execution of a
set of algorithms to analyse and visualise data. In addition, Taupe enhances with offset
correction feature that allows users to correct the locations of fixation. Three types of offset
have been reported in the literature including: static offsets, non-static offsets, and chaotic
offsets. The offset correction feature of Taupe allows us to apply a constant transformation
function and change the coordinates of all fixations in the case of static offsets. For non-
static and chaotic offsets, user can select a group of fixations or one fixation at a time and
apply transformation respectively. In addition, a set of visualisation techniques including
heatmap, convex hull and scan-path visualizations are also supported in Taupe.
In contrast with Data Viewer and GazeTracker, Taupe is free and open-source. It is

2. http://www.sr-research.com/accessories_EL1000_dv.html

14

designed to be extensible and therefore it can be extended with new parsers and analyses
for different eye-trackers. In this dissertation, we use Taupe to analyse and visualise our
eye-tracking data.

2.1.4 Metrics

Different studies propose and–or use several metrics based on eye-movement data provided
by eye-trackers to measure and calculate the amount of visual effort required to perform the
task. These metrics divide in (1) metrics based on the numbers of fixations, (2) metrics
based on the durations of fixations, (3) metrics based on saccades, and (4) metrics based on
scan-paths.

In addition, various visualisations techniques have been used to display eye-movements. Vi-
sualising eye-movements helps performing qualitative analysis to better understand partici-
pants’ behaviour. A same metric or visualisation technique may be used in different studies
with a different name. In the following, we use the most common name to refer to a metric
and provide its other names in parentheses along with references to the related papers.

Visual Effort and Efficiency Metrics

Tables 2.1, 2.2, 2.3, and 2.4 summarise metrics used in previous eye-tracking studies to
measure the amount of visual effort and efficiency.

Metrics based on the number of fixations
– Fixation Count (FC) is measured by counting the number of fixations on specific AOIs
or the whole stimulus. Higher number of fixations for the whole stimulus indicates less
efficient search for finding relevant information (Goldberg and Kotval, 1999).

– Fixation Rate (FR) is defined as the number of fixations on specific AOIs divided by the
total number of fixations on the Area of Glance (AOG), which can be the whole stimulus
or a set of AOIs. Goldberg and Kotval (1999) proposed this metric in 1999 and called it the
Ratio of On_target:All_target Fixations (ROAF). Interpreting fixation rate is dependent
on the task being performed (Poole and Ball, 2005). For browsing/encoding tasks, a higher
fixation rate for a specific AOI indicates that the participants show a great interest in that
AOI (Jacob and Karn, 2003). Yet, it could indicate that the this area is difficult to encode
(Jacob and Karn, 2003). For search task, smaller rates indicate lower efficiency because
the participants spend more time and effort to find the relevant areas required to perform
their task (Poole and Ball, 2005).

15

Table 2.1 Metrics for visual effort calculation based on the number of fixations.

Names Formulas

V
isu

al
Eff

or
t
an

d
Effi

ci
en
cy

M
et
ric

s

N
um

be
r
of

Fi
xa

tio
n Fixation Count (FC)

FC = Total number of fixations in AOI (2.1)

Fixation Rate (FR)
FR = Total Number of Fixations in AOI

Total Number of Fixations in AOG (2.2)

Spatial Density
SD =

∑n
i=1 ci

n
(2.3)

n: number of fixations in the specific area (for one
cell). ci: equal to 1 if the area number i visited,
otherwise 0

Convex hull Area

Area of the smallest convex set of fixations (2.4)

16

Table 2.2 Metrics for visual effort calculation based on the duration of fixations.

Names Formulas

V
isu

al
Eff

or
t
an

d
Effi

ci
en
cy

M
et
ric

s

D
ur
at
io
n
of

Fi
xa

tio
ns Average Fixation Du-

ration (AFD)

AFD(AOI) =
∑n

i=1(ET (Fi)− ST (Fi))in AOI
n

(2.5)
ET (Fi) and ST (Fi): the end time and start time for
fixation Fi n: the total number of fixations in a given
AOI

Ratio of
ON_targetAll_target
Fixation Time
(ROAFT)

ROAFT =
∑n

i=1(ET (Fi)− ST (Fi))inAOI∑n
j=1(ET (Fj)− ST (Fj))in AOG (2.6)

Fixation Time (FT)
FT = Total duration of all fixations in AOI (2.7)

Average Duration of
Relevant Fixations
(ADRF)

ADRF = Fixations Duration of Relevant AOIs
Total Number of Relevant AOIs

(2.8)

Normalised Rate of
Relevant Fixations
(NRRF)

NRRF = ADRF
Fixation Duration of All AOIs

Number of All AOIs
(2.9)

17

– Fixation Spatial Density was proposed by Goldberg et al. (Goldberg and Kotval, 1999)
and used in several studies. If we divide a stimulus into a grid, the spatial density index is
equal to the number of cells containing at least one fixation, divided by the total number
of cells. Fixations that are concentrated in a small area indicate an efficient search, which
is highly focused. De Smet et al. (2012) explains how to use their tool, Taupe, to compute
this metric along with some examples.

– Convex hull Area represents the smallest convex set of fixations that contains all the
participants’ fixations (Goldberg and Kotval, 1999).
A smaller value indicates that the fixations are closed together and that the participants
spend less effort to find relevant areas.

Metrics Based on the Duration of Fixations
– Average Fixation Duration (AFD) is correlated with cognitive processes (Duchowski,
2007; Goldberg and Kotval, 1999). This metric is computed as shown in Equation 2.5, Table
2.2. Longer fixations show that participants spend more time analysing and interpreting
the content of the AOIs while working on their tasks. Therefore, they are spending more
mental effort to solve their tasks. This metric can be computed for either a whole stimulus
or each AOI separately.

– Ratio of “On_targer:All_target” Fixation Time (ROAFT) or Proportional Fixa-
tion Time (PFT) is computed as the ratio of the fixation duration on an AOI to the overall
fixation duration on a stimulus. Similar to the FR metric, Goldberg and Kotval (1999)
proposed this metric in 1999 and explained that a smaller ratio indicates a lower efficiency,
because the participants spend a lot of time searching the stimulus to find a relevant area.
In addition, according to Just and Carpenter (1976), the duration of the fixations on a
specific area can have two different meanings: (1) it is hard for participants to extract
information or (2) participants are more engaged by the content of the area.

– Fixation time (FT) is computed by calculating the total time of all fixations for a specific
AOI or the whole stimulus. It is also referred to as gaze or fixation cluster.
It can be used to compare the amount of attention on different AOIs or the whole stimulus
(Poole and Ball, 2005).

– Average Duration of Relevant Fixations (ADRF) is the total duration of the fixa-
tions for relevant AOIs. The same measure has been proposed for non-relevant AOIs and
is called “Average Duration of Non-Relevant Fixations (ADNRF)”.

– Normalised Rate of Relevant Fixations (NRRF) is proposed by Jeanmart et al.
(2009) to compare two or more diagrams with each other regarding the impact of the
Visitor design pattern.

18

Table 2.3 Metrics for visual effort calculation based on saccades.

Names Formulas

V
isu

al
Eff

or
t
an

d
Effi

ci
en
cy

M
et
ric

s

Sa
cc
ad

es Number of saccades

Total number of saccades (2.10)

Saccade duration Total duration of saccade (2.11)

Metrics based on saccade
– Number of saccades represents the total number of saccades in a stimulus. A higher
number of saccades indicates more searching (Poole and Ball, 2005).

– Saccade duration represents the total duration of all saccades for one or a set of AOIs.
Fritz et al. (2014) explain that the number and the duration of saccades are related to the
mental workload and can provide insight into the influence of the artifacts on the partici-
pants’ cognitive processes. Previous studies in usability also used saccades amplitude and the
number of regressions (Poole and Ball, 2005) to compute a visual effort. Saccade amplitude
indicates meaningful load cues. The higher the saccade amplitude, the lower the mental effort
(Poole and Ball, 2005). Saccades are usually rightward (progressive). However, sometimes
they may be backward (leftward in text reading) or regressive, which indicates difficulties in
understanding some text (Sibert et al., 2000) or the presence of less meaningful cues in the
stimulus (Poole and Ball, 2005).

Metrics based on scan-paths
– Transitional matrix is a tabular representation that shows the frequency of transitions

Figure 2.3 Example of scan-path and corresponding transition matrix (De Smet et al., 2012).

19

Table 2.4 Metrics for visual effort calculation based on scan-paths.

Names Formulas

V
isu

al
Eff

or
t
an

d
Effi

ci
en
cy

M
et
ric

s

M
et
ric

s
Ba

se
d
on

Sc
an

-p
at
hs Transitional Matrix

TM =
∑n

i=1
∑n

j=1 ci,j

n.n
(2.12)

n: number of fixations in the specific area (for one
cell). ci: equal to 1 if the area number i visited,
otherwise 0

Attention Switching
Frequency The number of switches between AOIs (2.13)

Scan-path Precision SP ∩RR
SP

(2.14)

SP: number of AOIs that are visited (fixated). RR:
number of relevant AOIs that are visited.

Scan-path Recall
SP ∩RR
RR

(2.15)

SP: number of AOIs that are visited (fixated). RR:
number of relevant AOIs that are visited.

Scan-path F-measure
2 ∗ SPP ∗ SPR

SSP + SPR
(2.16)

SP: number of AOIs that are visited (fixated). RR:
number of relevant AOIs that are visited.

20

between defined AOIs (Ponsoda et al., 1995). Equation 2.12 in Table 2.3 presents this
metric. In addition to the search area, this metric also considers the temporal order of
the search by detecting movements over time (Goldberg and Kotval, 1999). The density
of a transition matrix is computed as the number of non-zero matrix cells divided by total
number of cells. (De Smet et al., 2012) describes how to compute and use a transitional
matrix. Figure 3.5 shows an example of a scan-path on the display grid and its transition
matrix with a spatial density of 12% (10 cells out of 81 are filled). Frequent transitions,
which produce a dense transition matrix (with most cells filled with at least one transition),
indicate extensive search with inefficient scanning on a stimulus. A sparse matrix points
out more efficient and directed search (Goldberg and Kotval, 1999).

– Attention switching frequency is the number of switches between two specific AOIs.
This metric is used in (Bednarik and Tukiainen, 2006, 2008).

– Scan-path precision (SPP) was proposed by (Petrusel and Mendling, 2013) as the
percentage of relevant AOIs visited from all defined AOIs in the stimulus.

– Scan-path recall (SPR) was proposed by (Petrusel and Mendling, 2013) as the percent-
age of relevant retrieved AOIs from all relevant AOIs in the stimulus.

– Scan-path f-measure (SPF) was proposed by (Petrusel and Mendling, 2013) as the
harmonic mean of SPP and SPR. It is the percentage of relevant retrieved AOIs from all
relevant AOIs in the stimulus.

Previous studies in usability research also use the scan-path duration and scan-path length,
which are proxy of the search efficiency. Longer-lasting scan-paths indicate that the par-
ticipants spend more time on each AOI before going to the next one, which means a less
efficient scanning (Goldberg and Kotval, 1999). A longer scan-path indicates that the par-
ticipant performed more attention switching between different AOIs. It also indicates that
the participant explored the stimulus more, which means a less efficient searching (Goldberg
et al., 2002).

In addition, several techniques also exist to describe, compare, and analyse scan-paths:

– Edit distance is based on the Levenshtein algorithm (Levenshtein, 1966), which calcu-
lates the editing cost of transforming one string into another using three basic operations
(insertion, deletion, and substitution). If we consider a cost of 1 for each operation, the
Levenshtein distance metric is the minimum editing cost. De Smet et al. (2012) uses the
Levenshtein distance and reports that the average distance among novices’ scan-paths is
lower than that of experts. However, the edit distance does not take into account the
duration of different fixations and treats all fixations equally. Fixation duration plays an
important role in analysing eye-tracking data (Henderson and Pierce, 2008). Consequently,
new techniques have been proposed to consider also the duration of fixations.

21

– Sequential PAttern Mining (SPAM) was proposed by Ayres et al. (2002) and uses a
depth-first search strategy for mining scan-paths. (Hejmady and Narayanan, 2012) uses
this technique and takes into account fixation durations by categorising fixations as short
(less than 500 milliseconds) and long (higher than 500 milliseconds). The threshold (500
milliseconds) was chosen based on a review of all the participants’ eye-movements. Its
results confirm that experts look at the program output more frequently than novices.
Moreover, participants who were familiar with the IDE switched their attention between
the source code and the graphical visualisation more often than those who were less familiar
with the IDE.

– ScanMatch was defined by Cristino et al. (2010), who propose the ScanMatch algorithm
to compare scan-paths based on the Needleman-Wunsch algorithm used in bio-informatics
to compare DNA sequences. ScanMatch assigns a character to represent each AOI and
uses the temporal binning to repeat the letters corresponding to the AOIs in a way that
their quantities are proportional to the fixation durations. This technique also computes a
matching score to show exactly how much two scan-paths are similar. Sharafi et al. (2013)
uses ScanMatch and calculates the similarity of participants’ scan-paths while working
with graphical representations.

Visual Gaze Behaviour

Eye-tracking studies in software engineering have used so far three types of visualisation
techniques: heat-map, gaze plot, and color-coded attention allocation map.

– Heat-map is a color spectrum that represents the intensity (number and duration) of
fixations. The colors red, orange, green, and blue indicate the number of fixations from
highest to lowest. A heat-map is superimposed on top of a stimulus and highlights areas
where participants have been looking. Figure 3.6 shows heat-maps that are presented
and discussed in (Sharif and Maletic, 2010a; Busjahn et al., 2011) while Figure 3.7 shows
heat-maps presented in (Ali et al., 2012; Sharafi et al., 2012). (Sharif and Maletic, 2010a)
investigates the impact of different layouts on the comprehension of design patterns. It uses
two heat-maps to visualise experts’ eye-movements while working with two layouts (multi-
cluster vs. orthogonal), separately. The heat-maps show that experts spent more time on
the classes participating in the design patterns while working with a multi-cluster layout
comparing to the orthogonal layout. (Busjahn et al., 2011) uses heat-maps to visualise the
areas in the source code that attracts higher interest (higher fixation duration). (Ali et al.,
2012) creates heat-maps for different participants for code comprehension tasks. The heat-
maps show that large numbers of fixations are found on the method names, comments,

22

variable names, and class names in decreasing order of importance. (Sharafi et al., 2012)
uses heat-maps to show the differences among the men and women participating in code
comprehension and recall tasks. The heat-maps show that men and women use different
strategies for answering the multiple-choice questions. The heat-maps for women show
fixations scattered through all choices while, for men, the fixations are mainly focused on
one choice.

– Gaze plot provides a static view of the eye-gaze data. It is also useful to visualise scan-
paths. Using a gaze plot, a scan-path is shown as a directed sequence of fixations, where
a fixation is illustrated using a circle whose radius represents the durations of the fixation.
(Sharif and Maletic, 2010a) uses a gaze plot to compare experts and novices performing
design pattern comprehension tasks. Experts’ gaze plots (as presented in Figure 3.8) show
that they are looking at attributes and methods to find answers, while novices mainly focus
on class names. (Binkley et al., 2013) compares camel case and underscore identifer styles
for code comprehension. The gaze plots (as presented in Figure 3.8) show that developers
put a larger number and longer fixations for the camel case style. (Jermann and Nüssli,
2012) uses an enhanced version of a gaze plot called a gaze cross-recurrence plot.
Using this plot, it determines if two participants who are working on the same stimulus
look at the same area at roughly the same time and in the same sequence.

– Color coded attention allocation map is based on either the numbers of fixations or
the total durations of all fixations for some set of words. This map allocates a color to
each word separately from a color spectrum that starts from light green (lowest attention
level) going through dark green and dark red while finishing with light red (highest level
of attention). (Busjahn et al., 2011) uses such a map based on the number of fixations per
word as depicted in Figure 3.9 to show different parts of source code that attracts different
levels of attention and consequently time.

2.2 Experiment Process

Wohlin et al. (2000) define five steps to carry out an experiment that we recall here, because
we use them to conduct eye-tracking experiments presented in this dissertation.

2.2.1 Definition

Experimenter defines the problem, the goals, the objectives of the experiment, and the ex-
periment’s hypotheses.

23

Figure 2.4 (1) shows the gaze plots of an expert for the Observer pattern for orthogonal and
multi-cluster layouts (Sharif and Maletic, 2010a). (2) shows gaze plots for underscore and
two camel case 3-word code identifiers (Binkley et al., 2013).

Figure 2.5 Color-coded attention allocation map based on the number of fixations per word
(Busjahn et al., 2011).

24

2.2.2 Planning

Experimenter designs the experiment by: 1) stating the hypotheses formally and 2) deter-
mining the study variables.

Hypothesis Statement

The definition of an experiment is formally expressed through a hypothesis statement. Two
hypotheses must be formally stated and tested:

1. Null hypothesis (H0) states that there is no difference in the trends of two populations
and any differences in findings results from a coincidence. It is an interest of the
experimenter to reject the null hypothesis.

2. Alternative hypothesis (H1) states that there is an observed effect for the experiment.
The experimenter tries to demonstrate and to accept the alternative hypothesis in an
indirect way.

Different types of risks are involved during hypothesis testing that are referred to as:

1. Type-I-Error (α): the error of rejecting (H0) when it is true.

2. Type-II-Error (β): the error of failing to reject (H0) when it is false.

To determine whether the result is statistically significant and to reject the null hypothesis
(H0), an experimenter must calculate the p-value that is the estimated probability of re-
jecting the H0. Typically in software engineering (this dissertation included), the minimum
confidence required is 95%, thus an accepting maximum of Type-I-Error i.e., (α) is 5%. If a
p-value is smaller than α, H0 is rejected and the H1 is accepted.

Study Variables

There exist three types of variables:

1. Independent variables (IV): there are input variables that an experimenter can control
and change to observe their impacts on dependent variables.

2. Dependent variables (DV): these response variables are those that the experimenter is
interested to study their variants in the experiment when the independent variables
change.

3. Mitigating variables (MV): these confounding variables change systematically when one
or more independent variables change. They propose an alternative explanation of the
observations and how dependent and independent variables are related.

25

The experimenter also determines the values that these variables can actually take and conse-
quently, she chooses the measurement scale based on these values. Moreover, the participants
must be selected.

Threats to Validity

The experimenter must consider the threats to the validity of the experiment. There are four
major types of these threats to the validity that we discussed here:

1. Internal: this type is concerned with the extent to which the casual conclusion is de-
rived based on the relation between the independent and dependent variables. The
experimenter must verify whether the observation can be attributed to the depen-
dent variables rather than other possible causes. In this dissertation, we consider three
threats to the internal validity: maturation, instrumentation, and diffusion of the treat-
ments. We mitigate the impact of maturation by assigning the different pieces of source
code or representations randomly to our participants. This random ordering prevents
fatigue effect concerning the stimulus given at the end. The instrumentation threat
is related to the equipment that we used in our experiments. We used a video-based
eye-tracker that does not involve any heavy goggle. Participants can move their head
easily without changing the calibration of camera. We also used a dentist chair to
support participants’ neck to make them comfortable and avoid fatigue. To mitigate
the possible diffusion of the treatments, we asked our participants not to talk about
the experiment with the other participants.

2. External: this type is related to the generalization of the results. The selection of
participants and–or objects that are not representative of the studied population is an
example of threats to external validity. In this dissertation, we used students as partic-
ipants in our experiments and we did not distinguish novices and experts. Kitchenham
et al. (2002) mentioned that “using students as participants is not a major issue as
long as you are interested in evaluating the use of a technique by novice or non-expert
software engineers. Students are the next generation of software professionals and, so,
are relatively close to the population of interest.” Moreover, the number of participants
also impacts the results. Previous eye-tracking studies (Bednarik, 2012; Sharif et al.,
2012a; Cagiltay et al., 2013; Walters et al., 2014; Busjahn et al., 2014; Rodeghero et al.,
2014a) mainly had around 15 to 20 participants and they mentioned that eye-tracking
studies usually have about the same number of participants. In this dissertation, we
have around 25 participants for each experiment, which is much more than some pre-
vious eye-tracking studies.

26

Hawthorne effect (also referred to as the observer effect) is one of the threats to external
validity. While performing an experiment, an experimenter is responsible for providing
guidance to the participants throughout the experiment. In case of conducting an
eye-tracking experiment, the experimenter must calibrate the camera, and constantly
checks the recording to ensure that the eye-tracker does not stop tracking the eyes. The
experimenter’s presence can bias the results due to the Hawthorne (observer) effect,
because participants feel that they are being watched. In this dissertation, we explain to
participants that eye-tracker does not provide any video and we provided the minimum
interaction between the participants and the experimenter during the experiments.

3. Construct: if we define construct as an ability, or skill that happens or forms in the
human brain (people’s mind) such as overall English language proficiency, construct
validity refers to whether an experiment measures the construct adequately or not. In
other words, this type evaluates ”whether the theoretical constructs are interpreted and
measured correctly” (Easterbrook, 2007). Hypothesis guessing is one of the threats to
this validity that happens when participants try to guess the intent of the experiment
and consciously, or subconsciously, modify their behavior.
In this dissertation, we did not informed the participants about the precise goal of the
experiment to avoid hypothesis guessing. We explained them the process of performing
the experiment, the number of session, and questions that they must answer. We did
not set a time limit, we asked participants to answer the questions as soon as they can.

4. Conclusion: this type or statistical conclusion validity holds when the conclusions of an
experiment are constructed based on an adequate analysis of the data using adequate
statistical tests. Low statistical power is an example of threats to this validity, which
increases the likelihood of making Type-II-Error (β). In this dissertation, we do not
consider any assumption regarding the distribution and normality of our data, therefore,
we use non-parametric, non-paired statistical tests to determine significant differences.
Moreover, we choose well-documented metrics from the previous works as presented in
Section 2.1.4 to ensure the reliability of our measures. Finally, we make sure that the
eye-tracker is well calibrated for every participant before collecting data.

2.2.3 Operation

There are three main steps to conduct an experiment:

1. Preparing the materials as well the participants: the experimenter must contact the
participants and have their consent.

27

2. Executing the experiment and collecting data: the experimenter must install the ex-
periment and and properly record and save the data.

3. Validating the data: the experimenter must check to confirm that the collected data is
correct.

2.2.4 Analysis and Interpretation

This step usually starts with applying descriptive statistics to better understand the data
and to check if any pre-processing (e.g., noise removal) is required before starting to analyze
and to interpret the data.

The next step is hypothesis testing where the experimenter chooses the statistical tests based
on the measurement scales and the values of the results. In this dissertation, we use the
following statistical tests for measuring the dependency and effect size.

– Wilcoxon signed-rank test (Wohlin et al., 2000): it is used to decide whether two data
distributions are identical without assuming that they follow a normal distribution.

– Logistic regression models (Hosmer Jr and Lemeshow, 2004; Venables and Ripley, 2002):
it models the relationship between a dependent variable and one or more independent
variables. This model helps to check the fit and the significance of the relationships between
dependent and independent variables. We use logistic regression analysis as a proxy for
correlation when the dependent variable is a dichotomous variable, e.g., the answer to a
question is either correct (1) or wrong (0).

– Contingency table: it is a table in the format of a matrix (two-way) for displaying the
frequency distribution of the variables (Venables and Ripley, 2002). It is the categorical
equivalent of the scatter plot and it is a useful tool to record and analyze the relationships
between categorical variables.

Finally, the experimenter examines and interprets the results to determine whether to accept
or reject the hypotheses.

2.2.5 Presentation and Packaging

This step includes providing thorough documentation explaining the goals and the results
of the experiments completely. Moreover, a replication package must be prepared to further
assist the replication.

28

CHAPTER 3 MAPPING STUDY ON THE USE OF EYE-TRACKING
TECHNIQUES IN SOFTWARE ENGINEERING

The Evidence-based Software Engineering (EBSE) paradigm has been proposed in 2004 and,
since then, has been used to provide detailed insights regarding different topics in software
engineering research and practice. On the one hand, eye-tracking is a mean to collect ev-
idence regarding some participants’ cognitive processes. Eye-trackers monitor participants’
visual attention by collecting eye-movement data. These data are useful to get insights into
participants’ cognitive processes during reasoning tasks. On the other hand, mapping studies
are also useful in the context of EBSE by bringing together all existing evidence of research
and results about a particular topic.

This mapping study evaluates the current state of the art of using eye-trackers in software
engineering and provides evidence on the uses and contributions of eye-trackers to empirical
studies in software engineering.

We perform a mapping study covering eye-tracking studies in software engineering published
from 1990 up to the end of 2014. To search all recognised resources, instead of applying
manual search, we perform an extensive automated search using Engineering Village. We
identify 36 relevant publications, including nine journal papers, two workshop papers, and
25 conference papers.

The software engineering community started using eye-trackers in the 1990’s and they have
become increasingly recognised as useful tools to conduct empirical studies from 2006. We
observe that researchers use eye-trackers to study model comprehension, code comprehension,
debugging, collaborative interaction, and traceability. Moreover, we find that studies use dif-
ferent metrics based on eye-movement data to obtain quantitative measures. We also report
the limitations of current eye-tracking technology, which threaten the validity of previous
studies, along with suggestions to mitigate these limitations.

However, not withstanding these limitations and threats, we conclude that the advent of
new eye-trackers makes the use of these tools easier and less obtrusive and that the software
engineering community could benefit more from this technology.

3.1 Introduction

The evidence-based paradigm was first employed in 1992 in clinical medicine to integrate
“the best research evidence with clinical expertise and patient values” (Sackett et al., 2000).

29

Kitchenham et al. (2004) were the first researchers to adapt the evidence-based paradigm in
software engineering in 2004 and called it “Evidence-based Software Engineering” (EBSE).
Since then, EBSE has been used to provide insights on different topics in software engineering
research and practice. Performing a systematic literature review (SLR) is recognized as an
approach to realize EBSE with the goal of bringing together all existing evidence on a topic
and providing evidence-based guidelines to push forward that topic (Kitchenham et al., 2009).
Mapping studies are a form of SLR that strives for identifying and categorising the available
research on a specific topic (Kitchenham et al., 2010). The main difference between an SLR
and a mapping study is that conducting an SLR is steered by one specific research question,
followed by an empirical study to answer this question. However, a mapping study targets a
list of high-level questions and mainly investigates the sub-topics that have been addressed
and the methods that have been used. A mapping study also identifies sub-topics that are
supported by sufficient empirical studies for performing a more precise SLR (Kitchenham
et al., 2009).

In cognitive psychology, researchers have traditionally used eye-trackers to study information
processing tasks (Rayner, 1998). Eye-trackers are also increasingly used in other domains,
such as marketing, industrial design, and computer science (e.g., graphic data processing
and human–computer interactions) (Duchowski, 2007). In the early nineties, the software
engineering community started to show interest in eye-tracking technology to study the read-
ing strategies involved in program comprehension. In 1990, Crosby and Stelovsky (1990)
performed the first eye-tracking study in software engineering. They investigated reading
strategies and their impact on the comprehension of procedural code.

However, eye-trackers have not been used a lot in software engineering because of the high
price of accurate devices and the difficulties associated with using these devices (Bednarik
and Tukiainen, 2007). As an alternative solution, some previous studies used the Restricted
Focus Viewer approach (RFV) (Blackwell et al., 2000) and its modified, enhanced version to
study debugging strategies (Romero et al., 2002a,b, 2003). RFV tracks the movements of a
computer mouse over a stimulus and their coordinates and durations (Blackwell et al., 2000;
Jansen et al., 2003). Yet, since 2006, software engineering researchers started to leverage the
availability of unobtrusive eye-trackers to perform different studies.

This paper presents a mapping study of 36 papers, collecting, evaluating, and interpreting all
studies relevant to the uses of eye-tracking technology in software engineering from 1990 up
to the end of 2014. We believe that conducting this mapping study is beneficial at this point
in time because it brings together all the studies that have been done in the past and could
help researchers to avoid misusing eye-tracking technology in software engineering research.

30

Moreover, this mapping study provides an overview of all the different eye-trackers, metrics,
visualization techniques, activities, and artifacts used in previous eye-tracking studies. It
also discusses the limitations associated with eye-tracking technology. Therefore, it can be a
starting points for researchers who are interested to perform eye-tracking studies to become
acquainted with this technology and its limitations, to find related works, and to decide
whether or not to use this modern technology.

In summary, the contributions of this mapping study are the following:

1. To provide descriptive statistics and overviews on the uses of eye-tracking technology
in software engineering.

2. To present an annotated bibliography and provide and discuss exhaustive lists of topics
and artifacts studied using eye-trackers.

3. To summarise all the metrics and tools available for the analysis of eye-tracking data
to study developers’ cognitive processes.

4. To allow researchers to use a unified and consistent terminology, (e.g., metrics names),
when conducting and reporting eye-tracking studies.

The annotated bibliography presents information about the selected studies in a structured
way. It allows researchers to compare studies with one another with respect to the selection
of material, the participants’ selection, and the study variables. Researchers with particular
topics, activities, or artifacts in mind, can find out whether their topics, activities, or artifacts
have been studied and, if they were, relevant information from the annotated bibliography.
The mapping study also concludes with the needs for new metrics and tools to analyse eye-
tracking data as well as advices to overcome or limit threats to the validity of eye-tracking
studies.

The remainder of this chapter is organized as follows: Section 3.2 contains an overview of
related work. In Section 3.3, we discuss the methodology that we follow in conducting the
mapping study. We present the summary of evidence along with the complete answers to
our research questions in Section 3.4. Threats to validity are discussed in Section 3.5 and we
discuss and conclude this chapter in Section 3.6.

3.2 Related Work

There is neither a mapping study nor an SLR with regards to the usage of eye-tracking
technique in software engineering. We can identify only two relevant articles. In the first
article, Busjahn et al. (2011) provided useful comparisons between several eye-tracking

31

studies that are focused on source code reading and comprehension. This comparison has
been done based on seven criteria including:

– Number of participants.
– Experience levels (expert, intermediate, and novice).
– Methods (eye-tracking and eye-tracking with Retrospective Think-aloud (RTA)).
– Stimuli programs (algorithms, number of programs, and number of bugs, LOC).
– Programming language.
– Comparison with natural text.

They concluded that despite some methodical shortcomings, the usage of eye-tracking tech-
nique is useful for studying program comprehension.

The second article analysed various ways in which eye movements can be systematically
measured (Poole and Ball, 2005). Poole and Ball (2005) provided a list of eye-tracking
metrics for usability evaluation based on the number and the duration of fixations, saccades,
and scan-paths. It also discusses technical issues related to eye-tracking technique and some
propositions for improvement.

3.3 Study Design

We carry out this mapping study following Kitchenham’s guidelines (Kitchenham, 2004).

3.3.1 Research Questions

This mapping study answers the following general, related to research trend research ques-
tions:

– RQ3.1: How many articles have reported on the use of eye-tracking techniques in software
engineering research since 1990?

– RQ3.2: Which research topics have been explored and examined in eye-tracking studies?
– RQ3.3: How much have eye-tracking studies contributed to software engineering?
– RQ3.4: How have researchers used eye-trackers to collect quantitative measurement?
– RQ3.5: What are the limitations of current research?
– RQ3.6: Which eye-trackers are most frequently used in software engineering research?

To address RQ3.1, we identify the numbers of journal, conference, and–or workshop papers
published starting from 1990 up to the end of 2014 and which report one of more empirical
studies using an eye-tracker in the field of software engineering. We choose 1990 as starting
point because the first eye-tracking study in software engineering was carried out in 1990 by

32

Crosby and Stelovsky (1990). We confirmed this observation by performing a complementary
search looking for relevant papers published between 1980 and 1990. This complementary
search returned only the paper by Crosby et al. Regarding RQ3.2, we consider the scope
of each study based on categories for which we found at least two publications: model
comprehension, debugging, code comprehension, collaborative interaction, and traceability.

To answer RQ3.3, we summarise the outcomes of the selected studies. With respect to
RQ3.4, we provide a list of all metrics based on eye-tracking data as well as their definitions
and applicability. To answer RQ3.5, we explain the limitations of current eye-trackers for
software engineering studies along with the solutions deployed by researchers to mitigate
these limitations. Finally, we provide a list of commonly used eye-trackers to answer RQ3.6.

3.3.2 Search Process

We use Engineering Village 1 to search for papers that present one or more eye-tracking
studies in the field of software engineering. Engineering Village is an information discovery
platform that is connected to several trusted engineering literature databases. If we had
performed our search using individual, independent electronic databases, such as the ACM 2

and IEEE Xplore 3 digital libraries separately, we would have needed different search queries,
potentially threatening the internal validity of our results. Engineering Village gives us the
ability to search in all recognised scholarly journals, conference and workshop proceedings
together with a unique search query.

Because our main goal is to study the usage of eye-tracking technology in software engi-
neering, we assume that the RFV approach and–or eye-trackers are used to collect par-
ticipants’ eye-movements while performing tasks using software engineering-related stimuli.
Thus, we define three sets of keywords presented as follows, where a “*” at the end of each
word is a truncation that can be replaced with zero or more characters:

1. Eye-tracking: “eye track*”, “eye-track*”, “RFV”, and “Restricted Focus Viewer”. We
use these keywords to find papers that use an eye-tracker or the RFV approach. There-
fore, the returned set of papers contains two main terms related to eye-trackers, i.e.,
“eye” and “track” and RFV-related terms.

2. Stimuli: “source code”, “program*”, “UML”, “model*”, and “representation*”. We
define this set of keywords to find papers focusing on the different types of stimuli used
in software engineering studies.

1. http://www.ei.org/engineering-village
2. http://dl.acm.org/
3. ieeexplore.ieee.org

33

3. Task: “comprehen*”, “understand*”, “debug*”, “explorat*”, “navigat*”, “read*”, “scan*”,
and “analy*”. We define this set of keywords to find papers pertaining to the different
activities performed by software developers on a daily basis and that have been studied
by researchers.

First, we included all keywords in a preliminary query. We evaluated and refined the query
as follows. First, we executed the preliminary query. The search engine was set to search
from 1990 to 2014. We automatically applied duplicate removal. We used both Inspec 4

and Compendex 5 databases. We sorted the results of the preliminary query by relevance.
Second, we first checked the first ten found papers and verified the number of relevant papers
to evaluate the quality of the search results. We found five papers out of ten that are
relevant to the goal of this study. Third, we evaluated the impact of each keyword by
removing the keywords one by one and checking the results. If by removing a keyword, at
least one relevant result went missing, we considered that keyword essential and kept it. If
after keyword removal, there was no missing paper, we removed that keyword. Based on the
three sets of keywords and this evaluation process, we obtained the final search query shown
in Figure 3.1.

3.3.3 Selection Process

The process that we adopted to select the relevant papers is presented in Figure 3.2. On the
left, we present the set of activities that we undertook while, on the right, we present the
numbers of remaining papers after each activity.

1. Select related papers: we executed our query in Engineering Village. The search engine
searched into the title, the abstract, and the keywords sections of the papers looking
for the keywords that are defined in our query to find matching papers.

2. Apply automatic process of duplicate removal: we used Engineering Village duplicate
removal feature to automatically find and remove duplicate papers among the set of
papers returned by its engine.

3. Apply inclusion and exclusion criteria: we performed this step to check whether the
resulting papers are relevant or not to our goal. We presented and explained these
criteria in details in the next section.

4. Analyse selected papers for duplicate removal: for each selected paper, we performed its
full analysis. Using title, keywords, abstract, and body, we checked whether the paper is

4. http://www.theiet.org/resources/inspec/
5. http://adat.crl.edu/databases/about/compendex

34

Figure 3.1 Search query.

Figure 3.2 Selection process adapted to choose appropriate related papers. The numbers on
the left are the numbers of papers remaining after each step has been performed.

a duplicate because, although Engineering Village features a duplicate-removal process,
there are still duplicated papers in the results; for example, because different publishers
use different formats to display authors’ names.

5. Perform the snowballing process: for each paper, we went through the list of all its
references, check each reference starting from its title, the conference proceeding and
journal names, and then check the full paper if necessary to decide whether to include
the paper in the study or not.

3.3.4 Inclusion and Exclusion Criteria

We adopt the following inclusion/exclusion criteria. We go through the abstract and the
body of each paper to ensure their relevance according to these criteria.

35

Inclusion criteria:

1. Primary studies published in journals or conference and workshop proceedings in the
form of experiments, surveys, case studies, reports, and observation papers using eye-
tracking technology to study and investigate software engineering activities.

2. Primary studies that present the more detailed and complete results, if there are more
than one published versions of a specific study.

Exclusion criteria:

1. Papers that do not use an eye-tracker.

2. Papers that are not related to software engineering. We remove papers related to other
fields (i.e., biomedical optics and imaging) by checking the body of the selected papers.

3. Papers in “grey” literature, which are not published by trusted, well-known publishers,
and–or which did not go through a well-defined referring process Budgen et al. (2011).
(These papers are automatically excluded by Engineering Village.)

4. Papers that are not published in English. (These papers were removed by Engineering
Village through its publication language feature and using only the “English” language.)

We did not include dissertations in this mapping study because they are not returned by
Engineering Village a it considers them “grey” literature. Moreover, a dissertation may
contain several eye-tracking studies and, therefore, we prefer to consider the individual papers
presenting each study.

3.3.5 Data Collection

The pieces of information extracted from each paper are the following:

– Authors and their affiliations.
– Years of publication.
– Names of the eye-trackers.
– Configurations of the devices in the study, e.g., the distance between the participants and
the screens, the sizes and resolutions of the screens.

– Main topics of the publication.
– Main research questions and results.
– All dependent, independent, and mitigating variables of the experiment.
– Metrics defined based on eye-tracking data.
– Studied artifacts, e.g., source code, diagrams, text, etc.
– Studied tasks: e.g., reading, scanning/exploration, comprehension, etc.

36

To preserve the consistency of the data extraction, we used a data extraction form that we
designed for this study. We provide a copy of this form in Table 3.1.

3.4 Study Results

We can now answer our research questions and discuss their answers.

3.4.1 RQ3.1: How Many Articles Have Reported on the Use of Eye-tracking
Techniques in Software Engineering Research Since 1990?

Overall, we find 36 relevant papers, summarised in Table 3.4. All of these papers report at
least one study with some eye-tracker. Figure 3.3 presents the numbers of papers published
per year starting from 1990 to 2014. Only 13.8% of these papers were published between
1990 and 2006 and the rest were published in the last 10 years. This table shows that, in the
software engineering community, eye-trackers have become increasingly accepted as useful
tools to perform empirical studies from 2006.

Applying our search query returned an original set of 649 papers. We then perform the
following actions to obtain the final set of relevant papers, as illustrated in Figure 3.2:

1. We use the Engineering Village search engine and remove duplicates automatically. 550
papers remain in the set.

2. We apply the inclusion/exclusion criteria and reduce the number of articles to 48. We
use the abstract and the body of the papers to remove several papers that are not
related to software engineering. Several papers pertain to different fields, including
cognitive science, natural language processing, computational science, mathematics,
geoinformatics, bioinformatics, robotics, etc. Two proceedings of the “Eye-tracking
Research and Application Conference” (ETRA) of 2008 and 2012 are also removed
because we already selected their papers related to software engineering.

3. We analyse the remaining set of 48 papers and remove 17 more papers, leaving 31
papers. Seven out of the 17 removed paper present new methods to compute, represent,
or predict participants’ scan-paths and do not perform any software engineering-related
study. There is also one paper whose text we could not find online. In addition, we
remove (Romero et al., 2002b) because (Romero et al., 2002a) is its extended journal
paper version.
We also remove (Sharif and Kagdi, 2011; Walters et al., 2013) because they do not
contain any eye-tracking study. We also remove six duplicated papers. Out of these

37

Table 3.1 Data extraction form.

Aspect Attribute
Title

Authors and Affiliation

First author
Second author
Third author
Forth author

Year and Source

Eye-tracker

Device
Distance between the participant and the screen
Screen resolutions
Frame rate

Research questions

Study variables
Dependent
Independent
Mitigating

Experiment design
Participants demography
Materials
Tasks

Metrics

Number of fixations
Duration of fixations
Saccade analysis
Scan-path analysis
Others

six papers, one removed paper is a replication of another eye-tracking study (Yusuf
et al., 2007) using a new questionnaire. Another (Guéhéneuc et al., 2009) is not a
study and is only used in a working session of a conference. Another (Sharif, 2011)
is a collection of four studies including two eye-tracking ones. Therefore, we remove
this paper and consider one of the original eye-tracking studies (Sharif and Maletic,
2010a). Regarding the second eye-tracking study, we remove the original study (Sharif
and Maletic, 2010b) and use a more complete version published in 2013 (Binkley et al.,
2013). We replace (Bednarik and Tukiainen, 2005, 2004) with a journal paper that
presents a more complete study (Bednarik and Tukiainen, 2007).

4. After snowballing, we find five more papers (Crosby et al., 2002; Aschwanden and
Crosby, 2006; Guéhéneuc, 2006; Fritz et al., 2014; Rodeghero et al., 2014a).
We have not found paper (Crosby et al., 2002) by applying our search query because
it does not include, in its title or abstract, occurrences of the words in our first set of
keywords, related to eye-tracking. Paper (Aschwanden and Crosby, 2006) is not listed

38

Table 3.2 Journals, conference, and workshop proceedings of the selected papers.

Source (Acronym) Total
ACM Computer Supported Cooperative Work (CSCW) 1
Conference of the Center for Advanced Studies on Collaborative Research
(CASCON)

1

Computer Supported Collaborative Learning Conference (CSCL) 1
Conference on Advanced Information Systems Engineering (CAiSE) 1
Conference on Computing Education Research (Koli Calling) 1
Conference on Software Maintenance (ICSM) 2
Conference on Program Comprehension (ICPC) 5
Empirical Software Engineering Journal (EMSE) 2
Eye-tracking Research and Application (ETRA) 7
Hawaii International Conference on System Sciences (HICSS) 1
IEEE Computer Journal (IEEE Computer) 1
International Conference on Software Engineering (ICSE) 2
Journal of Behavior research methods (BRM) 1
Science of Computer Programming Journal (SCP) 1
Journal of Human Computer Studies (HUMCOMPUT) 1
International Journal of Human Computer Interaction (IJHCI) 1
International Conference on Multimodel Interaction (ICMI) 1
Journal of Systems and Software (JSS) 1
Lecture Notes in Computer Science (LNCS) 1
Symposium on Software Engineering and Measurement (ESEM) 1
Working Conference on Software Visualization (VISSOFT) 1
Workshop of Psychology of Programming Interest (PPIG) 2

39

Figure 3.3 Number of published papers per year.

in Engineering Village because it is published in a local conference, Hawaii International
Conference on System Sciences, yet this conference conforms to our inclusion/exclusion
criteria.

Overall, we find 36 papers related to the use of eye-tracking technology in software engi-
neering between 1990 to 2014. Table 3.2 shows the names of journals and conference and
workshop proceedings of the papers along with the total numbers of papers per venue. It
also shows the set of selected papers from each source. ETRA published seven articles, which
is the highest number in comparison to other sources, because this conference is dedicated
to eye-tracking technology and its applications. Consequently, several researchers target this
conference to present their research work. ICPC published five articles. This last num-
ber shows that several software-engineering researchers used the eye-tracking technology to
study program comprehension. Because program comprehension is a problem-solving task,
eye-trackers provide useful information about the developers’ cognitive processes. Finally,
ICSE, ICSM, and ESEM, each published two articles.

3.4.2 RQ3.2: Which Research Topics Have Been Explored and Examined in
Eye-tracking Studies?

We categorise the selected papers in five groups, shown in Table 3.7. Classifying papers is
a challenging task. We could not define categories in advance because they are dependent
on the selected papers. Therefore, we first identify a set of categories based on titles and
abstracts. Then, after performing their analyses, we finalise the categories based on the tasks
performed by participants and assign papers to different categories so that each retained
category includes at least two papers.

40

Table 3.3 List of selected papers.

Papers Goals
Crosby and Stelovsky
(1990)

To explore the impact of developers’ viewing strategies and expe-
rience on program comprehension

Crosby et al. (2002) To study how experts and novices use source code beacons for
comprehension

Romero et al. (2002a) To track attention switching of developers while performing de-
bugging tasks with multiple representations

Romero et al. (2003) To characterise the debugging strategies using multiple represen-
tations

Stein (2004) To analyze the impact of one developer’s focus of attention on
another developer doing the same task

Aschwanden and Crosby
(2006)

To study the impact of source code beacons on developers’ viewing
strategies during program comprehension

Bednarik and Tukiainen
(2006)

To discover the role of different representations (source code vs.
code visualization) on program comprehension

Guéhéneuc (2006) To study how developers gain information about the program
under study and use this information to perform different tasks

Uwano et al. (2006a) To investigate the individual performance of source code review
Bednarik and Tukiainen
(2007)

To study the effects of RFV’s display blurring and expertise on
visual attention during debugging

Yusuf et al. (2007) To investigate the comprehension of UML class diagrams
Bednarik and Tukiainen
(2008)

To reanalyze the data of (Bednarik and Tukiainen, 2007) to
achieve more detailed information about developers’ debugging
behaviour

Jeanmart et al. (2009) To analyze the impact of visitor pattern on program comprehen-
sion and maintenance

Cepeda Porras and
Guéhéneuc (2010a)

To analyze the impact of representation on design pattern com-
prehension

Sharif and Maletic
(2010a)

To analyze the impact of various layouts on design pattern com-
prehension

Busjahn et al. (2011) To compare the process of source code and natural text reading
Ali et al. (2012) To identify the most important source code entities
Bednarik (2012) To investigate the impact of expertise on defect finding using a

multi-representational IDE

41

Table 3.4 List of selected papers - continued.

Papers Goals
De Smet et al. (2012) To study the impact of Composite, Observer, and MVC pattern

on maintenance tasks
Hejmady and Narayanan
(2012)

To study the impact of multiple representations on debugging

Jermann and Nüssli
(2012)

To study the impact of sharing selection among collaborators in
a pair-programming task

Sharafi et al. (2012) To investigate the impact of gender on developers’ effectiveness
for source code reading and identifier recalling

Sharif et al. (2012a) To study the impact of scan Time in detecting source code defects
Soh et al. (2012) To analyze the impact of expertise on developers’ efficiency
Binkley et al. (2013) To analyze the impact of identifier style on comprehension
Cagiltay et al. (2013) To propose measures to enhance understanding of ERD diagrams
Duru et al. (2013) To study the impact of software visualization in program compre-

hension
Petrusel and Mendling
(2013)

To understand the impact of multiple representations in debug-
ging

Sharafi et al. (2013) To study the relations between the type of requirement represen-
tations (graphical vs. textual) and developers’ efficiency

Sharif et al. (2013) To analyze the impact of SeeIT 3D on software engineering tasks
Sharma et al. (2013) To study the interaction of developers in a pair programming task
Walters et al. (2014) To recover traceability links from eye-movements data
Busjahn et al. (2014) To present a method to recover traceability links from eye-gaze

data
Fritz et al. (2014) To use psycho-physiological measures to calculate task difficulty
Rodeghero et al. (2014a) To study the code summarization task using eye-tracking tech-

nique
Turner et al. (2014) To study differences between individuals’ gaze behaviour and

reading patterns

42

Table 3.5 Topic domains, artifacts, participants (S = Students, FM = Faculty members, P
= Professionals, and NM = Not mentioned), sources, and the eye-tracker for the selected
papers.

Papers Topic domains Artifacts Participants Sources Eye-
trackers

Crosby and Stelovsky
(1990)

Code comprehen-
sion

Pascal 18 S & FM IEEE
Computer

NM

Crosby et al. (2002) Code comprehen-
sion

Pascal 18 S PPIG ASL

Romero et al. (2002a) Debugging Java 5 S & P LNCS RFV
Romero et al. (2003) Debugging Java 49 S PPIG RFV
Stein (2004) Collaborative

interactions
Java 10 S & P ACM

ICMI
NM

Aschwanden and Crosby
(2006)

Code comprehen-
sion

Java 15 NM HICSS ASL

Bednarik and Tukiainen
(2006)

Code comprehen-
sion

Java 14 S ETRA Tobii 1750

Guéhéneuc (2006) Model comprehen-
sion

UML 12 S CASCON EyeLink II

Uwano et al. (2006a) Debugging C 5 S ETRA EMR-NC
Bednarik and Tukiainen
(2007)

Debugging Java 18 S & FM BRM Tobii 1750

Yusuf et al. (2007) Model comprehen-
sion

UML 12 S & FM ICPC Tobii 1750

Bednarik and Tukiainen
(2008)

Debugging Java 14 S ETRA Tobii 1750

Jeanmart et al. (2009) Model comprehen-
sion

UML 24 S ESEM EyeLink II

Cepeda Porras and
Guéhéneuc (2010a)

Model comprehen-
sion

UML 24 S EMSE EyeLink II

Sharif and Maletic
(2010a)

Model comprehen-
sion

UML 12 S & FM ICSM Tobii 1750

Busjahn et al. (2011) Code comprehen-
sion

Java 15 NM Koli Call-
ing

Tobii T120

Ali et al. (2012) Traceability Java 26 S ICSM FaceLAB
Bednarik (2012) Debugging Java 18 S & P HUM-

COMPUT
Tobii 1750

43

Table 3.6 Topic domains, artifacts, participants (S = Students, FM = Faculty members, P
= Professionals, and NM = Not mentioned), sources, and the eye-tracker for the selected
papers - continued.

Papers Topic domains Artifacts Participants Sources Eye-
trackers

De Smet et al. (2012) Model comprehen-
sion

UML 42 S & FM SCP EyeLink
II & Face-
LAB

Hejmady and Narayanan
(2012)

Debugging Java 19 S ETRA Tobii X60

Jermann and Nüssli
(2012)

Collaborative
interactions

Java 82 S CSCW Tobii 1750

Sharafi et al. (2012) Code Comprehen-
sion

Java 26 S ICPC FaceLAB

Sharif et al. (2012a) Debugging C 15 S & FM ETRA Tobii 1750
Soh et al. (2012) Model comprehen-

sion
UML 21 S & FM ICPC EyeLink II

Binkley et al. (2013) Code comprehen-
sion

English 169 S EMSE Tobii 1750

Cagiltay et al. (2013) Model comprehen-
sion

ER dia-
gram

4 P JSS Tobii

Duru et al. (2013) Code comprehen-
sion

C] 13 P IJHCI Tobii 1750

Petrusel and Mendling
(2013)

Model Compre-
hension

BPMN 29 P CAiSE NM

Sharafi et al. (2013) Model comprehen-
sion

Tropos 28 S ICPC FaceLAB

Sharif et al. (2013) Usability evalua-
tion

Java 97 S VISSOFT Tobii X60

Sharma et al. (2013) Collaborative
interactions

Java 82 S CSCL Tobii 1750

Walters et al. (2014) Traceability Java 8 S & FM ETRA Tobii X60
Busjahn et al. (2014) Code comprehen-

sion
Java 15 P ETRA Tobii T120

Fritz et al. (2014) Code comprehen-
sion

C] 15 P ICSE Tobii
TX300

Rodeghero et al. (2014a) Code comprehen-
sion

Java 10 P ICSE Tobii
TX300

Turner et al. (2014) Code comprehen-
sion

C++,
Python

38 S ETRA NM

44

Table 3.7 Classification of the selected papers based on category.

Aspect Total Papers

Model Comprehension 10
Guéhéneuc (2006), Yusuf et al. (2007), Jeanmart et al.
(2009)
Cepeda Porras and Guéhéneuc (2010a), Sharif and
Maletic (2010a), De Smet et al. (2012) Soh et al. (2012),
Cagiltay et al. (2013)
Petrusel and Mendling (2013), Sharafi et al. (2013)

Code comprehension 12
Crosby and Stelovsky (1990), Crosby et al. (2002), As-
chwanden and Crosby (2006), Bednarik and Tukiainen
(2006)
Busjahn et al. (2011), Sharafi et al. (2012), Binkley et al.
(2013)
Duru et al. (2013), Busjahn et al. (2014), Turner et al.
(2014), Fritz et al. (2014), Rodeghero et al. (2014a)

Debugging 9
Romero et al. (2002a), Romero et al. (2003), Uwano
et al. (2006a)
Bednarik and Tukiainen (2007), Bednarik and Tuki-
ainen (2008), Bednarik (2012), Hejmady and Narayanan
(2012)
Sharif et al. (2012a), Sharif et al. (2013)

Collaborative interactions 3 Stein (2004),Jermann and Nüssli (2012), Sharma et al.
(2013)

Traceability 2 Ali et al. (2012), Walters et al. (2014)

45

For each category, we now systematically report each paper in a structured way by presenting
the following information: (1) artifacts; (2) number and participants’ types (students, faculty
members, and–or professionals); (3) eye-tracker; and (4) dependent variables (DV), indepen-
dent variables (IV), and mitigating variables (MV). If one piece of information is missing in
a paper, we put “not mentioned”. We explain the metrics used for calculating dependent
and independent variables are in Section 3.4.4. We use this systematic, structured way to
provide an minimal annotated bibliography of the selected studies. Using this bibliography,
researchers can compare different studies regarding different pieces of information.

Selected papers refer to developers participating in the eye-tracking studies as “subjects” or
“participants” interchangeably. Yet, the word “participant” better fits eye-tracking studies
because researchers do not want to understand developers to change their behaviours but
rather to understand their uses of some artifacts and tools when performing of tasks to help
them in their work.

Model Comprehension

We find ten papers pertaining to model comprehension. All of the participants participating
in the studies mentioned in selected papers for this category perform comprehension tasks.

Guéhéneuc (2006) uses eye-trackers to study the comprehension of UML class diagrams. It
introduces a visualisation technique to aggregate and display eye-tracking data (fixations
and saccades). This visualisation technique superimposes aggregations of the fixations and
saccades for all participants to highlight the most visited AOIs.

Artifacts UML class diagrams
Participants 12 students
Eye-tracker EyeLink II

Variables
DV Not mentioned
IV Not mentioned
MV Not mentioned

Yusuf et al. (2007) investigates the impact of different characteristics of UML class diagrams,
including layout, color, and stereotypes. It uses UML class diagrams of HippoDraw 6 as
artifacts.

6. www.slac.stanford.edu/grp/ek/hippodraw

46

Artifacts UML class diagrams of the open source called HippoDraw
Participants 12 students and faculty members
Eye-tracker Tobii 1750

Variables
DV Accuracy, time, and effort
IV Layout (orthogonal, three-cluster, and multi-cluster)
MV Not mentioned

Jeanmart et al. (2009) investigates the impact of the Visitor design pattern on comprehension
and maintenance. It uses UML class diagrams of JHotDraw 7, JRefactory 8, and PADL 9 as
artifacts.

Artifacts UML class diagrams of three open source programs
Participants 24 students
Eye-tracker EyeLink II

Variables
DV Time and effort
IV Design alternative: no pattern, canonical, and modified
MV UML and design pattern knowledge

Cepeda Porras and Guéhéneuc (2010a) compares different UML representations of design
patterns.

Artifacts UML class diagrams
Participants 24 students
Eye-tracker EyeLink II

Variables
DV Time, accuracy, ratio of on-target:all-target fixation time, and

ratio of on-target:all-target fixation
IV Representations of patterns (Schauer (Schauer and Keller,

1998), Gamma (Gamma, 1996), and Dong (Jing et al., 2007))
and tasks (participation, composition, and role).

MV JHotdraw and design pattern knowledge

Sharif and Maletic (2010a) analyses the impacts of orthogonal and multi-clustered layouts
on the comprehension of design patterns. It uses UML class diagrams of JHotDraw, JUnit 10,
and Qt 11 as artifacts.

7. http://www.jhotdraw.org/
8. http://jrefactory.sourceforge.net/
9. http://wiki.ptidej.net/doku.php?id=padl

10. http://junit.org/
11. http://qt-project.org/

47

Artifacts UML class diagrams of three open-source programs
Participants 12 students and faculty members
Eye-tracker Tobii 1750

Variables
DV Accuracy, time, and effort
IV Reading behaviour
MV

De Smet et al. (2012) investigates the impact of different design patterns, including Observer,
Composite, and Model-View-Controller on comprehension. It uses UML class diagrams of
JUnit, Quick-UML 12, and ArgoUML 13 as artifacts.

Artifacts UML class diagrams of three open source programs
Participants 26 students and faculty members; 18 students
Eye-tracker EyeLink II

Variables
DV Spatial density, transitional matrix, average fixation duration;

time and scan-path distance
IV Presence of patterns (observer and composite); different vari-

ants of MVC pattern
MV Not mentioned

Soh et al. (2012) studies the relation between expertise and professional status for UML class
diagram comprehension.

Artifacts UML class diagrams
Participants 21 students and faculty members
Eye-tracker EyeLink II

Variables
DV Accuracy, time, effort
IV Status (practitioner, student) and expertise (expert, novice)
MV Question precision

Petrusel and Mendling (2013) focuses on the understanding of business-process models (BPMN 14

diagrams) and investigates the factors that influence their comprehension.

12. http://sourceforge.net/projects/quj/
13. http://argouml.tigris.org/
14. http://www.bpmn.org/

48

Artifacts BPMN diagrams
Participants 26 professionals
Eye-tracker Not mentioned

Variables
DV Accuracy
IV Number of elements in the relevant region, and time
MV Not mentioned

Cagiltay et al. (2013) studies non-formal inspections of entity-relationship diagram (ERD).
It proposes two measures of defect detection to measure how developers comprehend ERD.

Artifacts ER diagrams
Participants 4 professionals
Eye-tracker Tobii (model not mentioned)

Variables
DV Defect detection difficulty level and defect detection perfor-

mance.
IV Search pattern
MV Not mentioned

Sharafi et al. (2013) investigates the efficiency of the graphical vs. textual representations of
the TROPOS (Bresciani et al., 2004) notation in modelling and presenting software require-
ments.

Artifacts TROPOS diagrams
Participants 28 students
Eye-tracker FaceLAB

Variables
DV Accuracy, time, and effort
IV Representation type (graphical vs. textual)
MV English language proficiency and type preferences

Code Comprehension

We identify 12 papers pertaining to code comprehension. All of the participants participating
in the studies mentioned in selected papers in this category perform comprehension tasks by
reading pieces of source code to answer comprehension questions. As types of artifacts, we
report the programming languages, the main functionalities of the pieces of source code, and
the numbers of lines of code (LOC), if available.

Crosby and Stelovsky (1990) studies the source code reading to assess the impact of expertise
on the developers’ comprehension strategies.

49

Artifacts Pascal source codes of binary search algorithm
Participants 18 students and faculty members
Eye-tracker Not mentioned

Variables
DV Number of fixations and time
IV Expertise
MV Not mentioned

Crosby et al. (2002) defines beacons as important features in source code that “serve as keys
to facilitate program comprehension”. It investigates how experts and novices used these
beacons to read and understand programs.

Artifacts Lines of code from binary search program written in Pascal
and shown in random order

Participants 18 students
Eye-tracker ASL

Variables
DV Accuracy and time
IV Expertise and number of lines
MV Not mentioned

Bednarik and Tukiainen (2006) provides a visualisation technique of Java source code and
studies how developers use source code and the visualisation interchangeably.

Artifacts Three Java source codes of factorial (15 LOC), recursive
binary-search (34 LOC), and naive string matching (38 LOC)

Participants 14 students
Eye-tracker Tobii 1750

Variables
DV Time and attention switching
IV Code vs. visualization
MV Not mentioned

Aschwanden and Crosby (2006) focuses on participants’ expertise and reveals that experts
and novices spend different amounts of visual attention on different parts of the source code.

50

Artifacts Java source codes of an algorithm presented in recursive and
non-recursive versions

Participants 15 (not mentioned the type)
Eye-tracker ASL

Variables
DV Accuracy and number of lines
IV Algorithm type (recursive vs. non-recursive)
MV Expertise

Busjahn et al. (2011) performs an experiment to investigate the differences between source
code reading and natural text reading.

Artifacts Java source codes
Participants 15 (not mentioned the type)
Eye-tracker Tobii T120

Variables
DV Time, number of characters, and number of elements
IV Source code vs. natural language text, and different source

code parts including: operator, keywords, identifiers, and
numbers

MV Not mentioned

Sharafi et al. (2012) investigates the impact of identifier styles (camel case vs. underscore) on
developers recalling the names of identifiers. It also compares different strategies deployed
by male and female developers.

Artifacts Three Java sources code of 2D graphical frame (30 LOC),
database tester (36 LOC), and nprime number calculator (44
LOC)

Participants 26 students
Eye-tracker FaceLAB

Variables
DV Accuracy, time, and effort
IV Gender and identifier style (camel case vs underscore)
MV Study level and style preferences

Binkley et al. (2013) also investigates the impact of identifier styles on comprehension with
two studies (recall and multiple choice questions).

51

Artifacts English words and C++ source codes
Participants 169 students
Eye-tracker Tobii 1750

Variables
DV Accuracy, time, and effort
IV Identifier style (camel case vs underscore)
MV Length of the phrase, phrase origin (code vs. Non-code), time

demography (Applet-Cloud only), training, and Experience

Duru et al. (2013) studies visualisation techniques to understand the reason why such tech-
niques are not being used in industry.

Artifacts An e-commerce small-scale enterprise .NET application
Participants 13 professionals
Eye-tracker Tobii 1750

Variables
DV Accuracy and time
IV Presence of visualisation provided by NDEPEND software vi-

sualization tool
MV Not mentioned

Turner et al. (2014) investigates the impact of programming language (C++ vs. Python) on
source code comprehension by comparing experts’ and novices’ scan-paths.

Artifacts Five C++ source code and five Python source code
Participants 38 Students
Eye-tracker Not mentioned

Variables
DV Accuracy, time, and visual effort
IV Programming language (C++ vs. Python)
MV Expertise

Busjahn et al. (2014) studies attention distribution on code elements to differentiate experts’
and novices’ code reading strategies.

Artifacts Eleven Java source codes
Participants 15 Professionals
Eye-tracker Tobii T120

Variables
DV Time
IV Code elements (identifiers, operators, keywords, and literals)
MV Expertise

52

Fritz et al. (2014) uses psycho-physiological measures, including eye-gaze data, electroen-
cephalography (EEG), electrodermal activity (EDA), and NASA TLX scores (Hart and
Staveland, 1988) to study task difficulty.

Artifacts Eight C] source code
Participants 15 Professionals
Eye-tracker Tobii TX300

Variables
DV Time, effort (Eye-gaze data (Pupil size), EEG data (and Blink

rate), and EDA data)
IV Task difficulty (easy and hard)
MV Not mentioned

Rodeghero et al. (2014a) conducts an eye-tracking study and use its findings to build a code
summarisation tool.

Artifacts 67 Java methods from six different applications: NanoXML,
Siena, JTopas, Jajuk, JEdit, and JHotdraw

Participants 10 Professionals
Eye-tracker Tobii TX300

Variables
DV Fixation number and duration, Fixation Time, and Number

of regression
IV Task difficulty (easy and hard)
MV Not mentioned

Debugging

We find 9 studies related to debugging. In all of the selected papers, participants read source
code and perform debugging tasks.

Romero et al. (2002a) focuses on the use of different representations by participants while
performing debugging tasks and whether these representations bring higher performance.

Artifacts Java source codes of two programs
Participants 4 students and 1 professionals
Eye-tracker RFV

Variables
DV Accuracy and time
IV The presence of RFV (RFV-on vs. RFV-off)
MV Not mentioned

53

Romero et al. (2003) characterises the participants’ strategies in debugging tasks.

Artifacts Java source codes
Participants 49 students
Eye-tracker RFV

Variables
DV Accuracy, time, and switching frequency
IV Visualization type (graphical vs. textual), visualization per-

spective (data structure vs. control flow), and type of error
MV Not mentioned

Uwano et al. (2006a) focuses on source code reviews by developers to find defects.

Artifacts Five C source codes (12 to 23 LOC)
Participants 5 students
Eye-tracker Eye Mark Tracker (EMR-NC)

Variables
DV Time
IV Presence of defects
MV Not mentioned

Bednarik and Tukiainen (2007) uses both an eye-tracker and the RFV approach to investigate
the impact of RFV and of expertise on attention.

Artifacts Java source codes
Participants 18 students and faculty members
Eye-tracker Tobii 1750 and RFV

Variables
DV Accuracy, time, and switching frequency
IV Presence of RFV (RFV-on vs. RFV-off) and level of experi-

ence
MV Not mentioned

Bednarik and Tukiainen (2008) reanalyses the data reported in (Bednarik and Tukiainen,
2007) and, by segmenting eye-tracking data into smaller chunks, reports more accurate dif-
ferences between experts and novices.

54

Artifacts Java source codes
Participants 14 students
Eye-tracker Tobii 1750

Variables
DV Time and switching frequency
IV Expertise
MV Not mentioned

Sharif et al. (2012a) partially replicates (Uwano et al., 2006a) with a larger number of partic-
ipants and additional eye-tracking metrics. It analyses participants’ eye-movements captured
while performing defect finding tasks.

Artifacts C source codes
Participants 15 students and faculty members
Eye-tracker Tobii 1750

Variables
DV Accuracy, time, and effort
IV Presence of defects
MV Expertise

Bednarik (2012) and Hejmady and Narayanan (2012) use a multi-representational integrated
development environment (IDE) to display source code. Hejmady and Narayanan (2012)
analyses how experts and novices find defects and their uses of different representations.

Artifacts Three Java source codes (in average 100 LOC)
Participants 18 students and professionals
Eye-tracker Tobii 1750

Variables
DV Time, switching frequency, and type of switches
IV Expertise and strategies
MV Not mentioned

Hejmady and Narayanan (2012) studies the effectiveness and the role of multiple represen-
tations during debugging.

Artifacts One Java source code implementing bubble sort algorithm and
seeded with three bugs

Participants 19 students
Eye-tracker Tobii T60 XL

Variables
DV Experience, familiarity with jGrasp, and time
IV Strategy
MV Not mentioned

55

Sharif et al. (2013) assesses the usability of a visualisation tool, called SeeIT, for performing
code overview and bug-fixing tasks.

Artifacts Java source code of an open source system: Gantt Project 15

Participants 97 students
Eye-tracker Tobii X60

Variables
DV Accuracy, time, and effort
IV Presence of 3D visualization tool (SeeIT 3D, No-SeeIT 3D)
MV Expertise.

Collaborative Interactions

We find three studies on collaborative interactions.

Stein (2004) records some participants’ focus of attention and display them to other partici-
pants performing the same debugging task. It evaluates the usefulness of eye-movements as
a cue for productive collaborations.

Artifacts Java source codes
Participants 10 students and professionals
Eye-tracker Not mentioned

Variables
DV Accuracy and time
IV Stimuli with or without another person’s gaze info
MV Not mentioned

Jermann and Nüssli (2012); Sharma et al. (2013) focus on pair programming tasks. (Jermann
and Nüssli, 2012) analyses participants’ focus of attention to observe how pair programmers
share sequences of AOIs.

Artifacts Java source codes
Participants 82 students
Eye-tracker Tobii 1750

Variables
DV Speech, selection, and gaze cross-recurrence
IV Selection type (individual, dual, and shared)
MV Not mentioned

Sharma et al. (2013) studies participants’ interactions with one another and its impacts in a
pair programming task.

56

Artifacts Java source codes
Participants 82 students
Eye-tracker Tobii 1750

Variables
DV Gaze, speech, and time
IV Not mentioned
MV Not mentioned

Traceability

We find two studies on building or understanding traceability links among artifacts.

Ali et al. (2012) uses an eye-tracker to understand how participants verify requirement trace-
ability links. It reports the most used source code entities, i.e., method names, comments,
variables, and class names.

Artifacts Six Java source codes (19, 18, 19, 18, 24, 28 LOC)
Participants 26 students
Eye-tracker FaceLAB

Variables
DV Accuracy and time
IV Source code entity (class name, method name, variables, and

comment)
MV Study level

Walters et al. (2014) describes SimpleGraph Gaze-Link, an algorithm that automatically
recovers links between source code entities. It also presents and studies the usability of
iTrace, a tool that supports link generation/recovery and maintenance/evolution.

Artifacts A Java application
Participants 8 students and Faculty members
Eye-tracker Tobii X60

Variables
DV Not applicable
IV Not applicable
MV Not applicable

Discussions

Table 3.8 summarises the types of artifacts that have been studied for performing the eye-
tracking studies in the selected papers: 16 studies out of 22, which used pieces of source code
as stimuli, used the Java programming language. This observation shows the wide use of

57

the object-oriented paradigm and Java. Based on Tiobe Programming Community Index 16,
Java is one of the first three most frequently-used programming languages in the last ten
years. One of the studies used Pascal because it was published in 1990. Two other studies
used C. One study compares C++ with Python regarding code comprehension.

UML diagrams were the most used modeling artifacts (70%), which is expected because UML
has become the defacto standard for describing object-oriented design models. UML is also
supported by a wide range of software tools.

In total, 1,022 participants took part in the studies reported in the selected papers, as
summarised in Figure 3.4. The numbers of participants range from 5 to 169 per study
whereas the mean value is 56.9. Out of all the selected papers, around 77% use students
and faculty members as participants while the rest are either practitioners or no qualitative
information about the participants is provided (2 papers out of 36).

3.4.3 RQ3.3: How Much Have Eye-tracking Studies Contributed to Software
Engineering?

We look at our categories and discuss the results of the different studies in each category.
Tables 3.9 and 3.10 summarise the results for model comprehension while Tables 3.11 and 3.12
summarise those for code comprehension and debugging, respectively. Finally, we present
the summary of the results for collaborative interactions and traceability in Tables 3.13 and
3.14, respectively.

Model Comprehension

Guéhéneuc (2006) reports that developers begin by browsing class diagrams randomly and
that, after finding relevant classes, they mostly focus on those. In addition, it reports that
participants do not seem to follow binary-class relationships, e.g., inheritance and associa-
tions.

16. http://www.tiobe.com/index.php/content/paperinfo/ tpci/index.html (Accessed: 2014-04-07)

Code Model
Pascal C/C++Java C] Python UML ER Tropos BPMN English

Text
Other

2 3 16 1 1 7 1 1 1 2 3 applications

Table 3.8 Types of artifacts used in eye-tracking studies.

58

Table 3.9 Summary of the results for model comprehension.

Model Comprehension
Experts vs. novices:

1. Experts use extra information, e.g., color, layout, and stereotypes, more effi-
ciently to browse UML diagrams (Yusuf et al., 2007).

2. Expertise impacts the speed and accuracy more than experience. Also, practi-
tioners are more accurate than students (Soh et al., 2012).

Design patterns:
1. The canonical representation of the Visitor design pattern has a negative impact

(Jeanmart et al., 2009).
2. For composition and role tasks, Dong’s representation is more efficient

while Gamma’s and Schauer’s are more efficient for the participation task
(Cepeda Porras and Guéhéneuc, 2010a).

3. Compared to the canonical form of the MVC and the Model-Delegate, MVC
variant is easier to understand and participants have higher level of accuracy
(De Smet et al., 2012).

UML representations:
1. Using similar visual notations enhances diagram comprehension and reduces

effort (Yusuf et al., 2007).
2. Using multi-cluster layout leads to a significant improvement in the accuracy,

time, and effort compared to an orthogonal layout (Sharif and Maletic, 2010a).

59

Table 3.10 Summary of the results for model comprehension (continued).

Model Comprehension
Navigation strategies:

1. Vertical scanning is more efficient than horizontal scanning for ERD compre-
hension tasks (Cagiltay et al., 2013).

2. Scan-paths and relevant areas are connected with the participants’ strategies
and correctness when understanding BPMN models (Petrusel and Mendling,
2013).

3. The structure of representations leads participants to use different navigation
strategies (Sharafi et al., 2013).

Others:
1. We expect that participants follow relations between classes when understand-

ing class diagrams. Surprisingly, an eye-tracking study reports that participants
do not seem to follow binary-class relationships (Guéhéneuc, 2006).

2. Two different browsing strategies are observed for experts and novices. Experts
browse diagrams from their centers while novices use either top-down or bottom-
up strategies (Yusuf et al., 2007).

3. We expect practitioners to be more efficient and accurate than students, yet
students are faster for comprehension tasks (Yusuf et al., 2007).

4. Design patterns should improve design quality and, thus, could reduce compre-
hension effort. Results show that the Visitor design pattern does not reduce
effort for comprehension tasks (Jeanmart et al., 2009).

5. Participants spend more time and effort working with graphical representations
compared to textual ones (Sharafi et al., 2013).

60

Figure 3.4 Total number of participants for the selected papers.

After assessing the impact of layout, color, and stereotypes on UML diagram comprehension,
(Yusuf et al., 2007) reports that experts and novices use different strategies while navigating
class diagrams. Experts use the information provided by coloring, layout, and stereotypes
more efficiently than novices. Also, they tend to explore the diagrams from their centers
whereas novices use either top-down or left-to-right strategies.

Soh et al. (2012) discusses the differences between participants’ status (practitioners or stu-
dents) and expertise (experts or novices) when studying their productivity. It reports that
expertise is the most important factor for the comprehension of a UML class diagrams in
terms of speed and accuracy. In addition, its results show that practitioners are more accurate
than students while students are faster.

Jeanmart et al. (2009) reports that the Visitor design pattern does not reduce the partic-
ipants’ effort for comprehension tasks. Moreover, its canonical representation has negative
impact on the comprehension of the class diagrams.

De Smet et al. (2012) could not find any impact for the Observer and Composite design pat-
terns although, by analysing participants’ scan-paths, it reports that novices systematically
browse class diagrams while experts quickly gather relevant information. It also compares
three different variants of the Model-View-Controller design pattern on comprehension: the
Canonical form of the MVC style (Erich Gamma and Vlissides, 1995), the Model-Delegate
style, and theModel View Presenter style (MVP) and reports that the MVP variant is usually
easier to understand than the two other variants.

By comparing the impact of orthogonal and multi-clustered layouts on the comprehension

61

of design patterns, (Sharif and Maletic, 2010a) reports a significant improvement in the
accuracy, time, and visual effort for the multi-cluster layout.

Cepeda Porras and Guéhéneuc (2010a) compares and reports that Dong’s representation
(Jing et al., 2007) is more efficient for Composition and Role Tasks while Gamma’s (Gamma,
1996) and Schauer’s (Schauer and Keller, 1998) are more efficient for the Participation Task.

Petrusel and Mendling (2013) targets the factors that impact the comprehension of business
process models. It provides a formal notation for correlating the relevant regions and scan-
paths. Moreover, it shows that the participants’ answers given to questions pertaining to the
models are correlated with the relevant regions.

Cagiltay et al. (2013) proposes two metrics for ERD defect detection: Defect Detection
Difficulty Level (DF) and Defect Detection Performance (PP). It reports that a defect with
higher DF value leads to higher fixation durations. Moreover, participants who search the
ERD vertically are more efficient (higher PP values) than those who perform horizontal
search.

Sharafi et al. (2013) reports that participants spend more time and effort while working with
a graphical representation than a textual representation of some requirements, although no
significant difference is reported for accuracy and participants state that they prefer the
graphical representation. Moreover, it reports that the spatial structure of the graphical rep-
resentation facilitates the comprehension tasks and leads participants to follow two different
navigation strategies (top-down and bottom up) to perform the comprehension task.

Code Comprehension

Crosby and Stelovsky (1990); Crosby et al. (2002) study the impact of expertise on source
code reading. (Crosby and Stelovsky, 1990) reports that novices pay more visual attention to
comments than experts. Also, (Crosby et al., 2002) reports that experts pay more attention
to beacons than novices while novices do not discriminate between different areas of the
source code.

Aschwanden and Crosby (2006) focuses on participants’ behaviour during code reading. It
suggests that any area of code that exhibits very long fixations, above 1,000 milliseconds, is
a beacon.

Bednarik and Tukiainen (2006) gives participants access to a graphical representation of
source code as well as to the source code itself to perform comprehension tasks. It reports that
novices do not start by reading source code and prefer to look at the graphical representation
first. It reports that a graphical representation provides more important information at early

62

Table 3.11 Summary of the results for code comprehension.

Code comprehension
Experts vs. novices:

1. Novices spend more visual attention on comments than experts (Crosby and
Stelovsky, 1990).

2. Novices do not start by reading source code and look at the graphical represen-
tation first (Bednarik and Tukiainen, 2006).

3. Novices benefit from the use of camel case style regarding accuracy and effort
while experts are less affected by the identifier style (Binkley et al., 2013).

4. The programming language impacts the amount of efforts spent by novices
compared to experts while working with buggy pieces of source code (Turner
et al., 2014).

Source code vs. natural text:
1. Participants have higher fixation times and regression rates when reading source

code than when reading natural text (Busjahn et al., 2011).
2. Source code reading and comprehension are fundamentally different from nat-

ural text reading and comprehension (Binkley et al., 2013).
Identifier styles:

1. Expertise affects the impact of identifier styles on reading and comprehension
(Binkley et al., 2013).

2. No difference exists between camel-case and underscore identifier styles regard-
ing accuracy, time, and effort for comprehension tasks (Sharafi et al., 2012).

3. No significant difference is observed between male and female participants re-
garding time, accuracy, and effort when comparing camel-case and underscore
identifier styles (Sharafi et al., 2012).

Navigation strategies:
1. Source code visualisation techniques provide more important information for

participants at early stages of comprehension and less at later ones (Bednarik
and Tukiainen, 2006).

2. Visualisation techniques improve participants’ performance and help them to
follow more systematics strategies during program comprehension (Duru et al.,
2013).

3. Male and female participants follow different strategies when answering identi-
fier recall questions (Sharafi et al., 2012).

63

stages of comprehension rather than at the later stages.

Busjahn et al. (2011) reports that participants spend more fixation times and have higher
regression rates (backward-directed eye-movements) when reading source code than natural
text. This result shows that the higher complexity of the source code forces participants to
change their focus of attention more frequently.

Moreover, participants spend significantly more time reading identifiers in source code than
keywords, numbers, and operands.

Busjahn et al. (2014) analyses attention distribution when reading source code. This paper
confirms the results of the previous paper and reports that identifiers, operators, keywords,
and literals receive the most attention, in that order, while separators receive almost none.
It also claims that methods from research on natural-language text reading can be applied
to source code with some modifications.

Regarding the impact of identifier styles on source code reading, (Sharafi et al., 2012) has not
found any significant differences between camel case and underscore. Moreover, it reports no
significant differences between male and female participants regarding time, accuracy, and
effort. However, it reports that male and female participants follow different strategies while
answering recall questions. Female participants spend more time analysing different options
while male participants quickly decide on an answer. Yet, both groups have the same accuracy
and the time difference between male and female participants is not significant either.

Binkley et al. (2013) presents contradictory results using four different studies comparing
camel case and underscore identifier styles regarding participants’ time and accuracy. More-
over, this paper compares natural text reading with source code reading and suggests that
these two activities are different, in agreement with (Busjahn et al., 2011). It also shows
that participants rapidly understand code independent of style and that the choice of the
identifier style has less impact on experts than novices. Novices benefit from the use of camel
case.

Duru et al. (2013) reports that the visualization technique provided by NDEPEND improves
participants’ accuracy and task completion-time. Its results also indicate that the visualisa-
tion helps participants find relevant entities and–or code snippets and follow more systematic
strategies.

Turner et al. (2014) reports that there is no significant difference between C++ and Python
regarding time and accuracy. However, for buggy source code, participants spend more visual
effort on Python code. This paper also reports that there is a significant difference between
novices and experts with respect to accuracy and effort on buggy source code.

64

Fritz et al. (2014) can predict task difficulty with 64.99% precision and 64.58% recall. Its
results also demonstrate that probabilistic classifiers, such as Naive Bayes classifiers, can be
trained with various biometric data to predict task difficulty. To validate the task difficulty
predicted by a Naive Bayes classifier using psycho-physiological measures, the paper compares
its results with NASA TLX scores and confirms a high correlation.

Rodeghero et al. (2014a) shows that participants spend more visual attention on method
signatures than method invocations and more visual attention on and invocations than control
flow.

Debugging

Uwano et al. (2006a); Sharif et al. (2012a) report that participants who spent more time
scanning source code (compared to others) tend to find defects more efficiently. Longer scan-
ning means that participants carefully read the code and find suspicious candidate code lines.
Sharif et al. (2012a) observes two different debugging strategies to find bugs: (1) by finding
something odd in a file or (2) by comparing information provided through different represen-
tations. (Uwano et al., 2006a) reports repetitive patterns of going back and forth between
code and a graphical representations for novices. The experts change their strategies and
focus on the output at later stages while novices mostly switch between the two. Uwano et al.
(2006a) finds some patterns of retracing (looking back at the declarations of the variables).
However, (Sharif et al., 2012a) did not notice these patterns.

Bednarik and Tukiainen (2008) partially replicates (Bednarik and Tukiainen, 2007) and re-
ports that the amount of effort that participants spend on defective lines and their defect
detection times are highly correlated with scanning. Bednarik and Tukiainen (2007) com-
pares the data reported by both a RFV approach and an eye-tracker. The results show that
there is a difference between the reported amount of time for the same task. Moreover, the
blurring of the RFV approach interferes with the experts’ strategies. Bednarik and Tukiainen
(2008) reanalyses the data of (Bednarik and Tukiainen, 2007) and reports that eye-movement
patterns during debugging change in time. At later stages of debugging, experts change focus
their attention mostly on the output of the programs rather than on source code.

Romero et al. (2002a, 2003); Bednarik (2012); Hejmady and Narayanan (2012) provide both
source code and graphical representations of source code to participants. Bednarik (2012)
reports that participants with higher performance mainly use the graphical representation
although they frequently switch between the two. Hejmady and Narayanan (2012) reports
that participants with lower performance switch more their attention, even at the end of the
debugging session, compared to more successful ones.

65

Table 3.12 Summary of the results for debugging.

Debugging
Navigation strategies:

1. Patterns of retracing are observed when participants look back to the declara-
tions of variables (Uwano et al., 2006a).

2. Debugging strategies change in time. Participants mostly focus on output rather
than source code at later stages (Bednarik and Tukiainen, 2008).

3. Repetitive patterns (going back and forth between textual and graphical rep-
resentations) are observed for participants with less expertise and lower perfor-
mance (Bednarik, 2012).

4. No pattern of retracing is observed when participants perform debugging tasks
(Sharif et al., 2012a).

5. Two different debugging strategies are deployed by participants to find bugs
(Sharif et al., 2012a).

Performances:
1. Participants with higher performance in bug finding mainly use graphical rep-

resentations rather than source code (Uwano et al., 2006a).
2. Scanning time is highly correlated with the amount of visual effort spent on

defect lines (Bednarik and Tukiainen, 2008).
3. Participants with lower performance switch more their attention between dif-

ferent representations (Hejmady and Narayanan, 2012).
4. Longer scanning times lead participants to find more bugs (Uwano et al., 2006a;

Sharif et al., 2012a).
5. Using SeeIT 3D helps participants to have higher performance for overview

tasks (Sharif et al., 2013).
6. Participants who use SeeIT 3D spend more times on bug fixing tasks (Sharif

et al., 2013).
Others:

1. RFV and eye-tracker report different amounts of time allocations for the same
task (Bednarik and Tukiainen, 2007).

66

Sharif et al. (2013) reports that SeeIT 3D leads to higher performance for participants who
perform overview tasks. However, working with SeeIT 3D takes significantly longer during
bug fixing tasks.

Collaborative Interaction

The results of (Stein, 2004) support the usefulness of eye-movements as cues for productive
collaboration in problem solving. They show that participants in a second group find bugs
more quickly after watching the eye-movements of successful participants in a first group.

Jermann and Nüssli (2012) reports that participant pairs who are actively working with each
other share a high level of cross-recurrences of eye-movements. Moreover, Sharma et al.
(2013) observes that the pairs who spend more time “focused together” have higher levels of
program understanding compared to the rest.

Traceability

Ali et al. (2012) reports that participants have different preferences for different source code
entities and prefer method names and comments. It also proposes a new weighting scheme
enhanced by adding the results of an eye-tracking study and reports that this scheme statis-
tically improves the accuracy of a IR-based technique.

Walters et al. (2014) reports that the SimpleGraph Gaze-Link algorithm provides traceability
links automatically with high recall. The use of iTrace to automatically apply the proposed
algorithm and generate the traceability links is also promising.

Table 3.13 Summary of the results for collaborative interactions.

Collaborative Interactions
1. Eye-movements is a valuable, useful cue for the task of program comprehension

(Stein, 2004; Sharma et al., 2013).
2. Participants find bugs faster after watching the eye-movements of the developers

in another group (Stein, 2004).
3. Pairs of participants who spend more focused time together are more accurate

for comprehension tasks (Jermann and Nüssli, 2012).

67

Table 3.14 Summary of the results for traceability.

Traceability
1. Participants prefer to use method names and comments compared to class

names and variable names to perform comprehension tasks (Ali et al., 2012).
2. The SimpleGraph Gaze-Link algorithm provides traceability links with high

recall, automatically (Walters et al., 2014).

3.4.4 RQ3.4: How Have Researchers Used Eye-trackers to Collect Quantitative
Measurement?

Different studies propose several metrics based on eye-movement data provided by eye-
trackers. The formulas and explanations and the goal of these metrics are presented in
Chapter 2, Section 2.1.4. In this section, we explain how these metrics have been used in
selected studies.

Visual Effort and Efficiency Metrics

Tables 3.15, 3.16, 3.17, and 3.18 summarise all metrics used in the selected papers to measure
the amount of visual effort and efficiency along with related papers.

In addition, several techniques also exist to describe, compare, and analyse scan-paths:

Scan-path metrics:

these metrics are used to measure and display participants’ scan-paths.
– Edit distance:De Smet et al. (2012) uses the Levenshtein distance and reports that the
average distance among novices’ scan-paths is lower than that of experts. However, the

Figure 3.5 Example of scan-path and corresponding transition matrix (De Smet et al., 2012).

68

Table 3.15 List of metrics for visual effort calculation based on fixation number along with
selected studies - Part 1.

Names Papers

V
isu

al
Eff

or
t
an

d
Effi

ci
en
cy

M
et
ric

s

N
um

be
r
of

Fi
xa

tio
n Fixation Count (FC) (Crosby and Stelovsky, 1990), (Crosby et al.,

2002), (Uwano et al., 2006a), (Yusuf et al., 2007),
(Sharif and Maletic, 2010a), (Sharafi et al., 2012),
(Sharif et al., 2012a), (Sharif et al., 2013), (Turner
et al., 2014)

Fixation Rate (FR) (Cepeda Porras and Guéhéneuc, 2010a), (Sharif
and Maletic, 2010a), (De Smet et al., 2012),
(Sharafi et al., 2012), (Sharif et al., 2012a), (Bink-
ley et al., 2013), (Turner et al., 2014)

Spatial Density (De Smet et al., 2012), (Soh et al., 2012)
Convex hull Area (Sharafi et al., 2012), (Soh et al., 2012), (Sharafi

et al., 2013)

Table 3.16 List of metrics for visual effort calculation based on fixation duration along with
selected studies - Part 2.

Names Papers

V
isu

al
Eff

or
t
an

d
Effi

ci
en
cy

M
et
ric

s

D
ur
at
io
n
of

Fi
xa

tio
ns Average Fixation Duration

(AFD)
(Crosby and Stelovsky, 1990), (Cepeda Porras and
Guéhéneuc, 2010a), (Sharif and Maletic, 2010a),
(Sharif and Kagdi, 2011), (Soh et al., 2012), (Bink-
ley et al., 2013), (Sharafi et al., 2013)

Ratio of
ON_target All_target
Fixation Time (ROAFT)

(Bednarik and Tukiainen, 2006), (Cepeda Porras
and Guéhéneuc, 2010a), (Bednarik, 2012), (Sharif
et al., 2012a), (Binkley et al., 2013)

Fixation Time (FT)
(Crosby and Stelovsky, 1990), (Crosby et al.,
2002), (Uwano et al., 2006a), (Bednarik, 2012),
(Ali et al., 2012), (Petrusel and Mendling, 2013),
(Busjahn et al., 2014), (Rodeghero et al., 2014a)

Average Duration of Rele-
vant Fixations (ADRF)

(Jeanmart et al., 2009; De Smet et al., 2012)

Normalised Rate of Rele-
vant Fixations (NRRF)

(Jeanmart et al., 2009), (De Smet et al., 2012),
(Soh et al., 2012)

69

Table 3.17 Metrics for visual effort calculation based on saccades.

Names Papers

V
isu

al
Eff

or
t

an
d
Effi

ci
en
cy

M
et
ric

s

Sa
cc
ad

es
Number of saccades Fritz et al. (2014)

Saccade duration Fritz et al. (2014)

Table 3.18 Metrics for visual effort calculation based on scan-paths along with selected stud-
ies.

Names Papers

V
isu

al
Eff

or
t
an

d
Effi

ci
en
cy

M
et
ric

s

Sc
an

-p
at
hs

Transitional Matrix (De Smet et al., 2012)

Attention Switching Fre-
quency

(Bednarik and Tukiainen, 2006), (Bednarik and
Tukiainen, 2008)

Scan-path Precision (Petrusel and Mendling, 2013)
Scan-path Recall (Petrusel and Mendling, 2013)
Scan-path F-measure (Petrusel and Mendling, 2013)

Figure 3.6 (1) shows the heat-map of a participant working with (a) multi-cluster and (b)
orthogonal layouts (Sharif and Maletic, 2010a). (2) presents areas of source code that attracts
higher interests (Busjahn et al., 2011).

70

Figure 3.7 (1) shows a heat-map of (a) a female participant and (b) a male participant (Sharafi
et al., 2012). (2) shows a heat-map that presents the cumulative fixations of a participant on
different source code entities, including class name, method name, variables, and comment
(Ali et al., 2012).

edit distance does not take into account the duration of different fixations and treats all
fixations equally. Fixation duration plays an important role in analysing eye-tracking
data (Henderson and Pierce, 2008). Consequently, new techniques have been proposed to
consider also the duration of fixations.

– Sequential Pattern Mining (SPAM): Hejmady and Narayanan (2012) uses this technique
and takes into account fixation durations by categorising fixations as short (less than 500
milliseconds) and long (higher than 500 milliseconds). The threshold (500 milliseconds) was
chosen based on a review of all the participants’ eye-movements. Its results confirm that
experts look at the program output more frequently than novices. Moreover, participants
who were familiar with the IDE switched their attention between the source code and the
graphical visualisation more often than those who were less familiar with the IDE.

– ScanMatch: Sharafi et al. (2013) uses ScanMatch and calculates the similarity of partici-
pants’ scan-paths while working with graphical representations.

Visual gaze behaviour:

these metrics provide visualisations to display eye-movements; they are classified as follows:
– Heatmap: Sharif and Maletic (2010a) investigates the impact of different layouts on
the comprehension of design patterns. It uses two heat-maps to visualise experts’ eye-
movements while working with two layouts (multi-cluster vs. orthogonal), separately. The

71

heat-maps show that experts spent more time on the classes participating in the design
patterns while working with a multi-cluster layout comparing to the orthogonal layout.
Busjahn et al. (2011) uses heat-maps to visualise the areas in the source code that at-
tracts higher interest (higher fixation duration). Ali et al. (2012) creates heat-maps for
different participants for code comprehension tasks. The heat-maps show that large num-
bers of fixations are found on the method names, comments, variable names, and class
names in decreasing order of importance. Sharafi et al. (2012) uses heat-maps to show
the differences among the men and women participating in code comprehension and recall
tasks. The heat-maps show that men and women use different strategies for answering the
multiple-choice questions. The heat-maps for women show fixations scattered through all
choices while, for men, the fixations are mainly focused on one choice.

– Gaze plot: Sharif and Maletic (2010a) uses a gaze plot to compare experts and novices
performing design pattern comprehension tasks. Experts’ gaze plots (as presented in Figure
3.8) show that they are looking at attributes and methods to find answers, while novices
mainly focus on class names. Binkley et al. (2013) compares camel case and underscore
identifer styles for code comprehension. The gaze plots (as presented in Figure 3.8) show
that developers put a larger number and longer fixations for the camel case style. Jermann
and Nüssli (2012) uses an enhanced version of a gaze plot called a gaze cross-recurrence
plot.

– Color coded attention allocation map: Busjahn et al. (2011) uses such a map based on the
number of fixations per word as depicted in Figure 3.9 to show different parts of source
code that attracts different levels of attention and consequently time.

Discussions

Because cognitive processes happen during fixations, the majority of eye-tracking studies
use metrics that are calculated using either the numbers or durations of fixations. Only
five studies use saccade and scan-path metrics. Four and three studies use heat-maps and
gaze-plots, respectively, and only one study uses color-coded attention allocation maps. Heat-
maps are more popular than color-coded maps because they summarise fixations on top of
the stimuli and make it easy to see the locations and intensities of the fixations. Moreover,
the color spectrum of heat-map shows how participants scan the stimuli and what are their
most preferred areas in the stimuli.

Although several approaches have been proposed for the quantitative comparison of scan-
paths (Duchowski et al., 2010; Dewhurst et al., 2012), only 10% of selected studies use these
quantitative metrics to measure and compare scan-paths, possibly because scan-paths are
inherently complex and there are major computational challenges in scan-path modeling and

72

Figure 3.8 (1) shows the gaze plots of an expert for the Observer pattern for orthogonal and
multi-cluster layouts (Sharif and Maletic, 2010a). (2) shows gaze plots for underscore and
two camel case 3-word code identifiers (Binkley et al., 2013).

Figure 3.9 Color-coded attention allocation map based on the number of fixations per word
(Busjahn et al., 2011).

73

comparison (Dewhurst et al., 2012).

However, the results of applying available scan-path comparison techniques as shown in few
selected studies (De Smet et al., 2012; Hejmady and Narayanan, 2012; Sharafi et al., 2013) are
promising. These selected studies compares participants based on their scan-paths. (Hejmady
and Narayanan, 2012) uses an environment that displays source code and the dynamic and the
static visualisations of source code together. After comparing scan-paths using SPAM (Ayres
et al., 2002) quantitatively, (Hejmady and Narayanan, 2012) reports a prominent attention
switching pattern (short attention switching between code and dynamic visualisation) for all
participants.

(Sharafi et al., 2013) compare participants’ viewing strategies while working with Tropos
graphical representation. Based on the similarity scores provided by ScanMatch (Cristino
et al., 2010), it categorises scan-paths into two different groups. By visualising these groups,
it shows that they represent two different viewing strategies: top-down or bottom-up.

3.4.5 RQ3.5: What Are the Limitations of Current Research?

Researchers wanting to perform eye-tracking studies must consider limitations in the uses of
eye-trackers in software engineering and the impact of these limitations on the collected data
and possible analyses and interpretations.

Eye-tracking Technology

The eye-tracking technology comes with the following intrinsic limitations.

Precision and accuracy. The accuracy values reported in eye-trackers manuals are mea-
sured in ideal situations in which (1) cameras have been calibrated just before the measure-
ment and (2) participants do not move their heads or have eye-wears. Sometimes, manufac-
turers even use a set of artificial eyes to avoid any head movements.

Also, manufacturers eliminate any obstacle that could interrupt the normal path of (infrared)
light, in particular eye-wears, including hard contact lenses and eye-glasses.

Yet, researchers may face difficulties with participants with large pupils or “crazy eyes”, i.e.,
whose eyelids partially hide the pupils and make them difficult to detect Poole and Ball
(2005). Usually the calibration process includes displaying known points (typically five to
nine points) on a screen and mapping their locations with the coordinates of the participants’
eye-movements. Yet, eye-trackers mostly perform calibration based on participants’ both eyes
and use the average display location to improve accuracy. If AOIs are located towards the

74

edges of the calibrated area, the calibration error is considerable Goldberg and Helfman
(2010).

To mitigate the impact of the limitations pertaining to precision and accuracy, researchers
could define AOIs large enough to capture all relevant fixations. Some previous studies
also use larger font sizes to present text and models to compensate for lack of precision.
Researchers must also calibrate the eye-trackers on a regular basis, in addition to calibrating
for every participant just before starting to perform the tasks.

Drift is also a limitation of eye-tracking technology. Drift is the gradual decrease in time
of the accuracy of the eye-tracking data, when compared to the true coordinates of the
eye-movements, which indicates the deterioration of calibration over time Sajaniemi (2004).
Changes in the physiology of the eye in time, e.g., changes in wetness, cause drift. To
reduce the impact of drift, the light conditions of the experiment environment must remain
stable and there must be equal light intensity between calibration and experiment stimuli
Sajaniemi (2004). Also, the tasks should have reasonable time durations to avoid fatigue.
The calibration procedure must be repeated regularly to maintain the quality of the results.

Hawthorne Effect. While performing an eye-tracking study, a researcher is responsible for
providing guidance to the participants, calibrating the eye-tracker, and checking its recording
to ensure that the eye-tracker does not stop tracking the eyes. The researcher’s presence
may bias the results due to the Hawthorne effect, also called the observer’s effect, because
participants feel that they are being watched. The selected papers mitigate the impact of
this effect by sitting researchers away from the participants. The papers also report minimal
interaction or face-to-face contact between researchers and participants. They state that
researchers should not help or steer participants in any way and that researchers should does
not check the participants’ behaviour during the study. They should only focus on the quality
of the recorded data. Finally, at the beginning of a study, researchers must explain to the
participants that the eye-tracker records eye-movement data anonymously and that no video
is recorded.

Data Analysis

Eye-trackers produce huge amount of data, whose analyses are complex. Using a set of tools
to automatically filter and analyse the data is necessary to save time and prevent human
errors caused by manual analyses. Several tool have been used by researchers to analyse high
volumes of data generated by eye-trackers. For example, Taupe De Smet et al. (2012) and

75

OGAMA 17 are open-source software systems designed for analysing eye-tracking data. They
support many commercial eye-trackers, including FaceLAB and Tobii eye-trackers. OGAMA
also supports mouse movements collected from slide-shows.

Another tool is the eye-tracking gaze visualiser Fehringer (2014), which displays eye-movements
on top of the video captured from the screen during the tasks and which provides many fea-
tures, including object detection and repetitive pattern exploration.

Defining a set of AOIs is usually a required step before analysing eye-tracking data. Yet,
currently, there are no detailed best-practices for defining AOIs. Goldberg et al. Goldberg
and Helfman (2010) propose a set of general guidelines for defining AOIs and report that the
padding around AOIs is dependent on the task and artifacts. For example, for text, because
fixations are usually located closely to each other, less padding is required; for a graphical
notation, more padding could be considered so that the AOI captures all relevant fixations.

Task and Material Selection

To carry out eye-tracking study, researchers must ask participants to perform a set of well-
defined tasks so that the recorded eye-movements are correctly associated with their cognitive
processes Just and Carpenter (1976); Poole and Ball (2005). Task definition also identifies
the type of artifacts of interest in the the study. Researchers must eliminate any visual
distractions (e.g., colourful or moving objects) to avoid contaminating eye-movement data
Goldberg and Wichansky (2003); Poole and Ball (2005).

The selected papers use small and easy-to-read pieces of source code, texts, or models that
can fit on one screen. By fitting a stimulus in a single screen, researchers avoid the scrolling
and–or traversing between different pages so that eye-movement data can be accurately and
unambiguously match to positions on the screen and, therefore, well-defined parts of the
stimuli to measure visual effort. Therefore, due to this single-screen limitation, there is no
previous study with realistic, interactive tasks.

Some researchers tackle the single-screen limitation by proposing new recording techniques
that support scrolling. Lankford Lankford (2000) presents a tool, called GazeTracker, that
records keystrokes and mouse clicks and movements and saves and displays the correct lo-
cation of eye-movements even if scrolling happens. The authors presents the applicability
of the tool for Web-page viewing analysis. iTrace Walters et al. (2013, 2014) also supports
horizontal and vertical scrolling while recording the correct locations of eye-movements. It
also is integrated in Eclipse 18 IDE.

17. http://www.ogama.net/
18. https://eclipse.org/

76

Yet, for software engineering tasks, in addition to scrolling, developers usually also use fea-
tures in integrated/interactive development environments (IDEs) that change the screen con-
tent without scrolling (e.g., click on package controller content in Eclipse and select another
file to read). Even, resizing the window will be problematic and must be considered. These
issue still impose some limits on choosing realistic materials and tasks for eye-tracking ex-
periments in software engineering that we ask the experimenters to bear in mind before
considering eye-tracking technology.

Experimental Setting

Settings and the environment in which the participants perform their tasks are also important.
All of the previous studies have been performed in quiet laboratories to avoid distractions
but also because it is difficult to reach practitioners for eye-tracking studies. Practitioners
have little spare time, may have concerns about intellectual property. Also, few eye-trackers
are really portable.

Different studies use different settings for the eye-trackers and do not always explain their
choices precisely in the published papers. Thus, eye-tracking studies are difficult to replicate.
We encourage researchers to present precisely all the details related to their setting to allow
replicating and comparison between studies.

Most previous papers recommended to perform several pilots studies to identify and fix any
problems before collecting eye-tracking data.

Participant Selection

Most of eye-tracking studies have been performed in research laboratories because researchers
do not have easy access to practitioners to perform their studies. For those studies in which no
comparison between experts and novices has been provided, such as Ali et al. (2012); Sharafi
et al. (2012, 2013), researchers mention the choices of the environment and participants
as a limitation. However, according to Kitchenham et al. Kitchenham et al. (2002), “using
students as participants is not a major issue as long as [researchers] are interested in evaluating
the use of a technique by novice or non-expert software engineers. Students are the next
generation of software professionals so, are relatively close to the population of interest.”

Whether experts or novices, there are large differences in participants’ eye-movements for
identical tasks. These differences are due to participants’ individual characteristics. There-
fore, as recommended by Goldberg et al. Goldberg and Wichansky (2003), it is prudent to
use a within-participants design for eye-tracking studies, to reduce the impact of participants’

77

individual characteristics on the results.

Device Vendors

Regarding the settings of eye-trackers, device vendors should ease the choice of the settings
of their devices and help in the effort towards having a uniform approach to report, import,
and share settings. Although the single-screen limitation mostly exists only in the context of
software engineering research, this limitation is important because it precludes many interest-
ing usability studies. For example, studies should be carried to understand how participants
would scroll (or not) to find relevant links in the results of a search engine or how they would
read code in an IDE. Therefore, device vendors should also start tackling this limitation and
offer analyses that can relate eye-movements positions with moving artifacts on screens.

3.4.6 RQ3.6: Which Eye-trackers Are Most Frequently Used in Software Engi-
neering Research?

Table 3.19 provides a list of the eye-trackers used in the selected papers. Two papers used the
RFV approach to perform studies Romero et al. (2002a, 2003). Four studies did not specify
the used eye-trackers Crosby and Stelovsky (1990); Stein (2004); Petrusel and Mendling
(2013); Turner et al. (2014).

The most frequently used eye-trackers are Tobii eye-trackers, which are used in about 47% of
the papers (17 out of 36). In addition, the Tobii 1750 is the most frequently used eye-trackers
among Tobii models. It has been used in 11 studies. There is one paper Cagiltay et al. (2013)
that did not specify the used model of Tobii eye-tracker.

There is an extreme variability in the costs of eye-trackers. Costs vary by tens of thousands of
dollars. Thus, when considering the use of eye-trackers, researchers must consider a tradeoff
between the cost and the quality of the eye-trackers. In the following, we provide a list of
factors that should be considered while comparing eye-trackers.

– Accuracy values represent the differences between the eye-movements positions recorded by
an eye-tracker and the actual fixations positions. Accuracy is measured in degrees of visual
angle and, usually, ranges from 0.5 to 1 degree. If a participant is seated 50cm away from
a stimulus and the eye-tracker has 1 degree of accuracy, the eye-movement positions could
be measured anywhere within a radius of 1 cm of the actual positions Sajaniemi (2004).
The reported accuracy values for the eye-trackers used in the selected paper are 0.5 degree
or less. However, the accuracy values reported in eye-tracker manuals are measured under
ideal conditions: the measurement was done immediately after calibrating the device and

78

Table 3.19 List of eye-trackers used in the selected papers with their accuracy values and
sampling rates.

Eye-tracker Manufacturer Accuracy
(degree)

Recording
rate (Hz)

Number
of Stud-
ies

Papers

Tobii 1750 Tobii Technol-
ogy

0.5 30 or 60 11 (Bednarik and Tuki-
ainen, 2006), (Bednarik
and Tukiainen, 2007),
(Yusuf et al., 2007),
(Bednarik and Tuki-
ainen, 2008), (Sharif
and Maletic, 2010a),
(Bednarik, 2012), (Jer-
mann and Nüssli, 2012),
(Sharif et al., 2012a),
(Binkley et al., 2013),
(Sharma et al., 2013),
(Duru et al., 2013)

Tobii X60 Tobii Technol-
ogy

0.5 60 3 (Hejmady and
Narayanan, 2012)
, (Sharif et al.,
2013),(Walters et al.,
2013)

Tobii T120 Tobii Technol-
ogy

0.4 120 2 (Busjahn et al., 2011),
(Busjahn et al., 2014)

Tobii TX300 Tobii Technol-
ogy

0.5 300 (set to
120)

2 (Fritz et al., 2014),
(Rodeghero et al.,
2014a)

FaceLab Seeing machine 0.5 60 3 (Ali et al., 2012),(Sharafi
et al., 2012),(Sharafi
et al., 2013)

Eye-Link II SR Research 0.25-0.5 500 pupil
only

5 (Guéhéneuc, 2006;
Jeanmart et al.,
2009),(Cepeda Por-
ras and Guéhéneuc,
2010a),(De Smet et al.,
2012),(Soh et al., 2012)

ASL Applied Science
Laboratories

0.5 50 or 60 2 (Crosby et al., 2002),(As-
chwanden and Crosby,
2006)

EMR-NC NAC Image
Technology Inc

0.3 30 1 (Uwano et al., 2006a)

79

for participants with not corrective eye-wear.
– Sampling rates indicate the numbers of eye-movement positions that can be recorded per
second. The typical sampling rate of eye-trackers ranges from 10Hz to 2,000Hz. As shown
in Table 3.19, the lowest sampling rate for the eye-trackers used in the selected papers is
observed for EMR-NC (30Hz) while the highest is reported for Eye-Link II (500Hz). Poole
et al. Poole and Ball (2005) reported that a sampling rate of 60Hz is adequate for usability
studies but that it is not good enough for reading studies, which require sampling rates of
500Hz or higher. The majority of previous studies use eye-trackers with sampling rates of
60Hz for text and code reading tasks.

– Customer support is important to consider because eye-trackers are complex devices. Cus-
tomer support vary between device manufacturers. It is necessary that the eye-tracker be
accompanied by a user manual that is easy to use. The availability of on-site training,
online support, and demo projects are important and may be considered as well.

– Time needed for setting up a study usually includes participants’ setup, stimulus adjust-
ment, and calibration. Some eye-trackers require participants to keep their heads perfectly
still during calibration, which makes this process error-prone and time consuming because
of the necessary re-calibrations.

– Software features of the eye-trackers driver and analysis software systems are important.
Some eye-trackers come with systems that can perform on-the-fly analyses while others
provide different visualisations techniques.

Only one paper compared three different eye-trackers (Tobii 1750 and ASL 504 Pan/Tilt
Optics and ASL 501 Head Mounted Optics, both from Applied Science Laboratories) in
terms of accuracy and ease of use. The authors of that paper measured the accuracy of the
eye-trackers by calculating the mean distances between recorded points of gaze and requested
points of gaze. They asked participants to work on a short piece of source code using an
animator. Their results show that the ASL 501, which requires mounting the camera on top
of participants’ heads, needs twice as much time to setup the study and that it is also the
least accurate eye-tracker in the set.

3.5 Threats to Validity

There is an evident threat to validity of a mapping study such as this one, whether the major
articles in the literature have been found adequately or not. We have restricted our search
to Engineering villages that finds relevant articles based on our research query.

However, the search engine of Engineering village uses the most trusted and well-recognized
engineering literature repositories, including ACM and IEEE. In addition, we try to eval-

80

uate the quality of our proposed query and modify it to find all relevant papers. Because
no previous mapping study exists with regards to the usage of eye-tracking technique in
software engineering, we cannot evaluate the quality of the search string using “quasi-gold
standard” (Zhang et al., 2011) string evaluation approach (Lavallée et al., 2014). However,
to reduce the possibility of missing a relevant paper, we performed full analysis and apply
snow-balling to detect missing papers.

Still, we may have missed some articles published in national journals and conferences. Thus,
our results must be qualified as considering articles that are published in the major interna-
tional journals, conferences, and workshops in computer science and software engineering.

Moreover, we use the method proposed by (Brereton et al., 2007) for data extraction in
which one researcher extracted the data and another researcher checked the data extraction.
(Turner et al., 2008) show that extractor/checker method would be problematic while dealing
with a large number of primary studies or the data is complex. However, in our case, the
number of primary studies are not very large and our data extraction method is relatively
objective which reduces the data extraction errors. In addition, the extracted data have been
checked by third author to reduce the likelihood of erroneous results.

3.6 Discussions and Conclusion

We performed a mapping study to investigate the uses of eye-tracking technology in software
engineering. Instead of performing manual searches in international journals and conferences,
we undertook a broad automated search using Engineering village that helps us to visit all
recognized resources from 1990 to 2014. Out of 649 publications found, we identified 35
relevant papers relevant to the uses of eye-tracking technology in software engineering.

A major finding of this mapping study is that the software engineering community benefits
from the uses of eye-trackers despite their limitations. The results of eye-tracking studies add
to the existing body of knowledge on how participants perform different software engineering
tasks and how they use different models and representations along with source code to under-
stand software systems. Furthermore, several metrics have been proposed to quantitatively
assess and measure participants’ visual efforts and display how they scan the stimuli while
performing their tasks.

Different topics have been considered and analysed in different eye-tracking studies and we
divided them in five categories: model comprehension, debugging, code comprehension, col-
laborative interactions, and traceability. This categorisation shows that the spread of topics is
fairly even and important software engineering tasks, including comprehension, maintenance,

81

and debugging, have been studied.

We identified a list of limitations of the uses of eye-trackers that lead to threats to the validity
of the selected studies. These limitations come from the participants that perform the tasks,
the tasks that they performed, the artifacts that they used, and the environments in which
the experiments were done. We discussed in details how to mitigate these limitations and
improve the quality of eye-tracking experiments.

We also provided two general recommendations for the software engineering community and
a list of suggestions for researchers who are newcomers and want to perform an eye-tracking
study. Our two general recommendations are:

– There is a lack of consistent terminology, metrics names, and methods. The community
needs standard guidelines to design experiments for software engineering tasks and to use
eye-trackers while reducing the risks of failure and mitigating threats to validity. As em-
phasised and explained by Sjøberg et al. Sjøberg et al. (2005), using a uniform way of
reporting an experiment benefits the software engineering community, because it provides
valuable information on how to review, replicate, and analyse the data. There are guide-
lines for performing controlled experiments in software engineering Kitchenham (2007);
Jedlitschka and Pfahl (2005). However, conducting an eye-tracking experiment requires
further, more specific recommendations with regards to the limitations associated with this
technology.

– The majority of the studies prepared their own artifacts to design and preform experiments,
which are not available online. Therefore, it is not possible to re-use them for replicat-
ing the studies or performing new experiments. Thus, researchers should make their data
accessible to other researchers who are interested in replicating their experiments while
accurately reporting the different criteria and factors that they considered while designing
and performing the experiments. In addition, the software engineering community must
promote online software artifacts repositories (e.g., Software-artifact Infrastructure Repos-
itory (SIR) Do et al. (2005) 19). Sharing data online in an organised repository would allow
researchers to receive feedback and improve their artifacts and to aggregate their findings
and single out missing artifacts Do et al. (2005).

We recommend newcomers who start in the field (1) to familiarise themselves with eye-
tracking basics including how eye-trackers work, what are the eye-gaze data (e.g., fixations
and saccades), and how to measure and interpret these data in general by reading valuable
literature including Just and Carpenter (1976); Duchowski (2007); Rayner (1998); Goldberg
and Kotval (1999); Poole and Ball (2005). (2) To consider the limitations associated with

19. http://sir.unl.edu/portal/index.php

82

this technology, as summarised in Section 3.4.6, while thinking about using eye-trackers
and designing the experiments.(3) To begin with less demanding tasks (e.g., searching and
locating specific elements in a simple graphical representation or text) to become acquainted
with eye-movement data recording and analysis before working on complex tasks with fine-
grained artifacts (e.g., source code). We also encourage researchers not to perform one
single experiment to study a broad topic that contains several subtopics (e.g., maintenance),
because it complicates data analysis and interpretation. (4) Finally, to check previous studies
using the annotated bibliography in Section 3.4.2 when having a topic in mind and to benefit
from previous studies, especially regarding the metrics used and their interpretation.

We plan to perform this study in 2020 to keep track of the progress and results of new
eye-tracking studies in software engineering.

83

CHAPTER 4 IMPACT OF REPRESENTATION TYPE ON PROGRAM
COMPREHENSION

In this chapter, we present the results of a study investigating and quantifying the effect of
graphical vs. structured texts in program comprehension. First, the effectiveness of structured
texts vs. graphical representations is explored by means of an eye-tracking experiment. Sec-
ond, we investigate the developer’s characteristics that impact representation understanding.
Third, we assess the impacts of representations on comprehension strategies for obtaining
information from textual or graphical representations.

4.1 Introduction

Graphical representations (e.g., UML diagrams) play a vital role in presenting software arti-
facts and they are effective tools to (Moody, 2009): 1) provide a quick understanding of data,
2) enhance data comparison and processing, and 3) improve and facilitate the communication
process between end-users and developers.

Conventional wisdom assumes that graphical representations carry information more effec-
tively to non-technical people than textual one (Moody, 2009). A huge amount of work
has been dedicated to propose different graphical representations under the assumption that
developers prefer to work with graphical representations rather than text to understand the
system. However, a purely graphical representation is not as expressive as the textual repre-
sentation and there are some aspects of system properties that can not be specified completely
using diagrams (Petre, 1995; Ottensooser et al., 2012; Snook and Harrison, 2007). Therefore,
graphical representations usually accompanied by textual representation to improve visu-
alization while achieving the full expressiveness and precision (Snook and Harrison, 2007;
Ottensooser et al., 2012).

Yet, to the best of our knowledge, only a handful of studies investigated the effectiveness of
graphical vs. textual representations or the developers’ preferences (i.e., textual vs. graphical
representations) in program understanding tasks (Yusuf et al., 2007; Heijstek et al., 2011;
Ottensooser et al., 2012). Some works have been arguing for the superiority of graphical
representations, and some favour textual ones for some aspects (Ottensooser et al., 2012) or
even some report no differences (Somervell et al., 2002; Snook and Harrison, 2007; Ottensooser
et al., 2012).

In this dissertation, we do not intend to examine the quality or the accuracy of a software

84

artifact (presented by either graphical or textual representation) itself but rather to quantify
the effect of the representation type (graphical vs. structured textual) on program compre-
hension. We report the results of an eye-tracking experiment conducted to compare graphical
vs. textual representations regarding developers’ accuracy, task time, and effort.

Section 4.2 contains an overview of related work. In section 4.3, the experimental design
is presented and section 4.4 outlines an overview of the results. The threats to validity are
addressed in Section 4.5. We provide the discussion and conclusion in Section 4.6.

4.2 Related Work

In recent years, graphical representations have received increasing attention. However, only
a few works addressed the comparison of textual vs. graphical representations.

Ottensooser et al. (2012) reported significant improvement in understanding of business pro-
cesses when participants work with textual representations. They also underlined that partic-
ipants must learn how to understand and use the specific graphical notations before starting
to use them.

Somervell et al. (2002) were interested to investigate which combination of graphical and
textual representations is more efficient when participants working on dual-tasks by sharing
their attention between different tasks. They considered three different criteria including:
1) facilitation of information monitoring, 2) awareness of information, and 3) introduction
of distraction. As a result, they provided a list of guidelines on the use of combinations of
textual and graphical representations to improve participants’ efficiency.

Snook and Harrison (2007) compared UML-based graphical formal specification vs. a purely
textual, formal specification in understanding a software specification. They reported that
a combination of semi-formal and formal notations improves the participants’ accuracy in
comprehension tasks.

Heijstek et al. (2011) reported that neither textual nor graphical representations were signif-
icantly effective for understanding a software architecture. They also reported that the more
experienced participants, mostly, preferred textual ones.

This chapter stems from the belief that there is a need to investigate the difference (if any) be-
tween graphical and textual requirement representations. The work presented in this chapter
is complementary to previous work, because we investigate the impact of textual and graphi-
cal representations not only on participants’ effectiveness but also on the strategies that they
use to read and understand the requirements’ representations. Moreover, in contrast with
some of the previous works, we use a textual representation which is text without any graph-

85

ical notation but it has a meaningful structure thus easing information access. This structure
makes our textual representation different from a purely textual, formal specification.

4.3 Study Design

The goal of our study is to investigate the relations between the type of requirement represen-
tations (graphical vs. textual) and participants’ visual effort, task time, as well as accuracy
in understanding software artifacts. The quality focus is model comprehension effort, which
may depend on representation type. The perspective is that of developers, who perform de-
velopment or maintenance activities and need to understand a system. The researchers could
also use our findings to design methods, techniques, and tools to better benefits from differ-
ent representation types. The context of this study consists of three model comprehension
tasks involving 28 participants (twelve females) and two variants of models. The experiment
is conducted as between participants design. An overview of our experiments is outlined in
Table 4.1.

4.3.1 Research Questions

In this chapter, we are interested in the following research questions:

RQ4.1: Does the type of representations (graphical vs. textual) impact developers’ effort,
task time, and accuracy in comprehension tasks?

RQ4.2: Does the structure of the representations lead developers to use specific viewing
strategies (top-down vs. bottom-up) during comprehension tasks?

RQ4.3: Given graphical and textual representations, is there any preferred representation
by the participants?

4.3.2 Research Hypotheses

We formulate RQ4.1 null hypotheses as follows:

– Hα11: There is no significant difference in the average accuracy of the participants’ an-
swers when performing the requirement understanding tasks with graphical and textual
representations.

– Hα12: There is no significant difference in the average task time when performing the
requirement understanding tasks with graphical and textual representations.

– Hα13: There is no significant difference in the average visual effort when performing the
requirement understanding tasks with graphical and textual representations.

86

Table 4.1 Overview of the eye-tracking experiment.

Experiment
Goal Study the impact of representations type (graphical vs. textual) on model

comprehension.
Independent
variables

Representation types: Textual (T) or Graphical (G).

Dependent
variables

Accuracy, Time, and Visual effort.

Mitigating
variables

Study level, Experience, UML knowledge, and English language profi-
ciency.

Research question RQ4.2 deals with the participants’ viewing strategies; we formulate the
following null hypothesis:

– Hα21: Despite the structure of the representation, participants will not use specific viewing
strategies while working with the representation to answer the comprehension questions.

Finally, for research question RQ4.3, we formulate the following null hypothesis:

– Hα31: Between graphical and textual representations, there is no preferred representation
by participants while comprehension reading tasks.

4.3.3 Data Collection

We use two methods to collect data during the experiment:

1. We use two questionnaire (pre-experiment and post-experiment) to obtain relevant
information. The pre-experiment questionnaire is used to collect information about
participants’ level of study and their self assessment of UML and modeling knowledge,
and English proficiency. The post-experiment contains eleven questions about partici-
pants’ preferred representations. We ask participants to rate the extent to which they
found and used two representations effectively.
In addition, we ask participants to give us their opinion about the experiment in general,
(are the tasks and questions clear and easy to understand? and do they feel safe while
sitting in front of eye-tracker or not?).

2. We perform a controlled experiment using FaceLAB (See Section 2.1.2) to capture
eye-movements data.

87

4.3.4 Task

To design our experiment, we assign a set of comprehension tasks to developers to perform.
This is because we can not directly observe how a reader understands a representation, unless
we assign a list of tasks to the reader that can only be solved correctly when the representation
is fully understood (Krogstie et al., 2006; Petrusel and Mendling, 2013).

We randomly assign our participants to the four groups presented in Table 4.2. Each par-
ticipant works on three different sessions. In each session, each participant works with one
treatment: graphical representation, textual representation, or a mixed model, including
both graphical and textual representations.

4.3.5 Material

Stimuli

Stimuli are presented using the TROPOS (Bresciani et al., 2004) graphical and textual rep-
resentations. There exist several textual and graphical representations to describe require-
ments, including GLR 1 and many others (Laurent et al., 2010). We choose TROPOS because
it proposes both a graphical representation and a structured text. We are interested to inves-
tigate the impact of this structure on developers’ efficiency. Moreover, the objects that use as
stimuli are extracted from a real industrial project, documenting a hospital information sys-
tem. These materials have been verified to confirm that not only no error exits but also the
content of graphical representation conforms with textual one. In another word, we ensure
that these two representations present the same content only in two different representations.

Three objects are used in each stimulus: Model A, Model B, and Model C. These objects
Model A and B are presented in either graphical or textual forms for each participant while
model C is presented in both graphical and textual forms at the same time. Therefore, our
participants can choose between the graphical or textual representations or use both of them
while working with model C. Figure 4.1 and Figure 4.2 show examples of our graphical and
textual representations along with different AOIs.

For Model A and Model B, our graphical representations contain 17 and 18 elements while
the number of lines for the textual representations are 19 and 22 for Model A and Model B
respectively. The graphical representation of Model C contains 13 elements and its textual
representation contains 15 lines of text (font size = 16).

TROPOS is a goal-based oriented modeling approach to visualise requirement through actor

1. http://www.cs.toronto.edu/km/GRL/

88

Fi
gu

re
4.
1
Po

rt
io
n
of

th
e
gr
ap

hi
ca
l
st
im

ul
us

th
at

co
nt
ai
ns

fiv
e
A
O
Is
:
1)

m
od

el
ar
ea

co
nt
ai
ns
:
2)

m
od

el
re
le
va
nt
,
3)

m
od

el
irr

el
ev
an

t;
4)

qu
es
tio

n
ar
ea
,a

nd
5)

he
lp

ar
ea
.

89

Fi
gu

re
4.
2
Po

rt
io
n
of

th
e
te
xt
ua

ls
tim

ul
us

th
at

co
nt
ai
ns

fo
ur

A
O
Is
:
1)

m
od

el
ar
ea

co
nt
ai
ns

2)
m
od

el
re
le
va
nt

an
d
3)

m
od

el
irr

el
ev
an

t
ar
ea
s;

4)
qu

es
tio

n
ar
ea
.

90

Table 4.2 Design groups for assigning models to different participants.

Group 1
Session 1: Model A in graphical representation.
Session 2: Model B in textual representation.
Session 3: Model C in both graphical and textual representation.

Group 2
Session 1: Model A in textual representation.
Session 2: Model B in graphical representation.
Session 3: Model C in both graphical and textual representation.

Group 3
Session 1: Model B in graphical representation.
Session 2: Model A in textual representation.
Session 3: Model C in both graphical and textual representation.

Group 4
Session 1: Model B in textual representation.
Session 2: Model A in graphical representation.
Session 3: Model C in both graphical and textual representation.

and goal diagrams (Bresciani et al., 2004). It is based on the i* modelling framework and
proposes goal-oriented modelling techniques. TROPOS defines five basic concepts including:

– Actor: it represents a position (role) or an agent that can be a human stakeholder or an
artificial agent (software and hardware system).

– Goal: it is an interest of an actor that can be composed of several sub-goals. For each
actor, there should be at least one goal.

– Task: it is a particular course of actions that can be executed to satisfy a goal.
– Resource: it is a physical (e.g., printer) or informational (e.g., notes, web-sites) entity that
could be used/produced by actors through different tasks to realise goals.

– Social dependency (between two actors): one actor depends on another actor to achieve a
goal, execute a task, or deliver a resource.

TROPOS models are visualised through actor and goal diagrams. An actor diagram is a
graph whose nodes represent actors while the vertices show the dependencies between pairs
of actors. A goal diagram is dedicated to an individual actor and represents the actor’s main
goals (their decomposition into sub-goals), the tasks and the resources to achieve the goals.

In addition, a TROPOS model can be represented using graphical or textual formats. In
graphical format, each concept is shown using a unique element e.g., the actor, goal, task, and
resource are represented by a circle, ellipse, hexagon, and rectangle respectively. Moreover,
all elements are shown based on three levels of abstraction including the goal level (high
level) at the top, the task level in the middle, and the resource level at the bottom that
contains goal and task and resource elements respectively. In textual format, each sentences
starts with a word mentioning the name of the concepts that is explained (e.g., “Goal: health

91

emergency management.”). In this dissertation, we use the goal diagram in both graphical
and textual formats.

Questions

In each session, the participants answer six comprehension questions. These questions were
divided into two main categories, bottom-up and top-down as shown in Table 4.3. In top-
down questions, we ask our participants to find the resources or the tasks to fulfill a goal. For
these questions, our participants must first find the top-level goal (high-level of abstraction)
and then refine the abstraction to find the required tasks or resources (lower-level of abstrac-
tion). In bottom-up questions, we ask our participants to find the goals that use specific
resources. For these questions, our participants must first find the resources then, going up
in the representation, identify the goal.

4.3.6 Study Variables

The variables under study are designed as follows:

Independent variables

The type of representation (graphical vs. textual) is the independent variable, i.e., treatment,
for RQ4.1 and RQ4.2. For RQ4.3, we focus the mixed model in which we present both
treatments to understand participants’ preferences.

Dependent variables

The dependent variables are chosen as follows:

Accuracy: we quantify and measure this variable by the percentage of correct answers given
by a participant in the multiple choice questions.

Task Time: we measure this variable as the amount of time that each participant spends on
each model stimulus. Our eye-tracker provides this variable for each participant per stimulus.

Effort: mental effort is the amount of brain activity required to complete a task. Eye-
movement processing helps us to provide an approximate value for the mental effort by mea-
suring the amount of visual attention that participants spend on each stimulus (Duchowski,
2007). Based on this analogy, we can assume that less attention and less time mean less
effort.

92

Table 4.3 Two groups for comprehension questions.

Top-down Group Bottom-up Group
1) What are the resources that used in
the realisation of the Goal X?

1) What is the usage of resource Y?

2) What are the tasks that used in the
realisation of the Goal X?

2) Resource Y is used in task Z, is it
correct or not?

Figure 4.3 Participants’ self assessment of object-oriented modeling experience.

In our experiment, we have two treatments/stimuli: the graphical representation and the
textual representation. We collect data about fixations on the set of areas of interest (AOI)
in each stimulus to compute the participants’ effort. We establish five AOIs for graphical
stimulus and four AOIs for textual stimulus as illustrated in Figure 4.1 and Figure 4.2, respec-
tively. Some areas cannot be clearly identified in the figures as areas may overlap/intersect,
e.g., the model area and the question area. In addition, some areas are parts of other areas,
e.g., Model area contains Model relevant and irrelevant areas.

Thus, we defined:
– Model area (M): it includes all model elements.
– Model relevant area (Re): it includes all model elements that are related to the correct
answer.

– Model irrelevant area (Ir): it includes all model elements that are not related to the correct
answer.

– Question area (Q): it includes the question and multiple choices that appear at the top of

93

Figure 4.4 Participants’ self assessment of UML and modeling knowledge.

the screen.
– Help area (H): it includes help items for the graphical model displaying TROPOS graphical
elements.

We use two metrics for calculating the visual effort:

1. The average fixation duration (AFD) (See Section 3.4.4): we compute AFD for five
AOIs of graphical stimulus and four AOIs of textual one separately and compare them.
Using AFD, we identify on which representation, our participants spent shorter fixa-
tions, thus they perform more efficiently.
Representations that require shorter fixations are more efficient than the ones with
longer fixations (Cepeda Porras and Guéhéneuc, 2010b).

2. The surface of convex hull (See Section 3.4.4): for each participant, we compute convex
hull for graphical and textual stimuli separately. By comparing the value of the convex
hull of graphical with textual, we identify the representation in which fixations are
close from one another, hence, participants spent less effort navigating the stimulus to
understand it and answer the question.

Mitigating variables

In this experiment, we use a questionnaire to collect data about the following mitigating
variables:

1. Level of study: values for this variable are B.Sc., M.Sc., and Ph.D.

94

2. Level of experience in object-oriented modelling. We ask our participants to provide a
self-assessment (very poor, poor, satisfactory, good, very good) of their level of expertise
of object-oriented modelling, in addition to, the years of modeling experience (less than
1 year, 1 to 3 years, 3 to 5 years, and more than 5 years).

3. Level of UML knowledge. We ask our participants to provide a self-assessment (very
poor, poor, satisfactory, good, very good) of their UML knowledge.

4. English language proficiency and linguistic distance. Regarding English language pro-
ficiency, we ask our participants to provide a self-assessment (very poor, poor, satisfac-
tory, good, very good) of their proficiency.
Chiswick and Miller (2005) proposed a measure, called Linguistic distance, to find out
how difficult for someone who knows language A to learn language B. They assigned
each language a score (Hart-Gonzalez and Lindemann, 1993) and stated that “if it is
more difficult to learn language B1, than it is to learn language B2, it can be said that
language B1 is more ‘distant’ from A than language B2.”.
Heijstek et al. (2011) adopted this measure to investigate whether the difference between
their participants’ native language and English can impact their efficiency and accuracy
while understanding a model. In this study, we are also interested to investigate if the
distance of our participants’ native language from English can impact our findings.

4.3.7 Participants’ Demographics

The study participants are 28 volunteers, 12 (46%) female participants and 16 (54%) male
participants. The participants are two B.Sc., 11 M.Sc., and 15 Ph.D. students from computer
and software engineering and computer science departments of the Montreal area.

Figure 4.3 displays Participants’ self reported level of experience in object-oriented model-
ing. 67% of our participants have satisfactory, good, or very good level of experience in
object-oriented modeling. Regarding the knowledge of UML, 75% of our participants have
satisfactory, good, or very good UML knowledge as depicted in Figure 4.4.

All participants had normal vision; some wore contact or corrective lenses. The participants
were not aware of the experiment’s hypotheses.

Before the experiment, we inform our participants that the experiment has three sessions
and that each session was allotted about 10 minutes and that they are free to leave at any
time without incurring any penalty. Collected information is anonymous. We validate the
response forms to make sure that participants correctly followed the experiment procedure.

The participant demographics are presented in Table 4.4.

95

Table 4.4 Participants’ demographics

Participants’ Demographics
Academic Background Gender
Ph.D. M.Sc. B.Sc Male Female
15 11 2 16 12

4.3.8 Procedure

We use a quiet room to perform the experiment. A 27” LCD screen is used to display
the stimuli while the participants are seated approximately 70 cm away from the screen in
a comfortable chair with arms and head rests. Before running the experiment, we give a
tutorial to explain TROPOS modelling concepts and its elements during about 20 minutes.
Then, we briefly explain how the eye-tracker works and what information is gathered by the
tool. For each participant, we first calibrate the eye-tracking system.

Then, we start the first session by presenting the first screen which describes to participants
how to perform the tasks and complete the experiment. When participants begin a task, we
start collecting data. We do not give any time limit to the participants. We display a repre-
sentation and a question at the same time; therefore, participants always have access to the
representation to answer the questions. When participants finish analysing representations
and find an answer, they press the “space” key to go to the next blank screen, and write
down their answer to the question, i.e., choose one of the two alternatives. Once a task is
finished and the answer given, participants press the “space” key to go to the next question.
When participants complete the three tasks, we ask them to answer the post-experiment
questionnaire.

4.4 Study Results

In this section, we report hypotheses testing and discuss the results of our experiment. Fig-
ure 4.5 presents the workflow of our data analysis.

1. We use FaceLAB to capture the eye-movement data of the participants and export
them to text files (.out files). Table 4.5 summarises the collected data.

2. We use Taupe (De Smet et al., 2012) to parse .out files, calculate the data, and generate
the following outputs:
(a) CVS files that contain the following information for each participant per stimulus

and per AOI: 1) the duration of spent time, 2) the number and the duration of
fixations, 3) the amount of visual effort (AFD), and 4) the area of convex-hull.

96

(b) Visualization of heatmaps, convex hulls, and scan-paths for each participant per
stimulus.

3. We provide four different files (CVS files of time and effort, Excel files of accuracy, and
user’s opinion) to R (Team et al., 2010) to perform statistical analysis. In the analysis
of our data, we made no assumption and applied non-parametric, non-paired tests to
determine significance differences.

4. We use MATLAB to perform scan-path analysis and compare the scan-paths of par-
ticipants and visualize them.

4.4.1 RQ4.1: Does the Type of Representations Impact Developers’ Effort, Task
Time, and Accuracy in Comprehension Tasks?

Accuracy

Each participant, when answering a question, choose either a correct or a wrong answer.
Table 4.6 is the contingency table reporting the number and the percentages of correct and
wrong answers for textual, graphical, and mixed representations. We test our hypotheses,
Hα11, to find any potential advantage of graphical vs. textual representations. After applying
two-tailed Wilcoxon with (α = 0.05), the p-value reports that there is no significant difference
between textual and graphical representations regarding accuracy. We cannot reject the null
hypothesis Hα11. Our results concur with the findings of (Heijstek et al., 2011), who reported
that neither graphical nor textual representation had a significant effect on correct answers.

Task Time

We perform three different analyses. First, we calculate the amount of time that each partic-
ipant spends on each stimulus to perform the task (Task time), then we examine the impact
of representation type. Second, we calculate the amount of spent time on each AOI for graph-
ical and textual stimuli and present the results. Finally, we calculate the start time of the
first fixation that appears on the relevant AOI for textual and graphical stimuli separately
and compare the results.

– The effect of representation type on task time: we investigate the second hypothesis, Hα12,
which examines the effect of representation type on the time that participants spend on
each stimulus to read a question, analyse the model, and answer the question.
Figure 4.6 presents the distribution of the task time dependent variable for graphical and
textual representations while Table 4.7 and Table4.8 show the average amount of time that
our participants spent on graphical and textual representations for Model A, B, and C,

97

Figure 4.5 Workflow of data analysis.

98

Table 4.5 Main features of the experiment.

Collected data
Number of participants (#) 28
Total number of questions 504
Number of Text-related questions 168
Number of Graphical-related questions 168
Number of Mixed questions 168
Total time of eye-tracking (hours) 2.85
Total number of fixations (#) 50,652

Table 4.6 Participants’ contingency table for textual, graphical, and mixed representations.

Answers
Textual Graphical Mixed

Correct Wrong Correct Wrong Correct Wrong
164 4 165 3 162 6
97% 3% 98% 2% 96% 4%

separately. On average while considering Model A and Model B, our participants spent
47% more time (10,498 ms) on graphical representation than textual representation. There
is a significant difference between graphical and textual representations (p-value = 1.487e-
05, Cohen-d: 0.54 (medium effect)) although this extra time does not affect the accuracy.
We can reject the null hypothesis Hα12.

– Time spent on each AOI: an eye-tracker gives us the ability to compute the time that is
spent on different parts of a representation (AOI) separately. Therefore, by considering a
set of AOIs that are presented in Section 4.3.6, we separately compute the percentage of
time that our participants spent on different AOIs of textual and graphical representations.
Figure 4.7 shows the percentages of time that our participants spent on different parts
of representations. When we compare the amount of time on different parts, the results
shows that our participants spend more time on both, relevant (p-value = 0.0016 < 0.05,
Cohen-d: 1.0 (large effect)) and irrelevant (p-value = 0.0022 < 0.05, Cohen-d: 1.0 (large
effect)) parts of the presentation when working with the graphical presentation compared
to the textual model. The time spent on the helper part was negligible.

– Start time of the first fixation on relevant AOI: to calculate this variable, we find the first
fixation that is displayed on the relevant AOI and extract its start time. This variable shows
how fast the participant finds relevant elements or texts in a representation. Figure 4.8
shows the amount of start time of the first fixation for all participants for different questions
of Model A for graphical and textual representations. It shows that for the first question,

99

Figure 4.6 Descriptive statistics for task time for graphical and textual representations.

Table 4.7 Average time and effort spent by participants on Models A, B while performing
the requirements understanding tasks with graphical (G) or textual (T) representations.

Model A Model B

Average Time (ms) (SD) G 36,925.5 (23,258.8) 32,856.3 (18,471.60)
T 23,346.5 (14,570.77) 22,340.05 (15,406.64)

Average Effort (SD) G 72.96 (29.05) 65.89 (27.56)
T 33.9 (37.88) 35.7 (48.26)

it takes much more time to find the relevant AOI. But as participants continue answering
more questions, they become familiar with the model and they spend less and less time to
find the relevant AOI and answer the question.
Surprisingly, this observation can not be made for the textual representation. It shows
that participants can not memorize the location of the elements as they spend more time
on the questions. Although, in average participants work faster with textual ones.

Visual Effort

We analyse the third hypothesis, Hα13, which examines the effect of a representation type on
the effort that participants spend to perform model comprehension tasks. We compare the
value of our participants’ AFDs for graphical and textual representations while considering
different AOIs including Model area (AFD(M)), Question area (AFD(Q)), Model relevant
(AFD(Re)) and Model Irrelevant (AFD(Ir)) areas. Figure 4.9 presents the distribution of the
AFD dependent variable for graphical and textual representations. The results of applying
Wilcoxon test as presented in Table 4.9 show that there is a significant difference between

100

Table 4.8 Average time and effort spent by participants on Model C while performing the
requirements understanding tasks with graphical (G) or textual (T) representations.

Model C

Average Time (ms) (SD) G 12,195.47 (1276.39)
T 4,445.18 (751.80)

Average Effort (SD) G 36.30 (26.29)
T 16.61 (15.39)

Figure 4.7 Percentage of time that our participants spend on different part of graphical and
textual representations.

graphical and textual representation while comparing AFD for Model area (AFD(M)) and
Model relevant (AFD(Re)) and Model Irrelevant (AFD(Ir)) areas. These values show that
our participants spent more visual effort while looking and analysing the irrelevant parts of
the model to find the relevant elements and relevant parts to find the correct answer with
the graphical representations.

Our results show that our participants have longer fixations while working with the graphical
representations, which means they are spending more effort analysing and interpreting the
elements of graphical representations. As expected, there is no significant differences between

101

Figure 4.8 Start time of the first fixation on relevant AOIs for all participants answering six
questions of Model A presented in graphical (top) and textual (bottom) representation.

the amount of visual effort for Question part (AFD(Q)) because the question part is the same
for both representations.

Moreover, we use the non-parametric Wilcoxon test to compare the surface of the convex hull
of our participants’ fixations on Model AOI for textual and graphical representation. We use
Taupe (De Smet et al., 2012) to compute the surface of convex hulls. As expected, using the
textual representation significantly decreases the value of convex hull (α = 0.05, p-value =
0.01). This result shows that the fixations are close from one another when our participants
work with textual representation, thus, our participants put less effort to explore the whole
model to find the relevant parts of the stimulus to answer the question.

102

Figure 4.9 Descriptive statistics of AFD for graphical and textual models.

4.4.2 RQ4.2: Does the Structure of the Representations Lead Developers to
Use Specific Task-solving Strategies (Top-down vs. Bottom-up) During
Comprehension Tasks?

We perform the following steps to answer RQ4.2: first, we consider a new set of AOIs in-
cluding goal, task, and resource areas representing different levels of abstraction of TROPOS
representations and also the Question and Help areas, as shown in Figure 4.10.

Second, we use ScanMatch (Cristino et al., 2010) to compute and show different scan-paths
for each participant working on all questions. ScanMatch assigns a character to represent each
AOI. The question AOI, goal AOI, task AOI, resource AOI and helper AOI are represented
by B, C, D, E, and F respectively. To display the scan-path, a small letter is attached to the
capital letter to make it easy to read the sequence. Therefore, if a participant goes from goal
AOI to task AOI and then to resource AOI, the sequence for the scan-path is cCdDeE.

Third, using ScanMatch, we compare the participants’ scan-paths when working with six
different questions of the Model A and Model B, presented in graphical representations.
ScanMatch calculates the similarity values to show the similarity of two scan-paths temporally

103

Table 4.9 Two-tailed Wilcoxon p-value (α = 0.05) and Cohen-d for the Average Fixation
Duration (AFD) metrics of different AOIs.

Variables p-value Cohen-d
AFD(M) < 2.2e-16 0.64
AFD(Re) < 9.328e-07 0.50
AFD(Ir) < 6.787e-11 0.83
AFD(Q) 0.07163 –

Figure 4.10 Set of five AOIs including: 1) goal level, 2) task level, 3) resource level, 4)
question, and 5) helper areas for TROPOS graphical representation.

and spatially. If two scan-paths are identical, the score is 1. If they do not have any
relationship, the value will be 0. We calculate the similarities for all participants pair-wise.
For example, if participants 1, 2, and 3 are working on Q1 of Model A, we compare and
compute the scan-paths of participants 1, 2, and 3 then, we calculate the similarity value
of participant 1 vs. participant 2, participant 1 vs. participant 3, and participant 2 vs.
participant 3. We perform this procedure for all six questions for both models A and B and
obtain, for each question, a list of similarity values for each pair of participants.

Fourth, based on our top-down and bottom-up questions presented in Table 4.3, we expect
to detect two different strategies. Our participants answer six different questions for each
model. For each question, we have a list of similarity values for the scan-paths of all pairs
of participants. We perform the two-tailed version of the unpaired Wilcoxon test, using the
Bonferroni correction, on these lists. Then, we compute Cliff’s delta to indicate the right
categorisation with the highest effect size. Based on this result, our questions are divided
into two groups: first group consists of Q1, Q2, Q4, and Q5 while the second group consists

104

of Q3 and Q6. The result of the statistical test shows that our participants use different
strategies to answer questions presented in the first and second group with the first group
containing top-down questions and the second group consisting of bottom-up questions.

Finally, to visually show the different task-solving strategies used by our participants, we draw
the structure transition graphs (STG) proposed by Sim et al. (2009) for different participants
working on two different groups of questions: top-down and bottom-up. Sim et al. (2009) use
the STG to visualise the progress and the rhythm of program comprehension while asking
participants to modify a system. They depict STG to show that developers attempts to go
back and forth within files that are in neighboring layers. They conclude that the STGs
show patterns in developers’ behaviour. We adopt this method to show how our participants
navigate through different AOIs (different levels of abstractions) to answer the questions for
graphical representations.

As shown in Figure 4.11, the x-axis in the STG is time while the y-axis shows the different
AOIs. A STG shows the navigation sequence between AOIs for participants while looking
and analysing the graphical model to answer two different types of questions: bottom-up and
top-down. As shown in the image at the top, the participants started from goal part (level
2) going through task part (level 3) to reach the resource part (level 4) to answer a question
of top-down group. The second image at the bottom shows the bottom-up navigation that
started from resource part (level 4), going through task part (level 3), and finally reaches
goal part (level 2) to answer a question of group B.

Sometimes our participants read the question from the paper in hand. Therefore, they do
not visit the question part (level 1). We believe that fast traversing between two different
AOIs, which appears as a straight vertical line in the STG, can be considered as a saccade
and can be removed. The vertical line between AOI 1 and AOI 2 means that the participant
was looking at AOI 1 then suddenly looked at AOI 2 for less that 0.01 ms and looked back
at AOI 1. Because the participants do not spent enough time on AOI 2, we can not consider
the vertical lines as a complete transition between two AOIs.

Our findings reject Hα21 and confirm that the hierarchical structure of the TROPOS graphical
representation leads our participants to follow a specific strategy, either top-down or bottom-
up, to answer the question.

105

Figure 4.11 STG graph which shows the navigation sequence of AOIs for a participant using
top-down and bottom-up strategies.

4.4.3 RQ4.3: Given a Graphical and Textual Representations of a Comprehen-
sion Task, Is There any Preferred Representation by the Participants?

In our post-questionnaire, we ask our participants their preferences for answering compre-
hension question using graphical vs. textual representations. 82% of our participants prefer
to work with a graphical representation as shown in Figure 4.12. Moreover, in the third
session, when we provide participants with a mixed model (Model C), consisting of both
graphical and textual representations, for 96% of the questions, our participants started with
the graphical representation to find the answer.

Yet, our participants spend significantly more time (p-value < 0.05, Cohen-d: 1.0) and
effort (p-value < 0.05, Cohen-d: 1.02) on graphical representations (see Table 4.7, Table 4.8
and Table 4.9). Therefore, we reject Hα31 and answer RQ4.3 as follows: our participants’
preferences is largely in favor of graphical representation. We conclude that participants’
preference is not related to the real effort and time spent.

We apply Kruskal-Wallis rank sum test on three sets of time and visual effort to see if our
participants spend equal amount of time and effort on the three models. The result of the

106

Figure 4.12 Participants’ self reported preferences about working with graphical vs. textual
representations.

test (p-value < 0.05) for both time and effort confirm that our participants spend more time
and effort on Model A and B compared to Model C. This result confirms that, although
none of our participants is familiar or use TROPOS before, they learn TROPOS through
performing the experiment and this can significantly improve their efficiency. This finding
emphasise that (in agreement with previous works (Siau, 2004)) developers must learn how
to use a graphical representation before using it.

4.4.4 Impact of the Mitigating Variables

English language proficiency: 26% of our participants evaluate their English language
proficiency as satisfactory while 40% and 34% evaluate it as good and very good respectively.
However, there is no interaction between participants’ English proficiency self-assessment and
accuracy, time, and effort.

Linguistic distance: in Table 4.10, we provide a list of the languages that are encountered
in the experiment and their associated linguistic distances. we find that the language distance
is significantly correlated with time (p-value < 0.05). This result shows that the further a
participant’s native language is from English, the more time she spends to find the answer.
This result is independent from the type of representation, which implies that the graphical
representation could not help our non-native participants to overcome the language barrier.
This result is in agreement with the work of Heijstek et al. (2011).

Experience: to evaluate the impact of experience, we consider study level, level of UML
and of object-oriented modelling, and the number of years of modelling experience. None of

107

Table 4.10 Language grouping and distance. Language is self-reported by our participants,
the score is reported in (Hart-Gonzalez and Lindemann, 1993) while the distance is 1/score
as reported in (Chiswick and Miller, 2005)

Language n Score Family Distance
English 0 - Indo-European 0.00
French 8 2.5 Indo-European 0.40
Farsi 14 2.00 Indo-European 0.50

Bulgarian 1 2 Indo-European 0.50
Bengali 2 1.75 Indo-European 0.57
Mandarin 2 1.50 Sino-Tibetan 0.67
Arabic 1 1.5 Afroasiatic 0.67

these values significantly interact (after applying one-way ANOVA) with representation types
to have an effect on accuracy, time, and effort. Our participants are students so their prior
modelling knowledge is rather homogeneous. We also design our tasks such that solving them
does not require industrial experience. Our results show that the impact of representation
types and the task cognitive complexity is not hidden by the participants’ experience.

4.5 Threats to Validity

In the following, in addition to those factors that are discussed in Section 2.2.2, we discuss
other factors that may have influenced our results.

The number of elements and lines is one limitation of the experiment using eye-tracking
systems. There is a need to accurately and unambiguously quantify the visual effort by
precisely identifying AOIs and thus precisely locating elements of the presented requirements.
Yet, the number of lines for the textual representations in our experiment is similar to the
source code size of previous eye-tracking studies (Sharif et al., 2012b; Uwano et al., 2006b).
Moreover, the number of elements that are presented in our graphical representations are in
the range of recommended number of elements for effective program comprehension (Ambler,
2005).

In addition, as explained in Section 2.2.2, the number of participants and their expertise are
the most important factors regarding this threat to validity which also concern the general-
izability of the results. We use 28 students as participants, our participants are graduate,
Masters, and Ph.D students (except for two bachelor student who are currently enrolled in
their 4th year) with good knowledge of object-oriented modeling.

108

4.6 Discussions and Conclusion

We designed and performed an eye-tracking experiment to investigate the impact of tex-
tual vs. graphical representations on developers’ efficiency while performing requirements
comprehension tasks. We also examined the effect of graphical representation structure on
developers’ strategies.

We found no statistically-significant differences between representation types when consid-
ering accuracy. Remarkably, our developers spent more time and effort while working with
the TROPOS graphical representations compared to textual ones. Moreover, the developers
who performed more efficiently with both graphical and textual representations had a native
language close to English, which implies that the graphical representation could not help
non-native English speakers to improve their efficiency. In summary, these findings questions
the role of graphical representations in requirement understanding task.

However, although graphical representations were not superior regarding time and effort, we
observed that they still played an important role. Developers mostly preferred to use the
graphical representation and they felt that it was more efficient than textual ones. Also, they
looked more at the graphical representation while working with the mixed model in which
both representations were available. In addition, our results showed that the structure of
TROPOS graphical representation helped and guided developers to follow specific strategies,
either top-down or bottom-up, to traverse different levels of abstraction. Also, while com-
paring the start time of the first fixation on the relevant AOI, we observed that developers
found the relevant parts faster as they continued answering questions about the same model,
which means that the topological structure of the graphical representation helped developers
to memorize the location of the elements and find the one that they were looking for faster
in comparison with textual ones.

In addition, developers performed significantly better regarding time and effort while working
with the mixed model after they worked with the two first models and learnt TROPOS. Our
results imply that the formalism of a graphical representation must be learnt by developers
and that training is required before the benefits of a graphical representation can materialise.
Although, the TROPOS graphical notation that we used is not complex and we gave a
tutorial to familiarize developers with TROPOS notation, the developers spent 5% of their
time looking at the Helper part.

We reported that structured text is more effective to work with compared to a graphical
representation, which emphasizes the important role of layout for comprehension. This im-
plication encourages us to take one step back and look at the very first phase of program

109

comprehension, which is source code reading, and analyze source code as a type of struc-
tured textual representation. Moreover, because the results of our study did not confirm
developers’ preference regarding the usefulness of graphical vs. textual representations, we
also consider gender as a factor that may impact program comprehension. We thus perform
a set of empirical studies investigating the impact of gender on program comprehension,
presented in following chapters.

110

CHAPTER 5 IMPACT OF GENDER ON PROGRAM COMPREHENSION
ON IDENTIFIER RECALL

Although significant amount of work has been dedicated to gender differences in education
and practice, there is little evidence about the role of gender in problem solving activities in
software engineering (Burnett et al., 2010).

There are several reasons for analyzing gender differences in software engineering tasks. First,
if such a difference exist, it confirms that male and female developers work differently with
tools and–or use different strategies to solve the problem. Therefore, to consider this new
understanding, current technology must be adapted to support both male and female devel-
opers.

Second, taking into account the difference and adopt current technology may benefit both
genders because research confirmed that studying the need of one sub-population can benefit
both sides (Ljungblad and Holmquist, 2007). For example, Czerwinski et al. (2002) conducted
a study to investigate the impact of screen parameters on the efficiency of women navigating
through 3D environments. The results show that a female gamer needs a wider field of view
to navigate as effectively as a male gamer. Moreover, providing a wider range of view does
not jeopardize male gamers’ performance and even could enhance it.

Previous works, as presented in Section 5.2, report that gender differences are likely in
problem-solving activities including programming. It has been reported that men and women
use different problem solving (see Section 5.2.1) and–or information processing strategies (see
Section 5.2.1) while tackling the task in hand. In software engineering, previous works ana-
lyzed the impact of gender on feature acceptance and attitudes toward new features (Beckwith
and Burnett, 2004; Beckwith et al., 2005, 2006a,b, 2007; Grigoreanu et al., 2008). In addition,
a handful of studies analyzed the role of gender in developers’ debugging strategies (Subrah-
maniyan et al., 2008; Grigoreanu et al., 2009).

However, the existence of gender differences during source code reading as a very first stage
of program comprehension has received almost no attention. Moreover, little is known about
gender differences that may exist in developers’ program comprehension strategies while read-
ing source code to understand it. Without this type of information, designers and developers
of development environments cannot enhance these systems to support both male and female
developers.

We hypothesize that gender has impacts on viewing strategies used by developers to read

111

the source code and perform comprehension tasks. This dissertation provides an initial
foundation for the following open question: Does gender play an important role in source
code reading and consequently program comprehension?

In this dissertation, we present the results of a study investigating the effect of gender on
developers’ ability to recall identifiers during source code reading and comprehension. To
some extent, we can look at source code as structured text in which some identifiers (class
name, method name) bring not only semantic but layout and structure to source code.
First, as identifiers are mainly presented in either Camel Case (CC) or Underscore (US)
styles by literate developers, we seek to verify if, given our developer population, there was
a difference in identifier style preference between male and female developers. Second, we
investigate the relations between gender and developers’ visual effort, task time, as well as
ability to recall identifiers (accuracy). In addition, we identify the most important source
code entities (SCEs) including class name, method name, variable name, or comment to
which developers pay more attention while reading source code and performing their task.
Finally, we investigate the viewing strategies used by male and female developers to read
source code and answer questions. These strategies characterize the ways developers switch
their focus of attention from one SCE to another.

5.1 Introduction

Several previous works investigated the role of identifiers in program comprehension (Deis-
senbock and Pizka, 2005; Binkley et al., 2009; Sharif and Maletic, 2010c). These works agreed
on the important role of identifiers in program comprehension, in code readability, and, more
generally, in software evolution (Caprile and Tonella, 2000; Deissenbock and Pizka, 2005;
Binkley et al., 2009).

Developers often compose identifiers by concatenating terms, abbreviations, acronyms, and
complete words. For example, Java developers often use English and the camel case (CC)
convention to create identifiers. The CC convention is the practice of creating identifiers by
concatenating terms with their first letter capitalized, giving the identifiers a camel-like look
with flats and humps, e.g., absolutePath. The CC convention is the de facto standard for Java.
However, it is not common in other programming languages, such as in C, where developers
use different conventions, in particular the use of underscore (US), e.g., absolute_path.

The underlying conjecture in these works is that identifier style, i.e., CC vs. US, affects
memorability. Memorability (Binkley et al., 2009; Sharif and Maletic, 2010c) is an impor-
tant factor that impact the comprehension of identifiers. It includes being able to recall an

112

identifier by providing some semantic information associated with it (Jones, 2003). Lack-
ing memorability may impair identifiers recall, code readability, and, ultimately, program
comprehension.

Previous work, such as (Binkley et al., 2009) and (Sharif and Maletic, 2010c), reported
contradictory findings on identifier styles. In terms of accuracy, measured as the percentage
of correctly recalled identifiers and thus memorability, Binkley et al. (2009) reported that
CC is more accurate than US while Sharif and Maletic (2010c) concluded that there is no
difference regarding task time and accuracy.

In this chapter, we report the results of an empirical study conducted to analyse the impact
of gender on recalling identifiers.

Section 5.2 contains an overview of related work. In section 5.3, the experimental design
is presented and section 5.4 outlines an overview of the results. The threats to validity are
addressed in Section 5.5. We provide discussion and a conclusion in Section 5.6.

5.2 Related Work

The approaches that are relevant to our work presented in this chapter focus on identifier
names and general background about gender difference in problem solving activities.

5.2.1 Gender Differences in Problem Solving Activities

Gender differences in problem solving activities has been investigated in different research and
different domains including marketing, psychology, and mathematics. They reported the role
and the importance of different factors that are observed while considering gender differences
including confidence, problem-solving style, and information-processing style (Burnett et al.,
2010).

In this chapter, we present related works in three groups: self-efficacy, problem solving
strategies, and electivity Hypothesis.

Self-efficacy

Self-efficacy is one’s belief in her/his own ability to deal with and complete the task. Hartzel
(2003) reported that females do not feel confident if they do not have task-specific experience
but males do not hesitate to apply general knowledge for specific tasks.

Previous studies explained that females has less self confidence towards their abilities to
success than males for the following tasks: word processing, spreadsheet and file manipula-

113

tion, software management, and programming (Beckwith and Burnett, 2004; Torkzadeh and
Koufteros, 1994; Busch, 1995; Margolis and Fisher, 2003; McDowell et al., 2003).

Beckwith et al., performed a set of studies (Beckwith and Burnett, 2004; Beckwith et al., 2005,
2006a,b, 2007) to analyze the impact of gender on feature acceptance and attitudes toward
new features regarding end-user programmers. First, they investigated the gender differences
related to end-user programmers from five different domains including computer science,
computer gaming, education, phycology, and marketing. Moreover, they also provided a
taxonomy of these literature (Beckwith and Burnett, 2004). Second, they investigated gender
differences for end users while performing debugging tasks on spreadsheets. The results
show that female participants approached the familiar features provided by the debugging
environment earlier than their male counterparts. Moreover, male participants tended to
tinker an unfamiliar environment and approached the new, unknown features much earlier
than female participants.

They also performed another study (Beckwith et al., 2006b) to examine whether encouraging
tinkering would help female participants perform more successfully or not. Their results
showed that, although female participants tinkered less, they performed more effectively
than males. Therefore, female developers must be supported and encouraged to tinker more.
Finally, they performed the fourth study (Beckwith et al., 2007) in a commercial environment,
which also confirmed that self-efficacy impacts the performance of male and female end-user
programmers.

In addition, Grigoreanu et al. (2008) designed two new features to support participants with
lower self-efficacy and analyzed the results to validate the impact of these new features. In
the regular version of the experiment, participants answered multiple-choice questions with
two checkmarks: “it’s wrong” and “it’s correct”. In the enhanced version, they added two
more extra checkmarks including “seems right maybe” and “seems wrong maybe”. Moreover,
the strategy explanations were also provided in two formats: video snippet and hypertext.
The results showed that it is possible to help participants with lower self-efficacy (usually
female participants) to work more effectively. The new items encouraged female developers
to use new features more often and boost their level of self-efficacy. Moreover, these new
features benefited female developers without an accompanying detriment to male developers’
performance.

McDowell et al. (2003) observed 24% increase in confidence when female developers work in
pair. For male developers, pair programming leads to 15% confidence boost.

114

Problem Solving Strategies

Different studies investigated the problem solving strategies deployed by male and female
participants to solve a problem.

Grigoreanu et al. (2009) performed a think-aloud study to investigate scripting strategies and
explain how male and female participants differently used these strategies. Male participants
used testing for all stages of debugging, including finding and fixing the bug and evaluating
their fix. However, female participants used testing only for finding bugs. In addition, offering
code inspection strategies in a testing environment improved female developers’ success. For
male developers, however, environments offering data flow and incremental testing strategies
separately increased males’ success in debugging.

Subrahmaniyan et al. (2008) investigated the debugging strategies used by end-user program-
mers. They identified eight different strategies and reported that dataflow and testing are
useful strategies for male testers while code inspection and specification checking worked well
for female testers.

Fisher et al. (2006) conducted a study to compare male and female participants’ spatial
cognition and source code navigation. Their results indicated that there is no differences
between male and female participants with respect to mental rotation, object and location
memory. They explained that male and female participants improve their skills and adapt
them to be professional developers. Therefore, they are equivalent in these skills while work-
ing as a software developer. However, they concluded that female developers mostly used a
bottom-up approach while male developers preferred to adopt a top-down approach.

Moreover, gender differences have been reported in problem solving strategies deployed for
solving mathematical problems (Fennema et al., 1998; Gallagher and De Lisi, 1994), spatial
way finding strategies (Lawton, 1994), and financial decision making strategies (Powell and
Ansic, 1997).

Fennema et al. (1998) performed a study of gender differences in problem solving strategies
used by young boys and girls in grades 1 to 3. They reported that girls tend to use more
concrete strategies, such as modelling and counting, while boys use more abstract strategies.
In addition, they also reported that, when flexibility is required to solve a problem, boys are
more successful.

Selectivity Hypothesis (Information Processing Strategies)

Information processing style is related to finding and processing new information to tackle the
problem. The research in selectivity hypothesis (Meyers-Levy, 1989; O’Donnell and Johnson,

115

2001) proposed that females pay more attention to details and use disparate, multiple cues
for processing information in both simple and complex tasks. However, males tend to find the
first cue and follow it to solve a problem. Males also use complex, comprehensive strategies
only for complex problems.

O’Donnell and Johnson (2001) showed that male and female auditors use different strategies
completing a planning analytical procedures task.

5.2.2 Impact of Identifiers on Program Comprehension

Lawrie et al. (2007) performed an experiment to investigate the impact of identifier length
on source code understanding. They reported that full-word identifiers lead to better under-
standing in comparison with short identifiers.

Binkley et al. (2009) analyzed the impact of identifier style on the speed and accuracy of
source code modification tasks. Results implied that CC identifiers lead to higher accuracy
but they take more time in comparison with US.

Sharif and Maletic (2010c) carried on an eye-tracking experiment to analyze the effect of
identifier style. Their results showed that there is no significant difference between CC and
US styles with respect to the participants’ accuracy. Moreover, using US style led to have
higher efficiency and lower visual effort in comparison with CC. They used eye-tracking data
to calculate the visual effort.

Binkley et al. (2013) presented a family of studies investigating the impact of identifer styles
(CC vs. US) on developers’ speed and accuracy while conducting comprehension task. First
study focused on readability of identifiers while the rest addressed semantic implications of
identifier styles. Their results showed that while working with source code, identifier style
does not have any impacts on speed and accuracy of experts. However, they found interaction
between novices’ accuracy and time, and style.

All of these previous studies presented contradictory results. Binkley et al. (2013) also
reported that the results of their four studies are not in agreement with each other and
emphasized that understanding the comprehension process is a very complex task. These
findings encouraged us to consider gender as a factor that can impact the comprehension
process and perform a set of empirical studies to analyze the impact of gender on program
comprehension.

116

5.3 Study Design

The goal of our study is to investigate the relations between gender and participants’ visual
effort, task time, as well as ability to recall identifiers in source code reading. The quality
focus is identifiers memorability and thus program comprehension effort, which may depend
on gender. The perspective is that of developers, who perform development or maintenance
activities and need to understand a code fragment. It is also that of researchers to possibly
find systematic bias that can be considered in the future empirical studies involving male
and female participants. The researchers could also use our findings to design methods,
techniques, and tools better adapted to different developers or support different code reading
and program understanding strategies. The context of this study consists of three program
comprehension tasks involving 25 participants (nine female participants) and two variants
of three Java code fragments where identifiers have been coded following the CC style (first
treatment) and the US style (second treatment). The experiment is conducted as not within-
participants design. An overview of our experiments is outlined in Table 5.1.

5.3.1 Research Questions

In this Chapter, we are interested in the following research questions:

RQ5.1: Does the identifier style impacts the effort, the task time, and as well as their ability
to recall identifiers (accuracy) in source code reading?

RQ5.2: Does developers’ gender impact the effort, the task time, and as well as their ability
to recall identifiers (accuracy) in source code reading?

5.3.2 Research Hypotheses

We formulate RQ5.1 null hypotheses as follows:

– Hα11: The amount of effort is the same regardless of identifier styles for recall tasks.
– Hα12: The time is the same regardless of identifier styles for recall tasks.
– Hα13: The accuracy is the same regardless of identifier styles for recall tasks.

117

Table 5.1 Overview of the eye-tracking experiment.

Experiment
Goal Study the impact of the gender, CC and US styles on source code

reading.
Independent
variables

Gender: male or female and Identifier style: CC or US)

Dependent vari-
ables

Accuracy, Task time (Speed), and Visual Effort.

Mitigating vari-
ables

Study level and Style preference of participants.

The null hypotheses for RQ5.2 are presented as follows:

– Hα21: There is no significant difference in the average accuracy between male and female
participants while reading the source code to recall identifiers.

– Hα22: There is no significant difference in the amount of task time (speed) between male
and female participants while reading the source code to recall identifiers.

– Hα23: There is no significant difference in the average visual effort between male and female
participants while reading the source code to recall identifiers.

5.3.3 Data Collection

We use two methods to collect data during the experiment:

1. We use two questionnaire (pre-experiment and post-experiment) to obtain relevant
information. The pre-experiment questionnaire is used to collect information about
participants’ level of study and their self assessment of Java and Eclipse knowledge,
and English proficiency. Participants are also asked to write down their preferred style
if that have one. In the post experiment questionnaire, we ask our participants for their
comments regarding the experiment.

2. We perform a controlled experiment using a video-based, non-intrusive eye-tracker,
FaceLAB (See Section 2.1.2) to capture eye-movements data.

5.3.4 Task

To design our experiments, we assign a set of three comprehension and recall tasks to our
participants to perform. We assign randomly each task to one of the two treatments (CC or
US) in a way to avoid learning and hopefully maximize the possibility to observe a gender

118

related difference. We randomly assign our participants to six groups presented in Table 5.2.
Each participant works on four different sessions. In each session, the participant reads one
source code that is presented by either camel case or underscore styles.

5.3.5 Material

Stimuli

We have two stimuli: the source code stimulus and the question stimulus. Source code
stimulus contains a Java program. In overall, we use three small Java programs: a 2D
graphical frame, a Database tester, and a Prime number calculator. We find these
small programs in Java Source Code Example webpage 1. We adapt to the two identifier
styles: CC and US, the two treatments. The lengths of the programs (in lines of code) are
30, 36, and 44, respectively.

We must use small Java programs to accurately and unambiguously quantify the visual effort.
However, the source code size is similar to previous eye-tracking studies (Sharif et al., 2012b;
Uwano et al., 2006b). Indeed, we can display a small Java program on a single screen and
thus, for reading source codes, the participants do not need to scroll down or traverse different
pages. If the participants had to scroll or traverse pages, it would have been difficult and
error-prone to analyze the eye-trackers’ data, especially if the participants go back and forth
between different pages.

Our experiment focuses on identifiers. We remove any comments from the source code. Thus,
all the information about the source code is captured by its identifiers. We use two variants
of the three programs: one in which all identifiers are written in CC style and another in
which all identifiers follow the US style. We choose each identifier to contain only two or
three terms. Table 5.3 shows the list of all identifiers used in our experiment for the CC
program variants. Figure 5.1 shows an example of source code and question.

Questions

5.3.6 Study Variables

Independent Variables

The participants’ gender (male or female) is the main independent variable along with the
style of the identifiers (CC or US) as summarized by Table 5.1.

1. http://www.javadb.com/

119

Table 5.2 Design groups for assigning source codes to participants.

Group 1
Session 1: Code 1 in camel case
Session 2: Code 2 in camel case
Session 3: Code 3 in underscore

Group 2
Session 1: Code 1 in camel case
Session 2: Code 2 in underscore
Session 3: Code 3 in camel case

Group 3
Session 1: Code 1 in camel case
Session 2: Code 2 in underscore
Session 3: Code 4 in underscore

Group 4
Session 1: Code 1 in underscore
Session 2: Code 3 in camel case
Session 3: Code 4 in camel case

Group 5
Session 1: Code 1 in underscore
Session 2: Code 2 in camel case
Session 3: Code 4 in underscore

Group 6
Session 1: Code 1 in underscore
Session 2: Code 2 in underscore
Session 3: Code 3 in camel case

Dependent Variables

The dependent variables are chosen as follows:

Accuracy: we quantify and measure this variable by the percentage of correct answers given
by a participant in the multiple choice questions.

Task Time: we measure this variable as the amount of time that each participant spends
on the source code and question stimuli. We measure this variable using the eye-tracker with
each participant.

Effort: we measure effort using the eye-tracker data. We consider effort as the amount of
visual attention that participants must spend to answer the question: less attention and less
time means less effort.

In our experiment, we have two stimuli: the source code stimulus and the question stimulus
that we differentiate. Thus, we use two different sets of metrics for effort calculation.

1. Source code stimulus: we calculate the convex hull of the fixations to compute the visual
effort. A convex hull represents the smallest convex sets of fixations that contains all
of a participant’s fixations. In Figure 5.2, we show the source code stimulus with the
convex hull shown by red lines and the fixations shown by black dots.

120

Table 5.3 List of identifiers used in the three Java programs.

Code 1 Code 2 Code 3
Class name Java2DFrame DBTest PrimeNumCalc

Method names

paint2DObjects executeQuery calcPrimeNums
drawString closeConnection
drawLine
initComponents

Variables’ names

graphics2D dBConnection upperLimit
roundRectangle dBStatement nCounter
sampleLine dBResultSet innerLoop

dBDriver isPrimeNum
dBQuery

Figure 5.1 (Left) source code stimulus; (right) question stimulus.

2. Question stimulus: each question stimulus contains a multiple choice question. We
collect data about fixations on the set of areas of interest (AOI) in the screen to compute
the participants’ effort. An area of interest is a relevant element of the stimulus. We
establish four AOI for the question stimulus as illustrated in Figure 5.3.
– Entire stimulus: the question description and the four multiple choices.
– Question: the question displayed at the top of the stimulus.
– Correct answer: the choice that represents the correct answer.
– Distractors: the three other incorrect choices corresponding to the irrelevant AOIs.

We compute the visual effort using Fixation Count (FC) and Fixation Rate (FR) as explained
in Section 2.1.4. Higher number of fixations indicates more effort to answer a question.

– FC(Q): the total number of fixations on question AOI.
– FR(correct): the total number of fixations on the correct answer with respect to all four

121

Figure 5.2 Source code stimulus that contains a convex hull (See Section 2.1.4). The convex
hull is shown by red lines with the fixations represented by black dots.

choices on the question stimulus.
– FR(distractors): the total number of fixations on the incorrect choices with respect to all
four choices on the question stimulus.

Mitigating Variables

In this experiment, we used a questionnaire to collect our two mitigating variables:

– Level of Study: values for this variable are B.Sc., M.Sc., and Ph.D.
– Style preferences: the values for this variable can be CC, US or None.
– Java knowledge: the value for this variable can be very good, good, satisfactory, and poor.

5.3.7 Participants’ Demographics

The study participants are 24 volunteers, nine (46%) female participants and 15 (54%) male
participants. The participants are two B.Sc., 11 M.Sc., and 15 Ph.D. students from computer
and software engineering and Computer science departments of the Montreal area. The
participant demographics are presented in Table 5.4.

Figure 5.4 displays participants’ self reported level of experience in Java programming in
general. 92% of our participants have satisfactory, good, or very good level of experience in

122

Figure 5.3 Question stimulus that contains four areas of interest: 1) entire stimulus, 2)
question, 3) correct answer, 4) distractors.

Java programming.

We asked participants about their style preference. The 29% has no preferences (3 female
participants and 4 male participants) while the other 71% preferred CC. We asked partici-
pants about their style preference. The 29% has no preferences (3 female participants and 4
male participants)while the other 71% preferred CC.

5.3.8 Procedure

We conduct the experiment in a quiet, small room where the eye-tracker is installed. We use
a 27” LCD screen to show the stimuli while the participants were seated approximately 70
cm away from the screen in a comfortable chair with arms and head rests. Before running
the experiment, we briefly give a tutorial to explain the procedure of the experiment and the
eye-tracker (e.g., how it works and what information is gathered by the eye-tracker).

We also explain that the experiment consists of three pieces of source code and that partici-
pants must answer five questions for each piece. We provide no explanation to participants
on the particular goal of the experiment. We also ask the participants to fill a pre-experiment
questionnaire to gather their basic information, such as gender and the level of study.

We ask each participant to read three different pieces of source code and recall the name
of identifiers. We assign randomly each task to one of the two treatments (CC or US) in
a way to avoid learning and hopefully maximize the possibility to observe a gender related
difference. For each participant, we first calibrate the eye-tracker. Then, we present the
first screen, which describes to the participant how to perform the tasks and complete the
experiment. When participants begin a task, we start collecting data. No time limit is set
but we asked participants to answer the questions as soon as possible. The source code of
each Java program is displayed. When participants finish reading the source code, they press

123

Figure 5.4 Participants’ self assessment of Java knowledge.

Table 5.4 Participants’ demographics

Participants’ Demographics
Academic Background Gender
Ph.D. M.Sc. B.Sc Male Female
11 10 3 15 9

the “space” key to go to the next screen which contains one question and four choices, press
space again, which displays a blank screen, and write down their answer to the question.
To answer the question, i.e., choose one of the four alternatives, participants must recall
the correct name of the identifier that performs a specific task in the program. Once a task
finished and the answer given, participants press the “space” key to go to the next Java
program.

When participants complete the three tasks, we ask them to answer the post-experiment
questionnaire. The eye-tracking experiment took 25 minutes in average to complete.

124

5.4 Study Results

In this section, we report hypothesis testing and discuss the results of our experiment. Fig-
ure 5.5 presents the workflow of our data analysis.

1. We use FaceLAB to capture the eye-movement data of the participants and export
them to text files (.out files). Table 5.5 summarises the collected data.

2. We use Taupe (De Smet et al., 2012) to parse .out files, to calculate the data, and to
generate the following outputs:

(a) CVS files that contain the following information for each participant per stimulus
and per AOI: 1) the amount of task time, 2) the number and the duration of
fixations, 3) the amount of visual effort (AFD), and 4) the area of convex-hull.

(b) Visualization of heatmaps, convex hulls, and scan-paths for each participant per
stimulus.

3. We provide four different files (CVS files of time and effort, Excel files of accuracy, and
user’s opinion) to R (Team et al., 2010) to perform statistical analysis. In the analysis
of our data, we made no assumption and applied non-parametric, non-paired tests to
determine significance differences.

5.4.1 RQ5.1 Does the Identifier Style Impact the Effort, the Time, and the
Accuracy in Source Code Reading?

Indeed, when we consider all participants as part of the same population, we cannot reject the
null hypothesis that CC and US correct answers have the same proportion. In addition, we
found no significant differences between the amount of time and effort that our participants
put forth while comparing camel case with underscore.

5.4.2 RQ5.2: Does Developers’ gender Impact the Effort, the Time, and Accu-
racy in Source Code Reading?

Table 5.5 summarizes the collected data. Each participant, when answering a question, gave
either a correct or a wrong answer. Table 5.6 is the contingency table reporting for the two
populations the numbers of correct and wrong answers for both CC and US identifiers. We
use this data to perform a proportion test, to test whether the proportion of correct (wrong)
answers in the overall population as well as in the two sub-populations (males and females)
for the two treatments, CC and US, are the same.

125

Figure 5.5 Workflow of data analysis.

126

Table 5.5 Main features of the experiment.

Number of participants (#) 24
Number of female participants 9
Number of male participants 15
Number of CC-related questions 147
Number of US-related questions 200
Total time of eye-tracking (hours) 11
Total number of fixations (#) 28,881

Table 5.6 Participants’ contingency table for CC and US identifiers.

Answers
Female Male

Correct Wrong Correct Wrong
CC 52 13 75 15
US 58 10 91 41

If we limit ourselves to the male population, we clearly see that male participants prefer CC
style vs. US style identifiers as they (roughly) gave three time more wrong answers when the
code was written with US identifiers. This observation points to a lacking of training on US
style coding style, i.e., though male and female participants have about the same training,
male participants seem less at ease with US identifiers.

However, a more thorough analysis based on a logistic regression sheds a different light. We
use logistic regression analysis as a proxy for correlation when the response is a dichotomous
variable as it is in the case of correct or wrong answers. Tables 5.7 and 5.8 report the variables
retained by the logistic regression models built on the whole population of participants along
with the p-values and the AIC criterion. We observe that gender plays a marginal role in
both models and that AIC value are close. We computed a logistic regression using R; the
gender was coded as a factor with two levels “GenderMale” and “GenderFemale”; R just
reports one of the two levels meaning that the model for a female is obtained by removing
the “GenderMale” factor. In other words, in both models, the male coefficient is negative,
i.e., GenderMale lowers the probability and thus it impacts negatively the results of the
models. Considering the best model using the AIC criterion in Table 5.7, although the time
required to answer a question plays a role and as a single coefficient is statistically relevant,
this time actually only marginally affects the probability as an increase in a unit of time
would only marginally affect the probability because the coefficient is of the order of one over

127

Table 5.7 Best logistic regression on the experiment population (AIC 370.01)

Estimate Std. Error z value Pr(> |z|)
(Intercept) 1.2884 0.2458 5.24 0.0000

Time 8.698e-06 3.459e-06 2.51 0.0119
GenderMale -0.4631 0.2793 -1.66 0.0973

Table 5.8 Alternative logistic regression on the experiment population (AIC 373.59)

Estimate Std. Error z value Pr(> |z|)
(Intercept) 1.3597 0.2433 5.59 0.0000

FR(Correct) 0.7987 0.3551 2.25 0.0245
GenderMale -0.6086 0.2845 -2.14 0.0324

one million. If we consider the slightly worse model in Table 5.8, we see that the effort spent
on the correct answer, FR(correct), increases the probability of a correct answer.

We do not make any claim on the validity of these models but we found their coefficient
puzzling and, thus, we decided to study the two different sub-populations of male and female
participants independently, with the same type of analysis. We report the results of this
analysis in Tables 5.9 and 5.10 for female and male participants, respectively. For both sub-
populations, AIC criterion improves (more for the female sub-population than for the male
one), supporting the heterogeneity of the population and further justifying the presence of
gender in the models in Tables 5.7 and 5.8.

We can consider the two models in Tables 5.9 and 5.10 as derived froms the models in Tables
5.7 and 5.8. Yet, while for female participants, their efforts on the correct answers help to
explain the data (see Table 5.9); for the male participants, only time plays a role and its
effect is less strong than the coding style. Indeed, US-style has a much stronger effect in the
model than time. Table 5.6 reports that male participants gave 75+91 = 166 correct answers
out of 75 + 91 + 15 + 41 = 222, which means 75% correct answers. Thus, male participants
performed better than choosing a random choice because a purely random choice would have
given a percentage of correct answers close to 25%.

However, male participants seem not to have invested too much time in pondering their
answers. It is possible that they did not really-seriously performed their tasks, as even the
US-style coefficient is smaller than the intercept. Yet, we cannot explain how it was possible
for male participants to achieve a percentage of correct answers of 75% on US-style identifiers
without spending time to consider all the possible answers. We believe that other experiments
must investigate this observation and attempt to bring some answers backed with evidences.

128

Table 5.9 Logistic regression on the female sub-population (AIC 116.83)

Estimate Std. Error z value Pr(> |z|)
(Intercept) 0.9707 0.2884 3.37 0.0008

FR(Correct) 3.1580 1.3328 2.37 0.0178

Table 5.10 Logistic regression on the male sub-population (AIC 244.25)

Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.3637 0.2984 4.57 0.0000

US-style -0.8522 0.3437 -2.48 0.0131
Time 8.996e-06 4.146e-06 2.17 0.0300

Table 5.6 reports that female participants gave 52 + 58 = 110 correct answers out of 52 +
58 + 13 + 10 = 133, which means 83% correct answers. Their errors on US-style identifiers
was much lower than that of male participants although male and female participants have
comparable curricula. When considering time in Tables 5.7 and 5.10, time plays no role for
both male and female participants.

We now model the participants’ accuracy, i.e., precision (Baeza-Yates and Ribeiro-Neto,
1999): the numbers of correct answers divided by the numbers of questions answered. In
agreement with Table 5.6 and the considerations in the previous subsection, the values re-
ported in Table 5.11 show that female participants performed 8% more accurately than male
participants but that they spent 18% more time than male participants.

However, Table 5.12 reports that there is no significant differences between male and female
participants for their accuracy and the required time (speed) performing the tasks. Therefore,
we cannot reject the null hypotheses Hα01 and Hα02.

The values in Table 5.11 also mean that gender, for the current tasks and population, does
neither significantly affect the participants’ accuracy nor required time by the participants
performing the tasks. These figures are also supported by the male and female participants’
Required time distributions not reported here for lack of space and because these distributions
do not bring any additional insight.

As expected from the previous sub-section, male participants’ accuracy are not the same
when comparing CC and US identifiers. The Wilcoxon test rejects the null hypothesis that
the two sets have the same mean distribution with a confidence level of 0.09 (thus not a
95%-confidence level but a 90% one). We make a similar observation for time: the times
spend by male participants with CC and US identifiers are close (but at a 90%-confidence

129

Table 5.11 Values for percentages of correct answers and required time to compare male and
female participants’ accuracy and speed.

Accuracy % Task time (min)
Male Participants 0.745 5.94
Female Participants 0.827 7.18

Table 5.12 Wilcoxon p-values (α = 0.05) for accuracy and required time.

Task Time AccuracySource Code Stimulus Question Stimulus
0.2107 0.3472 0.3217

level, p-value: 0.06128). In conclusion, male participants spent more time on US identifiers.

The male and female participants’ accuracy is the same with CC style identifiers but not
with US style identifiers. The Wilcoxon test rejects the null hypothesis that the two sub-
populations performed with the same accuracy with a p-value of 0.05376. Thus, strictly
speaking, we cannot rule out the hypothesis at a 95%-confidence level but are quite close.

When considering the tradeoff between speed and accuracy, even if the overall difference is not
significant, we observe a trend in the male sub-population as shown in Figure 5.6 while such
a trend is not present for female participants. We computed Figure 5.6 as follows: for each
participant, we calculate the average total time to perform the experiment and the percentage
of their correct answers (accuracy) and we draw a scatter-plot with a super-imposed trend
line. In Figure 5.6, the horizontal axis represents the time and the vertical axis represents the
accuracy. The trend for male participants is just apparent because for both sub-populations
(male and female participants), the variable selection of the linear models only retain the
intercepts. Thus, there is no correlation between time (or other measured variables) and
accuracy. In conclusion, for male participants, the data shows the apparent trend that they
are more accurate if they spend more time, which is in agreement with the previous results of
the following studies. Uwano et al. (2006b) observed that the longer a participant reads the
code, the more efficiently s/he finds the defects in the source code. Moreover, Sharif et al.
(2012b) reported that there is a correlation between scan time and defect detection time.
However,our results are not statistically supported by either male or female participants.

130

Figure 5.6 Speed-Accuracy tradeoff for male and female participants.

Visual Effort

When considering the entire population, no significative linear model can explain accuracy
with respect to visual effort but we can gain insight by considering single variable and sub-
populations. Table 5.13 reports the p-values for Wilcoxon tests comparing male versus female
participants on the different effort variables. We cannot observe statistical differences for
the overall effort spent, FC(Q), and the effort spent on the correct answers, FR(correct).
Interestingly, there is a statistically-significant difference for the effort spent on the wrong
answers, the distractors, FR(distractors).

Moreover, in Table 5.13, we observe that female participants put more visual attention (effort)
on distractors (irrelevant areas of interest) than male participants. We can reject the null
hypothesis H03. Our rejection of the null hypothesis is also supported by Figure 5.7, which
shows the box-plots of the three independent variables related to effort for male and female
participants. Figure 5.8 shows the heatmaps for a male and a female participant for one
question. Heatmap is a color spectrum that represents the intensity of fixations. The heatmap
for our female participants shows that her fixations are scattered through all choices while
for our male participants, his fixations are focused on the correct choice.

We gain interesting insight again as in previous sub-sections when considering the male and
female sub-populations independently. While we cannot model the accuracy of the male
sub-population with a linear model and the dependent variables, we obtain a model with

131

Table 5.13 Wilcoxon p-values (α = 0.05) for each visual effort measure

Visual Effort Metrics
FC(Q) FR(correct) FR(distractor) Convex hull
0.7884 0.1737 0.006 0.7685

Figure 5.7 Data distribution for visual effort of male and female participants.

interacting variables for the female sub-population, shown in Table 5.15. The model is
highly significant, it explains 84% of variability and support the conjecture that it is the
complex interplay between the visual effort on correct answers and wrong answers that helps
the female participants to obtain a high accuracy. We will investigate the rationale for
this observation (and lack thereof for male participants) in future work. In particular, we
have only nine female participants and the model is likely over-fitted. Table 5.14 reports a
simplified model—not modelling interaction. This model explains less the variance as the
adjusted R2 is 45% compared to the 84% of the model in Table 5.15. Yet, the coefficients
of the model in Table 5.14 are expected: the more the female participants concentrate on
distractors, the lower their accuracy while the more they concentrate on the correct answers,
the better their accuracy.

5.4.3 Impact of the Mitigating Variables

Style preferences: for this variable, we consider three treatments including CC, US, and
None. We do not find any interaction between style preference and participants’ time, ac-

132

Figure 5.8 Heatmap illustration of 1) a female participant, and 2) a male participant.

Table 5.14 Effort–accuracy model for the female sub-population with no interaction (adjusted
R2 of 0.45)

Estimate Std. Error t value Pr(> |t|)
(Intercept) 0.7970 0.1470 5.42 0.0016

FR(distractor) -0.5545 0.2124 -2.61 0.0401
FR(correct) 1.1711 0.5174 2.26 0.0642

curacy, and effort. In addition, after applying two-way ANOVA, we have not found any
statistically significant interaction on participants’ accuracy, time, and effort.

Experience: to evaluate the impact of experience, we consider Java knowledge and level
of study. After applying the one-way ANOVA separately for Java knowledge and the level
of study, no statistically significant interaction was found. Our participants are students so
their Java knowledge is rather homogeneous. We also design our tasks such that solving
them does not require industrial experience.

5.5 Threats to Validity

In the following, in addition to those factors that are discussed in Section 2.2.2, we discuss
other factors that may have influenced our results.

One threat of validity is the fact that our experiment was designed by a woman and this
may bias the experiment towards the female population. We believe this risk is somehow
mitigated by the measured variables and the constraint on the code size that must fit into
one screen. The risk is also intrinsic to any experiment of the past as we are not aware of
experiments designed by mixed teams.

133

Table 5.15 Effort–accuracy model for the female sub-population (adjusted R2 of 0.84)

Estimate Std. Error t value Pr(> |t|)
(Intercept) 1.9259 0.2984 6.45 0.0013

FR(distractor) -2.8541 0.5969 -4.78 0.0050
FR(correct) -4.3654 1.4377 -3.04 0.0289

FR(distractor):FR(correct) 10.5043 2.6753 3.93 0.0111

5.6 Discussions and Conclusion

We designed and performed an eye-tracking experiment to investigate the impact of gender
on the performance of developers during code reading and program understanding activities.
We also examined the effect of identifier style: camel case (CC) vs. underscore (US).

Our findings support the belief that CC and US styles do not impact the developers’ effort
and program comprehension. We found no significant differences between identifier styles
when considering accuracy, effort, and gender. However, a more fine-grain analysis of the de-
velopers’ visual effort on correct and wrong answers revealed unexpected details. Indeed, the
variability of this visual effort is significantly different between male and female developers.
While the time spent by male and female developers is not significantly different, male and
female developers focused differently on the alternative answers that we proposed to them.
Female developers spent more effort on the wrong answers than male developers, which can
explain the female developers’ higher accuracy. Thus, female developers seem to carefully
weight all options and rule out wrong answers while male developers seem to quickly set their
minds on some answers, possibly the wrong ones.

First, we found a statistically strong interaction between accuracy, effort spent on distracters,
and correct answers when modelling the female developers’ accuracy. Second, no correlation
exists between visual effort on correct answers or distracters and the male developers’ accu-
racy. Consequently, for female developers, it is not how much visual effort they spend on
distracter or on correct answers but rather a mix of the two, i.e., the complex pondering of
correct and wrong answers, that describe best their accuracy.

Yet, we must be careful because only nine female developers participated in our study and,
although this number is much higher than that of any previously reported studies, we cannot
consider the population large enough to generalize. Our findings should be considered more
as a hint to suggest further studies concerning the role of gender in software engineering
rather than a general truth.

Different studies (see Section 5.2.1) report that females are usually less confident than males

134

while using different programming environments. They report that self-efficacy—a person’s
confidence about her/his own competence in performing a specific task successfully—impacts
the amount of effort that is spent and the strategies that are used to solve a problem. The
root cause of differences in males’ and females’ behaviors and possibly their different abilities
are likely to go back to their different roles in society and society evolution (Harris, 1991;
Fisher, 1994). Gathering seeds or harvesting require different sets of skills; accuracy may
not be so relevant to harvest but picking seeds or identifying a poisonous or non-edible plant
has always been critical for pre-industrial societies (Fisher, 1994). Over thousands of years
of evolution, social training shaped different skills and abilities in males and females (Harris,
1991; Fisher, 1994).

In our experiment, female developers put more effort reading and analyzing distracters.
Consequently, we could explain this observation by the lower level of self-efficacy perceived
by the female developers when compared to that of male developers. Female developers
wanted to make sure that they find the correct answers precisely so they investigated all
choices before making their decisions. In addition, there is no significant difference between
the time that female or male developers spent to perform the comprehension tasks. Thus,
even though female developers devote visual attention not only to the correct answers but
also to distracters, they do not spend more time than male developers. Nevertheless, they
are more effective as they obtained a better accuracy and a better precision.

In the following chapter, we study the impact of the location of identifiers (i.e., Source Code
Entities (SCE) including: class names, method names, variable names, and comments) on
program comprehension. We are interested to analyze how much time male and female
developers spend on each SCE and what type of viewing strategies they deploy to read and
analyze these SCEs. The results could shed some light on the influence of gender on source
code reading and comprehension.

135

CHAPTER 6 IMPACT OF GENDER ON PROGRAM COMPREHENSION
ON SOURCE CODE ENTITIES

In this chapter, we present the results of an empirical study to identify the Source Code En-
tities (SCEs), including class names, method names, variable names, or comments to which
developers pay more attention while reading source code and performing a task. First, we
use an eye-tracker to capture developers’ eye movements while they read source code to un-
derstand it. We analyse the obtained data to identify and rank developers’ preferred types of
SCEs. Second, we perform another eye-tracking experiment to confirm that it is the seman-
tic content of the developers’ preferred types of SCEs and not their locations that attract
developers’ attention and help them in their task. In addition, we identify and compare the
viewing strategies used by male and female developers for program comprehension.

6.1 Introduction

Program comprehension studies consistently report that developers seem to avoid under-
standing the entire system (Roehm et al., 2012b; Rodeghero et al., 2014b) and would prefer
to focus on small sections of code during comprehension (Lakhotia, 1993; LaToza et al., 2006;
Rodeghero et al., 2014b). Therefore, to save more time, developers tend to skim source code
and focus only on some parts to quickly gain a better understanding of the software system.
Busjahn et al. (2011) define keywords, identifiers, numbers, and operators as four parts of
interest and show that the major fraction of total reading time is dedicated to identifiers.

In this thesis, we also focus on source code and consider four SCEs including class name,
method name, variable name, or comment and report the first analysis of developers’ visual
attention on SCEs with the focus on gender differences. The purpose of this study is to
identify the most preferred type of SCEs from male and female developers’ point of view for
the purpose of better understanding the program comprehension process in the context of
software development.

We perform two eye-tracking experiments. The results of the first eye-tracking experiment
show that developers prefer some types of SCEs over others while reading source code to
understand it. Our results show that method name is the most preferred SCE while class
name is the least preferred one. However, developers could prefer method names and com-
ments because they have been taught in their programming classes that method names are
important. Hence, it is possible that their preferences are due only to the presence of these

136

types of SCEs, not to their semantic content. This situation is similar to the situation in
which participants trust a piece of information by virtue if it is being shown rather than
by its intrinsic value, as it has been shown by Hembrooke et al. (2005). Thus, we perform
the second experiment to observe whether facilitating the detection of the most preferred
types of SCEs (method names) and the least preferred type of SCEs (class names) impact
the participant’ efficiency or not.

We also analyse the ways participants switch their focus of attention from one SCE to another
to compare viewing strategies with respect to participants gender. We identify AOI based
scan-path (See Section 2.1) to reason about male and female developers viewing strategies
during comprehension.

Section 6.2 contains an overview of related work. In section 6.3, the experimental design
is presented and section 6.4 outlines an overview of the results. The threats to validity are
addressed in Section 6.5. We provide discussions and a conclusion in Section 6.6.

6.2 Related Work

Some researchers (Kowalski, 2010; Erol et al., 2006; Sun et al., 2004) observed that if a term
appears in different zones of a document, then its importance changes. This idea that a term
has different importance to a reader depending on where it appears has been investigated in
the domain of information retrieval (Kowalski, 2010).

Search engines, such as Google, assign higher ranks to the Web pages that contain the
searched terms in specific parts of the pages, e.g., their titles.

Erol et al. (2006) used a questionnaire to ask participants which parts of some documents are
more important for performing tasks. They concluded that title, figure, and abstract are the
most important parts for both searching and understanding documents while figure caption
is only important for understanding.

Busjahn et al. (2011) performed an experiment to investigate the differences between source
code reading and natural text reading. They reported that developers spend more fixation
time and have higher regression rate (backward directed eye movements) when reading source
code compared to natural text. Moreover, developers spent significantly more time reading
identifiers in the source code compared to keywords, numbers, and operands.

Thus, we conclude that physically dividing documents into zones, e.g., title and abstract, has
been already investigated in the field of information retrieval. However, we report the first
analysis of developers’ visual attention on SCEs using eye-tracking with regards to gender
differences. In particular, we believe that people’s preferences for documents may differ from

137

developers’ preferences for source code.

6.3 Study Design

Our goal is to observe precisely which types of SCEs receive more developers’ visual atten-
tion during program comprehension. The quality focus is the importance of SCEs and thus
program comprehension effort, which may depend on gender. The perspective is that of de-
velopers, who perform development or maintenance activities and need to understand a code
fragment. It is also that of researchers to possibly find systematic bias that can be considered
in the future empirical studies involving male and female participants. The researchers could
also use our findings to design methods, techniques, and tools better adapted to different de-
velopers or support different code reading and program understanding strategies. The context
of this study consists of six program comprehension tasks involving 24 participants (seven
female participants) reading source codes to understand it. The experiment is conducted as
not within-participants design. An overview of our experiment is outlined in Table 6.1.

6.3.1 Research Questions

We are interested in the following research questions:

RQ6.1: What are the important source code entities (SCEs) to which developers pay more
visual attention when reading source code?

RQ6.2: Does developers’ gender impact the viewing strategies of developers while reading
source code?

RQ6.3: Are some types of SCEs preferred by developers because of their semantic content
or because of their very presence in source code?

6.3.2 Research Hypotheses

We formulate RQ6.1 null hypotheses as follows:

– Hα11: All SCEs have equal importance for developers.
– Hα12: There is no significant difference in the average time spend on SCEs when performing
program comprehension task.

RQ6.2 null hypotheses are defined as follows:
– Hα21: There is no difference between viewing strategies of male and female developers.
We formulate RQ6.3 null hypotheses as follows:

138

Table 6.1 An overview of the eye-tracking experiment.

Experiment
Goal To observe which types of SCEs receive more developers’ visual attention

during program comprehension.
Independent
variables

Type of SCE: Class name, Method name, Variable name, and Comment.

Dependent
variables

Accuracy, and Average fixation time.

Mitigating
variables

Study level and Programming experience.

– Hα31: There is no significant differences between the accuracy of developers answering
comprehension questions with source code in which a method name is easier to detect
compared to the rest of code.

– Hα32: There is no significant differences between the time spent by developers answering
comprehension questions with source code in which a method name is easier to detect
compared to the rest of code.

– Hα33: There is no significant differences between the effort of developers answering compre-
hension questions with source code in which a method name is easier to detect compared
to the rest of code.

We have similar null hypotheses pertaining to class names, the least preferred type of SCEs.

6.3.3 Data Collection

We use two methods to collect data during the experiment:

1. We use two questionnaire (pre-experiment and post-experiment) to obtain relevant
information. The pre-experiment questionnaire is used to collect information about
participants’ level of study, number of years of programming in general and Java pro-
gramming in particular, and their self assessment English proficiency. Participants are
also asked to write down their native language. In the post experiment questionnaire,
we ask our participants to rank the SCEs based on their importance. Moreover, we
collect their opinion about the readability and understandability of source codes.

2. We perform an experiment using a video-based, non-intrusive eye-tracker, FaceLAB
(See Section 2.1.2) to capture eye-movements data.

139

Table 6.2 List of questions answered by participants to perform program comprehension task.

Questions
1 Does this class take as an input the radius of a circle and calculates its area?
2 Does this class use a JDBC driver to connect to a database and reads data from myTable?
3 Does this class draw a circle in using JFrame?
4 Does this class use the Java 2D API to draw lines and one rectangle using JFrame?
5 Does this class compare two strings?
6 Does this class use a JDBC driver to connect to a database and inserts data in myTable?

6.3.4 Task

To design our experiment, we assign a set of six comprehension tasks to our participants
to perform. All participants work on all 6 source codes by reading them and answer a
comprehension question. The order of presenting these codes are the same for all of the
participants.

6.3.5 Material

We have one stimulus which contains the source code and the questions. Source code
is a Java program. In overall, we use six small Java programs: a 2D graphical frame
- Draw circle, a 2D graphical frame - Draw rectangle, 2D graphical frame - Draw
line and rectabgle, a Database tester, and a String comparator. We find these small
programs in the Java Source Code Example Web page 1. The six pieces of source code have
19, 18, 19, 18, 24, and 28 lines of code. Participants answered 6 comprehension questions,
one for each source code. Table 6.2 shows the list of questions.

We must use small Java programs to accurately and unambiguously quantify the visual effort.
We use the Java programming language to perform our experiment because it is well known
by our participants. In addition, Java is one of the (many) object-oriented programming
languages that contains several different types of SCEs, i.e., class names, method names,
variable names, and comments.

The font size is 20. We modify the code to remove any automatically generated source code
comments and empty lines are used to distinguish between two types of SCEs.

The stimulus along with the five SCEs (AOIs) is presented in Figure 6.1.

1. http://www.javadb.com/

140

Figure 6.1 Stimulus that contains five AOIs: 1) comment, 2) class name, 3) variables, 4)
method name, and 5) question.

6.3.6 Study Variables

We have one independent variable: the SCEs (class name, method name, variable name, and
comment). The dependent variables are chosen as follows:

– Accuracy: we quantify and measure this variable as the percentage of correct answers given
by a participant while reading source code and answer comprehension questions.

– Average fixation time: we measure this variable as the amount of fixation time that each
participant spends on each type of SCEs. To compute the average fixation time, we collect
data about fixations on each AOI for each piece of source code shown to the participants
and calculate time by adding the duration of all fixations for that AOI.

– Mitigating variables may impact the effect of the independent variables on the dependent
variables. In this first experiment, we use a questionnaire to collect data about about
the following mitigating variables: (1) level of study (B.Sc., M.Sc., or Ph.D.); (2) number
of years of programming experience in Java in academia; and, (3) number of years of
programming experience in Java in industry.

141

6.3.7 Participants’ Demographics

Out of 26 participants, there were four M.Sc., and 22 Ph.D students who enrolled in graduate
programs in the departments of computer science and software engineering at École Poly-
technique de Montréal and Université de Montréal. Participants’ years of general and Java
programming experience are presented in Table 6.3.

There was only one participant for whom we could not have eye-tracking data because of
the participant’s eyeglasses. Thus, we excluded that participant. We also excluded the
participant from a pilot study to validate that the requirements used in the experiment were
clear and simple and the piece of source code on the screen was easy to read and understand.
We analysed the data of a total of 24 participants.

The participants were volunteers and they have guaranteed anonymity and all data have
been gathered anonymously. The participants could leave the experiment at any time, for
any reason, without any kind of penalty. The participant demographics are presented in
Table 6.4.

6.3.8 Procedure

The procedure that we followed in our study has mainly four steps:

1. We provide a single-page guideline to the participants to perform the experiment.

2. We ask participants to answer the pre-experiment questionnaire to collect data related
to the mitigating variables. Before running the experiment, we briefly give a tutorial
to explain the procedure of the experiment and the eye-tracker (e.g., how it works and
what type of information is gathered by an eye-tracker).
The participants are seated approximately 70cm away from the screen in a comfortable
chair with arm and head rests and the eye-tracker is calibrated. This process takes less
than five minutes to be completed.

3. We ask participants to read the source code and answer the questions. We instruct
participants that they can press space bar key when they find the answer. Pressing
the space bar key takes the participants to a blank screen so that they can write down
their answer on the answer sheet.
For each question, we ask participants to spend adequate time to explore the code while
we capture participants’ eye movements during traceability verification process. The
order of the questions was the same for all the participants.

4. We ask participants to provide feedback about source code readability and understand-

142

Table 6.3 Participants’ years of general and Java programming experience.

Average Max Min
Programming Industry 2.3 5 1
Programming Academy 3.9 7 1
Java Industry 2 4 1
Java Academy 3 7 1

Table 6.4 Participants’ demographics.

Participants’ Demographics
Academic Background Gender
Ph.D. M.Sc. B.Sc Male Female
20 4 0 17 7

ability. We also ask participants about SCEs that they prefer to analyze during com-
prehension task. We have asked this question to analyse whether or not participants
followed the same pattern in the eye-tracking experiment.

6.4 Analysis and Results

In this section, we report hypothesis testing and discuss the results of our experiment. The
workflow of our data analysis is presented as follows:

1. We use FaceLAB to capture the eye-movement data of the participants and export
them to text files (.out files).

2. We use Taupe (De Smet et al., 2012) to parse .out files, calculate the data, and generate
the following outputs:

(a) CVS files that contain the following information for each participant per stimulus
and per AOI: 1) the amount of spent time, 2) the number and the duration of
fixations for each AOI (SCEs for this experiment).

(b) Visualization of heatmaps and scan-paths for each participant per stimulus.

3. We provide four different files (CVS files of total time and time on each SCE, and
Excel files of accuracy) to R (Team et al., 2010) to perform statistical analysis. In the
analysis of our data, we made no assumption and applied non-parametric, non-paired
tests to determine significance differences.

143

Figure 6.2 Distribution of average fixation time for SCEs.

6.4.1 RQ6.1: What Are the Important Source Code Entities (SCEs) to Which
Developers Pay More Visual Attention When Reading Source Code?

It took on average 20 minutes to perform the experiment including setting up the eye-
tracker. No participant mentioned any difficulties regarding the source code readability and
understandability after performing the task.

We perform the following analysis to answer RQ6.1 and try to reject our null hypothesis.
For each participant, we calculate the average fixation time that have been spent on different
types of SCEs, e.g., class or method name, in milliseconds. We consider the time for both
wrong and correct answers. Figure 6.2 shows the distribution of average fixation time for
each type of SCEs for male and female developers. The x-axis shows the questions and its
SCEs while the y-axis shows the average time spent on each type of SCEs.

144

Table 6.5 Average fixation time spent on each type of SCEs. Rankings of each type of SCEs
are based on the average fixation time (1 means the most important).

Class
name

Method
name

Variables Comment p-value

Female Participants time (ms) 339.21 1153.88 523.90 529.63 <0.05Ranking 4 1 3 2

Male Participants time (ms) 416.83 1407.5 583.80 584.86 <0.05Ranking 4 1 3 2

We also apply Kruskal-Wallis rank sum test (See Section 2.2.4) on the average fixation time
that our participants spent on four types of SCEs to analyse statistically the participant’s
preferences for class names, method names, variable names, and comments. Table 6.5 reports
that the p-value of the Kruskal-Wallis test for all the SCEs which is below the standard
significant value α = 0.05. Table 6.5 and Figure 6.2 show that participants focused more on
method names and class names are the least preferred SCEs.

We also check the heatmaps (See Section 2.1.4) consisting of the cumulative fixations of all
the participants on each stimulus. Figure 3 shows the heatmap for one of our participants
working on one of our source codes. It shows a large number of fixations on the method
name, comments, and question.

At the end of the eye-tracking study, we ask participants to answer a post questionnaire about
the most important SCEs to compare with our eye-tracking results. The post-experiment
questionnaire about participants’ personal ranking for SCEs to comprehend the source code
confirms the results of eye-tracking data.

The selection of source code snippets with only one SCE per type (one class name, one method
name, one paragraph of comments, and one group of variables) could be a direct threat to the
validity of our results. It is quite possible that developers may have different SCEs preference
on larger source code snippets with multiple SCEs. Because we are interested to find the most
important SCE based on the time that our participants spent, we used classes containing
only one SCE of each type. Adding more samples of each SCE makes the analysis of the
results more complicated because other factors must be considered, such as the relationship
between the SCEs. For example, for a particular task, the developers may prefer variable
names in large methods than method names. To avoid, such a problem, we chose to have a
simple version of each class.

Thus, we reject Hα11 and Hα12 and answer RQ6.1 as follows: developers pay different amount
of visual attention on different types of SCEs to perform program comprehension.

145

Figure 6.3 Heatmap showing the cumulative fixations of participants. The colors red, orange,
green, and blue indicate the decrease in the number and duration of fixations from highest
to lowest.

6.4.2 RQ6.2: Does Developers’ Gender Impact the Viewing Strategies of De-
velopers While Reading Source Code?

We perform the following steps to answer RQ6.2: first, we consider our set of AOIs including
SCEs , as shown in Figure 6.1. Second, we use Taupe to compute and visualise different scan-
paths for each participant working on all questions. Taupe assigns a character to represent
each AOI. The comment AOI, class name AOI, variables AOI, method name AOI, and
Question Area are represented by B, C, D, E, and F respectively. Similar to ScanMatch
representation, to display the scan-path, we attach a small letter to the capital letter to
make it easy to read the sequence. Therefore, if a participant goes from comment AOI to
class name AOI and then to method name AOI, the sequence for her scan-path is bDcCeE.

Finally, we calculate the length of the scan-path for male and female participants separately
for each question and compare the results as presented in Table 6.6. The length of a scan-path
is equal to the number of attention switching between SCEs as represented by the number
of characters in the path. For example, the length of the scan-path, “bBcCeEbBeE”, is five.

146

Table 6.6 Average length and standard deviation of the scan-paths for male and female
participants, working on six questions. Two-tailed Wilcoxon p-value (α = 0.05) for the
average path length are presented while comparing male and female participants.

Average path length (Standard deviation (SD)) p-valueMale participants Female participants
Q1 4 (SD = 7.7) 9.2 (SD = 4.2) 0.07
Q2 31 (SD =12.7) 13.5 (SD = 10.8) <0.05
Q3 27 (SD = 18.6) 14 (SD = 9.8) <0.05
Q4 33 (SD = 23) 16 (SD = 9.2) <0.05
Q5 29 (SD = 10.6) 16 (SD = 9.2) <0.05
Q6 21 (SD = 11.1) 11.5 (SD = 2.9) <0.05

Interestingly, there is a statistically-significant difference between the length of scan-paths for
male and female participants working on all questions except question 1. Shorter scan-paths
implies less attention switching between SCEs and the question.

Thus, we reject Hα21 and answer RQ6.2 as follows: female developers use different viewing
strategies compared to their male counterparts while reading source code to understand
it. They switch their attention between different SCEs less often and analyse each SCE
more carefully before going to the next one. Our results are in agreement with previous
work (Beckwith and Burnett, 2004; Beckwith et al., 2005, 2006a,b, 2007), in which they
show that male developers are inclined to tinker an unfamiliar environment and approach
the new, unknown features much earlier and more often than female developers. Our results
also confirm that male developers try to explore the stimulus more than female developers.

However, using different viewing strategies does not lead to the superiority of any gender
group regarding accuracy or time. No significant difference has been found between the
accuracy and the time of male and female developers. Table 6.7 reports that male participants
gave 79 correct answers out of 79 + 17 = 96, which means 82% correct answers while female
participants gave 33 correct answers out of 33 + 9 = 42. which means 79% correct answers.
After applying two tailed Wilcoxon with (α = 0.05), the p-value reports that there is no
significant difference between male and female participants regarding accuracy.

Table 6.8 presents the average of time spent on each stimulus for male and female participants
separately. The p-value implies that there is no significant differences between male and
female participants regarding time spent (speed).

147

Table 6.7 Participants’ contingency table for answers.

Answers
Female participants Male participants
Correct Wrong Correct Wrong

33 9 79 17

Table 6.8 Values for the amount of time that spent by male and female participants on each
stimulus separately. The wilcoxon p-value (α = 0.05) is presented after comparing male and
female participants’ accuracy.

Average Time (min)
Q1 Q2 Q3 Q4 Q5 Q6 p-value

Female participants 5.51 7.05 5.85 5.7 7.73 4.06 0.6Male participants 5.11 6.65 5.04 6.97 9.84 5.15

6.4.3 RQ6.3: Are Some Types of SCEs Preferred by Developers Because of
Their Semantic Content or Because of Their Very Presence in Source
Code?

To answer this question, we perform another eye-tracking experiment. We use two methods
to collect data that are similar to the first experiment. The type of SCEs (class name or
method name) is the independent variable. We select two different sets of dependent variables
to compare and complement the results of the first study. Similar to the first eye-tracking
study, the first set of dependent variables contains the participants’ average fixation time on
each SCE. For the second set of dependent variables, because we are interested to investigate
the impact of the presence of specific type of SCEs on participants’ efficiency and effectiveness,
we choose the following variables:

– Accuracy: we quantify and measure this variable as the percentage of correct answers given
by a participant while reading source code and answer comprehension questions.

– Total fixation time: we measure this variable as the amount of time that each participant
spends on the source code stimuli. We use the data provided by the eye-tracker to measure
this variable for each stimulus separately.

– Effort: we use the Average Fixation Duration (AFD) metric for calculating the participants’
visual effort.

We use the same criteria and the same programming languages as in the previous experiment
to choose the pieces of code that make up the stimuli. The lengths of the pieces of code (in
lines of code) are 28, 29, 19, 27, 33, and 35, respectively. In this experiment, for each piece

148

of source code, there is one instance of each type of SCEs. Thus, each piece of source code
contains one class name, one method name, one comment, and one set of variables. Figure
6.4 shows an example of a source code stimulus CiB.

Participants answered six comprehension questions, one for each source code. Table 6.9 shows
the list of questions.

Table 6.9 List of questions answered by participants to perform program comprehension task.

Questions
1 This class finds and prints the name of files of certain type (cvs).
2 This class finds and prints the number of prime numbers between 1 to 10000.
3 This class checks if two input files are recently updated and prints the last modified

time.
4 This class accepts the path of an existing file as an input and adds one sentence to

the end of file.
5 This class extracts a zip directory and prints the name of files inside that directory.
6 This class connects to the database and prints all the records in table called myTable.

Our 14 participants are two B.Sc., three M.Sc., and nine Ph.D. students in the Department
of Computer and Software Engineering at École Polytechnique de Montréal. All of these
participants have, on average, 2 years of Java programming experience in academia and 0.5
years in industry.

As with the previous experiment, these participants were all volunteers. Some participants
are common to both eye-tracking studies. However, for the second eye-tracking study, par-
ticipants do not know the goal of the study and the questions and code snippets are different.
The participants’ demographics are presented in Table 6.10.

Here, we present the results of the second experiment to answer RQ6.3.3. By comparing
Tables 6.11 and Table 6.12 with Table 6.5, we observe that if method names are highlighted,
the result is the same as previous study in which method name is the most preferred SCE
while class name is the least. If class names are highlighted, still participants spent more
time on method names, but class name is not the least preferred one anymore.

Moreover, for MiB, the p-value shows that there is statistically significant difference between
amount of time that participants spent on each SCE.

Table 6.13 shows the difference of participants’ accuracies, total fixation times, and efforts
on MiB and CiB code variants. We test our hypotheses to find any potential advantage of
CiB over MiB. After applying the non-parametric unpaired Wilcoxon test with α = 0.05,
the p-values report that there is no significant difference between the two code variants for

149

Figure 6.4 Example of a source code stimulus in which the class name is written in bold using
a larger font size.

Table 6.10 Participants’ demographics.

Participants’ Demographics
Academic Background Gender
Ph.D. M.Sc. B.Sc Male Female

9 3 2 7 7

accuracy, total fixation time, and effort. We thus cannot reject any of our null hypotheses,
H31, H32, or H33. We use non-parametric unpaired Wilcoxon statistical test to determine
significance because our data is not normally distributed.

We consider and compute the total fixation time that our participants spent to perform the
whole task and effort that are required for reading the code to understand it. These results
and observations emphasize that one types of SCEs does not lead and help our participants
to read the code and find the answers more effectively.

In conclusion, this second experiment confirms the results of the previous one: method names
are the most preferred SCEs. It also shows that whether method names or class names are
highlighted, participants spend more time on method names, with equivalent accuracy, total
time, and effort. It is indeed the content of the method names, and not just their presence,
that participants seek to perform comprehension tasks.

150

Table 6.11 Average fixation times spent on each type of SCEs for CiB source code. Rankings
of each type of SCEs are based on the average fixation times (1 means the most important).

Class
name

Method
name

Variables Comment p-value

Female participants Average time
(ms)

237 428 174 50 0.06

Ranking 2 1 3 4

Male participants Average time
(ms)

331 391 171 148 0.06

Ranking 2 3 2 4

Table 6.12 Average fixation times spent on each type of SCEs for MiB source code. Rankings
of each type of SCEs are based on the average fixation times (1 means the most important).

Class
name

Method
name

Variables Comment p-value

Female participants Average time
(ms)

109 563 242 300 <0.05

Ranking 4 1 3 2

Male participants Average time
(ms)

107 824 322 154 <0.05

Ranking 4 1 2 3

We also compute and compare the average path length of male and female participants as
shown in Table 6.14. The results confirm our finding from previous experiment and show
that frequency of attention switching for female participants are less compared to males.

6.4.4 Impact of the Mitigating Variables

Experience: to evaluate the impact of experience, we consider level of study and the num-
ber of years of programming experience in Java in academia and industry. No statistically
significant interaction was found, after applying one-way ANOVA.

6.4.5 Further Remarks

We use the results of two experiments and perform more analyses to evaluate the useful-
ness of these findings in Information Retrieval (IR) techniques. We conjecture that under-
standing how developers verify Requirements Traceability (RT) links could help improve
the accuracy of IR-based RT techniques to create RT links. We propose an improved term
weighting scheme, i.e., Developers Preferred Term Frequency/Inverse Document Frequency

151

Table 6.13 Accuracy, total fixation time, and the amount of effort put forth by participants
while working with CiB and MiB stimuli.

MiB CiB
Accuracy (SD) 0.78 (SD = 0.41) 0.85 (SD = 0.34)
Total fixation time (ms) (SD) 20,134.38 (SD = 9664.29) 21,164.31 (SD = 8136.51)
Effort (SD) 78.99 (SD = 6.63) 76.95 (SD = 6.81)

Table 6.14 The average length and standard deviation of scan-paths for male and female
participants, working with CiB and MiB source codes. Two-tailed Wilcoxon p-value (α =
0.05) for the average path length is shown for each questions while comparing male and
female participants.

Average path length (Standard Deviation) p-valueFemale participants Male participants
MiB 6.2 (3.3) 9.9 (SD = 2.4) < 0.05
CiB 4.8 (SD = 3.1) 8.05 (SD = 2.8) < 0.05

(DPTF/IDF), that uses the knowledge of the developers’ preferred types of SCEs to give
more importance to these SCEs into the term weighting scheme. As presented in our EMSE
publication (Ali et al., 2014), we integrate this weighting scheme with an IR technique, i.e.,
Latent Semantic Indexing (LSI), to create a new technique to RT link recovery. Using three
systems (iTrust, Lucene, and Pooka), we show that the proposed technique statistically im-
proves the accuracy of the recovered RT links over a technique based on LSI and the usual
Term Frequency/Inverse Document Frequency (TF/IDF) weighting scheme. Finally, we
compare the newly proposed DPTF/IDF with our original Domain Or Implementation/In-
verse Document Frequency (DOI/IDF) weighting scheme.

6.5 Threats to Validity

In the following, in addition to those factors that are discussed in Section 2.2.2, we discuss
other factors that may have influenced our results. Selection of participant threat could
impact our study due to the natural difference among the participants’ abilities. We analyse
participants with various experience to mitigate this threat. For our proposed technique,
individual participants’ Java experience can cause some fluctuation in fixation that may lead
to biased results. However, we minimised this threat by asking all participants for their
general source code comprehension preference at the end of the experiment. The results of
our post-experiment questionnaire are in agreement with the results of the experiments.

In our empirical study, they could be due to measurement errors. We use time spent on each

152

AOI and percentages of correct answer to measure the participants’ performances. These
measures are objective, even if small variations due to external factors, such as fatigue,
could impact their values. We minimise this factor by using small source code and all the
participants finished the whole experiment within 20 minutes.

6.6 Discussion and Conclusion

We designed and performed two eye-tracking experiments to analyse developers’ eye move-
ments to identify their preferred SCEs when they read source code to understand it. Results
show that developers have different preferences for class names, method names, variable
names, and comments.

In addition, we highlighted the developers’ preferred types of SCEs to assess whether their
preferences are due to the location of the SCEs or due to their semantic contents. Such a
preference would be similar to the observation that developers trust a piece of information
by virtue if it being shown rather than by its intrinsic value in the results returned by the
Google search engine (Pan et al., 2007). We showed that it is indeed the semantic content
of the SCEs that developers seek.

Moreover, inspired by developers behaviour, giving more attention to certain type of SCEs, we
also devise a new term weighting scheme, called Developers Preference–based Term Frequency
and Inverse Document Frequency (DPTF/IDF). Our results confirm that this new technique
statistically improves the accuracy of the information retrieval technique as explained in our
EMSE paper (Ali et al., 2014).

Moreover, we found no impact of gender on developers’ most/least preferred type of SCEs.
Both male and female developers spent more time on method names compared to other SCEs.
However, we identified that male and female developers use different viewing strategies for
reading source code. Women spent more time on each type of SCE and analyze it before
going to the next one. In contrast, men showed several attention switching between different
types of SCEs. We can thus now conclude our dissertation.

153

CHAPTER 7 CONCLUSION AND FUTURE DIRECTIONS

Program comprehension is a complex cognitive process that developers perform to build a
mental model of the software system being maintained. To better understand the cognitive
process underlying program comprehension, researchers exploit modern eye-trackers to collect
data about the process of comprehension with minimal intrusion (Just and Carpenter, 1976;
Bednarik and Tukiainen, 2006).

In this dissertation, we performed a mapping study to assess the current state of the art
regarding the usage of eye-trackers in software engineering and to report on how widely
eye-trackers have been used and contributed to empirical studies in software engineering.

The mapping study showed that the software engineering community mostly performed ex-
periments to study developers’ cognitive process during program comprehension by exam-
ining differences in the performance of novices and experts (Ormerod, 1990; Crosby et al.,
2002; Aschwanden and Crosby, 2006; Yusuf et al., 2007; Soh et al., 2012; De Smet et al.,
2012). However, analyzing only the level of expertise does not provide enough evidence
about differences between developers’ abilities (Storey, 2005). Thus, inspired by the previous
work on gender differences in HCI (Burnett et al., 2011; Grigoreanu et al., 2009), in this
dissertation, we considered developers’ gender as one of the main factors influencing program
comprehension.

Moreover, because developers usually benefit from the existence of other types of artifacts
than source code to perform program comprehension, we examined the difference between
graphical and textual representations during program comprehension to add to the existing
body of knowledge in empirical research on the strengths and weaknesses of textual vs.
graphical representations.

Thus, in this dissertation, we stated the following thesis: Representation type (graphical
vs. textual) and gender impact the cognitive process underlying comprehension activity.
Therefore, they influence developers’ efficiency and effectiveness. Representation type and
gender are also proxy for developers’ viewing strategies, which can be inferred partly from
the developers’ eye-movements while developers perform program comprehension tasks.

7.1 Contributions

While researching our thesis, we provide the following main contributions:

154

1. We performed a mapping study and brought evidence that the advent of new eye-
trackers makes the use of these tools easier and unobtrusive and that software engineer-
ing community benefits from this technique for empirical studies. Thus, we provided
a global view and descriptive statistics about the usage of eye-tracking techniques in
software engineering along with the research topics that have been studied using eye-
trackers: model comprehension, code comprehension, debugging, collaborative interac-
tion, traceability, and usability.
We showed researchers and device providers the limitations and advantages of the usage
of eye-trackers in software engineering research. Our findings help researchers to: (1)
identify unstudied activities and artifacts that may result in new research directions,
(2) discover the need for additional metrics and tool for their analysis to better access
developers’ cognitive process, (3) use a unified way (e.g., guideline) and consistent
terminology and metrics names when conducting and reporting eye-trackers studies.
Moreover,we identified the need for device improvements to capture developers’ eye-
movements in real software development environment (e.g., scrolling, switching between
systems).

2. We performed a study of the identify the differences between graphical and textual
representations in program comprehension.
Our results show the superiority of structured text vs. graphical representations regard-
ing developers’ spent time and effort. We reported no differences between these two
types of representation regarding accuracy. We observed that choosing between graphi-
cal and textual representations for modeling requirements is not trivial. Several factors
including the complexity and the purpose of the task could also impact the results.
Still, our results showed that for the comprehension of small systems, structured text is
more effective than a graphical representation. Moreover, the graphical representation
does not seem to bridge the linguistic distance, which also implies that the use of only
one representation is not recommended.
In addition, our results pointed at the value of educating readers of graphical represen-
tations with these representation during experiment. Although the TROPOS graphical
notation that we used is not complex and we gave a tutorial to familiarise developers
with TROPOS notation, the developers spent 5% of their time looking at the Helper
part. Although 5% of the time is negligible, it seems profitable to provide more infor-
mation about the representation that developers must use it.
Also, as presented by (Heijstek et al., 2011), other approaches such as, annotating a
graphical representation with a description of how to read it, may be beneficial. This
annotation can be added either in natural text or using a more formal notation such

155

as OCL (OMG Group, 2014).

3. We contributed to the literature on the impact of gender in program comprehension.
We performed a set of empirical studies to investigate how well viewing strategies
generalised to different population: male and female developers. Our results confirmed
that although there is no difference between male and female developers’ efficiency and
effectiveness during comprehension and identifier recall tasks, they use different viewing
strategies to perform the tasks.
While the time spent by male and female developers is not significantly different, male
and female developers focused differently on the alternative answers that we proposed
to them. Female developers seem to carefully weight all options and rule out wrong
answers while male developers seem to quickly set their minds on some answers. We
found a statistically strong interaction between accuracy and effort spent on alternatives
by female developers, which confirms that this strategy and spending more time on
possible solutions helps female developers to find the correct answer.
While studying the source code reading process, we observed two distinct strategies
deployed by male and female developers. Male developers change their focus of atten-
tion regularly and go back and forth between different AOIs, i.e., class names, method
names, variables and comments, while, female developers focus and analyze one SCE
before changing their focus of attention and go to the others.
Moreover, our results showed that method names are the most important type of SCEs
for both male and female developers. It demonstrators that developers must pay at-
tention to method names and choose precise, understandable names. In addition, we
propose a new weighting scheme, DPTF/IDF , that considers developers’ preferred
types of SCEs and conclude that taking into account source code elements is important
to improve the accuracy of RT techniques (Ali et al., 2014).
Furthermore, we provided a set of detailed observations about the viewing strategies of
male and females developers to explain (1) how they answer multiple choice questions,
(2) how they read the source code, and (3) what are the most important SCEs on which
developers spent more visual attention. Our results and observations help to better un-
derstand the viewing strategies deployed in program comprehension, which is prerequi-
site for (1) developing tools (IDE and debugger), (2) choosing a proper representation
to document existing software, (3) training that supports program comprehension, and
(4) effectively using different artifacts to improve program comprehension.
However, the number of female developers who participated in our studies are limited,
and, although this number is much higher than that of any previously reported studies,
we cannot consider the population large enough to generalize. Our findings should be

156

considered suggesting further studies concerning the role of gender in software engi-
neering rather than a general truth.
Yet, our findings raise two significant new open questions: first, are there differences
between viewing strategies of male and female developers while performing program
comprehension tasks and whether these strategies impact their efficiency and effective-
ness or not. Also, if the results from our limited studies can be generalized to the
broader population of developers: the second questions is: to which extent do current
programming environments support these strategies?

7.2 Limitations

The limitations of the work presented in this dissertation are discussed in details in Sec-
tion 4.5, Section 5.5, and Section 6.5. But, in general, our experiments suffer from the same
limitations as previous eye-tracking studies:
– Number of developers: in our four experiments, we had 28, 24, 26, and 14, developers
respectively. The majority of previous eye-tracking studies had less than twenty developers
and our number of developers are reasonable but prevent generalization.

– Size of material: to correctly track the developers’ visual attention, our stimuli fitted in
one screen. Developers could not easily go back and forth between different screens or
scroll the screens. Therefore, we used small source code snippets and models the same
as previous eye-tracking studies. Moreover, because developers are subjected to fatigue
effects in experiments lasting longer than about an hour, we also limited the size and the
complexity of the material that we use to ensure that data is of a high quality. Therefore,
our artifacts are not representative of all the artifacts usually used in software maintainable.

Therefore, because the current eye-trackers place some limits on preparing the materials,
further experiments are required to generalize the results. More advancement in eye-tracking
technique will allow us to prepare more realistic materials and conduct our experiments in
real environments.

7.3 Future Work

Our work opens several new research directions. In general, further research should focus on
improving the generalizability of our results. We plan to replicate our studies with different
representations and to extend the experiments to larger numbers of developers. Moreover,
we plan to perform additional experiments without eye-trackers but with more realistic tasks
and more complex models.

157

Scan-paths are usually used to understand developers’ viewing strategies. Because of limi-
tation associated to analyzing and comparing fixation-based scan-paths, current work uses
mostly AOI-based scan-paths. However, there is no method for defining AOIs size and granu-
larity. The AOIs are defined in a top-down approach, based on the experimenter’ assumption
and experimental goals and conditions. However, Drusch et al. (2014) dynamically defined
AOIs using a mean-shift clustering algorithm and visualized developers’ scan-paths dynami-
cally during the experiment to understand their visual behaviour while searching Web pages.
Their results implied that dynamically defining and analyzing AOIs highlighted some differ-
ences in developers’ behaviours that are hidden while using static heatmaps. Thus, we plan
to further analyse developers’ viewing strategies dynamically while performing comprehen-
sion tasks. This analysis could show whether developers always use the same strategies for
viewing materials or their strategies and relevant AOIs change over time while they work.

Heatmaps clearly show and distinguish areas of higher interest with lowest ones. So far,
in software engineering research, heatmaps have been compared qualitatively, providing a
visualization for observing the final distribution of fixations’ numbers and duration. We plan
to further investigate image processing approaches to analyze heatmaps quantitatively.

In the following, we outline other future work related to the factors that have been investi-
gated in this dissertation.

When we compared the developers’ scan-paths, we observed that they followed two different
viewing strategies: top-down and bottom-up. Our findings suggest further studies concerning
the impact of representation structure (layout) on developers’ strategies and performance.
Previous studies indicate that the layout plays a significant role in the comprehension of
UML class diagrams (Sharif and Maletic, 2010a). However, we plan to take one step back
and put the focus on how vertical and horizontal lines served as a simple layout and can be
used to modularize notations based on different levels of abstraction or relations. Then, we
will further study the impact of these layouts on developers’ performance (effectiveness and
efficiency) using different representations.

While studying developers reading source codes, we did not examine developers’ reading
ability while working with natural language text. By comparing developers’ reading abilities
and their source code viewing strategies, we could single out personal characteristics that are
not induced by the stimulus material. For example, as explained by Busjahn et al. (2011),
for a certain person, having long fixations might be normal because there are not triggered
by the stimulus material but by its own cognitive process. Consequently, we plan to study
developers’ viewing strategies and reading behaviour while reading natural text in addition
to their source code viewing strategies.

158

We encourage future research to study how our finding about gender differences are applicable
in daily software engineering tasks and also propose remedies to make these tasks enjoyable
and increase the productivity of both male and female developers. We plan to perform more
experiments with real programming environments (IDEs) using bigger pieces of source code
containing more than one instance of each SCEs to analyze male and female developers’
viewing strategies. We aim to perform think-aloud experiments to analyze more the impact
of gender in source code reading and comprehension. Moreover, we are interested to analyze
whether these strategies are supported by programming environments and programming
language constructs to provide further suggestions to better support developers.

159

REFERENCES

N. Ali, Z. Sharafi, Y.-G. Guéhéneuc, and G. Antoniol, “An empirical study on requirements
traceability using eye-tracking.” in Proceedings of the 28th IEEE International Conference
on Software Maintenance. IEEE Computer Society, 2012, pp. 191–200. [Online]. Available:
http://dblp.uni-trier.de/db/conf/icsm/icsm2012.html#AliSGA12

——, “An empirical study on the importance of source code entities for requirements
traceability,” Empirical Software Engineering, pp. 1–37, 2014. [Online]. Available:
http://dx.doi.org/10.1007/s10664-014-9315-y

S. Ambler, The Elements of UML (TM) 2.0 Style. Cambridge University Press, 2005.

C. Aschwanden and M. Crosby, “Code scanning patterns in program comprehension,” in
Proceedings of the 39th Hawaii International Conference on System Sciences, 2006.

J. Ayres, J. Flannick, J. Gehrke, and T. Yiu, “Sequential pattern mining using a bitmap
representation,” in Proceedings of the Eighth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ser. KDD ’02. New York, NY, USA: ACM, 2002,
pp. 429–435. [Online]. Available: http://doi.acm.org/10.1145/775047.775109

R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval. Addison-Wesley, 1999.

L. Beckwith and M. Burnett, “Gender: An important factor in end-user programming en-
vironments?” in Visual Languages and Human Centric Computing, 2004 IEEE Symposium
on. IEEE, 2004, pp. 107–114.

L. Beckwith, M. Burnett, S. Wiedenbeck, C. Cook, S. Sorte, and M. Hastings,
“Effectiveness of end-user debugging software features: Are there gender issues?” in
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
ser. CHI ’05. New York, NY, USA: ACM, 2005, pp. 869–878. [Online]. Available:
http://doi.acm.org/10.1145/1054972.1055094

L. Beckwith, M. Burnett, V. Grigoreanu, and S. Wiedenbeck, “Gender hci: What about
the software?” Computer, vol. 39, no. 11, pp. 97–101, 2006.

L. Beckwith, C. Kissinger, M. Burnett, S. Wiedenbeck, J. Lawrance, A. Blackwell,
and C. Cook, “Tinkering and gender in end-user programmers’ debugging,” in
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
ser. CHI ’06. New York, NY, USA: ACM, 2006, pp. 231–240. [Online]. Available:
http://doi.acm.org/10.1145/1124772.1124808

http://dblp.uni-trier.de/db/conf/icsm/icsm2012.html#AliSGA12
http://dx.doi.org/10.1007/s10664-014-9315-y
http://doi.acm.org/10.1145/775047.775109
http://doi.acm.org/10.1145/1054972.1055094
http://doi.acm.org/10.1145/1124772.1124808

160

L. Beckwith, D. Inman, K. Rector, and M. Burnett, “On to the real world: Gender and
self-efficacy in excel,” in Visual Languages and Human-Centric Computing, 2007. VL/HCC
2007. IEEE Symposium on. IEEE, 2007, pp. 119–126.

R. Bednarik, “Expertise-dependent visual attention strategies develop over time during
debugging with multiple code representations,” Int. J. Hum.-Comput. Stud., vol. 70, no. 2,
pp. 143–155, Feb. 2012. [Online]. Available: http://dx.doi.org/10.1016/j.ijhcs.2011.09.003

R. Bednarik and M. Tukiainen, “An eye-tracking methodology for characterizing program
comprehension processes,” in Proceedings of the 2006 Symposium on Eye Tracking Research
&Amp; Applications, ser. ETRA ’06. New York, NY, USA: ACM, 2006, pp. 125–132.
[Online]. Available: http://doi.acm.org/10.1145/1117309.1117356

——, “Visual attention tracking during program debugging,” in Proceedings of
the Third Nordic Conference on Human-computer Interaction, ser. NordiCHI ’04.
New York, NY, USA: ACM, 2004, pp. 331–334. [Online]. Available: http:
//doi.acm.org/10.1145/1028014.1028066

——, “Effects of display blurring on the behavior of novices and experts during program
debugging,” in CHI ’05 Extended Abstracts on Human Factors in Computing Systems,
ser. CHI EA ’05. New York, NY, USA: ACM, 2005, pp. 1204–1207. [Online]. Available:
http://doi.acm.org/10.1145/1056808.1056877

——, “Temporal eye-tracking data: Evolution of debugging strategies with multiple
representations,” in Proceedings of the 2008 Symposium on Eye Tracking Research &
Applications, ser. ETRA ’08. New York, NY, USA: ACM, 2008, pp. 99–102. [Online].
Available: http://doi.acm.org/10.1145/1344471.1344497

——, “Validating the restricted focus viewer: A study using eye-movement tracking,” Be-
havior research methods, vol. 39, no. 2, pp. 274–282, 2007.

D. Binkley, M. Davis, D. Lawrie, and C. Morrell, “To camelcase or under_score,” in IEEE
17th International Conference on Program Comprehension (ICPC). IEEE, 2009, pp. 158–
167.

D. Binkley, M. Davis, D. Lawrie, J. I. Maletic, C. Morrell, and B. Sharif, “The impact of
identifier style on effort and comprehension,” Empirical Softw. Engg., vol. 18, no. 2, pp.
219–276, Apr. 2013. [Online]. Available: http://dx.doi.org/10.1007/s10664-012-9201-4

A. F. Blackwell, A. R. Jansen, and K. Marriott, “Restricted focus viewer: A tool for tracking
visual attention.” in Diagrams, ser. Lecture Notes in Computer Science, M. Anderson,
P. C.-H. Cheng, and V. Haarslev, Eds., vol. 1889. Springer, 2000, pp. 162–177. [Online].
Available: http://dblp.uni-trier.de/db/conf/diagrams/diagrams2000.html#BlackwellJM00

http://dx.doi.org/10.1016/j.ijhcs.2011.09.003
http://doi.acm.org/10.1145/1117309.1117356
http://doi.acm.org/10.1145/1028014.1028066
http://doi.acm.org/10.1145/1028014.1028066
http://doi.acm.org/10.1145/1056808.1056877
http://doi.acm.org/10.1145/1344471.1344497
http://dx.doi.org/10.1007/s10664-012-9201-4
http://dblp.uni-trier.de/db/conf/diagrams/diagrams2000.html#BlackwellJM00

161

P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and M. Khalil, “Lessons from
applying the systematic literature review process within the software engineering domain,”
Journal of systems and software, vol. 80, no. 4, pp. 571–583, 2007.
P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. Mylopoulos, “Tropos: An agent-
oriented software development methodology,” Autonomous Agents and Multi-Agent Systems,
vol. 8, no. 3, pp. 203–236, 2004.
R. E. Brooks, “Studying programmer behavior experimentally: The problems of proper
methodology,” Commun. ACM, vol. 23, no. 4, pp. 207–213, Apr. 1980. [Online]. Available:
http://doi.acm.org/10.1145/358841.358847
D. Budgen, A. J. Burn, O. P. Brereton, B. A. Kitchenham, and R. Pretorius, “Empirical
evidence about the uml: A systematic literature review,” Softw. Pract. Exper., vol. 41,
no. 4, pp. 363–392, Apr. 2011. [Online]. Available: http://dx.doi.org/10.1002/spe.1009
M. Burnett, S. Fleming, S. Iqbal, G. Venolia, V. Rajaram, U. Farooq, V. Grigoreanu, and
M. Czerwinski, “Gender differences and programming environments: Across programming
populations,” in Proceedings of the 2010 ACM-IEEE International Symposium on Empirical
Software Engineering and Measurement. ACM, 2010, pp. 1–10.
M. M. Burnett, L. Beckwith, S. Wiedenbeck, S. D. Fleming, J. Cao, T. H.
Park, V. Grigoreanu, and K. Rector, “Gender pluralism in problem-solving software,”
Interact. Comput., vol. 23, no. 5, pp. 450–460, Sep. 2011. [Online]. Available:
http://dx.doi.org/10.1016/j.intcom.2011.06.004
T. Busch, “Gender differences in self-efficacy and attitudes toward computers,” Journal of
educational computing research, vol. 12, no. 2, pp. 147–158, 1995.
T. Busjahn, C. Schulte, and A. Busjahn, “Analysis of code reading to gain more insight in
program comprehension,” in Proceedings of the 11th Koli Calling International Conference
on Computing Education Research, ser. Koli Calling ’11. New York, NY, USA: ACM,
2011, pp. 1–9. [Online]. Available: http://doi.acm.org/10.1145/2094131.2094133
T. Busjahn, R. Bednarik, and C. Schulte, “What influences dwell time during source code
reading?: Analysis of element type and frequency as factors,” in Proceedings of the Sym-
posium on Eye Tracking Research & Applications, ser. ETRA ’14. New York, NY, USA:
ACM, 2014, pp. 335–338.
N. E. Cagiltay, G. Tokdemir, O. Kilic, and D. Topalli, “Performing and analyzing
non-formal inspections of entity relationship diagram (erd),” J. Syst. Softw., vol. 86, no. 8,
pp. 2184–2195, Aug. 2013. [Online]. Available: http://dx.doi.org/10.1016/j.jss.2013.03.106
A. Calitz, M. Pretorius, and D. Greunen, “The evaluation of information visualisation
techniques using eye tracking,” 2009.

http://doi.acm.org/10.1145/358841.358847
http://dx.doi.org/10.1002/spe.1009
http://dx.doi.org/10.1016/j.intcom.2011.06.004
http://doi.acm.org/10.1145/2094131.2094133
http://dx.doi.org/10.1016/j.jss.2013.03.106

162

B. Caprile and P. Tonella, “Restructuring program identifier names,” in Proc. Int’l Conf.
Software Maintenance (ICSM). IEEE Computer Society Press, 2000.

G. Cepeda Porras and Y. Guéhéneuc, “An empirical study on the efficiency of different
design pattern representations in UML class diagrams,” Empirical Software Engineering,
vol. 15, no. 5, pp. 493–522, 2010.

G. Cepeda Porras and Y.-G. Guéhéneuc, “An empirical study on the efficiency of
different design pattern representations in uml class diagrams,” Empirical Software
Engineering, vol. 15, no. 5, pp. 493–522, Oct. 2010. [Online]. Available: http:
//dx.doi.org/10.1007/s10664-009-9125-9

B. Chiswick and P. Miller, “Linguistic distance: A quantitative measure of the distance be-
tween english and other languages,” Journal of Multilingual and Multicultural Development,
vol. 26, no. 1, pp. 1–11, 2005.

T. A. Corbi, “Program understanding: challenge for the 1990’s,” IBM Syst. J., vol. 28, pp.
294–306, June 1989. [Online]. Available: http://dx.doi.org/10.1147/sj.282.0294

F. Cristino, S. Mathot, J. Theeuwes, and I. D. Gilchrist, “Scanmatch: A novel method for
comparing fixation sequences.” Behaviour Research Method, vol. 42, pp. 692–700, 2010.

M. E. Crosby and J. Stelovsky, “How do we read algorithms? a case study,”
Computer, vol. 23, no. 1, pp. 24–35, Jan. 1990. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=77577.77580

M. E. Crosby, J. Scholtz, and S. Wiedenbeck, “The roles beacons play in comprehension
for novice and expert programmers,” in Programmers, 14th Workshop of the Psychology of
Programming Interest Group, Brunel University, 2002, pp. 18–21.

M. Czerwinski, D. S. Tan, and G. G. Robertson, “Women take a wider view,”
in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
ser. CHI ’02. New York, NY, USA: ACM, 2002, pp. 195–202. [Online]. Available:
http://doi.acm.org/10.1145/503376.503412

A. Davis, 201 principles of software development. McGraw-Hill, Inc., 1995.

B. De Smet, L. Lempereur, Z. Sharafi, Y.-G. Guéhéneuc, G. Antoniol, and N. Habra,
“Taupe: Visualizing and analyzing eye-tracking data,” Science of Computer Programming,
2012.

F. Deissenbock and M. Pizka, “Concise and consistent naming,” in Proceedings of the In-
ternational Workshop on Program Comprehension. IEEE CS Press, 2005, pp. 97 – 106.

R. Dewhurst, M. Nyström, H. Jarodzka, T. Foulsham, R. Johansson, and K. Holmqvist,
“It depends on how you look at it: Scanpath comparison in multiple dimensions with

http://dx.doi.org/10.1007/s10664-009-9125-9
http://dx.doi.org/10.1007/s10664-009-9125-9
http://dx.doi.org/10.1147/sj.282.0294
http://dl.acm.org/citation.cfm?id=77577.77580
http://dl.acm.org/citation.cfm?id=77577.77580
http://doi.acm.org/10.1145/503376.503412

163

multimatch, a vector-based approach,” Behavior research methods, vol. 44, no. 4, pp. 1079–
1100, 2012.
H. Do, S. Elbaum, and G. Rothermel, “Supporting controlled experimentation
with testing techniques: An infrastructure and its potential impact,” Empirical
Softw. Engg., vol. 10, no. 4, pp. 405–435, Oct. 2005. [Online]. Available: http:
//dx.doi.org/10.1007/s10664-005-3861-2
G. Drusch, J. C. Bastien, and S. Paris, “Analysing eye-tracking data: From scanpaths and
heatmaps to the dynamic visualisation of areas of interest,” Advances in Science, Tech-
nology, Higher Education and Society in the Conceptual Age: STHESCA, vol. 20, p. 205,
2014.
A. T. Duchowski, J. Driver, S. Jolaoso, W. Tan, B. N. Ramey, and A. Robbins, “Scanpath
comparison revisited,” in Proceedings of the 2010 Symposium on Eye-Tracking Research
& Applications, ser. ETRA ’10. New York, NY, USA: ACM, 2010, pp. 219–226.
[Online]. Available: http://doi.acm.org/10.1145/1743666.1743719
A. Duchowski, Eye tracking methodology: Theory and practice. Springer-Verlag New York
Inc, 2007.
H. A. Duru, M. P. Çakır, and V. İşler, “How does software visualization contribute to
software comprehension? a grounded theory approach,” International Journal of Human-
Computer Interaction, vol. 29, no. 11, pp. 743–763, 2013.
S. Easterbrook, “Empirical research methods for software engineering,” in Proceedings
of the Twenty-second IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE ’07. New York, NY, USA: ACM, 2007, pp. 574–574. [Online].
Available: http://doi.acm.org/10.1145/1321631.1321749
R. J. Erich Gamma, Richard Helm and J. Vlissides, Design Patterns Elements of Reusable
Object-Oriented Software. Addison-Wesley Pub Co, 1995.
B. Erol, K. Berkner, and S. Joshi, “Multimedia thumbnails for documents,” in Proceedings
of the 14th annual ACM international conference on Multimedia, ser. MULTIMEDIA ’06.
New York, NY, USA: ACM, 2006, pp. 231–240.
A. Eteläpelto, “Metacognition and the expertise of computer program comprehension,”
Scandinavian Journal of Educational Research, vol. 37, no. 3, pp. 243–254, 1993.
Q. Fan, “The effects of beacons, comments, and tasks on program comprehension process
in software maintenance,” Ph.D. dissertation, Catonsville, MD, USA, 2010, aAI3422807.
B. C. O. F. Fehringer, “Eye tracking gaze visualiser: Eye tracker and experimental software
independent visualisation of gaze data,” in Proceedings of the Symposium on Eye Tracking
Research & Applications, ser. ETRA ’14. New York, NY, USA: ACM, 2014, pp. 259–262.

http://dx.doi.org/10.1007/s10664-005-3861-2
http://dx.doi.org/10.1007/s10664-005-3861-2
http://doi.acm.org/10.1145/1743666.1743719
http://doi.acm.org/10.1145/1321631.1321749

164

E. Fennema, T. P. Carpenter, V. R. Jacobs, M. L. Franke, and L. W. Levi, “A longitu-
dinal study of gender differences in young children’s mathematical thinking,” Educational
researcher, pp. 6–11, 1998.

H. Fisher, Anatomy of Love: A Natural History of Mating, Marriage, and Why We Stray.
The random house publishing group, 1994.

M. Fisher, A. Cox, and L. Zhao, “Using sex differences to link spatial cognition and program
comprehension,” in IEEE 22nd International Conference on Software Maintenance. IEEE
Computer Society, 2006, pp. 289–298.

T. Fritz, A. Begel, S. C. Müller, S. Yigit-Elliott, and M. Züger, “Using psycho-physiological
measures to assess task difficulty in software development,” in Proceedings of the 36th Inter-
national Conference on Software Engineering, ser. ICSE ’14. New York, NY, USA: ACM,
2014, pp. 402–413.

A. M. Gallagher and R. De Lisi, “Gender differences in scholastic aptitude test: Mathematics
problem solving among high-ability students.” Journal of Educational Psychology, vol. 86,
no. 2, p. 204, 1994.

E. Gamma, “Applying design patterns in java,” 1996, pp. 47–53.

J. H. Goldberg and X. P. Kotval, “Computer interface evaluation using eye movements:
methods and constructs,” International Journal of Industrial Ergonomics, vol. 24, no. 6,
pp. 631–645, 1999.

J. H. Goldberg and J. I. Helfman, “Comparing information graphics: A critical look at eye
tracking,” in Proceedings of the 3rd Workshop: BEyond Time and Errors: Novel evaLuation
Methods for Information Visualization, ser. BELIV ’10. New York, NY, USA: ACM, 2010,
pp. 71–78.

J. H. Goldberg and A. M. Wichansky, “Eye tracking in usability evaluation: A practitioner’s
guide,” To appear in: Hyönä R. Radach, H. Deubel (Eds.), The mind’s eye: Cognitive and
applied aspects of eye movement research, 2003.

J. H. Goldberg, M. J. Stimson, M. Lewenstein, N. Scott, and A. M. Wichansky, “Eye
tracking in web search tasks: Design implications,” in Proceedings of the 2002 Symposium
on Eye Tracking Research & Applications, ser. ETRA ’02. New York, NY, USA: ACM,
2002, pp. 51–58.

V. Grigoreanu, J. Brundage, E. Bahna, M. Burnett, P. ElRif, and J. Snover, “Males and
females script debugging strategies,” End-User Development, pp. 205–224, 2009.

V. Grigoreanu, J. Cao, T. Kulesza, C. Bogart, K. Rector, M. Burnett, and S. Wiedenbeck,
“Can feature design reduce the gender gap in end-user software development environments?”

165

in Proceedings of the 2008 IEEE Symposium on Visual Languages and Human-Centric
Computing, ser. VLHCC ’08. Washington, DC, USA: IEEE Computer Society, 2008, pp.
149–156. [Online]. Available: http://dx.doi.org/10.1109/VLHCC.2008.4639077

Y.-G. Guéhéneuc, “Taupe: Towards understanding program comprehension,” in
Proceedings of the 2006 Conference of the Center for Advanced Studies on Collaborative
Research, ser. CASCON ’06. Riverton, NJ, USA: IBM Corp., 2006. [Online]. Available:
http://dx.doi.org/10.1145/1188966.1188968

Y.-G. Guéhéneuc, H. Kagdi, and J. Maletic, “Working session: Using eye-tracking to under-
stand program comprehension,” in Program Comprehension, 2009. ICPC ’09. IEEE 17th
International Conference on, May 2009, pp. 278–279.

M. Harris, The cannibals and the kings: Origins of Cultures. Vintage book edition, 1991.

S. Hart and L. Staveland, “Development of nasa-tlx (task load index): Results of empirical
and theoretical research,” Human mental workload, vol. 1, pp. 139–183, 1988.

L. Hart-Gonzalez and S. Lindemann, “Expected achievement in speaking proficiency,”
School of Language Studies, Foreign Services Institute, Department of State, Tech. Rep.,
1993.

K. Hartzel, “How self-efficacy and gender issues affect software adoption and use,” Commu-
nications of the ACM, vol. 46, no. 9, pp. 167–171, 2003.

W. Heijstek, T. Kuhne, and M. R. V. Chaudron, “Experimental analysis of textual
and graphical representations for software architecture design,” in Proceedings of the
2011 International Symposium on Empirical Software Engineering and Measurement, ser.
ESEM ’11. Washington, DC, USA: IEEE Computer Society, 2011, pp. 167–176. [Online].
Available: http://dx.doi.org/10.1109/ESEM.2011.25

P. Hejmady and N. H. Narayanan, “Visual attention patterns during program
debugging with an ide.” in Proceedings of the 2012 Symposium on Eye Tracking
Research &Amp; Applications, C. H. Morimoto, H. O. Istance, S. N. Spencer, J. B.
Mulligan, and P. Qvarfordt, Eds. ACM, 2012, pp. 197–200. [Online]. Available:
http://dblp.uni-trier.de/db/conf/etra/etra2012.html#HejmadyN12

H. Hembrooke, B. Pan, T. Joachims, G. Gay, and L. Granka, “In google we trust: Users ’
decisions on rank, position and relevancy,” 2005.

J. M. Henderson and G. L. Pierce, “Eye movements during scene viewing: Evidence for
mixed control of fixation durations,” Psychonomic Bulletin & Review, vol. 15, no. 3, pp.
566–573, 2008.

D. W. Hosmer Jr and S. Lemeshow, Applied logistic regression. John Wiley & Sons, 2004.

http://dx.doi.org/10.1109/VLHCC.2008.4639077
http://dx.doi.org/10.1145/1188966.1188968
http://dx.doi.org/10.1109/ESEM.2011.25
http://dblp.uni-trier.de/db/conf/etra/etra2012.html#HejmadyN12

166

R. J. Jacob and K. S. Karn, “Eye tracking in human-computer interaction and usability
research: Ready to deliver the promises.” The Mind’s Eye: Cognitive and Applied Aspects
of Eye Movement Research, vol. 2, no. 3, p. 4, 2003.

A. R. Jansen, A. F. Blackwell, and K. Marriott, “A tool for tracking visual attention: The
restricted focus viewer,” Behavior research methods, instruments, & computers, vol. 35,
no. 1, pp. 57–69, 2003.

S. Jeanmart, Y.-G. Guéhéneuc, H. A. Sahraoui, and N. Habra, “Impact of the visitor
pattern on program comprehension and maintenance.” in Proceedings of 3rd International
Symposium on Empirical Software Engineering and Measurement, 2009, pp. 69–78. [Online].
Available: http://dblp.uni-trier.de/db/conf/esem/esem2009.html#JeanmartGSH09

A. Jedlitschka and D. Pfahl, “Reporting guidelines for controlled experiments in software
engineering,” in Proceedings of the 2005 International Symposium on Empirical Software
Engineering, Nov 2005, pp. 10 pp.–.

P. Jermann and M.-A. Nüssli, “Effects of sharing text selections on gaze cross-recurrence
and interaction quality in a pair programming task.” in CSCW, S. E. Poltrock, C. Simone,
J. Grudin, G. Mark, and J. Riedl, Eds. ACM, 2012, pp. 1125–1134. [Online]. Available:
http://dblp.uni-trier.de/db/conf/cscw/cscw2012c.html#NussliJ12

D. Jing, Y. Sheng, and Z. Kang, “Visualizing design patterns in their applications and
compositions,” IEEE Transactions on Software Engineering, vol. 33, no. 7, pp. 433–453,
2007.

D. M. Jones, 2003, the New C Standard (Identifiers) An Economic and Cultural Commen-
tary.

M. A. Just and P. A. Carpenter, “A theory of reading: from eye fixations to comprehension.”
Psychological review, vol. 87, no. 4, p. 329, 1980.

——, “Eye fixations and cognitive processes,” Cognitive Psychology, vol. 8, no. 4, pp. 441–
480, 1976.

J. N. Kara Pernice, “Eyetracking methodology: How to conduct and evaluate usability stud-
ies using eyetracking,” http://www.useit.com/eyetracking/methodology, August 2009.

B. Kitchenham, “Empirical paradigm - the role of experiments,” in Proceedings of the 2006
International Conference on Empirical Software Engineering Issues: Critical Assessment
and Future Directions. Berlin, Heidelberg: Springer-Verlag, 2007, pp. 25–32.

——, “Procedures for undertaking systematic reviews,” Joint Technical Report, Computer
Science Department, Keele University (TR/SE- 0401) and National ICT Australia Ltd,
Tech. Rep., 2004.

http://dblp.uni-trier.de/db/conf/esem/esem2009.html#JeanmartGSH09
http://dblp.uni-trier.de/db/conf/cscw/cscw2012c.html#NussliJ12

167

B. Kitchenham, O. Pearl Brereton, D. Budgen, M. Turner, J. Bailey, and S. Linkman,
“Systematic literature reviews in software engineering - a systematic literature review,”
Inf. Softw. Technol., vol. 51, no. 1, pp. 7–15, Jan. 2009. [Online]. Available:
http://dx.doi.org/10.1016/j.infsof.2008.09.009
B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones, D. C. Hoaglin, K. E. Emam,
and J. Rosenberg, “Preliminary guidelines for empirical research in software engineering,”
IEEE Trans. Softw. Eng., vol. 28, no. 8, pp. 721–734, Aug. 2002.
B. A. Kitchenham, T. Dyba, and M. Jorgensen, “Evidence-based software engineering,” in
Proceedings of the 26th International Conference on Software Engineering, ser. ICSE ’04.
Washington, DC, USA: IEEE Computer Society, 2004, pp. 273–281. [Online]. Available:
http://dl.acm.org/citation.cfm?id=998675.999432
B. A. Kitchenham, D. Budgen, and P. Brereton, “The value of mapping studies: a partici-
pantobserver case study,” in Proceedings of the 14th international conference on Evaluation
and Assessment in Software Engineering. British Computer Society, 2010, pp. 25–33.
G. Kowalski, Information retrieval architecture and algorithms. Springer-Verlag New York
Inc, 2010.
J. Krogstie, G. Sindre, and H. Jørgensen, “Process models representing knowledge for
action: A revised quality framework,” Eur. J. Inf. Syst., vol. 15, no. 1, pp. 91–102, Feb.
2006. [Online]. Available: http://dx.doi.org/10.1057/palgrave.ejis.3000598
A. Lakhotia, “Understanding someone else’s code: Analysis of experiences,” J.
Syst. Softw., vol. 23, no. 3, pp. 269–275, Dec. 1993. [Online]. Available: http:
//dx.doi.org/10.1016/0164-1212(93)90101-3
C. Lankford, “Gazetracker: Software designed to facilitate eye movement analysis,” in Pro-
ceedings of the 2000 Symposium on Eye Tracking Research & Applications, ser. ETRA ’00.
New York, NY, USA: ACM, 2000, pp. 51–55.
T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining mental models: a study of developer
work habits,” in Proceedings of the 28th international conference on Software engineering.
ACM, 2006, pp. 492–501.
P. Laurent, P. Mader, J. Cleland-Huang, and A. Steele, “A taxonomy and visual notation
for modeling globally distributed requirements engineering projects,” in Global Software
Engineering (ICGSE), 2010 5th IEEE International Conference on. IEEE, 2010, pp. 35–
44.
M. Lavallée, P. N. Robillard, and R. Mirsalari, “Performing systematic literature reviews
with novices: An iterative approach,” IEEE Trans. Education, vol. 57, no. 3, pp. 175–181,
2014. [Online]. Available: http://dx.doi.org/10.1109/TE.2013.2292570

http://dx.doi.org/10.1016/j.infsof.2008.09.009
http://dl.acm.org/citation.cfm?id=998675.999432
http://dx.doi.org/10.1057/palgrave.ejis.3000598
http://dx.doi.org/10.1016/0164-1212(93)90101-3
http://dx.doi.org/10.1016/0164-1212(93)90101-3
http://dx.doi.org/10.1109/TE.2013.2292570

168

D. Lawrie, C. Morrell, H. Feild, and D. Binkley, “Effective identifier names for compre-
hension and memory,” Innovations in Systems and Software Engineering, vol. 3, no. 4, pp.
303–318, 2007.

C. A. Lawton, “Gender differences in way-finding strategies: Relationship to spatial ability
and spatial anxiety,” Sex roles, vol. 30, no. 11-12, pp. 765–779, 1994.

M. M. Lehman, “Laws of software evolution revisited,” in Software process technology.
Springer, 1996, pp. 108–124.

V. Levenshtein, “Binary Codes Capable of Correcting Deletions, Insertions and Reversals,”
Soviet Physics Doklady, vol. 10, p. 707, 1966.

B. Lientz and E. Swanson, Software maintenance management. Addison-Wesley Longman
Publishing Co., Inc. Boston, MA, USA, 1980.

D. C. Littman, J. Pinto, S. Letovsky, and E. Soloway, “Mental models and software
maintenance,” J. Syst. Softw., vol. 7, no. 4, pp. 341–355, Dec. 1987. [Online]. Available:
http://dx.doi.org/10.1016/0164-1212(87)90033-1

S. Ljungblad and L. E. Holmquist, “Transfer scenarios: grounding innovation with marginal
practices.” in CHI, M. B. Rosson and D. J. Gilmore, Eds. ACM, 2007, pp. 737–746.
[Online]. Available: http://dblp.uni-trier.de/db/conf/chi/chi2007.html#LjungbladH07

L. Lorigo, B. Pan, H. Hembrooke, T. Joachims, L. Granka, and G. Gay, “The
influence of task and gender on search and evaluation behavior using google,” Inf.
Process. Manage., vol. 42, no. 4, pp. 1123–1131, Jul. 2006. [Online]. Available:
http://dx.doi.org/10.1016/j.ipm.2005.10.001

J. Margolis and A. Fisher, Unlocking the clubhouse: Women in computing. MIT press,
2003.

C. McDowell, L. Werner, H. E. Bullock, and J. Fernald, “The impact of pair
programming on student performance, perception and persistence,” in Proceedings
of the 25th International Conference on Software Engineering, ser. ICSE ’03.
Washington, DC, USA: IEEE Computer Society, 2003, pp. 602–607. [Online]. Available:
http://dl.acm.org/citation.cfm?id=776816.776899

J. Meyers-Levy, Gender Differences in Information Processing: A SelectivityInterpretation.
P. Cafferata and A. Tybout, (Eds) Cognitive and Affective Responses to Advertising. Lex-
ington Books, 1989.

D. L. Moody, “The physics of notations: Toward a scientific basis for constructing visual
notations in software engineering,” IEEE Transactions on Software Engineering, vol. 35,
no. 6, pp. 756–779, 2009.

http://dx.doi.org/10.1016/0164-1212(87)90033-1
http://dblp.uni-trier.de/db/conf/chi/chi2007.html#LjungbladH07
http://dx.doi.org/10.1016/j.ipm.2005.10.001
http://dl.acm.org/citation.cfm?id=776816.776899

169

R. Navarro-Prieto and J. J. Cañas, “Are visual programming languages better? the role of
imagery in program comprehension,” International Journal of Human-Computer Studies,
vol. 54, no. 6, pp. 799–829, 2001.

E. O’Donnell and E. Johnson, “The effects of auditor gender and task complexity on infor-
mation processing efficiency,” International Journal of Auditing, vol. 5, no. 2, pp. 91–105,
2001.

O. M. G. OMG Group, “Object constraint language,” Needham, MA, Tech. Rep., February
2014.

T. Ormerod, “Human cognition and programming,” Hoc et al, vol. 307, pp. 63–82, 1990.

A. Ottensooser, A. Fekete, H. A. Reijers, J. Mendling, and C. Menictas, “Making sense of
business process descriptions: An experimental comparison of graphical and textual nota-
tions,” Journal of Systems and Software, vol. 85, no. 3, pp. 596–606, Mar. 2012.

B. Pan, H. Hembrooke, T. Joachims, L. Lorigo, G. Gay, and L. Granka, “In google we
trust Users’ decisions on rank, position, and relevance,” Journal of Computer-Mediated
Communication, vol. 12, no. 3, pp. 801–823, 2007.

M. Petre, “Why looking isn’t always seeing: Readership skills and graphical
programming,” Commun. ACM, vol. 38, no. 6, pp. 33–44, Jun. 1995. [Online]. Available:
http://doi.acm.org/10.1145/203241.203251

R. Petrusel and J. Mendling, “Eye-tracking the factors of process model comprehension
tasks.” in CAiSE, ser. Lecture Notes in Computer Science, C. Salinesi, M. C. Norrie,
and O. Pastor, Eds., vol. 7908. Springer, 2013, pp. 224–239. [Online]. Available:
http://dblp.uni-trier.de/db/conf/caise/caise2013.html#PetruselM13

V. Ponsoda, D. Scott, and J. M. Findlay, “A probability vector and transition matrix
analysis of eye movements during visual search,” Acta psychologica, vol. 88, no. 2, pp. 167–
185, 1995.

A. Poole and L. J. Ball, “Eye tracking in human-computer interaction and usability research:
Current status and future,” in Prospects”, Chapter in C. Ghaoui (Ed.): Encyclopedia of
Human-Computer Interaction. Pennsylvania: Idea Group, Inc, 2005.

M. Powell and D. Ansic, “Gender differences in risk behaviour in financial decision-making:
An experimental analysis,” Journal of economic psychology, vol. 18, no. 6, pp. 605–628,
1997.

R. S. Pressman, Software Engineering: A Practitioner’s Approach, 5th ed. McGraw-Hill
Higher Education, 2001.

http://doi.acm.org/10.1145/203241.203251
http://dblp.uni-trier.de/db/conf/caise/caise2013.html#PetruselM13

170

C. M. Privitera and L. W. Stark, “Algorithms for defining visual regions-of-interest: Com-
parison with eye fixations,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 22, pp. 970–982, 2000.

K. Rayner, “Eye movements in reading and information processing: 20 years of research.”
Psychological bulletin, vol. 124, no. 3, p. 372, 1998.

——, “Eye movements in reading and information processing,” Psychological Bulletin,
vol. 85, no. 3, pp. 618–660, 1978.

P. Rodeghero, C. McMillan, P. W. McBurney, N. Bosch, and S. D’Mello, “Improving
automated source code summarization via an eye-tracking study of programmers,”
in Proceedings of the 36th International Conference on Software Engineering, ser.
ICSE 2014. New York, NY, USA: ACM, 2014, pp. 390–401. [Online]. Available:
http://doi.acm.org/10.1145/2568225.2568247

——, “Improving automated source code summarization via an eye-tracking study of pro-
grammers,” in Proceedings of the 36th International Conference on Software Engineering,
ser. ICSE ’14. New York, NY, USA: ACM, 2014, pp. 390–401.

T. Roehm, R. Tiarks, R. Koschke, and W. Maalej, “How do professional developers
comprehend software?” in Proceedings of the 34th International Conference on Software
Engineering, ser. ICSE ’12. Piscataway, NJ, USA: IEEE Press, 2012, pp. 255–265.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2337223.2337254

——, “How do professional developers comprehend software?” in Proceedings
of the 34th International Conference on Software Engineering, ser. ICSE ’12.
Piscataway, NJ, USA: IEEE Press, 2012, pp. 255–265. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2337223.2337254

P. Romero, R. Cox, B. du Boulay, and R. Lutz, “Visual attention and representation switch-
ing during java program debugging: A study using the restricted focus viewer,” in Diagram-
matic Representation and Inference. Springer, 2002, pp. 221–235.

P. Romero, R. Lutz, R. Cox, and B. du Boulay, “Co-ordination of multiple external repre-
sentations during java program debugging,” in Human Centric Computing Languages and
Environments, 2002. Proceedings. IEEE 2002 Symposia on. IEEE, 2002, pp. 207–214.

P. Romero, B. du Boulay, R. Cox, and R. Lutz, “Java debugging strategies in multi-
representational environments,” in 15th Workshop of Psychology of Programming Interest
Group, 2003, pp. 421–434.

D. L. Sackett, S. E. Straus, W. S. Richardson, W. Rosenberg, and R. B. Haynes, Evidence-
Based Medicine: How to Practice and Teach EBM, 2nd ed. Churchill Livingstone, 2000.

http://doi.acm.org/10.1145/2568225.2568247
http://dl.acm.org/citation.cfm?id=2337223.2337254
http://dl.acm.org/citation.cfm?id=2337223.2337254
http://dl.acm.org/citation.cfm?id=2337223.2337254

171

J. Sajaniemi, “Comparison of three eye tracking devices in psychology of programming
research.” in Proceedings of the 16th Annual Psychology of Programming Interest Group
Workshop, ser. PPIG ’04, 2004, pp. 151–158.

R. Schauer and R. K. Keller, “Pattern visualization for software comprehension,” in IN 6TH
INTERNATIONAL WORKSHOP ON PROGRAM COMPREHENSION, 1998, pp. 4–12.

Seeing Machine, “Seeing Machine’s website - FaceLAB,” http://www.seeingmachines.com/
product/facelab/, 2010, accessed April 16th in 2014.

Z. Sharafi, Z. Soh, Y.-G. Guéhéneuc, and G. Antoniol, “Women and men -
different but equal: On the impact of identifier style on source code reading.” in
Proceedings of 20th International Conference on Program Comprehension, D. Beyer,
A. van Deursen, and M. W. Godfrey, Eds., 2012, pp. 27–36. [Online]. Available:
http://dblp.uni-trier.de/db/conf/iwpc/icpc2012.html#SharafiSGA12

Z. Sharafi, A. Marchetto, A. Susi, G. Antoniol, and Y.-G. Guéhéneuc, “An empirical study
on the efficiency of graphical vs. textual representations in requirements comprehension.”
in Proceedings of 20th International Conference on Program Comprehension, 2013,
pp. 33–42. [Online]. Available: http://dblp.uni-trier.de/db/conf/iwpc/icpc2013.html#
SharafiMSAG13

B. Sharif and J. Maletic, “An eye tracking study on camelcase and under_score identifier
styles,” in IEEE 18th International Conference on Program Comprehension (ICPC). IEEE,
2010, pp. 196–205.

B. Sharif, “Empirical assessment of uml class diagram layouts based on architectural
importance,” in Proceedings of the 27th IEEE International Conference on Software
Maintenance, ser. ICSM ’11. Washington, DC, USA: IEEE Computer Society, 2011, pp.
544–549. [Online]. Available: http://dx.doi.org/10.1109/ICSM.2011.6080828

B. Sharif and H. Kagdi, “On the use of eye tracking in software traceability,” in
Proceedings of the 6th International Workshop on Traceability in Emerging Forms of
Software Engineering, ser. TEFSE ’11. New York, NY, USA: ACM, 2011, pp. 67–70.
[Online]. Available: http://doi.acm.org/10.1145/1987856.1987872

B. Sharif and J. I. Maletic, “An eye tracking study on the effects of layout in understanding
the role of design patterns.” in Proceedings of the 26th IEEE International Conference
on Software Maintenance. IEEE Computer Society, 2010, pp. 1–10. [Online]. Available:
http://dblp.uni-trier.de/db/conf/icsm/icsm2010.html#SharifM10

——, “An eye tracking study on camelcase and under_score identifier styles.” in Proceedings
of 18th International Conference on Program Comprehension. IEEE Computer Society,

http://www.seeingmachines.com/product/facelab/
http://www.seeingmachines.com/product/facelab/
http://dblp.uni-trier.de/db/conf/iwpc/icpc2012.html#SharafiSGA12
http://dblp.uni-trier.de/db/conf/iwpc/icpc2013.html#SharafiMSAG13
http://dblp.uni-trier.de/db/conf/iwpc/icpc2013.html#SharafiMSAG13
http://dx.doi.org/10.1109/ICSM.2011.6080828
http://doi.acm.org/10.1145/1987856.1987872
http://dblp.uni-trier.de/db/conf/icsm/icsm2010.html#SharifM10

172

2010, pp. 196–205. [Online]. Available: http://dblp.uni-trier.de/db/conf/iwpc/icpc2010.
html#SharifM10
B. Sharif, M. Falcone, and J. I. Maletic, “An eye-tracking study on the role of scan time
in finding source code defects,” in Proceedings of the Symposium on Eye Tracking Research
and Applications, ser. ETRA ’12. New York, NY, USA: ACM, 2012, pp. 381–384.
——, “An eye-tracking study on the role of scan time in finding source code defects,”
in Proceedings of the Symposium on Eye Tracking Research and Applications, ser.
ETRA ’12. New York, NY, USA: ACM, 2012, pp. 381–384. [Online]. Available:
http://doi.acm.org/10.1145/2168556.2168642
B. Sharif, G. Jetty, J. Aponte, and E. Parra, “An empirical study assessing the effect
of seeit 3d on comprehension.” in VISSOFT, A. Telea, A. Kerren, and A. Marcus,
Eds. IEEE, 2013, pp. 1–10. [Online]. Available: http://dblp.uni-trier.de/db/conf/vissoft/
vissoft2013.html#SharifJAP13
K. Sharma, P. Jermann, M.-A. Nüssli, and P. Dillenbourg, “Understanding collaborative
program comprehension: Interlacing gaze and dialogues,” in Computer Supported Collabo-
rative Learning (CSCL 2013), no. EPFL-CONF-184007, 2013.
K. Siau, “Informational and computational equivalence in comparing information modeling
methods,” Journal of Database Management (JDM), vol. 15, no. 1, pp. 73–86, 2004.
J. L. Sibert, M. Gokturk, and R. A. Lavine, “The reading assistant: Eye gaze triggered
auditory prompting for reading remediation,” in Proceedings of the 13th Annual ACM Sym-
posium on User Interface Software and Technology, ser. UIST ’00. New York, NY, USA:
ACM, 2000, pp. 101–107.
J. Siegmund, C. Kästner, S. Apel, C. Parnin, A. Bethmann, T. Leich, G. Saake, and
A. Brechmann, “Understanding understanding source code with functional magnetic res-
onance imaging,” in Proceedings of the 36th International Conference on Software Engi-
neering. ACM, 2014, pp. 378–389.
S. E. Sim, S. Ratanotayanon, and L. Cotran, “Structure transition graphs: An ecg for
program comprehension?” in ICPC. IEEE Computer Society, 2009, pp. 303–304.
D. I. Sjøberg, J. E. Hannay, O. Hansen, V. B. Kampenes, A. Karahasanovic, N.-K. Liborg,
and A. C. Rekdal, “A survey of controlled experiments in software engineering,” Software
Engineering, IEEE Transactions on, vol. 31, no. 9, pp. 733–753, 2005.
C. F. Snook and R. Harrison, “Experimental comparison of the comprehensibility of a
uml-based formal specification versus a textual one,” in Proceedings of 11 th International
Conference on Evaluation and Assessment in Software Engineering (EASE, 2007, pp. 955–
971.

http://dblp.uni-trier.de/db/conf/iwpc/icpc2010.html#SharifM10
http://dblp.uni-trier.de/db/conf/iwpc/icpc2010.html#SharifM10
http://doi.acm.org/10.1145/2168556.2168642
http://dblp.uni-trier.de/db/conf/vissoft/vissoft2013.html#SharifJAP13
http://dblp.uni-trier.de/db/conf/vissoft/vissoft2013.html#SharifJAP13

173

Z. Soh, Z. Sharafi, B. V. den Plas, G. C. Porras, Y.-G. Guéhéneuc, and G. Antoniol,
“Professional status and expertise for uml class diagram comprehension: An empirical
study.” in Proceedings of 20th International Conference on Program Comprehension,
D. Beyer, A. van Deursen, and M. W. Godfrey, Eds., 2012, pp. 163–172. [Online]. Available:
http://dblp.uni-trier.de/db/conf/iwpc/icpc2012.html#SohSPPGA12
J. Somervell, C. M. Chewar, and D. S. Mccrickard, “Evaluating graphical vs. textual sec-
ondary displays for information notification,” in Proceedings of the ACM Southeast Confer-
ence, Raleigh NC, 2002, pp. 153–160.
SR Research Ltd, EyeLink II User Manual version (07/02/2006), SR Research Ltd., Febru-
ari 2006.
R. Stein, “Another person’s eye gaze as a cue in solving programming problems,” in Pro-
ceedings of the 6th International Conference on Multimodal Interface. ACM Press, 2004,
pp. 9–15.
M.-A. Storey, “Theories, methods and tools in program comprehension: Past, present and
future,” iwpc, vol. 00, pp. 181–191, 2005.
N. Subrahmaniyan, L. Beckwith, V. Grigoreanu, M. Burnett, S. Wiedenbeck, V. Narayanan,
K. Bucht, R. Drummond, and X. Fern, “Testing vs. code inspection vs. what else?: Male
and female end users’ debugging strategies,” in Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, ser. CHI ’08. New York, NY, USA: ACM, 2008,
pp. 617–626. [Online]. Available: http://doi.acm.org/10.1145/1357054.1357153
Y.-h. Sun, P.-L. He, and Z.-G. Chen, “An improved term weighting scheme for vector space
model,” in Machine Learning and Cybernetics, 2004. Proceedings of 2004 International
Conference on, vol. 3. IEEE, 2004, pp. 1692–1695.
R. Team et al., “R: A language and environment for statistical computing,” R Foundation
for Statistical Computing, no. 01/19, 2010.
T. I. TIOBE Software, “http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html,”
2014.
G. Torkzadeh and X. Koufteros, “Factorial validity of a computer self-efficacy scale and the
impact of computer training,” Educational and Psychological Measurement, vol. 54, no. 3,
pp. 813–821, 1994.
M. Turner, B. Kitchenham, D. Budgen, and P. Brereton, “Lessons learnt undertaking
a large-scale systematic literature review,” in Proceedings of the 12th International
Conference on Evaluation and Assessment in Software Engineering, ser. EASE’08.
Swinton, UK, UK: British Computer Society, 2008, pp. 110–118. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2227115.2227127

http://dblp.uni-trier.de/db/conf/iwpc/icpc2012.html#SohSPPGA12
http://doi.acm.org/10.1145/1357054.1357153
http://dl.acm.org/citation.cfm?id=2227115.2227127

174

R. Turner, M. Falcone, B. Sharif, and A. Lazar, “An eye-tracking study assessing the com-
prehension of C++ and Python source code,” in Proceedings of the Symposium on Eye
Tracking Research & Applications, ser. ETRA ’14. New York, NY, USA: ACM, 2014, pp.
231–234.
H. Uwano, M. Nakamura, A. Monden, and K. ichi Matsumoto, “Analyzing individual
performance of source code review using reviewers’ eye movement.” in Proceedings
of the 2006 Symposium on Eye Tracking Research &Amp; Applications, K.-J.
Räihä and A. T. Duchowski, Eds. ACM, 2006, pp. 133–140. [Online]. Available:
http://dblp.uni-trier.de/db/conf/etra/etra2006.html#UwanoNMM06
H. Uwano, M. Nakamura, A. Monden, and K.-i. Matsumoto, “Analyzing individual perfor-
mance of source code review using reviewers’ eye movement,” in Proceedings of the 2006
symposium on Eye tracking research & applications, ser. ETRA ’06. New York, NY, USA:
ACM, 2006, pp. 133–140.
W. N. Venables and B. D. Ripley, Modern applied statistics with S-PLUS. Springer, 2002.
A. Walenstein, “Observing and measuring cognitive support: Steps toward systematic tool
evaluation and engineering,” in Proceedings of the 11th IEEE International Workshop on
Program Comprehension, ser. IWPC ’03. Washington, DC, USA: IEEE Computer Society,
2003, pp. 185–. [Online]. Available: http://dl.acm.org/citation.cfm?id=851042.857038
——, “Cognitive Support in Software Engineering Tools: A Distributed Cognition
Framework,” Ph.D. dissertation, Simon Fraser University, Canada, 2002. [Online].
Available: http://citeseer.ist.psu.edu/534908.html
B. Walters, M. Falcone, A. Shibble, and B. Sharif, “Towards an eye-tracking enabled IDE
for software traceability tasks,” in Proceeding of International Workshop on Traceability in
Emerging Forms of Software Engineering, ser. TEFSE ’13, May 2013, pp. 51–54.
B. Walters, T. Shaffer, B. Sharif, and H. Kagdi, “Capturing software traceability links from
developers’ eye gazes,” in Proceedings of the 22nd International Conference on Program
Comprehension, ser. ICPC ’14. New York, NY, USA: ACM, 2014, pp. 201–204.
G. M. Weinberg and E. L. Schulman, “Goals and performance in computer programming,”
Human Factors: The Journal of the Human Factors and Ergonomics Society, vol. 16, no. 1,
pp. 70–77, 1974.
C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén, Experimen-
tation in Software Engineering: An Introduction. Norwell, MA, USA: Kluwer Academic
Publishers, 2000.
S. Yusuf, H. Kagdi, and J. I. Maletic, “Assessing the comprehension of uml class diagrams
via eye tracking,” in Proceedings of the 15th IEEE International Conference on Program

http://dblp.uni-trier.de/db/conf/etra/etra2006.html#UwanoNMM06
http://dl.acm.org/citation.cfm?id=851042.857038
http://citeseer.ist.psu.edu/534908.html

175

Comprehension, ser. ICPC ’07. Washington, DC, USA: IEEE Computer Society, 2007,
pp. 113–122. [Online]. Available: http://dx.doi.org/10.1109/ICPC.2007.10

H. Zhang, M. A. Babar, and P. Tell, “Identifying relevant studies in software engineering,”
Information and Software Technology, vol. 53, no. 6, pp. 625–637, 2011.

http://dx.doi.org/10.1109/ICPC.2007.10

	DEDICATION
	ACKNOWLEDGEMENTS
	RÉSUMÉ
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ACRONYMS AND ABBREVIATIONS
	1 INTRODUCTION
	1.1 Research Context and Problem Statement
	1.2 Thesis Statement
	1.3 Contributions
	1.3.1 Mapping Study on the Usage of Eye-tracking Technique in Software Engineering
	1.3.2 Impact of Representation Type on Program Comprehension
	1.3.3 Impact of Gender on Program Comprehension

	1.4 Organization of the Dissertation

	2 BACKGROUND
	2.1 Eye-tracking Technique
	2.1.1 Assumptions
	2.1.2 Devices
	2.1.3 Tools
	2.1.4 Metrics

	2.2 Experiment Process
	2.2.1 Definition
	2.2.2 Planning
	2.2.3 Operation
	2.2.4 Analysis and Interpretation
	2.2.5 Presentation and Packaging

	3 MAPPING STUDY ON THE USE OF EYE-TRACKING TECHNIQUES IN SOFTWARE ENGINEERING
	3.1 Introduction
	3.2 Related Work
	3.3 Study Design
	3.3.1 Research Questions
	3.3.2 Search Process
	3.3.3 Selection Process
	3.3.4 Inclusion and Exclusion Criteria
	3.3.5 Data Collection

	3.4 Study Results
	3.4.1 RQ3.1: How Many Articles Have Reported on the Use of Eye-tracking Techniques in Software Engineering Research Since 1990?
	3.4.2 RQ3.2: Which Research Topics Have Been Explored and Examined in Eye-tracking Studies?
	3.4.3 RQ3.3: How Much Have Eye-tracking Studies Contributed to Software Engineering?
	3.4.4 RQ3.4: How Have Researchers Used Eye-trackers to Collect Quantitative Measurement?
	3.4.5 RQ3.5: What Are the Limitations of Current Research?
	3.4.6 RQ3.6: Which Eye-trackers Are Most Frequently Used in Software Engineering Research?

	3.5 Threats to Validity
	3.6 Discussions and Conclusion

	4 IMPACT OF REPRESENTATION TYPE ON PROGRAM COMPREHENSION
	4.1 Introduction
	4.2 Related Work
	4.3 Study Design
	4.3.1 Research Questions
	4.3.2 Research Hypotheses
	4.3.3 Data Collection
	4.3.4 Task
	4.3.5 Material
	4.3.6 Study Variables
	4.3.7 Participants' Demographics
	4.3.8 Procedure

	4.4 Study Results
	4.4.1 RQ4.1: Does the Type of Representations Impact Developers' Effort, Task Time, and Accuracy in Comprehension Tasks?
	4.4.2 RQ4.2: Does the Structure of the Representations Lead Developers to Use Specific Task-solving Strategies (Top-down vs. Bottom-up) During Comprehension Tasks?
	4.4.3 RQ4.3: Given a Graphical and Textual Representations of a Comprehension Task, Is There any Preferred Representation by the Participants?
	4.4.4 Impact of the Mitigating Variables

	4.5 Threats to Validity
	4.6 Discussions and Conclusion

	5 IMPACT OF GENDER ON PROGRAM COMPREHENSION ON IDENTIFIER RECALL
	5.1 Introduction
	5.2 Related Work
	5.2.1 Gender Differences in Problem Solving Activities
	5.2.2 Impact of Identifiers on Program Comprehension

	5.3 Study Design
	5.3.1 Research Questions
	5.3.2 Research Hypotheses
	5.3.3 Data Collection
	5.3.4 Task
	5.3.5 Material
	5.3.6 Study Variables
	5.3.7 Participants' Demographics
	5.3.8 Procedure

	5.4 Study Results
	5.4.1 RQ5.1 Does the Identifier Style Impact the Effort, the Time, and the Accuracy in Source Code Reading?
	5.4.2 RQ5.2: Does Developers’ gender Impact the Effort, the Time, and Accuracy in Source Code Reading?
	5.4.3 Impact of the Mitigating Variables

	5.5 Threats to Validity
	5.6 Discussions and Conclusion

	6 IMPACT OF GENDER ON PROGRAM COMPREHENSION ON SOURCE CODE ENTITIES
	6.1 Introduction
	6.2 Related Work
	6.3 Study Design
	6.3.1 Research Questions
	6.3.2 Research Hypotheses
	6.3.3 Data Collection
	6.3.4 Task
	6.3.5 Material
	6.3.6 Study Variables
	6.3.7 Participants' Demographics
	6.3.8 Procedure

	6.4 Analysis and Results
	6.4.1 RQ6.1: What Are the Important Source Code Entities (SCEs) to Which Developers Pay More Visual Attention When Reading Source Code?
	6.4.2 RQ6.2: Does Developers' Gender Impact the Viewing Strategies of Developers While Reading Source Code?
	6.4.3 RQ6.3: Are Some Types of SCEs Preferred by Developers Because of Their Semantic Content or Because of Their Very Presence in Source Code?
	6.4.4 Impact of the Mitigating Variables
	6.4.5 Further Remarks

	6.5 Threats to Validity
	6.6 Discussion and Conclusion

	7 CONCLUSION AND FUTURE DIRECTIONS
	7.1 Contributions
	7.2 Limitations
	7.3 Future Work

	REFERENCES

