
LINGUISTIC ANTI-PATTERNS: IMPACT ANALYSIS ON
CODE QUALITY

Ph.D. Defense
LINGUISTIC ANTI-PATTERNS:

IMPACT ANALYSIS ON CODE QUALITY

Zeinab (Azadeh) Kermansaravi
Dr. Foutse Khomh and Dr. Yann-Gaël Guéhéneuc

Département de génie informatique et génie logiciel
Polytechnique Montréal, Québec, Canada

July 16th, 2019

2/52

Change-proneness

Code understandability Fault-proneness

Code Smells

Design Patterns

Naming Conventions

Design Smells (Design Anti-patterns)

Lexical Smells (Linguistic anti-patterns)

Evolution / Implementation

Development Team

Quality

Refactoring Techniques

Introduction

Research Context

3/52

A.3. “Set” method returns (ArgoUML-0.10.1)

4/52 Research Context (LAs)

Developers
consider LAs to be
poor practices that

should be
refactored.

Shorter identifier
names impact

program
comprehension

negatively.

LAs have a
negative impact
on developers’
cognitive load.

 Do different LAs affect understandability equally.

 Whether knowing LAs improves understandability.

Venera Arnaoudova (2016) Johannes Hofmeister (2017) Sarah Fakhoury (2018)

(Contribution 1)
LAs and Program Comprehension

Problem Statement & Research Goal

5/52

6/52 Problem Statement & Research Goal (DAPs & DPs)

Foutse Khomh (2012) Fehmi Jaafar (2013)

Classes included in
DAPs with

relationships with DPs
are more change-

prone than others but
less fault-prone.

 What is the relation between LAs and DAPs and their
co-occurrence impacts change- and fault-proneness?

Classes participating
in anti-patterns are
more change- and
fault-prone than

others.

(Contribution 2)
LAs, DAPs and change- and fault-proneness

Marwen Abbes (2011)

The combination
of two anti-patterns
impacted negatively

and significantly
the system

understandability

7/52 Problem Statement & Research Goal (DAPs & DPs)

 Understanding the dynamics behind the evolution of DPs and DAPs, in
particular their mutations, and their impact on change- and Fault-proneness.

Removal (or lack of
use) of DPs and
introduction of
DAPs degrade

software quality.

Foutse Khomh and Yann-Gaël Guéhéneuc (2008)

DAPs mutate
over the time.
Mutations are

more fault-prone
than others.

Fehmi Jaafar (2014)

 The impacts of the co-occurrence of LAs and DPs or DAPs on the quality of
software systems, particularly on the change- and fault-proneness.

(Contribution 3)
LAs, DAPs, DPs, mutations and

change- and fault-proneness
8/52

LAs have a noticeable impact on the code quality.

9/52

Thesis statement

LAs, DAPs, DPs, their mutations and

Change- and Fault-Proneness
LAs and Code understandability

LAs, DAPs and Change- and Fault-Proneness

Class A

Class A
Class A Class A

LAs

LAs

LAs

LAs
DPs

Class A

LAs

Class A

/ LAs

11

22

33

10/52

Linguistic anti-patterns
and their impact on the

code Quality

Contribution

LAs, DAPs, DPs, their mutations and

Change- and Fault-Proneness
LAs and Code understandability

LAs, DAPs and Change- and Fault-Proneness

Class A

Class A
Class A Class A

LAs

LAs

LAs

LAs
DPs

Class A

LAs

Class A

/ LAs

11

22

33

Linguistic anti-patterns
and their impact on the

code Quality

11/52 Linguistic Anti-patterns and Program Comprehension

Experiments’ Definition and Planning

12/52 Study 1

• Two experiments, 7 LAs, 10 studied systems, 142 participants;

• Study the impact of Different types of LAs on understandability;

• Study the impact of prior knowledge about LAs;

• Study the level of English.

Submitted to
SQJ, 2019

Studied systems

Systems Release Date

System 1 ArgoUML 0.34
ArgoUML 0.14

2011-12-15
2003-12-05

System 2 Cocoon2.2.0 2013-03-14

System 3 JFreeChart1.0.19 2014-07-31

System 4 JHotDraw7.0.6 2011-09-06

System 5 Rhino1.7.7.2 2017-09-27

System 6 Xerces2-j2-11-0 2010-11-26

System 7 Apache Ant 1.10.1 2017-02-06

System 8 Hibernate5.2.12.Final 2017-10-19

System 9 Apache commons-lang-3.7 2017-11-08

System 10 Apache Hadoop3.0.0 2017-12-13

13/52 Study 1

Studied LAs

 A2: “Is” returns more than a Boolean;

 A3: “Set” method returns;

 B4: Not answered question;

 F1: Attribute name and type are opposite;

 F2: Attribute signature and comment are opposite;

 D1: Says one but contains many;

 E1: Says many but contains one.

14/52 Study 1

Participants

LOG8430 (Software Architecture and Advanced Design)
LOG8371 (Software Quality Engineering)

SOEN6461 (Software Quality Engineering)

230 Participants 142 Participants

15/52 Study 1

13/23

Step 1
ExpBefore

Step 3
Quiz

Group A Group B

Step 2
Teaching LAs

Step 4
ExpAfter

Group A Group B

Step 5
Analysing the Data

Correctness Time Effort

Metrics

Study Design

19/52 Study 1

Research Questions

17/52 Study 1

LAs Impact Understanding

LAs types Impact
Unknowledgeable developers

Knowledgeable developers

Knowledge Impact Understanding

English level Impact Understanding

RQ1. Do LAs affect developers’ understanding?

18/52 Study 1

Q1 Q2

• Mental Demands
• Effort
• Frustration

Yes. LAs affect developers’ understanding negatively

RQ2. Do different types of LAs affect unknowledgeable developers’ understandability?

Type ExpBefore

Correctness(%) Effort(mean)

A2 42.4% 57.8%

A3 4.9% 77.2%

B4 19.1% 63.3%

D1 5.7% 85%

E1 52.4% 56.5%

F1 26% 52.1%

F2 29.5% 52.9%

ExpBefore

19/52 Study 1

 A3: “Set” method returns;

 B4: Not answered question;

 D1: Says one but contains many.

A3, D1, and B4 have respectively the most negative impact on the
understandability when participants do not have knowledge about the LAs.

RQ3. Do different types of LAs affect knowledgeable developers’ understandability equally?

Type ExpAfter

Correctness(%) Effort(mean)

A2 91.5% 61.4%

A3 95.8% 52.4%

B4 97.1% 62.8%

D1 47.8% 66%

E1 52.8% 62.7%

F1 48.5% 60.6%

F2 92.9% 62.6%

ExpAfter

20/52 Study 1

 D1: Says one but contains many;

 E1: Says many but contains one;

 F1: Attribute name and type are opposite.

D1, F1, and E1 have respectively the most negative impact on the
understandability when participants have knowledge about the LAs.

RQ4. Can knowledge about LAs mitigate the impact of LAs on understandability?

21/52 Study 1

Having knowledge about LAs helps improve
the understandability of code that contain LAs.

RQ5. Can knowledge of the language in which comments and identifiers are
written mitigate the effect of LAs on developers’ understandability of the code?

Activity University Correctness
(Percentage)

Time (minute) Effort
(Percentage)

ExpBefore Concordia 48.94% 4.27 60%

Polytechnique 48.96% 4.12 52.33%

ExpAfter Concordia 82.81% 4.34 61.11%

Polytechnique 73.78% 5.22 56.66%

Quiz Concordia 95.33% - -

Polytechnique 86.05% - -

22/52 Study 1

The proficiency in the Language in which identifiers and comments
are written can have a slightly positive impact on understandability.

Other Factors impact on the dependent variables

Independent Variables Correctness
(p-value)

Time
(p-value)

Effort
(p-value)

Age 0.13 0.08 0.52

Gender 0.21 0.52 0.92

Degree 0.03 0.41 0.01

Programming Knowledge 0.06 0.36 < 0.01

Working Experience 0.71 0.72 0.62

23/52 Study 1

Programming knowledge and education has a statistically
significant impact on correctness and effort. We suggest companies
to take into account such profiles for specific job positions.

LAs code understandability
LAs

code understandability
Development Team

LAs

24/52 Study 1

LAs, DAPs, DPs, their mutations and

Change- and Fault-Proneness
LAs and Code understandability

LAs, DAPs and Change- and Fault-Proneness

Class A

Class A
Class A Class A

LAs

LAs

LAs

LAs
DPs

Class A

LAs

Class A

/ LAs

11

22

33

25/52 Linguistic Anti-patterns and Design Anti-patterns and Change- and Fault-Proneness

Linguistic anti-patterns
and their impact on the

code Quality

• 12 DAPs, 17 LAs, 3 studied systems;

• Study the impact of classes containing LAs on change-proneness;

• Study the impact of classes containing LAs on Fault-proneness.

26/52 Study 2

Experiments’ Definition and Planning

Published in
SQJ, 2016

Studied DAPs and LAs

 AntiSingleton;

 GodClass (Blob);

 ClassDataShouldBePrivate;

 ComplexClass;

 LargeClass;

 LazyClass;

 LongMethod;

 LongParameterList;

 MessageChain;

 RefusedParentBequest;

 SpeculativeGenerality;

 SwissArmyKnife.

All Types of LAs&

27/52 Study 2

Studied Systems

28/52 Study 2

System # Releases Sizes (LOCs) # Classes

ANT 7 1,600,256 14,052

ArgoUML 13 644,829 27,822

Hibernate 10 7,239,075 21,876

Study Design

29/52 Study 2

Git /SVN
Repositories

Mining Bug
Repositories

Bugzilla or Jira

Mining Source
Code Repositories

Detecting DAPs Detecting LAs

Computing Change-
and Fault-proneness

Analyzing and
Interpreting Results

Research Questions

LAs and DAPs Impact Change-proneness

LAs and DAPs Impact Fault-proneness

30/52 Study 2

RQ1. Are classes with a particular family of smells
(DAPs, LAs, or both) more change-prone than others?

2. Classes having DAPs and LAs versus classes containing LAs

1. Classes containing both DAPs and LAs versus classes with DAPs

3. Classes containing DAPs versus classes
with LAs

�� =
�/(���)

�/(���)
> 1

�

�

�

� Git /SVN
Repositories

Post-greSQL DB

Clone Query Change
History

Extract #changes
#Changed
classes
#summary

� �

31/52 Study 2

DAPs contribute more to the change-proneness of LAs
classes than LAs do to the change-proneness of DAP classes.

The occurrence of DAPs in a class that experienced a LAs has a strong relationship
with fault-proneness than the occurrence of LAs in a class that experienced a DAPs.

�� =
�/(���)

�/(���)
> 1

Git/SVN
Repositories

Git log
Commit log

Extract
#bug-IDs
#commit ids
#date
buggy file name and path

2. Classes having DAPs and LAs versus classes containing LAs

1. Classes containing both DAPs and LAs versus classes with DAPs

3. Classes containing DAPs versus classes with LAs

�

�

�

�

� �

Bugzilla or
Jira

Corresponding
bug report

Issue ID
Issue Type
Issue status
Issue resolution

32/52 Study 2

RQ2. Are classes with a particular family of smells (DAPs,
LAs, or both) more fault-prone than others?

Fault-prone

Development Team

Class A

LAs

LAs
Change-prone

Fault-prone

Class A Class A

LAs

DAPs

33/52 Study 2

LAs, DAPs, DPs, their mutations and

Change- and Fault-Proneness
LAs and Code understandability

LAs, DAPs and Change- and Fault-Proneness

Class A

Class A
Class A Class A

LAs

LAs

LAs

LAs
DPs

Class A

LAs

Class A

/ LAs

11

22

33

34/52 Linguistic Anti-patterns, Design Anti-patterns, Design Patterns and Their Mutations and change- and Fault-proneness

Linguistic anti-patterns
and their impact on the

code Quality

• 13 DAPs, 8 DPs and 17 LAs, 7 studied systems;

• DPs and-or DAPs mutations;

• Impact of these mutations on change- and fault-proneness;

• Impact of LAs and DPs/DAPs on change- and fault- proneness.

Submitted to
EMSE, 2019

Experiments’ Definition and Planning

35/52 Study 3

Study Design

36/52 Study 3

Git
Repositories

Mining Bug
Repositories

Bugzilla or Jira

Mining Source
Code Repositories

Detecting DAPs Detecting LAs

Computing Change-
and Fault-proneness

Analyzing and
Interpreting Results

Detecting DPs

Building Markov
Model

. . .

Snapshot 0
(commit 500)

Snapshot 1
(commit 1000)

Snapshot i
(commit i+1/500)

 AntiSingleton

 GodClass (Blob)

 ClassDataShouldBePrivate

 ComplexClass

 LargeClass

 LazyClass

 LongMethod

 LongParameterList

 MessageChain

 RefusedParentBequest

 SpaghettiCode

 SpeculativeGenerality

 SwissArmyKnife

Studied LAs, DAPs and DPs

All Types of LAs&

 Builder

 Command

 Composite

 Decorator

 Factory Method

 Observer

 Prototype

 Singleton

37/52 Study 3

Studied Systems

System # Commits Sizes (LOCs) Issue Tracker

Eclipse for Java 281,396 9,064,794 Bugzilla

Nuxeo Platform 265,380 5,741,131 Jira

oVirt 149,128 2,764,655 Bugzilla

Matsim 44,200 1,602,877 Atlassian

Apache Solr 30,995 652,711 Jira

Apache Ignite 24,104 1,471,036 Jira

Mule Community Edition 22,891 309,616 Jira

38/52 Study 3

Research Questions

39/52 Study 3

DAPs, DPs Probability Mutation

Change types DAPs, DPs Mutation

DAPs, DPs mutation Impact Change- and Fault-proneness

Change types Mutation Change- and Fault-proneness

LAs Impact Change- and Fault-proneness

DAPs detection results

Markov Model

DPs detection results

C
la

ss
 n

am
es

[AS Bl Cs … Sw]

[Bu Cm Cp … Si]

Builder Mutation among the different revisions of Matsim system

40/52 Study 3

RQ1. Do DPs and–or DAPs mutate during the evolution of software systems?
What is the probability of occurrence of different types of mutations?

Yes!
• DPs and DAPs mutate during the evolution of software systems.
• In most of the studied systems, more than half of the DAP occurrences mutated during the

evolution.
• In most of the systems, almost all the DPs occurrences remained stable during the

evolution process.
• Blob and Command are the DAPs and DPs, which have higher mutation probabilities.

41/52 Study 3

RQ1. Do DPs and–or DAPs mutate during the evolution of software systems?
What is the probability of occurrence of different types of mutations?

SrcML

Java Code

SrcML Tag
Snapshot(i)

SrcML Tag
Snapshot(i+1)

< changed Tag>

.

.

.

Snapshot 0
(commit 500)

Snapshot 1
(commit 1000)

Snapshot i
(commit i+1/500)

.

.

.

42/52 Study 3

RQ2. What types of changes lead to a mutation between DPs
and-or DAPs?

Classes participate in DAPs

Classes participate in DPs

Names of the mutated Classes Names of the changed Classes

43/52 Study 3

In general, some of the change types affect the mutation from DPs and–or DAPs.
The most representative change types leading to mutations in all the studied
systems are “Renaming”, “Comment”, “Declaration”, and “Operator”.

RQ2. What types of changes lead to a mutation between DPs
and-or DAPs?

RQ3. What is the fault-proneness of mutated DPs and
DAPs? What transitions lead to more fault-prone mutations?

Git
Repositories

Git log
Commit log

Extract #bug-IDs
#commit ids
#date
buggy file name and path

44/52 Study 3

DAPs are more fault-prone than DPs. Mutations from
DAPs to DPs are more faulty than other types of mutations.

RQ4. Do specific types of changes lead to increase fault-proneness during DPs and-or
DAPs mutations?

buggy file name and path

changed class names

“Renaming”, “Comment”, and “Operator” are the most prevalent change types
that lead to faults.

45/52 Study 3

RQ5. Do the occurrences of LAs increase change- and fault-proneness during DPs and-or DAPs?

Git
Repositories

Detecting
LAs

PMD-Extension

Plug-in

LAs Detection Results

Changed classes participate in DAPs

Changed classes participate in DPs

#CCLA
#CCAP
#CCDP
#CCLAAP
#CCLADP

Buggy classes participate in DPs

Buggy classes participate in DAPs

#NCLA
#NFCLA
#NFCAP
#NFCDP
#NFLAAP
#NFLADP

LAs make classes have mutations more
change- and fault-prone.
Classes with LAs and DAPs are more
change- and fault-prone than classes with
only DAPs, DPs, LAs.

46/52 Study 3

DPs
Change-prone

Fault-prone

Class A Class A

DAPs,
DPs,
LAs

DAPs Change- and Fault-prone

LAs

Change-prone

Fault-prone

Class A

LAs

47/52 Study 3

Mutation Development Team DPs DAPs

LAs

LAs have a noticeable impact on the code quality.

48/52

Thesis statement

LAs, DAPs, DPs, their mutations and

Change- and Fault-Proneness
LAs and Code understandability

LAs, DAPs and Change- and Fault-Proneness

Class A

Class A
Class A Class A

LAs

LAs

LAs

LAs
DPs

Class A

LAs

Class A

/ LAs

11

22

33

Linguistic anti-patterns
and their impact on the

code Quality

49/52

Study 1

 Studying other types of LAs;

 Using an eye-tracking system;

 Improving LAs detection tool.

Future Direction

50/52

Study 2

 Conducting a user study involving professional developers;

 Identifying specific type of LAs, and DAPs impact more on change- and fault-proneness.

51/52 Future Direction

Study 3

 Identifying the reason for the emergence of faults after mutation;

 Building Markov models for LAs mutation to DAPs and DPs;

 Studying such mutations impact on change- and fault-proneness;

 Specifying the type(s) of LAs, DAPs and DPs may leads to become high severity fault.

52/52

6/23

Methods Attributes

Name Description Name Description

A.1 “Get”- more than an accessor D.1 Says one but contains many

A.2 “Is” returns more than a Boolean D.2 Name suggests Boolean but type does not

A.3 “Set” method returns E.1 Says many but contains one

A.4 Expecting but not getting a single instance F.1 Attribute name and type are opposite

B.1 Not implemented condition F.2 Attribute signature and comment are opposite

B.2 Validation method does not confirm

B.3 “Get” method does not return

B.4 Not answered question

B.5 Transform method does not return

B.6 Expecting but not getting a collection

C.1 Method name and return type are opposite

C.2 Method signature and comment are opposite

Do less than
they say

Name says the opposite of what
the entity contains

Name says less
than the entity

contains

Do more than
they say

Do the opposite
of what they say

LAs Categories

Name says more
than the entity

contains

B4. Example of Not answered question (Eclipse-1.0)

LAs Examples

E1. Example of Says many but contains one (ArgoUML-0.10.1)

D1. Example of Says one but contains many (ArgoUML-0.10.1)

F1. Example of Attribute name and type are opposite (ArgoUML0.10.1)

LAs Examples

19/52 Linguistic Anti-patterns and Program Comprehension - Study Design

Group A

Question
ExpBefore ExpAfter

Group A Group B Group A Group B

Q1 A2 (with) A2 (without) A3 (with) A3 (without)

Q2 E1 (without) E1 (with) B4 (without) B4 (with)

Q3 F1 F1 D1 D1

Q(4.a) Correct A3 E1 E1

Q(4.b) B4 D1 F2 F2

Q(4.c) Correct Correct F1 F1

Q(4.d) F2 Correct A2 A2

Q(4.e) A3 F2 A3 A3

Group B

Questions

http://www.ptidej.net/downloads/replications/sqj19a/Questionnaire/

Questions

20/52 Linguistic Anti-patterns and Program Comprehension – Study Results

RQ1. Do LAs affect developers’ understanding?

Correctness of the answers

22/52 Linguistic Anti-patterns and Program Comprehension – Study Results

RQ1. Do LAs affect developers’ understanding?

Speed of code understanding

23/52 Linguistic Anti-patterns and Program Comprehension – Study Results

RQ1. Do LAs affect developers’ understanding?

Effort for code understanding

RQ4. Can knowledge about LAs mitigate the impact of LAs on understandability?

Having knowledge about LAs helps improve the understandability of code that contain LAs.

Therefore, teaching developers about LAs can help mitigate the negative impact of LAs.

24/52 Linguistic Anti-patterns and Program Comprehension- Study Results

28/52 Linguistic Anti-patterns and Program Comprehension – Discussion

 D1 – “Says one but contains many”:

We observed that developers prefer to choose “simple” names, like “tmp” for stack arrays, “x” and “y” for arrays of
dimensions, or “v” for a collection of vectors.
Exception: Do not identify such names as linguistic anti-patterns.

 E1 – “Says many but contains one”:

When the type of an attribute is “int”, our tool expected to have a singular name because “int” is a single type. we found
that the names of variables that hold number of these attributes could be plural because they are numeric of things.

Exception: Do not identify such names as linguistic anti-patterns.

 “Opposite meaning”:

Propose to create a new LA which could be described as “the message ad attribute name are opposite”.

Discussion

Summary

 LAs have a negative impact on code understandability.

 development teams should consider (1) educating their team members about LAs, (2) removing

LAs from their software systems as soon as possible, and (3) using a common, well-known language

for their identifiers and comments (not necessarily English).

63/52 Linguistic Anti-patterns and Design Anti-patterns and Change- and Fault-Proneness- Summary

Studied Systems

32/52 Linguistic Anti-patterns and Design Anti-patterns and Change- and Fault-Proneness – Study Design

Study Design Diagram

33/52 Linguistic Anti-patterns and Design Anti-patterns and Change- and Fault-Proneness – Study Design

38/52 Linguistic Anti-patterns and Design Anti-patterns and Change- and Fault-Proneness- Study Results

RQ1. Are classes with a particular family of smells (DAPs, LAs, or both) more change-prone than others?

2. Classes having DAPs and LAs versus classes
containing LAs

1. Classes containing both DAPs and LAs versus
classes with DAPs

3. Classes containing DAPs versus classes with LAs

Design anti-patterns contribute more to the change-proneness of linguistic anti-
pattern classes than linguistic anti-patterns do to the change-proneness of design anti-

pattern classes.

39/52 Linguistic Anti-patterns and Design Anti-patterns and Change- and Fault-Proneness- Study Results

RQ2. Are classes with a particular family of smells (DAPs, LAs, or both) more fault-prone than others? (using post-release defects)

2. Classes having DAPs and LAs versus classes
containing LAs

3. Classes containing DAPs versus classes with LAs

The occurrence of design anti-patterns in a class that experienced a linguistic anti-
pattern has a strong relationship with fault-proneness than the occurrence of linguistic

anti-pattern in a class that experienced a design anti-pattern.

1. Classes containing both DAPs and LAs versus
classes with DAPs

37/52 Linguistic Anti-patterns and Design Anti-patterns and Change- and Fault-Proneness- Study Design

Identifying post-release defects

Version
Control
System

Extract Commit
logs

Identification of
bug fixes

“fixed issue #ID”
‘‘bug ID”

‘‘fix’’
‘‘defect’’
‘‘patch”

Commits
with bug ID

Corresponding
bug report

Issue ID
Issue type, i.e., fault, enhancement, feature, patch, feature
request, etc.
Issue status, i.e., new, closed, respond, resolved, fixed, verified,
or not.
Issue resolution, e.g., fixed, invalid, duplicate, etc.

37/52 Linguistic Anti-patterns and Design Anti-patterns and Change- and Fault-Proneness- Study Design

Version
Control
System

Extract Commit
logs

Identification of
bug fix changes

“fixed issue #ID”
‘‘bug ID”

‘‘fix’’
‘‘defect’’
‘‘patch”

Commits
with bug ID

Corresponding
bug report

Issue ID
Issue type, i.e., fault, enhancement, feature, patch, feature
request, etc.
Issue status, i.e., new, closed, respond, resolved, fixed, verified,
or not.
Issue resolution, e.g., fixed, invalid, duplicate, etc.

Identifying defect-inducing changes

Summary

 LAs can make, in some cases, classes with DAPs more fault-prone when both occur in classes of

object-oriented systems.

 In a lot of cases, classes containing DAPs are more change- and fault-prone than classes with

LAs.

 Development teams and quality assurance teams should better focus their refactoring efforts on

components with design anti-patterns (while not neglecting linguistic anti-patterns) to assure

good quality for their systems

39/52 Linguistic Anti-patterns and Design Anti-patterns and Change- and Fault-Proneness - Summary

RQ1. Do design patterns and–or design anti-patterns mutate during the evolution of software systems? What

is the probability of occurrence of different types of mutations?

50/52 Linguistic Anti-patterns, Design Anti-patterns, Design Patterns and Their Mutations and change- and Fault-proneness- Study Results

Building Markov Model
DAPs detection results

DPs detection results

RQ1. Do design patterns and–or design anti-patterns mutate during the evolution of software systems? What

is the probability of occurrence of different types of mutations?

51/52 Linguistic Anti-patterns, Design Anti-patterns, Design Patterns and Their Mutations and change- and Fault-proneness- Study Results

RQ1. Do design patterns and–or design anti-patterns mutate during the evolution of software systems? What

is the probability of occurrence of different types of mutations?

52/52 Linguistic Anti-patterns, Design Anti-patterns, Design Patterns and Their Mutations and change- and Fault-proneness- Study Results

DPs and DAPs mutate during the evolution of software systems.

In most of the studied systems, more than half of the DAP occurrences mutated during the evolution.

In most of the systems, almost all the DPs occurrences remained stable during the evolution process.

Blob and Command are the DAPs and DPs, which have higher mutation probabilities.

RQ2. What types of changes lead to a mutation between design patterns and-or design anti-patterns?

55/52 Linguistic Anti-patterns, Design Anti-patterns, Design Patterns and Their Mutations and change- and Fault-proneness- Study Results

RQ2. What types of changes lead to a mutation between DPs and-or DAPs?

48/52 Linguistic Anti-patterns, Design Anti-patterns, Design Patterns and Their Mutations and change- and Fault-proneness-Study Results

Change Type srcML tag(s)

Access super, public, private, protected, extern

Class extends, class, interface, implements, class_decl

Code block expr_stmt, expr, block

Comment annonation, comment, @type, @format

Control Flow while, do, if, else, elseif, break, goto, for, foreach, control, continue, then,
switch, case, return, incr, default, condition

Declaration decl_stmt, modifier, specifier, decl, function_decl, literal, label, empty_stmt,
construction_decl, annonation_dfn

Exception assert, try, catch, throw, throws, finally

Import import, package

Invocation call

Method constructor, default, static, type, lambda, function, function_decl, unit

Operator index, synchronized, enum, operator, ternany

Parameter argument, param, parameter_list, argument_list, parameter

Renaming renaming, name

RQ2. What types of changes lead to a mutation between design patterns and-or design anti-patterns?

54/52 Linguistic Anti-patterns, Design Anti-patterns, Design Patterns and Their Mutations and change- and Fault-proneness- Study Results

RQ2. What types of changes lead to a mutation between design patterns and-or design anti-patterns?

55/52 Linguistic Anti-patterns, Design Anti-patterns, Design Patterns and Their Mutations and change- and Fault-proneness- Study Results

In general, some of the change types affect the mutation from DPs and–or DAPs.

The most representative change types leading to mutations in all the studied systems are “Renaming”,
“Comment”, “Declaration”, and “Operator”.

RQ3. What is the fault-proneness of mutated design patterns and design anti-patterns? What transitions lead to

more fault-prone mutations?

56/52 Linguistic Anti-patterns, Design Anti-patterns, Design Patterns and Their Mutations and change- and Fault-proneness- Study Results

RQ3. What is the fault-proneness of mutated design patterns and design anti-patterns? What transitions lead to

more fault-prone mutations?

57/52 Linguistic Anti-patterns, Design Anti-patterns, Design Patterns and Their Mutations and change- and Fault-proneness- Study Results

DAPs are more fault-prone than DPs. Mutations from DAPs to DPs are more faulty than other types
of mutations.

RQ4. Do specific types of changes lead to increase fault-proneness during design patterns and-or design anti-

patterns mutations?

52/52 Linguistic Anti-patterns, Design Anti-patterns, Design Patterns and Their Mutations and change- and Fault-proneness- Study Results

RQ4. Do specific types of changes lead to increase fault-proneness during design patterns and-or design anti-

patterns mutations?

52/52 Linguistic Anti-patterns, Design Anti-patterns, Design Patterns and Their Mutations and change- and Fault-proneness- Study Results

RQ4. Do specific types of changes lead to increase fault-proneness during design patterns and-or design anti-

patterns mutations?

60/52 Linguistic Anti-patterns, Design Anti-patterns, Design Patterns and Their Mutations and change- and Fault-proneness- Study Results

Some change types make software systems more fault-prone compared to others. Our result show that
in all the studied systems, “Renaming”, “Comment”, and “Operator” are the most prevalent change
types that lead to faults.

RQ5. Do the occurrences of Linguistic anti-patterns increase change- and fault-proneness during design

patterns and-or design anti-patterns mutations?

61/52 Linguistic Anti-patterns, Design Anti-patterns, Design Patterns and Their Mutations and change- and Fault-proneness- Study Results

RQ5. Do the occurrences of Linguistic anti-patterns increase change- and fault-proneness during design

patterns and-or design anti-patterns mutations?

62/52 Linguistic Anti-patterns, Design Anti-patterns, Design Patterns and Their Mutations and change- and Fault-proneness- Study Results

