
POLYTECHNIQUE MONTRÉAL
affiliée à l’Université de Montréal

Linguistic anti-patterns: Impact analysis on code quality

ZEINAB KERMANSARAVI
Département de génie informatique et génie logiciel

Thése présentée en vue de l’obtention du diplôme de Philosophiæ Doctor

Génie informatique
Juillet 2019

c© Zeinab Kermansaravi, 2019.

POLYTECHNIQUE MONTRÉAL
affiliée à l’Université de Montréal

Cette thèse intitulée:

Linguistic anti-patterns: Impact analysis on code quality

présentée par Zeinab KERMANSARAVI
en vue de l’obtention du diplôme de Philosophiæ Doctor

a été dûment acceptée par le jury d’examen constitué de:

Giovanni BELTRAME, présidente
Foutse KHOMH, membre et directeur de recherche
Yann-Gaël GUÉHÉNEUC, membre et codirectrice de recherche
Jinghui CHENG, membre
Eugene SYRIANI, membre externe

iii

DEDICATION

This dissertation is dedicated to

To Hani and Anita

To my parents

To my family

For their endless love, support and encouragement.

iv

ACKNOWLEDGEMENTS

First of all, I would like to thank my supervisors, Foutse and Yann, for encouraging and believing
in me. For everything I learned from them, for all the opportunities they gave me, for their guidance
with their extensive knowledge when I was lost, for their patience when I needed them to listen, for
being honest when they had doubts about ideas and methodologies, for being not so honest when
answering “I don’t know” because they wanted me to figure it out.

I would also like to thank the members of my Ph.D. committee who enthusiastically accepted to
review my dissertation. I also thank all friends and colleagues, current and past members of the
Ptidej, SWAT, Soccerlab and MCIS teams, for sharing ideas, providing feedback and the productive
discussions.

I am very thankful to my whole family : To my mother who somehow convinced me that ‘failure’
is not a dictionary word ; to my father to whom I never managed to explain what I do but who is
always happy for my success ; to my brother who was always there for me. To my brothers. I love
you all so much!

Last but certainly not least, I thank my beloved husband Hani for letting me pursuing my dreams.
Thank for your unconditional support, for your patience, and understanding. Thank you for post-
poning your plans to catch up with mines. Thank you for loving me!

I also thank my little angel (my daughter Anita) who was born on June 13th 2016 (during my
Ph.D.) and gave me an infinite source of energy by her endless smiles. She brought me all the luck
by opening her eyes to this beautiful word.

v

RÉSUMÉ

Les “mauvaises odeurs” de conception sont des structures qui indiquent une violation des principes
fondamentaux de conception et qui nuisent à la qualité des systèmes logiciels. Ils représentent
des choix d’architectures, de conception, et d’implémentation qui doivent être suivis et améliorés.
Dans ce travail, on considère deux sous types de ces “mauvaises odeurs” qui sont les anti-patrons
de conception (DAPs) et les anti-patrons linguistiques (LAs).

Les anti-patrons de conception (DAPs) sont les patrons que les développeurs considèrent comme
étant des bonnes solutions à certains problèmes mais qui ont en réalité un impact négatif sur la
qualité des logiciels. Des études récentes ont démontré que les anti-patrons rendent la maintenance
logicielle plus difficile dans les systèmes orientés objets ainsi qu’ils augmentent le changement et
les défaillances.

Le concept d’anti-patrons linguistiques (LAs) fait référence aux mauvaises pratiques de nommage,
de documentation et de l’implémentation du code source qui peuvent négativement impacter la
qualité des systèmes logiciels et la compréhension du programme.

Contrairement aux anti-patrons, les patrons de conception (DPs) présentent une solution promet-
teuse qui sert à améliorer la qualité des systèmes orientés objets. Dans certains cas, les patrons de
conception et contrairement à ce qui est connu, peuvent avoir aussi un impact négatif sur la qualité
logicielle. Pour cela, nous considérons également les patrons de conception dans ce travail afin
d’étudier leurs comportements et leurs qualité au cours de l’évolution des logiciels.

Avoir une bonne qualité logicielle est primordial pour contrôler et réduire les coûts de la main-
tenance des systèmes orientés objets. Il est important de disposer de mécanismes permettant de
mesurer la qualité logicielle. Cependant, la qualité a des différentes significations qui peuvent
être par exemple la capacité d’un système à changer à faible coût ou même l’absence de bogues
dans le logiciel. Dans cette thèse, nous considérons comme mesures indirectes de la qualité: la
compréhension du code, la propension au changement, et la prévalance de fautes.

Au cours de l’évolution d’un logiciel, les développeurs risquent d’introduire des anti-patrons durant
leurs tâches de développement (fixer des bogues, ajouter des nouvelles fonctionnalités, ou même
appliquer des nouvelles exigences). Dans cette thèse, nous avons étudié l’impact des anti-patrons
de conception, les anti-patrons linguistiques, et les patrons de conception sur la qualité logicielle.

Premièrement, nous avons réalisé une étude empirique afin d’investiguer si les occurrences des
LAs impactent réellement la compréhension du code. Nous avons remarqué que les LAs affectent
négativement la compréhension; en diminuant le nombre des réponses correctes lors des exercices

vi

de maintenance. Egalement, nous avons étudié le rôle des connaissances des LAs sur l’effet des
leurs occurrences et nous avons constaté que ces connaissances peuvent atténuer l’impact négatif
de ces LAs.

Deuxièmement, nous avons utilisé la propension au changement et aux fautes pour capturer l’impact
des LAs et des anti-patrons sur la qualité. Nous avons commencé par étudier la relation entre LAs
et la qualité ainsi que leur interaction avec les anti-patrons. Nous avons constaté que les classes qui
contiennent uniquement des anti-patrons sont plus susceptibles de changer et sont plus susceptibles
de subir des erreurs de code que les classes qui contiennent des LAs uniquement.

Troisièmement, nous avons investigué l’évolution des LAs, des anti-patrons, et des patrons de
conceptions. Nous avons constaté qu’ils se transforment d’un type d’anti-patron à un autre. Ils se
transforment en patron de conceptions lorsqu’ils sont corrigés. Aussi, les patrons de conceptions
peuvent se dégrader en anti-patrons.

Nous présentons également les types de changements qui déclenchent les LAs, les anti-patrons, et
les mutations des patrons de conception. Ainsi, nous apportons des preuves concrètes de l’impact
des mauvaises odeurs de conception sur la qualité logiciel.

vii

ABSTRACT

Design smells are bad practices in software design that lower the quality of software systems. They
represent architectural, design, and implementation choices that should be tracked and removed.
We consider design anti-patterns (DAPs) and linguistic anti-patterns (LAs) as two special types of
design smells in our work, in contrast to design patterns (DPs).

DAPs are software patterns that are thought by developers to be good solutions to some design
problems but that have actually a negative impact on quality. Recent studies have brought evidence
that DAPs make maintenance more difficult in object-oriented systems and increase change- and
fault-proneness.

LAs refer to bad practices of naming, documentation, and implementation of code entities, which
could decrease the quality of software systems and have a negative impact on program comprehen-
sion.

Opposite to design smells, DPs are promising solutions to improve the quality of object-oriented
systems. Yet against popular wisdom, design patterns in practice can impact quality negatively.

Achieving good quality is important to control and reduce the maintenance cost of object-oriented
systems. This goal requires means to measure the quality of systems. However, quality has different
meanings, e.g., the capacity of a system to change at low cost or the absence of bugs. In this thesis,
we consider code understanding, change-proneness, and fault-proneness as three proxy measures
for quality.

During software evolution, which is a never-ending activity, developers may introduce DAPs and
LAs, when they modify software systems to fix bugs or to add new functionalities based on changes
in requirements. Developers may also use design patterns to ensure software quality or as a possible
cure for some design smells. Thus, DPs, DAPs, and LAs are introduced, removed, and mutated
from one to another by developers. In this thesis, we studied the mutations of LAs, DAPs, and DPs
and their impact on quality. To achieve our goal, we conducted three different studies as follows:

First, we perform an empirical study to investigate whether the occurrences of LAs do impact code
understandability. We observe that LAs negatively affect participants’ understanding; decreasing
the numbers of correct answers during code understandability exercises. We also study the role that
prior knowledge of LAs has on the effect of LA occurrences on code understandability and observe
that prior knowledge can mitigate the negative impact of LAs.

Second, we use change- and fault-proneness to capture the impact of LAs and DAPs on quality.
We first study the relationship between LAs and quality as well as their interaction with DPAs. The

viii

results show that classes that contain both DAPs and LAs are more change- and fault-prone than
the other classes, which only have LAs or DAPs. We also find that classes containing only DAPs
are more change- and fault-prone than classes with LAs only.

Third, we investigate the evolution of DAPs and DPs and find that they mutate into other DPs and–
or DAPs. We also find that some change types (renaming, and changes in comments, declarations,
and operators) primarily trigger mutations. In terms of fault-proneness, we find that DAPs are more
fault-prone than DPs and mutation of DAPs to DPs is the most faulty type of mutation. Finally,
we study whether the existence of LAs makes classes participating in evolving DPs or DAPs more
change- and fault-prone. We find that classes containing DAPs and LAs are more change- and
fault-prone than classes containing DPs and LAs, or only each type of smells individually.

Thus, we bring concrete evidence on the impact of these design smells on quality in terms of code
understandability, change-, and fault-proneness. These results also provide important insights into
the evolution of DPs and DAPs and its impacts on the change- and fault-proneness of software
systems.

ix

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

RÉSUMÉ . v

ABSTRACT . vii

TABLE OF CONTENTS . ix

LIST OF TABLES . xiii

LIST OF FIGURES . xv

CHAPTER 1 INTRODUCTION . 1
1.1 Research Context . 1
1.2 Problem Statement . 1
1.3 Research Goal . 2
1.4 Contributions . 3

1.4.1 Linguistic anti-patterns and Program Comprehension 3
1.4.2 Linguistic Anti-patterns, Design Anti-patterns and their impact on Change-

, and Fault-Proneness . 4
1.4.3 Linguistic anti-patterns, Design anti-patterns, Design patterns, their muta-

tions and Change- and Fault-Proneness 5
1.5 Roadmap . 6

CHAPTER 2 BACKGROUND . 7
2.1 Linguistic Anti-patterns . 7

2.1.1 Definition . 7
2.1.2 Detection . 7

2.2 Design Anti-patterns . 8
2.2.1 Definition . 8
2.2.2 Detection . 10

2.3 Design Patterns . 10
2.3.1 Definition . 10

x

2.3.2 Detection . 11

CHAPTER 3 RELATED WORK . 13
3.1 Definition and Detection of Linguistic Anti-patterns (LAs) 13
3.2 Definition and Detection of Design Anti-patterns (DAPs) 14
3.3 Definition and Detection of Design Patterns (DPs) 15
3.4 Evolution and Impact of Linguistic Anti-patterns 15
3.5 Evolution and Impact of Design Anti-patterns and Design Patterns 16

CHAPTER 4 LINGUISTIC ANTI-PATTERNS AND PROGRAM COMPREHENSION . 18
4.1 Context . 18

4.1.1 Research Problem and Contribution . 18
4.1.2 Research Questions . 19

4.2 Study Design . 20
4.2.1 Studied LAs . 20
4.2.2 Experiment Design . 25
4.2.3 Participants . 27
4.2.4 Studied Systems . 28
4.2.5 Questions . 29
4.2.6 Independent Variables . 30
4.2.7 Mitigating Factors . 31
4.2.8 Dependent Variables . 31

4.3 Study Results . 32
4.3.1 RQ4.1: Do LAs affect developers’ understandability of the code? 32
4.3.2 RQ4.2: Do different types of LAs affect unknowledgeable developers’ un-

derstandability? . 36
4.3.3 RQ4.3: Do different types of LAs affect knowledgeable developers’ under-

standability? . 39
4.3.4 RQ4.4: Can knowledge about LAs mitigate the impact of LAs on under-

standability? . 41
4.3.5 RQ4.5: Can knowledge of the language in which comments and identifiers

are written mitigate the effect of LAs on developers’ understandability of
the code? . 44

4.4 Discussion . 46
4.4.1 Linguistic Anti-patterns . 46
4.4.2 Mitigating Factors . 47

4.5 Threats to Validity . 47

xi

4.6 Summary . 50

CHAPTER 5 LINGUISTIC ANTI-PATTERNS, DESIGN ANTI-PATTERNS AND THEIR
IMPACT ON CHANGE-, AND FAULT-PRONENESS 52
5.1 Context . 52

5.1.1 Research Problem and Contribution . 52
5.1.2 Research Questions . 52

5.2 Study Design . 53
5.2.1 Studied Linguistic Anti-patterns and Design Anti-patterns 53
5.2.2 Experiment Design . 53
5.2.3 Studied Systems . 55
5.2.4 Identifying Post-Release Defects . 56

5.3 Study Results . 56
5.3.1 RQ5.1: Are classes with a particular family of smells (anti-patterns, lin-

guistic anti-patterns, or both anti-patterns, linguistic anti-patterns) more
change-prone than others? . 56

5.3.2 RQ5.2: Are classes with a particular family of smells (anti-patterns, lin-
guistic anti-patterns, or both anti-patterns, linguistic anti-patterns) more
fault-prone than others? . 60

5.4 Threats to Validity . 63
5.5 Summary . 65

CHAPTER 6 LINGUISTIC ANTI-PATTERNS, DESIGN ANTI-PATTERNS, DESIGN PAT-
TERNS AND THEIR MUTATIONS AND FAULT-PRONENESS 66
6.1 Context . 66

6.1.1 Research Problem and Contribution . 66
6.1.2 Research Questions . 68

6.2 Study Design . 70
6.2.1 Studied Design Anti-patterns, linguistic Anti-patterns and Design patterns . 71
6.2.2 Studied Systems . 71
6.2.3 Building a Mutation Model . 73
6.2.4 Analyzing Fault-proneness . 73
6.2.5 Identifying Change Types . 74

6.3 Study Results . 75
6.3.1 RQ6.1: Do design patterns and–or design anti-patterns mutate during the

evolution of software systems? What is the probability of occurrence of
different types of mutations? . 75

xii

6.3.2 RQ6.2: What types of changes lead to a mutation between design patterns
and-or design anti-patterns? . 82

6.3.3 RQ6.3: What is the fault-proneness of mutated design patterns and anti-
patterns?What transitions lead to more fault-prone mutations? 87

6.3.4 RQ6.4: Do specific types of changes lead to increase fault-proneness dur-
ing design patterns and-or design anti-patterns mutations? 89

6.3.5 RQ6.5: Do the occurrences of Linguistic anti-patterns increase change- and
fault-proneness during design patterns and-or design anti-patterns mutations? 91

6.4 Discussion . 94
6.5 Threats to Validity . 95
6.6 Summary . 97

CHAPTER 7 CONCLUSION . 98
7.1 Dissertation Findings and Conclusions . 98
7.2 Future Directions . 99

Bibliography . 101

xiii

LIST OF TABLES

Table 2.1 List of Linguistic anti-patterns by (Arnaoudova et al., 2016). 7
Table 4.1 Detected occurrences of LAs studied in (Arnaoudova et al., 2016) and de-

velopers’ perceptions . 22
Table 4.2 Study Design . 27
Table 4.3 Studied Systems . 29
Table 4.4 The impact of different LAs on the correctness, and effort (ExpBefore and

ExpAfter) . 41
Table 4.5 p-values of the impact of English on dependent variables 45
Table 4.6 Difference between English and French speakers on understandability . . . 46
Table 4.7 p-values of the impact of mitigating variables on dependent variables . . . 48
Table 5.1 Characteristics of the Analyzed Projects. 55
Table 5.2 Change-Proneness Results: Design Anti-patterns and Linguistic Anti-patterns

vs. Design Anti-patterns (only). 58
Table 5.3 Change-Proneness Results: Design Anti-patterns and Linguistic Anti-patterns

vs. Linguistic Anti-patterns (only). 59
Table 5.4 Change-Proneness Results: Design Anti-patterns vs. Linguistic Anti-patterns. 60
Table 5.5 Fault-Proneness Results: Design Anti-patterns and Linguistic Anti-patterns

vs. Design Anti-patterns (only). 61
Table 5.6 Fault-Proneness Results: Design Anti-patterns and Linguistic Anti-patterns

vs. Linguistic Anti-patterns (only). 62
Table 5.7 Fault-Proneness Results: Design Anti-patterns vs. Linguistic Anti-patterns. 63
Table 6.1 Subject systems analyzed . 72
Table 6.2 Change types identified from the source code of the systems studied 75
Table 6.3 Change probabilities of design anti-patterns and design patterns in Eclipse

IDE . 77
Table 6.4 Change probabilities of design anti-patterns and design patterns in Nuxeo . 78
Table 6.5 Change probabilities of design anti-patterns and design patterns in oVirt . . 78
Table 6.6 Change probabilities of design anti-patterns and design patterns in Matsim 79
Table 6.7 Change probabilities of design anti-patterns and design patterns in Apach-

eSolr . 79
Table 6.8 Change probabilities of design anti-patterns and design patterns in ApacheIgnite 80
Table 6.9 Change probabilities of design anti-patterns and design patterns in Mule . . 81

xiv

Table 6.10 Most representative design pattern and design anti-patterns mutations with
mutation probabilities . 82

Table 6.11 Number of different types of changes in design patterns and design anti-
patterns . 84

Table 6.12 Number of different types of changes in design patterns and design anti-
patterns mutation. 84

Table 6.13 Design anti-pattern and design-pattern mutations 88
Table 6.14 Transitions Fault-proneness . 89
Table 6.15 Numbers of change types in the studied systems leading to faults 90
Table 6.16 Numbers of faulty and clean changed classes 91
Table 6.17 Change-prone classes with linguistic anti-patterns (LAs), design patterns(DPs)

and design anti-patterns(DAPs) . 92
Table 6.18 Fault-proneness of classes with Linguistic Anti-patterns (LAs) 93

xv

LIST OF FIGURES

Figure 4.1 LAs occurrences percentages in the studied systems 21
Figure 4.2 The most prevalent LAs in the studied systems 23
Figure 4.3 Study Design Diagram . 27
Figure 4.4 Impact of occurrence of LA on “Correctness”:(Q1:A2) 32
Figure 4.5 Impact of occurrence of LA on “Correctness”:(Q2:E1) 33
Figure 4.6 With Outliers . 34
Figure 4.7 Impact of the occurrence of LA on “Time”(Q1): Without Outliers 34
Figure 4.8 Impact of the occurrence of LA on “Time”(Q2): With Outliers 35
Figure 4.9 Impact of the occurrence of LA on “Time”(Q2): Without Outliers 35
Figure 4.10 Impact of the occurrence of LA on “Effort”: (Q1) 36
Figure 4.11 Impact of the occurrence of LA on “Effort”: (Q2) 36
Figure 4.12 The most prevalent / least prevalent LAs in the studied systems (Before) . . 38
Figure 4.13 The most prevalent / least prevalent LAs in the studied systems(After) . . . 41
Figure 4.14 Right Answers (number): Polytechnique Montreal 42
Figure 4.15 Right Answers (number): Concordia University 43
Figure 4.16 Evaluating the knowledge of LAs . 43
Figure 4.17 Impact of LA knowledge on Correct answers 44
Figure 4.18 Impact of LA knowledge on Time(minutes) 44
Figure 4.19 Impact of LA knowledge on Effort(Percentage) 45
Figure 6.1 Schematic diagram of the methodological steps of the study presented in

this chapter. 71
Figure 6.2 Builder (Bu) mutation among the different revisions of Matsim. 73
Figure 6.3 FactoryMethod (FM) mutation among the different revisions of Eclipse. . . 76
Figure 6.4 Builder (Bu) mutation among the different revisions of Nuxeo. 76
Figure 6.5 Blob (BL) mutation among the different revisions of oVirt. 76
Figure 6.6 Builder (Bu) mutation among the different revisions of Matsim. 77
Figure 6.7 LongParameterList (LP) mutation among the different revisions of Apach-

eSolr. 80
Figure 6.8 LongParameterList (LP) mutation among the different revisions of ApacheIgnite. 81
Figure 6.9 LongParameterList (LP) mutation among the different revisions of Mule. . 83
Figure 6.10 Number of different types of changes in Eclipse classes with (a) design anti-

patterns and (b) design patterns. 83

xvi

Figure 6.11 Number of different types of changes in Nuxeo classes with (a) design anti-patterns

and (b) design patterns. 85
Figure 6.12 Number of different types of changes in oVirt classes with (a) design anti-patterns

and (b) design patterns. 85
Figure 6.13 Number of different types of changes in Matsim classes with (a) design anti-

patterns and (b) design patterns. 86
Figure 6.14 Number of different types of changes in Apache Ignite classes with (a) design

anti-patterns and (b) design patterns. 86
Figure 6.15 Number of different types of changes in Apache Solr classes with (a) design anti-

patterns and (b) design patterns. 87
Figure 6.16 Number of different types of changes in Mule classes with (a) design anti-patterns

and (b) design patterns. 87
Figure 6.17 Faulty changed classes percentages with design pattern in the studied systems 92
Figure 6.18 Faulty changed classes with design anti-patterns percentages in the studied

systems . 93

1

CHAPTER 1 INTRODUCTION

1.1 Research Context

Quality is one of the most important challenges during development and maintenance of software
systems. A development team may implement software features with poor design, bad coding,
naming and documentation issues, which are collectively called “design smells”. We focus on lin-
guistic anti-patterns (LAs) and design anti-patterns (DAPs). Design anti-patterns include relations
among classes and linguistic anti-patterns pertain to the naming of identifiers used in the code and
design.

Linguistic anti-patterns (LAs) are one type of smell, which refer to incompatibility in naming,
documentation, and implementation of an entity. Arnaoudova et al. (2013) was the first to introduce
the concept of linguistic anti-patterns (LAs), to provide a catalog of LAs, and to categorize them
into “Method” and “Attributes” types of LAs.

Design anti-patterns (DAPs) are “poor” solutions to recurrent design problems that make object-
oriented systems difficult to maintain.

In addition, all software systems must evolve frequently to fix problems, bugs, and even add some
parts for new requirements. This evolution may decay their implementation and cause common
bad practice solutions like design anti-patterns which have a potential negative impact on quality.
On the other hand, developers may use design patterns (DPs) when changing their systems, either
because the modification calls for some design patterns or as a possible cure for some anti-patterns.

1.2 Problem Statement

Hofmeister et al. (2017) showed that shorter identifier names impact program comprehension neg-
atively. Besides, Arnaoudova et al. (2016) performed an experiment on LAs by examining the
developers’ perception of the quality of code snippets containing LAs and reported that develop-
ers consider LAs to be poor practices that should be refactored. Fakhoury et al. (2018) studied
the effect of LAs and readability on developers’ cognitive load using a minimally-invasive func-
tional brain-imaging technique (functional Near Infrared Spectroscopy, fNIRS) and an eye-tracker.
They reported that LAs have a negative impact on developers’ cognitive load. Although these pre-
vious works established a relation between the occurrence of LAs and program comprehension,
they did not investigate their impact on code quality in terms of change- and fault-proneness. Nei-
ther did they studied if different types of LAs affect comprehension differently. Therefore, we

2

study whether different types of LAs affect code understandability equally. We also study whether
having knowledge of the LAs could have a positive effect on developers’ understanding of code
containing LAs.

In this thesis, we want to study the impact of the occurrences of LAs on the code quality in terms of
change- and fault-proneness as well. Since, DAPs and DPs often co-exist in software systems and
since previous studies report that they impact software quality, we consider them as a side factor, to
investigate how the occurrences of LAs on the classes containing DAPs, DPs, or both could impact
on the quality in terms of change- and fault-proneness.

Some of the previous works, (Khomh et al., 2012), (Taba et al., 2013), (Yamashita et Moonen,
2013) reported that the occurrence of design anti-patterns in systems increases change- and fault-
proneness. Some of the other studies investigated the relationships between DAPs and DPs in
releases of several systems independently, one release at a time (Jaafar et al., 2013, 2014).
Jaafar et al. (2013) studied the relationships between classes playing roles in DPs and DAPs. They
found that there is a relationship between DPs and DAPs but they are temporary. Jaafar et al. also
showed that classes included in DAPs which have such relationships with DPs are more change-
prone than other DAP classes, but are less fault-prone than others. Since the concept of LAs is
new (Arnaoudova et al., 2013) and there is no study that investigated both LAs and DAPs and their
impact on quality, we were encouraged to study the relation between LAs and DAPs to see how
their co-occurrence impacts change- and fault-proneness.

Finally, in a previous study (Khomh et Guéhéneuc, 2008) have shown that the design of systems
degrade over time, presumably due to the removal (or lack of use) of DPs and the introduction
of DAPs. Accordingly, understanding the dynamics behind the evolution of DPs and DAPs, in
particular their mutations, could help development teams better prioritize maintenance activities
and the allocation of resources. Therefore, we were encouraged to investigate such mutations,
and analyze their impact on change- and fault- proneness. Although we are aware of the negative
impacts of LAs on code quality and comprehension, it is important to know the impacts of the co-
occurrence of LAs and DPs or DAPs on the quality of software systems, particularly on the change-
and fault-proneness. As a further analysis from our second study, in Chapter 5, we also study the
impact of the occurrences of LAs on the quality of software systems during their evolution.

1.3 Research Goal

The main goal of our research is to help and assist developers to understand, prevent, and correct
smells (LAs, and DAPs), which may increase the risk of faults or failures in the future. We address
our research goal through the following studies:

3

• Investigating the impact of different types of LAs on code understandability.

• Studying the effect of prior knowledge of LAs on developers’ understanding of code con-
taining LAs.

• Studying the impacts of LAs on software systems’ change- and fault-proneness?

• Studying the probability of design anti-patterns and design pattern mutations using Markov
models.

• Investigating how design patterns and–or design anti-patterns mutate over time by modeling
the behavior of these mutations using Markov models.

• Examining the impact of these mutations on change- and fault-proneness.

• Studying the types of changes to the code that lead to design patterns and design anti-patterns
mutations.

• Investigating the most fault-prone transitions from design patterns and–or design anti-patterns.

• Studying the impact of the occurrences of LAs on the change and fault-proneness of mutated
classes.

1.4 Contributions

In this dissertation, we studied the impact of different smells and patterns on the quality of software
systems. To reach our research goal, we did the following contributions:

1.4.1 Linguistic anti-patterns and Program Comprehension

We undertake an empirical study to find “How different factors affect the impact of LAs on the
program comprehension?”. We examine 7 types of LAs from 10 systems.

To answer this question, we perform two experiments ExpBefore and ExpAfter investigating whether
seven different types of LAs affect code understandability equally. These two experiments allow us
to also investigate whether knowing the characteristics of LAs improve developers’ understandabil-
ity of code snippets containing LAs. We use three criteria to evaluate the participants’ performance,
including (1) participants’ effort using NASA TLX, (2) the time they spent to do the tasks using a
hidden automatic timer, and (3) their percentages of correct answers (by comparing their answers
to our oracle). The results show that LAs have a negative impact on understandability. We also

4

observed that, in general, having knowledge about LAs help participants finding the right answers
more easily and faster.

Moreover, we collect some information from all participants such as their age, gender, work expe-
rience, programming experience, English level, and etc, in order to report which participants with
which profile could find LAs, and answer the question better.

Besides, we investigate how these different factors affect the participants’ performance in the same
situation. We also found that work experience and LAs knowledge as well as level in English
positively impact on the measured variables. Therefore, we study the impact of English skill on
understandability by investigating the collected self-reporting data, and comparing English and
French speakers’ results. We found that a proficient English skill has a positive impact on program
comprehension.

This information could be helpful for developers and companies to know which profiles match
better with specific job positions. The details of the study have been provided in Chapter 4.

Our results are currently under the second review in the Software Quality Journal (SQJ):

• Zeinab (Azadeh) Kermansaravi, Diana El-Masri, Foutse Khomh, Fabio Petrillo, Yann-Gaël
Guéhéneuc, Abdelwahab Hamou-lhadj. A Large-Scale Empirical Study of the Impact of

Linguistic Anti-patterns on Program Comprehension. Submitted to The Software Quality
Journal (SQJ), April 2019, Under the second revision as of May, 24th, 2019.

1.4.2 Linguistic Anti-patterns, Design Anti-patterns and their impact on Change-, and Fault-
Proneness

We conduct another empirical study to evaluate the relationship between LAs and software quality
as well as their interaction with design anti-patterns. We investigate whether LAs can have an addi-
tional impact on change- and fault-proneness when occurring on classes with design anti-patterns.
Specifically, we compare in terms of change- and fault-proneness between (1) classes with both
DAPs and LAs and classes with DAPs only, (2) classes containing both DAPs and LAs and classes
with LAs only, as well as (3) classes with DAPs only and those with LAs only.

We detect 29 design smells consisting of 13 DAPs and 17 LAs in 30 releases of three projects:
ANT, ArgoUML, and Hibernate. We analyze to what extent classes containing LAs have higher
(or lower) odds to change or to be subject to fault fixing than other classes containing DAPs. The
results show and bring empirical evidence on the fact that LAs can make, in some cases, classes
with DAPs more fault-prone.

In addition, we empirically demonstrate that classes containing only DAPs are more change- and

5

fault-prone than classes with LAs only.

We believe such results could guide development and quality assurance teams to better focus their
refactoring efforts on components with design smells (without neglecting linguistic anti-patterns)
to assure good quality for their systems. We have provided all details of this study in Chapter5.

Our results have been published in Software Quality Journal (SQJ):

• Latifa Guerrouj, Zeinab (Azadeh) Kermansaravi, Venera Arnaoudova, Benjamin C. M. Fung,
Foutse Khomh, Giuliano Antoniol, Yann-Gaël Guéhéneuc. Investigating the relation between

lexical smells and change- and fault-proneness: an empirical study. Software Quality Journal
(SQJ), May 2016, Springer.

1.4.3 Linguistic anti-patterns, Design anti-patterns, Design patterns, their mutations and
Change- and Fault-Proneness

We perform our last study on seven software systems; examining 13 design anti-patterns, 8 design
patterns, and all types (17) of LAs. The results show that, indeed, DPs and DAPs mutate into other
DPs and–or DAPs.

Besides, we observed that these mutations are not random and we build a Markov model to capture
the probability of occurrences of the different mutations. Using this model; we show that these
mutations affect the fault-proneness of the classes participating in the mutating DPs and DAPs
differently.

We also identified the change types that trigger the mutations. At the end, we also investigate the
role of LAs on classes contains DPs and DAPs and find classes containing both DAPs and LAs to
be more change- and fault-prone than classes containing both DPs and LAs, as well as classes that
only have DAPs or LAs or DPs.

Using this information, developers can focus on the design patterns that are most likely to mutate
into design anti-patterns and–or to have more fault-proneness. Thus, this information can help
development and quality assurance teams to better focus their refactoring efforts. This is likely to
be useful to control and improve the quality of their systems. The results of this study are currently
under review in the Empirical software engineering Journal (EMSE):

• Zeinab (Azadeh) Kermansaravi, Md. Saidur Rahman, Foutse Khomh, Yann-Gaël Guéhéneuc.
Investigating Design Patterns and Design Anti-pattern Mutations and Their Fault-proneness.
Empirical software engineering Journal (EMSE), June 2019.

Based on our three contributions and results, developers and companies (1) can focus on specific

6

types of LAs that have the most negative impact on the code understandability and refactor them
to improve the code understandability; (2) can refactor the classes that contain DAPs, which par-
ticipate in LAs, to prevent changes and faults; (3) avoid DAPs and DPs mutations that lead to
increased change- and fault-proneness; and (4) refactor mutated classes that contain LAs to prevent
the introduction of more faults in their system.

1.5 Roadmap

The remainder of this dissertation provides the following content:

Chapter 3 reviews related work on quality, linguistic anti-patterns, design patterns, and design anti-
patterns quality analysis.

Chapter 2 provides the definition of linguistic anti-patterns, design patterns, and design anti-patterns,
as well as the detection techniques that we used for our studies.

Chapter 4 reports our first study on the impact of linguistic anti-patterns on the quality and specifi-
cally on code understandability. We present and discuss the results of the empirical study.

Chapter 5 presents our second study on exploring the impact of design anti-patterns and linguistic
anti-patterns on systems change- and fault-proneness, and provides quantitative evidence of the
negative impact of design anti-patterns on classes change- and fault-proneness.

Chapter 6 investigates the mutation between design patterns and design anti-patterns in systems,
and analyzes the effects of their mutation in classes on change- and fault-proneness. We also study
the impact of the occurrences of linguistic anti-patterns on change- and fault-proneness during the
evolution of systems.

Chapter 7 presents the conclusions of this dissertation and outlines some directions of future re-
search.

7

CHAPTER 2 BACKGROUND

In this section, we provide background information about the different types of linguistic anti-
patterns, design anti-patterns, and design patterns including their definitions, and detection.

2.1 Linguistic Anti-patterns

2.1.1 Definition

Linguistic anti-patterns refer to bad naming practices of identifiers, comments, and implementation
of code entity. Arnaoudova et al. (2016) organized LAs (a.k.a lexical smells) into two categories:
those where methods are affected and those where attributes are affected.. Table 2.1 summarizes
these LAs providing their names, category, and short description. A detailed description of LAs is
available in (Arnaoudova et al., 2016).

Table 2.1 List of Linguistic anti-patterns by (Arnaoudova et al., 2016).

Name Category Description
A1 “Get” more than an accessor Method A getter that performs actions other than returning the corresponding attribute without documenting it.
A2 “Is” returns more than a Boolean Method The name of a method is a predicate suggesting a true/false value in return. However, the return type is not

Boolean but rather a more complex type allowing, thus a wider range of values without documenting them.
A3 “Set” method returns Method A set method having a return type different than void and not documenting the return type/values with an

appropriate comment.
A4 Expecting but not getting a single instance Method The name of a method indicates that a single object is returned, but the return type is a collection.
B1 Not implemented condition Method The comments of a method suggest a conditional behavior that is not implemented in the code. When the

implementation is default this should be documented.
B2 Validation method does not confirm Method A validation method (e.g., name starting with “validate,” “check,” “ensure”) does not confirm the validation, i.e.,

the method neither provides a return value informing whether the validation was successful, nor documents
how to proceed to understand.

B3 “Get” method does not return Method The name suggests that the method returns something (e.g., name starts with “get” or “return”), but the return
type is void. The documentation should explain where the resulting data are stored and how to obtain it.

B4 Not answered question Method The name of a method is in the form of predicate, whereas the return type is not Boolean.
B5 Transform method does not return Method The name of a method suggests the transformation of an object, but there is no return value and it is not

clear from the documentation where the result is stored.
B6 Expecting but not getting a collection Method The name of a method suggests that a collection should be returned, but a single object or nothing is returned.
C1 Method name and return type are opposite Attribute The intent of the method suggested by its name is in contradiction with what it returns.
C2 Method signature and comment are opposite Attribute The documentation of a method is in contradiction with its declaration.
D1 Says one but contains many Attribute The name of an attribute suggests a single instance, while its type suggests that the attribute stores a collection

of objects.
D2 Name suggests Boolean, but type does not Attribute The name of an attribute suggests that its value is true or false, but its declaring type is not Boolean.
E1 Says many but contains one Attribute The name of an attribute suggests multiple instances, but its type suggests a single one. Documenting such

inconsistencies avoids additional comprehension effort to understand the purpose of the attribute.
F1 Attribute name and type are opposite Attribute The name of an attribute is in contradiction with its type as they contain antonyms. The use of antonyms can

induce wrong assumptions.
F2 Attribute signature and comment are opposite Attribute The declaration of an attribute is in contradiction with its documentation. Whether the pattern is included or

excluded is, thus, unclear.

2.1.2 Detection

Arnaoudova et al. (2016) proposed a tool called LAPD (Lexical Anti-Patterns Detection) to detect
occurrences of LAs in software systems. It relies on the Stanford natural language parser((Toutanova

8

et Manning, 2000)) to identify the Part-of-Speech of the terms constituting the identifiers and com-
ments and to make relations between those terms. We used LAPD for our first contribution pre-
sented in Chapter 5, because it was the most recent approach that deals with large number of LAs; it
has a catalog of 17 LAs. The rationale and specifications of these LAs are detailed in (Arnaoudova
et al., 2013). LAPD is available on-line1 as an extension of CheckStyle.

We also implemented an extension of PMD2 used for our second and third contributions presented
in Chapters 4, and 6, respectively. We reused the same algorithms as Arnaoudova et al. to make
the detection process faster. This extension is also available on-line3. PMD is an open source static
Java code analyzer. It is a plug-in for IDEs, like Eclipse or jEdit. It is used to find bad programming
practices that can reduce performance. It also detects copied–pasted pieces of code and other poor
practices. It uses an Abstract Syntax Tree to identify occurrences of poor practices. We added new
rules and rule-sets related to each type of LA to detect linguistic anti-patterns. These rules stem
from the definitions of the LAs by (Arnaoudova et al., 2016).

Our PMD-extension have been implemented to detect LAs in methods, variables and parameters,
and documentation. We used the Stanford parser to extract the POS of words and WordNet to
obtain the meaning of the words in the documentation, the methods signatures, and the relations
between the words (like antonyms or synonyms).

Because it is essential to ensure that detected instances of LAs were true instances, three researchers
from the PolyMORSE research group manually verified every code snippet involved in the experi-
ments to confirm the presence (respectively absence) of LAs in the systems.

2.2 Design Anti-patterns

The concept of design anti-patterns in object-oriented systems was first introduced by (Webster,
1995) in his book. Three years later, (Brown et al., 1998) introduced 40 types of design anti-
patterns in terms of lower-level code smells. In the following, we present some of them.

2.2.1 Definition

Design anti-patterns are poor design solutions to recurring design problems. In this dissertation,
we focus on 13 design anti-patterns from Brown et al. (1998) and Soloway et al. (1983). The
motivation behind our choice is that these design anti-patterns have been thoroughly described by
Brown et al. (1998) and they have received significant attention from researchers, e.g., (Khomh

1http://www.veneraarnaoudova.com/linguistic-anti-pattern-detector-lapd/
2https://pmd.github.io/
3http://www.ptidej.net/downloads/replications/sqj19a/Tool/

9

et al., 2012), (Taba et al., 2013). We could detect several occurrences of these design anti-patterns
across the studied releases, and they are representative of design and implementation problems
related to object-oriented systems.

• AntiSingleton (AS): a class that provides mutable class variables, which could be used as
global variables.

• Blob (BL) or God Class (GC): a class that is too large and not cohesive enough, which
monopolizes most of the system processing, takes most of the decisions, and is associated to
data classes.

• ClassDataShouldBePrivate (CS): a class that exposes its fields, thus violating the principle of
encapsulation.

• ComplexClass (CC): a class that has (at least) one large method and complex method, in
terms of cyclomatic complexity and line of codes LOCs.

• LargeClass (LC): a class that has (at least) one large method, in terms of LOCs.

• LazyClass (LZC): a class that has few fields and methods and doesn’t do enough.

• LongMethod (LM): a class that has a method that is overly long, in terms of LOCs.

• LongParameterList (LP): a class that has (at least) one method with a long list of parameters
with respect to the average numbers of parameters per methods.

• MessageChain (MCh): a class that uses a long chain of method invocations to realize one of
its functionality.

• RefusedParentBequest (RP): a class that overrides methods using empty bodies.

• SpaghettiCode (SC): a class declaring long methods which do not have any parameters. The
class uses the many gotos, exceptions, global variables, or any other unstructured constructs.
These methods have too complex and complicated control structures. This class does not use
polymorphism and–or inheritance.

• SpeculativeGenerality (SG): a class that is defined as abstract but that has very few children,
making use of its methods.

• SwissArmyKnife (SA): a class whose methods can be divided into disjoint sets of many
methods, thus providing many different, unrelated functionalities.

10

2.2.2 Detection

We use the Defect DEtection for CORection Approach (DECOR) proposed by (Moha et al., 2010)
to detect occurrences of design anti-patterns. DECOR offers a domain-specific language to auto-
matically generate design defect detection algorithms.DECOR leverages the Patterns and Abstract-
level Description Language meta-model (PADL) (Guéhéneuc et Antoniol, 2008) and the Primitive,
Operators, and Metrics framework (POM) (Gueheneuc et al., 2004) to detect design anti-patterns
in object-oriented systems.

A domain-specific language is more flexible than ad hoc algorithms (Moha et al., 2010) because,
domain experts (software developers) can modify the detection rules manually using high-level
abstractions, considering the context, environment, and characteristic of the analyzed systems.
PADL (Guéhéneuc et Antoniol, 2008) is a meta-model to describe object-oriented systems at dif-
ferent abstraction levels while POM (Gueheneuc et al., 2004) is a PADL-based framework that
implements more than 60 metrics. The output of DECOR is a list of classes and their roles (if any)
in occurrences of design anti-patterns.

Using this domain-specific language, DECOR proposes the descriptions of several design anti-
patterns. It also provides algorithms and a framework, DeTeX, to convert design anti-pattern de-
scriptions automatically into detection algorithms. DeTeX allows detecting occurrences of design
anti-patterns in various object-oriented systems written in different programming languages, such
as Java or C++. We used DECOR because it has been widely-acknowledged and used in past and
recent research; it achieves 100% recall while having a 31% precision rate in the worst case; with
an average precision greater than 60%.

2.3 Design Patterns

A design pattern is a general repeatable solution to a commonly occurring design problems. Design
patterns are reported to improve software quality. We study eight design patterns from Gamma et

al.’s book, i.e., (Gamma, 1995), in our study listed below. We selected theses specific patterns
because of their popularity and because previous works also studied them, e.g., (Tsantalis et al.,
2006; Vlissides et al., 1995).

2.3.1 Definition

The complete definition and specification of all design patterns are available in previous work (Vlis-
sides et al., 1995; Khomh et al., 2009a). In the following, we define only the ones considered in
this thesis.

11

• Builder (Bu): a pattern to separate the construction of a complex object from its representa-
tion.

• Command (Cm): a pattern to encapsulate a request as an object.

• Composite (Cp): a pattern that composes objects into tree structures to represent part-whole
hierarchies. Composite lets clients treat individual objects and compositions of objects uni-
formly.

• Decorator (De): a pattern that attaches additional responsibilities to an object dynamically.
Decorators provide a flexible alternative to sub-classing for extending functionality.

• Factory Method (FM): a pattern that defines an API for object creation in which subclasses
choose the class to instantiate.

• Observer (Ob): a pattern that defines a one-to-many dependency between objects so that
when one object changes state, all its dependents are notified and updated automatically.

• Prototype (Pt): a pattern that specifies the kind of objects to create using a prototypical
instance.

• Singleton (Si): a pattern that restricts the instantiation of a class to one object. This is useful
when exactly one object is needed to coordinate actions across the system.

2.3.2 Detection

We use the Design Motif Identification Multi-layered Approach (DeMIMA) by (Guéhéneuc et
Antoniol, 2008) to detect occurrences of design patterns. DeMIMA checks the traceability be-
tween design motifs (the micro-architecture describing the solutions of the design patterns) and
the source code. The tool discovers idioms relevant to binary class relationships and then provides
an idiomatic model of the source code. The model helps to identify design motifs while mak-
ing a design model for the system. DeMIMA can recover idioms related to both the relationships
among classes and design motifs describing the organization of the classes. DeMIMA specifies
use, association, aggregation, and composition relationships in the system.

DeMIMA is organized in three layers. The first two layers are used to recover the abstract model of
the source code including the binary class relationships, while the third layer defines design motifs
and their representations in the abstract model.

DeMIMA uses explanation-based constraint programming to identify occurrences of design motifs
using the roles and, relationships describing the motifs and the PADL models of the systems. It

12

reports the micro-architectures that are occurrences of the motifs as well as approximations done
during the identification process. The output of DeMIMA is a list of classes and their roles (if any)
in the occurrences of design patterns.

Guéhéneuc and Antoniol (Guéhéneuc et Antoniol, 2008) report that DeMIMA achieves 100% recall
and 34% precision when detecting design patterns.

13

CHAPTER 3 RELATED WORK

In this chapter, we present a survey of related work on smells, their evolution, and impact on
change- and fault-proneness. We categorized these studies into linguistic anti-patterns, design
anti-patterns, and design-pattern detection and their evolution and impact on change- and fault-
proneness.

3.1 Definition and Detection of Linguistic Anti-patterns (LAs)

Multiple studies on source code identifiers, e.g., (Caprile et Tonella, 2000; Merlo et al., 2003;
Caprile et Tonella, 1999; Anquetil et Lethbridge, 1998) have highlighted the necessity of choosing
appropriate and meaningful identifiers during the implementation of a software system. In this
section, we summarize previous work related to the definition of LAs, their detection, and their
effect on software evolution.

Abebe et al. (2009) proposed the first definition of lexicon bad smells. These lexicon bad smells
are characterized by the use of abbreviations, contractions, and–or strange grammatical structures.
They report that such lexicon bad smells have a negative impact on concept location activities.
Lexicon bad smells can lead to understandability issues during software maintenance, which can
be solved through refactoring. Following this pioneer work, Arnaoudova et al. (2013) defined a
new category of smells (i.e., LAs) related to poor practice on naming, documentation, and imple-
mentation of an entity. They focused on a higher level of details related to inconsistencies between
method names, parameters, return types and comments, and also between attribute names, types,
and comments. They categorized LAs into two groups based on methods and attributes.

There are different proposed approaches to detect lexicon bad smells and LAs in particular. Tan
et al. (2007) proposed three useful approaches to detect incoherence between code and comments.
The first called, @iComment, detects lock- and call- related inconsistencies (Tan et al., 2007). The
second approach, @aComment, find synchronization incoherence relevant to interrupt context (Tan
et al., 2011). Finally, @tComment, is an automatic approach which proposed to deduce the proper-
ties form Javadoc linked to null values and exceptions; it performs test case generation when there
is an inconsistency between the obtained properties (Tan et al., 2012).

Besides, De Lucia et al. proposed COCONUT to verify consistency between the lexicon of high-
level artifacts and of source code, based on the textual similarity between the two artifacts (De Lucia
et al., 2011). The tool is very useful to improve the quality of identifiers and comments.

In 2013, Abebe et Tonella (2013) built an ontology to assist developers in the choice of identi-

14

fiers consistent with the concepts already used in the system. Finally, as a more recent work by
(Arnaoudova et al., 2016) proposed an approach called LADP to identify inconsistencies among
identifiers, source code, and comments. This technique handles generic naming and comments
issues in object-oriented programs, specifically in the lexicon and comments of methods and at-
tributes. The tool is very useful to detect LAs on c++ and Java source codes, but it is somehow
slow for large systems. We used this tool for two of our studies.

3.2 Definition and Detection of Design Anti-patterns (DAPs)

In 1995, (Webster, 1995) wrote the first book on “anti-patterns” in object-oriented systems. The
book describes design anti-pattern as a frequently used solution to a problem that provides ineffec-
tive effect.

One year later, Riel (1996) proposed 61 heuristics description of good object-oriented programming
to assess a program quality manually and improve its design and implementation. These heuristics
are similar to code smells.

Two years later, Brown et al. (1998) discussed about 40 types of design anti-patterns in terms of
lower-level code smells which, are considered as the basis of all the approaches to detect design
anti-patterns.

In this area, several approaches have been proposed to detect design anti-patterns. (Van Emden
et Moonen, 2002) developed the JCosmo tool which is able to visualize the code layout and de-
sign anti-patterns locations. The tool uses primitives and rules to detect the presence of smells
and design anti-patterns while parsing the source code into an abstract model (similar to the Famix
meta-model). The goal of JCosmo is evaluating code quality and helping developers to do refac-
torings. The main strength of JCosmo is visualizing problems by picturing the design.

Marinescu et al. developed a set of detection strategies to identify design anti-patterns using met-
rics (Rapu et al., 2004). Then, they added information collected from the documentation of prob-
lematic structures to the previous proposed detection strategies to detect design anti-patterns.

(iPlasma) (Marinescu et Lanza, 2006) is a unique platform for Software Modeling and Analysis
to detect design anti-patterns which calculates metrics from C++ or Java source code and applies
rules. The rules combined the metrics to find code fragments.

Khomh et al. (2009b) proposed a new approach using Bayesian network, which improve design
anti-pattern detection. Later on, Settas et al. (2012) built on this idea and proposed another ap-
proach that quantify the existence of a design anti-pattern based on probabilistic knowledge about
them. This knowledge contains the relationships of design anti-patterns through their causes, symp-

15

toms and consequences.

In this thesis, we used the DECOR method for design anti-patterns detection proposed by (Moha
et al., 2010). We selected thus tool because it has been used in past and recent research; it achieves
100% recall while having a 31% precision rate in the worst case; with an average precision greater
than 60%. We explain the approach in more details in Chapter 2.2.2.

3.3 Definition and Detection of Design Patterns (DPs)

Gamma (1995) wrote the first book on “design patterns” in object-oriented development.

Besides, one of the first papers about design patterns detection is by (Krämer et Prechelt, 1996).
They introduced an approach to detect design information directly from C++ header files and stored
in a repository. The design patterns are represented as PROLOG rules which are used to query the
repository. They try to detect five structural design patterns namely Adapter, Bridge, Composite,
Decorator, and Proxy.

Vokáč (2004) proposed an approach based on similarity scoring to compute the similarity between
the graph of a design pattern and the graph of a system to identify classes participating to a design
pattern.

There is another study by (Iacob, 2011) that identified proven solutions for recurring design prob-
lems using design workshops and systems analysis. It means that, during a design workshop, a
team of 3-5 designers design a system while considered design issues are collected. Moreover,
a set of systems are analyzed in order to recognize how the design issues are considered in the
implementation of existing solutions.

In this thesis, we applied DeMIMA by (Guéhéneuc et Antoniol, 2008) to detect the design patterns
presented in Chapter 2.3.2.

3.4 Evolution and Impact of Linguistic Anti-patterns

Abebe et al. (2012) examined the benefits of using LAs information alongside structural metrics
in fault prediction models. They measured the accuracy of prediction models in two scenarios: (1)
only structural metrics and (2) structural metrics and LAs. Through a case study with three open-
source systems (i.e., ArgoUML, Rhino, and Eclipse), they reported a significant improvement in
fault prediction capability, for models using LAs information.

Abebe et al. (2011) suggested an approach to reveal the extent to which LAs can hinder the exe-
cution of maintenance tasks. Using this approach, they conducted a study and reported that LAs
negatively affect concept location when using IR-based techniques.

16

Fakhoury et al. (2018) investigated the impact of the quality of lexicons on developers’ cognitive
loads using a functional brain-imaging technique and an eye-tracker. They provided empirical evi-
dences of the negative impact of poor source code lexicon on developers’ cognitive loads. Cognitive
load is related but not identical to understanding. It is a proxy measure for a subset of understand-
ability, focusing on effort.

We agree with the above-mentioned works that design anti-patterns are indicators of poor code
quality and that LAs can hinder program understanding and the execution of maintenance tasks, as
well as decreasing the quality of programs. In our work, we explore and compare the impact of
different types of LAs on the time and effort required to complete some understandability tasks, as
well as the correctness of the tasks. We also empirically investigate the additional relationship that
linguistic anti-patterns can have with change- and fault-proneness.

3.5 Evolution and Impact of Design Anti-patterns and Design Patterns

There are few studies that investigated both design anti-pattern and design-pattern evolution. Bie-
man et al. (2003) claimed that there is a relative stability in design pattern classes compared to other
classes. They showed that large classes are the most change-prone while pattern-based classes are
more change-prone than other regular classes.

Vokáč (2004) reported that different design patterns affect fault-proneness differently. This result
was obtained by studying a large C++ industrial system.

In the same direction, Gatrell et al. (2009) demonstrated that pattern-based classes are more change-
prone than non-pattern classes.

Olbrich et al. (2009) examined historical data of Lucene and Xerces over several years and found
that Blob classes and classes subjected to Shotgun Surgery are more change-prone than other
classes.

Khomh et al. (2012) investigated the impact of anti-patterns on the change- and fault-proneness on
classes. They considered 13 design anti-patterns and analyzed 54 releases of ArgoUML, Eclipse,
Mylyn, and Rhino. They observed that classes participating in design anti-patterns are significantly
more likely to be changed than other classes. This study also investigated two types of changes
experienced by classes with design anti-patterns: structural and non-structural changes. Structural
changes can change the class interface while non-structural changes concern only method bodies.
They concluded that structural changes are more likely to occur in classes participating in design
anti-patterns.

Yamashita et Moonen (2013) reported that developers cannot fully evaluate the overall maintain-

17

ability of a software system considering code smells definitions alone. Therefore, they recommend
combining different analysis approaches to achieve more complete and accurate evaluations of the
overall maintainability of a software system. In the same direction, (Taba et al., 2013) claimed that
design anti-patterns can tell developers about design choices which could be a good or bad one.
They try to improve the accuracy of fault prediction models using various metrics based on design
anti-patterns. To achieve this goal, they considered the history of design anti-patterns from their
inception. The results suggest that files participating in design anti-patterns are more fault-prone
than the other files. Besides, the proposed anti-pattern-based metrics can improve fault prediction
models, helping developers to focus their testing activities on classes that are more likely to exhibit
faults.

Jaafar et al. (2013) examined relationships between design anti-patterns and design patterns. Their
study showed that some design anti-patterns are significantly more likely to have relationships with
design patterns than others.

Jaafar et al. (2014) in a more recent work investigated the mutation of design anti-patterns and its
impact. They concluded that design anti-patterns often mutate into another form of more compli-
cated design anti-patterns. However, they found that mutated anti-pattern classes are significantly
less fault-prone than non-mutated classes.

In our work, We investigate how design patterns and–or anti-patterns mutate over time by modeling
the behavior of these mutations using Markov models. We investigate the impact of these mutations
on fault-proneness. We also study the types of changes to the code that lead to design patterns and
anti-patterns mutations. And finally, We study the most fault-prone transitions from design patterns
and–or anti-patterns.

18

CHAPTER 4 LINGUISTIC ANTI-PATTERNS AND PROGRAM COMPREHENSION

Linguistic anti-patterns negatively impact the understandability.

Having knowledge about LAs, and being proficient in the

language has a positive impact on understandability.

In this chapter, we perform an empirical study to investigate the impacts of linguistic anti-patterns
on code understandability.

4.1 Context

Design anti-patterns are “poor” practices in the design, documentation, or implementation of soft-
ware artifacts. They are usually introduced by developers who are not familiar with the software
system at hand and–or do not have enough knowledge and experience in solving some particular
problems (Brown et al., 1998; Khomh et al., 2012). Previous works reported that anti-patterns have
a negative impact on program comprehension (Abbes et al., 2011). Hofmeister et al. (2017) also
showed that shorter identifier names impact program comprehension negatively.

4.1.1 Research Problem and Contribution

Linguistic anti-patterns (LAs) introduced by (Arnaoudova et al., 2016) are anti-patterns that relate
to inconsistencies in naming, documentation, and implementation of code entity. Arnaoudova et al.
(2016) examined the developers’ perception of the quality of code snippets containing LAs and
reported that developers consider LAs to be poor practices that should be refactored. Fakhoury et al.
(2018) studied the effect of LAs and readability on developers’ cognitive load using a minimally-
invasive functional brain-imaging technique (functional Near Infrared Spectroscopy, fNIRS) and
an eye-tracker. They reported that LAs have a negative impact on developers’ cognitive load.
Although these previous works established a relation between the occurrence of LAs and program
comprehension, they did not investigate if different types of LAs affect comprehension differently.
Moreover, they did not study the effect of prior knowledge of the LAs on developers’ understanding
of code containing LAs.

In this chapter, we perform an empirical study to investigate how the occurrences of LAs in the
systems impact on code understandability as one of the main factors of software quality.

To achieve this goal, we report on two experiments ExpBefore and ExpAfter investigating whether
seven different types of LAs affect code understandability equally. These two experiments allow us

19

to also investigate whether knowing the characteristics of LAs improves developers’ understand-
ability of code snippets containing LAs.

In the first experiment (i.e., ExpBefore), participants do not have any knowledge of the LAs. We ask
the participants to perform program comprehension tasks on code containing LAs or the refactored
code without LAs. After this experiment, we give participants a series of lectures about LAs. We
follow the lectures by a test aimed at assessing their acquired knowledge of LAs. Two weeks after
these lectures, we conduct a second experiment (i.e., ExpAfter) using different systems and different
comprehension tasks but under the same conditions as ExpBefore. We measure the participants’
performance in the two experiments using three metrics: (1) perceived effort (measured using the
NASA Task Load Index, TLX), (2) time spent to find correct answers to the tasks (measured using
a hidden automatic timer), and (3) correctness of their proposed solutions (measured by comparing
the solutions to an oracle). A total of 230 participants from two Universities participated in our
experiments. We retained and analyzed the responses of 142 participants who completed all the
experiments and quiz, and who did not have any prior knowledge about LAs.

Our results show that the presence of one LA in a code snippet affects the participants’ correctness,
time, and effort, considerably. Specifically, the LAs “Set method returns”, “Says one but contains

many”, and “Not answered questions” have the most negative impact on understandability while
“Says many but contains one” and “Attribute name and type are opposite” are the most difficult to
detect. It also reports that knowing about LAs yields considerable improvements in the participants’
correctness and a modest improvement in their time and effort. Therefore, it may be beneficial to
teach developers about LAs. Also, being fluent in the language in which comments and identifiers
are written can mitigate the negative impact of LAs.

4.1.2 Research Questions

This chapter answers the following research questions:

• RQ4.1: Do LAs affect developers’ understandability of the code? To answer this research
question, we ask the participants to perform two comprehension tasks and six detection tasks,
using different code snippets from the studied systems, that may or may not contain LAs. We
examine whether the occurrence of LAs in the code affects the time spent by participants
performing the tasks, their effort, and the correctness of their solutions.

• RQ4.2: Do different types of LAs affect unknowledgeable developers’ understandability?
We distinguish between different types of LAs. For each of the seven types of LA under
study, we define one comprehension or detection task, and study whether different types of

20

LAs affect the participants’ understanding differently when the participants do not know LAs
(ExpBefore).

• RQ4.3: Do different types of LAs affect knowledgeable developers’ understandability? We
repeat the same experiment as in RQ4.2 but after giving a series of lectures about LAs to the
participants. Thus, we investigate whether knowing LAs changes the impact of LAs on the
participants’ correctness, effort, and time, in comparison with the results of RQ4.2.

• RQ4.4: Can knowledge about LAs mitigate the impact of LAs on understandability? We
investigate if having knowledge about LAs helps participants in understanding code snippets
when performing comprehension and detection tasks. We evaluate the participants’ knowl-
edge about LAs through a quiz. Then, we investigate potential correlations between their
level of knowledge of LAs and the participants’ understanding (measured in terms of time,
effort, and correctness).

• RQ4.5: Can knowledge of the language in which comments and identifiers are written
mitigate the effect of LAs on developers’ understandability of the code? LAs are related
to the meaning of identifiers and the comments written in the code. We hypothesise that
participants fluent in the language in which the identifiers and comments are written (e.g.,

English) should have less difficulty when faced by LAs in comparison to those who are
not fluent in that language. We compare the performances of participants who are fluent in
English with that of others who are not fluent.

4.2 Study Design

We now describe our studied LAs, experiment design, participants, analyzed systems, and indepen-
dent and dependent variables.

4.2.1 Studied LAs

Arnaoudova et al. (2016) examined LAs from seven open source systems written in Java and C++,
to understand how they are perceived by developers. They collected the opinion of both internal
developers (who wrote the code) and external developers who had no prior knowledge of the studied
systems. Table 4.1 summarises their findings. Building on these findings, we selected the following
LAs for our study:

• A2: “Is returns more than a Boolean”

• A3: “Set method returns”

21

• B4: “Not answered question”

• F1: “Attributes name and type are opposite”

• F2: “Attributes signature and comments are opposite”.

We chose these LAs because they were deemed the least acceptable by the developers. In addition
to these five LAs, we also selected the top-two most frequent LAs from our ten subject systems.
The stacked chart in Figure 4.1 shows the percentages of each type of LA in the studied system.
It indicates that D1–“Says one but contains many” and E1–“Says many but contains one” are the
two most frequent LAs in all the studied systems. Figure 4.2 presents the most prevalent LAs in
the studied systems. In the following, we present some examples of the seven selected LAs. More
examples of LAs are available in (Arnaoudova et al., 2013).

• D1: “Says one but contains many”.

• E1: “Says many but contains one”

Argo
UM

L0.3
4

Argo
UM

L0.1
4

Coc
oo

n2
.2.

0

JF
ree

Cha
rt1

.0.
19

JH
otD

raw
7.0

.6

Rhin
o1

.7.
7.2

Xerc
es2

-j2
-11

-0

Apa
ch

e-A
nt-

1.1
0.1

Hibe
rna

te5
.2.

12
.Fina

l

Apa
ch

e-c
om

man
s-l

an
g-3

.7

Apa
ch

e Had
oo

p3
.0.

00

20

40

60

80

100

A1 A2 A3 A4 B1 B2 B3 B4 B5 B6
B7 C1 C2 D1 D2 E1 F1 F2

Figure 4.1 LAs occurrences percentages in the studied systems

Listing 4.1 Example of A2–“Is returns more than a Boolean” (Cocoon2.2.0)

public int isValid () {

final long currentTime = System. currentTimeMillis () ;

if (currentTime <= this . expires) {

22

Table 4.1 Detected occurrences of LAs studied in (Arnaoudova et al., 2016) and developers’ per-
ceptions

Name External Developers’ perception Internal Developers’ perception Detected LAs
Very Poor Poor Total Java Systems Whole studied systems

F2 Attribute signature and comments are opposite %30 %63 %93 It is a poor practice %0.79 %2.16
B4 Not answered question %34 %48 %82 It is a poor practice %1.19 %0.45
F1 Attribute name and type are opposite %23 %54 %77 It is a poor practice %0.03 %5.37
A3 “Set” method returns %43 %32 %75 It is a poor practice %14.39 %6.36
A2 “Is” returns more than a Boolean %13 %47 %60 It is a poor practice %1.09 %2.44
A4 Expecting but not getting a single instance %7 %30 %37 It is a poor practice %5.58 %2.30
B3 Get method does not return %36 %54 %90 %2.80 %0.87
C2 Method signature and comment are opposite %41 %41 %82 %11.78 %8.51
B6 Expecting but not getting a collection %14 %66 %80 %7.76 %3.37
D2 Name suggests Boolean but type are opposite %20 %57 %77 %7.26 %8.30
E1 Says many but contains one %14 %62 %76 %10.63 %17.65
B1 Not implemented condition %44 %24 %68 %10.76 %3.37
B2 Validation method does not confirm %14 %54 %68 %9.34 %6.16
C1 Method name and return type are opposite %14 %54 %68 %0.03 %0.26
D1 Says one but contains many %11 %29 %40 %10.73 %23.7
B5 Transform method does not return %4 %54 %58 %4.95 %4.05
A1 “Get” more then an accessor %4 %32 %36 %0.86 %0.64

// The delay has not passed yet −−
// assuming source is valid .

return SourceValidity .VALID ;

}

// The delay has passed ,

// prepare for the next interval .

this . expires = currentTime + this . delay ;

return this . delegate . isValid () ;

}

Listing 4.1 shows an example of “A2–“Is” returns more than a Boolean" LA, which belongs
to the subcategory of “Methods”. The method name isValid suggests that the method returns
a boolean but it returns more information, which is counterintuitive. The LA occurs in class
DelayedValidity. A proper documentation should provide explanation about the lack of re-
turned value.

Listing 4.2 Example of A3–“Set method returns” (Apache Ant 1.10.1)

public Object setProperty (final String key, final String value) throws NullPointerException {

final Object obj = super . setProperty (key, value) ;

// the above call will have failed if key or value are null

innerSetProperty (key, value) ;

return obj ;

23

Argo
UM

L0.3
4

Argo
UM

L0.1
4

Coc
oo

n2
.2.

0

JF
ree

Cha
rt1

.0.
19

JH
otD

raw
7.0

.6

Rhin
o1

.7.
7.2

Xerc
es2

-j2
-11

-0

Apa
ch

e-A
nt-

1.1
0.1

Hibe
rna

te5
.2.

12
.Fina

l

Apa
ch

e-c
om

man
s-l

an
g-3

.7

Apa
ch

e Had
oo

p3
.0.

00

20

40

60

80

100

B6 D1 E1 F2

Figure 4.2 The most prevalent LAs in the studied systems

}

Listing 4.2 presents an example of LA of type “A3”, where the method name is setProperty
but it returns an Object. Setters should not return anything.

Listing 4.3 Example of B4–“Not answered question” (ArgoUML v0.34)

protected void hasEditableBoundingBox (boolean value){

bboxField. setEnabled(value) ;

bboxLabel.setEnabled(value) ;

}

Listing 4.3 presents an example of the “B4–Not answered question" LA.
The method name hasEditableBoundingBox has the form of a predicate but its return type is
not Boolean. The method hasEditableBoundingBox declared in class StylePanelFig
has a name that suggests a Boolean value but it returns nothing (void).

Listing 4.4 Example of D1–“Say one but contains many” (Rhino1.7.7.2)

// constructor

public TableModelCritics () {}

// accessors

24

public void setTarget (vector critic){

_target = critic ;

// fireTableStructureChanged () ;

}

Listing 4.4 shows an example of LA of type “D1”. There is an attribute name critic that is
singular but the type is vector.

Listing 4.5 Example of E1–“Says many but contains one” (Hibernate-release-5.2.12-final)

public class Cashing{

// NOTE: TruthValue for now because I need to look at how JPA’s SharedCacheMode concept is

handled

private TruthValue requested = TruthValue .UNKNOWN;

private String region ;

private AccessType accessType;

private boolean cacheLazyProperties ;

public Cashing(TruthValue requested){

this . requested = requested ;

}

}

Listing 4.5 contains a LA of type“E1”, where the name of attribute is cashLazyProperties
while the type is Boolean. The name of attribute suggests that it stores a collection but the type
is Boolean.

Listing 4.6 F1–Example of “Attributes name and type are apposite” (ArgoUML 0.14)

MAssociationEnd Start = null ;

Listing 4.6 presents a LA of type “F1”. The name of an attribute from class ActionNavigability
uses the antonyms start and end, as a part of the type of the attribute.

Listing 4.7 F2–Example of “Attributes name and type are opposite” (ArgoUML 0.14)

public class SuffixLines

extends BaseParamFilterReader

implements ChainableReader{

25

// Parameter name for the prefix .

private static final String SUFFIX_KEY = ‘‘suffix’’;

// The suffix to be used.

private String suffix = null ;

// Data that must be read from, if not null .

private String queuedData = null ;

// Constructor for ‘‘dummy’’ instances .

public SuffixLines (){

super () ;

}

...

}

Listing 4.7 presents a LA of type “F2”. An attribute name in class SuffixLines is suffix while
the comment documenting it says Parameter name for the prefix.

4.2.2 Experiment Design

We perform two experiments to evaluate the impact of LAs on participants’ understandability. We
ask the participants to perform program comprehension tasks on code containing or not occurrences
of LAs. All the experiments were conducted throughout a period of six weeks. The first experiment
was performed by participants who did not have any knowledge about LAs (ExpBefore) during one
week. Afterwards, these participants were educated about LAs. After this course, they took a quiz
test about LAs within a period of one week. To investigate whether knowing LAs can improve
understandability in terms of time, effort, and correctness, two weeks later, the same participants
had one week to perform the second experiment (ExpAfter). For each step (experiments and quiz),
we asked participants to complete all the tasks within the same day of their choice.

We evaluated the participants’ knowledge about LAs through a quiz after a dedicated course to
ensure they understood LAs well. If the quiz revealed that some participants did not understand the
LAs well, then we would exclude them from our collected data. A total of 230 students attended
our lectures on LAs and took the quiz test.

We divided the students to two groups, Group A and Group B, based on their group IDs.

In ExpBefore, we provided two similar on-line questionnaire forms for two groups. Group A are

26

participants with odd student IDs while Group B are those who have even student IDs. Each group
had eight questions related to different types of LAs. ExpAfter has the same structure as ExpBefore,
but different code snippets, and different questions. Having two groups of students help to have
more questions and cover more types of LAs.

Each questionnaire contains four questions: Q1 and Q2 are general comprehension questions on
excerpts from the studied systems; Q3 is a detection question in a Java class; Q4 includes five
sub-questions Q(4.a to 4.e) to ask participants to find possible LAs in code snippets and to suggest
the refactoring solutions. We give Q1 to Group A with one particular type of LA while Group
B is given a refactored version of the same source code (i.e., with the LA removed). We do the
contrary for Q2 in which Group B receives the LA and Group A has the refactored code. We want
to investigate the impact of the occurrences of LAs on code understandability, where each of the
two groups deal with the code that contain one type of LA, and the clean code on another question.

For ExpBefore, in the first question (Q1), we asked participants to find the method name that does
a specific task to understand whether bad method naming can impact their understandability, and
for the second question (Q2), we asked them a similar question, but now focusing on variables,
to understand how bad attribute naming can affect their understandability. Since we focus on
understandability, we asked participants in Q3, which element(s) were responsible for the confusion
(in case they reported to have been confused by some identifiers and–or comments). Q(4.a to 4.e)
were about finding bad coding practices in some code snippets and comments. We wanted to
investigate the extent to which participants could identify LAs in a piece of code.

In ExpAfter, for both questions (Q1, and Q2), we asked comprehension questions on code contain-
ing “A3”, and “B4”, to understand the impact of these two LAs on code understandability? Q3,
Q(4.a to 4.e) were similar to those asked in ExpBefore.

Figure 4.3 and Table 4.2 present the design of this study, in which “Correct” indicates the code snip-
pets not containing any LA. The questionnaires for ExpBefore, Quiz, and ExpAfter are available
on- line1.

As it can be seen on Table 4.2, we did not have the same number of answers per LA in ExpBefore
and ExpAfter. For example, Group A in ExpBefore who answered a question about “B4” had
40 participants, while in ExpAfter, Group B which dealt with the same LA (i.e., “B4”) had 50
participants. Because of these differences between the size of our corresponding groups (i.e., Group
A in ExpBefore with 40 participants versus Group B in ExpAfter with 50 participants), we took
average values for time, effort, and correct answers in each steps, to make the results comparable.

For each research question, we also removed outlier values, because we observed the same trend

1http://www.ptidej.net/downloads/replications/sqj19a/Questionnaire/

27

when considering or not these outliers. We assumed that the outliers are due to participants who
did not consider the time, i.e., they opened a question and took a break. Indeed, participants did not
know that the time was recorded because the timer was hidden. Overall, each participant performed
at least one task for each type of LA.

Figure 4.3 Study Design Diagram

Table 4.2 Study Design

Question ExpBefore ExpAfter
Group A Group B Group A Group B

Q1 A2 (with) A2 (without) A3 (with) A3 (without)
Q2 E1 (without) E1 (with) B4 (without) B4 (with)
Q3 F1 F1 D1 D1
Q(4.a) Correct A3 E1 E1
Q(4.b) B4 D1 F2 F2
Q(4.c) Correct Correct F1 F1
Q(4.d) F2 Correct A2 A2
Q(4.e) A3 F2 A3 A3

4.2.3 Participants

A total of 230 participants were involved in our two experiments. These participants were graduate
students from Polytechnique Montreal and Concordia University. The participants from Polytech-
nique Montreal were students in the courses LOG8430 (Software Architecture and Advanced De-
sign) and LOG8371 (Software Quality Engineering), while those from Concordia University were
enrolled in the course SOEN6461 (Software Quality Engineering). All these participants reported
that they have good programming skills. A majority of them had between one and three years of
experience working in Industry prior to embarking in graduate studies. From our initial group of

28

230 participants, only 142 people had no prior knowledge of LAs and completed all our activities,
i.e., the two experiments (ExpBefore and ExpAfter), the lectures, and the quiz test. Therefore, in
the following, we report only the results of these 142 participants. The drop-out rate of 38% is due
to the voluntary nature of the experiments (i.e., the students were not forced to participate in the
experiments). Also, we excluded all the students who reported to have a good knowledge of LAs
because we wanted to know if training developers about LAs could improve their ability to deal
with code containing LAs (we needed participants with no prior knowledge of LAs in ExpBefore).

4.2.4 Studied Systems

Using convenience sampling as (Shull et al., 2007), we chose ten systems written in Java from
different domains, and different sizes for the experiments: Apache Ant, Apache Hadoop, Apache
commons-lang, ArgoUML (two versions), Cocoon, JFreeChart, JHotDraw, Hibernate, Rhino, and
Xerces. These systems are open source; allowing for an easy replication of our study, which have
been studied several times in the previous studies. In definition, Apache ANT2 is a system related
to software build processes. Apache Hadoop3 includes a collection of open-source software utilities
using a network of many computers to solve data and computation problems. Apache commons-
lang4 is used to provide extra methods, which can not be produced by the standard Java libraries for
manipulation of its core classes. ArgoUML5 is an open-source UML modeling tool written in Java.
Cocoon6 is a web application framework based on the concepts of pipeline, separation of concerns
and component-based web development. JFreeChart7 is an open-source framework use to create
a wide variety of both interactive and non-interactive charts. JHotDraw8 is a two-dimensional
graphics framework for structured drawing editors that is written in Java. Hibernate (ORM)9 is an
open-source Java persistence framework project. Rhino10 is a commercial 3D computer graphics
and computer-aided design application software, and Xerces11 is a collection of software libraries
for parsing, validating, serializing and manipulating XML.

First, we detect LAs in these systems to find the most frequent LAs. Second, we use different Java
classes and code snippets from these systems as real examples of the occurrences of LAs. Table
4.3 describes the studied systems.

2http://ant.apache.org/
3https://hadoop.apache.org/
4https://commons.apache.org/proper/commons-lang/
5http://argouml.tigris.org/
6https://cocoon.apache.org/
7http://www.jfree.org/jfreechart/
8https://sourceforge.net/projects/jhotdraw/
9http://hibernate.org/

10https://www.rhino3d.com/
11https://xerces.apache.org/

29

We also chose these systems because previous studies analyzed some of them (i.e., “ArgoUML,
Cocoon, JFreeChart, Xereces”) to study the impact of design anti-patterns on program comprehen-
sion (Abbes et al., 2011) and that of linguistic anti-patterns on change- and fault-proneness (Guer-
rouj et al., 2015). We also chose these systems because they contain different types of LAs and
could be easier or more complex to understand. For ArgoUML, we considered two versions, be-
cause in ArgoUML0.14 there were a LA of type “F1”, but developers solved it during the software
evolution. Other types of LAs were also removed during the evolution of ArgoUML0.14. Hence,
we also study the last version of ArgoUML (ArgoUML0.34).

Table 4.3 Studied Systems

Systems Release date

System 1
ArgoUML0.34 2011-12-15
ArgoUML0.14 2003-12-05

System 2 Cocoon2.2.0 2013-03-14
System 3 JFreeChart1.0.19 2014-07-31
System 4 JHotDraw7.0.6 2011-09-06
System 5 Rhino1.7.7.2 2017-09-27
System 6 Xerces2-j2-11-0 2010-11-26
System 7 Apache Ant1.10.1 2017-02-06
System 8 Hibernate5.2.12.Final 2017-10-19
System 9 Apache commons-lang-3.7 2017-11-08
System 10 Apache Hadoop3.0.0 2017-12-13

4.2.5 Questions

We used comprehension and detection questions to collect data on the participants’ performances.
Two researchers selected the Java classes and code snippets from the studied systems based on the
studied LAs. Each Java class and code snippet contained only one type of LA. Refactored versions
of these code snippets (containing no LA) were also produced. Similarly to (Abbes et al., 2011),
we considered questions in two of the four categories of questions regularly asked and answered
by developers; see (Sillito et al., 2008):

• Finding a focus point in some subset of the classes and interfaces of some source code,
relevant to a comprehension task;

• Focusing on a particular class believed to be related to some task and on directly related
classes;

30

• Understanding a number of classes and their relations in some subsets of the source code;

• Understanding the relations between different subsets of the source code.

We only chose questions in the first two categories, because the last two categories concern ques-
tions that depend on different subsets of the source code and, in our experiments, LAs are located in
a single subset of the code (i.e., they don’t span multiple modules). For each group of participants,
we defined the following two types of questions. The text in bold is a placeholder that we replaced
by appropriate behaviors, concepts, elements, methods, and types depending on the systems on
which the participants were performing their tasks.

• Category 1: Finding focus points:

1. Which method is used to determine this value?

2. How does this assignment affect this variable?

For example, in the case of Apache Ant, we replace “this value” in Question 1, Category 1, by
restricted and the question reads: “Which method is used to determine the value of the
restricted attribute in the following link (Click on the link to show the code snippet)?”

• Category 2: Expanding focus points:

1. Where is the bad coding practice (specifically LA) in this method?

2. Where is the source of confusion in this method?

In this category of questions (i.e., Category 2), we wanted to assess the participants’ ability
to recognize bad coding practices (i.e., LAs) in source code.

After designing the survey questionnaires, we conducted a pilot study with 5 students from our
research group. This pilot study allowed us to refine the formulation of some questions. All
the questions used in our experiments are available on-line at http://www.ptidej.net/
downloads/replications/sqj19a/Questionnaire/.

4.2.6 Independent Variables

The independent variables of our experiments are variables capturing the presence/absence of the
seven studied LAs, and a variable capturing whether participants acquired or not knowledge of
LAs. These are variables that could affect the understandability of the participants.

http://www.ptidej.net/downloads/replications/sqj19a/Questionnaire/
http://www.ptidej.net/downloads/replications/sqj19a/Questionnaire/

31

4.2.7 Mitigating Factors

We have seven mitigating factors which could influence the participants’ understanding in terms of
time, effort, and correctness as follows:

• Participant’s age

• Participant’s gender

• Participant’s degree

• Participant’s knowledge level of programming

• Participant’s knowledge level of Java

• Participant’s working experience

• Participant’s level of English

We collected these mitigating factors using a postmortem questionnaire (feedback). This feedback
questionnaire was filled by participants at the end of ExpBefore. The questionnaire used a Likert
scale for each of the mitigating factor mentioned above.

4.2.8 Dependent Variables

The dependent variables measure the participants’ understandability in terms of effort spent do-
ing the task, time spent to answer the questions, and percentage of correctness. We measure the
participants’ effort using the NASA Task Load Index (TLX) (Hart et Staveland, 1988). TLX is a
multi-dimensional measure that evaluates the participants’ subjective workload based on a weighted
average of ratings on six sub-scales: mental demands, physical demands, temporal demands, own
performance, effort, and frustration. We consider three sub-scales including “mental demands”,
“effort”, and “frustration”. NASA provides a computer program to collect weights of six sub-
scales and ratings on these six sub-scales. We combine weights and ratings provided by the partic-
ipants into an overall weighted workload index by multiplying ratings and weights; the sum of the
weighted ratings divided by fifteen (sum of the weights) represents the effort (Hart et Staveland,
1988). An example of question asked to participants to capture “mental demand” is: “How much
mental and perceptual activity was required (e.g., thinking, deciding, calculating, remembering,
looking, searching, etc.)? We asked the participants to provide their responses on a scale from 1
(low) to 5 (high) for each question. We measured the time using a hidden timer in the questionnaires
(ExpBefore and ExpAfter). The timer automatically started when the participant began performing

32

the comprehension task, and stopped when the participant finished the task, and submitted an an-
swer. We received an automatic email whenever a participant completed a task. The email contains
all their answers, the time they spent on the task, and their reported effort (from TLX). Finally,
we computed the percentages of correctness for each question by dividing the number of correct
answers by the total number of questions.

4.3 Study Results

In this section, we present the results obtained for each research question.

4.3.1 RQ4.1: Do LAs affect developers’ understandability of the code?

To answer this question, we analyze the first two comprehension questions (Q1 and Q2) in the first
experiment answers (ExpBefore). We have two groups of participants. Both groups deal with one
code containing one LA and one code without any LAs. The LAs under study are: one LA from the
methods category (A2 “Is returns more than a Boolean”), and one LA from the attributes category
(E1 “Says many but contains one”). In the following, we analyze the participants’ answers for each
question in terms of time, effort, and correctness.

Correct Answers : For Q1, participants in the Group A were given code that contains one A2,
while participants in Group B, answered questions on the refactored code (i.e., without any LA).
Based on the collected data from Group A, and B, we can see that 39% of participants in Group B
found the right answer, while in Group A, this percentage is 31%.

With LA (Group A) Without LA (Group B)

30

35

40

31

39

42

30

#S
ub

je
ts

Right Answers Wrong Answers

Figure 4.4 Impact of occurrence of LA on “Correctness”:(Q1:A2)

For Q2, participants who were in the Group A were given the refactored code (i.e., without LA),
while those in Group B answered the comprehension question on code containing an LA of type

33

Without LA (Group A) With LA (Group B)

20

30

40

50
51

41

22

28

Right Answers Wrong Answers

Figure 4.5 Impact of occurrence of LA on “Correctness”:(Q2:E1)

E1. Based on the collected data, we observe that 51% of participants in Group A found the right
answer, while in Group B, this percentage is only 41%. The sum of percentages of right and wrong
answers in Figures 4.4 and 4.5 is not 100% because some participants did not complete the tasks.
We did not want to consider abandons as wrong answers, since that would distort the results.

Therefore, we can conclude that the occurrence of linguistic anti-pattern have negatively
affected the understandability to a certain extent. Besides, different types of linguistic
anti-pattern can have different effects on understandability. Based on the results, “A2”
can have more negative impact on program comprehension in comparison with “E1”.

Time: To answer this question, we just consider the time for the participants who answered the
question correctly. Based on Figure 4.7, for Q1, it took 4.17 minutes on average for the partici-
pants in Group A who answered the question correctly, and Group B, answered in 2.06 minutes on
average.

For Q2, it took 2.53 minutes on average for the participants in Group A to answer the question
correctly, while for Group B, participants took 2.40 minutes on average; which is a bit less than for
Group A.

For each research question, we removed outliers values, because we found the same trend when we
consider outliers and when we removed them. We provide an example of both (with and without
outliers) on Figures 4.6, 4.7, 4.8 and 4.9.

Based on our observations, we can conclude that the occurrence of “A2” can reduce the
speed of code understanding, but the occurrence of “E1” does not affect the time that
much.

34

0 20 40 60

With LA (Group A)

Without LA (Group B)

Time (Minute)

Figure 4.6 With Outliers

0 5 10 15 20 25

1

2

Time (Minute)

Figure 4.7 Impact of the occurrence of LA on “Time”(Q1): Without Outliers

Effort: Regarding participants self-reported efforts (captured using TLX), Figure 4.10 shows that
for the first question, the participants in Group A who could answer the question correctly reported
that finding the right answer was 60% difficult to some extent, while participants from Group B
reported an effort to answer Q1 equal to 50%. For participants who answered incorrectly, the
average effort reported was 46.6% in Group A, and 54.2% in Group B. Overall, participants who
provided correct answers on systems containing the LA reported a higher effort than those who
provided a correct answer on the system that didn’t contain any LA. Regarding the effort reported
by participants who failed to provide the correct answer, the effort is lower for those who worked on
system containing the LA, which may be a sign that the inconsistencies of LAs may have mislead
them in confidently picking a wrong answer.

For Q2, the participants in Group A who could answer the question correctly reported that finding
the right answer was 53.3% difficult to some extend, while participants from Group B (who worked

35

0 10 20 30 40 50

Without LA (Group A)

With LA (Group B)

Time (Minute)

Figure 4.8 Impact of the occurrence of LA on “Time”(Q2): With Outliers

0 5 10 15 20

1

2

Time (Minute)

Figure 4.9 Impact of the occurrence of LA on “Time”(Q2): Without Outliers

on the system containing the LA) who provided the correct answer reported an average effort of
60%, as shown on Figure 4.11. This result is consistent with the result obtained for Q1. Participants
from Group A who failed to provide a correct answer to Q2 reported an average effort of 48.1%,
while those from Group B who failed to provide a correct answer reported an average effort of
61.6%. Overall, it seems that participants had a difficult time finding correct answers in the system
containing the anti-pattern E1 “Says many but contains one”.

We performed the non-parametric Mann-Whitney test to compare the distributions of time, effort,
and correct answers obtained from participants who answered the questions on code containing
LAs versus those who worked on code without any LA. We did not find any statistically significant
difference.

36

20 40 60 80 100

With LA (GroupA)

Without LA (GroupB)

Effort (Percentage)

Figure 4.10 Impact of the occurrence of LA on “Effort”: (Q1)

20 40 60 80 100

Without LA (GroupA)

With LA (GroupB)

Effort (Percentage)

Figure 4.11 Impact of the occurrence of LA on “Effort”: (Q2)

Therefore, based on our observations, we can conclude that the occurrence of linguistic
anti-pattern can increase the effort to understand the code to a certain extent. However,
this increase is not statistically significant.

4.3.2 RQ4.2: Do different types of LAs affect unknowledgeable developers’ understandabil-
ity?

In this research question, we analyze data obtained from ExpBefore. In ExpBefore, we investigated
the impact of seven different types of LAs, using two metrics: correctness, and effort. We did not
consider time when answering to this research question because, the level of complexity of the code
snippets used in the different questions is not equivalent. Some LAs can appear in small pieces of
code, while others can be present only in larger code snippets. Since it is expected that participants
will take longer time inspecting/understanding a larger code snippet than a smaller code snippet. A

37

comparison of time would not have been relevant. Comparing the efforts and percentages of correct
answers for different types of LAs allows us to identify LAs that have a more pronounced impact
on understandability, as well as LAs that are difficult to identify in the code.

A2- “Is returns more than a Boolean”. Participants from Group A in ExpBefore, answered the
first question (Q1) including this type of LA. The results show that 31 participants out of 73, could
answer the question correctly. Overall, they reported an average effort of 57.8%.

A2- “Is returns more than a Boolean” is one of the easiest LAs to detect with an average
effort of 57.8%.

A3- “Set method returns”. We have one code snippet for this type in ExpBefore. Participants
from both groups answered a question about a code snippet containing this type of LA. Group A
have question (4.e), and Group B have question (4.a). The results show that only 6 participants
from group A, and only one participant from Group B could detect A3 correctly. Besides, the effort
is the highest value compared to other types. In general, we can conclude that when participants
did not have knowledge about A3, this type of LA was the hardest to detect.

A3- “Set method returns” has the most negative impact on understandability. Because,
participants expect only a value assignment inside such methods, however there is a re-
turn value. In addition, it is hard to detect this LA according to participants’ report.
Practitioners should consider refactoring this type of LA as soon as possible.

B4- “Not answered question”. In ExpBefore, only Group A in question (4.b) had a code snippet
containing B4. 14 participants out of 73 detected it correctly. They reported an average effort of
63.3%, which is high in comparison to the other types.

B4- “Not answered question” is one of the most problematic type, however, it has a less
negative impact compared to “A3” and “D1” on program comprehension.

D1- “Says one but contains many”. Only participants in the Group B from ExpBefore answered
questions on code snippets containing D1, in question (4.b). The results show that only four par-
ticipants out of 69 participants could detect this LA correctly. These four participants reported an
average effort (to find D1) of 85%.

D1- “Says one but contains many” is the second hardest LAs to detect among the other
six types based on the proportion of correct answers. However, participants report that
D1 is the hardest LA to detect in terms of effort.

38

E1- “Says many but contains one”. In ExpBefore, the second question for Group B contains
E1. In total 41 out of 69 participants could answer the question correctly. They reported an average
effort of 56.5%.

E1- “Says many but contains one” has been answered correctly by participants more than
the other types of LA.

F1- “Attribute name and type are opposite”. Participants from ExpBefore answered a question
on systems containing F1 (question 3). The results show that among all our final 142 participants,
only 26% (37 participants) of them identified this type of LA as a bad coding practice.

F1- “Attribute name and type are opposite” is hard to detect according to the proportion
of correct answers of participants.

F2- “Attribute signature and comments are opposite”. In ExpBefore, participants answered
questions on code containing instances of LA of type F2. Question (4.d) for Group A, and question
(4.e) for Group B. In total, 25 participants from Group A, and 17 participants from Group B could
detect F2 correctly among all the participants. They reported an average effort of 62.3%.

F2- “Attribute signature and comments are opposite” is not very easy to find and detect
when participants do not have knowledge about it. In addition, it is hard to detect this LA
according to participants’ reported effort.

A2 A3 B4 D1 E1 F1 F20

20

40

60

80

100

120

Correct Detection Effort

Figure 4.12 The most prevalent / least prevalent LAs in the studied systems (Before)

We Provide Table 4.4 to present all the obtained discussed results and make it easy to compare the
impact of different LAs on participants’ understandability before and after having knowledge about
LAs.

39

4.3.3 RQ4.3: Do different types of LAs affect knowledgeable developers’ understandability?

To answer this question, we do the same steps as in RQ4.2 but focusing on the data obtained from
ExpAfter. Similar to RQ4.2, we only consider correctness and effort, to evaluate the participants’
understandability. We want to know whether having knowledge about LAs can improve the partic-
ipants’ understandability? In the following, we discuss each type of LA in more details, following
the same format as RQ4.2.

A2- “Is returns more than a Boolean”. In ExpAfter, both groups of participants answered a
question on code containing one A2 (Q4.d). The results show that 130 out of 142 participants
could detect this LA. Participants reported an average effort of 61.4%.

A2- “Is returns more than a Boolean” is one of the easiest LAs to detect when participants
have knowledge of it. Participants reported an average effort of 61.2%.

A3- “Set method returns”. In ExpAfter, both groups of participants had a question on code
containing this LA (Q4.e). We obtained 134 correct answers out of 142 submitted responses. The
mean reported effort is 62.2%. Group A also had the first question (Q1) on code containing this
LA. We found that 72 participants answered correctly out of 73 submitted answers, with the average
of 56.6%. Therefore, when combining the results of the two questions, we obtain that 95.8% of
participants could do the task correctly, with an average effort of 59.4%.

A3- “Set method returns” had the most negative impact on the understandability of de-
velopers who were not knowledgeable about it (see RQ4.2). The current results show
that when participants have knowledge about this type of LA, they can detect it more
easily. A prior knowledge of this LA also improved the correctness of their answers.
However, the reported effort (i.e., 59.4%) suggests that despite the knowledge of the LA,
developers still struggled a bit when performing their task on the code containing the LA.
Understanding code containing inconsistencies in method returns (i.e., A3) can be hard.
Practitioners should consider refactoring this type of LA as soon as possible.

B4- “Not answered question. In ExpAfter, only participants in Group B answered to question 2
which involved code containing B4. Almost all the participants were able to answer to the question
correctly (67 out of 69), and the reported average effort is 62.8%.

40

In RQ4.2, only 14 participants out of 73 (19%) could identify B4- “Not answered ques-
tion” correctly. This percentage increased to 97% after the participants were taught about
the LA. Having a good knowledge of B4, seems to improve the understandability of code
containing this LA.

D1- “Says one but contains many”. All participants answered the question 3 containing D1 in
ExpAfter. For this question 3, we obtained 68 correct answers out of 142 responses. Therefore,
only 47.8% of participants provided the correct answers, even though they were taught about this
LA prior to the experiment. The average reported effort is 66%.

D1- “Says one but contains many” is the hardest LA to detect among the seven studied
LAs (based on the proportion of correct answers). The reported effort is also the high-
est (i.e., 66%). In RQ4.2, only 4 out of 69 participants successfully detected this LA.
Although the proportion of correct answers improved after the participants were taught
about the LAs, the effort required to deal with code containing the LA remained high.

E1- “Says many but contains one”. In ExpAfter, all participants from both groups answered the
question (4.a) which involved code containing an instance of E1. Among all the 142 participants,
only 75 provided correct answers. They reported an average effort of 62.7%.

E1- “Says many but contains one” instances were not identified easily by the participants,
even after learning about LAs. E1 is refer to the name of attributes based on their types.
It seems that people usually do not consider such naming and they are not able to detect
this type of LA easily, since it does not affect the code understandability.

F1- “Attribute name and type are opposite”. In ExpAfter, participants answered question (4.c)
which involved code containing F1. We obtained 69 correct answers out of 142 provided answers.
The reported average effort is 60.6%.

Similar to E1, the participants had a hard time identifying instances of F1- “Attribute
name and type are opposite”, even after learning about the LAs.

F2- “Attribute signature and comments are opposite”. In ExpAfter, participants answered to
question (4.b) which involved a code snippet containing a LA of type F2. 132 out of 142 partici-
pants could find the correct answer. They reported an average effort of 62.6%.

F2- “Attribute signature and comments are opposite” is easy to find and detect when
participants know about it.

41

Table 4.4 The impact of different LAs on the correctness, and effort (ExpBefore and ExpAfter)

Type Before After
Correctness(%) Effort(mean) Correctness(%) Effort(mean)

A2 %42.4 %57.8 %91.5 %61.4
A3 %4.9 %77.2 %95.8 %59.4
B4 %19.1 %63.3 %97.1 %62.8
D1 %5.7 %85 %47.8 %66
E1 %59.4 %56.5 %52.8 %62.7
F1 %26 %59.1 %48.5 %60.6
F2 %29.5 %70.9 %92.9 %62.6

A2 A3 B4 D1 E1 F1 F20

50

100

150

Correct Detection Effort

Figure 4.13 The most prevalent / least prevalent LAs in the studied systems(After)

As seen on Figure 4.12 and Table 4.4, the linguistic anti-patterns A3, D1, B4, and F1 have the most
negative impacts on understandability. When the participants are educated about LAs, the impact
is slightly mitigated (see Figure 4.13). Moreover, Figure 4.13 and Table 4.4 show that D1, E1, and
F1 were still hard to detect by the participants after they learned about the LAs.

4.3.4 RQ4.4: Can knowledge about LAs mitigate the impact of LAs on understandability?

From RQ4.3, we observed that knowledge about LAs can mitigate their negative impact on under-
standability. In this research question, we want to know if the observed benefits in terms of un-
derstandability are proportional to the level of knowledge (of LAs) of the participants. To achieve
this goal, we conducted a test quiz to capture the level of knowledge of the participants after the
first experiment (i.e., ExpBefore) and the lectures about LAs. First we have to make sure that par-
ticipants are knowledgeable about LAs. Therefore, after ExpBefore, we taught participants what

42

are the LAs, their consequences, and possible refactoring solutions. Then, we define some new
questions as a quiz to evaluate the participants’ knowledge. The quiz contain three first questions
about the definitions of LAs and their impact on the quality. Then Q4 includes four code snippets
that participate in one type of LA, and the participants need (1) to detect the LA, (2) explain the
consequences of having this LA, and (3) provide solutions to refactor the problem.

Figure 4.15 presents the number of correct answers for each question of the quiz for Concordia
University participants. In the quiz, questions 1, 2 and 3 are general definition questions and more
than 93% of participants were able to answer these questions correctly. After these first 3 questions,
participants were asked to detect LAs in four different code snippets containing respectively A2,
A3, D1, and F1. As can be seen on Figure 4.15, more than 96% of participants were able to detect
A2, A3, and F1 correctly. The participants were less successful in detecting D1, but still, almost
85% of participants answered its corresponding question correctly. At Polytechnique Montreal,
more than 89% of participants were able to detect A2, A3, and F1 successfully (see Figure4.14).
In general, all participants displayed a good knowledge of LAs after the lectures; the average
percentage of correct answers is equal to 91%, which is considerable; showing that our teaching
was efficient.

Que
sti

on
1

Que
sti

on
2

Que
sti

on
3

Que
sti

on
4-a

Que
sti

on
4-b

Que
sti

on
4-c

Que
sti

on
4-d

0

10

20

30

40

50

Right Answers Wrong Answers

Figure 4.14 Right Answers (number): Polytechnique Montreal

Figure 4.16 presents quiz test results for participants of Polytechnique Montreal and Concordia
University separately. Almost all the participants could answer more than 85% of the questions
correctly.

Figure 4.17, 4.18, 4.19 presents the impact of having knowledge of LAs on the percentage of
“correct answers”, “Time”, and “Effort”. As one can see, the “Percentage of correct answers”
is increased after learning the LAs; which is not surprising. In the case of “Time” and “Effort”,

43

Que
sti

on
1

Que
sti

on
2

Que
sti

on
3

Que
sti

on
4-a

Que
sti

on
4-b

Que
sti

on
4-c

Que
sti

on
4-d

0

20

40

60

80

Right Answers Wrong Answers

Figure 4.15 Right Answers (number): Concordia University

40 60 80 100

Concordia

Polytechnique Montreal

Quiz

Figure 4.16 Evaluating the knowledge of LAs

Figures 4.17, 4.18, 4.19 show that there is no significant difference in terms of “Effort”, while there
is a slight improvement in term of “time” in average. Table 4.4 summarises experiments results
obtained before and after training the participants. Overall, having knowledge of LAs positively
affects the speed (and to some extent the effort) to find the right answers. We computed Spearman
correlations between the score obtained by participants on the quiz test (capturing their level of
knowledge of LAs) and respectively, the “Time” that they spent on the comprehension tasks, their
percentage of “correct answers”, and their reported “Effort”.

We obtained a weak correlation of 0.24 between the quiz test scores and “Time”; a very weak
correlation of 0.11 between the quiz test scores and the proportion of “correct answers”; and a
negligible correlation of 0.07 between the quiz test scores and “Effort”. We explain these results

44

20 40 60 80 100

Before

After

Figure 4.17 Impact of LA knowledge on Correct answers

0 5 10 15 20

Figure 4.18 Impact of LA knowledge on Time(minutes)

by the fact that overall, all participants to experiment ExpAfter had acquired a very good knowledge
of LAs, evident by their average quiz test score of 91%. The knowledge difference (i.e., about LAs)
between the participants was small, hence the weak correlation with their performance.

We conclude that having knowledge about linguistic anti-pattern can mitigate the negative
impact of LAs, increasing the speed at which developers comprehend the code containing
these LAs.

4.3.5 RQ4.5: Can knowledge of the language in which comments and identifiers are written
mitigate the effect of LAs on developers’ understandability of the code?

LAs are bad coding practices related to the meaning of identifiers and the comments written in
the code. We hypothesize that developers who are fluent in the language in which the identifiers
and comments are written (e.g., English) should have less difficulty dealing with inconsistencies
in identifiers and comments, in comparison to those who are not fluent in that language. During
our experiments, we used a postmortem questionnaire to collect participant’s age, gender, degree,

45

20 40 60 80 100

Figure 4.19 Impact of LA knowledge on Effort(Percentage)

knowledge level of programming, knowledge level of Java, working experience, and level of En-
glish. We use this information to perform correlations analysis, to understand the impact of par-
ticipants’ proficiency in English on code understandability since the code identifiers are written in
English.

We applied an ANOVA test to evaluate the impact of “English” proficiency on the three measured
variables (time, effort, and % of the correct answers). We used ANOVA to compare means between
two or more groups of predictor variables. It can control the overall Type I error rate (i.e., false pos-
itive findings). Table 4.5 presents the obtained results. Overall, we find no statistically significant
impact of participants level of English on code understandability.

However, when we divide our participants into two categories based on their main spoken language
(Concordia participants are mostly English speakers while Polytechnique participants are French
speakers), we observe some differences as shown in Table 4.6. In general, Concordia university
participants have more correct answers than participants from Polytechnique Montreal. However,
there is not much difference between the average time and effort of these two groups of participants.
However, some other factors could impact on the understandability as well. For these experiments,
Concordia participants are master and Ph.D students while the Polytechnique participants include
undergraduate students. Besides, the programming experience could affect having more correct
answers.

Table 4.5 p-values of the impact of English on dependent variables

University Correctness Time Effort
Concordia University 0.29 0.81 0.97
Polytechnique Montreal 0.55 0.49 0.50

46

Table 4.6 Difference between English and French speakers on understandability

Activity University Correctness (Percentage) Time (minute) Effort (Percentage)

ExpeBefore
Concordia %48.94 4.27 %60
Polytechnique %48.96 4.12 %58.33

ExpAfter
Concordia %82.81 4.34 %61.11
Polytechnique %73.78 5.22 %56.66

Quiz
Concordia %95.33 - -
Polytechnique %86.05 - -

In general, we can conclude that proficiency in the language in which identifiers and
comments are written can have a slightly positive impact on understandability. However,
this impact is not statistically significant.

4.4 Discussion

We now discuss our results and experiments.

4.4.1 Linguistic Anti-patterns

We studied seven different types of LAs. During the detection and the writing of the questions, we
faced three problems regarding:

D1 – “Says one but contains many” we found a large number of real examples in our studied
systems where this type of LAs occurs but is not conceptually an LA. We observed that developers
prefer to choose “simple” names, like “tmp” for stack arrays, “x” and “y” for arrays of dimensions,
or “v” for a collection of vectors. Therefore, we decided not to identify such names as linguistic
anti-patterns. Such cases should be considered as exceptions for this LA.

E1 – “Says many but contains one” E1 is very similar to D1. When the type of an attribute is
“int”, our tool expected to have a singular name because “int” is a single type. Thus, it detected
any plural names of type int as an occurrence of the E1 anti-pattern. However, we found that the
names of these attributes could be plural because they are numerical variables that hold numbers of
things, for example numbers of rows.

Here we provide one real examples:

Listing 4.8 Example of an exception of “E1” (JFreeChart 1.0.19)

// ∗∗ The maximum number of lines for category labels . ∗/

47

private int maximumCategoryLabelLines;

Therefore, for numerical variables, plural names with singular type are meaningful and such
naming should be considered as exceptions for this LA.

“Opposite meaning” we found a new type of LA, for example:

System.err.println("Computation successful");.

The statement uses the err attribute to print some error messages, yet the message is positive. We
propose to create a new LA that could be described as “the method name and its parameters
are contradictory”.

4.4.2 Mitigating Factors

We also investigated to what extend other factors, like programming experience, gender, age, and
education, could explain the participants’ performance. We established a database containing in-
formation about these mitigating factors. We aggregated this data in sets for age (18-25, 26-35,
and 36-45), gender (male, female), degrees (Bachelors or less, Masters, and PhDs or above), and
working experience (less than 3 years, 3 to 5 years, 5 to 10 years, and more than 10 years).

We built a linear regression model to compute the impact of these factors on understandability, in
terms of time, effort, and correctness. We applied an ANOVA test to evaluate the impact of these
factors on time, effort, and correctness. Results show that participants’ programming knowledge
and education has a statistically significant impact on effort (given an α value of 0.05). Participants’
education also has an statistically significant impact on the correctness of their answers, as shown
in Table 4.7.

4.5 Threats to Validity

Construct Validity threats concern the accuracy of observations compare to the theory. We con-
sidered time, effort and the correctness of their answers to evaluate the participants’ understanding.
These measures are objective, but other factors, like fatigue, could change their values. We relied
on the NASA TLX to measure the effort, which is inherently subjective because it is self-reporting.
We accept the threat of self-reporting, future work should consider other measures of the effort,
possibly through eye-tracking or other more invasive means.

48

Table 4.7 p-values of the impact of mitigating variables on dependent variables

Mitigating Variables Correctness Time Effort
Age 0.13 0.08 0.52
Gender 0.21 0.69 0.92
Degree 0.03 0.41 0.01
Programming Knowledge 0.06 0.36 < 0.01
Working Experience 0.71 0.72 0.62
English 0.52 0.24 0.83
Knowledge 0.30 0.80 0.75

We used a quiz to evaluate the participants’ knowledge about LAs after learning about these con-
cepts. We wrote the quiz questions to measure the participants’ knowledge but these questions
could also have missed their objective. However, the results of the ExpAfter partially confirmed
that participants acquired a good knowledge through our LA course and, thus, we accept this threat.

The impact of participants’ experience as well as continuing education between the ExpBefore and
ExpAfter could have had an impact on participants’ understanding. Participants were full-time
students taking several courses during their semesters. The two experiments took place during a
whole semester. Therefore, there is the risk of participants gaining experience, which could affect
their performance and, consequently, the results of this study. However, we claim that the impact, if
any, should be low given the short time period between the two experiments, most likely not enough
to bring participants from one level of experience to the next according to Dreyfus’ model; (Dreyfus
et Dreyfus, 1980).

We used the PMD-plugin to detect LAs by defining new rules related to each LA in Java systems.
We accepted that the precision of this tool may not be 100%. Some false positive classes may
have passed our manual validation if they “looked like” a LA. Conversely, our tool may miss some
true positive classes. Moreover, in addition to the impact of LAs, other characteristics in the code
could have influenced participants’ understanding. We accept these threats because we built the
code snippets manually and verified them and shared12 them with the community for inspection
and reuse.

Internal Validity threats concern confounding factors that might influence the results. We consider
that four threats could impact the internal validity of our study.

-Teaching threats affect our second experiment, i.e., ExpAfter, because we used data collected dur-
ing this experiment (which occurred after a lecture) to evaluate the impact of participants’ knowl-

12http://www.ptidej.net/downloads/replications/sqj19a/

http://www.ptidej.net/downloads/replications/sqj19a/

49

edge on code understandability. We created two different groups of participants in each experiment
to avoid bias (e.g., gender bias). Each participant performed comprehension tasks on two different
systems while the tasks for each system were different. Thus, we consider that the teaching effect
is minimal because ExpAfter was performed purposefully after teaching participants about LAs.

-Selection threats concern the natural differences among the participants’ abilities, which could
affect our results. We examined the possible impact of these confounding factors using the metrics
presented in Table 4.7, which shows that these factors did not significantly affect our dependent
variables (i.e., correctness, time, and effort), which thus mitigates this threat.

We agreed that there is no control in our experiments. because of the setting of a classroom, it is
very hard to control the experiments. However, somebody could consider the course about LAs
as an intervention and use Randomized Control Trial (RCT) as a type of scientific (often medi-
cal) experiment that aims to reduce certain sources of bias when testing the effectiveness of new
treatments like learning process in this study. From the study presented in this chapter, we cannot
claim causation between the occurrence of LAs in a system and code understandability. Although
we found evidences of correlations, more analysis and experiments are required to strengthen our
findings.

-Instrumentation threats were minimal considering that we used objective measures, such as time
and correctness. Although there is some subjectivity in measuring participants’ efforts using the
NASA TLX. We believe the collected measurements reflect the actual feeling’ of the participants
regarding their effort and thus is an adequate proxy for their effort actual or perceived.

-Diffusion threats pertain to participants sharing tasks, questions, and answers. Although it is
possible that a few participants exchanged some information, we defined two sets of questions to
prevent too easy diffusion.

In addition, internal validity concerns our selection of the analyzed systems and analysis method.
We defined some keywords for each question and made a query based on these keywords to com-
pute the number of correct answers, time, and effort metrics for participants who answered the
questions correctly. The accuracy of our defined keywords affects our results because the number
of correct answers and consequently time and effort computed with these queries are used to ana-
lyze our data. To mitigate this threat, five researchers were involved in the identification of correct
answers for each question.

Conclusion Validity threats concern the correctness of the results. We asked participants to answer
detection and comprehension questions about LAs in code snippets instead of reading the whole
code and doing maintenance tasks. Participants could have answered the questions differently if
they were asked to do the maintenance tasks and were given the whole code. Due to the nature of

50

experiments with participants, we accept these threats as did many previous works.

We studied seven different LAs in each experiment and asked participants to perform tasks requir-
ing time and effort. Thus, we opted for a simple design, which we believe to be realistic. We
designed our questions related to the tasks to be simple while covering the requirements of our
research questions. Moreover, this design is not unique, some previous studies (Hofmeister et al.,
2017; Fakhoury et al., 2018) used the same design and code snippets to simplify their experiments.

Reliability Validity is about the possibility of replicating this study. We studied ten open-source
systems with 230 participants but do not claim that these results are representative of all systems
or developers. We provide all the necessary data on-line13 to help other researchers replicate our
work.

External Validity is related to the generalisability of the results. We performed our study on ten
different, real systems belonging to different domains and with different sizes as shown in Table
4.3. We wrote questions such that participants needed to focus on some code snippets from the
whole systems. We cannot claim that our results can be generalized to other systems written in
other programming languages and to other participants. It is desirable that future works extend this
study considering other LAs, other participants, other questions, and other systems.

4.6 Summary

This chapter examined the impact of occurrences of LAs on code understandability. We performed
two experiments (ExpBefore and ExpAfter) to collect quantitative evidences about the impact of
LAs on participants understanding of code snippets before and after a series of lectures on LAs and
in function of their fluency in the natural language in which identifiers and comments are written.

Results showed that LAs negatively affect understandability. The LAs “Set method returns” (A3),
“Not answered question” (B4), and “Says one but contains many” (D1) have the most negative
impact on understandability, while “Is returns more than a Boolean” (A2) is the one with the least
impact. Moreover, “Says many but contains one” (E1) and “Attribute name and type are opposite”
(F1) are the most difficult to detect. Results also showed that having knowledge about LAs help
participants to find correct answers faster. Proficiency in the language in which identifiers and
comments are written had a slightly positive impact on understandability.

Thus, because LAs have a negative impact on code understandability, development teams should
consider (1) educating their team members about LAs, (2) removing LAs from their software sys-
tems as soon as possible, and (3) using a common, well-known language for their identifiers and
comments (not necessarily English).

13http://www.ptidej.net/downloads/replications/sqj19a/

http://www.ptidej.net/downloads/replications/sqj19a/

51

In the next chapter, we study the impact of LAs on code quality in terms of change- and fault-
proneness when there are also DAPs in the code. we further investigate the relation between design
anti-patterns and LAs and their impacts on change- and fault-proneness.

52

CHAPTER 5 LINGUISTIC ANTI-PATTERNS, DESIGN ANTI-PATTERNS AND THEIR
IMPACT ON CHANGE-, AND FAULT-PRONENESS

Linguistic anti-patterns can increase change- and fault-proneness on

classes contain design anti-patterns as well. Classes containing

only design anti-patterns are more change- and fault-prone

than classes with linguistic anti-patterns only.

In this chapter, we perform an empirical study to understand the relation between linguistic anti-
patterns and design anti-patterns, and their impact on software quality in terms of Change- and
Fault- Proneness.

5.1 Context

Past and recent studies have shown that design anti-patterns (DAPs) which are poor solutions to
recurrent design problems make object-oriented systems difficult to maintain, and that they neg-
atively impact the class change- and fault-proneness, see (Khomh et al., 2009a), (Abbes et al.,
2011). More recently, linguistic anti-patterns (LAs) have been introduced to capture recurring poor
practices in the naming, documentation, and choice of identifiers during the implementation of an
entity, see (Arnaoudova et al., 2016), and (Arnaoudova et al., 2013).

We analyze to what extent classes containing LAs have higher (or lower) odds to change or to be
subject to fault-fixing than other classes containing DAPs.

5.1.1 Research Problem and Contribution

Some of the previous works (Taba et al., 2013) (Yamashita et Moonen, 2013) reported that existing
design anti-patterns in the systems lead to reproduce changes and fault-proneness somehow.

We believed that LAs could also impact on software systems’ change- and fault-proneness. There-
fore considering the case of classes which have both LAs and DAPs at the same time, we inves-
tigated their effect on increasing change and fault-proneness in comparison with the cases only
having design anti-patterns or LAs.

5.1.2 Research Questions

To achieve the goal of the study, we defined two research questions as follows:

53

• RQ5.1: Are classes with a particular family of smells (anti-patterns, linguistic anti-
patterns, or both anti-patterns, linguistic anti-patterns) more change-prone than oth-
ers? To answer this question, we defined a hypothesis that is the proportion of classes under-
going at least one change between two releases is not different between classes containing
different families of smells.

• RQ5.2: Are classes with a particular family of smells (anti-patterns, linguistic anti-
patterns, or both anti-patterns, linguistic anti-patterns) more fault-prone than others?
We considered another hypothesis to achieve the answer and test if the proportion of classes
undergoing at least one fault-fixing change between two releases does not differ between
classes with different families of smells.

5.2 Study Design

5.2.1 Studied Linguistic Anti-patterns and Design Anti-patterns

In this section, we focus on 12 design anti-patterns from (Brown et al., 1998) and (Soloway et al.,
1983) described in section 2.2.1. The motivation behind our choice is that these design anti-patterns
have been thoroughly described by Brown et al. (1998) and they have received significant attention
from researchers (Khomh et al., 2012) (Taba et al., 2013). We could detect several occurrences
of these design anti-patterns across the studied releases, and they are representative of design and
implementation problems related to object-oriented systems. We studied 17 types of LAs which
presented in Table 2.1 in chapter 2 2.1.1.

5.2.2 Experiment Design

We study changes and faults in a class whether they are relevant to the class containing a specific
family of smells (e.g., LAs and DAPs) regardless of the kinds of smells from each family (e.g.,
Blob or LazyClass design anti-patterns). More precisely, we test whether the proportions of classes
exhibiting (or not) at least one change/fault significantly vary between classes with 1) DAPs, 2)
LAs, or 3) both. To address RQ5.1, we compute the following:

1. #APs: number of classes of a project release for which there was at least one class change
and at least one design anti-pattern among the 13 design anti-patterns detected.

2. #LAs: number of classes of a project release for which there was at least one class change
and at least one LA among the 17 LAs detected.

54

3. #DAPs-LAs: number of classes of a project release for which there was at least one class
change and at least a design anti-pattern and a LA (both) among the 29 DAPs and LAs
detected.

4. #No-DAPs: number of classes of a project release for which there was no DAP, while there
was at least one class change.

5. #No-LAs: number of classes of a project release for which there was no LA, while there was
at least one class change.

6. #No-DAPs-LAs: number of classes of a project release for which there was no DAPs and
LAs at the same time, while there was at least one class change.

Then, we use the Fisher exact test (Sheskin, 2003) to assess whether the proportion between differ-
ent families of smells significantly differs in terms of changes, faults. Fisher’s exact test is used to
determine whether there is a significant difference between two proportions or to test association
between two characteristics. Fisher’s exact test is appropriate for small samples. Specifically, we
test whether the proportions between

1. Anti-patterns and LAs, i.e. the proportions (DAPs, No-DAps) and (LAs, No-LAs),

2. Both DAPs and LAs and DAPs (only), i.e. the proportions (DAPs-LAs, No-DAPs-LAs) and
(DAPs, No-DAPs), as well as

3. Both DAPs and LAs and LAs (only), i.e. the proportions (DAPs-LAs, No-DAPs-LAs) and
(LAs, No-LAs), show significant differences in terms of changes/faults.

As for RQ5.2, we compute the same proportions above, for the different considered families of
design smells, but for faults (instead of changes) and then we assess whether the differences be-
tween the computed proportions significantly differs in terms of faults. We also use the Odds Ratio
(OR) (Sheskin, 2003) as an effect size measure. Odds ratio indicates the likelihood of an event
(i.e. change or fault) to occur. The OR is defined as the ratio of the odds p of an event occurring
in one sample, i.e. the set of classes with one family of smells or both, i.e. LA, DAP, or LAs and
DAPs (experimental group), to the odds q of it occurring in the other sample, i.e. the set of classes
containing another different family of smells from the three investigated families, i.e. LA, DAP, or

LA and DAPs (control group): OR = p/(1− p)
q/(1− q) The interpretation of odds ratio is as follow. An

odds ratio of 1 indicates that the event (i.e. change or fault) is equally likely in both samples. OR
> 1 indicates that the event is more likely in the first sample (experimental group) while an OR <

55

1 shows the opposite (control group). Since we perform several tests on the same data, we adjust
p-values using the Bonferroni correction procedure (Sheskin, 2003). This procedure works as fol-
low: it divides the critical p-value (alpha) by the number of comparisons, n, being made: alpha/n.
In this study, we perform three pair of tests (e.g. design anti-patterns vs. LAs) when analyzing
change- and fault-proneness, the null hypothesis is, therefore, rejected only if the p-value is less
than 0.016 (0.05/3). We use Bonferroni because it is a simple procedure (Sheskin, 2003).

5.2.3 Studied Systems

We studied 30 releases of three randomly-chosen projects includes 7 releases of ANT1 , 12 releases
of ArgoUML2 , and 11 releases of Hibernate3. In definition, ArgoUML is an open-source UML
modeling tool, Hibernate (ORM) is an open-source Java persistence framework project while ANT
is a system related to software build processes. We chose these systems because they belong to
different domains and have different sizes5.1.

Table 5.1 Characteristics of the Analyzed Projects.

Projects #Rel. #Dev. #Size (LOCs) #All Classes #Changes #Classes Changed #Faulty Changes
ANT 7 51 1,660,256 14,067 15,353 64,167 587
ArgoUML 13 25 644,829 27,822 5,300 23,153 201
Hibernate 10 89 7,239,075 21,876 9,075 89,658 179

The data collection process to storing the mentioned releases is the first step. Then, using version
control systems; Git4 for ANT and Hibernate, and SVN for ArgoUML; we able to mine the source
code change history repository using SQL queries to identify source code change history, the in-
formation of the number of changes, classes that underwent changes, summary of the changes,
change logs, etc and fault-fixes. The Git/SVN repository of each system was downloaded using
appropriate perl scripts and the data was then stored in a PostgreSQL database. In the last step,
we mined bug repositories corresponding to each system with the purpose of identifying changes
that were fixing faults. For ArgoUML, issues dealing with fixing faults are marked as “DEFECT”
in the issue tracking system5. For ANT, we mined BugZilla6 while JIRA7 was mined to determine
fault-fixing issues for Hibernate. Finally, we use statistical tests to analyze the collected data and
address our research questions.

1http://ant.apache.org/
2http://argouml.tigris.org/
3http://hibernate.org/
4http://git-scm.com/
5http://argouml.tigris.org/issues
6https://www.bugzilla.org/
7https://www.atlassian.com/software/jira

56

5.2.4 Identifying Post-Release Defects

In order to determine whether a change fixes a fault, we search, using regular expressions, in
change logs from the system version controls; Git/SVN; for co-occurrences of fault identifiers with
keywords like “fixed issue #ID”, “bug ID”, “fix”, “defect”, or “patch”. We define post-release
faults as in the study by Kamei et al. (Kamei et al., 2013) as those with fixes recorded in the six-
month period after the release date. Once this step is performed, we identify, for each bug ID, the
corresponding bug report from the corresponding issue tracking system, i.e., Bugzilla or Jira and
extract relevant information from each report including:

• Issue ID.

• Issue type, i.e., fault, enhancement, feature, patch, feature request, etc.

• Issue status, i.e., new, closed, reopened, resolved, fixed, verified, or not.

• Issue resolution, e.g., fixed, invalid, duplicate, etc.

• Priority.

• Product name.

• Issue opening or closing dates.

• Issue summary. We do not use such info but we keep it in our database for possible further
investigations.

• Data and name of issue reporter.

5.3 Study Results

In this section, we provide answers to our research questions.

5.3.1 RQ5.1: Are classes with a particular family of smells (anti-patterns, linguistic anti-
patterns, or both anti-patterns, linguistic anti-patterns) more change-prone than oth-
ers?

1. Classes containing both design anti-patterns(DAPs) and linguistic anti-patterns(LAs) vs.
classes with design anti-patterns(DAPs)

For ANT, in all analyzed releases, Fisher’s exact test indicates a significant difference in the pro-
portion of changed classes between the group of classes containing in both DAPs and LAs and

57

those having DAPs only. Odds ratios vary across systems and, within each system, across releases.
For ANT, we found an OR greater than 1 in all releases. The OR ranges from 1.98 (ANT 170)
to 9.51 (ANT 180). This finding means, that for ANT, classes with both DAPs and LAs are more
change-prone than classes containing DAPs only.
For ArgoUML, in 6 releases (out of a total of 13), Fisher’s exact test indicates a significant differ-
ence in the proportion of changed classes between the group of classes with both DAPs and LAS
and those containing DAPs only. Odds ratios vary across systems and, within each system, across
releases. We find an OR greater than 1 for the release 0.18; this indicates that classes with both
DAPs and LAS are more change-prone than classes with DAPs only. For the rest of releases, the
OR is less than 1 and in few cases close to 1, i.e., the odd of experiencing a change is the same for
classes with both DAPs and LAs and classes with DAPs only.
For Hibernate, we did not find any significant differences. Overall, we could not find that classes
having both DAPs and LAs are more change-prone than classes containing DAPs only across all
systems and releases.5.2

We therefore conclude that LAs do not increase the odds of a class to experience a change, i.e.,
they do not make classes with design anti-patterns more change-prone:

This finding brings empirical evidence on the fact that linguistic anti-patterns do not
contribute to the change-proneness of design anti-patterns when both occur in classes of
object-oriented systems.

2. Classes having design anti-patterns and linguistic anti-patterns vs. classes containing lin-
guistic anti-patterns

Table 5.3 shows the difference in proportions between the change-proneness of classes with both
DAPs and LAs and classes with LAs only. As it can be noticed, results vary depending on the
system. However, in several cases, Fisher’s exact test show significant differences with OR greater
than 1. For ANT, the OR ranges between 2.33 (ANT 192) and 5.66 (ANT 15 MAIN) while for
Hibernate the OR is higher, it is between 13.24 (Hibernate 3.6.1) and 112.42 (Hibernate 3.6.2)
which means that the difference, in terms of changes, is really high. For ArgoUML, the OR is
between 1.95 (ArgoUML 0.30.1) and 3.76 (ArgoUML 0.26.2); these results suggest that, in most
cases, the odd of experiencing a change is higher for classes with both DAPs and LAs than it is for
classes with LAs only.

We therefore conclude that classes with both DAPs and LAs are changed in greater proportion than
classes having only in LAs. When comparing the Odd ratios of (design anti-patterns and linguis-
tic anti-patterns vs. design anti-patterns) and (design anti-patterns and linguistic anti-patterns vs.

58

Table 5.2 Change-Proneness Results: Design Anti-patterns and Linguistic Anti-patterns vs. Design
Anti-patterns (only).

Release #DAP,LA #DAP #No-Smell #No-DAP Adj. p-value OR
ANT 151 27 266 0 119 <0.0001 -
ANT 152 29 269 0 119 <0.0001 -
ANT 154 26 244 0 57 0.012 -
ANT 170 42 146 48 331 0.0047 1.98
ANT 180 93 357 5 183 <0.0001 9.51
ANT 192 83 292 14 198 <0.0001 4.01
ANT 15 (MAIN) 23 162 4 220 <0.0001 7.77
Hibernate 3.6.1 100 736 2 22 1 1.49
Hibernate 3.6.2 77 589 17 149 0.68 1.14
Hibernate 3.6.3 0 538 0 181 1 0
Hibernate 3.6.4 0 452 0 274 1 0
Hibernate 3.6.7 0 304 0 420 1 0
Hibernate 3.6.8 0 315 0 455 1 0
Hibernate 4.2.5 0 512 0 504 1 0
Hibernate 4.2.7 0 492 0 486 1 0
Hibernate 4.3.0 0 469 0 639 1 0
ArgoUML 0.14 24 365 36 471 0.68 0.86
ArgoUML 0.16 26 397 44 437 0.10 0.65
ArgoUML 0.18 41 514 44 1077 0.003 1.95
ArgoUML 0.18.1 43 576 30 201 0.0083 0.50
ArgoUML 0.20 41 459 46 364 0.14 0.70
ArgoUML 0.22 45 653 75 285 <0.0001 0.26
ArgoUML 0.24 48 496 74 483 0.02 0.63
ArgoUML 0.26 42 435 66 525 0.22 0.76
ArgoUML 0.26.2 50 606 42 328 0.052 0.64
ArgoUML 0.28 96 374 64 591 0.232 0.79
ArgoUML 0.28.1 38 540 81 418 <0.0001 0.36
ArgoUML 0.30 241 370 965 595 <0.0015 0.50
ArgoUML 0.30.1 231 520 88 445 <0.0001 0.36

linguistic anti-patterns), we observe that:

The occurrence of design anti-patterns in a class that experienced a linguistic anti-pattern
seems to have a stronger relationship with change-proneness than the occurrence of lin-
guistic anti-pattern in a class that experienced a design anti-pattern.

3. Classes containing design anti-patterns vs. classes with linguistic anti-patterns Table 5.4
reports on the proportion of changed classes in the groups of classes experiencing DAPs only and
classes experiencing LAs only. As it can be noticed, in most of the system’s releases, Fisher’s
exact test indicates that the difference between the change-proneness of classes with DAPs only vs.
classes with LAs only is statistically significant.

Except for ANT, in which the OR is less than 1 indicating that the proportion of classes having
DAPs that changed, is lower than the proportion of classes with LAs that changed, the OR is greater
than 1 for all other releases of the analyzed systems. It ranges between 2.47 (Hibernate 3.4.6) and

59

Table 5.3 Change-Proneness Results: Design Anti-patterns and Linguistic Anti-patterns vs. Lin-
guistic Anti-patterns (only).

Release #DAP,LA #LA #No-Smell #No-LA Adj. p-value OR
ANT 151 27 58 0 13 0.01 -
ANT 152 29 57 0 13 0.0093 -
ANT 154 26 51 0 2 1 -
ANT 170 42 59 48 110 0.08 1.62
ANT 180 93 157 5 17 0.24 2.00
ANT 192 83 129 14 51 0.011 2.33
ANT 15(MAIN) 23 38 4 38 0.0013 5.66
Hibernate 3.6.1 100 157 2 354 <0.0001 112.42
Hibernate 3.6.2 77 131 17 385 <0.0001 13.24
Hibernate 3.6.3 0 209 0 309 1 0
Hibernate 3.6.4 0 208 0 312 1 0
Hibernate 3.6.7 0 63 0 461 1 0
Hibernate 3.6.8 0 60 0 468 1 0
Hibernate 4.2.5 0 29 0 1274 1 0
Hibernate 4.2.7 0 24 0 628 1 0
Hibernate 4.3.0 0 59 0 660 1 0
ArgoUML 0.14 24 26 36 58 0.28 1.48
ArgoUML 0.16 26 30 44 59 0.73 1.16
ArgoUML 0.18 41 50 44 84 0.12 1.56
ArgoUML 0.18.1 43 53 30 91 0.0023 2.45
ArgoUML 0.20 41 43 46 104 0.0073 2.14
ArgoUML 0.22 45 53 75 95 0.79 1.075
ArgoUML 0.24 48 62 74 131 0.22 1.36
ArgoUML 0.26 42 54 66 138 0.07 1.52
ArgoUML 0.26.2 50 69 42 219 <0.0001 3.76
ArgoUML 0.28 32 44 64 244 0.00031 2.76
ArgoUML 0.28.1 38 53 81 228 0.0059 2.01
ArgoUML 0.30 30 41 96 241 0.033 1.83
ArgoUML 0.30.1 38 51 88 231 0.0091 1.95

75.16 (Hibernate 3.6.1) for Hibernate and between 1.78 (ArgoUML 0.16) and 7.20 (ArgoUML
0.30) for ArgoUML.

This findings is very likely due to the fact that DAPs are, in general, well known and established
than LAs, i.e. they change more often in comparison with LAs as developers know they need to
change them. We therefore conclude that:

Design anti-patterns contribute more to the change-proneness of linguistic anti-pattern
classes than linguistic anti-patterns do to the change-proneness of design anti-pattern
classes.

Overall, we reject the first hypothesis since, in most of the analyzed systems, there is a significant
difference between the proportion of classes undergoing at least one change between two releases,
for classes belonging to different families of smells.

60

Table 5.4 Change-Proneness Results: Design Anti-patterns vs. Linguistic Anti-patterns.

Release #DAP #LA #No-DAP #No-LA Adj. p-val OR
ANT 151 266 58 119 13 0.0328 0.50
ANT 152 269 57 119 13 0.044 0.51
ANT 154 244 51 57 2 0.0044 0.16
ANT 170 146 59 331 110 0.33 0.72
ANT 180 357 157 183 17 <0.0001 0.21
ANT 192 292 129 198 51 0.0039 0.58
ANT 15(MAIN) 162 38 220 38 0.25 0.73
Hibernate 3.6.1 736 157 22 354 <0.0001 75.16
Hibernate 3.6.2 589 131 149 385 <0.0001 11.58
Hibernate 3.6.3 538 209 181 309 <0.0001 4.38
Hibernate 3.6.4 452 208 274 312 <0.0001 2.47
Hibernate 3.6.7 304 63 420 461 <0.0001 5.28
Hibernate 3.6.8 315 60 455 468 <0.0001 5.39
Hibernate 4.2.5 512 29 504 1274 <0.0001 44.55
Hibernate 4.2.7 492 24 486 628 <0.0001 26.44
Hibernate 4.3.0 469 59 639 660 <0.0001 8.20
ArgoUML 0.14 365 26 471 58 0.027 1.72
ArgoUML 0.16 397 30 437 59 0.0137 1.78
ArgoUML 0.18 514 50 1077 84 0.25 0.80
ArgoUML 0.181 576 53 201 91 <0.0001 4.91
ArgoUML 0.20 459 43 364 104 <0.0001 3.04
ArgoUML 0.22 653 53 285 95 <0.0001 4.10
ArgoUML 0.24 496 62 483 131 <0.0001 2.16
ArgoUML 0.26 435 54 525 138 <0.0001 2.11
ArgoUML 0.262 606 69 328 219 <0.0001 5.85
ArgoUML 0.28 374 44 591 244 <0.0001 3.50
ArgoUML 0.281 540 53 418 228 <0.0001 5.54
ArgoUML 0.30 370 41 595 241 <0.0001 7.20
ArgoUML 0.30.1 520 51 445 231 <0.0001 5.28

5.3.2 RQ5.2: Are classes with a particular family of smells (anti-patterns, linguistic anti-
patterns, or both anti-patterns, linguistic anti-patterns) more fault-prone than others?

1. Classes containing both design anti-patterns and linguistic anti-patterns vs. Classes with
design anti-patterns

Table 5.5 summarises Fisher’s exact test results and ORs. The differences in the proportions of
classes that undergo fault-fixing changes is mostly significant for ANT with an OR greater than 1
varying from 2.18 to 2.76; indicating that in ANT, the fault-proneness of classes with both DAPs
and LAs is higher than the fault-proneness of classes with DAPs only.

For the remaining systems, there is no statistically significant difference between the proportions
of classes that underwent fault-fixing changes among the groups of classes with both design anti-
patterns and linguistic anti-patterns and classes with design anti-patterns, suggesting that in general:

61

Table 5.5 Fault-Proneness Results: Design Anti-patterns and Linguistic Anti-patterns vs. Design
Anti-patterns (only).

Release #DAP, LA #DAP #No-Smell #No-DAP Adj. p-value OR
ANT 151 17 183 10 202 0.16 1.87
ANT 152 16 158 13 230 0.17 1.78
ANT 154 18 154 8 147 0.10 2.14
ANT 170 55 191 35 286 0.00029 2.34
ANT 180 50 174 48 366 0.00051 2.18
ANT 192 57 189 40 301 0.00029 2.86
ANT 15(MAIN) 20 194 7 188 0.02 2.76
Hibernate 3.6.1 6 28 96 730 0.278 1.62
Hibernate 3.6.2 6 29 88 709 0.271 1.66
Hibernate 3.6.3 0 28 0 691 1 0
Hibernate 3.6.4 0 33 0 693 1 0
Hibernate 3.6.7 0 33 0 698 1 0
Hibernate 3.6.8 0 32 0 692 1 0
Hibernate 4.2.5 0 32 0 738 1 0
Hibernate 4.2.7 0 43 0 973 1 0
Hibernate 4.3.0 0 41 0 937 1 0
ArgoUML 0.14 6 79 53 573 0.83 0.82
ArgoUML 0.16 5 100 55 736 0.53 0.66
ArgoUML 0.18 7 110 63 724 0.57 0.73
ArgoUML 0.18.1 13 141 72 1450 0.053 1.85
ArgoUML 0.20 12 143 60 634 0.87 0.88
ArgoUML 0.22 15 163 63 660 1 0.96
ArgoUML 0.24 12 165 93 773 0.13 0.60
ArgoUML 0.26 16 188 72 791 0.88 0.93
ArgoUML 0.26.2 17 190 61 770 0.65 1.12
ArgoUML 0.28 14 194 78 740 0.22 0.68
ArgoUML 0.28.1 13 188 78 777 0.26 0.68
ArgoUML 0.30 14 188 105 770 0.045 0.54
ArgoUML 0.30.1 15 178 111 817 0.10 0.62

Linguistic anti-patterns do not make classes with design anti-patterns more fault-prone
(than they already are).

2. Classes having design anti-patterns and Linguistic anti-patterns vs. Classes containing
Linguistic anti-patterns

Table 5.6 shows significant differences for some releases of the three systems. For three releases of
ANT, OR values are greater than 1 ranging between 1.96 (ANT 170) and 3.67 (ANT 15 MAIN).
For two releases of Hibernate the ORs are almost equal to 5. These findings suggest that, for the
mentioned releases, the odd of experiencing a fault-fixing change is higher for classes with both
DAPs and LAs than for classes with LAs only. We therefore conclude that, in some cases:

The occurrence of design anti-pattern in a class that experienced a linguistic anti-patterns
have a strong relationship with fault-proneness than, the occurrence of linguistic anti-
patterns in a class that experienced a design anti-pattern.

62

Table 5.6 Fault-Proneness Results: Design Anti-patterns and Linguistic Anti-patterns vs. Linguistic
Anti-patterns (only).

Release #DAP, LA #DAP #No-Smell #No-DAP Adj. p-value OR
ANT 151 17 29 10 42 0.06 2.43
ANT 152 16 26 13 44 0.12 2.06
ANT 154 18 27 8 26 0.15 2.14
ANT 170 55 75 35 94 0.01 1.96
ANT 180 50 70 48 104 0.09 1.54
ANT 192 57 77 40 103 0.01 1.90
ANT 15(MAIN) 20 33 7 43 0.007 3.67
Hibernate 3.6.1 6 7 96 504 0.011 4.48
Hibernate 3.6.2 6 7 88 509 0.007 4.93
Hibernate 3.6.3 0 4 0 514 1 0
Hibernate 3.6.4 0 5 0 515 1 0
Hibernate 3.6.7 0 5 0 519 1 0
Hibernate 3.6.8 0 5 0 519 1 0
Hibernate 4.2.5 0 5 0 523 1 0
Hibernate 4.2.7 0 8 0 1295 1 0
Hibernate 4.3.0 0 8 0 644 1 0
ArgoUML 0.14 6 6 53 75 0.56 1.41
ArgoUML 0.16 5 6 55 78 1 1.18
ArgoUML 0.18 7 7 63 82 0.77 1.29
ArgoUML 0.18.1 13 17 72 117 0.68 1.24
ArgoUML 0.20 12 17 60 117 0.52 1.37
ArgoUML 0.22 15 17 63 117 0.23 1.63
ArgoUML 0.24 12 17 93 117 0.84 0.88
ArgoUML 0.26 16 17 72 117 0.33 1.52
ArgoUML 0.26.2 17 17 61 117 0.11 1.91
ArgoUML 0.28 14 19 78 269 0.017 2.53
ArgoUML 0.28.1 0.68 17 78 264 0.024 2.58
ArgoUML 0.30 14 17 105 264 0.06 2.06
ArgoUML 0.30.1 15 17 111 264 0.04 2.09

This finding is likely due to the fact that fault-fixing changes related to classes with design anti-
patterns cover (according to the fault-fixing change logs) a variety of types including implementa-
tion problems, features, API changes, bugs after modification, deployment, and Find Bugs reported
problems while linguistic anti-patterns are mostly associated with formatting issues, identifier nam-
ing, data types, enumeration types, spelling, check style, etc. This justifies why anti-patterns boost
faults rates that much.

3. Classes containing design anti-patterns vs. Classes with linguistic anti-patterns

Table 5.7 reports on the proportion of classes that underwent fault-fixing changes in the groups
of classes experiencing DAPs only and classes experiencing LAs only. Except for ANT and Ar-
goUML 0.16 and 0.18, Fisher’s exact test show significant differences with an OR greater than 1 in
all studied cases. For Hibernate, the OR ranges between 2.75 and 8.75 while it varies between 1.78
and 7.20 for ArgoUML.

63

This result suggests that:

The occurrence of design anti-patterns in a class has a strong relationship with the class’s
fault-proneness than the occurrence of linguistic anti-patterns.

We reject the second hypothesis since in most cases there is a significant difference between the
proportion of classes undergoing at least one fault-fixing change between two releases, for classes
belonging to different families of smells.

Table 5.7 Fault-Proneness Results: Design Anti-patterns vs. Linguistic Anti-patterns.

Release #DAP #LA #No-DAP #No-LA Adj. p-val OR
ANT 151 183 29 202 42 0.36 1.31
ANT 152 158 26 230 44 0.59 1.16
ANT 154 154 27 147 26 1 1.08
ANT 170 191 75 286 94 0.36 0.83
ANT 180 174 70 366 104 0.05 0.70
ANT 192 189 77 301 103 0.32 2.84
ANT 15(MAIN) 194 33 188 43 0.25 1.34
Hibernate 3.6.1 28 7 730 504 0.01 2.75
Hibernate 3.6.2 29 7 709 509 0.0089 2.97
Hibernate 3.6.3 28 4 691 514 0.00041 5.20
Hibernate 3.6.4 33 5 693 515 0.000169 4.89
Hibernate 3.6.7 33 5 698 519 0.00016 4.90
Hibernate 3.6.8 32 5 692 519 0.0002 4.79
Hibernate 4.2.5 43 8 973 1295 <0.0001 7.14
Hibernate 4.2.7 41 8 937 644 0.00052 8.75
Hibernate 4.3.0 40 8 1068 711 0.00084 3.32
ArgoUML 0.14 365 26 471 58 0.027 1.72
ArgoUML 0.16 397 30 437 59 0.0137 1.78
ArgoUML 0.18 514 50 1077 84 0.25 0.80
ArgoUML 0.18.1 576 53 201 91 <0.0001 4.91
ArgoUML 0.20 459 43 364 104 <0.0001 3.04
ArgoUML 0.22 653 53 285 95 <0.0001 4.10
ArgoUML 0.24 496 62 483 131 <0.0001 2.16
ArgoUML 0.26 435 54 525 138 <0.0001 2.11
ArgoUML 0.26.2 606 69 328 219 <0.0001 5.85
ArgoUML 0.28 374 44 591 244 <0.0001 3.50
ArgoUML 0.28.1 540 53 418 228 <0.0001 5.54
ArgoUML 0.30 370 41 595 241 <0.0001 7.20
ArgoUML 0.30.1 520 51 445 231 <0.0001 5.28

5.4 Threats to Validity

Construct validity threats concern the relation between theory and observation. A main threat
is related to the techniques used to detect DAPs and LAs. We applied DECOR (Moha et al.,
2010) for the identification of anti-patterns since it has been widely used in previous studies on

64

anti-patterns, while we applied LADP to detect LAs because it is the most novel and recent ap-
proach (Arnaoudova et al., 2013). Other possible anti-patterns detection techniques (e.g., inFusion,
JDeodorant or PMD) can be used to confirm our findings. Another threats relate to our method
for detecting post-release bugs. In effect, we have used a method that is widely applied in the lit-
erature (Kamei et al., 2013), (McIntosh et al., 2014), (McIntosh et al., 2016). Yet, we are aware
that this accuracy is not perfect since it includes its authors’ subjective understanding of the code
smells (Moha et al., 2010). Additionally, DECOR accuracy may have an impact on our results
since we may have classified a class without smells as a class involving smells and vice versa.
In the future, we intend to apply other techniques and tools to confirm our findings (Moha et al.,
2010).

Internal validity threats deal with alternative explanations of our results. It is important to mention
that we do not claim causation, but we bring empirical evidence of the relationship between the
presence of a particular family of smells and the occurrences of changes, and faults. Another threat
is related to errors related to fault-fixing changes. We mitigated such a threat by not computing
only the post-release defects, but also defects using the SZZ algorithm (Śliwerski et al., 2005).

Conclusion validity threats concern the relation between the treatment and the outcome. Proper
tests were performed to statistically reject the null hypotheses. In particular, we used non-parametric
tests, which do not make any assumption on the underlying distributions of the data, and, specif-
ically, Fisher’s exact test. Also, we based our conclusions not only on the presence of significant
differences but also on the presence of a practically relevant difference, estimated by means of odds
ratio measures. Last, but not least, we dealt with problems related to performing multiple Fisher
tests using the Bonferroni correction procedure.

Reliability validity threats concern the possibility of replicating this study. We make publicly
available all information and necessary details to replicate our study. Moreover, the source code
repositories and issue tracking systems are publicly available to obtain the same data. The raw data
used to compute the statistics presented in this paper are available online.

External validity threats concern the possibility of generalizing our results. We studied three
systems having their corresponding control version system from where we extracted changes and
fault fixes. It is true that three projects are not a large number. However, we analyzed a large
number of releases, i.e., 30 releases in total. The investigated systems have different sizes and
belong to different domains. Such a number of systems and releases may not be representative of
all systems, and thus, we cannot guarantee that similar findings will be obtained when applying
our approach to other open or closed source systems. Additionally, further validation on a larger
set of systems from different domains is recommended to make sure our results are generalizable.
Finally, we used a specific yet representative family of linguistic anti-patterns and design anti-

65

patterns. Different smells could be investigated in future work and could lead to different results.

5.5 Summary

This chapter provides further empirical evidence that design anti-patterns and linguistic anti-patterns
relate to change- and fault-proneness. To study the relation between the detected families of design
smells and change- and fault-proneness, we leveraged the change history of the studied systems
using information from their Git/SVN versioning systems. We also mined their bug repositories.
Interestingly, our findings show that LAs can make, in some cases, classes with DAPs more fault-
prone when both occur in classes of object-oriented systems.

In addition, they indicate that, in a lot of cases, classes containing DAPs are more change- and
fault-prone than classes with LAs. The occurrence of DAP in a class that experienced a LA has
a strong relationship with change- and fault-proneness than the occurrence of LA in a class that
experienced a DAP.

Based on our obtained results from Chapter 4 we found that, LAs hinder understandability of the
code, but they do not eventually lead to have more changes and faults. Thus, development teams
and quality assurance teams should better focus their refactoring efforts on components with design
anti-patterns (while not neglecting linguistic anti-patterns) to assure good quality for their systems.

In the next Chapter, we further investigate the impact of LAs on the classes that have mutations be-
tween DAPs and DPs and their impact on change- and fault-proneness. Therefore, we first investi-
gate the impact of design anti-patterns and design pattern evolution on change- and fault-proneness.
Then, we investigate the impact that occurrences of LAs has on the change- and fault-proneness of
evolving anti-patterns and design patterns.

66

CHAPTER 6 LINGUISTIC ANTI-PATTERNS, DESIGN ANTI-PATTERNS, DESIGN
PATTERNS AND THEIR MUTATIONS AND FAULT-PRONENESS

The mutation of Design patterns and design anti-patterns has an impact

on quality in terms of change- and fault-proneness. Linguistic

anti-patterns have more negative impact on the mutated

classes containing design (anti-patterns) than

classes that only have design (anti-patterns).

In this chapter, we perform an empirical study to study the behaviors and impacts of linguistic
anti-patterns, design anti-patterns, and design patterns on software quality in terms of Change- and
Fault- Proneness.

6.1 Context

During software evolution, inexperienced developers may introduce design anti-patterns and–or
linguistic anti-patterns when they modify software systems to fix bugs or to add new functionalities
based on changes in requirements. Developers may also use design patterns to ensure software
quality or as a possible cure for some design anti-patterns. Thus, during software evolution, design
patterns and design anti-patterns are introduced, removed, and mutated from ones to the others by
developers. Many studies investigated the evolution of design patterns and design anti-patterns and
their impact on software development. However, existing studies investigated design patterns or
design anti-patterns in isolation and did not consider their mutations and the impact of these mu-
tations on software quality characteristics, such as fault-proneness. Linguistic anti-patterns affect
code quality and negatively impact program comprehension. This, in turn, may lead to inconsis-
tencies or faults during software change. Thus, the existence of linguistic anti-patterns may also
contribute to the change- and fault-proneness of design patterns and design anti-patterns.

6.1.1 Research Problem and Contribution

Understanding the evolution of design anti-patterns and design patterns along with their relation-
ships is important for software maintenance. Jaafar et al. (2013, 2014) investigated the relationships
between design anti-patterns and design patterns in releases of several systems independently, one
release at a time. They studied the relationships between classes playing roles in design patterns
and design anti-patterns. They found that there are static relationships between design patterns and

67

design anti-patterns but that these relationships are temporary. They also showed that classes con-
taining design anti-patterns, which have such relationships with design patterns, are more change-
prone than other classes containing design anti-patterns, but are less fault-prone than the other
design anti-pattern classes.

With software evolution, design patterns, design anti-patterns, and linguistic anti-patterns also
evolve. Previous studies (Khomh et Guéhéneuc, 2008) have shown that the design of systems
degrades over time, presumably due to the removal (or lack of use) of design patterns and the
introduction of design anti-patterns. Understanding the dynamics behind the evolution of design
patterns and design anti-patterns, in particular their mutations into one another, could help devel-
opers better prioritize maintenance activities and resource allocation. Besides, studying the impact
of linguistic anti-patterns and their relationships with design anti-patterns and design patterns on
change- and fault-proneness could also help developers to improve software quality.

This study is a quasi-replication of a previous study by (Jaafar et al., 2014). Some of the objectives
of this chapter are similar to those in the previous study by (Jaafar et al., 2014), which are listed as
follows:

• Calculate the probability of design anti-patterns mutations using Markov models.

• Compare classes with and without design anti-patterns to investigate the impact of the pres-
ence of design anti-patterns on fault-proneness.

However, we studied the systems at the commit level while Jaafar et al. (2014) investigations
were at the release level. Besides, we consider both design patterns and design anti-pattern mu-
tations during the evolution. In particular, we examine the impacts of design patterns and design
anti-patterns mutations on change- and fault-proneness. In addition, we investigate the impacts of
linguistic design anti-patterns on the change- and fault-proneness of the classes associated with mu-
tating design patterns and–or design anti-patterns. We investigate seven open-source Java software
systems to achieve the following six research investigations:

1. We investigate how design patterns and/or design anti-patterns mutate over time by modeling
the behavior of these mutations using Markov models.

2. We investigate the most frequent types of changes that occur during design anti-patterns
mutations.

3. We examine the impacts of these mutations on fault-proneness.

4. We study the types of changes to the code that lead to design patterns and design anti-patterns
mutations.

68

5. We study the most fault-prone transitions from design patterns and–or design anti-patterns.

6. We study the impact of the co-existence of linguistic anti-patterns and design patterns or
design anti-patterns on change- and fault- proneness.

We build one Markov chain ((Meyn et Tweedie, 2012)) for each system to model the mutations of
design patterns and/or design anti-patterns. In such models, design anti-patterns and design patterns
are nodes of the model, and the probability of the mutation between each pattern labels the arcs or
edges between nodes. We compute the probability values by analyzing a set of snapshots of the
systems.

We focus on thirteen design anti-patterns from (Brown et al., 1998) and six design patterns (Gamma,
1995) to investigate their relations with fault-proneness. For the detection of design anti-patterns
and design patterns, we use DECOR by (Moha et al., 2010) and DeMIMA by (Guéhéneuc et
Antoniol, 2008). We investigate seven different open-source systems from different sizes and ap-
plication domains, Apache Ignite1, Apache Solr 2, Eclipse IDE 3, Matsim 4, Mule 5, Nuxeo 6, and
Ovirt 7. We first detect the occurrences of design anti-patterns and design patterns in all the ex-
tracted snapshots of the systems and then investigate the types of mutations: persistent, deleted,
introduced, and changed between these snapshots. Second, we build Markov models to compute
the probability values of such mutations. The mutation probabilities allow us to understand how
likely design patterns and/or design anti-patterns mutate into each other. Then, we use the SZZ
algorithm by (Śliwerski et al., 2005) to find fault-inducing commits and investigate the impact of
design patterns and–or design anti-patterns mutations on the fault-proneness of classes. In addi-
tion, we define thirteen types of change and examine them to discover what kinds of changes lead
to mutations from design patterns and–or design anti-patterns. We also study the effects of such
changes on fault-proneness.

6.1.2 Research Questions

As we mentioned before, this study is a quasi-replication of a previous work by (Jaafar et al.,
2014). Addition to that work, we also consider design patterns mutations during the evolution.
In particular, we examine the impacts of design patterns and design anti-patterns mutation on the

1https://ignite.apache.org/
2http://lucene.apache.org/solr/
3https://www.eclipse.org/
4https://matsim.org/
5http://www.mulesoft.org/
6https://www.nuxeo.com/
7https://www.ovirt.org/

https://ignite.apache.org/
http://lucene.apache.org/solr/
https://www.eclipse.org/
https://matsim.org/
http://www.mulesoft.org/
https://www.nuxeo.com/
https://www.ovirt.org/

69

change- and fault-proneness of classes. In addition, we investigate the impacts of linguistic anti-
patterns on the change- and fault-proneness of classes associated with mutating design patterns
and–or design anti-patterns. We investigate seven open-source Java software systems to answer the
following five research questions:

• RQ6.1: Do design patterns and–or design anti-patterns mutate during the evolution of
software systems? What is the probability of occurrence of different types of mutations?

We build Markov models showing which DPs and–or DAPs mutate into one another during
a studied period of evolution. We consider both appearance and disappearance of DPs and
DAPs occurrences. We observe that both DPs and DAPs mutate in the systems. We compute
the probabilities of all possible mutations using the Markov models. We also present the
most frequently mutated DPs and DAPs along the following four mutation types:

1. Design Anti-patterns to Design Anti-patterns,

2. Design Anti-patterns to Design patterns,

3. Design patterns to Design Anti-patterns,

4. Design patterns to Design patterns.

• RQ6.2: What types of changes lead to a mutation between design patterns and-or design
anti-patterns?

DPs and design DAPs evolve through different types of changes as the system evolves. We
define thirteen change types and investigate classes experiencing these change types and
participating in DPs and–or DAPs. We see that different types of changes occur during the
evolution of software systems and lead to different mutations. We study the impact of the
types of changes on mutations between DPs and–or DAPs. We present the most prevalent
type of changes leading to mutations from DAPs to DPs and vice-versa.

• RQ6.3: What is the fault-proneness of mutated design patterns and anti- patterns?What
transitions lead to more fault-prone mutations?

DPs and DAPs may frequently mutate in other types of patterns during the evolution process.
We study whether such mutations are risky regarding fault-proneness. We also present the
riskiest transitions among DPs and DAPs. We observe that classes participating in mutated
DAPs are more fault-prone than classes involved in mutated DPs. We also see that mutations
from DAPs to DPs are more faulty than the other mutations.

• RQ6.4: Do specific types of changes lead to increase fault-proneness during design pat-
terns and-or design anti-patterns mutations?

70

We investigate whether the types of changes impact fault-proneness. We examine faulty-
classes and check whether a mutation occurred during the evolution of these classes. We
also examine all changes experienced by the classes during the evolution of the systems.
We observe that some of the change types make the systems more fault-prone. We study
whether specific types of changes cause the mutations of DPs to DAPs and vice-versa more
fault-prone.

• RQ6.5: Do the occurrences of Linguistic anti-patterns increase change- and fault-proneness
during design patterns and-or design anti-patterns mutations?

Design patterns, design anti-patterns, and linguistic anti-patterns may co-exist. However,
although important, we do not know whether and how their co-existence impact software
quality by increasing change- and–or fault-proneness. Thus, we study whether the existence
of linguistic anti-patterns impact change- and fault-proneness of the classes associated with
evolving DPs and DAPs. Our results show that the co-existence of linguistic anti-patterns
and design patterns or design anti-patterns leads to increased change- and fault-proneness in
the mutated classes during the software evolution.

The results of these five research questions show that there is a high probability for some design
patterns and–or design anti-patterns to mutate to others types of design patterns and–or design anti-
patterns. The changes that lead to the mutations are mostly structural changes, in particular the
addition of large number of attributes or long methods. Results also show that patterns mutations
can increase the fault-proneness of a system. Also, the co-existence of the linguistic anti-patterns
and design patterns or design anti-patterns increase the change- and fault-proneness of the con-
cerned classes.

6.2 Study Design

We use the methodology presents in Figure 6.1 to answer our research questions. We first extract
source code of the revisions at 500 commit-intervals from the studied systems’ Git repositories.
Then, we detect design anti-patterns and design patterns for each of the selected snapshots of each
system. We then create Markov models based on the detected design anti-patterns and design
patterns to analyze their behaviors during evolution. Afterwards, we identify change types and
faulty classes throughout the period of evolution that we analyzed. We study all the change types
that lead to fault(s) during evolution. We also detect linguistic anti-patterns in all the systems to
investigate their impacts on change- and fault-proneness. We explain each step in details in the
following sections.

71

Git Repositories

Detecting
Design anti-patterns

Detecting
Design-patterns

Detecting
Linguistic anti-patterns

Analyzing
Fault-proneness

Building
the Markov Model RQ1

Identifying
Change Types

RQ2

RQ3

RQ4

RQ5

Figure 6.1 Schematic diagram of the methodological steps of the study presented in this chapter.

6.2.1 Studied Design Anti-patterns, linguistic Anti-patterns and Design patterns

We select thirteen design anti-patterns in this chapter. These design anti-patterns introduced by
(Brown et al., 1998) expresses problems with data, complexity, size, and the features related to
classes. They have also been studied in previous work (Khomh et al., 2012). We summarized
their definitions in chapter 2, Section2.2.1. More details about these anti-patterns are available
elsewhere (Romano et al., 2012). We also studied eight design patterns from (Gamma, 1995), de-
scribed in chapter 2, Section 2.3.1. We also studied all the types of linguistic anti-patterns described
in Chapter 2, Section 2.1.1.

6.2.2 Studied Systems

We consider seven Java-based open-source systems for our study as shown in table Table 6.1. We
select these systems based on diversity in code base size, application domains, and their evolution
history. These systems are comparatively bigger with many classes and mature enough to have
longer evolution histories with a large number of commits. As these systems have evolved over
the years and they have many versions to provide a rich dataset for analyzing the change- and
fault-proneness of the evolved classes. Table 6.1 provides descriptive statistics about the selected
systems.

Eclipse IDE for Java8 is an IDE for any Java developer. The IDE use the Java development Tools
(JDT) to develop Java applications. It contains CVS, and Git client. It also includes XML Editor,
Mylyn as a task management system, build supports for Maven and WindowBuilder.

8https://www.eclipse.org/

https://www.eclipse.org/

72

Table 6.1 Subject systems analyzed

System Applicaion domain # Commits LOC Issue Tracker
Eclipse for Java IDE 281,396 9,064,794 Bugzilla
Nuxeo Platform Colaboration management 265,380 5,741,131 Jira
oVirt Visualization platform 149,128 2,764,655 Bugzilla
Matsim Transportation management 44,200 1,602,877 Atlassian
Apache Solr Search server 30,995 658,711 Jira
Apache Ignite Distributed DB platform 24,104 1,471,036 Jira
Mule Community Edition Integration platform 22,891 309,616 Jira

Nuxeo9 also called Nuxeo Platform, is an open-source context management and collaboration plat-
form, which provides different information management solutions for developers to build business
applications.

oVirt10 is a visualization management platform written in Java. The platform provides a central-
ized management of resources, storage, and virtual machines, which allows to manage your entire
enterprise infrastructure. oVirt contains two main parts including oVirt engine and oVirt node.

Matism11 is a useful framework to build large-scale transport solutions. This application has been
used in different areas of transportation. The development team provides a comprehensive docu-
mentation for users and developers to ease the usage and maintainability of the system.

Apache Solr from the Apache Lucene project12 is an open-source Java search server. It searches
websites, databases, and files. Solr is a popular and fast search platform which uses the Lucene
Java search library at its core for full-text indexing and search. It runs as a standalone full-text
search server.

Apache Ignite13 is a powerful in-memory computing platform used as database and caching sys-
tem. It has several features: it has been used to solve complex problems pertaining to speed and
scalability; it also can be used as in-memory data grid and caching capabilities to accelerate exist-
ing relational and NoSQL databases; and as a distributed SQL to gain horizontal scalability, strong
consistency, and high availability.

Mule14 is a runtime engine of a Java-based enterprise service bus (ESB) and integration platform.
Developers can connect applications together quickly and easily, and enable them to exchange
data. Mule has several features including service creation and hosting, service mediation, message

9https://www.nuxeo.com/
10https://www.ovirt.org/
11https://matsim.org/
12http://lucene.apache.org/solr/
13https://ignite.apache.org/
14http://www.mulesoft.org/

https://www.nuxeo.com/
https://www.ovirt.org/
https://matsim.org/
http://lucene.apache.org/solr/
https://ignite.apache.org/
http://www.mulesoft.org/

73

routing, and data transformation.

6.2.3 Building a Mutation Model

We build a Markov model ((Meyn et Tweedie, 2012)) for each system to show the mutations of
design anti-patterns and design patterns during evolution. For a clear understanding of these muta-
tions, we present the mutations as directed graphs. We consider each pattern across all the selected
snapshots of a systems as a node of the Markov model. A Markov model indicates a set of all
possible mutations for that pattern during the evolution of the system. We consider a sequence
of random variables e.g.,X1, X2, X3, ..., Xn for each pattern. The possible values of Xi form a
countable set S called the state space of the model.

For example, Figure 6.2 presents a directed graph where the nodes are design anti-patterns and
design patterns while the edges represent mutations from one node (pattern or design anti-pattern)
to another. The edges are labeled with the probabilities of the mutation from source patterns to
target patterns. This Markov model shows the mutations of the Builder design pattern across the
selected snapshots of Matsim. The sum of all the probabilities of mutations from each design
patterns and–or design anti-patterns to other patterns in a Markov model is equal to one. For each
pattern, we have a graph with the computed probabilities for all possible mutations from this pattern
to the other patterns during the evolution of each system.

6.2.4 Analyzing Fault-proneness

We use the SZZ algorithm by (Śliwerski et al., 2005) to identify commits that introduce faults, re-
ferred to as fault-inducing commits. All the studied systems are version-controlled by Git. For each
system, we first apply heuristics by (Fischer et al., 2003) to link commits to bugs. We use regular
expressions to detect bug-IDs from the systems commit-logs. Developers of different projects may

Bu

LM

Cm

Cp

Sink

De 0.665
0.003

0.042

0.169

0.076

0.042

Figure 6.2 Builder (Bu) mutation among the different revisions of Matsim.

74

use different patterns to write bug-IDs in the commit logs. To ensure the accuracy of the results,
we tune our regular expressions on our dataset incrementally through manual analysis.

For an identified bug B, we extract files that fixed the bug (bug-fixing files) by using the git

diff command. Next, we retrieve the modified and deleted lines from the bug-fixing files. The
SZZ algorithm assumes that prior commits that modified the lines (prior to the opening of the
bug report), which are modified or deleted by the bug-fixing files, are fault-inducing commits.
To identify such prior commits, on each bug-fixing files, we apply the git blame command to
retrieve a list of previous commits that modified these files. From the result list, we only keep the
commits that modified the lines, which are then changed by corresponding bug-fixing commits.
We filter out the commits whose submission date is later than its related bug creation date. The
remaining commits are considered as the fault-inducing commits for the bug B. For a given bug B,
the SZZ algorithm will yield a list of commit IDs and the fault-inducing files in the commits related
to the bug B. We use regular expressions to map the fault-inducing files to our studied classes.

6.2.5 Identifying Change Types

Different types of changes can affect software systems with different impacts on fault-proneness.
For example, changes to comments are less likely to lead to faults than changes to method invo-
cations. Table 6.2 shows the change types considered in this study and which were also used in
previous work by (An et Khomh, 2015).

We use srcML ((srcml, 2016)) to transform each file of the systems into an XML document, in
which each code element is tagged by its type or function, e.g.,a class declaration, a parameter
list, or a control flow statement. We use a Python script to automatically compare the srcML tags
between each two subsequent snapshots and extract their differences. The removed tags from the
old snapshot and the added tags in the new snapshot are referred as changed tags. We manually
group the unique changed tags into a series of change types. Table 6.2 shows the change types and
their corresponding srcML (changed) tags. We group some change types together, because each
group of change types represents the same kind of code changes, which have similar impacts on the
source code. Thus, changes in the same group may have a similar impact on the fault-proneness of
the code.

For a given file F in a specific commit C, our approach yields a list of change types listed in
Table 6.2. As we study design- and design anti-patterns at commit level, for each selected snapshots
of system R, we aggregate the change types related to F in the commits {C1, C2, ..., Cn}, which
belong to R.

75

Table 6.2 Change types identified from the source code of the systems studied

Change type srcML tag(s)
Access super, public, private, protected, extern
Class extends, class, interface, implements,

class_decl
Code block expr_stmt, expr, block
Comment annonation, comment, @type, @format
Control flow while, do, if, else, elseif, break, goto, for, fore-

ach, control, continue, then, switch, case, re-
turn, incr, default, condition

Declaration decl_stmt, modifier, specifier, decl, func-
tion_decl, literal, label, empty_stmt, construc-
tion_decl, annonation_dfn

Exception assert, try, catch, throw, throws, finally
Import import, package
Invocation call
Method constructor, default, static, type, lambda, func-

tion, function_decl, unit
Operator index, synchronized, enum, operator, ternany
Parameter argument, param, parameter_list, argu-

ment_list, parameter
Renaming renaming, name

6.3 Study Results

In this section, we present the findings of our study by answering the five research questions that
we defined in Section 6.1.2.

6.3.1 RQ6.1: Do design patterns and–or design anti-patterns mutate during the evolution
of software systems? What is the probability of occurrence of different types of muta-
tions?

Motivation For software maintenance, a good understanding of the evolution of design patterns
is important because it can help developers to identify and circumvent risky design patterns and
prevent design anti-patterns from appearing ((Jaafar et al., 2014)). While some tools can find
software entities and their patterns of evolution automatically (e.g., (Van Emden et Moonen, 2002;
Lanza et Marinescu, 2007; Rapu et al., 2004; Vaucher et al., 2009)), no previous work investigated
the mutation of design patterns and design anti-patterns.

76

Computing probability values for all possible mutations We identify design anti-patterns us-
ing the detection tools described in Section 2.2.2. We apply the detection tools on the selected
snapshots of each of the systems listed in Table 6.1. We select snapshots at every 500 commit
interval. Our selection of commit interval period is adequate to detect changes occurring between
two subsequent snapshots (according to (Hassan, 2009; Canfora et al., 2010)). We automatically
compare each two subsequent snapshots to compute the numbers of added or deleted occurrences
of patterns. Using this information, we build one Markov model for each of the systems to compute
the probability of mutations of design patterns and design anti-patterns.

FM

LM

Cm

Cp

Sink

De

0.665

0.003

0.042

0.169
0.076

0.042

Figure 6.3 FactoryMethod (FM) mutation among the different revisions of Eclipse.

BuCS

LZC

Cp

FM

ObSi
0.708

0.003 0.002

0.001

0.152

0.0670.065

Figure 6.4 Builder (Bu) mutation among the different revisions of Nuxeo.

Tables 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, and 6.9 show all the mutations of design patterns and design

BlobAS Sink

0.394

0.299
0.308

Figure 6.5 Blob (BL) mutation among the different revisions of oVirt.

77

Table 6.3 Change probabilities of design anti-patterns and design patterns in Eclipse IDE

Source AS Bl CS CC LC LZC LM LP MCh RP SC SG SA Bu Cm Cp FM De Ob PT Si Sink
AS 0.013 0.972 0.000 0.015
Bl 0.007 0.27 0.447 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.277
CS 0.001 0.000 0.001 0.993 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.005
CC 0.000 0.000 0.000 0.012 0.973 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.014
LC 0.000 0.000 0.000 0.000 0.5 0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
LZC 0.000 0.000 0.000 0.000 0.000 0.012 0.859 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.006
LM 0.000 0.000 0.000 0.001 0.000 0.000 0.024 0.95 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.025
LP 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.009 0.966 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.025
MCh 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
RP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.273 0.455 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.273
SC 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
SG 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
SA 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Bu 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.876 0.000 0.000 0.000 0.000 0.049 0.000 0.002 0.05
Cm 0.000 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.668 0.091 0.09 0.000 0.000 0.000 0.000 0.141
Cp 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000
FM 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.042 0.169 0.665 0.076 0.000 0.000 0.000 0.042
De 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.892 0.107 0.000 0.000 0.000
Ob 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000
PT 0.000 1 0.000 0.000
Si 0.000 0.020 0.966 0.014

Bu

LM

Cm

Cp

Sink

De 0.665
0.003

0.042

0.169

0.076

0.042

Figure 6.6 Builder (Bu) mutation among the different revisions of Matsim.

78

Table 6.4 Change probabilities of design anti-patterns and design patterns in Nuxeo

Source AS Bl CS CC LC LZC LM LP MCh RP SC SG SA Bu Cm Cp FM De Ob PT Si Sink
AS 0.014 0.969 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.017 0.000 0.000 0.000 0.000 0.000
Bl 0.003 0.283 0.417 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.297 0.000 0.000 0.000 0.000 0.000
CS 0.002 0.000 0.008 0.982 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.008 0.000 0.000 0.000 0.000 0.000
CC 0.001 0.000 0.000 0.040 0.912 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.047 0.000 0.000 0.000 0.000 0.000
LC 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
LZC 0.000 0.000 0.000 0.000 0.000 0.048 0.910 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.042 0.000 0.000 0.000 0.000 0.000
LM 0.001 0.000 0.000 0.003 0.000 0.000 0.028 0.937 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.030 0.000 0.000 0.000 0.000 0.000
LP 0.000 0.001 0.000 0.006 0.000 0.000 0.002 0.017 0.946 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.028 0.000 0.000 0.000 0.000 0.000
MCh 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
RP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
SC 0.012 0.000 0.000 0.012 0.000 0.000 0.000 0.000 0.000 0.000 0.067 0.824 0.000 0.000 0.000 0.000 0.000 0.85 0.000 0.000 0.000 0.000 0.000
SG 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
SA 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Bu 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Cm 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.019 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Cp 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000
FM 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000 0.000
De 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000
Ob 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000
PT 0.000 1 0.000 0.000
Si 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.133 0.000 0.000 0.105 0.760 0.000

Table 6.5 Change probabilities of design anti-patterns and design patterns in oVirt

Source AS Bl CS CC LC LZC LM LP MCh RP SC SG SA Bu Cm Cp FM De Ob PT Si Sink
AS 0.018 0.971 0.000 0.011
Bl 0.000 0.299 0.394 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.308
CS 0.006 0.000 0.003 0.982 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.009
CC 0.000 0.000 0.000 0.012 0.975 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.013
LC 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
LZC 0.000 0.000 0.000 0.000 0.000 0.001 0.998 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001
LM 0.000 0.000 0.000 0.000 0.000 0.000 0.012 0.977 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.011
LP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.008 0.969 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.022
MCh 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
RP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.082 0.857 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.061
SC 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
SG 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
SA 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Bu 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Cm 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.019 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Cp 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000
FM 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000 0.000
De 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000
Ob 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000
PT 0.000 1 0.000 0.000
Si 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.097 0.798 0.103

anti-patterns that occurred during the selected period of evolution, of the studied systems. In these
tables, we add two additional states (source and sink) to cover those mutations from no patterns
to design (anti-) patterns, and–or from design (anti-) patterns to no patterns referred to as source
and sink respectively. Source indicates the new classes which did not participate in the occurrences
of design patterns and–or design anti-patterns before the selected period of evolution. A sink, on
the other hand, represents the classes which participated in occurrences of design patterns and–or
design anti-patterns before the selected period of evolution but not after.

For example, SpaghettiCode has the most representative mutation probability from source in Mule
(Table 6.9), and Blob and to Sink in Apache Solr (Table 6.7). Table 6.10 shows the most repre-
sentative design patterns and design anti-patterns regarding the mutation probability values. Here,
the most representative design (anti-) patterns are those having the highest probability value of

79

Table 6.6 Change probabilities of design anti-patterns and design patterns in Matsim

Source AS Bl CS CC LC LZC LM LP MCh RP SC SG SA Bu Cm Cp FM De Ob PT Si Sink
AS 0.066 0.893 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.040 0.000 0.000 0.000 0.000 0.000
Bl 0.003 0.372 0.279 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.346 0.000 0.000 0.000 0.000 0.000
CS 0.025 0.000 0.037 0.9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.038 0.000 0.000 0.000 0.000 0.000
CC 0.004 0.001 0.002 0.075 0.848 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.069 0.000 0.000 0.000 0.000 0.000
LC 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
LZC 0.000 0.003 0.000 0.000 0.000 0.1 0.831 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.066 0.000 0.000 0.000 0.000 0.000
LM 0.003 0.001 0.002 0.013 0.000 0.000 0.063 0.86 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.059 0.000 0.000 0.000 0.000 0.000
LP 0.003 0.000 0.003 0.013 0.000 0.000 0.007 0.034 0.887 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.053 0.000 0.000 0.000 0.000 0.000
MCh 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
RP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.021 0.596 0.000 0.000 0.000 0.000 0.000 0.000 0.193 0.000 0.000 0.000 0.000 0.000
SC 0.026 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.000 0.038 0.834 0.000 0.000 0.000 0.000 0.000 0.099 0.000 0.000 0.000 0.000 0.000
SG 0.000 0.000 0.000 0.091 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.182 0.455 0.000 0.000 0.000 0.000 0.273 0.000 0.000 0.000 0.000 0.000
SA 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Bu 0.000 0.000 0.000 0.001 0.000 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.546 0.000 0.001 0.272 0.000 0.141 0.000 0.030 0.000
Cm 0.000 0.000 0.000 0.001 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.030 0.000 0.371 0.075 0.387 0.117 0.012 0.000 0.000 0.000
Cp 0.000 0.000 0.000 0.002 0.000 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.037 0.044 0.850 0.061 0.000 0.000 0.000 0.000 0.000
FM 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.036 0.074 0.825 0.059 0.000 0.000 0.000 0.000
De 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.049 0.912 0.034 0.000 0.000 0.000
Ob 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000
PT 0.000 1 0.000 0.000
Si 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.028 0.000 0.000 0.009 0.962 0.000

Table 6.7 Change probabilities of design anti-patterns and design patterns in ApacheSolr

Source AS Bl CS CC LC LZC LM LP MCh RP SC SG SA Bu Cm Cp FM De Ob PT Si Sink
AS 0.000 1 0.000
Bl 0.000 0.321 0.365 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.313
CS 0.000 0.000 0.009 0.983 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.008
CC 0.000 0.000 0.000 0.033 0.93 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.037
LC 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
LZC 0.000 0.000 0.000 0.000 0.000 0.072 0.859 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.069
LM 0.000 0.000 0.001 0.002 0.000 0.000 0.033 0.928 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.036
LP 0.000 0.001 0.000 0.008 0.000 0.000 0.007 0.079 0.779 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.125
MCh 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
RP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.088 0.84 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.072
SC 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
SG 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.013 0.000 0.981 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.006
SA 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Bu 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.963 0.000 0.000 0.000 0.000 0.005 0.000 0.000 0.027
Cm 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Cp 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000
FM 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.012 0.874 0.005 0.000 0.000 0.000 0.092
De 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.996 0.000 0.000 0.000 0.004
Ob 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000
PT 0.000 1 0.000 0.000
Si 0.000 0.007 0.981 0.012

mutation from one type to another type of design (anti-) pattern.

Analyzing pattern evolution We observe that not all design patterns and design anti-pattern
occurrences undergo changes; some of them remain stable during evolution. For example, “Lazy-
Class” and ‘MessageChain” are instances of stable design anti-patterns, while “Prototype” is a per-
sistent design pattern in the Apache Solr system. In Matsim, design anti-patterns “SwissArmyKnife”,
“LazyClass”, and ‘MessageChain” and design patterns “Observer” and “ProtoType” were stable.

However, in general, design anti-patterns tend to evolve in all studied systems. We recognized
that more than half of design anti-pattern occurrences mutated to another design patterns or de-
sign anti-patterns across different snapshots of each system. For example, in Matsim (Table 6.6),
86% (probability value 0.86) “LongMethod” occurrences remain stable in the system and with a

80

LP

AS

CS

LZC

LM

Sink

0.779

0.001

0.008 0.007

0.0790.125

Figure 6.7 LongParameterList (LP) mutation among the different revisions of ApacheSolr.

Table 6.8 Change probabilities of design anti-patterns and design patterns in ApacheIgnite

Source AS Bl CS CC LC LZC LM LP MCh RP SC SG SA Bu Cm Cp FM De Ob PT Si Sink
AS 0.000 1 0.000
Bl 0.000 0.375 0.33 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.295
CS 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
CC 0.000 0.000 0.000 0.053 0.905 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.042
LC 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
LZC 0.000 0.000 0.000 0.000 0.000 0.015 0.97 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.015
LM 0.000 0.000 0.000 0.004 0.000 0.000 0.045 0.905 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.047
LP 0.000 0.000 0.000 0.009 0.000 0.000 0.006 0.051 0.851 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.081
MCh 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
RP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
SC 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
SG 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
SA 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Bu 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.976 0.000 0.000 0.000 0.000 0.004 0.000 0.000 0.018
Cm 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Cp 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000
FM 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000 0.000
De 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000
Ob 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000
PT 0.000 1 0.000 0.000
Si 0.000 0.003 0.994 0.003

probability of 14%, they are mutated to other forms of design patterns and–or design anti-patterns.
Similarly, in Ovirt (Table 6.5), “Blob” with the 39.4% probability remain persistent in the system,
while 29.9% of them mutated to “AntiSingleton”, and with a probability of 30.8%, they are mutated
to other patterns. As the last example, in Eclipse, 45.5% of “RefusedParentBequest ” occurrences
retain their states from a release to another; 27.3% are mutated to “MessageChain”, and 27.3%
are mutated to other forms of design patterns and–or design anti-patterns. We saw fewer changes
among design patterns. As an example, in Apache Ignite, 97.6% of “Command” occurrences re-
mained stable, and only 0.4% are changed to another type of design anti-patterns or design patterns.

For a better understanding of the design pattern and design anti-pattern mutations, Figures 6.3,
6.4, 6.5, 6.6, 6.7, 6.8, and 6.9 present the Markov models as graphs with the most representative
mutations and with the highest probabilities (weights on edges) for each of the systems. Since
drawing all possible probabilities make the graphs complex, we choose a threshold for each system
to reduce the number of edges in each graph. The chosen threshold is 0.100 for all the studied
systems. The gray cells in Tables 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, and 6.9 represents all probabilities

81

LPCS

LZCLM

Sink

0.8510.009 0.006
0.051

0.081

Figure 6.8 LongParameterList (LP) mutation among the different revisions of ApacheIgnite.

Table 6.9 Change probabilities of design anti-patterns and design patterns in Mule

Source AS Bl CS CC LC LZC LM LP MCh RP SC SG SA Bu Cm Cp FM De Ob PT Si Sink
AS 0.032 0.937 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.030 0.000 0.000 0.000 0.000 0.000
Bl 0.000 0.313 0.313 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.374 0.000 0.000 0.000 0.000 0.000
CS 0.003 0.000 0.006 0.963 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.028 0.000 0.000 0.000 0.000 0.000
CC 0.001 0.000 0.000 0.071 0.843 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.084 0.000 0.000 0.000 0.000 0.000
LC 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
LZC 0.000 0.000 0.000 0.000 0.000 0.030 0.946 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.024 0.000 0.000 0.000 0.000 0.000
LM 0.000 0.000 0.000 0.010 0.000 0.000 0.039 0.907 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.044 0.000 0.000 0.000 0.000 0.000
LP 0.000 0.000 0.000 0.014 0.000 0.000 0.009 0.115 0.676 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.186 0.000 0.000 0.000 0.000 0.000
MCh 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
RP 0.000 0.000 0.000 0.033 0.000 0.000 0.067 0.000 0.000 0.233 0.233 0.000 0.000 0.000 0.000 0.000 0.000 0.433 0.000 0.000 0.000 0.000 0.000
SC 0.096 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.074 0.649 0.000 0.000 0.000 0.000 0.000 0.181 0.000 0.000 0.000 0.000 0.000
SG 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.053 0.947 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
SA 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Bu 0.000 0.000 0.000 0.003 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.708 0.000 0.001 0.152 0.000 0.067 0.000 0.065 0.000
Cm 0.000 0.000 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.019 0.000 0.687 0.096 0.193 0.000 0.000 0.000 0.000 0.000
Cp 0.000 0.000 0.000 0.002 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.058 0.882 0.054 0.000 0.000 0.000 0.000 0.000
FM 0.000 0.000 0.000 0.003 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.042 0.087 0.764 0.099 0.000 0.000 0.000 0.000
De 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.014 0.971 0.013 0.000 0.000 0.000
Ob 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.024 0.024 0.951 0.000 0.000 0.000
PT 0.000 1 0.000 0.000
Si 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.029 0.000 0.000 0.006 0.964 0.000

that are displayed in these figures. We used those figures to present which types of design (anti-)
patterns are usually mutated over the software evolution. This information can help developers to
focus on such types to avoid the mutations that can have negative impacts on the quality of the
systems.

Our results show that design patterns and design anti-patterns mutate during the evolution
of software systems. In most of the studied systems, more than half of the design anti-
pattern occurrences mutated during the evolution. On the other hand, in most of the
systems, almost all the design pattern occurrences remained stable during the evolution
process. We also observe that Blob and Command are the design anti-patterns and design
patterns, which have higher mutation probabilities.

82

Table 6.10 Most representative design pattern and design anti-patterns mutations with mutation
probabilities

System Mutation Type From To Probability

Apache Ignite

Design Anti-pattern→Design Anti-pattern Blob (Bl) AntiSingleton (AS) 0.375
Design Anti-pattern→Design pattern - - -
Design pattern→Design Anti-pattern - - -
Design pattern→Design pattern Builder (Bu) Observer (ob) 0.004

Apache Solr

Design Anti-pattern→Design Anti-pattern Blob (Bl) AntiSingleton (AS) 0.321
Design Anti-pattern→Design pattern - - -
Design pattern→Design Anti-pattern - - -
Design pattern→Design pattern FactoryMethod (FM) Composite (Cp) 0.012

Eclipe IDE

Design Anti-pattern→Design Anti-pattern LargeClass (LC) ComplexClass (Cc) 0.500
Design Anti-pattern→Design pattern - - -
Design pattern→Design Anti-pattern FactoryMethod (FM) LongMethod (LM) 0.003
Design pattern→Design pattern FactoryMethod (FM) Composite (Cp) 0.169

Matsim

Design Anti-pattern→Design Anti-pattern Blob (Bl) AntiSingleton (AS) 0.372
Design Anti-pattern→Design pattern Blob (Bl) FactoryMethod (FM) 0.346
Design pattern→Design Anti-pattern Command (Cm) SwissArmyKnife (SA) 0.030
Design pattern→Design pattern Command (Cm) FactoryMethod (FM) 0.387

Mule

Design Anti-pattern→Design Anti-pattern Blob (bl) AntiSingleton(AS) 0.313
Design Anti-pattern→Design pattern RefusedParentBequest (RP) FactoryMethod (FM) 0.433
Design pattern→Design Anti-pattern Command (Cm) SwissArmyKnife (SA) 0.019
Design pattern→Design pattern Command (Cm) FactoryMethod 0.193

Nuxeo

Design Anti-pattern→Design Anti-pattern Blob (bl) AntiSingleton(AS) 0.283
Design Anti-pattern→Design pattern Blob (Bl) FactoryMethod (FM) 0.297
Design pattern→Design Anti-pattern Singleton (Si) LazyClass (ZC) 0.004
Design pattern→Design pattern Singleton (Si) FactoryMethod (FM) 0.133

Ovirt

Design Anti-pattern→Design Anti-pattern Blob (bl) AntiSingleton(AS) 0.299
Design Anti-pattern→Design pattern - - -
Design pattern→Design Anti-pattern Singleton (Si) AntiSingleton (AS) 0.001
Design pattern→Design pattern Singleton (Si) Prototype (PT) 0.097

6.3.2 RQ6.2: What types of changes lead to a mutation between design patterns and-or
design anti-patterns?

Motivation Understanding the causes of design patterns and–or design anti-patterns mutations is
a key knowledge during software maintenance. Thus, studying the type of changes related to design
patterns and design anti-patterns mutation could help developers to focus on the most frequent
change types triggering patterns mutations. In this research question, we identify the types of
changes to understand why and how design patterns and–or design anti-patterns mutate between
two successive snapshots.

Analyzing change types We use srcML15 to create an XML file for each system and match with
the scrML tags to find changed tags as we explained in Section 6.2.5. Then, we categorize change
types based on our defined categories (in Table 6.2) and compare the percentages of each change
type for each of the systems. We apply the same methodology for all the subject systems. Fig. 6.14

15https://www.srcml.org/

83

LPCS

LZCLM

FM
0.676

0.014 0.009
0.115

0.186

Figure 6.9 LongParameterList (LP) mutation among the different revisions of Mule.

shows the types of changes in Apache Ignite classes participating in design anti-patterns and design
patterns, respectively. Table 6.11 also presents the numbers of each change types in this system.
In Apache Ignite, we observe that “Access”, and “Renaming” are the least and most representative
change types for both design patterns and design anti-patterns, which lead to many changes in
occurrences of both design anti-patterns and design patterns.

0

10000

20000

30000

40000

50000

60000

70000

Change Types

 (a)

N
um

be
r

of
 c

ha
ng

es

0

2000

4000

6000

8000

10000

12000

14000

16000

Change Types

 (b)

Figure 6.10 Number of different types of changes in Eclipse classes with (a) design anti-patterns and (b)
design patterns.

Analyzing change types for mutations During evolution, occurrences of design patterns and
design anti-patterns can also mutate into other design patterns and design anti-patterns. To analyze
change types related to pattern mutation for this research question (RQ6.2), we investigate which
types of changes lead to such mutations. The results of detected change types are contained in
CSV files related to changed classes participating in design patterns and design anti-patterns for
each system. Each CSV file includes the name of the two subsequent snapshots compared for

84

Table 6.11 Number of different types of changes in design patterns and design anti-patterns

Systems→ Eclipse Nuxeo oVirt Matsim Apache Solr Apache Ignite Mule

Change Types ↓ 1 2 3 4 5 6 7 8 9 10 11 12 13 14
AP DP AP DP AP DP AP DP AP DP AP DP AP DP

Access 33 6 85 0 174 9 271 117 34 15 11 55 20 12
Class 268 91 236 6 3804 90 1697 690 721 155 781 218 443 198
Code block 4197 1075 1070 13 13923 233 8805 3203 3873 459 3903 203 1430 413
Comment 32939 11388 9269 109 15013 411 22519 9287 9298 2616 14554 1567 6354 3780
Control
Flow

10487 1870 966 10 6440 118 5398 2094 3166 636 3433 133 916 384

Declaration 9721 2789 3133 24 27605 487 24244 9609 8803 1392 9527 349 3904 1103
Exception 996 341 946 1 619 29 1602 314 1696 457 2076 64 505 173
Import 2566 835 2734 23 18819 211 13013 4679 4024 491 4584 394 3234 793
Invocation 1707 394 556 4 7312 91 8520 3026 2598 287 2069 75 945 240
Method 4060 942 1487 29 13792 292 4702 1922 3215 511 3364 266 1940 747
Operator 13540 2803 3533 8 35513 403 57112 24326 7963 702 7207 525 5241 1975
Parameter 5629 1541 2179 3 24488 292 22080 5149 8375 1069 9024 332 3252 756
Renaming 59254 14707 16259 23 262491 3536 294661 145720 44422 4811 63961 4396 28110 9738
Changed
classes

10957 3155 5402 81 34780 55 32596 13768 7956 1192 9290 857 5684 2175

Total classes 20331 7574 39051 1263 142537 2482 62272 79480 32332 5490 27080 5796 47146 17553
AP, DP= Number of changes in design anti-patterns and design patterns respectively

Table 6.12 Number of different types of changes in design patterns and design anti-patterns muta-
tion.

Systems→ Eclipse Nuxeo oVirt Matsim Apache Solr Apache Ignite Mule

Change Types ↓ 1 2 3 4 5 6 7 8 9 10 11 12 13 14
APDP DPAP APDP DPAP APDP DPAP APDP DPAP APDP DPAP APDP DPAP APDP DPAP

Access 0 0 0 1 1 1 0 12 3 0 0 0 0 1
Class 3 1 2 0 10 0 4 29 1 7 2 4 6 3
Code block 1 2 1 4 21 22 10 132 4 1 1 3 27 17
Comment 102 192 7 4 69 31 38 739 129 242 58 23 160 85
Control
Flow

28 38 0 3 7 6 12 96 44 31 16 4 21 3

Declaration 56 78 3 2 82 38 56 412 141 90 33 16 49 32
Exception 4 6 0 0 4 1 6 28 19 13 14 4 3 2
Import 20 14 3 2 32 18 28 257 60 34 17 16 28 18
Invocation 6 7 0 0 15 20 7 183 1 6 5 6 10 3
Method 16 18 2 2 41 24 7 96 64 43 10 12 23 13
Operator 38 37 2 0 43 66 95 523 22 20 6 13 87 32
Parameter 22 41 0 0 37 20 16 423 25 47 22 29 13 22
Renaming 675 469 3 2 297 1036 462 5096 165 406 100 63 334 280
Changed
classes

71 77 7 6 61 54 58 681 58 66 34 29 53 39

APDP, DPAP= Number of changes in design anti-patterns to design patterns and design patterns to design anti-patterns mutations respectively

85

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Change Types

 (a)

N
um

be
r

of
 c

ha
ng

es

0

20

40

60

80

100

120

Change Types

 (b)

Figure 6.11 Number of different types of changes in Nuxeo classes with (a) design anti-patterns and (b)
design patterns.

0

50000

100000

150000

200000

250000

300000

Change Types

 (a)

N
um

be
r

of
 c

ha
ng

es

0

500

1000

1500

2000

2500

3000

3500

4000

Change Types

 (b)

Figure 6.12 Number of different types of changes in oVirt classes with (a) design anti-patterns and (b)
design patterns.

change detection, the type of changes and the names of the classes changed. We compare two
CSV files related to design patterns and design anti-patterns. By comparing the names of classes
participating in occurrences of design patterns and design anti-patterns, we find the same class
names which indicate that we have a mutation from design anti-patterns to design patterns and vice
versa. Tables 6.12 shows the number of each change types during the mutation for all the studied
systems.

Results show that, in Apache Ignite, “Renaming”, “Comment”, and “Declaration” changes have
the most impact on DAPs to DPs mutations. It is almost the same for the DPs to DAPs muta-
tions but “Parameter” has more impact than “Declaration”. In Apache Solr, and Eclipse for both
DAPs to DPs and DPs to DAPs mutations, “Renaming”, “Declaration”, and “Comment” are the
most representative change types. In Matsim, “Renaming”, “Operator”, and “Declaration” have
the most impact on DAPs to DPs mutations, while for the reverse mutations (i.e., DPs to DAPs),
“Renaming”, “Comment”, and “Operator” have the most impact. In Mule, in both DAPs to DPs
and DPs to DAPs mutations, “Renaming”, “Comment”, and “Operator” are the most representa-
tive change types. In Nuxeo, there are few mutations, in which “Comment”, “Renaming”, and
“Declaration” are the most representative change types in DAPs to DPs mutations, and for the vice
versa, we find “Comment”, “Code Block”, and “Control Flow” as the most DPs to DAPs mutation

86

0

20000

40000

60000

80000

100000

120000

140000

160000

Change Types

 (b)

0

50000

100000

150000

200000

250000

300000

350000

Change Types

 (a)

N
um

be
r

of
 c

ha
ng

es

Figure 6.13 Number of different types of changes in Matsim classes with (a) design anti-patterns and (b)
design patterns.

0

10000

20000

30000

40000

50000

60000

70000

Change Types

 (a)

N
um

be
r

of
 c

ha
ng

es

0

500

1000
1500

2000
2500

3000
3500

4000

4500
5000

Change Types

 (b)

Figure 6.14 Number of different types of changes in Apache Ignite classes with (a) design anti-patterns and
(b) design patterns.

change types. And finally, in Ovirt, “Renaming”, “Declaration”, and “Comment” are change types
that leads DAPs to DPs mutation, while “Renaming”, “Operator”, and “Declaration” are the most
representative change types in DPs to DAPs mutation.

Each of the mentioned change types may lead to a mutation. For example, “Import” makes the
code confusing and less readable. Moreover, “Renaming” is the most frequent changed type.
There are different classifications of renaming which has been described in (Arnaoudova et al.,
2014). In some cases, an entity like a package, type of classes, variables, constants, and parame-
ters is renamed. In another case, one or more terms are changed (simple and complex renaming).
Sometimes, when one or more terms of an identifier changes, the meaning of that also changes
(semantic renaming). And finally, the grammar of an identifier is also changed during the renam-
ing process (grammar renaming). When developers use a tool to apply a renaming operation, the
tool may not rename all variables consistently in all the related files. However, certain source code
changes should be made together to preserve consistency. For example, a parameter renaming af-
fects all statements that reach the parameter in the method body. These statements must be adapted
to the parameter change. Therefore, we suggest that developers should be careful when doing the
renaming.

87

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

Change Types

 (a)

N
um

be
r

of
 c

ha
n

ge
s

Acc
es

s
Clas

s

Cod
e B

lo
ck

Com
m

en
t

Con
tro

l F
lo

w

Dec
lar

ati
on

Exc
ep

tio
n

Im
po

rt

In
vo

ca
tio

n

M
eth

od

Ope
ra

to
r

Par
am

ete
r

Ren
am

in
g

0

1000

2000

3000

4000

5000

6000

15 15
5 45

9

26
16

63
6

13
92

45
7

49
1

28
7 51

1 70
2 10

69

48
11

Change Types

 (b)

Figure 6.15 Number of different types of changes in Apache Solr classes with (a) design anti-patterns and
(b) design patterns.

0

5000

10000

15000

20000

25000

30000

Change Types

 (a)

N
um

be
r

of
 c

ha
n

ge
s

Acc
es

s
Clas

s

Cod
e B

lo
ck

Com
m

en
t

Con
tro

l F
lo

w

Dec
lar

ati
on

Exc
ep

tio
n

Im
po

rt

In
vo

ca
tio

n

M
eth

od

Ope
ra

to
r

Par
am

ete
r

Ren
am

in
g

0

2000

4000

6000

8000

10000

12000

12 19
8 41

3

37
80

38
4 11

03

17
3 79

3
24

0 74
7

19
75

75
6

97
38

Change Types

 (b)

Figure 6.16 Number of different types of changes in Mule classes with (a) design anti-patterns and (b)
design patterns.

In general, some of the change types affect the mutation from design patterns and–or
design anti-patterns. We observe that the most representative change types leading to
mutations in all the studied systems are “Renaming”, “Comment”, “Declaration”, and
“Operator”.

6.3.3 RQ6.3: What is the fault-proneness of mutated design patterns and anti- patterns?What
transitions lead to more fault-prone mutations?

Motivation Our results show that design patterns and design anti-patterns mutate during their
evolution. However, to understand and assess the impacts of these mutations, we investigate these
transitions to check whether the mutations are fault-prone. Moreover, it is important to know when,
during evolution, design patterns and design anti-patterns lead to faults. Using this information,
developers could understand the reasons of faults and take actions to reduce the risk of faults.

Analyzing design patterns and anti-patterns fault-proneness For each system, we mined the
commit log and extracted bug numbers, commit ids related to those bugs, and the date when the
bugs were introduced. We look for bugs introduced during evolution (from one snapshot to the next
one), we use the dates to distinguish between bugs appearing in one snapshot and those appearing

88

between two extracted snapshots. We thus found the bugs introduced between each two consecutive
snapshots for each system. Table 6.13 shows the number of faulty classes containing design patterns
and anti-patterns for each system. We also computed the number of clean classes (bug-free classes)
in the corresponding systems.

Our results (as shown in Table 6.13) show that classes that participate in design anti-patterns are
more fault-prone than classes involved in design patterns. Eclipse is the only system that has more
faulty classes than clean ones.

Table 6.13 Design anti-pattern and design-pattern mutations

Systems # of faulty classes # of clean classes
Design Anti-patterns Design Patterns

Apache Ignite 10,984 1,051 81,093
Apache Solr 11,156 219 109,225
Eclipse 15,240 5,182 19,928
Matsim 4,053 1,888 896,510
Mule 17,794 5,924 197,574
Nuxeo 18,724 396 146,180
Ovirt 12,605 110 217,565

Analyzing transitions fault-proneness A mutation from design patterns and design anti-patterns
can lead to faults. We match the buggy file names extracted from commit logs with the class names
participating in both design patterns and design anti-patterns to identify the mutations experienced
by these faulty classes. We are interested to know which design patterns and–or design anti-patterns
experienced faulty mutations.

Table 6.14 presents the most representative mutations in each studied system, that led to faults. We
observe that in most of the cases, transitions between design anti-patterns to design anti-patterns
are more faulty. “LongParameterList” to ‘LongMethod‘” or “LongMethod” to “LazyClass” are
some examples of such mutations in Apache Ignite. However, in Eclipse, Matsim, and Mule, there
are mutations from design patterns to design patterns that led to more faults. “FactoryMethod”
to “Decorator” in Eclipse, “Builder” to “FactoryMethod” in Matsim, and Mule are some of such
transitions. In some cases, there is a transition between design anti-patterns and design patterns
that led to faults as well, like “AntiSingleton” to “FactoryMethod” in Matsim. In Eclipse, we found
a transition from “FactoryMethod” to “LongMethod”; which is a design pattern faulty mutation
to design anti-patterns. Design anti-patterns are introduced by “bad” implementations or design
choices and such choices are implementing or designing a (or part of a) class. This could make
the classes very large and complex leading to comprehension overheads to the developers. On the
other hand, design patterns are good solutions to solve the design and implementation problems in

89

the classes. Thus, the classes containing design anti-patterns are likely to be more fault-prone than
classes containing design patterns; which is supported by our findings.

Table 6.14 Transitions Fault-proneness

System Mutation Type From To Probability

Apache Ignite
Design Anti-pattern→Design Anti-pattern LongParameterList LongMethod 57.1%
Design Anti-pattern→Design Anti-pattern LongMethod LazyClass 28.5%

Apache Solr
Design Anti-pattern→Design Anti-pattern RefusedParentBequest MessageChain 42.7%
Design Anti-pattern→Design Anti-pattern LongMethod LazyClass 15.6%
Design Anti-pattern→Design Anti-pattern ComplexClass ClassDataShouldBePrivate 15.6%

Eclipe IDE
Design pattern→Design pattern FactoryMethod Decorator 49.2%
Design Anti-pattern→Design Anti-pattern LongMethod LazyClass 38.5%
Design pattern→Design Anti-pattern FactoryMethod LongMethod 5.6%

Matsim
Design pattern→Design pattern Builder FactoryMethod 67.7%
Design Anti-pattern→Design Anti-pattern SpagettiCode RefusedParentBequest 15.2%
Design Anti-pattern→Design pattern AntiSingleton FactoryMethod 11.4%

Mule
Design pattern→Design pattern Builder FactoryMethod 47.9%
Design Anti-pattern→Design pattern ComplexClass FactoryMethod 26.4%
Design Anti-pattern→Design Anti-pattern ComplexClass ClassDataShouldBePrivate 22.3%

Nuxeo
Design Anti-pattern→Design Anti-pattern LazyClass LargeClass 28.5%
Design pattern→Design pattern Singleton FactoryMethod 49.5%

Ovirt
Design Anti-pattern→Design Anti-pattern Blob AntiSingleton 72.2%
Design pattern→Design pattern Singleton Prototype 16.6%

Summary: Design anti-patterns are more fault-prone than design patterns. Mutations

from design anti-patterns to design patterns are more faulty than other types of mutations.

6.3.4 RQ6.4: Do specific types of changes lead to increase fault-proneness during design
patterns and-or design anti-patterns mutations?

Motivation Different types of changes have different impacts on the software systems due to
the differences in extent of functional modification and the ripple effects of changes. Because of
the varying complexity and impacts of changes, some changes are likely to introduce more faults
compared to other types of changes. Thus, it is important to understand which types of changes
increase the fault-proneness of the mutations of design patterns and design anti-patterns. In RQ6.4,
we investigate whether specific types of changes lead to increased faults during design patterns and
design anti-patterns evolution. This findings can help developers to be aware of specific change
types to prevent the occurrence of faults during software evolution.

Analyzing change types leading to faults To answer this research question, we mined the com-
mitted files to extract the buggy file names for each system. As we explained in RQ6.3, for each
system, we mined the commit log and extracted bug numbers, commit ids related to those bugs, and

90

the date when the bugs were introduced. We matched buggy files names with the same or similar
class names in the changed files which also contain change types information, to find which classes
that have been changed are also faulty. For an example of matching class names, if there is a class
“a.b.c” and file “a.b.c.java”, the class name and file name are matched. Besides, the class name
“b.c” or “a.b.c” can also be matched with “a.b.c.java” and “b.c.java” file names respectively. For
each system, we applied a script to identify the number of faulty classes that have changed. Table
6.15 presents the number of change types that led to faults. We found that in all studied systems,
“Renaming”, “Comment”, and “Operator” are the most prevalent change types that lead to faults.

Table 6.15 Numbers of change types in the studied systems leading to faults

Systems→ Apache Ignite Apache Solr Eclipse Matsim Mule Nuxeo oVirt
Change Types ↓ # of changes # of changes # of changes # of changes # of changes # of changes # of changes

Access 18 18 37 22 11 62 25
Class 689 431 306 306 422 208 763
Code block 2,972 2,102 4,919 1,284 1,306 854 3,833
Comment 12,169 5,498 38,150 2,813 6,270 6,161 4,653
Control flow 2,903 1,935 11,678 660 1067 819 2,406
Declaration 5,912 5,386 11651 3,129 3,191 2,628 7,484
Exception 1,696 1221 1255 140 526 786 210
Import 2,831 2,400 2,958 1,425 2,443 2,064 4,268
Invocation 1,550 1,196 1,986 1,061 840 476 1,882
Method 2,509 1,851 4,093 637 1,697 1,229 3,619
Operator 5,120 4,364 16,094 6,215 4,228 2,675 8,134
Parameter 6,418 3,504 5,108 2,655 2,607 1,815 5,337
Renaming 47,811 24,640 67,040 32,445 22,968 12,736 65,245
Total changed classes 5,505 4,163 11,934 3,073 4,324 3,514 7,150

Analyzing the fault-proneness of classes with design patterns and design anti-patterns Ta-
ble 6.16 presents the numbers of faulty changed classes and Figure 6.17 and Figure 6.18 present
the percentages of faulty changed classes participating in design patterns and design anti-patterns,
respectively for all the systems. We observe that change types have impacts on the fault-proneness
of changed classes. Changed classes participating in design patterns are less faulty than those
participating only in design anti-patterns. The results showed that some of the faulty classes are
those which had changed in the past. For example, in Eclipse, the percentages of faulty classes
participating in design patterns is 81% while for those participating in design anti-patterns it is
86%. The differences between these two categories are more visible in Apache Solr, where 51%
of changed classes are participating in design anti-patterns, and only 11% of them have design
patterns. In Rhino, changes impact fault-proneness significantly, because, on average, more than
85% of changed classes are faulty. Thus, we observe the trend that changed classes with design
anti-patterns tend to be more fault-prone than changed classes with design patterns.

91

Table 6.16 Numbers of faulty and clean changed classes

Systems Patterns # Faulty classes # Clean classes

Apache Ignite
Design Anti-patterns 5,112 4,178
Design Patterns 393 464

Apache Solr
Design Anti-patterns 4,035 3,921
Design patterns 128 1,064

Eclipse
Design Anti-patterns 9,406 1,551
Design patterns 2,554 601

Matsim
Design Anti-patterns 2,549 30,042
Design patterns 524 13,244

Mule
Design Anti-patterns 3,374 2,311
Design patterns 950 1,225

Nuxeo
Design Anti-patterns 3,469 1,935
Design patterns 45 36

oVirt
Design Anti-patterns 7,075 27,705
Design patterns 75 482

Some change types make software systems more fault-prone compared to others. Our
result show that in all the studied systems, “Renaming”, “Comment”, and “Operator” are
the most prevalent change types that lead to faults.

6.3.5 RQ6.5: Do the occurrences of Linguistic anti-patterns increase change- and fault-
proneness during design patterns and-or design anti-patterns mutations?

Motivation Linguistic Anti-patterns negatively impacts program comprehension which in turn
may make the software maintenance tasks harder, leading to inconsistencies or faults. Moreover,
it is important to know whether the existence of linguistic anti-patterns also add complexities to
the evolution of design patterns and design anti-patterns; making the evolution more change- and
fault-prone. Thus, in RQ6.5, we investigate whether the classes containing linguistic anti-patterns
are more change- and fault-prone than mutated classes that contain only design patterns and design
anti-patterns. This is important because developers can then focus and refactor these linguistic
anti-patterns to prevent the software systems to be prone to changes and faults.

Analyzing impacts of linguistic anti-patterns on change-proneness As we discussed in RQ6.2,
software systems undergo different types of changes during evolution. To analyze impacts of lin-
guistic anti-patterns on change-proneness, we investigate whether the classes having linguistic anti-
patterns are more change-prone compared to others. For each system, we compare the CSV files
related to changed classes participating in design patterns and design anti-patterns with the de-
tected linguistic design anti-patterns. The CSV files of the changed classes contain the name of

92

Apa
ch

e Ign
ite

-D
P

Apa
ch

e Solr
-D

P

Ecli
ps

e-D
P

M
ats

im
-D

P

M
ule

-D
P

Nux
eo

-D
P

Ovir
t-D

P0

0.2

0.4

0.6

0.8

1

Pe
rc

en
ta

ge
s

of
ch

an
ge

d
cl

as
se

s

Design patterns faulty classes Clean classes

Figure 6.17 Faulty changed classes percentages with design pattern in the studied systems

the two subsequent snapshots where the change happened, the type of changes and the changed
class names, and the number of changes. While the CSV file of linguistic anti-patterns contain the
path of detected LA, the name of the class that has the LA, the type of detected LA, and finally the
description of that LA. We map classes participating in occurrences of design patterns or design
anti-patterns with classes that contain linguistic anti-patterns by comparing the names of classes.
For each system, we applied a script to identify the number of changed classes that have linguistic
anti-patterns. Table 6.17 shows the number of changed classes that contain linguistic anti-patterns
along with design patterns or design anti-patterns.

Table 6.17 Change-prone classes with linguistic anti-patterns (LAs), design patterns(DPs) and de-
sign anti-patterns(DAPs)

Systems CCLA DAPs and LAs DPs and LAs
CCAP CCLAAP CCDP CCLADP

Apache Ignite 5,914 9,290 4,727 857 432
Apache Solr 6,369 7,956 2,830 1,192 729
Eclipse 446 10,957 129 3,155 38
Matsim 284 32,596 101 13,768 45
Mule 260 5,684 117 2,175 17
Nuxeo 430 5,402 290 81 10
Ovirt 517 34,780 248 557 7
CCLA, CCAP, CCDP= NO. of classes containing LAs, DAPs and DPs respectively

CCLAAP= NO. of changed classes containing LAs and DAPs,
CCLADP=NO. of changed classes containing LAs and DPs

The results show that the classes having both design anti-patterns and linguistic anti-patterns are
more change-prone than the classes having just design anti-patterns. We observe the same for

93

Apa
ch

e Ign
ite

-A
P

Apa
ch

e Solr
-A

P

Ecli
ps

e-A
P

M
ats

im
-A

P

M
ule

-A
P

Nux
eo

-A
P

Ovir
t-A

P0

0.2

0.4

0.6

0.8

1

Pe
rc

en
ta

ge
s

of
ch

an
ge

d
cl

as
se

s

Design Anti-patterns faulty classes Clean classes

Figure 6.18 Faulty changed classes with design anti-patterns percentages in the studied systems

classes having both design patterns and linguistic anti-patterns. Based on Table 6.17 in Apache
Ignite, 50% of changed classes that have design anti-patterns and–or design patterns also contain
Linguistic anti-patterns.

Analyzing impacts of linguistic anti-patterns on fault-proneness For this analysis, as we men-
tioned in RQ6.3, for each system, we mined the committed files to extract the bug numbers and
then matched with related commit ids to find the buggy file names, and the date when the bug was
introduced during the evolution. Then, we match these file names with the same or even simi-
lar class names that have linguistic anti-patterns. We apply the same process as in Section 6.3.4.
For each system, we applied a script to identify the number of faulty classes that have linguistic
anti-patterns.

Table 6.18 Fault-proneness of classes with Linguistic Anti-patterns (LAs)

Systems NCLA NFC NFCLA PFCLA PCLAF
Apache Ignite 5,914 3,303 438 13.26% 7.41%
Apache Solr 6,369 5,060 59 1.16% 0.91%
Eclipse 446 9,179 175 1.90% 39.24%
Matsim 284 747 14 1.87% 4.92%
Mule 260 5,176 78 1.50% 30%
Nuxeo 430 6,446 104 1.61% 24.19%
0Virt 517 698 11 1.58% 2.13%
NCLA = No. of classes containing LAs, NFC = No. of faulty classes

NFCLA = No. of faulty classes containing LAs
PFCLA = Percentage of faulty classes containing LAs

PCLAF = Percentage of classes containing LAs those are faulty

94

Mutated classes with linguistic anti-patterns and design anti-patterns are more change-
and fault- prone than classes with only design anti-patterns. The same applies to the
mutated classes that contain both linguistic anti-patterns and design patterns. We found
that more than 50% of changed classes have both linguistic anti-patterns and design anti-
patterns or design patterns.

6.4 Discussion

Different software systems may have different design patterns and–or design anti-patterns and they
may evolve differently. From our analysis, we observe different mutation behavior for all analyzed
systems because these systems have different designs, contexts, and development teams that mod-
ify the source code. Thus, they will have different design patterns and changes while following
different mutation behaviors. We observed that some design patterns and–or design anti-patterns
remained unchanged in all releases and they did not mutate during evolution.

For example, class org.mule.test.infrastructure.process.MuleUtils in all the snapshots of Mule, par-
ticipates in “LongMethod” design anti-pattern. This design anti-pattern is introduced when devel-
opers continue adding new functionalities to a method while nothing is ever taken out. Usually,
developers prefer to add code to an existing method instead of creating a new one (Brown et al.,
1998), which means that another line is added and then yet another, giving birth to a tangle of
spaghetti code. This longer method or function will be very hard to understand and maintain.

We found that some of the design anti-patterns are mutated frequently to design patterns when
developers are correcting faults during the evolution of the system. “Blob” is the most mutated
design anti-pattern among the others in Apache Ignite system, which mutated to “AntiSingleton”
with 37.5% probability. “Blob” presents a single class with a large number of attributes, operations,
etc, surrounded by a number of data classes. The Blob Class is too complex for reuse and testing,
while such classes are inefficient, and expensive to load into memory. There are also some design
patterns mutated to design anti-patterns. “Command” is an example of design patterns that often
mutates into “SwissArmyKnife" (i.e., 38.7% of the time) in the Matsim system. “SwissArmyKnife”
is an excessively complex class interface. The designer attempts to provide for all possible uses of
the class. In the attempt, developers adds a large number of interface signatures in a useless attempt
to meet all possible needs. In this case, the required code to create separate objects (“Command”)
in a method was moved from the method to the code for invoking the method, but the created
objects are passed to the method as parameters. Thus, the original class no longer knows about the
relationships between objects, and dependency has decreased. But if several of these objects are
created, each of them will require its parameter, which means a longer parameter list.

95

We observed that the major change types, which lead to more mutations, are “Renaming”, “Com-
ment”, “Operator”, and “Declaration” in most of the studied systems. It means that these types of
changes helps developers to correct the system and remove design anti-patterns as much as possi-
ble, so developers can just focus on making such changes to improve the quality. It is interesting
to discover what types of changes make the system more fault-prone. We observed that design
anti-patterns are more fault-prone than design patterns. We noticed that in the case of mutation, the
most representative case was “LongParameterList” to “LongMethod”. In this case, a design pattern
is frequently used in the source code where it is not beneficial. Introducing unnecessary restrictions
is inefficient in situations where an individual instance of a class is not required.

Using the obtained results developers could know which types of LAs, DAPs, and DPs are more
change - and fault-prone, so they can focus on refactoring those smells and patterns. Besides,
understanding which types of mutations lead to more changes and faults could help developers
prioritize their refactoring and code improvement operations. They could avoid mutations that are
likely to induced more changes and faults.

6.5 Threats to Validity

We now discuss the potential threats to the validity of the findings of our study following existing
guidelines by (Yin, 2013; Wohlin et al., 2012).

Construct validity threats concern the relation between theory and observation. We know that
the used design pattern and design anti-pattern detection techniques (DECOR) and (DeMIMA) in
this study include some subjective understanding related to the definition of design patterns and
design anti-patterns. The authors reported that the recall rate is 100% for both techniques while
the precision rate in the worst case is 31% and the average is 60% for DECOR and 34% and 80%
respectively for DeMIMA. Besides, we accept that the precision of these techniques is a concern.
Some false positive classes may pass the validation because they “looks like” a motif. Besides,
we accept that those methods just consider the most common techniques to implement DPs, and
rules to define DAPs, although developers do not implement DAPs, DPs, and even LAs exactly as
they are defined in the references. They usually implement them based on their needs and even
use variants of them. We accept that in finding change types which led to a fault, we could have
matched class names that are not representing the same class. For example, class “c” is not match
with “a.b.c.java” but it could be matched with the “b.c.java” file. Moreover, we know that during
the evolution, the name of the classes may change as well. As for precision, the manual validation
could be affected by subjectiveness or human error. We should consider each type of renaming.
Because in this case, we may misinterpret that there is a mutation from design patterns to design
anti-patterns and vice versa, while in fact the name of the class has been changed and these patterns

96

remained stable. We also used the LADP-plugin to detect linguistic anti-patterns because it has
been implemented based on the most novel and recent approach by (Arnaoudova et al., 2013).
Other possible design smells detection techniques (e.g., inFusion, JDeodorant or PMD) can be
used to confirm our findings.

Internal validity threats concerns factors affecting the results. This threat is about the causality
drawn from the study. It concerns our selection of analyzed systems and analysis method. The
accuracy of DECOR and DeMIMA impacts our results, since the number of design patterns and
design anti-patterns computed with DECOR and DeMIMA is used to calculate the probability of
mutations. Other detection techniques and tools should be applied to validate our findings.

Conclusion validity threats concern the relationship between the treatment and the results. We paid
attention in choosing the system sizes. We used the SZZ algorithm (Śliwerski et al., 2005) to iden-
tify the commits that introduced a fault. Although this algorithm may yield false positive results, it
has been successfully employed in previous works, such as (Kamei et al., 2013; Fukushima et al.,
2014), with satisfying results. In this thesis, to increase the algorithm’s accuracy, we removed all
fault-inducing commit candidates that only changed blank or comment lines. Moreover, the static
analysis tool, srcML, can identify about 100 types of code elements from source code. To make
our results more actionable for software practitioners, we manually grouped similar element tags
into 12 major change types as shown in Table 6.2, which can help software practitioners carefully
change and review fault-prone code. Besides, as we mentioned before, there are false positives
among the design patterns and design anti-patterns detected using DECOR and DeMIMA.

Reliability Validity threats concern the possibility of replicating this study. We studied snapshots
of every 500 commits in seven open-source systems but do not claim that these results are repre-
sentative of all systems or developers. We provide all the necessary data on-line16 to help other
researchers replicate our work.

External validity threats concern the ability to generalize our results. We studied seven software
systems with different sizes, domains, and complexity. However, all of them are written in Java,
they are open source, and they are available on-line. In the future, we plan to investigate more
diverse set of subject systems. Moreover, we also aim to focus on larger projects, with other
programming languages, such as C++. We choose thirteen design anti-patterns and six design
patterns among the many available patterns. The results could be different with industrial systems,
other object-oriented programming languages, and different patterns that we plan to investigate in
the future.

16http://www.ptidej.net/downloads/replications/EMSE19a/

http://www.ptidej.net/downloads/replications/EMSE19a/

97

6.6 Summary

The chapter presented an empirical study investigating the behaviors and impacts of linguistic anti-
patterns, design patterns and design anti-patterns in terms of change- and fault-proneness during
software evolution.

The results show that design patterns and design anti-patterns mutate into one another during soft-
ware evolution and that these mutations impact the fault-proneness of classes participating in the
design (anti-)patterns. These mutations impacted the quality of studied systems in terms of change-
and fault-proneness. When a mutation led to the introduction of another design anti-pattern, the
quality decreased in terms of fault-proneness. When design anti-patterns were removed or mutated
into design patterns, the quality increased in terms of change- and fault-proneness.

Besides, classes containing both linguistic anti-patterns and design anti-patterns are more change-
prone than classes that just have design anti-patterns. There is the same observations for classes
containing both linguistic anti-patterns and design patterns. In terms of fault-proneness, we found
that the occurrences of linguistic anti-patterns to some extent, can increase the probability of faults
in systems.

98

CHAPTER 7 CONCLUSION

7.1 Dissertation Findings and Conclusions

This dissertation reports about three empirical study that investigate the impact of linguistic anti-
patterns on the code quality. We also study the impact of both linguistic anti-patterns and design
anti-patterns–or design patterns on change- and fault-proneness. We made the following observa-
tions:

First, regarding the impact of the occurrences of LAs on the code understandability, we observe
that LAs negatively affect participants’ understanding; decreasing the numbers of correct answers.
We also study the role that prior knowledge of LAs has on the effect of LA occurrences on code
understandability and observe that prior knowledge can mitigate the negative impact of LAs.

Second, we performed another empirical study on design anti-patterns and linguistic anti-patterns
impact on quality, measured in terms of change- and fault- proneness. Our investigation consisted in
the analysis of 30 releases of three different open-source systems: ArgoUML, Hibernate, and ANT.
We detected 29 smells in each release, i.e., 12 design anti-patterns using the DECOR approach and
17 LAs using the LDAP approach. To study the relation between the detected families of smells
and change- and fault-proneness, we used the change history of the studied systems extracted from
their Git/SVN version control systems. We also mined their bug repositories. The results show
that Linguistic anti-patterns alone do not contribute much to the change- proneness of classes of
object-oriented systems. In addition, they indicate that, in a lot of cases, classes containing design
anti-patterns are more change- and fault-prone than classes with linguistic anti-patterns only. The
occurrence of design anti-patterns in a class that experienced a linguistic anti-patterns has a strong
relationship with change- and fault-proneness than the occurrence of linguistic anti-patterns in a
class that experienced a design anti-pattern.

In the last study, we examined design anti-pattern and design pattern evolution and the impact of
this evolution on code quality. The main goal is to help software developers in non-trivial tasks
related to code evolution analysis by modeling design anti-pattern mutations. Our study was per-
formed on seven different open-source systems: Apache Ignite, Apache Solr, Eclipse, Matsim,
Mule, Nuxeo, and Ovirt. We detected 13 design anti-patterns using DECOR and 8 design patterns
using DeMIMA in each system. The results showed that design anti-patterns mutate to repre-
sent other forms of more complicated design anti-patterns or even design patterns. Moreover, our
findings show that design anti-pattern classes that mutated over the evolution of systems are sig-
nificantly less fault-prone than non-mutated classes while design patterns are less fault-prone than

99

design anti-patterns in general. We also investigate the change types that occurred during the evo-
lution of the studied systems. Finally, we found that classes containing both linguistic anti-patterns
and design anti-patterns are more change-prone than classes that just have design anti-patterns. We
have the same observation for classes containing both linguistic anti-patterns and design patterns.
In terms of fault-proneness, we found that the occurrences of linguistic anti-patterns to some extent,
can increase the probability of faults in the studied systems.

Using this information, developers can focus on the design patterns that are most likely to mu-
tate into design anti-patterns and–or to experience more faults. Thus, this information can help
development and quality assurance teams to better focus their refactoring efforts on classes with
design patterns and design anti-patterns that could mutate into patterns with higher change- and–or
fault-proneness. This is likely to be useful to control and improve the quality of their systems.

7.2 Future Directions

Our work opens several new research directions. We outline some of them as follows:

LAs and Code Quality

In the future, we plan to study other types of LAs to see their impact on the code understandability.
We also want to reproduce our controlled experiment with other participants, in particular from the
industry where participants are asked to understand part of source code of a project with LA and a
version where the LA was improved or refactored. To evaluate the impact, an eye-tracking system
could be used to measure the degree of understanding, the time that participants take to answer
correctly, and the effort that they do to understand. We also want to improve LAs detection tools
using insights gathered during this study. Finally, we want to study other programming languages,
specifically dynamic programming languages, in which developers rely even more on names to
compensate for the lack of types.

LAs, DAPs and change- and fault-proneness

As future work, we intend to conduct a user study involving professional developers both internal,
i.e., contributors to the development of the systems as well as external ones from industry to better
understand the interaction between design anti-patterns and linguistic anti-patterns, and identify
which specific type of DAPs (e.g., SpaghettiCode) and LAs (e.g., Attribute signature and comment
are opposite) should be given higher priority during refactoring.

LAs, DAPs, DPs mutations and change- and fault-proneness

In the near future, we plan to study the reason for the emergence of faults after design anti-pattern
and design-pattern mutation. We want to mine expertise and time pressure information from version

100

control systems and release documents, which contains more information about the developers and
their activities that could be the cause of faults after design anti-pattern and design pattern mutate.

Moreover, building Markov models for LAs mutation to DAPs could be considered as another
future work. Studying the software evolution to see how their mutations impacted the change- and
fault-proneness of the classes participating in these design anti-patterns.

Besides, it is interesting to investigate Which type(s) of linguistic anti-patterns, design anti-patterns
and design-patterns are more risky and may leads to become high severity fault. To do so, we will
categorize faults across different severity levels and examine which types of LAs, DAPs, and DPs
mutations are related to faults with high severity. This will be useful to help development teams
prioritize their limited resources toward more impactful design smells.

101

Bibliography

Abbes, Marwen and Khomh, Foutse and Gueheneuc, Yann-Gael and Antoniol, Giuliano (2011).
An empirical study of the impact of two antipatterns, blob and spaghetti code, on program com-
prehension. Software maintenance and reengineering (CSMR), 2011 15th European conference

on. IEEE, 181–190.

Abebe, Surafel Lemma and Arnaoudova, Venera and Tonella, Paolo and Antoniol, Giuliano and
Gueheneuc, Yann-Gael (2012). Can lexicon bad smells improve fault prediction? Reverse Engi-

neering (WCRE), 2012 19th Working Conference on. IEEE, 235–244.

Abebe, Surafel Lemma and Haiduc, Sonia and Tonella, Paolo and Marcus, Andrian (2009). Lexi-
con bad smells in software. Reverse Engineering, 2009. WCRE’09. 16th Working Conference on.
IEEE, 95–99.

Abebe, Surafel Lemma and Haiduc, Sonia and Tonella, Paolo and Marcus, Andrian (2011). The
effect of lexicon bad smells on concept location in source code. Source Code Analysis and Ma-

nipulation (SCAM), 2011 11th IEEE International Working Conference on. Ieee, 125–134.

Abebe, Surafel Lemma and Tonella, Paolo (2013). Automated identifier completion and replace-
ment. Software Maintenance and Reengineering (CSMR), 2013 17th European Conference on.
IEEE, 263–272.

An, Le and Khomh, Foutse (2015). An empirical study of crash-inducing commits in mozilla fire-
fox. Proceedings of the 11th International Conference on Predictive Models and Data Analytics

in Software Engineering. ACM, 5.

Anquetil, Nicolas and Lethbridge, Timothy (1998). Assessing the relevance of identifier names in
a legacy software system. Proceedings of the 1998 conference of the Centre for Advanced Studies

on Collaborative Research. IBM Press, 4.

Arnaoudova, Venera and Di Penta, Massimiliano and Antoniol, Giuliano (2016). Linguistic an-
tipatterns: What they are and how developers perceive them. Empirical Software Engineering,
21(1), 104–158.

Arnaoudova, Venera and Di Penta, Massimiliano and Antoniol, Giuliano and Gueheneuc, Yann-
Gael (2013). A new family of software anti-patterns: Linguistic anti-patterns. Software Mainte-

nance and Reengineering (CSMR), 2013 17th European Conference on. IEEE, 187–196.

102

Arnaoudova, Venera and Eshkevari, Laleh M and Di Penta, Massimiliano and Oliveto, Rocco and
Antoniol, Giuliano and Gueheneuc, Yann-Gael (2014). Repent: Analyzing the nature of identifier
renamings. IEEE Transactions on Software Engineering, 40(5), 502–532.

Bieman, James M and Straw, Greg and Wang, Huxia and Munger, P Willard and Alexander,
Roger T (2003). Design patterns and change proneness: An examination of five evolving systems.
Software metrics symposium, 2003. Proceedings. Ninth international. IEEE, 40–49.

Brown, William H and Malveau, Raphael C and McCormick, Hays W and Mowbray, Thomas J
(1998). AntiPatterns: refactoring software, architectures, and projects in crisis. John Wiley &
Sons, Inc.

Canfora, Gerardo and Cerulo, Luigi and Di Penta, Massimiliano and Pacilio, Francesco (2010).
An exploratory study of factors influencing change entropy. 2010 IEEE 18th International Con-

ference on Program Comprehension. IEEE, 134–143.

Caprile, Bruno and Tonella, Paolo (2000). Restructuring program identifier names. icsm. 97–107.

Caprile, C and Tonella, Paolo (1999). Nomen est omen: Analyzing the language of function
identifiers. Reverse Engineering, 1999. Proceedings. Sixth Working Conference on. IEEE, 112–
122.

De Lucia, Andrea and Di Penta, Massimiliano and Oliveto, Rocco (2011). Improving source code
lexicon via traceability and information retrieval. IEEE Transactions on Software Engineering,
37(2), 205–227.

Dreyfus, Stuart E and Dreyfus, Hubert L (1980). A five-stage model of the mental activities
involved in directed skill acquisition. Rapport technique, University of California Berkley.

Fakhoury, Sarah and Ma, Yuzhan and Arnaoudova, Venera and Adesope, Olusola (2018). The
effect of poor source code lexicon and readability on developers’ cognitive load. Proceedings of

the 26th Conference on Program Comprehension. ACM, New York, NY, USA, ICPC ’18, 286–
296.

Fischer, Michael and Pinzger, Martin and Gall, Harald (2003). Populating a release history
database from version control and bug tracking systems. Software Maintenance, 2003. ICSM

2003. Proceedings. International Conference on. IEEE, 23–32.

Fukushima, Takafumi and Kamei, Yasutaka and McIntosh, Shane and Yamashita, Kazuhiro and
Ubayashi, Naoyasu (2014). An empirical study of just-in-time defect prediction using cross-
project models. Proceedings of the 11th Working Conference on Mining Software Repositories.
ACM, 172–181.

103

Gamma, Erich (1995). Design patterns: elements of reusable object-oriented software. Pearson
Education India.

Gatrell, Matt and Counsell, Steve and Hall, Tracy (2009). Design patterns and change proneness:
a replication using proprietary c# software. Reverse Engineering, 2009. WCRE’09. 16th Working

Conference on. IEEE, 160–164.

Guéhéneuc, Yann-Gaël and Antoniol, Giuliano (2008). Demima: A multilayered approach for
design pattern identification. Software Engineering, IEEE Transactions on, 34(5), 667–684.

Gueheneuc, Yann-Gael and Sahraoui, Houari and Zaidi, Farouk (2004). Fingerprinting design
patterns. Reverse Engineering, 2004. Proceedings. 11th Working Conference on. IEEE, 172–181.

Guerrouj, Latifa and Kermansaravi, Zeinab and Arnaoudova, Venera and Fung, Benjamin CM
and Khomh, Foutse and Antoniol, Giuliano and Guéhéneuc, Yann-Gaël (2015). Investigating the
relation between lexical smells and change-and fault-proneness: an empirical study. Software

Quality Journal, 1–30.

Hart, Sandra G and Staveland, Lowell E (1988). Development of nasa-tlx (task load index):
Results of empirical and theoretical research. Advances in psychology, Elsevier, vol. 52. 139–183.

Hassan, Ahmed E (2009). Predicting faults using the complexity of code changes. Proceedings

of the 31st International Conference on Software Engineering. IEEE Computer Society, 78–88.

Hofmeister, Johannes and Siegmund, Janet and Holt, Daniel V (2017). Shorter identifier names
take longer to comprehend. Software Analysis, Evolution and Reengineering (SANER), 2017 IEEE

24th International Conference on. IEEE, 217–227.

Iacob, Claudia (2011). A design pattern mining method for interaction design. Proceedings of the

3rd ACM SIGCHI symposium on Engineering interactive computing systems. ACM, 217–222.

Jaafar, Fehmi and Guéhéneuc, Yann-Gaël and Hamel, Sylvie (2013). Analysing anti-patterns
static relationships with design patterns. Proc. PPAP, 2, 26.

Jaafar, Fehmi and Khomh, Foutse and Guéhéneuc, Yann-Gaël and Zulkernine, Mohammad
(2014). Anti-pattern mutations and fault-proneness. Quality Software (QSIC), 2014 14th In-

ternational Conference on. IEEE, 246–255.

Kamei, Yasutaka and Shihab, Emad and Adams, Bram and Hassan, Ahmed E and Mockus, Audris
and Sinha, Aloka and Ubayashi, Naoyasu (2013). A large-scale empirical study of just-in-time
quality assurance. Software Engineering, IEEE Transactions on, 39(6), 757–773.

104

Khomh, Foutse and Di Penta, Massimiliano and Guéhéneuc, Yann-Gaël and Antoniol, Giuliano
(2012). An exploratory study of the impact of antipatterns on class change-and fault-proneness.
Empirical Software Engineering, 17(3), 243–275.

Khomh, Foutse and Guéhéneuc, Yann-Gaël (2008). Do design patterns impact software qual-
ity positively? Software Maintenance and Reengineering, 2008. CSMR 2008. 12th European

Conference on. IEEE, 274–278.

Khomh, Foutse and Guéhéneuc, Yann-Gaël and Antoniol, Giuliano (2009a). Playing roles in
design patterns: An empirical descriptive and analytic study. Software Maintenance, 2009. ICSM

2009. IEEE International Conference on. IEEE, 83–92.

Khomh, Foutse and Vaucher, Stéphane and Guéhéneuc, Yann-Gaël and Sahraoui, Houari (2009b).
A bayesian approach for the detection of code and design smells. Quality Software, 2009.

QSIC’09. 9th International Conference on. IEEE, 305–314.

Krämer, Christian and Prechelt, Lutz (1996). Design recovery by automated search for structural
design patterns in object-oriented software. Reverse Engineering, 1996., Proceedings of the Third

Working Conference on. IEEE, 208–215.

Lanza, Michele and Marinescu, Radu (2007). Object-oriented metrics in practice: using software

metrics to characterize, evaluate, and improve the design of object-oriented systems. Springer
Science & Business Media.

Marinescu, Radu and Lanza, Michelle (2006). Object-oriented metrics in practice.

McIntosh, Shane and Kamei, Yasutaka and Adams, Bram and Hassan, Ahmed E (2014). The
impact of code review coverage and code review participation on software quality: A case study
of the qt, vtk, and itk projects. Proceedings of the 11th Working Conference on Mining Software

Repositories. ACM, 192–201.

McIntosh, Shane and Kamei, Yasutaka and Adams, Bram and Hassan, Ahmed E (2016). An
empirical study of the impact of modern code review practices on software quality. Empirical

Software Engineering, 21(5), 2146–2189.

Merlo, Ettore and McAdam, Ian and De Mori, Renato (2003). Feed-forward and recurrent neural
networks for source code informal information analysis. Journal of Software Maintenance and

Evolution: Research and Practice, 15(4), 205–244.

Meyn, Sean P and Tweedie, Richard L (2012). Markov chains and stochastic stability. Springer
Science & Business Media.

105

Moha, Naouel and Gueheneuc, Yann-Gael and Duchien, Laurence and Le Meur, Anne-Francoise
(2010). Decor: A method for the specification and detection of code and design smells. Software

Engineering, IEEE Transactions on, 36(1), 20–36.

Olbrich, Steffen and Cruzes, Daniela S and Basili, Victor and Zazworka, Nico (2009). The evo-
lution and impact of code smells: A case study of two open source systems. Proceedings of the

2009 3rd international symposium on empirical software engineering and measurement. IEEE
Computer Society, 390–400.

D. Rapu and S. Ducasse and T. Girba and R. Marinescu (2004). Using history information to im-
prove design flaws detection. Eighth European Conference on Software Maintenance and Reengi-

neering, 2004. CSMR 2004. Proceedings. 223–232.

Rapu, D and Ducasse, Stéphane and Gîrba, Tudor and Marinescu, Radu (2004). Using history
information to improve design flaws detection. Software Maintenance and Reengineering, 2004.

CSMR 2004. Proceedings. Eighth European Conference on. IEEE, 223–232.

Riel, Arthur J (1996). Object-oriented design heuristics, vol. 335. Addison-Wesley Reading.

Romano, Daniele and Raila, Paulius and Pinzger, Martin and Khomh, Foutse (2012). Analyzing
the impact of antipatterns on change-proneness using fine-grained source code changes. Reverse

Engineering (WCRE), 2012 19th Working Conference on. IEEE, 437–446.

Settas, Dimitrios and Cerone, Antonio and Fenz, Stefan (2012). Enhancing ontology-based an-
tipattern detection using bayesian networks. Expert Systems with Applications, 39(10), 9041–
9053.

Sheskin, David J (2003). Handbook of parametric and nonparametric statistical procedures. crc
Press.

Shull, Forrest and Singer, Janice and Sjøberg, Dag IK (2007). Guide to advanced empirical

software engineering. Springer.

Sillito, Jonathan and Murphy, Gail C and De Volder, Kris (2008). Asking and answering questions
during a programming change task. IEEE Transactions on Software Engineering, 34(4), 434–451.

Śliwerski, Jacek and Zimmermann, Thomas and Zeller, Andreas (2005). When do changes induce
fixes? ACM sigsoft software engineering notes, 30(4), 1–5.

Soloway, Elliot and Bonar, Jeffrey and Ehrlich, Kate (1983). Cognitive strategies and looping
constructs: An empirical study. Communications of the ACM, 26(11), 853–860.

106

srcml (2016). srcML. http://www.srcml.org. Online; Accessed March 31st, 2016.

Taba, Seyyed Ehsan Salamati and Khomh, Foutse and Zou, Ying and Hassan, Ahmed E and
Nagappan, Meiyappan (2013). Predicting bugs using antipatterns. 2013 IEEE International Con-

ference on Software Maintenance. IEEE, 270–279.

Tan, Lin and Yuan, Ding and Krishna, Gopal and Zhou, Yuanyuan (2007). icomment: Bugs or
bad comments? ACM SIGOPS Operating Systems Review, 41(6), 145–158.

Tan, Lin and Zhou, Yuanyuan and Padioleau, Yoann (2011). acomment: mining annotations from
comments and code to detect interrupt related concurrency bugs. Software Engineering (ICSE),

2011 33rd International Conference on. IEEE, 11–20.

Tan, Shin Hwei and Marinov, Darko and Tan, Lin and Leavens, Gary T (2012). @ tcomment:
Testing javadoc comments to detect comment-code inconsistencies. Software Testing, Verification

and Validation (ICST), 2012 IEEE Fifth International Conference on. IEEE, 260–269.

Toutanova, Kristina and Manning, Christopher D (2000). Enriching the knowledge sources used
in a maximum entropy part-of-speech tagger. Proceedings of the 2000 Joint SIGDAT conference

on Empirical methods in natural language processing and very large corpora: held in conjunc-

tion with the 38th Annual Meeting of the Association for Computational Linguistics-Volume 13.
Association for Computational Linguistics, 63–70.

Tsantalis, Nikolaos and Chatzigeorgiou, Alexander and Stephanides, George and Halkidis, Spy-
ros T (2006). Design pattern detection using similarity scoring. Software Engineering, IEEE

Transactions on, 32(11), 896–909.

Van Emden, Eva and Moonen, Leon (2002). Java quality assurance by detecting code smells.
Reverse Engineering, 2002. Proceedings. Ninth Working Conference on. IEEE, 97–106.

Vaucher, Stephane and Khomh, Foutse and Moha, Naouel and Guéhéneuc, Yann-Gaël (2009).
Tracking design smells: Lessons from a study of god classes. 16th Working Conference on Reverse

Engineering (WCRE 2009), IEEE Computer Society Press (WCRE’09). 145–154.

Vlissides, John and Helm, Richard and Johnson, Ralph and Gamma, Erich (1995). Design pat-
terns: Elements of reusable object-oriented software. Reading: Addison-Wesley, 49(120), 11.

Vokáč, Marek (2004). Defect frequency and design patterns: An empirical study of industrial
code. Software Engineering, IEEE Transactions on, 30(12), 904–917.

Webster, Bruce F (1995). Pitfalls of object oriented development. M\ & T Books.

http://www.srcml.org

107

Wohlin, Claes and Runeson, Per and Höst, Martin and Ohlsson, Magnus C and Regnell, Björn and
Wesslén, Anders (2012). Experimentation in software engineering. Springer Science & Business
Media.

Yamashita, Aiko and Moonen, Leon (2013). Do developers care about code smells? an ex-
ploratory survey. 2013 20th Working Conference on Reverse Engineering (WCRE). IEEE, 242–
251.

Yin, Robert K (2013). Case study research: Design and methods. Sage publications.

	DEDICATION
	ACKNOWLEDGEMENTS
	RÉSUMÉ
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	1 INTRODUCTION
	1.1 Research Context
	1.2 Problem Statement
	1.3 Research Goal
	1.4 Contributions
	1.4.1 Linguistic anti-patterns and Program Comprehension
	1.4.2 Linguistic Anti-patterns, Design Anti-patterns and their impact on Change-, and Fault-Proneness
	1.4.3 Linguistic anti-patterns, Design anti-patterns, Design patterns, their mutations and Change- and Fault-Proneness

	1.5 Roadmap

	2 BACKGROUND
	2.1 Linguistic Anti-patterns
	2.1.1 Definition
	2.1.2 Detection

	2.2 Design Anti-patterns
	2.2.1 Definition
	2.2.2 Detection

	2.3 Design Patterns
	2.3.1 Definition
	2.3.2 Detection

	3 RELATED WORK
	3.1 Definition and Detection of Linguistic Anti-patterns (LAs)
	3.2 Definition and Detection of Design Anti-patterns (DAPs)
	3.3 Definition and Detection of Design Patterns (DPs)
	3.4 Evolution and Impact of Linguistic Anti-patterns
	3.5 Evolution and Impact of Design Anti-patterns and Design Patterns

	4 LINGUISTIC ANTI-PATTERNS AND PROGRAM COMPREHENSION
	4.1 Context
	4.1.1 Research Problem and Contribution
	4.1.2 Research Questions

	4.2 Study Design
	4.2.1 Studied LAs
	4.2.2 Experiment Design
	4.2.3 Participants
	4.2.4 Studied Systems
	4.2.5 Questions
	4.2.6 Independent Variables
	4.2.7 Mitigating Factors
	4.2.8 Dependent Variables

	4.3 Study Results
	4.3.1 RQ4.1: Do LAs affect developers' understandability of the code?
	4.3.2 RQ4.2: Do different types of LAs affect unknowledgeable developers' understandability?
	4.3.3 RQ4.3: Do different types of LAs affect knowledgeable developers' understandability?
	4.3.4 RQ4.4: Can knowledge about LAs mitigate the impact of LAs on understandability?
	4.3.5 RQ4.5: Can knowledge of the language in which comments and identifiers are written mitigate the effect of LAs on developers' understandability of the code?

	4.4 Discussion
	4.4.1 Linguistic Anti-patterns
	4.4.2 Mitigating Factors

	4.5 Threats to Validity
	4.6 Summary

	5 LINGUISTIC ANTI-PATTERNS, DESIGN ANTI-PATTERNS AND THEIR IMPACT ON CHANGE-, AND FAULT-PRONENESS
	5.1 Context
	5.1.1 Research Problem and Contribution
	5.1.2 Research Questions

	5.2 Study Design
	5.2.1 Studied Linguistic Anti-patterns and Design Anti-patterns
	5.2.2 Experiment Design
	5.2.3 Studied Systems
	5.2.4 Identifying Post-Release Defects

	5.3 Study Results
	5.3.1 RQ5.1: Are classes with a particular family of smells (anti-patterns, linguistic anti-patterns, or both anti-patterns, linguistic anti-patterns) more change-prone than others?
	5.3.2 RQ5.2: Are classes with a particular family of smells (anti-patterns, linguistic anti-patterns, or both anti-patterns, linguistic anti-patterns) more fault-prone than others?

	5.4 Threats to Validity
	5.5 Summary

	6 LINGUISTIC ANTI-PATTERNS, DESIGN ANTI-PATTERNS, DESIGN PATTERNS AND THEIR MUTATIONS AND FAULT-PRONENESS
	6.1 Context
	6.1.1 Research Problem and Contribution
	6.1.2 Research Questions

	6.2 Study Design
	6.2.1 Studied Design Anti-patterns, linguistic Anti-patterns and Design patterns
	6.2.2 Studied Systems
	6.2.3 Building a Mutation Model
	6.2.4 Analyzing Fault-proneness
	6.2.5 Identifying Change Types

	6.3 Study Results
	6.3.1 RQ6.1: Do design patterns and–or design anti-patterns mutate during the evolution of software systems? What is the probability of occurrence of different types of mutations?
	6.3.2 RQ6.2: What types of changes lead to a mutation between design patterns and-or design anti-patterns?
	6.3.3 RQ6.3: What is the fault-proneness of mutated design patterns and anti- patterns?What transitions lead to more fault-prone mutations?
	6.3.4 RQ6.4: Do specific types of changes lead to increase fault-proneness during design patterns and-or design anti-patterns mutations?
	6.3.5 RQ6.5: Do the occurrences of Linguistic anti-patterns increase change- and fault-proneness during design patterns and-or design anti-patterns mutations?

	6.4 Discussion
	6.5 Threats to Validity
	6.6 Summary

	7 CONCLUSION
	7.1 Dissertation Findings and Conclusions
	7.2 Future Directions

	Bibliography

