
Improving Object-Oriented Programming by Integrating
Language Features to Support Immutability

By William Flageol
Concordia University

Supervised by:
Yann-Gaël Guéhéneuc, Concordia University

Mourad Badri, Université du Québec à Trois-Rivières
Stefan Monnier, Université de Montréal

2023-05-29

/ 79

● De-facto general programming paradigm
● Principles and practices

○ SOLID [63]
○ GRASP
○ GoF design patterns [31]

● Other paradigms
○ Functional programming
○ Meta-programming

Object-Oriented Programming

2

/ 79

● Generic solutions to recurring problems
○ Require design patterns to solve
○ Added complexity

● Can OOP be improved by adding
language features that solve the
underlying issue behind design
patterns?
○ Improve pattern implementations
○ Replace design patterns

About OOP Design Patterns

3

/ 79

About Immutability
● Core property of Functional Programming
● Advantages include [1, 11]

○ More consistent behaviour
○ Makes code easier to understand
○ Easier record keeping

● Advantages tend to be rhetorical
○ No empirical data

● Research focuses on enforcement
○ [13, 21, 31, 51, 85, 91, 92, 95]

● Industry focuses on support
○ C#, Java, Rust, Kotlin, JavaScript, etc.

4

/ 79

Rules for transitive immutability in OOP
● “Don’t provide methods that modify the object’s

state.”
● “Ensure that the class can’t be extended.”
● “Make all fields final.”
● “Make all fields private.”
● “Ensure exclusive access to any mutable

components.”

Presented by Bloch [11] in Effective Java

5

/ 79

Thesis Statement
● OOP can be improved by adding language features that solve the

underlying issue behind design patterns
● Among many possibilities, we focus on immutability

○ Can increase understandability and granularity of the code
○ Immutability features can improve maintainability, reduce code duplication, and improve

scalability

6

/ 79

Thesis Flow

7

/ 79

An Example: Improving the Factory Method

8

 "In class MyApplication"

 documentClass

 ^ MyDocument

 createDocument

 ^ documentClass new

Smalltalk Example [31]
class Document {
 virtual void Open() const = 0;
 virtual void Close() const = 0;

 void Save() {
 // ...
 }

 void Revert() {
 // ...
 }
}

class MyDocument : public Document
{
 void Open() const override {
 // ...
 }

 void Close() const override {
 // ...
 }
}

C++ Example [31]
class Application {
 virtual Document*
CreateDocument() const = 0;

 Document* NewDocument() {
 // ...
 }

 Document* OpenDocument() {
 // ...
 }
}

class MyApplication : public
Application {
 Document* CreateDocument()
const override {
 return new MyDocument();
 }
}

/ 79

An Example: Improving the Factory Method

9

 "In class MyApplication"

 documentClass

 ^ MyDocument

 createDocument

 ^ documentClass new

Smalltalk Example [31]C++ Implementation [31]

/ 79

Research Questions
● What language features have been suggested to improve design pattern

implementations?
○ Which design patterns?
○ What measures?
○ Empirical experiments?

10

/ 79

Methodology

11

/ 79

Summary of Language Features

12

/ 79

Summary of Language Features

13

/ 79

Layer Objects
class FieldTile {

def enter(player) {
// Do something when a player enters.

}
}

class BurningTileDecorator {
def damage = 15;
def FieldTile.enter(player) {

player.health -= thisLayer.damage;
proceed(player);

}
}

// Usage example
def decorator = new BurningTileDecorator();
fieldTile.activate(decorator);

Pseudo-Java Layer Objects [84]

14

/ 79

Layer Objects
class FieldTile {

def enter(player) {
// Do something when a player enters.

}
}

class BurningTileDecorator {
def damage = 15;
def FieldTile.enter(player) {

player.health -= thisLayer.damage;
proceed(player);

}
}

// Usage example
def decorator = new BurningTileDecorator();
fieldTile.activate(decorator);

Pseudo-Java Layer Objects [84]

15

/ 79

Layer Objects
class FieldTile {

def enter(player) {
// Do something when a player enters.

}
}

class BurningTileDecorator {
def damage = 15;
def FieldTile.enter(player) {

player.health -= thisLayer.damage;
proceed(player);

}
}

// Usage example
def decorator = new BurningTileDecorator();
fieldTile.activate(decorator);

Pseudo-Java Layer Objects [84]

16

/ 79

Layer Objects
class FieldTile {

def enter(player) {
// Do something when a player enters.

}
}

class BurningTileDecorator {
def damage = 15;
def FieldTile.enter(player) {

player.health -= thisLayer.damage;
proceed(player);

}
}

// Usage example
def decorator = new BurningTileDecorator();
fieldTile.activate(decorator);

Pseudo-Java Layer Objects [84]

17

/ 79

Signals

val a = Var(1)
val b = Var(2)
val s = Signal { a() + b() }

println(s.getVal()) // 3
a() = 4
println(s.getVal()) // 6

Scala Signals [77]

18

/ 79

Signals

val a = Var(1)
val b = Var(2)
val s = Signal { a() + b() }

println(s.getVal()) // 3
a() = 4
println(s.getVal()) // 6

Scala Signals [77]

19

/ 79

Signals

val a = Var(1)
val b = Var(2)
val s = Signal { a() + b() }

println(s.getVal()) // 3
a() = 4
println(s.getVal()) // 6

Scala Signals [77]

20

/ 79

Immutability
● Property of Functional Programming
● Affects design pattern implementations

○ Combined with Closures, makes the Command pattern obsolete

● Examples also include a different State pattern implementation [76]
● Has other potential advantages for software engineering

21

Action command = ()
=> Console.WriteLine(“Hello World!”);

// ...
command();

Immutable Command Example

/ 79

Answer to Research Questions
● Catalogue of 18 language features
● Observer, Visitor, and Decorator
● Maintainability and understandability

○ Chidamber and Kemerer [19]
○ AOP papers focus on concern diffusion

● Mostly descriptive studies
○ Case studies are in-vitro
○ Only one experiment

22

/ 79

Thesis Flow

23

/ 79

A Multi-Method Exploratory Study

24

/ 79

Research Questions

25

● What is the impact of immutability on
object-oriented development?
○ Quantitative
○ Qualitative
○ Comments

?

/ 79

Answer to Research Questions
● Quantitative

○ Shorter, more granular methods
○ No significant negative impact of immutability
○ No noticeable impact on performance

● Qualitative
○ Lower workload, lower difficulty, less complex code

● Participants were divided about immutability
○ High learning curve and lack of language support
○ Easier communication among teammates and more understandable programs

26

/ 79

Answer to Main Research Question
What is the impact of immutability on object-oriented development?

● No significant disadvantage observed of using immutability
● Advantages outweigh any disadvantage

27

/ 79

Thesis Flow

28

/ 79

A Multi-Method Empirical Study

29

● Study language features for immutability
support in OOP

● Empirical study on a set of features recently
added to C#
○ Record Types and Record Updating
○ Pattern Matching
○ Multiple Values Return

/ 79

A Multi-Method Empirical Study

30

/ 79

Research Questions

31

● Do the recently added immutability-related features have a positive
impact on writing immutable code in C#?
○ Quantitative
○ Qualitative
○ Differences in code

?

/ 79

Answer to Research Questions
● Quantitative

○ Greater maintainability and quality
○ Pattern Matching was particularly effective

● Qualitative
○ No significant difference

● Both groups adopted similar approaches
○ No use of the Visitor pattern

32

/ 79

Answer to Main Research Question
Do the recently added immutability-related features have a positive impact on
writing immutable code in C#?

● Supports the approach naturally used by developers
● Improves the quality of immutable code

33

/ 79

Thesis Flow

34

/ 79

Non-destructive mutators

35

● Immutable version of mutator
○ Creates a new object
○ Does not modify the original

/ 79

Non-destructive mutators

36

● Immutable version of mutator
○ Creates a new object
○ Does not modify the original

/ 79

Non-destructive mutators

37

● Immutable version of mutator
○ Creates a new object
○ Does not modify the original
○ What about polymorphism?

/ 79

Main Research Question

38

● Is it possible to reuse non-destructive mutators via polymorphism when
combining immutability and OOP subtyping?
○ Inheritance vs. composition
○ Return type polymorphism

/ 79

Problem 1: Inheritance, Composition, and Immutability
● “Is-a” relationship between

Rectangle, Point, and Size
○ Use composition instead?

● Multiple inheritance?
○ Unsupported in Java/C#

39

Rectangle r = new Rectangle(1, 3, 2, 2);
Point p = r.getPosition().move(1, 2);

Rectangle r2
= new Rectangle(p.x, p.y, r.w, r.h);

Composition Problem

/ 79

Problem 2: Return Type Polymorphism
● Methods “move” and “scale” must return a new object of the correct type
● Using generic programming:

● We still need a way to create the new object
○ Cannot call the constructor of a generic type

40

static T move<T>(T movable, int x, int y) { ... }

Generic Method Definition

/ 79

Solution: The Immutable Factory Method

41

/ 79

Addressing Problem 1: Subtyping
● We use subtyping with interfaces instead of inheritance

○ No multiple inheritance in Java
○ Must define reusable methods
○ Java 8 supports default methods in interfaces

42

 interface Movable {
 int getX();
 int getY();

 default Point move(int dx, int dy) {
 return new Point(this.getX() + x, this.getY() + y);
 }
 }

Default Method Implementation

/ 79

Addressing Problem 1: Subtyping
● We use subtyping with interfaces instead of inheritance

○ No multiple inheritance in Java
○ Must define reusable methods
○ Java 8 supports default methods in interfaces

43

 interface Movable {
 int getX();
 int getY();

 default Point move(int dx, int dy) {
 return new Point(this.getX() + x, this.getY() + y);
 }
 }

Default Method Implementation

/ 79

Addressing Problem 1: Subtyping
● We use subtyping with interfaces instead of inheritance

○ No multiple inheritance in Java
○ Must define reusable methods
○ Java 8 supports default methods in interfaces

44

 interface Movable {
 int getX();
 int getY();

 default Point move(int dx, int dy) {
 return new Point(this.getX() + x, this.getY() + y);
 }
 }

Default Method Implementation

/ 79

Addressing Problem 2: Return Type Polymorphism
● Cannot call a constructor on a generic type

45

T updateMovable(int x, int y);

Factory Method Definition

 final class Point implements Movable<Point> {
 // ...

 @Override
 public Point updateMovable(int x, int y) {
 return new Point(x, y);
 }
 }

Factory Method Implementation

/ 79

Addressing Problem 2: Return Type Polymorphism
● Cannot call a constructor on a generic type

46

T updateMovable(int x, int y);

Factory Method Definition

 final class Point implements Movable<Point> {
 // ...

 @Override
 public Point updateMovable(int x, int y) {
 return new Point(x, y);
 }
 }

Factory Method Implementation

/ 79

Rectangle Implementation of the Factory Method

47

 final class Rectangle
 implements Movable<Rectangle>, Scalable<Rectangle> {
 // ...

 @Override
 public Rectangle updateMovable(int x, int y) {
 return new Rectangle(x, y, this.getW(), this.getH());
 }

 @Override
 public Rectangle updateScalable(int w, int h) {
 return new Rectangle(this.getX(), this.getY(), w, h);
 }
 }

/ 79

Rectangle Implementation of the Factory Method

48

 final class Rectangle
 implements Movable<Rectangle>, Scalable<Rectangle> {
 // ...

 @Override
 public Rectangle updateMovable(int x, int y) {
 return new Rectangle(x, y, this.getW(), this.getH());
 }

 @Override
 public Rectangle updateScalable(int w, int h) {
 return new Rectangle(this.getX(), this.getY(), w, h);
 }
 }

/ 79

Client Code

49

Point p = new Point(2, 2);
Point p2 = p.move(1, 2); // 3, 4

Size s = new Size(4, 6);
Size s2 = s.scale(3); // 12, 18

Rectangle r = new Rectangle(2, 2, 3, 4);
Rectangle r2 = r.move(1, 2); // 3, 4, 3, 4
Rectangle r3 = r.scale(5); // 2, 2, 12 18

/ 79

Design Pattern Drawbacks
● Added complexity

○ Default Methods
○ Generic Programming
○ Factory Method

● “Boilerplate” code
○ UpdateMovable/UpdateScalable
○ Must be updated if classes change

50

/ 79

Clojure Variant
● Dynamically-typed language
● Functional updating support
● Idiomatic solution:

51

 (defn make-point [x y]
 {:x x :y y})

 (defn make-rectangle [x y w h]
 {:x x :y y :w w :h h})

 (defn move [point dx dy]
 (assoc point
 :x (+ (point :x) dx)
 :y (+ (point :y) dy)))

Clojure Move Implementation

/ 79

Clojure Variant
● Dynamically-typed language
● Functional updating support
● Idiomatic solution:

52

 (defn make-point [x y]
 {:x x :y y})

 (defn make-rectangle [x y w h]
 {:x x :y y :w w :h h})

 (defn move [point dx dy]
 (assoc point
 :x (+ (point :x) dx)
 :y (+ (point :y) dy)))

Clojure Move Implementation

/ 79

Clojure Variant
● Dynamically-typed language
● Functional updating support
● Idiomatic solution:

53

 (defn make-point [x y]
 {:x x :y y})

 (defn make-rectangle [x y w h]
 {:x x :y y :w w :h h})

 (defn move [point dx dy]
 (assoc point
 :x (+ (point :x) dx)
 :y (+ (point :y) dy)))

Clojure Move Implementation

/ 79

● Functional updating
○ Construct the new object of the proper type
○ Available in: Kotlin, Rust, C#

● Dynamic typing
○ Simplified method definitions
○ Alternative is to use generic programming

Key Features

54

 (assoc point
 :x (+ (point :x) dx)
 :y (+ (point :y) dy))

Functional Updating in Clojure

 default T move(int dx, int dy) {
 return updateMovable(this.getX() + x, this.getY() + y);
 }

Generic Default Method in Java

/ 79

Common Lisp Variant
● Dynamically-typed OOP language (using CLOS)
● No native functional updating support

55

 (defclass point ()
 ((x :reader x :initarg :x)
 (y :reader y :initarg :y)))

 (defclass size ()
 ((w :reader w :initarg :w)
 (h :reader h :initarg :h)))

 (defclass rectangle (point size) ())

Common Lisp Types

/ 79

Common Lisp Variant
● Dynamically-typed OOP language (using CLOS)
● No native functional updating support

56

 (defclass point ()
 ((x :reader x :initarg :x)
 (y :reader y :initarg :y)))

 (defclass size ()
 ((w :reader w :initarg :w)
 (h :reader h :initarg :h)))

 (defclass rectangle (point size) ())

Common Lisp Types

/ 79

CLOS Movable Methods Implementation

57

 (defgeneric update-movable (movable x y))

 (defmethod update-movable ((movable point) x y)
 (make-instance 'point :x x :y y))

 (defmethod update-movable ((movable rectangle) x y)
 (make-instance 'rectangle
 :x x :y y
 :w (w movable) :h (h movable)))

 (defun move (movable dx dy)
 (update-movable movable
 (+ dx (x movable))
 (+ dy (y movable))))

/ 79

CLOS Movable Methods Implementation

58

 (defgeneric update-movable (movable x y))

 (defmethod update-movable ((movable point) x y)
 (make-instance 'point :x x :y y))

 (defmethod update-movable ((movable rectangle) x y)
 (make-instance 'rectangle
 :x x :y y
 :w (w movable) :h (h movable)))

 (defun move (movable dx dy)
 (update-movable movable
 (+ dx (x movable))
 (+ dy (y movable))))

/ 79

CLOS Movable Methods Implementation

59

 (defgeneric update-movable (movable x y))

 (defmethod update-movable ((movable point) x y)
 (make-instance 'point :x x :y y))

 (defmethod update-movable ((movable rectangle) x y)
 (make-instance 'rectangle
 :x x :y y
 :w (w movable) :h (h movable)))

 (defun move (movable dx dy)
 (update-movable movable
 (+ dx (x movable))
 (+ dy (y movable))))

/ 79

Extending Common Lisp
● Meta-programming support

○ Allows the use of macros to extend the language

● Let us add functional updating support to the
language!
○ The macro code would be distributed in a library
○ Invisible to the user

60

/ 79

Common Lisp Mutable Implementation

61

 (defun move (movable dx dy)
 (with-slots (x y) movable
 (incf x dx)
 (incf y dy)))

 (defun scale (scalable scale)
 (with-slots (w h) scalable
 (setf w (* scale w))
 (setf h (* scale h))))

Move and Scale Mutable Implementations

/ 79

Common Lisp Mutable Implementation

62

 (defun move (movable dx dy)
 (with-slots (x y) movable
 (incf x dx)
 (incf y dy)))

 (defun scale (scalable scale)
 (with-slots (w h) scalable
 (setf w (* scale w))
 (setf h (* scale h))))

Move and Scale Mutable Implementations

/ 79

Extended Common Lisp Implementation
● No more need for the Factory Method

○ Can directly implement the move and scale methods

● Idiomatic code
○ Same as if using “with-slots”

63

 (defun move (movable dx dy)
 (with-new (x y) movable
 (incf x dx)
 (incf y dy)))

 (defun scale (scalable scale)
 (with-new (w h) scalable
 (setf w (* scale w))
 (setf h (* scale h))))

Move and Scale Implementations

/ 79

Extended Common Lisp Implementation
● No more need for the Factory Method

○ Can directly implement the move and scale methods

● Idiomatic code
○ Same as if using “with-slots”

64

 (defun move (movable dx dy)
 (with-new (x y) movable
 (incf x dx)
 (incf y dy)))

 (defun scale (scalable scale)
 (with-new (w h) scalable
 (setf w (* scale w))
 (setf h (* scale h))))

Move and Scale Implementations

/ 79

Extended Common Lisp Implementation
● No more need for the Factory Method

○ Can directly implement the move and scale methods

● Idiomatic code
○ Same as if using “with-slots”

65

 (defun move (movable dx dy)
 (with-new (x y) movable
 (incf x dx)
 (incf y dy)))

 (defun scale (scalable scale)
 (with-new (w h) scalable
 (setf w (* scale w))
 (setf h (* scale h))))

Move and Scale Implementations
 (defun move (movable dx dy)
 (with-slots (x y) movable
 (incf x dx)
 (incf y dy)))

 (defun scale (scalable scale)
 (with-slots (w h) scalable
 (setf w (* scale w))
 (setf h (* scale h))))

Idiomatic Mutable Implementations

/ 79

Answer to Main Research Question
Is it possible to re-use non-destructive mutators via polymorphism when
combining immutability and OOP subtyping?

● New design pattern to circumvent the problem in any OOP language
● Key features

○ Functional Updating
○ Dynamic Typing

66

/ 79

Thesis Flow

67

/ 79

Contributions

68

● A catalogue of 18 language features suggested to improve OOP design
pattern implementations

● An exploratory study on the impact of immutability on OOP
● An empirical study on the impact of adding immutability-related language

features to C#
● A new design pattern to solve a problem that emerges with the

combination of OOP and immutability
● An extension to Common Lisp that adds functional updating to the

language

/ 79

Threats to Validity
● Internal Validity

○ Student participants
○ Potential bias towards immutability

● External Validity
○ Hawthorne effect

● Construct Validity
○ Structure of the C# study
○ Overall difficulty of the studies

● Conclusion Validity
○ Avoided strong conclusions concerning statistical results

69

/ 79

Thesis Statement
● OOP can be improved by adding language features that solve the

underlying issue behind design patterns
● Among many possibilities, we focused on immutability

○ Can increase understandability and granularity of the code
○ Immutability features can improve maintainability, reduce code duplication, and improve

scalability

70

/ 79

Short Term: Language Features to Improve OOP

71

● Aspect-Oriented Programming
● Case Classes
● Chameleon Objects
● Class Extension
● Closures
● Default Implementation
● Immutability
● Layer Objects

● Mixins
● Multiple Inheritance
● Object Interaction Styles
● Pattern Keywords
● Reflection
● Signals
● Subclassing members in a

subclass

/ 79

Short Term: Language Features to Improve OOP

72

● Aspect-Oriented Programming
● Case Classes
● Chameleon Objects
● Class Extension
● Closures
● Default Implementation
● Immutability
● Layer Objects

● Mixins
● Multiple Inheritance
● Object Interaction Styles
● Pattern Keywords
● Reflection
● Signals
● Subclassing members in a

subclass

/ 79

Short Term: Language Features to Improve OOP

73

● Aspect-Oriented Programming
● Case Classes
● Chameleon Objects
● Class Extension
● Closures
● Default Implementation
● Immutability
● Layer Objects

● Mixins
● Multiple Inheritance
● Object Interaction Styles
● Pattern Keywords
● Reflection
● Signals
● Subclassing members in a

subclass

/ 79

Short Term: Rust Ownership System
● Isolate mutating parts of a program
● Studying how this system interacts

with structural design patterns
○ Composite pattern seems interesting

74

/ 79

Short Term: Pattern Matching, Multimethods, and Visitor
● Pattern Matching can replace Visitor in some situations
● Multimethod, or multiple dispatch, can also replace the Visitor
● We want to study the interactions between Pattern Matching,

Multimethods, and the Visitor design pattern

75

/ 79

Mid Term: Individual Design Pattern Studies
● Each feature in our catalogue maps to specific design patterns
● Focus on specific design patterns and which features impact them

○ Improve pattern by combining features
○ Solve the underlying problem of the pattern

● Categorize patterns by most “solvable”

76

/ 79

Mid Term: Replications
● Quasi-replication of our exploratory study

○ Impact of immutability on code granularity and understandability
○ Compare the workload between mutable and immutable software development

● Replicate the C# study with only professional developers
○ Study could consider other languages or features, such as C# LINQ or Java Streams

77

/ 79

Long Term: A New Paradigm?
● Combination of FP and OOP?
● Can a pattern-less language exist?

○ Resolve all underlying issues?
○ Architectural patterns vs. code patterns
○ Formalization vs Obsolescence

● What about generative machine learning?
○ Impact on programming languages
○ Impact on design patterns

78

/ 79

● William Flageol, Éloi Menaud, Yann-Gaël Guéhéneuc, Mourad Badri, Stefan Monnier, “A mapping study of language
features improving object-oriented design patterns”, Information and Software Technology, Volume 160, 2023.

● William Flageol, Yann-Gaël Guéhéneuc, Mourad Badri, and Stefan Monnier, “A Multimethod Exploratory Study on
the Impact of Immutability on Object-oriented Software Development”, under revision.

● William Flageol, Yann-Gaël Guéhéneuc, Mourad Badri, and Stefan Monnier, “A Multimethod Empirical Study on New
Features for Immutability Support in C#”, submitted to Journal of Systems and Software.

● William Flageol, Yann-Gaël Guéhéneuc, Mourad Badri, and Stefan Monnier, “Design Pattern for Reusing Immutable
Methods in Object-Oriented Languages”, EuroPLoP ’23: 28th European Conference on Pattern Languages of
Programs, July 05–09, 2023, Kloster Irsee, Germany.

Publications

79

/ 79

Pilot Study
● We performed a pilot study prior to the experiment

○ The goal was to assess the feasibility of the experiment

● Participants included two recently graduated Ph.D. students
● The initial structure of the experiment required the participant to develop

the full program by themselves following Bloch’s transitive immutability
rules

● The feedback from the pilot study indicated this was too big a task to ask
of volunteer participants

● We redesigned the experiment so that the participant would evaluate a
base program and extend it instead

81

/ 79

Experiment
● There are two base programs, one per group

○ The treatment group program uses the new features
○ The control group program does not
○ Other than these differences, the two base programs are similar in functionality

● The base programs are file system simulators
○ Allows creating a hierarchy of folders and files

● We ask the participants to extend the base programs by adding the following
functionality:
○ Collect operation
○ Undo operation
○ Duplicate operation

● At the end, we asked the participants to fill out a survey about their experience
● Interview with the professional developers

82

/ 79

Chameleon Objects
● OOP feature which allows changing the

class of an object at run-time
○ Already exists in some languages
○ Common Lisp, Perl

● Can implement State by changing
classes when state changes

● Examples also include implementing
Factory Method

(change-class target-object target-class)

Chameleon Objects in Common Lisp

bless $targetObject, ‘Package::TargetClass’;

Chameleon Objects in Perl

83

/ 79

Pattern Keywords
● Some studies introduce design patterns

directly as new keywords
● Can be done without the help of third

party-tools in languages with
meta-programming support
○ MzScheme implementation of the Visitor

as a keyword by Krishnamurthi et al.
● Examples include implementing

Decorator, Observer, Singleton and
Visitor

● Whether design patterns should be
language features is debatable

public singleton class A
{

instantiate A as s1;

public static void main(String[] args)
{

instantiate A as s2, s3;
}

}

Java Singleton Keyword

84

/ 79

Case Classes
● Feature of Functional Programming

○ Also known as Pattern Matching
● Shares functionality with object

polymorphism
● Can be used to implement

multimethods
● Examples include a Visitor

implementation

// Visitor structure for a Binary Tree.
trait Tree {

def accept[R] (v :TreeVisitor[R]):R
}
case class Empty extends Tree {

def accept[R] (v :TreeVisitor[R]):R = v.empty
}
case class Fork (x :int,l : Tree,r: Tree) extends Tree {

def accept[R] (v :TreeVisitor[R]):R = v.fork (x,l,r) }

trait TreeVisitor[R] {
def empty :R
def fork (x : int,l :Tree,r: Tree):R

}

// Concrete implementation of visitor to calculate
// the depth of the Tree.
def depth = new CaseTree [External,int] {

def Empty = 0
def Fork (x : int,l :R[TreeVisitor],r:R[TreeVisitor])

= 1+max (l.accept (this),r.accept (this))
}

Scala Case Classes

85

/ 79

Aspect-Oriented Programming
● Introduced in 1997 by Kiczales et al.
● Paradigm extension to procedural

programming
○ Increases modularity by

encapsulating cross-cutting
concerns into Aspects

● Three main ways to implement :
○ The Join-Point model
○ Annotations
○ Mixins

● Presents full implementations of the
23 GoF patterns

pointcut setter(): target(Point) &&
(call(void setX(int)) ||
 call(void setY(int)));

Join-Point model

[NotifyPropertyChanged]
public class Person
{

public string FirstName { get; set;
}

public string LastName { get; set; }
public Address Address { get; set; }

}

Annotations

86

/ 79

Closures
● Main feature of Functional Programming

and lambda-calculus
○ Encapsulates behaviour and data

● Difference with OOP classes
○ Can only encapsulate one function
○ Data usually cannot be accessed from

outside
● Supported by most modern languages

○ C++, C#, Java, Python, JavaScript, Kotlin,
etc.

● Examples include implementing
Command, Composite, Iterator, Visitor,
and Builder

var i = 42
var closure = (argument) => {

// Some code which can
// use the i variable.

}

Lambda Syntax Example

87

/ 79

Mixins
● Extension of OOP
● Unlike inheritance, do not enforce a

“is-a” relationship
● Examples include implementations of

Decorator, Proxy, Chain of
Responsibility, and Strategy

class Component { Operation(); }

class ConcreteComponent implements Component { ... };

class DecoratorMixA implements Component
needs Component

Operation() { ... Component.Operation() };

class DecoratorMixB implements Component
needs Component

Operation() { ... Component.Operation() };

// Usage
class Client {

main() {
ConcreteComponent cc =

new ConcreteComponent with DecoratorMixA;
extend cc with DecoratorMixB;
cc.Operation();

}
}

Mixins in Java

88

/ 79

Project
● Development of a Sudoku solver
● Two phases

○ Application core
■ SOLID and GRASP principles

○ Add new functionality
■ GoF design patterns

● Both groups had identical
requirements

89

/ 79

Databases for the Search Query
● We use multiple online databases to search for primary studies

○ The databases we used are part of an online tool called Engineering Village, hosted by
Elsevier

○ They contain studies from many scientific journal databases, including ACM and IEEE

● We restrain our search to studies published after 1995

90

/ 79

Database Query

91

/ 79

Results by Publication Venue

92

/ 79

Number of papers by design pattern

93

/ 79

Measures
● Top measures used to evaluate the improvements by the suggested

design patterns include
○ Depth of inheritance (DIT)
○ Coupling and cohesion (CBC, LCOO)
○ Concern diffusion (CDC, CDLoC, CDO)
○ Code size (LoC, NoA, WoC)
○ Reuseability

94

/ 79

Programs Summary

95

/ 79

Statistical Tests
● Since the dataset was not normally distributed, we opted to perform a

Mann Whitney U test to test if the groups were significantly different
○ We used Cliff’s Delta to measure effect sizes
○ Because of the large amount of measures, we cannot compare to the typical p-value

threshold of 0.05
○ A Bonferroni correction would give a threshold of 0.006

96

/ 79

Experiments and Participation
● Out of the 34 primary studies

○ 10 were case studies
○ 1 was a controlled experiment
○ 23 were descriptive studies

● The case studies were all done in-vitro
○ It is difficult to find projects developed by third parties using new tools or methods

● The experiment was done with 38 undergraduate students
● In general, industry practitioners are not involved in these efforts

97

/ 79

Data Collection
● We used SciTools Understand to collect quantitative measures on the

programs
● We collected measures related to many categories

○ Class Complexity
○ Method Size
○ Class interactions
○ Class Size
○ Class Cohesion and Nesting
○ Program Size

98

/ 79

Survey
● We had the participants fill out a survey to collect data about their

experience with the project
● The survey asked the following questions:

○ Auto-evaluate your expertise in OOP (1 to 5)
○ Auto-evaluate your participation in the project within their team (1 to 5)
○ Give your impression on the workload, difficulty, and complexity of the resulting program

for each of the following (1 to 5):
■ Phase 1 implementation
■ Phase 2 implementation
■ SOLID/GRASP principle implementations
■ GoF patterns implementations

○ Would you consider using immutability for future projects? (yes or no)
● The participants also had the option to leave some comments

99

/ 79

Participants
● The experiment was part of a B.Sc. software engineering class on

advanced OOP
○ The participants all had a similar academic background, with experience mainly in Java

and C#
○ The main focus of the class was design patterns
○ About 9 hours out of 45 were dedicated to immutability
○ No other emphasis was put on immutability during the class
○ All participants were taught the same material

● None of the participants reported any prior experience with immutability
● Participation was voluntary

○ We gave incentives in the form of extra credits (10% of the total grade for the assignment)
○ Out of the 84 students, 67 chose to participate

100

/ 79

Program Measures

101

/ 79

Mutable Representation of a Command Invoker

102

/ 79

Immutable Representation of a Command Invoker

103

/ 79

Measures on Participants

104

/ 79

Mann Whitney U test results

105

/ 79

Survey Answers Average

106

/ 79

Mann-Whitney U test results on survey

107

/ 79

Survey
● The survey was divided into 5 mains sections:

○ General questions about the participant’s industry experience and knowledge of C#
○ Appraisal of the base program (workload, difficulty, complexity)
○ Appraisal of the extended program (workload, difficulty, complexity)
○ NASA Task Load Index (mental demand, physical demand, temporal demand,

performance, effort, frustration)
○ Questions about the new features (treatment group only)

108

/ 79

Program Measures

109

/ 79

Mann Whitney U test results

110

/ 79

Appraisal of the Base Program
● Student Answers

● Professional Developers Answers

111

/ 79

Appraisal of the Extended Program
● Student Answers

● Professional Developers Answers

112

/ 79

● Student Answers

NASA Task Load Index Answers

113

● Professional Developers
Answers

/ 79

Participants
● 12 participants

○ 10 graduate students
○ Two professional developers

● Participants are split into two groups
○ The treatment group is given a short training on the four C# features
○ The control group is not given any information concerning the new features
○ The professional developer in the control group is given specific instructions not to use

the new features

114

/ 79

Record Types
● Data structure similar to class or struct
● Structural equality
● In C#, not required to be immutable
● Allows the use of Record Updating

115

record MyRecord(string Field1, int Field2)
{
 void SomeMethod(string arg)
 {
 Field1 = arg;
 return Field2;
 }
}

Record Type Example

/ 79

Record Updating
● Also called non-destructive mutation or

functional updating
● Allows duplicating a record while

changing some values of the duplicate
● Does not affect the original record
● Allows creating “setters” in an

immutable context

116

var entry1 = new MyRecord("Content", 0);
var entry2 = entry with { Field2 = 42 };

Record Updating Example

/ 79

Pattern Matching
● Allows code to branch based on the type

of an object
● Similar syntax to switch statement
● Feature present in most FP languages
● FP equivalent to object polymorphism
● Usually combined with Records

117

 // If-expression example
 if (someVariable is int i)
 {
 return i + 2;
 }
 else
 {
 return 0;
 }

 // Switch-expression example
 return (someVariable switch
 {
 int i => i + 2;
 string s => 1;
 _ => throw new
 InvalidOperationException();
 });

Pattern Matching Example

/ 79

Multiple Values Return
● In FP, it is frequent to return multiple

values from a single function call
● Pure functions cannot have side effects

○ They must return every updated object
● If a pure function updates more than

one object at a type, it must return
multiple values

118

 (int, string) MakeTuple()
 {
 return (42, "Content");
 }

 // ...

 (int, string) tuple = MakeTuple();
 // Use tuple.Item1 and tuple.Item2
 // to access the values.

 // or alternatively

 (int i, string s) = MakeTuple();
 // Use i and s as normal variables.

MVR Example

/ 79

Kotlin Variant
● Statically-typed language
● Similar to Java
● Functional updating support

119

interface Movable<T> {
 val x: Int
 val y: Int

 fun updateMovable(newX: Int, newY: Int) : T

 fun move(moveX: Int, moveY: Int) : T {
 return updateMovable(moveX + x, moveY + y)
 }
}

Kotlin Movable Trait

/ 79

Kotlin Movable Implementations

120

data class Point(override val x: Int, override val y: Int)
 : Movable<Point> {

 override fun updateMovable(newX: Int, newY: Int): Point {
 return Point(x, y)
 }
}

data class Rectangle(override val x: Int, override val y: Int,
 override val w: Int, override val h: Int)
 : Movable<Rectangle> {
 override fun updateMovable(newX: Int, newY: Int): Rectangle {
 return copy(x = newX, y = newY)
 }
}

/ 79

With-New Macro

121

 (defun clone-object (instance)
 (let* ((class (class-of instance))
 (clone (allocate-instance class)))
 (dolist (slot-name
 (mapcar #'closer-mop:slot-definition-name
 (closer-mop:class-slots class)))
 (when (slot-boundp instance slot-name)
 (setf (slot-value clone slot-name)
 (slot-value instance slot-name))))
 clone))

Clone Method

 (defmacro with-new (slots instance &body body)
 (let ((instance-sym (gensym)))
 `(let ((,instance-sym (clone-object ,instance)))
 (with-slots ,slots ,instance-sym
 ,@body
 ,instance-sym))))

With-New Macro

