mproving Object-Oriented Programming by Integrating

Language Features to Support Immutability

By William Flageol
Concordia University

Supervised hy:
Yann-Gaél Guéhéneuc, Concordia University
Mourad Badri, Université du Québec a Trois-Rivieres

Stefan Monnier, Université de Montréal
2023-05-29 \

\V/’ C (@) n CO | § d i d % Université du Québec Ul’liVeI‘Sité f”\

a Trois-Rivieres de Montl‘éal

Object-Oriented Programming

e De-facto general programming paradigm —

e Principles and practices
o SOLID [63]

=== ‘:‘P0|Ym0rphism‘]

o GRASP . \' Inheritance \ o \ Subtyping |
o GoF design patterns [31]
P Other pa rad |ng _ ” Object-Oriented _ w

Programming

o Functional programming

o Meta-programming
[Encapsulation| | Abstraction |

2 /79

About O0P Design Patterns

e Generic solutions to recurring problems
o Require design patterns to solve

b

Design Patterns

Elements of Reusable

Object-Oriented.Softw.
o Added complexity . ject-Oriented.ooitware
i i i Conag
Ichar
e Can OOP be improved by adding Richard el
language features that solve the John ViSRS =

underlying issue behind design

patterns?

o Improve pattern implementations _
o Replace design patterns Foreword by Grady Booch

>
O
o
73
)
74
s
m
w
=
m
<
T
z
(@)
b4
m
w
o
(©)
Z
>
=
0
(©)
F<
°
C
=
%
(9)
v
m
)
m
v

3 /79

About Immutability

e Core property of Functional Programming

e Advantages include [1, 11]
o More consistent behaviour
o Makes code easier to understand
o Easier record keeping

e Advantages tend to be rhetorical
o No empirical data

e Research focuses on enforcement
o [13, 21, 31,51, 85,91, 92, 95]

e |Industry focuses on support
o C#, Java, Rust, Kotlin, JavaScript, etc.

4/79

Rules for transitive immutability in 00P

joshia Bloch ... e “Don't provide methods that modify the object's
state.”

“Ensure that the class can't be extended.”
“Make all fields final.”

“Make all fields private.”

“Ensure exclusive access to any mutable
components.”

Effective Java

Third Edition

Presented by Bloch [11] in Effective Java

5 /79

Thesis Statement

e OOP can be improved by adding language features that solve the
underlying issue behind design patterns

e Among many possibilities, we focus on immutability

o Canincrease understandability and granularity of the code
o Immutability features can improve maintainability, reduce code duplication, and improve
scalability

6 /79

Thesis Flow

Mapping Exploring Studying Solving

Mapping Suggested Language Exploring the Impact of
Features for Improving Object- Immutability on Object-oriented
Oriented Design Patterns Software Development

Solving Immutable Method
Reusability Problems with a New
Design Pattern

Studying New Features for
Immutability Support in C#

7 /79

An Example: Improving the Factory Method

C++ Example [31] Smalltalk Example [31]

class Document { class Application { " I l M A l . t . "
virtual void Open() const = 0; virtual Document* n 1 i0n
virtual void Close() const = 0; CreateDocument() const = 0; class y PP e 2

void Save() { Document* NewDocument () {
70 oo

} } documentClass
‘}roj.;l I.R?X.rert() { Docum?r.ﬂ.:* OpenDocument () {
}
) } A MyDocument

class MyDocument : public Document
{ class MyApplication : public

void Open() const override { Application {
/] ... Document* CreateDocument () CreateDOC'ument
} const override {

return new MyDocument() ;
void Close() const override {
) ooo

. ! A documentClass new

8 /79

An Example: Improving the Factory Method

C++ Implementation [31] Smalltalk Example [31]
‘Y®Documenti | ©) Application "In class MyApplication"
Z gﬁ)esg?) <—<> e CreateDocument() documentClass

| @ NewDocument()

o Save() C Openiti)ocument() :

' @ Revert()

A MyDocument

createDocument

7 | icati | ~ documentClass new
©MyDocument;(. ~ @ MyApplication ‘

{_ o CreateDocument() |

9 /79

Research Questions

e What language features have been suggested to improve design pattern

implementations?

o Which design patterns?
o What measures?
o Empirical experiments?

10 /79

Methodology

A ()
[1. Establlsh research 2. |dentify keywords
questions >

_ J

4. Build queries and

5. Manual filtering
~ ~ execute

. 874 papers
3. ldentify databases

\. J 144 papers v

e S

7. Create the > 8. Read and 6. Snowballing

4 compilation form) compile papers 157 papers

34 papers v

9. Interpret results

11 /79

Summary of Language Features

| Paradigm | Language Feature | # papers | Language
Functional Programming Case Classes 1 Scala
Functional Programming Closures 2 Haskell
Functional Programming Immutability 1 Scala
Meta-Programming AOP Annotations 2 Java
Meta-Programming AOP Mixins 2 Java
Meta-Programming AOP Join-point 17 Java
Meta-Programming Layer Objects 1 Pseudo-Java
Meta-Programming Pattern Keywords 2 Java
Meta-programming Reflection 3 Java
Object-Oriented Programming | Chameleon Objects 1 N/A
Object-Oriented Programming | Class Extension 1 Java
Object-Oriented Programming | Default Implementation 1 N/A
Object-Oriented Programming | Extended Initialization 1 N/A
Object-Oriented Programming | Mixins 3 Java, Scala
Object-Oriented Programming | Multiple Inheritance 1 C++
Object-Oriented Programming | Object Interaction Styles 1 N/A
Object-Oriented Programming | Subclassing members in a subclass | 1 N/A
Reactive Programming Signals 1. Scala

12 /79

Summary of Language Features

| Paradigm | Language Feature | # papers | Language
Functional Programming Case Classes 1 Scala
Functional Programming Closures 2 Haskell
Functional Programming ¢ Immutability) 1 Scala
Meta-Programming ations 2 Java
Meta-Programming AOP Mixins 2 Java
Meta-Programming AQP_loin-point 17 Java
Meta-Programming " Layer Objects) 1 Pseudo-Java
Meta-Programming ywords 2 Java
Meta-programming Reflection 3 Java
Object-Oriented Programming | Chameleon Objects 1 N/A
Object-Oriented Programming | Class Extension 1 Java
Object-Oriented Programming | Default Implementation 1 N/A
Object-Oriented Programming | Extended Initialization 1 N/A
Object-Oriented Programming | Mixins 3 Java, Scala
Object-Oriented Programming | Multiple Inheritance 1 C++
Object-Oriented Programming | Object Interaction Styles 1 N/A
Object-Oriented Programming | Subclassing members in a subclass | 1 N/A
Reactive Programming (1 Signals) 1 Scala
————

13 /79

Layer Objects

Pseudo-Java Layer Objects [84]

class FieldTile {
def enter (player) {
// Do something when a player enters.

}

class BurningTileDecorator {
def damage = 15;
def FieldTile.enter (player) {
player.health -= thisLayer.damage;

proceed (player) ;

}

// Usage example
def decorator = new BurningTileDecorator();

fieldTile.activate (decorator) ;
14 /79

Layer Objects

Pseudo-Java Layer Objects [84]

class FieldTile {
def enter (player) ({
// Do something when a player enters.

}

class BurningTileDecorator {
def damage = 15;
def FieldTile.enter (player) {
player.health -= thisLayer.damage;

proceed (player) ;

}

// Usage example
def decorator = new BurningTileDecorator();

fieldTile.activate (decorator) ;
15 /79

Layer Objects

Pseudo-Java Layer Objects [84]

class FieldTile {
def enter (player) ({
// Do something when a player enters.

}

class BurningTileDecorator {
def damage = 15;
def FieldTile.enter (player) {
player.health -= thisLayer.damage;

proceed (player) ;

}

// Usage example
def decorator = new BurningTileDecorator();

fieldTile.activate (decorator) ;
16 /79

Layer Objects

Pseudo-Java Layer Objects [84]

class FieldTile {
def enter (player) {
// Do something when a player enters.

}

class BurningTileDecorator {
def damage = 15;
def FieldTile.enter (player) {
player.health -= thisLayer.damage;

proceed (player) ;

}

// Usage example
def decorator = new BurningTileDecorator();

fieldTile.activate (decorator) ;
17 /79

Signals

Scala Signals [77]

val a = Var(1l)
val b Var (2)
val s Signal { a() + b() }

println(s.getval()) // 3
a() = 4
println(s.getval()) // 6

18 /79

Signals

Scala Signals [77]

val a = Var(1l)
val b Var (2)
val s = Signal { a() + b() }

println(s.getval()) // 3
a() = 4
println(s.getval()) // 6

19 /79

Signals

Scala Signals [77]

val a = Var(1l)
val b Var (2)
val s Signal { a() + b() }

println(s.getval()) // 3
a() = 4
println(s.getval()) // 6

20 /79

Immutability

e Property of Functional Programming
o Affects design pattern implementations
o Combined with Closures, makes the Command pattern obsolete
e Examples also include a different State pattern implementation [76]

e Has other potential advantages for software engineering

Immutable Command Example

Action command = ()
=> Console.WritelLine (“Hello World!”) ;
/..

command () ;

2L /79

Answer to Research Questions

e (atalogue of 18 language features
e Observer, Visitor, and Decorator
e Maintainability and understandability

o Chidamber and Kemerer [19]
o AOP papers focus on concern diffusion

e Mostly descriptive studies

o Case studies are in-vitro
o Only one experiment

22 /79

Thesis Flow

Mapping Exploring Studying Solving

Mapping Suggested Language Exploring the Impact of
Features for Improving Object- § Immutability on Object-oriented
Oriented Design Pattemns Software Development

Solving Immutable Method
Reusability Problems with a New
Design Pattern

Studying New Features for
Immutability Support in C#

23 /79

A Multi-Method Exploratory Study

—){ Treatment Group
8 Te
' — Compare mpare

67 Participants
6 Teams
Control Group

24 /79

Research Questions

e Whatis the impact of immutability on

object-oriented development?
o Quantitative

o Qualitative / \
0O Comments - \:;‘Encapsulationzl o
,/"/ \\\ \ f/ ’ b \
K . A7 \
| Abstraction | Inheritance |
" s \ /
: K ject-Oriented \
~— Programming I
Polymorphism \ Composition /\
R y
N 4
o A

25 /79

Answer to Research Questions

e Quantitative

o Shorter, more granular methods

o No significant negative impact of immutability

o No noticeable impact on performance
e Qualitative

o Lower workload, lower difficulty, less complex code
e Participants were divided about immutability

o High learning curve and lack of language support
o Easier communication among teammates and more understandable programs

26 /79

Answer to Main Research Question

What is the impact of immutability on object-oriented development?

e No significant disadvantage observed of using immutability
e Advantages outweigh any disadvantage

27 /79

Thesis Flow

Mapping Exploring Studying Solving

Mapping Suggested Language Exploring the Impact of Studying New Features for Solving Immutable Method

Features for Improving Object- Immutability on Object-oriented
Oriented Design Patiems Software Development

Reusability Problems with a New

Immutability Support in C# Design Pattern

28 /79

A Multi-Method Empirical Study

e Study language features for immutability
support in OOP
e Empirical study on a set of features recently

added to C#

o Record Types and Record Updating
o Pattern Matching
o Multiple Values Return

29 /79

A Multi-Method Empirical Study

4)[Treatment Group
6 Participants

- Compare extended projects Compare

12 Participants
6 Participants
Control Group

30 /79

Research Questions

e Do the recently added immutability-related features have a positive

impact on writing immutable code in C#?
o Quantitative
o Qualitative

o Differences in code E

31 /79

Answer to Research Questions

e Quantitative

o Greater maintainability and quality
o Pattern Matching was particularly effective

e Qualitative
o No significant difference

e Both groups adopted similar approaches
o No use of the Visitor pattern

o /79

Answer to Main Research Question

Do the recently added immutability-related features have a positive impact on
writing immutable code in C#?

e Supports the approach naturally used by developers
e |Improves the quality of immutable code

33 /79

Thesis Flow

Exploring Studying Solving

Mapping Suggested Language
Features for Improving Object- Immutability on Object-oriented
Oriented Design Patiems Software Development

Solving Immutable Method
Reusability Problems with a New
Design Pattemn

Studying New Features for
Immutability Support in G#

34 /79

Non-destructive mutators

e |Immutable version of mutator

o Creates a new object
o Does not modify the original

Point

getX(): int
getY(): int
move(x: int, y: int): Point

35 /79

Non-destructive mutators

e |Immutable version of mutator

o Creates a new object
o Does not modify the original

Point
getX(): int
getY(): int

;s o
nove(x: int, y: mt);lim})

36 /79

Non-destructive mutators

e |mmutable version of mutator ; -
Point Size
o Creates a new object X0): mmt WO): int
. L. getX(): In getW(): In
o Does not modify the original getY(): int — getH(): int
o What about po|ymorphism? move(x: int, y: in@) scale(value: {
Rectangle

getX(): int
getY(): int
getW(): int
getH(): int
move(dx: int, dy;

fmt): Rectangle
scale(value: int { Rectangle

37 /79

Main Research Question

e |sit possible to reuse non-destructive mutators via polymorphism when
combining immutability and OOP subtyping?

o Inheritance vs. composition
o Return type polymorphism

38 /79

Problem 1: Inheritance, Composition, and Immutablllty

“Is-a" relationship between
Rectangle, Point, and Size

(@)

Use composition instead?

Multiple inheritance?

(@)

Unsupported in Java/C#

Composition Problem

Rectangle r = new Rectangle(l, 3, 2, 2);
Point p = r.getPosition() .move (1, 2);

Rectangle r2
= new Rectangle(p.x, p.y, r.w, r.h);

39 /79
R

Problem ¢: Return Type Polymorphism

e Methods “move” and “scale” must return a new object of the correct type
e Using generic programming:

Generic Method Definition

static T move<T> (T movable, int x, int y) { ... }

e We still need a way to create the new object
o Cannot call the constructor of a generic type

40 /79

Solution: The Immutable Factory Method

<interface™> <interface>
Movable Scalable
getX(): int getW(): int
getY(): int getH(): int
move(x: int, y: int): Point scale(value: int): Size
Point Rectangle Size

41 /79

Addressing Problem 1: Subtyping

e We use subtyping with interfaces instead of inheritance
o No multiple inheritance in Java
o Must define reusable methods
o Java 8 supports default methods in interfaces

Default Method Implementation

interface Movable {
int getX():;
int getY():;

default Point move (int dx, int dy) {
return new Point (this.getX() + x, this.getY () + y):;
}

42 /79

Addressing Problem 1: Subtyping

e We use subtyping with interfaces instead of inheritance
o No multiple inheritance in Java
o Must define reusable methods
o Java 8 supports default methods in interfaces

Default Method Implementation

interface Movable {
int getX():;
int getY():;

default Point move (int dx, int dy) {
return new Point (this.getX() + x, this.getY () + y):;
}

43 /79

Addressing Problem 1: Subtyping

e We use subtyping with interfaces instead of inheritance
o No multiple inheritance in Java
o Must define reusable methods
o Java 8 supports default methods in interfaces

Default Method Implementation

interface Movable {
int getX():;
int getY():;

default Point move (int dx, int dy) {
return new Point(this.getX() + x, this.getY () + y):;
}

44 /79

Addressing Problem ¢: Return Type Polymorph

e Cannot call a constructor on a generic type

Factory Method Definition

T updateMovable (int x, int y);

Factory Method Implementation

final class Point implements Movable<Point> {

/...

@QOverride

public Point updateMovable (int x, int y) {
return new Point (x, V)

}

|sm

45 /79

Addressing Problem ¢: Return Type Polymorphlsm

e Cannot call a constructor on a generic type

Factory Method Definition

T updateMovable (int x, int y);

Factory Method Implementation
final class Point implements Movable<Point> {

/]

@Override
public Point updateMovable (int x, int y) {

return new Point(x, V);

}

46 /79

final class Rectangle
implements Movable<Rectangle>, Scalable<Rectangle> {

//

@Override
public Rectangle updateMovable (int x, int y) {
return new Rectangle(x, y, this.getW(), this.getH()):

@Override
public Rectangle updateScalable (int w, int h) {
return new Rectangle(this.getX (), this.getY (), w, h);

47 /79

final class Rectangle

implements Movable<Rectangle>, Scalable<Rectangle> {
//

@Override
public Rectangle updateMovable (int x, int y) {
return new Rectangle(x, y, this.getW(), this.getH()):

@Override
public Rectangle updateScalable (int w, int h) {
return new Rectangle(this.getX (), this.getY (), w, h);

48 /79

Client Code

Point p = new Point (2, 2);
Point p2 = p.move(l, 2); // 3, 4

Size s = new Size (4, 0);
Size s2 = s.scale(3); // 12, 18

Rectangle r = new Rectangle(2, 2, 3, 4);
Rectangle r2 = r.move(l, 2); // 3, 4, 3, 4
Rectangle r3 r.scale(5); // 2, 2, 12 18

49 /79

Design Pattern Drawhacks

e Added complexity
o Default Methods
o Generic Programming
o Factory Method

e “Boilerplate” code

o UpdateMovable/UpdateScalable
o Must be updated if classes change

5% /79

Clojure Variant

e Dynamically-typed language
e Functional updating support
e |diomatic solution:

Clojure Move Implementation

(defn make-point [x V]
{:x x 1y y})

(defn make-rectangle [x y w h]
{:x x :yy :ww :h h})

(defn move [point dx dy]
(assoc point
X (+ (point :x) dx)
ty (+ (point :y) dy)))

51 /79

Clojure Variant

e Dynamically-typed language
e Functional updating support
e |diomatic solution:

Clojure Move Implementation

(defn make-point [x V]
{:x x :y y})

(defn make-rectangle [x y w h]
{:x x :yy :ww :h h})

(defn move [point dx dy]
(assoc point
X (+ (point :x) dx)
ty (+ (point :y) dy)))

5 /79

Clojure Variant

e Dynamically-typed language
e Functional updating support
e |diomatic solution:

Clojure Move Implementation

(defn make-point [x V]
{:x x 1y y})

(defn make-rectangle [x y w h]
{:x x :yy :ww :h h})

(defn move [point dx dy]
(assoc point
:x (+ (point :x) dx)
'y (+ (point :y) dy)))

3 /79

Key Features

e Functional updating

o Construct the new object of the proper type Functional Updating in Clojure
o Available in: Kotlin, Rust, C# lagzos polnt |
. . :X (+ (point :x) dx)
e Dynamictyping ty (+ (point :y) dy))

o Simplified method definitions
o Alternative is to use generic programming

Generic Default Method in Java

default T move (int dx, int dy) {
return updateMovable (this.getX () + x, this.getY () + y);
}

%4 /79

Common Lisp Variant

e Dynamically-typed OOP language (using CLOS)
e No native functional updating support

Common Lisp Types
(defclass point ()
((x :reader x :initarg :x)
(y :reader y :initarg :y)))

(defclass size ()
((w :reader w :initarg :w)

(h :reader h :initarg :h)))

(defclass rectangle (point size) ())

9 /79

Common Lisp Variant

e Dynamically-typed OOP language (using CLOS)
e No native functional updating support

Common Lisp Types
(defclass point ()
((x :reader x :initarg :x)
(y :reader y :initarg :y)))

(defclass size ()
((w :reader w :initarg :w)

(h :reader h :initarg :h)))

(defclass rectangle (point size) ())

% /79

CLOS Movable Methods Implementation

(defgeneric update-movable (movable x y))

(defmethod update-movable ((movable point) x vy)
(make-instance 'point :x X :y Vy))

(defmethod update-movable ((movable rectangle) x y)
(make-instance 'rectangle
X X 1YV VY
:w (w movable) :h (h movable)))

(defun move (movable dx dy)
(update-movable movable
(+ dx (x movable))

(+ dy (y movable))))

57 /79

CLOS Movable Methods Implementation

(defgeneric update-movable (movable x y))

(defmethod update-movable ((movable point) x y)
(make-instance 'point :x x :y y))

(defmethod update-movable ((movable rectangle) x y)
(make-instance 'rectangle
X X 'Yy Y
:w (w movable) :h (h movable)))

(defun move (movable dx dy)
(update-movable movable
(+ dx (x movable))

(+ dy (y movable))))

58 /79

CLOS Movable Methods Implementation

(defgeneric update-movable (movable x y))

(defmethod update-movable ((movable point) x vy)
(make-instance 'point :x X :y Vy))

(defmethod update-movable ((movable rectangle) x y)
(make-instance 'rectangle
X X 1YV VY
:w (w movable) :h (h movable)))

(defun move (movable dx dy)
(update-movable movable
(+ dx (x movable))

(+ dy (y movable))))

59 /79

Extending Common Lisp

e Meta-programming support
o Allows the use of macros to extend the language

e Letus add functional updating support to the
language!
o The macro code would be distributed in a library
o Invisible to the user

60 /79

Common Lisp Mutable Implementation

Move and Scale Mutable Implementations
(defun move (movable dx dy)
(with-slots (x y) movable
(incf x dx)
(incf y dy)))

(defun scale (scalable scale)
(with-slots (w h) scalable
(setf w (* scale w))
(setf h (* scale h))))

61 /79

Common Lisp Mutable Implementation

Move and Scale Mutable Implementations
(defun move (movable dx dy)
(with-slots (x y) movable
(incf x dx)
(incf y dy)))

(defun scale (scalable scale)
(with-slots (w h) scalable
(setf w (* scale w))
(setf h (* scale h))))

62 /79

Extended Common Lisp Implementation

e No more need for the Factory Method
o Candirectly implement the move and scale methods

e |diomatic code
o Same as if using “with-slots”

Move and Scale Implementations
(defun move (movable dx dy)
(with-new (x y) movable
(incf x dx)
(incf y dy)))

(defun scale (scalable scale)
(with-new (w h) scalable
(setf w (* scale w))
(setf h (* scale h))))

63 /79

Extended Common Lisp Implementation

e No more need for the Factory Method
o Candirectly implement the move and scale methods

e |diomatic code
o Same as if using “with-slots”

Move and Scale Implementations
(defun move (movable dx dy)
(with-new (x y) movable
(incf x dx)
(incf y dy)))

(defun scale (scalable scale)
(with-new (w h) scalable
(setf w (* scale w))
(setf h (* scale h))))

64 /79

Extended Common Lisp Implementation

e No more need for the Factory Method
o Candirectly implement the move and scale methods

e |diomatic code
o Same as if using “with-slots”

Move and Scale Implementations Idiomatic Mutable Implementations
(defun move (movable dx dy) (defun move (movable dx dy)
(with-new (x y) movable (with-slots (x y) movable
(incf x dx) (incf x dx)
(incf y dy))) (incf y dy)))
(defun scale (scalable scale) (defun scale (scalable scale)
(with-new (w h) scalable (with-slots (w h) scalable
(setf w (* scale w)) (setf w (* scale w))
(setf h (* scale h)))) (setf h (* scale h))))

65 /79

Answer to Main Research Question

Is it possible to re-use non-destructive mutators via polymorphism when
combining immutability and OOP subtyping?

e New design pattern to circumvent the problem in any OOP language

e Key features
o Functional Updating
o Dynamic Typing

66 /79

Thesis Flow

Exploring Studying Solving

Implementation

Mapping Suggested Language Studying New Features for Solving Immutable Method

Features for Improving Object- § Immutability on Object-oriented
Oriented Design Patiems Software Development

Reusability Problems with a New

Immutability Support in G# Design Pattern

67 /79

Contributions

e A catalogue of 18 language features suggested to improve OOP design
pattern implementations

e An exploratory study on the impact of immutability on OOP

e An empirical study on the impact of adding immutability-related language
features to C#

e A new design pattern to solve a problem that emerges with the
combination of OOP and immutability

e An extension to Common Lisp that adds functional updating to the
language

68 /79

Threats to Validity

e Internal Validity
o Student participants
o Potential bias towards immutability
e External Validity
o Hawthorne effect
e Construct Validity
o Structure of the C# study
o Overall difficulty of the studies
e Conclusion Validity
o Avoided strong conclusions concerning statistical results

69 /79

Thesis Statement

e OOP can be improved by adding language features that solve the
underlying issue behind design patterns

e Among many possibilities, we focused on immutability

o Canincrease understandability and granularity of the code
o Immutability features can improve maintainability, reduce code duplication, and improve
scalability

70 /79

Short Term: Language Features to Improve OOP

Aspect-Oriented Programming
Case Classes

Chameleon Objects

Class Extension

Closures

Default Implementation
Immutability

Layer Objects

Mixins

Multiple Inheritance
Object Interaction Styles
Pattern Keywords
Reflection

Signals

Subclassing members in a
subclass

L /79

Short Term: Language Features to Improve OOP

Aspect-Oriented Programming
Case Classes

Chameleon Objects

Class Extension

Closures

Default Implementation
|mmmutability

Layer Objects

Mixins

Multiple Inheritance
Object Interaction Styles
Pattern Keywords
Reflection

Signals

Subclassing members in a
subclass

72 /79

Short Term: Language Features to Improve OOP

Aspect-Oriented Programming e Mixins

Case Classes e Multiple Inheritance
Chameleon Objects e Object Interaction Styles
Class Extension e Pattern Keywords
Closures o ‘

Default Implementation

|mmutability e Subclassing membersin a

Layer Objects subclass

73 /79

Short Term: Rust Ownership System

e |solate mutating parts of a program
e Studying how this system interacts
with structural design patterns

o Composite pattern seems interesting . E u 5 I

74 /19

Short Term: Pattern Matching, Multimethods, an VISI[OF '

e Pattern Matching can replace Visitor in some situations

e Multimethod, or multiple dispatch, can also replace the Visitor

e We want to study the interactions between Pattern Matching,
Multimethods, and the Visitor design pattern

75 /79

e Each feature in our catalogue maps to specific design patterns

e Focus on specific design patterns and which features impact them
o Improve pattern by combining features
o Solve the underlying problem of the pattern

e (ategorize patterns by most “solvable”

76 /79

Mid Term: Replications

e Quasi-replication of our exploratory study

o Impact of immutability on code granularity and understandability
o Compare the workload between mutable and immutable software development

e Replicate the C# study with only professional developers
o Study could consider other languages or features, such as C# LINQ or Java Streams

77 /79

Long Term: A New Paradigm?

e Combination of FP and OOP?

e (Can a pattern-less language exist?
o Resolve all underlying issues?
o Architectural patterns vs. code patterns
o Formalization vs Obsolescence
e What about generative machine learning?
o Impact on programming languages
o Impact on design patterns

78 /79

Publications

e William Flageol, Eloi Menaud, Yann-Gaél Guéhéneuc, Mourad Badri, Stefan Monnier, “A mapping study of language
features improving object-oriented design patterns”, Information and Software Technology, Volume 160, 2023.

e William Flageol, Yann-Gaél Guéhéneuc, Mourad Badri, and Stefan Monnier, “A Multimethod Exploratory Study on
the Impact of Immutability on Object-oriented Software Development”, under revision.

e William Flageol, Yann-Gaél Guéhéneuc, Mourad Badri, and Stefan Monnier, “A Multimethod Empirical Study on New
Features for Immutability Support in C#”, submitted to Journal of Systems and Software.

e William Flageol, Yann-Gaél Guéhéneuc, Mourad Badri, and Stefan Monnier, “Design Pattern for Reusing Immutable
Methods in Object-Oriented Languages”, EuroPLoP '23: 28th European Conference on Pattern Languages of
Programs, July 05-09, 2023, Kloster Irsee, Germany.

79 /79

Pilot Study

We performed a pilot study prior to the experiment
o The goal was to assess the feasibility of the experiment

Participants included two recently graduated Ph.D. students

The initial structure of the experiment required the participant to develop
the full program by themselves following Bloch's transitive immutability
rules

The feedback from the pilot study indicated this was too big a task to ask
of volunteer participants

We redesigned the experiment so that the participant would evaluate a
base program and extend it instead

8L /79

Experiment

e There are two base programs, one per group
o The treatment group program uses the new features
o The control group program does not
o Other than these differences, the two base programs are similar in functionality
e The base programs are file system simulators
o Allows creating a hierarchy of folders and files
e We ask the participants to extend the base programs by adding the following
functionality:
o Collect operation

o Undo operation
o Duplicate operation

At the end, we asked the participants to fill out a survey about their experience
Interview with the professional developers

82 /79

Chameleon Objects

e OOP feature which allows changing the Chameleon Objects in Common Lisp
class of an object at run-time (change-class target-object target-class)

o Already exists in some languages
o Common Lisp, Perl

e (Canimplement State by changing
classes when state changes

° Examples also include implementing bless S$targetObject, ‘Package::TargetClass’;
Factory Method

Chameleon Objects in Perl

83 /79

Pattern Keywords

e Some studies introduce design patterns
directly as new keywords public singleton class A

e Can be done without the help of third {
party-tools in languages with
meta_programming Support public static void main(String[] args)

o MzScheme implementation of the Visitor {
as a keyword by Krishnamurthi et al.

e Examples include implementing }
Decorator, Observer, Singleton and
Visitor

e Whether design patterns should be
language features is debatable

Java Singleton Keyword

instantiate A as sl;

instantiate A as s2, s3;

}

84 /79

Case (Classes

Scala Case Classes

// Visitor structure for a Binary Tree.

e Feature of Functional Programming Eraii Miee
. def accept[R] (:TreeVisitor[R]) :R
o Also known as Pattern Matching } Y =
e Shares functionality with object case class Empty extends Tree {
. def accept[R] (v :TreeVisitor[R]):R = v.empty
polymorphism)
. case class Fork (x :int,1 : Tree,r: Tree) extends Tree {
o Can be USEd to Implement def accept[R] (v :TreeVisitor[R]):R = v.fork (x,1l,r) }
multimethods
. .. trait TreeVisitor[R] {
e Examples include a Visitor def empty :R

implementation def fork (x : int,1l :Tree,r: Tree) :R
}

// Concrete implementation of visitor to calculate
// the depth of the Tree.
def depth = new CaseTree [External,int] {
def Empty = 0
def Fork (x : int,1 :R[TreeVisitor],r:R[TreeVisitor])
= l+max (l.accept (this),r.accept (this))

85 /79

Aspect-Oriented Programming

e Introduced in 1997 by Kiczales et al. Join-Point model
e Paradigm gxtensmn to procedural soimitent setiter () 2 tareet (Point) G
programming (call (void setX(int)) ||
o Increases modularity by call (void setY (int)));

encapsulating cross-cutting
concerns into Aspects
e Three main ways to implement :
o The Join-Point model Annotations
o Annotations
o Mixins
e Presents full implementations of the
23 GoF patterns

[NotifyPropertyChanged]
public class Person

{

public string FirstName { get; set;

public string LastName { get; set; }
public Address Address { get; set; }
} 86 /79

Closures

e Main feature of Functional Programming
and lambda-calculus var i = 42
o Encapsulates behaviour and data var closure = (argument) => {

)) // Some code which can
e Difference with OOP classes // use the i variable.

Lambda Syntax Example

o Can only encapsulate one function }
o Data usually cannot be accessed from
outside

e Supported by most modern languages
o C++, C#, Java, Python, JavaScript, Kotlin,
etc.
e Examples include implementing
Command, Composite, Iterator, Visitor,
and Builder

87 /79

MIXIns

Extension of OOP

Unlike inheritance, do not enforce a
“is-a" relationship

Examples include implementations of
Decorator, Proxy, Chain of
Responsibility, and Strategy

Mixins in Java

class Component { Operation(); }
class ConcreteComponent implements Component {
class DecoratorMixA implements Component
needs Component
Operation () { . Component.Operation() };
class DecoratorMixB implements Component
needs Component
Operation () { . Component.Operation() };
// Usage
class Client {
main () {

ConcreteComponent cc =

}i

new ConcreteComponent with DecoratorMixA;

extend cc with DecoratorMixB;
cc.Operation () ;

88 /79

Project

Development of a Sudoku solver

Two phases
o Application core
m SOLID and GRASP principles
o Add new functionality
m GoF design patterns

Both groups had identical
requirements

o L T2]
o G
e EEDED

Colour Delete

Undo Redo

Restart Check

89 /79

Datahases for the Search Query

e We use multiple online databases to search for primary studies

o The databases we used are part of an online tool called Engineering Village, hosted by
Elsevier
o They contain studies from many scientific journal databases, including ACM and IEEE

e We restrain our search to studies published after 1995

90 /79

Datahase

Query

Query

Comments

((oop OR object)
AND (design pattern OR design patterns
OR anti-pattern OR anti-patterns OR paradigm)

AND (weakness* OR disadvantage* OR improve* OR enhance* OR
refine* OR help OR better OR expand*)
WN AB)

Must be linked to design patterns

Initially, we intended the scope to be broader, but this
shouldn’t impact the final results

Must be about improving or finding weaknesses

These keywords are located in abstract text

NOT ((teach* OR learn* OR test* OR modeling OR automated
OR automation OR tool* OR mobile OR optimiz* OR simulation
OR mining OR medical OR bio* OR hardware OR hdl OR parallel*
OR api OR find* OR sqgl)

WN KY)

These keywords are excluded to avoid papers about learning,

automating, optimizing tools, or other non-related subjects
encountered during the first passes of the query.

Excluded keywords must not appear in the keyword field.

NOT ((pattern recognition OR pattern identification OR pattern
detection OR object recognition OR object detection OR feature
extraction OR computer vision OR pattern clustering OR learn-
ing (artificial intelligence) OR image segmentation OR pattern
classification OR data mining OR computer aided design OR for-
mal specification OR image classification OR user interfaces OR
computer simulation OR internet OR image processing OR codes
(symbols) OR image enhancement OR embedded systems OR image
reconstruction OR cameras OR distributed computer systems OR
product design OR artificial intelligence OR iterative methods OR
neural nets OR neural networks OR object tracking OR genetic
algorithms OR classification (of information) OR learning systems
OR mathematical models OR middleware OR internet of things
OR cloud computing OR decision making OR electroencephalog-
raphy OR virtual reality OR risk management OR health care OR
distributed object management OR query processing OR knowledge
based systems) WN KY)

Finally, a large list of expressions was excluded from the
keywords because they tended to be attached to papers
about concepts unrelated to this research.

91 /79

Results by Publication Venue

Publication Venue [# Papers]

Conference on Pattern Languages of Programs (PLoP) [4 papers]

European Conference on Object-Oriented Programming (ECOOP) [2 papers]

Special Interest Group on Programming Languages (SIGPLAN) [2 papers]

Symposium on Applied Computing (SAC) [2 papers]

Computer Languages, Systems & Structures [1 paper]

International Conference on Advanced Communication Control and Computing Technologies (ICACCCT) [1 paper]
International Conference on Computer Science and Information Technology (CSIT) [1 paper]
International Conference on Informatics and Systems (INFOS) [1 paper]

International Conference on Objects, Components, Models and Patterns [1 paper]

International Conference on Software Engineering Advances (ICSEA) [1 paper]

International Conference on Software Technology and Engineering (ICSE) [1 paper]

International Conference on Systems, Programming, Languages and Applications: Software for Humanity [1 paper]
International Journal of Software Engineering and Knowledge Engineering [1 paper]

International Journal of Software Innovation [1 paper]

International Symposium on Foundations of Software Engineering (FSE) [1 paper]

International Workshop on Context-Oriented Programming [1 paper]|

Journal of Object Technology [1 paper]

Journal of Software [1 paper]

Journal of Systems and Software [1 paper]

Journal of the Brazilian Computer Society [1 paper]

Lecture Notes in Computer Science [1 paper]

Second Eastern European Regional Conference on the Engineering of Computer Based Systems [1 paper]
Software Engineering and Knowledge Engineering (SEKE) [1 paper]

Software Technology and Engineering Practice (STEP) [1 paper]

Software: Practice and Experience [1 paper]

Workshop on Aspects, components, and patterns for infrastructure software (ACP4IS) [1 paper]
Workshop on Generic Programming (WGP) [1 paper]

Workshop on Reuse in Object-Oriented Information Systems Design [1 paper]

92 /79
R

umber of papers by design pattern

Observer
Visitor
Decorator
Strategy
Singleton I O
Proxy I O
State I
Composite N
Chalr o Responsibiliy e |
Abstract Factory I
iy R e e]
Factory Method IEEEEEG—
Netian Fe———— 5
Command GG 5
Adapter I 5
Template Method |EEG—_—_|——
Prototype I
Iterator NG
Builder I
Fride ————— .
Memento . 3
Interpreter NG 3
Facade G 3

0 2 4 6 8 10 12 14 16 18 20

20

13

9

Design Patterns

Nb of Papers

93 /79
R

Measures

e Top measures used to evaluate the improvements by the suggested

design patterns include

o Depth of inheritance (DIT)
Coupling and cohesion (CBC, LCOO)
Concern diffusion (CDC, CDLoC, CDO)
Code size (LoC, NoA, Wo()
Reuseability

o O O O

94 /79

Programs Summary

Team # Group Language Grade
1 Immutable | TypeScript | 100

2 Immutable | C# 100
3 Immutable | C# 93

4 Immutable | C# 100

6 Immutable | C# 100
7 Immutable | C+# 96

9 Immutable | C+# 67

11 Immutable | C# 100

5 Mutable Unity C# | 90

8 Mutable C+# 100
10 Mutable C# 88

12 Mutable C# 100
13 Mutable Java, 85

14 Mutable C+# 56
Average (All) 01.07
Average (Mutable) 86.5
Average (Immutable) 94.5

95 /79

Statistical Tests

e Since the dataset was not normally distributed, we opted to perform a
Mann Whitney U test to test if the groups were significantly different

(@)

(@)

We used Cliff's Delta to measure effect sizes

Because of the large amount of measures, we cannot compare to the typical p-value
threshold of 0.05

A Bonferroni correction would give a threshold of 0.006

9 /79

Experiments and Participation

e Out of the 34 primary studies
o 10 were case studies
o 1 was a controlled experiment
o 23 were descriptive studies

e The case studies were all done in-vitro
o Itis difficult to find projects developed by third parties using new tools or methods

e The experiment was done with 38 undergraduate students
e |In general, industry practitioners are not involved in these efforts

97 /79

Data Collection

e We used SciTools Understand to collect quantitative measures on the
programs

e We collected measures related to many categories

Class Complexity

Method Size

Class interactions

Class Size

Class Cohesion and Nesting
Program Size

o 0O O O O O

98 /79

Survey

e We had the participants fill out a survey to collect data about their
experience with the project

e The survey asked the following questions:
o Auto-evaluate your expertise in OOP (1 to 5)
o Auto-evaluate your participation in the project within their team (1 to 5)
o Give your impression on the workload, difficulty, and complexity of the resulting program
for each of the following (1 to 5):
m Phase 1 implementation
m Phase 2 implementation
m SOLID/GRASP principle implementations
m GoF patterns implementations
o Would you consider using immutability for future projects? (yes or no)

e The participants also had the option to leave some comments

99 /79

Participants

e The experiment was part of a B.Sc. software engineering class on
advanced OOP

o The participants all had a similar academic background, with experience mainly in Java
and C#

The main focus of the class was design patterns

About 9 hours out of 45 were dedicated to immutability

No other emphasis was put on immutability during the class

All participants were taught the same material

None of the participants reported any prior experience with immutability
e Participation was voluntary

o We gave incentives in the form of extra credits (10% of the total grade for the assignment)
o Out of the 84 students, 67 chose to participate

O O O O

100 /79
R

Program Measures

Measure Avg Avg (I) [Avg (M) |[measure Avg Avg (T) Avg (M)
AvgCycl (Avg) 1.4038 | 14624 | L.3257 MaxCycl® (Max) 9.5714 9.6250 9.5000
AvgCycl (Max) 5.0143 5.5000 41.8333 MaxCyclStrict (Avg) | 3.4061 3.5076 3.1826
AvegCycl* (Avg) 1.3454 1.3864 1.2008 MaxCyclStrict (Max) | 14.9231 16.4286 13.1667
AvgCycl* (Max) 4.4286 4.3750 4.5000 MaxEss (Avg) 1.3097 1.3222 1.2031
AvgCyclStrict (Avg) 1.6905 1.9074 1.4014 MaxEss (Max) 6.0714 5.7500 6.5000
AvgCyclStrict (Max) 7.5000 | 9.0000 | 5.5000 DIT (Avg) 0.3526 0.2785 0.4513
AvgEss (Avg) 0.9466 0.9699 0.9156 DIT (Max) 1.3571 1.2500 1.5000
AvgEss (Max) 1.7143 | 1.5000 | 2.0000 MaxNesting (Avg) 1.0591 0.9046 1.2652
NbClassBase (Avg) 1.2545 1.2736 1.2290 MaxNesting (Max) 3.7857 3.6250 4.0000
NbClassBase (Max) 2.0000 | 2.0000 | 2.0000 LCOMY% (Avg) 31.3982 |31.4723 | 313118
CBO (Avg) 6.9152 7.2760 6.4943 LCOMY% (Max) 84.0769 84.8571 83.1667
CBO (Max) 27.3846 | 26.5714 | 28.3333 LCOM*% (Avg) 7 26.4119 28.9269
CBO* (Avg) 3.0608 2.5215 3.6800 LCOM*% (Max) 79.6923 78.1420 81.5000
CBO* (Max) 12.1538 | 9.5714 15.1667 SumCpyel (Avg) 10.4729 10.2071 10.8273
NOC (Avg) 0.1207 0.1202 0.1303 SumCyel (Max) 54.4286 51.1250 58.8333
NOC (Max) 2.0714 2.1250 2.0000 SumCyecl* (Avg) 10.0892 9.7026 10.6047
NbClassMethods (Avg) | 0.4382 0.4003 0.4886 SumClyecl* (Max) 53.3571 50.6250 57.0000
NbClassMethods (Max) | 4.7143 4.8750 4.5000 SumCpyelStrict (Avg) | 11.4045 11.1294 11.7714
NbClassAttr (Avg) 0.3465 0.4195 0.2492 SumCyeclStrict (Max) | 59.4286 55.0000 65.3333
NbClassAttr (Max) 2.2143 2.5000 1.8333 FnLines (Avg) 6.4768 6.0209 7.0846
NbInstMethods (Avg) | 6.1109 6.2317 5.9409 FnLines (Max) 76.5714 79.5000 72.6667
NblnstMethods (Max) [25.5714 | 27.1250 | 23.5000 FnLinesCode (Avg) 5.8576 5.6029 6.1973
NblInstAttr (Avg) 1.6174 1.3072 1.0111 FnLinesCode (Max) | 62.2857 65.3750 58.1667
NblnstAttr (Max) 7.1429 7.3750 6.8333 FnLinesComm (Avg) | 0.2342 0.1670 0.3237
NbMethods (Avg) 6.5654 6.6605 6.4385 FnLinesComm (Max) | 10.1429 11.3750 8.5000
NbMethods (Max) 27.0714 | 28.7500 | 24.8333 LoC 2020.2858 | 1945.7500 | 2140.6667
NbMethodsAll (Avg) 94.5030 | 112.6830 | 70.2620 LoCBlank 265.8571 | 226.0000 | 319.0000
NbMethodsAll (Max) 414.9286 | 513.2500 | 283.8333 || LoCCode 1555.6428 | 1536.7500 | 1580.8334
NbMethodsProt (Avg) | 0.1027 0.0936 0.1148 LoCDecl 469.3077 | 448.1429 | 494.0000
NbMethodsProt (Max) | 1.7143 1.5000 2.0000 LoCExec 583.6923 | 606.1429 | 557.5000
NbMethodsPub (Avg) | 5.2550 5.1022 5.3388 LoCComm 167.0000 | 118.7500 | 231.3333
NbMethodsPub (Max) [22.0714 | 24.0000 | 19.5000 NbSemicolons 672.0769 | 675.0000 | 668.6667
SumEss (Avg) 6.4350 6.4865 6.3685 NbStmt 058.4286 | 943.7500 | 978.0000
SumEss (Max) 31.2143 | 31.0000 | 31.5000 NbDecl 483.3571 | 465.3750 | 507.3333
MaxCycl (Avg) 2.8764 2.8819 2.8689 NbExe 521.5000 | 527.8750 | 513.0000
MaxCyel (Max) 10.8571 [11.1250 [10.5000 RatioComm 0.1044 0.1078 0.0998
MaxCycl* (Avg) 2.6594 2.6064 2.7301

101 /79
R

Mutable Representation of a Command Invoker

© CommandIinvoker @lCommand
O executedCommands: Stack<|Command> %
© Execute(lICommand) Z LEJ):]ZZL(])’Ce()
© Undo(ICommand)

© UpdateCommand

©Database

< © UpdateCommand(Database)
© Execute()
© Undo()

102 /79

Immutable Representation of a Command Invoker

@ Commandlnvoker

: @ ICommand
O databaseHistory: Stack<Database> |~
© Execute(lICommand, Database) © Execute(Database)
© Undo()
|
\
\
\
\ |
@Database(_ o @UpdateCommand

© Execute(Database)

103 /79

Measures on Participants

Participants 67
Teams 14
Participants (mutable group) 29
Teams (mutable group) 6

Participants (immutable group) 37
Teams (immutable group) 8

Survey respondents 50
Survey respondents (mutable group) 20
Survey respondents (immutable group) | 30

104 /79
R

Mann Whitney U test results

Measure P-Value | Cliff’s Delta || Measure [P-Value [CIiff’s Delta
AvgCyel (Avg) 0.8465 [-0.0833 MaxEss (Avg) [0.8465] -0.0833
AvgCyel (Max) 1.0000 -0.0208 MaxEss (Max) 0.3972 0.2917
AvgCyecl* (Avg) 0.5613 0.2083 MaxNesting (Avg) 0.1752 0.4583
AvgCyecl* (Max) 0.1250 MaxNesting (Max) 1.0000 0.0208
AvgCyelStrict (Avg) -0.0625 NOC (Avg) 0.9482 0.0417
AvgCyelStrict (Max) -0.0625 NOC (Max) 0.8950 0.0625
AvgEss (Avg) 0.8401 NbClassAttr (Avg) 0.0926 -0.5625
AvgEss (Max) 0.6637 NbClassAttr (Max) 0.0789 | -0.5625
CBO (Avg) 0.5203 NbClas se (Avg) 0.6510 -0.1667
CBO (Max) 0.7172 NbCl. se (Max) 1.0000 | 0.0000
CBO* (Avg) 0.8303 NbCl Tethods (Avg) 1.0000 0.0000
CBO* (Max) 0.3848 NbClassMethods (Max) 1.0000 0.0208
DIT (Avg) 0.7466__ [0.1250 NbDecl 0.4772 | 0.2500
DIT (Max) 0.5813 | 0.1875 NbExe 0.7469 0.1250
FnLines (Avg) 0.3329 0.3333 NblnstAttr (Avg) 0.8465 | -0.(
FnLines (Max) 0.9485 [0.0417 NbInstAttr (Max) 1.0000 [-0.0208
FnLinesCode (Avg) 0.7469 0.1250 NbInstMethods (Avg) -0.1667
FnLinesCode (Max) 0.8463 0.0833 NbInstMethods (Max) 0.2292
FnLinesComm (Avg) | 0.0612 0.6250 NbMethods (Avg) -0.0833
FnLinesComm (Max) | 0.4772 0.2500 NbMethods (Max) 0.8465 | 0.0833
LCOM*% (Avg) 0.0431 | 0.0476 NbMethodsAll (Ave) 0.8465 | -0.0833
LCOM*% (Max) 0.7730 | 0.1190 NbMethodsAll (Max) 0.4777 | -0.2500
LCOM% (Avg) 0.9431 -0.0476 NbMethodsProtect (Aveg) | 0.9450 0.0417
LCOMY% (Max) 0.8296 -0.0952 NbMethodsProtect (Max) | 0.9448 0.0417
LoC 0.5613 0.2083 NbMethodsPublic (Avg) 0.9485 0.0417
LoCBlank 0.1962 0.4375 NbMethodsPublic (Max) [0.9483 | 0.0417
LoCCode 0.7469 | 0.1250 NbSemicolons 0.7210 | 0.1429
LoCComm 04777 0.2500 NbStmt 0.4777 | 0.2500
LoCDecl 0.7210 0.1429 RatioComm I 0.8465 0.0833
LoCExec 1.0000 0.0000 SumCyel (Avg) | 1.0000 0.0000
MaxCyecl (Avg) 0.7960 0.1042 SumCyel (Max) 0.3656 0.3125
MaxCyecl (Max) 0.2369 0.3958 SumCycl* (Avg) | 0.9485 0.0417
MaxCycl* (Avg) 0.4381 0.2708 SumCycl* (Max) 0.4772 0.2500
MaxCyecl* (Max) 0.3254 0.3333 SumCyeclStrict (Avg) | 1.0000 | 0.0000
MaxCyeclStrict (Avg) | 1.0000 -0.0000 SumCyeclStrict (Max) 0.2195 0.4167
MaxCy ict (Max) | 0.7188 0.1429 SumEss (Avg) | 0.6514 -0.1667
E g 0.8465 -0.0833 SumEss (Max) | 0.6982 0.1458

105 /79

Survey Answers Average

| measure | Average (All) ‘ Average (Mutable) ‘ Average (Immutable) |
Expertise (self-evaluation) 3.78 3.55 3.93
Contribution (self-evaluation) | 3.92 3.8 4
Workload (Phase 1) 3.14 3.25 3.07
Workload (SOLID/GRASP) 3.2 3.3 3.13
Workload (Phase 2) 2.68 2.7 2.67
Workload (GoF) 2.82 2.95 2.73
Difficulty (Phase 1) 3.06 3.3 2.9
Difficulty (SOLID) 3.18 3.3 3.1
Difficulty (Phase 2) 2.64 2.85 2.5
Difficulty (GoF) 2.84 2.95 2.77
Complexity (Phase 1) 3.16 3.3 3.07
Complexity (SOLID/GRASP) | 3.04 3.15 2.97
Complexity (Phase 2) 2.96 3.15 2.83
Complexity (GoF) 2.88 3.15 2.7

| Would use immutability? | 58% | 65% ‘ 53.33%

106 /79
R

Mann-Whitney U test results on survey

’ measure ‘ P-Value ‘ Cliff’s Delta
Workload (Phase 1) 0.3065 | 0.16
Workload (SOLID/GRASP) 0.2708 | 0.17
Workload (Phase 2) 0.8242 | 0.04
Workload (GoF) 0.4589 | 0.12
Difficulty (Phase 1) 0.1386 0.24
Difficulty (S()LID) 0.4891 0.11
Difficulty (Phase 2) 0.3112 0.17
Difficulty (GokF) 0.5834 | 0.09
Complexity (Phase 1) 0.5137 | 0.11
Complexity (SOLID/GRASP) | 0.5509 | 0.1
Complexity (Phase 2) 0.3145 0.16
Complexity (GoF) 0.157 0.23

107 /79
R

Survey

e The survey was divided into 5 mains sections:

(@)

(@)
@)
@)

General questions about the participant’s industry experience and knowledge of C#
Appraisal of the base program (workload, difficulty, complexity)

Appraisal of the extended program (workload, difficulty, complexity)

NASA Task Load Index (mental demand, physical demand, temporal demand,
performance, effort, frustration)

Questions about the new features (treatment group only)

108 /79

Program Measures

| ID | Group | MI| CC | CBO | NLoC | NLoCE

1 Control 92 | 74 | 25 375 106
2 Control 91 | 99 | 27 513 170
3 Control 92 | 81 | 26 381 103
4 Control 92 | 76 | 26 359 102
5 Control 92 | 74 | 25 375 104
6 Treatment | 93 | 60 | 25 339 89
T Treatment | 93 | 59 | 25 346 90
8 Treatment | 93 | 63 | 26 368 86
9 Treatment | 93 | 66 | 26 355 98
10 | Treatment | 94 | 58 | 25 331 84
| Group | MI | cC | CBO | NLoC | NLoCE |
Control 93 [61 | 25 318 78
Treatment | 95 | 48 | 25 276 59

109 /79
R

Mann Whitney U test results

| Measure P-Value | Effect Size
Maintainability Index 0.0074 -1.00
Cyclomatic Complexity 0.0119 1.00
Coupling Between Objects | 0.4884 0.28
NLoC 0.0211 0.92
NLoCExec 0.0122 1.00

110 /79
R

Appraisal of the Base Program

e Student Answers

‘ Measure ‘ Control Avg (SD) ‘ Treatment Avg (SD) ‘

Workload 3.8 (0.74) 3.6 (0.8)
Difficulty | 4.0 (0.63) 3.4 (0.49)
Complexity | 3.6 (0.8) 3.4 (1.02)

e Professional Developers Answers

‘ Measure Control ’ Treatment ‘
Workload 1 2
Difficulty 1 2
Complexity | 1 3

111 /79

Appraisal of the Extended Program

e Student Answers

‘ Measure ‘ Control Avg (SD) ‘ Treatment Avg (SD) ‘

Workload 3.8 (0.75) 3.4 (0.49)
Difficulty 3.2 (0.98) 3.2 (0.75)
Complexity | 3.2 (0.75) 2.2 (0.4)

e Professional Developers Answers

‘ Measure ‘ Control ‘ Treatment ‘
Workload 1 1
Difficulty

2|

9
Complexity | 2

112 /79
R

NASA Task Load Index Answers

e Student Answers

e Professional Developers
Measure Control Treatment Measure Control | Treatment
Mental Demand 5 —l (1.2) |60 (110} Mental Demand 3 2
Physical Demand 6 (2.33) 4 (1.85) Physical Demand | 1 1
Temporal Demand 4 (1.36) | 4.6 (2.33) Temporal Demand | 2 2
Performance 2 (2:4) | 5.6 (1.36) Performance 7 7
Effort —l 8 (1.72) 8 (1.17) Effort 4 3
Frustration 5.0 (1.79) 6 (2.33) Frustration 1 3

113 /79

Participants

e 12 participants

o 10 graduate students
o Two professional developers

e Participants are split into two groups
o The treatment group is given a short training on the four C# features
o The control group is not given any information concerning the new features
o The professional developer in the control group is given specific instructions not to use
the new features

114 /79
R

Record Types

Data structure similar to class or struct

Suiuiura|equanty record MyRecord (string Fieldl, int Field2)
{

Record Type Example

In C#, not required to be immutable ot SonRethod (st 2]

Allows the use of Record Updating {
Fieldl = arg;
return Field2;

115 /79
R

Record Updating

e Also called non-destructive mutation or Record Updating Example
functional updating var entryl = new MyRecord("Content™, 0);
. . . var entry?2 entry with { Field2 = 42 };
e Allows duplicating a record while
changing some values of the duplicate
e Does not affect the original record
e Allows creating “setters” in an
immutable context

116 /79

Pattern Matching

e Allows code to branch based on the type
of an object

Similar syntax to switch statement
Feature present in most FP languages
FP equivalent to object polymorphism
Usually combined with Records

Pattern Matching Example

// If-expression example
i1f (someVariable is int 1)
{

return 1 + 2;
}
else
{

return O;

}

// Switch-expression example
return (someVariable switch
{
int 1 => 1 + 2;
string s => 1;
=> throw new
InvalidOperationException () ;

.17 /179

Multiple Values Return

e InFP, itis frequent to return multiple MVR Example

(int, string) MakeTuple ()

values from a single function call {
e Pure functions cannot have side effects return (42, "Content");
o They must return every updated object }

e If a pure function updates more than

one object at a type, it must return

mu|tip|e values (int, string) tuple = MakeTuple () ;
// Use tuple.Iteml and tuple.Item?2
// to access the values.

//

// or alternatively

(int i, string s) = MakeTuple();
// Use 1 and s as normal variables.

118 /79
R

Kotlin Variant

e Statically-typed language
e Similar to Java

e Functional updating support

Kotlin Movable Trait

interface Movable<T> ({
val x: Int
val y: Int

fun updateMovable (newX: Int, newY: Int) : T

fun move (moveX: Int, moveY: Int) : T {
return updateMovable (moveX + x, moveY + y)

}

119 /79

Katlin Movable Implementations

data class Point (override val x: Int, override val y: Int)
Movable<Point> {

override fun updateMovable (newX: Int, newY: Int): Point ({
return Point (x, V)

data class Rectangle (override val x: Int, override val y: Int,
override val w: Int, override val h: Int)
Movable<Rectangle> ({
override fun updateMovable (newX: Int, newY: Int): Rectangle {
return copy(x = newX, y = newy)

120 /79

With-New Macro

Clone Method
(defun clone-object (instance)
(let* ((class (class-of instance))

(clone (allocate-instance class)))
(dolist (slot—-name
(mapcar #'closer-mop:slot-definition-name
(closer-mop:class—-slots class)))
(when (slot-boundp instance slot-name)
(setf (slot-value clone slot-name)
(slot-value instance slot-name))))
clone))

With-New Macro

(defmacro with-new (slots instance &body body)
(let ((instance-sym (gensym)))
"(let ((,instance-sym (clone-object ,instance)))
(with-slots ,slots ,instance-sym
, @body
,instance-sym))))
121 /79

