
Understanding and Tooling

Framework API Evolution

Wei Wu

Supervised by

Yann-Gaël Guéhéneuc and Giuliano Antoniol

2/60

Outlines

 Framework API evolution, problem?

 API change and usage mining

– Previous works

– Tooling

– Dataset

– General study

– Detailed study

 API change rule building

– Previous works

– Usefulness study

– Feature usage study

 Conclusion and perspectives

3/60

Outlines

 Framework API evolution, problem?

 API change and usage mining

– Previous works

– Tooling

– Dataset

– General study

– Detailed study

 API change rule building

– Previous works

– Usefulness study

– Feature usage study

 Conclusion and perspectives

4/60

Framework API Evolution?

Client Program

Framework API

Framework/Client Program

5/60

Framework API Evolution?

Framework API

6/60

Problem?

7/60

Problem!

 Evolving with frameworks is costly

– Raemaekers et al. (ICSM 2012)

• Upgrading an authentication framework

• A whole week of work

– Linux Debian Distribution

• Upgrading Perl from 5.10 to 5.12 took

• Seven weeks to complete

8/60

Problem!

 Cost depends on many factors

– Just considering APIs

• Which frameworks do we use?

• Which versions do we use?

• Which APIs do we use?

• To which versions do we upgrade?

• How are the APIs changed?

• How do we use the APIs?

9/60

Problem!

9/56

API changes

Study API change and usage on a large scale

API usages

10/60

Outlines

 Framework API evolution, problem?

 API change and usage mining

– Previous works

– Tooling

– Dataset

– General study

– Detailed study

 API change rule building

– Previous works

– Usefulness study

– Feature usage study

 Conclusion and perspectives

11/60

Previous Works

 API changes

– Cossette and Walker (2012)

• API changes in Struts, Log4j, and JDOM

– Des Rivières (2008)

• API change classification (about 150 types)

• No detection

– Hou and Yao (2011)

• Reasons for API changes in AWT and Swing

12/60

Previous Works

 API usages

– Businge et al. (2013)

• Official and internal API usages in Eclipse plug-ins

– Lämmel et al. (2011)

• API usages in SourceForge on a large scale

– Roover et al. (2013)

• API usages from various angles, such as intent,

stakeholders, etc. in enhanced QUALITAS corpus

13/60

Previous Works

 API usages and changes

– Robbes et al. (2012)

• Deprecated APIs in Smalltalk programs

– Dietrich et al. (2014)

• Binary API incompatibilities in QUALITAS corpus

• Only 8 affected client programs

14/60

Solution

 Study API change and usage together on a

large scale to answer

– RQ1: How do framework APIs change?

– RQ2: How do framework API changes affect

client programs?

 Need a tool to collect relevant data

15/60

Outlines

 Framework API evolution, problem?

 API change and usage mining

– Previous works

– Tooling

– Dataset

– General study

– Detailed study

 API change rule building

– Previous works

– Usefulness study

– Feature usage study

 Conclusion and perspectives

16/60

Tooling – ACUA

 API Change and Usage Auditor

to collect API-related data

17/60

Tooling – ACUA

 Generating API change and usage reports

– Which frameworks do we use?

– Which versions do we use?

– Which APIs do we use?

– To which versions do we upgrade?

– How are the APIs changed?

– How do we use the APIs?

17/56

“ACUA: API change and usage auditor”,

W. Wu, B. Adams, Y.-G. Guéhéneuc,

and G. Antoniol, SCAM Tool Demo, 2014

18/60

Outlines

 Framework API evolution, problem?

 API change and usage mining

– Previous works

– Tooling

– Dataset

– General study

– Detailed study

 API change rule building

– Previous works

– Usefulness study

– Feature usage study

 Conclusion and perspectives

19/60

API Change and Usage Mining

14,987 programs evolved for 20 years

Top-11 framework releases with most API

changes affecting client programs

20/60

Outlines

 Framework API evolution, problem?

 API change and usage mining

– Previous works

– Tooling

– Dataset

– General study

– Detailed study

 API change rule building

– Previous works

– Usefulness study

– Feature usage study

 Conclusion and perspectives

21/60

RQ1: How do frwk APIs change?

Frameworks Releases

59%

24%

API changes in 59% of frameworks

and in 24% of their releases

22/60

RQ1: How do frwk APIs change?

10%

2%

Frameworks

At method level, 10% of APIs are

changed, only 2% are deprecated

23/60

RQ2: How do frwk API changes

affect client programs?

49%

21%

API changes affect 49% of client

programs and 21% of their releases

Client Programs Releases

24/60

RQ2: How do frwk API changes

affect client programs?
3%

Client Programs

API changes affect only 3% of the APIs

used by client programs, none

deprecated

25/60

Summary

 Program-level

– Framework API changes happen (59%)

– Client programs are affected (49%)

 Method-level

– 10% of APIs are changed

– 3% of used APIs are affected

 Developers do not document API changes

– 2% of the changed APIs are deprecated

– None of them are used by client programs

26/60

Outlines

 Framework API evolution, problem?

 API change and usage mining

– Previous works

– Tooling

– Dataset

– General study

– Detailed study

 API change rule building

– Previous works

– Usefulness study

– Feature usage study

 Conclusion and perspectives

27/60

Dataset

Top-11 framework releases with most API

changes affecting client programs

“An Exploratory Study of API Changes and Usages based on Apache and Eclipse Ecosystems”,

W. Wu, Y.-G. Guéhéneuc, and G. Antoniol, under review in EMSE

28/60

RQ1: How do frwk APIs evolve?

23%

23%

Frameworks

Missing classes and methods are the

most frequent: 46% of total API

changes

Classes and interfaces containing

method-level changes

29/60

RQ2: How do frwk API changes

affect client programs?

21%

19%

Client Programs

Missing classes and methods affect

client programs most frequently (40%)

Classes and interfaces containing

method-level changes

30/60

Summary

 Missing classes and methods

– 46% of API changes

– 40% of API changes affect client programs

 Insufficient documentations

 API change rules help developers find the

replacements of these missing APIs

31/60

Remedy for Missing

Classes and Methods

 API change rule

– A map between a missing API and its

replacement in a new release of a framework

– Target methods represent missing APIs

VCardComposer.shouldAppendCharsetAttribute(List<String>)

VCardBuilder.shouldAppendCharsetParam(String[])

32/60

Outlines

 Framework API evolution, problem?

 API change and usage mining

– Previous works

– Tooling

– Dataset

– General study

– Detailed study

 API change rule building

– Previous works

– Usefulness study

– Feature usage study

 Conclusion and perspectives

33/60

Previous Approaches

 AURA (2010)

 HiMa (2012)

 Kim et al (2007)

 MadMatch (2013)

 Schäfer et al. (2008)

 SemDiff (2011)

 ...

“AURA: a hybrid approach to identify framework evolution”,

W. Wu, Y.-G. Guéhéneuc, G. Antoniol, and M. Kim, ICSE 2010

34/60

Limitations

 Generated API change rules are imperfect

– Precisions vary on different frameworks

 No study on the usefulness of imperfect API

change rules

35/60

Outlines

 Framework API evolution, problem?

 API change and usage mining

– Previous works

– Tooling

– Dataset

– General study

– Detailed study

 API change rule building

– Previous works

– Usefulness study

– Feature usage study

 Conclusion and perspectives

36/60

API Chang Rule Usefulness

“The impact of imperfect change rules on framework API evolution identification:

an empirical study”, W. Wu, A. Serveaux, Y.-G. Guéhéneuc, and G. Antoniol, EMSE, 2014

37/60

API Chang Rule Usefulness

 API change rules are useful

 The more accurate the API change rules,

the more helpful

 How can we improve the accuracy of API

change rule building?

38/60

Outlines

 Framework API evolution, problem?

 API change and usage mining

– Previous works

– Tooling

– Dataset

– General study

– Detailed study

 API change rule building

– Previous works

– Usefulness study

– Feature usage study

 Conclusion and perspectives

39/60

AURA

“AURA: a hybrid approach to identify framework evolution”,

W. Wu, Y.-G. Guéhéneuc, G. Antoniol, and M. Kim, ICSE 2010

40/60

Features Used in Previous Works

A
p

p
ro

a
c
h

C
a
ll-

D
e
p

e
n

d
e
n

c
y

S
ig

n
a
tu

re

In
h

e
rita

n
c
e

S
o

u
rc

e

C
o

m
m

e
n

t

M
e
tric

s

S
tru

c
tu

ra
l

S
V

N

C
o

m
m

e
n

t

SemDiff √

Beagle √ √ √

S. Kim et al. √ √ √

M. Kim et al. √

MADMatch √ √ √ √

HiMa √ √ √

Schäfer et al. √ √ √

AURA √ √

UMLDiff √ √ √ √

41/60

Combination of Features

 Single feature

– SemDiff

– M. Kim et al.

 Prioritised features

– Explicit: AURA, HiMa, Schäfer et al.

– Weighting: Beagle, S. Kim et al.

– Mixed: MADMatch, UMLDiff

42/60

Limitations

 No study on the effectiveness of features

 No study on the effectiveness of the

combinations of features

 Prioritised multi-feature approaches

– Potential contradictions among features

• High priority features shadow lower priority ones

• Hard to extend with new/different features

43/60

AURA

“AURA: a hybrid approach to identify framework evolution”,

W. Wu, Y.-G. Guéhéneuc, G. Antoniol, and M. Kim, ICSE 2010

44/60

MOOP

 MOOP: multi-objective optimization problem

– Problems with potential conflicting objectives

– Solved by computing Pareto optimal solutions

45/60

Research Questions

 RQ1: How effective are the features used in

the literature to build API change rules?

 RQ2: Can we use MOOP techniques to

improve over prioritised multi-feature

approaches?

46/60

MOFAE

MOFAE: multi-objective framework

for API evolution
– Reformulates API change rule building

– as a MOOP

– Uses features as objectives

– Uses jMetal MOOP algorithm framework

– Allows flexible feature configuration

“Feature Usages in Framework API Evolution Identification”,

W. Wu, Y.-G. Guéhéneuc, and G. Antoniol, under review in EMSE

47/60

Four Experiment Features

48/60

Existing Approaches

 Difficulties to compare

– Not all available

– Not always executable

– One recommendation per target method

49/60

Experiment Approaches

 Single-feature approaches

 Multi-feature approaches

Prioritised MOFAE Feature Combination

P1 M1 Call-dependency + Signature

P2 M2 Source code comments + Signature

P3 M3 Inheritance + Signature

PA

MA
Call-dependency + Inheritance +

Source code comments + Signature

50/60

Experiment Approaches

 Outputs

– MOFAE

• Maximum 6 recommendations

– Single-feature and prioritized approaches

• Top 6 recommendations

 More conservative for MOFAE approaches

51/60

Experiment Approaches

 Comparison

– Number of target methods with correct

replacements

– Correct recommendation position

MeterPlot.getDialBorderColor()

MeterPlot.getDialBackgroundPaint()

MeterPlot.getDialOutlinePaint()

MeterPlot.getNormalPaint()

MeterPlot.getCriticalPaint()

MeterPlot.getValueFont()

MeterPlot.getNeedlePaint()

MeterPlot.getDialBackgroundPaint()

MeterPlot.getDialOutlinePaint()

MeterPlot.getNormalPaint()

MeterPlot.getCriticalPaint()

MeterPlot.getValueFont()

MeterPlot.getNeedlePaint()

52/60

Target Frameworks

Releases # Methods # Target Methods

Android SDK 2.1_r2.1p2 20,516 106

2.2.3_r2 21,214

jEdit 4.1 2,774 87

4.2 3,547

jFreeChart 0.9.11 4,751 30

0.9.12 5,197

jHotDraw 5.2 1,486 43

5.3 2,265

Log4j 1.0.4 906 15

1.1.3 1,110

Struts 1.1 5,973 91

1.2.4 6,111

53/60

RQ1: How effective are the features

to identify change rules?

Correct Call-dependency Inheritance Comment Signature

Android SDK 22 9 20 50/106

jEdit 12 5 13 30/87

jFreeChart 5 3 15 29/30

jHotDraw 14 14 20 36/43

Log4j 6 3 8 12/15

Struts 2 17 8 19/91

The smaller, the better

54/60

RQ2: Can we use MOOP techniques

to improve multi-feature approaches?

Num of Correct Replacements Pos of Correct Replacements

55/60

RQ2: Can we use MOOP techniques

to improve multi-feature approaches?

10 25 1

jEdit

2 24 2

jFreeChart

12 30 1

jHotDraw

0 20 0

Struts

56/60

Summary

 Signature is the most effective feature

 MOFAE builds 13% more correct change

rules, 3% higher in position

 MOFAE builds 20% correct change rules

than MADMatch

57/60

Outlines

 Framework API evolution, problem?

 API change and usage mining

– Previous works

– Tooling

– Dataset

– General study

– Detailed study

 API change rule building

– Previous works

– Usefulness study

– Feature usage study

 Conclusion and perspectives

58/60

Thesis

Following analyses of the reality of API changes

and usages, of the usefulness of API change

rules, and of the effectiveness of the features used

to build these rules, we can build more effective

and extensible API change-rule recommendation

tools with MOFAE.

59/60

Perspectives

 Near term

– Extensive qualitative analyses

– More effective features

– Tools for other upgrading tasks

– Developers’ interviews

 Long term

– Language-supported API visibility

– Framework API standards

– Independent framework evaluation

60/60

