Understanding and Tooling
Framework API Evolution

Wel Wu

Supervised by
Yann-Gaéel Guéhéneuc and Giuliano Antoniol

G S
e =%

o »
P) tide; @ S ccerlab.

Outlines

Framework API evolution, problem?

API change and usage mining
— Previous works

— Tooling

— Dataset

— General study

— Detalled study

API change rule building
— Previous works

— Usefulness study

— Feature usage study

Conclusion and perspectives

Outlines

Framework API evolution, problem?

API change and usage mining
— Previous works

— Tooling

— Dataset

— General study

— Detalled study

API change rule building
— Previous works

— Usefulness study

— Feature usage study

Conclusion and perspectives

3/60

Framework API Evolution?

Framework/Client Program Client Program

e'clipgfug - o :Glt

public class SampleHandler extends AbstractHandler {
F VEES

* the command has been executed, so extract extract the needed information
* from the application context.
*/

public Object execute(ExecutionEvent event) throws ExecutionException {

// Implemented by client programs

return null;

<APACHE ANT»>

Framework API

4/60

Framework API Evolution?

Framework API
e
. I_ * An implementation for the extension registry API.
..-Jlll'
e C | p §u§ public class ExtensionRegistry implements IExtensionRegistry {
public void stop() {
o

* An implementation for the extension registry API.
-.'llllr
public class ExtensionRegistry implements IExtensionRegistry {

public voidfstop(Object key) {

5/60

proiehe New Jork Eimes

INVESTMENT BANKING | LEGAL /REGULATORY

JPMorgan Chase Hacking Affects 76 Million Hnuseholds

By JESSICA SILVER-CREEMBERC, MATTHEW COLDSTEIM and NICOLE PERLROTH OCTOBER 2, 2014 12:50 PM
N 526 Comments

—— Y ——

-I
LE_ .
—

_..!'..-_I.i —— Wi g e g

.I()I\(h\\ C H%S &

The Manhattan "Ea:qua*teu of JPMorgan Chase, which securities filings revealed was attacked by hackers

n

ver the summer. rew Burton/Cetty [mages 6/60

Problem!

m Evolving with frameworks is costly
— Raemaekers et al. (ICSM 2012)

« Upgrading an authentication framework
* A whole week of work
— Linux Debian Distribution

» Upgrading Perl from 5.10 to 5.12 took
« Seven weeks to complete

Problem! v

.

= Cost depend{on many factor}

— Just considering APIs 8
* Which frameworks do we use?
* Which versions do we use?
* Which APIs do we use?
« To which versions do we upgrade?
 How are the APIs changed?
 How do we use the APIs?

Problem!

-

Study API change and usage on a large scale

9/56

Outlines

Framework API evolution, problem?

API change and usage mining
— Previous works

— Tooling

— Dataset

— General study

— Detalled study

API change rule building
— Previous works

— Usefulness study

— Feature usage study

Conclusion and perspectives

10/60

Previous Works

m APl changes

— Cossette and Walker (2012)
« API changes in Struts, Log4i

— Des Rivieres (2008

« API change out 150 types)

ns for APl changes in AWT and Swing

11/60

Previous Works

m APl usages
— Businge et al. (2013)

o Official and internal API u

rom various angles, such as intent,
olders, etc. in enhanced QUALITAS corpus

12/60

Previous Works

m APl usages and changes

— Robbes et al. (2012)
* Deprecated APls in Smallt

— Dietrich et al. (201

* Binary APl i In QUALITAS corpus

programs

13/60

Solution

m Study API change and usage together on a
large scale to answer

— RQ1: How do framework APIls change”?

— RQ2: How do framework API changes affect
client programs?

m Need a tool to collect relevant data

Outlines

Framework API evolution, problem?

API change and usage mining
— Previous works

— Tooling

— Dataset

— General study

— Detalled study

API change rule building
— Previous works

— Usefulness study

— Feature usage study

Conclusion and perspectives

15/60

Tooling — ACUA

m AP| Change and Usage Auditor
to collect API-related data

Small

Is Beautiful Economics
as if People
Mattered

E. F. Schumacher

Auwthor
0 v bt
sch SCHUMACHER, Ernst Friedr h/ Suotitie
call Small is beautiful: Ec if
Wi ber people tt d
London: Ha r-p & Row 107%. 305 n
4ille T 751165
wbiislher
P nmber
place of poges
[JU.H cation dote
‘O%i lcation QLCRSSItN
humbcr—

Tooling — ACUA

m Generating API change and usage reports
— Which frameworks do we use?
— Which versions do we use”?
— Which APIls do we use?
— To which versions do we upgrade?
— How are the APIs changed?
— How do we use the APIs?

“ACUA: API change and usage auditor”,
W. Wu, B. Adams, Y.-G. Guéhéneuc,
and G. Antoniol, SCAM Tool Demo, 2014

Outlines

Framework API evolution, problem?

API change and usage mining
— Previous works

— Tooling

— Dataset

— General study

— Detalled study

API change rule building
— Previous works

— Usefulness study

— Feature usage study

Conclusion and perspectives

18/60

API Change and Usage Mining

Maven Repository

ars

' =
eclipse

THE - ECLIPSE PROIJECT

Outlines

Framework API evolution, problem?

API change and usage mining
— Previous works

— Tooling

— Dataset

— General study

— Detalled study

API change rule building
— Previous works

— Usefulness study

— Feature usage study

Conclusion and perspectives

20/60

RQ1: How do frwk APIs change?

B No API Changes

0
59% W With API Changes

Frameworks Releases

API changes 1n 59% of frameworks
and 1n 24% of their releases

21/60

RQ1: How do frwk APIs change?

M Stable APIs
5 ENot deprecated
_ 2% m Deprecated

Frameworks

At method level, 10% of APIs are
changed, only 2% are deprecated

22/60

RQ2: How do frwk API changes
affect client programs?

21%

m Not Affected by API
changes

m Affected by API
changes

49%

Client Programs Releases

API changes affect 49% of client
programs and 21% of their releases

23/60

RQ2: How do frwk API changes
affect client programs?

3%

M Used stable APIs

M Used to-be-changed
APls

Client Programs

API changes affect only 3% of the APIs
used by client programs, none
denrecated

Summary

m Program-level
— Framework API changes happen (59%)
— Client programs are affected (49%)

m Method-level
— 10% of APlIs are changed
— 3% of used APls are affected
m Developers do not document API changes

— 2% of the changed APIs are deprecated
— None of them are used by client programs

Outlines

Framework API evolution, problem?

API change and usage mining
— Previous works

— Tooling

— Dataset

— General study

— Detailed study

API change rule building
— Previous works

— Usefulness study

— Feature usage study

Conclusion and perspectives

26/60

Dataset

.
eclipse

THE-ECLIPSE PROIECT

“An Exploratory Study of API Changes and Usages based on Apache and Eclipse Ecosystems”,
W. Wu, Y.-G. Guéhéneuc, and G. Antoniol, under review in EMSE

RQ1: How do frwk APIs evolve?

W Other 13 class-level
changes

M Missing Class

= Missing Method

M Other 7 method-level
changes

Frameworks

Classes and interfaces containing

method-level changes

Missing classes and methods are the
most frequent: 46% of total API
chanoes

RQ2: How do frwk API changes
affect client programs?

M Other 13 class-level
changes

M Missing Class

Missing Method

B Other 7 method-level
changes

Client Programs
Classes and interfaces containing
method-level changes

Missing classes and methods affect
client programs most frequently (40%)

29/60

Summary

m Missing classes and methods
— 46% of APl changes
—40% of APl changes affect client programs

m Insufficient documentations

m APl change rules help developers find the
replacements of these missing APIs

Remedy for Missing
Classes and Methods

m APl change rule

— A map between a missing API and its
replacement in a new release of a framework

— Target methods represent missing APls

VCardComposer.shouldAppendCharsetAttribute (List<String>)

U

VCardBuilder.shouldAppendCharsetParam (Stringl[])

31/60

Outlines

Framework API evolution, problem?

API change and usage mining
— Previous works

— Tooling

— Dataset

— General study

— Detalled study

API change rule building
— Previous works

— Usefulness study

— Feature usage study

Conclusion and perspectives

32/60

Previous Approaches

= AURA (2010)

= HiMa (2012)

m Kim et al (2007)

= MadMatch (2013)

m Schafer et al. (2008)
m SemDiff (2011)

“AURA: a hybrid approach to identify framework evolution”,
W. Wy, Y.-G. Guéhéneuc, G. Antoniol, and M. Kim, ICSE 2010

[.imitations

m Generated API change rules are imperfect
— Precisions vary on different frameworks

m No study on the usefulness of imperfect API
change rules

Outlines

Framework API evolution, problem?

API change and usage mining
— Previous works

— Tooling

— Dataset

— General study

— Detalled study

API change rule building
— Previous works

— Usefulness study

— Feature usage study

Conclusion and perspectives

35/60

API Chang Rule Usefulness

Precision
=
(== I —_—
o :
oo I
8
o™ T
c o _ |
0 w H
W 1
o :
L i
o |
_
= i
q‘ I
s o —i
o _| i
£ i
I I
Mo Imperfect Correct
Treatments

.E “The impact of imperfect change rules on framework API evolution identification:
an empirical study”, W. Wu, A. Serveaux, Y.-G. Guéhéneuc, and G. Antoniol, EMSE, 2014

API Chang Rule Usefulness

m API| change rules are useful

m The more accurate the API change rules,
the more helpful

m How can we improve the accuracy of API
change rule building?

Outlines

Framework API evolution, problem?

API change and usage mining
— Previous works

— Tooling

— Dataset

— General study

— Detalled study

API change rule building
— Previous works

— Usefulness study

— Feature usage study

Conclusion and perspectives

38/60

AURA

Call-dependency

v

Change Rule ‘

“AURA: a hybrid approach to identify framework evolution”,
W. Wy, Y.-G. Guéhéneuc, G. Antoniol, and M. Kim, ICSE 2010

40/60

SVN
Comment

Source —
Comment

- s s s s s 7

Call-
Dependency

\/
\/

IR e

Approach

S. Kim et al.

Features Used 1in Previous Works

Combination of Features

m Single feature
— SemDiff
— M. Kim et al.

m Prioritised features
— Explicit: AURA, HiMa, Schafer et al.
— Weighting: ,
— Mixed: MADMatch, UMLDiff

41/60

[.imitations

m No study on the effectiveness of features

m No study on the effectiveness of the
combinations of features

m Prioritised multi-feature approaches

— Potential contradictions among features
 High priority features shadow lower priority ones
« Hard to extend with new/different features

AURA

Call-dependency

v

Change Rule ‘

“AURA: a hybrid approach to identify framework evolution”,
W. Wy, Y.-G. Guéhéneuc, G. Antoniol, and M. Kim, ICSE 2010

0.004 @ Pareto
@ b o]
1
=
=
=
-
@
L.
=]
@
Pt
o
@
o
e
i
0.002
0.0000 . 0.0020
Risk

http: fflionsolver .com/

44/60

Research Questions

m RQ1: How effective are the features used in
the literature to build APIl change rules?

m RQ2: Can we use MOOP techniques to
Improve over prioritised multi-feature
approaches?

MOFAE

= MOFAE: multi-objective framework
for APl evolution
— Reformulates API change rule building
—as a MOOP
— Uses features as objectives
— Uses jMetal MOOP algorithm framework
— Allows flexible feature configuration

“Feature Usages in Framework API Evolution Identification”,
W. Wu, Y.-G. Guéhéneuc, and G. Antoniol, under review in EMSE

Four Experiment Features

1

I N I
L.

ouapuadag
l1eD
Juswiwon
92i1n0Sg

>
o
o
1
o
0]
0
—3

JUswwo9n
NAS

47/60

Existing Approaches

m Difficulties to compare
— Not all available
— Not always executable
— One recommendation per target method

48/60

Experiment Approaches

m Single-feature approaches
= Multi-feature approaches

P1
P2
P3

PA

M1
M2
M3

MA

Call-dependency + Signature
Source code comments + Signature
Inheritance + Signature

Call-dependency + Inheritance +
Source code comments + Signature

49/60

Experiment Approaches

m Outputs
— MOFAE

* Maximum 6 recommendations

— Single-feature and prioritized approaches
* Top 6 recommendations

m More conservative for MOFAE approaches

Experiment Approaches

m Comparison

— Number of target methods with correct

replacements

— Correct recommendation position

MeterPlot.

MeterPlot.
MeterPlot.
MeterPlot.
MeterPlot.
MeterPlot.
MeterPlot.

getDialBorderColor ()

getDialBackgroundPaint ()
getDialOutlinePaint ()
getNormalPaint ()
getCriticalPaint ()
getValueFont ()
getNeedlePaint ()

51/60

Target Frameworks

| Releases | #Methods | _#Target Methods

Android SDK 2.1_r2.1p2 20516 | 106
22312 21214 [

JEdit 4.1 2774 | &
4.2 ss47

jFreeChart 0.9.11 4757 | 3
jHotDraw 5.2 1486 | 43
5.3 2005 [

Log4] 1.0.4 906 15
113 1o

Struts 1.1 5973 | o1
124 o111 I

52/60

RQ1: How effective are the features
to identify change rules?

Android SDK
jEdit 12
jFreeChart 3

jHotDraw

Log4j

Struts

The smaller, the better 53/60

RQ2: Can we use MOOP techniques
to improve multi-feature approaches?

Android SDK

N\

MMMMM

OOOOOOOOOOOOOOOO

v + * # CorrectRecommendations

Pos of Correct Replacements

54/60

RQ2: Can we use MOOP techniques
to improve multi-feature approaches?

Uuidll IVIALIVIALul |

56/60

Outlines

Framework API evolution, problem?

API change and usage mining
— Previous works

— Tooling

— Dataset

— General study

— Detalled study

API change rule building
— Previous works

— Usefulness study

— Feature usage study

Conclusion and perspectives

57/60

Thesis

Following analyses of the reality of APl changes
and usages, of the usefulness of APIl change
rules, and of the effectiveness of the features used
to build these rules, we can build more effective
and extensible APl change-rule recommendation
tools with MOFAE.

58/60

Perspectives

m Near term
— Extensive qualitative analyses
— More effective features
— Tools for other upgrading tasks
— Developers’ interviews

m Long term
— Language-supported API visibility
— Framework API standards
— Independent framework evaluation

Tooling — ACUA

m APl Change and Usage Auditor to collect
APl -related data

S

amall
Is Brautiful --orooie:

s s J‘.:.'.»:. CasasLE 48 AT
= :IIE'; 1'! ':"-"'-I. .}-I"\.
/il /1
__ L]
= e e
O s
E. £ Sshumachar

RQ2: How do frwk API changes
affect client programs?

B Driher 13 class-level
zhangas

W Mining Clags

® Mining Methad

m{Hhes T method-leael
changss

Missing classes and methods affect
client programs most frequently (40%)

Preciios
] : —
e
FR [S— i
£
e Irpatect Cavecl

RQ2: Can we use MOOP techniques
to improve multi-feature approaches?

android SOK

Pos of Correct Replacements

60/60

