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RÉSUMÉ

Les cadres d’applications sont intensivement utilisés dans le développement de logiciels mo-
dernes et sont accessibles au travers de leur Application Programming Interface (API), qui
définit un ensemble de fonctionnalités que les programmes clients peuvent utiliser pour ac-
complir des tâches. Les cadres d’applications ne cessent d’évoluer au cours de leurs vies pour
satisfaire la demande de nouvelles fonctions ou pour rapiécer des vulnérabilités de sécurité.
L’évolution des cadres d’applications peut engendrer des modifications de l’API auxquelles
les programmes clients doivent s’adapter. Les mises à jour vers les nouvelles versions des
cadres d’applications prennent du temps et peuvent même interrompre le service. Aider les
développeurs à mettre à jour leurs programmes est d’un grand intérêt pour les chercheurs
académiques et industriels.

Dans cette thèse, nous réalisons une étude exploratoire de la réalité des évolutions des API
et de leurs usages dans le dépôt central de Maven et dans deux grands cadres d’applications
avec de larges écosystèmes : Apache et Eclipse. Nous découvrons que les API changent dans
environ 10 % des cadres d’applications et touchent 50 % des programmes clients. Il arrive
plus souvent que des classes et des méthodes manquent et disparaissent dans les cadres
d’applications. Ces classes et méthodes affectent les programmes clients plus souvent que les
autres changements des API. Nous montrons aussi qu’environ 80 % des utilisations des API
dans les programmes clients peuvent être réduits par refactoring. Forts de ce constat, nous
faisons une expérience pour vérifier l’effectivité des règles de changement des API générés
par les approches existantes, qui recommandent les remplacements pour les API disparues
pendant l’évolution des cadres d’application. Nous confirmons que les règles de changement
des API aident les développeurs à trouver des remplacements aux API manquantes plus
précisément, en particulier pour des cadres d’applications difficiles à comprendre. Enfin, nous
étudions l’efficacité des caractéristiques utilisées pour construire les règles de changement
des API et différentes manières de combiner plusieurs caractéristiques. Nous soutenons et
montrons que des approches basées sur l’optimisation multi-objective peuvent détecter des
règles de changement des API plus précisément et qu’elles peuvent prendre en compte plus
facilement de nouvelles caractéristiques que les approches précédentes.
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ABSTRACT

Frameworks are widely used in modern software development and are accessed through their
Application Programming Interfaces (APIs), which specify sets of functionalities that client
programs can use to accomplish their tasks. Frameworks keep evolving during their lifespan
to cope with new requirements, to patch security vulnerabilities, etc. Framework evolution
may lead to API changes to which client programs must adapt. Upgrading to new releases of
frameworks is time-consuming and can even interrupt services. Helping developers upgrade
frameworks draws great interests from both academic and industrial researchers.

In this dissertation, we first present an exploratory study to investigate the reality of API
changes and usages in Maven repository and two framework ecosystems: Apache and Eclipse.
We find that API changes in about 10% of frameworks affect about 50% of client programs.
Missing classes and missing methods happen more often in frameworks and affect client
programs more often than other API changes. About 80% API usages in client programs
can be reduced by refactoring. Based on these findings, we conduct an empirical study to
verify the usefulness of API change rules automatically built by previous approaches, which
recommend the replacements for missing APIs due to framework evolution. We show that
API change rules do help developers find the replacements of missing APIs more accurately,
especially for frameworks difficult to understand. We describe another empirical study to
evaluate the effectiveness of features used to build API change rules and of different ways
combining multiple features. We argue and show that multi-objective-optimization-based
approaches can detect more correct change rules and are easier to extend with new features
than previous approaches.
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CHAPTER 1 INTRODUCTION

Frameworks 1 are widely used in modern software development (Bavota et al., 2013) and are
accessed through Application Programming Interfaces (APIs), which specify sets of function-
alities 2 that client programs can use to accomplish specific tasks. Frameworks keep evolving
during their lifespan for various reasons (Businge et al., 2012; Hou and Yao, 2011), such as to
cope with new requirements and to patch security vulnerabilities. Framework evolution may
lead to API changes (Hou and Yao, 2011) to which client programs must adapt. Upgrading
to new releases of frameworks is time-consuming and can even interrupt services. In 2012,
Raemaekers et al. report the upgrade of the authentication framework of a software system
that ended up consuming a whole week of work, even though developers were using auto-
mated tests to verify the upgraded system. In 2014, the online tax-filing service of Canada
Revenue Agency was down for five days to patch the Heartbleed bug (CRA, 2014). Five days
of interrupted services may cause serious losses to service providers, but five days with a ser-
vice containing a known security vulnerability may expose service providers to even bigger
losses. Therefore, keeping frameworks updated is important to software practitioners.

To adapt to new releases of frameworks, developers must know the API changes between the
old and the new releases, read the source code and documents of the two releases of frame-
works to understand how to use the new APIs, modify the source code of client programs,
and test the upgraded client programs. Usually, they must iterate these steps more than once
to complete the upgrading process. Considering the increasing dependency on frameworks
in modern software systems (Bavota et al., 2013), upgrading several frameworks at the same
time can make the process even challenging.

Consequently, helping developers upgrade frameworks to new releases draws great interests
from both academic and industrial researchers. We conduct three studies on framework API
evolution and propose an approach to improve existing API change rule building process.
The thesis of this dissertation is:

Following analyses of the reality of API changes and usages, of the usefulness of
API change rules, and of the effectiveness of the features used to build these rules,
we can build more effective and extendible API change-rule recommendation tools.

In this chapter, we first present our three studies on API changes and usages and API change
rule building, then describe the organization of the dissertation.

1. Without loss of generality, we use the term “framework” to refer to both frameworks and libraries.
2. Behaviour changes of the implementations of stable APIs are beyond the scope of our study.
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1.1 Framework API Changes and Usages

API change is one of the consequences of framework evolution. Developers can change APIs in
different ways and for different reasons. Better understanding of how and why APIs change
between framework releases from different angles helps developers evolve APIs with less
impact to client programs or take precautions against API changes when they use frameworks.
Des Rivières (2008) discussed in details about API contract compatibility and classified API
changes according to Java programming language elements, such as package, class, method,
etc., but he did not investigate how API changes occur in frameworks and client programs.

How developers use framework APIs is also highly relevant to adapting framework evolution.
Certain ways of using APIs may make client programs more difficult to adapt than others.
Lämmel et al. (2011) analyzed API composition-style and inheritance-style API usages in
more than 6,000 open-source software systems. Businge et al. (2013a) studied 512 Eclipse
Third-party Plug-in (ETP) regarding internal and official Eclipse APIs usages. They did not
study how the API usages are affected by API changes due to framework evolution.

Yet, there are only two works studying API changes and usages together. Robbes et al. (2012)
conducted a study on how developers react to API deprecation in the Smalltalk Squeak/Pharo
ecosystem. Their work is limited to a specific API change and a less popular language.
Dietrich et al. (2014) investigated the differences between Java compile-time and link-time
compatibility and their influences on client programs. They found that such incompatibilities
widely exist, but affect client programs rarely.

Therefore, framework API changes have not been studied on a large scale. Previous studies
on API usages are not from the angle of adapting client programs to API changes. There are
only a few works linking API changes with usages. Yet, framework API changes and usages
are two highly related phenomena. They should be studied together. It is important for
developers to better understand the reality of framework API evolution and to make more
reasonable decisions while evolving frameworks or building client programs.

1.1.1 Our Contributions

To investigate framework API changes and usages together at both large-scale and fine
grained levels, we developed a tool, API Change and Usage Auditor (ACUA) (Wu et al.,
2014a), to analyse the frameworks and their client programs in Maven repository and apply
it on two framework ecosystems: Apache and Eclipse. Investigating the API changes and
usages in these frameworks and their client programs helps developers understand better the
reality of API evolution in common-used frameworks. In our study, we follow the definition of
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des Rivières (2008) and consider public and protected Java programming language elements,
such as classes and methods, as APIs. We first study framework evolution and adaptation in
general, then look into different types of framework API changes and usages, to answer the
following three questions.

How frameworks evolve and client programs adapt?

To study framework evolution and client program adaptation, we focus on framework APIs,
through which frameworks provide their functionalities. Framework APIs have different
levels, such as package, class and interface, or method. Framework fundamental functions
are exposed through methods while packages and classes are the aggregations of methods to
facilitate code organizing and understanding (Baxter et al., 2006). Therefore, we report the
data related to API at method level, unless stated otherwise.

We adapt the methodology used by Robbes et al. (2012) to investigate framework evolution
and client program adaptation at API level in 160,896 releases of 14,987 frameworks and
their client programs downloaded from Maven repository by 2014 September. Robbes et al.
conducted a study on how developers react to API deprecation in the Smalltalk Squeak and
Pharo ecosystem. They investigated the ripple effects caused by the deprecated methods and
classes from five perspectives: frequency, magnitude, duration, adaptation, and consistency.
We do not analyse duration and consistency in our study, because the time stamps of frame-
work releases are generally not available in programs downloaded from Maven repository and
investigating of the adaptations of each API changes manually is not feasible at the scale of
this study. Therefore, we report our results on frequency, adaptation, and magnitude.

We find that frameworks and client programs evolve with similar frequency. On average, each
framework and client program in Maven repository have 11 and 12 releases, respectively. As
shown in Table 1.1 and Table 1.2, most (78%) client programs adapted to new releases of
frameworks at lease once, but only to less than half (42%) of frameworks. We label the 78%
client programs upgraded client programs and the 42% frameworks upgraded frameworks.

Most upgraded frameworks change their APIs, but only in a small percentage of their releases.
API changes exist in more than half (59%) of these frameworks and in about one quarter
(24%) of their releases. Most (90%) of upgraded client programs use frameworks with API
changes in more than half (60%) of client program releases.

API changes in about one third (37%) of upgraded frameworks and in about one quarter
(24%) of the releases directly affect client programs. Comparing to frameworks, higher per-
centages of client programs and their releases are affected by API changes in frameworks.
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Table 1.1 Framework Evolution

Group #Frameworks % In The Group Above # Framework Releases % In The Group Above
Total 14,987 NA 160,896 NA

With Upgraded
Client Programs 6,291 42% 78,377 49%

With API Changes 3,690 59% 18,587 24%
With API Changes

Affecting Client Programs 1,350 37% 4,527 24%

Affecting In Total 9% 3%

Table 1.2 Client Program Evolution

Group # Client Programs % In The Group Above # Client Program Releases % In The Group Above
Total 12,201 NA 140,178 NA

Upgraded 9,342 78% 109,772 78%
Using Frameworks
with API Changes 8,430 90% 66,066 60%

Affected By Framework
API Changes 5,845 69% 29,819 45%

Affected In Total 49% 21%

Most (69%) of client programs depending on frameworks with changed APIs directly use the
changed APIs in about half (45%) of their releases.

While considering all the frameworks and client programs, instead of only those upgraded,
we observe that about half of client programs are directly affected by changed APIs of small
percentages of frameworks. Only 9% of all the frameworks with changed APIs in 3% of their
releases are used by client programs. However, these changed APIs are used by 49% of all
the client programs in about one fifth (21%) of client program releases. The magnitude of
the influence of API changes is large. More than 29,000 releases of 5,845 client programs are
directly affected by API changes.

How framework APIs change?

To study framework API changes, we first investigate how many APIs are changed and how
many API changes are documented during framework evolution. These two facts reflect the
severity of API changes and the level of help from framework developers.

We use the @deprecated annotation in Java to decide if an API change is documented.
@deprecated is a way in which framework developers communicate with client program
developers about API changes directly in the source code. We want to see if framework
developers use this annotation often.
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We find that most methods with signature changes are API methods and developers only
document a small part of these API changes. The changed APIs amounts to 10% of the APIs,
but 80% of the methods with signature changes are API methods. Only 2% of changed APIs
are marked as deprecated. Moreover, 52% of methods marked as deprecated are not API.

Different types of API changes affect the effort to adapt to the changes. The knowledge
of the distribution of API change types helps developer estimate upgrading workload more
accurately. Des Rivières (2008) classified API changes into 149 types, but there is no previous
study investigating the distribution of these types of API changes in frameworks.

We select 30 of des Rivières’s API change types on classes, interfaces, and methods causing
incompatibilities, then detect them in 22 frameworks with most-changed-and-used APIs from
Apache and Eclipse framework ecosystems and their client programs, based on the study
results above. We find that missing classes and methods are the most common changes.
These two types of API changes require developers to spend time and effort to search for the
replacements of the missing APIs in the new releases.

How client programs use framework APIs?

To study API usages, we first observe how many APIs are used by client programs. We find
that client programs use only small part (16%) of the APIs provided by frameworks and 3%
of the used APIs are affected by API changes. Framework developers should examine the
APIs that they expose and encapsulate the APIs which are not designed to be used by client
programs. Concise APIs make frameworks easier to upgrade for client program developers.

Then, we investigate three facts of API usages: which, where, and how APIs are used in client
programs. With the list of used APIs and categorized API changes, developers can know
what API changes in frameworks that they must adapt their client programs. Researchers
can know which types of API changes affect client programs more frequently and provide
remedies for such changes.

Knowing where the APIs are used in client programs, such as in which classes or methods,
help developers assess the spread of APIs in their client programs. For the same API changes,
client programs with more API usages are more difficult to adapt than those with less API
usages, because the former have more code to change and test. Developers can make their
client programs more resilient to API changes by controlling API usages and researchers can
develop approaches or tools to facilitate such tasks.

We study how APIs are used with respect to change-propagation. We report five cases of
API change-propagation: extending framework classes, implementing framework interfaces,
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using framework reference types or their subtypes as generic types, as method return values,
and as formal parameter types. The client program entities in such cases carry the changes
in the used framework APIs (if any) to where these client program entities are used. A
changed API used widely in client programs may cause the Shotgun Surgery code smell
(Fowler et al., 1999), i.e., a lot of little changes in multiple classes, which would result in
high upgrade costs. In contrary, as suggested by Bloch (2008), if a client program class only
uses a framework class as a private field, the API changes in the framework class only affect
this client program class and will not be propagated to other places of the client program.
Avoiding change-propagating framework API usages helps developers to alleviate the impact
of API changes.

We find that, on average, the APIs of one framework are used in 36% of client classes and
interfaces, and more than 80% of such usages could be reduced through applying certain
design patterns, such as Adapter (Gamma et al., 1995). About 18% of APIs are used in
change-propagating ways.

1.2 Framework API Change Rules

As shown by the results of our study on framework API changes and usages, many client
programs are affected by API changes. Classes and methods disappear often between releases.
Upgrading to new releases of frameworks thus requires significant effort from developers due
to the changed APIs (Raemaekers et al., 2012). Developers must dig into the documents
and the source code of the new and previous releases of the frameworks to understand their
differences and to make their programs compatible with the new releases. The longer they
delay, the more time the upgrading takes, because there will be more changes to absorb.

An effective way to help find the replacements of missing APIs is documentation. However,
many frameworks are not sufficiently documented, especially when it comes to the changes
between releases and the rules to adapt client programs from an older release to a new one.
The Java programming language provides the @deprecated annotation to help framework
developers mark API changes, but developers rarely use these annotations to document how
to update to new releases. As examples, Google provides Android API difference reports 3

regularly but these reports only list the API removed or added. They do not include infor-
mation on how to replace removed APIs. Eclipse informs developers about internal APIs and
official APIs with Provisional API Guidelines 4. By definition, internal APIs can be changed
without notice and documentation. However, a survey conducted by Businge et al. (2013b)

3. http://developer.android.com/sdk/api_diff/8/changes.html
4. http://wiki.eclipse.org/Provisional_API_Guidelines#Before_the_API_freeze
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showed that 70% of the developers of Eclipse plug-ins used Eclipse internal APIs and only
3.3% of them always followed Eclipse Provisional API Guidelines. Other ad hoc forms of
upgrading documents include dedicated tutorials, such as the one helping Python developers
to replace calls to the os.system() with functions provided by the subprocess module 5. In
general, very few companies explicitly document changes in APIs or provide such information
to the public.

Therefore, many approaches (Godfrey and Zou, 2005; Kim et al., 2007; Schäfer et al., 2008;
Wu et al., 2010; Kpodjedo et al., 2013) have been developed to identify API evolution by
providing API change rules, which describe a matching between target methods, i.e., methods
existing in the old release, but not in the new one and their replacement methods in the new
release. For example, if method t is defined in version 1.0 of a framework, but not in version
2.0, then t is a target method. If t is replaced by methodm in version 2.0,m is the replacement
method and < t, m > forms a change rule.

However, the change rules generated by previous approaches are imperfect, i.e., the accuracy
of the change rules are not 100% and vary between frameworks. There is no previous study
showing the usefulness of the imperfect change rules, i.e., if they help developers find the
replacement of missing APIs.

1.2.1 Our Contributions

Consequently, we conduct two studies to address the limitations of exiting work on framework
API change rule building. First, we perform an experiment to investigate if the imperfect
change rules generated by previous approaches really help developers find the replacements
of missing API methods more accurately or faster. Second, we analyse the effectiveness
of the features used by previous approaches and propose multi-objective-optimization-based
approaches to improve the precision and recall of change rules building.

Do API change rules really help developers?

API change rules generated by previous approaches are imperfect or not all of them are
correct. Therefore, developers do not know if the change rules are correct until having used
them to modify their client programs. There is no empirical study of the usefulness of the
imperfect change rules (generated by tools or from other sources) to show that the imperfect
change rules help developers to identify the replacements more accurately and faster than
without change rules or, rather, that they confuse developers because they are not all correct.

5. http://docs.python.org/2/library/os.html#os.system
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Although we could expect that using already-known all-correct change rules would help
developers, it could actually slow them down because developers would not be certain that the
change rules are correct. Indeed, according to Fagard et al. (1996), providing no information
is actually better than providing the wrong information: it is less confusing and distracting.
Thus, knowing the usefulness of imperfect change rules could encourage and direct research
on framework API evolution.

Therefore, we design and conduct an experiment to evaluate the usefulness of framework API
change rules. In our experiment, the subjects find the replacements of target methods from
three Java frameworks with the help of all-correct, imperfect, and no change rules. Then, we
measure the performance of the subjects by the precision of the replacement methods that
they find and the time that they spend.

The statistical analysis of the results shows that the precision of the replacements of target
methods found by the subjects with all-correct, imperfect, and no change rules are signif-
icantly different with average values of 82%, 71%, and 57%, respectively. The effect size,
Cliff’s Delta (Grissom and Kim, 2005), of the difference in precision between the subjects
with no and imperfect change rules is large and that between the subjects with imperfect and
all-correct change rules is moderate. Different from the precision values, the times that the
subjects with the three treatments spent to find the replacement methods are not statistically
different with average values of 24, 23, and 25 minutes, respectively.

These results are evidence that change rules generated by framework API evolution ap-
proaches are useful, even when some of the change rules are incorrect. Yet, as expected,
the higher precision the change rules have, the more help they provide. Thus, imperfect
change rules can be used instead of unavailable documentation or as complement to partial
documentation. Developers of frameworks could also use them as starting point to build
upgrading documentation. Yet, researchers should improve the accuracy of API change rule
building approaches to provide better help to developers.

How to improve API change rule building?

The results of our exploratory study and experiment show that missing classes and methods
are the most frequent API changes affecting client programs and that imperfect change rules
generated by previous approaches do help developers identify the replacements of missing
APIs. Yet, the level of usefulness of the change rules corresponds to their accuracy. The
more accurate the change rules are, the more they help developers. Thus, we conducted
another empirical study to explore how effective the features used by previous approaches
are, and how we improve the accuracy of the generated change rules.
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Previous approaches, such as (Dagenais and Robillard, 2011; Kim et al., 2007; Schäfer et al.,
2008; Wu et al., 2010), automatically identify API change rules between an old and a new
release of a framework using the similarity values between some features of a target method
t and a replacement candidate m. For a given t, these approaches use similarity values to
sort the methods in the new releases of frameworks and suggest change rules to developers
by recommending those at the top as potential replacements. These approaches use multiple
features to detect change rules by prioritizing features. They implement prioritization in
two ways. One explicitly gives high priority to certain features. For example, AURA (Wu
et al., 2010) combines call-dependency and signature similarity by giving higher priority to
the former over the latter. Another assigns weights to features, such as the approaches of
Kim et al. (2005).

For a given framework, if an API method and its replacement are not similar with respect to
one feature, approaches using this feature cannot detect a correct change rule. For example,
some replacement methods may be appropriate when considering only call dependency but
not when considering signature similarity. Also, a specific framework may require favouring
one feature over the others, i.e., an approach using that feature would detect more correct
change rules than those using the others.

To detect more correct change rules, considering more features is promising but not straight-
forward, because multiple features may give contradictory information, confusing prioritizing
approaches. An incorrect change rule suggested by a high-priority (heavy-weight) feature
cannot be overridden by lower-priority (light-weight) features. Besides, these approaches are
difficult to extend to new features, because their developers must choose the priorities, pa-
rameters, and thresholds of the new features with respect to the other features (Kim et al.,
2005; Kpodjedo et al., 2013).

Although there are many approaches to detect API changes using different features, the
effectiveness of individual feature and their combinations have not been fully investigated.
Such studies would help researchers devise more accurate and extendible approaches to build
API change rules.

In particular, we use multi-objective-optimization techniques to handle possibly contradictory
information given by multiple features while identifying framework API evolution. Multi-
objective optimization (Sawaragi et al., 1985) is the process of finding solutions to problems
with potentially conflicting objectives. No previous work uses multi-objective-optimization
techniques to combine features.

We conduct a study to compare approaches using different features in different ways, including
multi-objective-optimization-based and prioritizing techniques, to build change rules. The
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goal of our study is two-fold: (1) identify features that are really beneficial to build API
change rules and (2) find the combining process that obtains the best accuracy from the
features.

We find that not all features are useful individually. Signature similarity is more effective
than the other features. Not all of the multi-feature approaches outperform single feature
approaches and the results of the multi-objective-optimization-based approaches are more
stable and accurate than that of the corresponding prioritising approaches. We conclude
that multi-objective optimization is an effective way to combine multiple features to build
change rules, especially when there is no prior knowledge to favour certain features.

1.3 Organization of the Dissertation

The organization of this dissertation is presented below and the links between the publica-
tions, the corresponding sections and my contributions are summarised in Table 1.3.

Chapter 2 introduces related work on API changes and usages, API change rule building,
program differentiation, empirical studies in software engineering, and the applications of
multi-objective optimisation in software engineering.

Chapter 3 presents an exploratory study on API changes and usages in Maven repository
and two framework ecosystems: Apache and Eclipse. The work presented in this chapter is
based on two papers:

SCAM-2014 “ACUA: API change and usage auditor” published as tool paper in the pro-
ceedings of the 14th IEEE International Working Conference on Source Code Analysis
and Manipulation (SCAM2014).

EMSE-UR1 “An Exploratory Study of API Changes and Usages in Apache and Eclipse
Ecosystems” under review in the Journal of Empirical Software Engineering (EMSE).

Chapter 4 presents an empirical study to investigate the usefulness of API change rules to
help developers identify replacements of missing APIs. The work presented in this chapter
is based on our paper:

EMSE-2014 “The impact of imperfect change rules on framework API evolution identifi-
cation: an empirical study” published in the Journal of Empirical Software Engineering
(EMSE), July, 2014.



11

Table 1.3 Publication Summary

Publication Corresponding Section Contribution

SCAM-2014 Section 3.2.1 Designing, implementing the tool,
participating in writing the paper

EMSE-UR1 Parts of Section 3.1, 3.2, and 3.3

Implementing the approach and
conducting the experiment,

participating in experiment design,
analysing data and writing the paper

EMSE-2014 Section 4
Analysing experimental data and

writing the paper,
participating in experiment design

EMSE-UR2 Section 5

Implementing the approach and
conducting the experiment,

participating in experiment design,
analysing data and writing the paper

ICSE-2010 Parts of Section 5.1 and 5.2

Iimplementing the approach and comparing
the results with other approaches,

participating in approach design and
writing the paper

Chapter 5 presents an empirical study on the feature usage in API change rule building. The
work presented in this chapter is based on our papers:

EMSE-UR2 “Feature Usages in Framework API Evolution Identification” under review
in the Journal of Empirical Software Engineering (EMSE).

ICSE-2010 “AURA: a hybrid approach to identify framework evolution” published in the
proceedings of the 32nd ACM/IEEE International Conference on Software Engineer-
ing, May, 2010.

Chapter 6 concludes the dissertation by summarizing our findings and discussing future work.



12

CHAPTER 2 LITERATURE REVIEW

Following our thesis, we present the related work on: (1) API changes and usages, (2)
API change rule building and program differentiation, (3) empirical studies in software en-
gineering, and (4) the applications of multi-objective optimization techniques in software
engineering. We describe the related work of the latter two domains, because we conduct an
empirical study on the usefulness of API change rules and apply multi-objective-optimization
techniques to improve API change rule recommendation.

2.1 Framework API Changes and Usages

2.1.1 API Changes

Robbes et al. (2012)

Robbes et al. (2012) conducted a study on how developers react to API deprecation in the
Smalltalk Squeak/Pharo ecosystem. We adapt their methodology to investigate framework
evolution and client program adaptation at program level and method. In our study, we
investigate the API changes in Java programs hosted in Maven central repository, including
those not marked as deprecated.

The Squeak/Pharo ecosystem has more than 3,000 contributors and more than 2,600 pro-
grams. They analysed 577 and 186 deprecated methods and classes, respectively. They
investigated the ripple effects caused by the deprecated methods and classes from five per-
spectives: frequency, magnitude, duration, adaptation, and consistency.

For frequency, they discovered that 14% of the deprecated methods and 7% of the depre-
cated classes caused ripple effects at least in one project. The percentages are low for two
reasons. First, most of the deprecated methods and classes were only used internally, i.e.,
in the projects where they are defined. Second, the client programs were not aware of the
deprecation. In our study, besides deprecated methods, we also investigate the frequency of
API changes and usages from different angles.

For magnitude, they found that the median of affected projects is 25. Because affected
project number depends on the size of dataset, the percentage of affected projects reflects
better the magnitude of API changes than the absolute number. Therefore, we use percentage
to measure as magnitude instead of concrete number. We investigate the magnitude of API
evolution at program and method level, and the magnitude of different API change types.
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For duration, they studied it from two angles: reaction time and adaptation time. The former
is the time between when the deprecation is introduced and when the client programs started
being modified to adapt. The latter is the duration that the client programs took to finish all
the adaptations. The median of reaction time was two weeks, but the median of adaptation
time was 0 day, which means half of the adaptations were completed in the same day when
it started. However, the third quartile of the distribution of the adaptation was 26 days. We
do not analyse duration, because the time stamps of framework releases are generally not
available in programs downloaded from Maven repository.

For adaptation, they found that the median of the projects reacted to the API deprecation is
5 and the median of involved developers is 7. Only about 20% of affected projects reacted to
the deprecated APIs and more than one developer involved in the upgrading process. Similar
to magnitude, we study the adaptation at program level instead of at method level, because
the latter requires more qualitative analysis and are possible future work.

For consistency, the median of the percentage of the projects adapting the deprecated APIs
in the same way was 60%. Some client program developers did not follow the recommen-
dation given by API owners to upgrade their code. We do not analyse consistency, because
investigating of the adaptations of each API change is not feasible at the scale of this study
and should be conducted manually.

Others

Rivières (2008) summarized 149 API changes, based on entities changed in APIs, such as
packages, classes, modifiers. He also pointed out which API changes may cause binary
incompatibility (i.e., the class files of the new releases of frameworks cannot be linked to
client programs without recompilation) or source incompatibility (i.e., there are errors when
the client program source code is compiled with the new releases of frameworks). However,
des Rivières did not investigate how the API change types occur in frameworks and client
programs. Consequently, we want to conduct such a study to analyse API changes in real
systems based on his classification. We start from Apache and Eclipse framework ecosystems
because of their popularity.

Hou and Yao (2011) classified API changes in AWT and Swing according to domains and
design intention. They summarized eight intentions to change APIs in these two JDK pack-
ages, such as conformance to naming conventions, simplification, introduce of new concepts,
etc. They found that the proportion of changed APIs is small. The changes are mainly for
correction or clarification, but feature redesign is an important cause of API changes.
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Cossette and Walker (2012) investigated the binary incompatibility between 16 release pairs
of three Java systems (Struts, Log4j, JDOM) manually. According to how easy to adapt
API changes, they classified API changes into three categories: fully automatable, partially
automatable, and hard to automate changes. They reported the purposes of API changes
from a different angle of Hou and Yao (2011), such as exposing internal implementation,
generalizing functionalities, replaced with external APIs, etc. They also reported that single
recommendation techniques only applies to parts of the changed APIs.

Dietrich et al. (2014) investigated the differences between Java compile-time and link-time
compatibility and their influences on the client programs. They analysed 564 releases of 109
programs from the QUALITAS corpus (Tempero et al., 2010), excluding those from Eclipse
and Azureus. They found that 75% of the upgrades have link-time incompatibilities and these
incompatibilities are also compile-time incompatible, except two cases. They also discovered
that such incompatibilities only affect 8 client programs.

2.1.2 API Usages

Lämmel et al. (2011)

Lämmel et al. (2011) conducted a large-scale AST-based analysis of framework-style and
library-style API usages in the Java projects hosted in SourceForge 1 Repository. This is the
first study which analysed API usages at large-scale from framework-style and library-style
points of views. Our exploratory study of API changes and usages is inspired by their work.

Framework-style and library-style API usages have different impacts on the client programs
when these APIs change. In framework-style usage, client programs must extend classes
or implement interfaces from frameworks which requires developers have better knowledge
of framework internal implementation and propagates API changes (Bloch, 2008). Library-
style usages do not require inheritance and relatively easy to be encapsulated locally. It is
important for developers to know the proportion between the two types of usage to estimate
the cost to upgrade to new releases of frameworks.

They analysed Java projects managed by Ant 2 form the SourceForge hosted SVN repository.
To guarantee the accuracy of the analysis, their main fact extract technique was based on
building the AST from the source code of the Java projects. AST-based analyses require that
the projects must be buildable. Lämmel et al. downloaded more than 6,000 Java projects
and made 1,476 buildable manually. There are 69 used frameworks in their dataset.

1. http://sourceforge.net/
2. http://ant.apache.org/
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Then, they selected 60 projects marked as “mature” or “stable” by SourceForge and with more
than 100 commits from the 1,476 built projects. They named the 60 projects as reference
projects. They report API usage analysis results according to the built projects and the
reference projects. Besides AST-based factor extract, they also used token-based techniques
to gather information, such as import statements in the Java source code. They analysed
API usages from three perspectives:

First, they investigated API footprint at framework and API method level. At framework
level, they found that the built projects use 4.7 and the reference projects use 6.9 frameworks
per project, on average. At method level, the built projects use 370 and the reference projects
use 866 API methods per project, on average. The API footprint growths with project sizes.

Second, they investigated API coverage, i.e., the percentage of API methods used in client
programs in the total API methods defined in frameworks. They reported the API coverage
of two XML parsing frameworks, JDOM 3 and SAX 4. The former is used typically in library-
style and the latter is in framework-style. They found that only 24% of API methods in
JDOM and 49% of API methods in SAX are used by their client programs, respectively.

Third, they investigated how many frameworks are actually used in framework-style. Frame-
works usually provide both interfaces for client programs to implement and implementations
for concrete functions. Client program developers can choose either of them according to their
goals. Lämmel et al. find that only about half (35) of frameworks are used in framework-style
in their dataset.

Our exploratory study of API changes and usages extends their work. First, we parse Java
class files instead of source code to avoid the making-buildable effort, so our analysis can be
applied to larger data set. Second, we analysed Maven 5 projects instead of Ant projects.
Maven projects have specific places to download framework and client program Jar files.
Thus, we can fully automate fact extracting process. Third, Maven projects have version
information of the depended frameworks in the configuration files, so we can detect the API
changes between the used and later releases of frameworks to study API changes and usages
together. Fourth, we investigate API footprint in more details. We study API usages from
infiltration and propagation perspectives. We also distinguish two subtypes of framework-
style usages, i.e., inheritance for Inversion Of Control (IOC) and optional inheritance.

3. http://www.jdom.org/
4. http://sax.sourceforge.net/
5. http://maven.apache.org/
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Others

Roover et al. (2013) conducted a detailed multi-dimensional API usage analysis on QUALI-
TAS corpus (Tempero et al., 2010). They solved the dependencies of the projects in QUAL-
ITAS corpus and added metadata generated by their analysis. The metadata include API
names (equivalent to framework names), domains, and facets (groups of sub-functions of
frameworks). They named the extended QUALITAS corpus for API usage analysis QUAAT-
LAS (QUALITAS API Atlas). They explored API usages in QUAATLAS from different
perspectives and presented them in a set of insights. Each insight is composed of a list of
attributes, such as intent, stakeholder, view, etc. Insights can be project-centric (from the
point of view of client programs) or API-centric (from the point of view of frameworks).
They also proposed an interactive approach and developed a Web-enabled tool Exapus to
help developers explore API usages regarding these insights.

The in-depth analysis and the interactive GUI tool in Roover et al. (2013) help developers
understand API usages from various angles, while our study links API usages with API
changes and focuses on how to identify and contain optional API usages in order to reduce
framework upgrading effort.

Other researchers studied API usages from different points of view. SpotWeb (Thum-
malapenta and Xie, 2008) distinguishes frequently-used and rarely-used APIs by mining
open-source software repositories. Kawrykow and Robillard (2009) proposed an approach to
detect the cases where client program developers imitate the functions provided by libraries
instead of using corresponding APIs. LibSync (Nguyen et al., 2010) helps developers learn
complex API usage change patterns from the clients that have been already upgraded. Port-
folio (McMillan et al., 2011) searches and visualizes relevant functions and their usages from
a database. Lämmel et al. (2011) analysed the framework API usages regarding potential
and actual reuse in Microsoft .Net programs with static and dynamic analyses. Businge
et al. (2013a) studied 512 ETPs regarding internal and official Eclipse APIs usages. They
found that 44% of these ETPs use internal Eclipse APIs and ETP developers continue to
use Eclipse internal APIs. APIMiner (Montandon et al., 2013) extracts API usage examples
using program slicing technique. Web API is a new type of APIs emerged with Internet.
Espinha et al. (2014) studied the evolution of four popular Web APIs and their impacts on
clients.
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2.2 API Change Rule Building and Program Differentiation

Previous approaches help developers evolve their programs when the used frameworks evolve.
Some of them capture API-level changes and require the framework developers to manually
enter the change rules or to use a particular IDE to automatically record changes (Chow and
Notkin, 1996; Dig et al., 2007; Henkel and Diwan, 2005; Kemper and Overbeck, 2005). The
limitation of such approaches is that framework developers may not be available.

Other approaches take different software artefact as inputs and use API features to build
change rules between framework releases. The inputs and features used by these approaches
are summarized in Table 2.1. Each feature may be represented by different metrics in a
specific approach. For example, Code Lexical can be computed using the Longest Com-
mon Subsequence (LCS) (Gusfield, 1997) or Levenshtein Distance (LD) (Levenshtein, 1966)
between two method signatures.

These approaches take two types of inputs. SemDiff (Dagenais and Robillard, 2011), the
approach of Kim et al. (2005), and HiMa (Meng et al., 2012) use software repository commits.
They are not applicable to the programs whose version control system repositories are not
available. Other approaches (Godfrey and Zou, 2005; Kim et al., 2007; Kpodjedo et al., 2013;
Schäfer et al., 2008; Wu et al., 2010; Xing and Stroulia, 2007a) take the source code of two
releases of a framework as input. Among them, the approach of Schäfer et al. (2008) also
uses the client code as a part of its input. In our study, we consider only source code because
it is the most common input.

To build change rules, previous approaches used the similarities of some features, such as call
dependency or signature similarity, to sort the methods in the new releases of frameworks
and recommend those at the top as potential replacements for target methods. Besides these
approaches in Table 2.1, Cossette and Walker (2012) also reported that developers often use
comments in source code to find the replacements of missing methods. Therefore, we also
include source code comments in this study even only UMLDiff uses it.

Among previous approaches, SemDiff (Dagenais and Robillard, 2011) and the approach of
Kim et al. (2007) used single feature: call-dependency and method signature similarities,
respectively. Approaches using a single feature cannot identify replacement methods that
are not similar to the target methods, according to the feature metric. Also, they may
recommend different replacement methods at each execution. If there are many methods
with the same highest value of similarity in the new release, the replacement might not be
recommended in an execution.

The other approaches combine multiple features to improve the precision and recall (Cohen,
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1988), i.e., to detect change rules more accurately and to detect more correct change rules.
The common technique of the approaches to use multiple features is to prioritise the features.
Some of them give the features different weights (Kim et al., 2005; Kpodjedo et al., 2013).
The most appropriate weight values are program specific and it is difficult to know them in
advance. In the approach of Kim et al. (2005), they chose the weighing schema according to
the oracle set built by 10 human judges. The weighting schemata are completely different
for the two programs that they analysed. Other approaches prioritised the features in their
algorithms. They first use some features to detect change rules, then use the other features
to refine them or detect more. For example, AURA (Wu et al., 2010) and the approach of
Schäfer et al. (2008) give call-dependency similarity a higher priority than signature similarity.
They first detect change rules with call-dependency similarity, then use signature similarity
to improve the precision of the change rules built by call-dependency similarity.

Besides which features to use, the accuracy of previous approaches depends on how to pri-
oritise the features and on specific programs as well. The contradictory information that
features may mislead prioritising approaches. For example, FileCellRenderer.getTree
CellRendererComponent(...) in jEdit v4.1 does not exist in v4.2. Call-dependency similar-
ity recommends VFSDirectoryEntryTable.propertiesChanged() as replacements, because
this method is called in the same context as the missing method. However, according to sig-
nature similarity, the replacement method should be FileCellRenderer.getTableCell
RendererComponent(...), which is the correct replacement. If we give call-dependency
higher priority, the incorrect change rule suggested by call-dependency similarity cannot be
overridden by the signature similarity and compromises the accuracy.

Therefore, to consider more features, developers must decide where to put the new features,
which priority to give, what parameters to set, etc. Making such decisions is not straightfor-
ward and program-dependent, because of the potential conflicts brought by the new features.
Prioritizing approaches are difficult to generalize and extend because of such difficulty.

Furthermore, prioritising approaches are complicated to setup due to their algorithm using
thresholds and parameters. For example, MADMatch (Kpodjedo et al., 2013) is a state-of-
the-art approach in program differentiation. MADMatch uses a novel cost model to match
software elements between releases. However, it has eight basic cost parameters and five
aggregate cost parameters. Its performance depends on their values. Consequently, we want
to compare with MADMatch to see if there are less complicated approaches with similar or
better accuracy.
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2.3 Empirical Study on Program Comprehension

Another field related to this work is the empirical studies on program comprehension. Lawrie
et al. (2007) conducted an empirical study to investigate the influence of three types of identi-
fiers on program comprehension. They compared the number of correct answers of developers
after reading programs using single letter, abbreviation, and full-word identifiers. They found
that developers understand better the programs with full-word identifiers. However, there is
no statistically significant difference between abbreviation and full-word identifiers in many
cases and using descriptive abbreviation identifiers could reduce developers’ memory burden.

Yusuf et al. (2007) conducted an experiment to study how developers use the different infor-
mation in UML class diagrams with eye-tracking system. They found that experts usually
navigate from the center to the edges of the diagrams while the patterns of beginners are
top-to-bottom or left-to-right. Also, experts use the different information, such as stereotype,
color, and layout, in the diagrams to help navigation.

Porras and Guéhéneuc (2010) evaluated the impact of the presentations on design pattern
comprehension with an eye-tracking system. They compared pattern-enhanced class dia-
grams, stereotype-enhanced UML diagrams, and pattern-role notation with standard UML
presentation. They used three metrics based on the fixation time collected by the eye-tracking
system to measure developers’ effort. They found that stereotype-enhanced UML diagrams
are better in identifying the design patterns that a class participates and pattern-enhanced
class diagrams are more efficient in identifying the classes involving a design pattern.

Sharif and Maletic (2010) and Sharafi et al. (2012) use eye-tracking systems to compare
camel-case and underscore identifier styles. The former focuses on accuracy and speed when
developers recognize identifiers while the latter studies identifier comprehension from the
point of view of genders. Sharif and Maletic (2010) found that there is no difference between
underscore and camel-case identifiers in terms of accuracy, but developers recognize under-
score identifiers faster. Sharafi et al. (2012) found that there is no statistically significant
difference in the final results between male and female developers, but they use different
comprehension strategies. Females spent more time to examine wrong answers than males.

Abbes et al. (2011) performed an experiment to evaluate the impact of two anti-patterns
(Blob and Spaghetti Code) on program comprehension. They measured the performance of
subjects using NASA task load index (Hart and Staveland, 1988), the time that they spent,
and the percentages of their correct answers. They found that combining of two anti-patterns
compromises program comprehension of developers while only one anti-pattern does not have
significant effect on developers.
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Soh et al. (2012) performed an experiment to assess the role of professional status and exper-
tise on UML class diagram comprehension. They also took the preciseness of the description
of the tasks into account. They found that students spent less time than professionals and
professionals gave more precise answers than students. Expertise is more important than
professional status regarding the accuracy and speed of the subjects. If the descriptions of
the tasks are precise, novice students can have comparable performance as the other subjects.

Ali et al. (2012) used eye-tracking system to rank developers’ preferred source code entities,
such as class names, method names, during requirement-code tracing tasks. They found
that developers try to understand source code mainly using method names and comments
and developers pay more attention to the source code entities which reflects domain con-
cepts. Based on their discoveries, they proposed two new schemes, SE/IDF and DOI/IDF,
to improve the weighting systems in requirement tracing approaches.

Empirical studies help us evaluate different methods or techniques (Wohlin et al., 1999).
There is no previous work evaluating the usefulness of API change rules generated by previous
approaches. We want to conduct an experiment to fill the gap.

2.4 Multi-objective Optimization in Software Engineering

Many problems in software engineering have to deal with potential conflicts. For exam-
ple, the Next Release Problem (NRP) has two potential conflicting objectives: the value
that requirements bring and the cost to implement these requirements. Implementing more
requirements in the new release of a product may cause the increase of total cost. Control-
ling cost by excluding requirements may decrease the satisfaction level of customers. Because
multi-objective optimization techniques can solve problems with conflicting objectives, Zhang
et al. (2007) presented an approach which uses Non-dominated Sorting Genetic Algorithm II
(NSGA-II) (Deb et al., 2002), a multi-objective optimization algorithm to propose solutions
for NRP. They compare NSGA-II with Weighted Single-Objective GA and Pareto GA. They
found that NSGA-II outperformed Pareto GA and Weighted Single-Objective GA is helpful
to find the extreme solutions.

Saliu and Ruhe (2007) also attacked NRP with multi-objective optimization. They took
the dependencies between the components implementing requirements into account. The
dependencies can reduce the cost of implementing features with common components. By
adding such features into the same release, their approach could propose solutions with better
customer satisfaction level than those which do not consider component dependencies.
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Finkelstein et al. (2009) used multi-objective optimization to solve NRP from the concern
of fairness. The issue of fairness in NRP is caused by that customers may give a same
requirement different values. Including a requirement is fair to one customer and might be
unjust to another. They created three formulations on fairness of requirement allocation: the
number of included requirements, the value of included requirements, and the percentages
of value and cost of included requirements. They evaluated their formulations with two real
world datasets and a synthetic dataset and two multi-objective optimization algorithms. The
results showed that their approach outperforms random search.

Gueorguiev et al. (2009) applied multi-objective optimization to project robustness prob-
lem, i.e., how to make project plans resilient to unpredictable delays. They formulated
this problem with three objectives: Completion Time, Completion Time with New Tasks,
and Completion Time with Delayed Tasks. They applied a multi-objective optimization al-
gorithm SPEA II (Zitzler and Thiele, 1999) and evaluated their solutions on four industrial
projects from three companies. They confirmed that their multi-objective optimization-based
approach outperforms random search.

Two previous works provided detailed information about multi-objective optimization in soft-
ware engineering. Panerati and Beltrame (2014) compared 15 multi-objective optimization
algorithms on multiprocessor system-on-chip design-space exploration task. Harman et al.
(2012) surveyed the literature on Search-Base Software Engineering, including multi-objective
optimization applications. Hitherto, no previous work applied multi-objective optimization
to solve the potential conflicts brought by different features used in API change rule building.
Therefore, we want to investigate the applicability of multi-objective optimization techniques
to this problem.
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2.5 Summary

Few previous works studied API changes and usages together. No previous approaches stud-
ied API changes on a large scale. Studies on both API changes and usages can be conducted
at more fine-grained level. There is no empirical study to show the usefulness of the API
change rules generated by previous approaches, i.e., if the change rules can help developers
to identify the replacement methods more accurately or faster than without them. Despite
many approaches to build API change rules, the effectiveness of the features used by these
approaches has not been investigated. Also, there is still room to improve the accuracy of pre-
vious approaches building API change rules. Therefore, we conduct three studies presented
in this dissertation to prove our thesis:

Following analyses of the reality of API changes and usages, of the usefulness of
API change rules, and of the effectiveness of the features used to build these rules,
we can build more effective and extendible API change-rule recommendation tools.
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CHAPTER 3 EXPLORATORY STUDY ON API CHANGES AND USAGES

The first study in this dissertation is a large-scale and fine-grained analysis of the reality of
framework API changes and usages. Object-oriented frameworks are widely used in software
systems today (Raemaekers et al., 2012), because they reduce development time and increase
the user-perceived quality of programs through the reuse of existing code implementations
that are considered more reliable and stable (Gamma et al., 1995). Yet, as other software
artefacts, frameworks evolve for various reasons (Hou and Yao, 2011), such as to cope with
new requirements or patch security vulnerabilities.

Because framework upgrades are necessary but costly (Raemaekers et al., 2012; CRA, 2014),
developers must understand better the evolution of frameworks and consider it during devel-
opment process. They should assess and forecast the cost of each framework upgrade based
on the time and the scope of the upgrades. Frameworks are used through their Application
Programming Interfaces (APIs), which specify a set of functionalities that client programs
can use. Differences in API changes and usages affect upgrade costs. For example, developers
can adapt to a class that moved from one package to another more easily than to the removal
of a class. To adapt to the latter change, developers must find a replacement of the removed
class or re-implement it, while for the former, they can simply update the package of the
class. Developers need tools to collect facts about framework API changes and usages in their
client programs as the basis of preparing for API changes and upgrading cost estimation.

Also, researchers must understand better the API changes and usages at a fine-grained level,
so that they can discover the more important aspects of API evolution and develop more
efficient solutions accordingly. For example, previous approaches (Dagenais and Robillard,
2008; Kim et al., 2007; Meng et al., 2012; Schäfer et al., 2008; Wu et al., 2010) build change
rules to help developers find replacements of missing APIs methods. Only if most of the
missing API methods are caused by missing classes or methods, are the change rules built
by such approaches useful.

However, previous approaches did not study API changes on a large scale. Des Rivières
(2008) discussed API contract compatibility in details and classified API changes according
to Java programming language elements, such as package, class, method, etc., but he did
not investigate how the API changes occur in frameworks and client programs. Hou and Yao
(2011) classified API changes in AWT and Swing according to domains and design intention.
Cossette and Walker (2012) investigated the binary incompatibility between several releases
of three Java systems manually, using a different classification from des Rivières. These
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approaches did not investigate how these API changes affect client programs.

For API usages, most of previous approaches did not link API usages with potential changes.
SpotWeb (Thummalapenta and Xie, 2008) distinguishes frequently-used and rarely-used APIs
by mining open-source software repositories. Kawrykow and Robillard (2009) proposed an
approach to detect the cases where client program developers imitate the functions pro-
vided by libraries instead of using corresponding APIs. Lämmel et al. (2011) analysed API
composition-style and inheritance-style API usages in more than 6,000 open-source software
systems. Businge et al. (2013a) studied 512 Eclipse Third-Party Plug-ins (ETPs) regard-
ing internal and official APIs usages. Roover et al. (2013) proposed Exapus, an interactive
approach and developed a Web-enabled tool, to explore API usages from different views.

Moreover, few previous work studied API changes and usages together. Robbes et al. (2012)
conducted a study on how developers react to API deprecation in the Smalltalk Squeak/Pharo
ecosystem. Their work is limited to a specific API change and a less popular language. Diet-
rich et al. (2014) investigated the differences between Java compile-time and link-time com-
patibility and their influences on the client programs. They found that such incompatibilities
widely exist, but affect client programs rarely.

Therefore, we investigate the reality of API changes and usages together at large-scale and
fine-grained level to answer the following research questions:

— RQ1: How do framework APIs evolve?
— RQ2: How do client programs use framework APIs?
— RQ3: How do framework API changes affect client programs?

To conduct our study, we developed a tool, ACUA (Wu et al., 2014a), to extract facts about
API changes and usages from frameworks and client programs. In our study, we follow des
Rivières’s definition and consider public and protected Java programming language elements,
such as classes and methods, as APIs. With ACUA, we first adapt the methodology used in
Robbes et al. (2012) to investigate API evolution in general, then detect the types of API
changes and usages on classes, interfaces, and methods, because they are the most important
program entities (Ali et al., 2012).

We use ACUA to mine API changes and usages in 160,896 releases of 14,987 frameworks
and their client programs downloaded from Maven repository by 2014 September. Maven
is a project management tool from the Apache Software Foundation 1. Maven repository
hosts projects with the information about the dependencies between client programs and
frameworks in their configuration files.

1. http://maven.apache.org/
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To investigating the API changes and usages at fine-grained level, based on the results of
large-scale API change and usage analysis on Maven repository, we focus on the top 11
framework releases with most changed APIs used by client programs from Apache and Eclipse
ecosystems. The frameworks provided by these two ecosystems are widely used in open-source
software development (IBM, 2006; van Zyl and Apache, 2005) and have evolved during the last
two decades with structured dependency and version information between client programs
and frameworks.

Also, the two ecosystems use different strategies to manage API evolution. Eclipse informs
developers about internal APIs and official APIs with Provisional API Guidelines 2. By
definition, internal APIs can be changed without notice and documentation. Apache does
not have explicit regulations on API changes. We want to investigate if there is any difference
between the frameworks from the two ecosystems with respect to API changes and usages.

ACUA categorises API changes according to des Rivières’ classifications (Rivières, 2008) and
reports three facts of API usages: which, where, and how APIs are used in client programs.
With list of used APIs and categorized change APIs, developers can see to what changes they
must adapt their client programs. Researchers can prioritise different types of API changes
according to their frequency in frameworks.

Knowing where the APIs are used in client programs, such as in which classes or methods,
developers can know the spread of API usage in client programs. For the same API changes,
client programs with more API usages are more difficult to adapt to API changes than those
with less API usages, because the former may have more code to change. Developers can
make their client programs more resilient to API changes by controlling API usages and
researchers can develop approaches or tools to facilitate such tasks.

ACUA reports how APIs are used with respect to change-propagation and encapsulation
with composition (Bloch, 2008). ACUA distinguishes five cases of API change-propagation:
extending framework classes, implementing framework interfaces, using framework reference
types or their subtypes as generic types, as method return values, and as formal parameter
types. The client program entities in such cases propagate the changes in the used framework
APIs (if any) to where these client program entities are used. In contrary, if a client program
class only uses a framework class as a private field, the API changes in the framework
class only affect this class and will not be propagated to other places of the client program.
Avoiding using framework APIs in change-propagating ways can also help developers to
alleviate the impact of API changes. Supporting approaches and tools are desirable for
developers as well.

2. http://wiki.eclipse.org/Provisional_API_Guidelines
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We analyse the 22 frameworks from Apache and Eclipse with ACUA. We find that missing
classes and methods happen more often in frameworks and affect client programs more often,
also missing interfaces affect client programs more often than they happen in frameworks.
These phenomena confirm the usefulness of existing API change rule building approaches. On
average, the APIs of one framework are used in 36% of client classes and interfaces, and more
than 80% of such usages could be reduced through applying certain design patterns, such as
Adapter (Gamma et al., 1995). About 20% and 15% of APIs in Apache and Eclipse frame-
works, respectively, are used in change-propagating ways. Avoiding these usages, such as
preferring composition over inheritance (Bloch, 2008), can alleviate the impact of framework
API changes.

3.1 Study Design

We adapt the methodology used in Robbes et al. (2012). Robbes et al. conducted a study
on how developers react to API deprecation in the Smalltalk Squeak and Pharo ecosystem.
They investigated the ripple effects caused by the deprecated methods and classes from
five perspectives: frequency, magnitude, duration, adaptation, and consistency. We do not
analyse duration and consistency in our study, because the time stamps of framework releases
are generally not available in programs downloaded from Maven repository and investigation
of the adaptations of each API change manually is not feasible at the scale of this study.
Therefore, we report our results on frequency, adaptation, and magnitude. In this section,
we present background information about API evolution in general, APIs changes and usages
types, including the definitions on which we base our empirical study.

3.1.1 API Evolution Overview

To measure framework evolution from the perspectives of frequency, adaptation, and mag-
nitude at program level, we first collect the statistical data listed in Table 3.1. Then, we
compute the corresponding metrics below. In Table 3.1, each column represents a subset of
programs in our data set:

Total Frameworks (TF): frameworks, i.e., all the programs in our data set.
Total Client programs (TC): client programs, i.e., all the programs depending on other

programs.
Upgraded Frameworks (UF): the frameworks which have at least two releases used by a

client program.
Upgraded Client programs (UC): the client programs which use at least two releases of

a given framework.
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Table 3.1 Statistical Data of Framework Evolution and Adaptation
Total Upgraded Upgraded with Changed APIs Upgraded with Changed and Used APIs

Framework Number F# UF# UCF# UCUF#
Release Number FR# UFR# UCFR# UCUFR#

Client Program Number C# UC# UCC# UCUC#
Release Number CR# UCR# UCCR# UCUCR#

Upgraded with Changed APIs Frameworks (UCF): the upgraded frameworks which have
API changes between their releases.

Upgraded with Changed APIs Client programs (UCC): the upgraded client programs which
use the framework releases with API changes.

Upgraded with Changed and Used APIs Frameworks (UCUF): the upgraded frameworks
which have changed APIs used by the upgraded client programs.

Upgraded with Changed and Used APIs Client program (UCUC): the upgraded client pro-
grams which use the changed APIs of frameworks.

Frequency

We use the Average Numbers of Releases, ANRF and ANRC, to reflect the frequency of
framework and client program evolution, respectively.

ANRF = FR#
TF# ANRC = CR#

TC# (3.1)

Adaptation

We use four metrics to measure the adaptation of framework evolution. For frameworks,
we compute PUF , the Percentage of the Upgraded Frameworks, and the same percentage
counted in the release number, PUFR, where the postfix R represents releases.

PUF = UF#
TF# PUFR = UFR#

FR# (3.2)

Similarly, we compute PUC, the Percentage of Upgraded Client programs, and the same
percentage counted in the release number, PUCR.

PUC = UC#
TC# PUCR = UCR#

CR# (3.3)
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Magnitude

We report the magnitude at two levels. First, we check how many upgraded frameworks
and client programs with changed APIs, then we look closer to see how many of them with
changed and used APIs. To measure the magnitude of API changes in frameworks and client
programs, we used the Percentages of the Upgraded with Changed APIs Frameworks (Client
programs) in the upgraded frameworks (client programs):

PUCF = UCF#
UF# PUCFR = UCFR#

UFR# (3.4)

PUCC = UCC#
UC# PUCCR = UCCR#

UCR# (3.5)

In a similar way, we used the Percentages of Upgraded with Changed and Used APIs Frame-
works (Client programs) in the upgraded with changed and used APIs frameworks (Client
programs) to measure the magnitude of API changes in frameworks affecting client programs:

PUCUF = UCUF#
UCF# PUCUFR = UCUFR#

UCFR# (3.6)

PUCUC = UCUC#
UCC# PUCUCR = UCUCR#

UCCR# (3.7)

Summary

Using the 14 metrics defined above, we investigate the frequency, adaptation and magnitude
of API evolution in the frameworks and client programs. These data present the overview of
the framework API evolution and client program adaptation at program level.

The frequency is represented by ANRF and ANRC, the average release numbers of framework
and client programs.

The adaptation of client programs is measured by PUC, the percentage of client programs
using at least two releases of a framework in all the client programs. For frameworks, the
adaptation is PUF, the percentage of the frameworks used by the upgraded client programs in
total programs. PUCR and PUFR are the same percentages as PUC and PUF, but computed
in release numbers instead of program numbers.

The magnitude is described at two levels. First, we investigate PUCC, the percentage of
client programs using the frameworks with API changes in the next releases, and PUCF, the
percentage of the frameworks used by such client programs. The subset of client programs
depend on the frameworks with API changes, but the changed APIs in the frameworks may
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not be directly used by the client programs. Second, we look closer and compute PUCUC,
the percentage of client programs using changed APIs in frameworks directly, and PUCUF,
the percentage of frameworks with changed and used APIs. The corresponding metrics with
the postfix R are computed in release numbers.

3.1.2 API Changes

In this section, we present the metrics to measure API change frequency from two angles.

API Changes At Method Level

First, we study the frequency of API changes at method level. We measure how many
APIs are changed and how many API changes are documented during framework evolution.
These two facts can reflect the severity of API changes and the level of help from framework
developers. We use the @deprecated annotation in Java to decide if an API change is
documented. We consider the APIs marked with this annotation as documented API changes.
We define two metrics to measure these two facts: Change Ratio (CR), the percentage of
changed APIs in total APIs, and Deprecation Ratio (DR), the percentage of deprecated APIs
in total APIs.

CR = Changed API#
Total API# DR = Deprecated API#

Total API# (3.8)

API Changes Classification

Furthermore, we want to examine API change frequency from another angle. Rivières (2008)
summarized 149 API changes, based on entities changed in APIs, such as packages, classes,
modifiers. He also pointed out which API changes may cause binary incompatibility (i.e.,
the class files of the new releases of frameworks cannot be linked to client programs without
recompilation) or source incompatibility (i.e., there are errors when the client program source
code is compiled with the new releases of frameworks).

In this paper, we do not distinguish between these two types of incompatibilities because,
as stated by Buchholz (2008), “Every change is an incompatible change" and risk/benefit
analyses are required for all of them. Hence, client developers should be informed of all API
changes and we start from those causing both incompatibilities.

In the classification of API changes proposed by des Rivières, we selected those on classes,
interfaces and methods, also causing incompatibilities, because they are the fundamental
entities of object-oriented programming languages and the incompatibilities break client pro-
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grams. We reorganized des Rivières’ API changes into 23 categories according to their effects
on the client programs. For example, we split Delete API type from API package to Missing
API Type and Moved API Type because any modern IDE can help developers locate the
replacements of the latter easily, but not those of the former.

Among our API change types, 15 are at reference type (classes and interfaces) level (shown
in Table 3.2) and eight are at method-level (shown in Table 3.3). These types of API changes
do not have the same effect on client programs. For example, adapting to the addition of a
new int parameter to an API method is different than adapting to the removal of an API
method, because for the latter, developers must find a replacement of the removed method
or re-implement it. Knowing the distribution of the types of API changes is important for
preparation of API changes in development process and accurate estimations of programs
upgrade workloads.

Therefore, we use PT to measure the frequency of an API change type T between the two
releases of a framework. We first classify the API changes according to the 23 types described
above. Then, we count #T , the number of changed APIs under each type T and #ALL, the
total number of changed APIs. Next, we compute PT , the percentage of the changed APIs
belonging to API change type T following Equation (3.9).

PT = #T
#ALL (3.9)

Figure 3.1 shows an example of PT calculation. In this example, there is one MSC (Missing
Class) and two WMC (With Method-level Changes). Therefore, the frequency of API change
types MSC and WMC are PMSC = 33% and PW MC = 66%, respectively.

Framework V1

A.a()
B.b()
C.c()
D.d()

Framework V2

E.e()
B.b()

C.c(int)
D.d(float)

Client A

X.x(){       
A.a();
B.b();

}

Client B

X.x(){
A.a();       
B.b();
C.c();

}

Use

MSC: Missing Class (A)
WMC: With Method-level Changed (C & D)

API Changes:

API Change Usages:

Client A: 

Client B:

%33MSCP

%100_ UMSCP

%50_ UMSCP

Figure 3.1 Measurement computation
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Table 3.2 Description of framework API change types - reference-type-level

ACUA Des Rivières
MSC (Missing Class)

Delete API type from API packageMSI (Missing Interface)
MVC (Moved Class)
MVI (Moved Interface)
CSIS Contract SuperInterface Set (direct or inherited)
ESIS Expand SuperInterface Set (direct or inherited)

CTB (Change Type Bound)

Add, delete, or change type bounds of type parameter
Add type parameter
Delete type parameter
Re-order type parameters

WMC (With Method-level Change)

Add API method
Delete API method
Move API method up type hierarchy
Move API method down type hierarchy
All method-level changes

CTK Change Type Kind of APIs:
(class, interface, enum, or annotation type)

DA Decrease Access: change public type in API package to make non-public
AAM Add Abstract API Method to class
CTF Change non-final To Final
CTA Change non-abstract To Abstract
CSCS Contract SuperClass Set (direct or inherited)
AMTI Add API Method to Interface

Summary

We investigate API change frequency from two angles. First, we investigate CR, the percent-
age of the changed APIs in total APIs, and DP, the percentage of the APIs whose changes
are documented during framework evolution. These two facts can reflect the severity of API
changes and the level of help that the framework developers provide to support client program
upgrading. Second, we adapt the API change classification of Rivières (2008) to compute
PT , the distributions of different types of API changes. The distributions help client program
developers and researchers better understand how framework developers evolve APIs.

3.1.3 API Usages

Analogously, we introduce the metrics for API usage frequency in this section.

API Usages at Method Level

Similar to API changes, we first investigate API usage frequency at method level. We compute
two metrics Used Ratio (UR) and Used Deprecated Ratio (UDR) to reflect how widespread
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Table 3.3 Description of framework API change types - method-level

ACUA Des Rivières

MSM (Missing Method)

Change method name
Delete API Method
Move API method up type hierarchy
Move API method down type hierarchy

CFP (Change Formal Parameter) Add or delete formal parameter
Change type of a formal parameter

CMTNS Change static Method To Non-Static
CMTS Change non-static Method To Static
CMTF Change non-final Method To Final
CMTA Change non-abstract Method To Abstract
CRT Change Result Type (including void)

DMA
Decrease Method Access:
from public access to protected, default, or private access
from protected access to default or private access

API usage is in client programs.

UR = Used API#
Total API# UDR = Used & Deprecated API#

Total API# (3.10)

API Usages Classification

Also, different types of APIs usages have an impact on the process of adapting client programs
to new releases of frameworks and can be investigated form various perspectives (Thum-
malapenta and Xie, 2008; Kawrykow and Robillard, 2009; Lämmel et al., 2011; Businge et al.,
2013a; Roover et al., 2013). We study the API usage types regarding API change-propagation.
As shown in Table 3.4, type U1 and U2, i.e., class extensions and interface implementations
are two inheritance-style usages that require the understanding of the internal implementa-
tion of frameworks and propagate framework APIs (Bloch, 2008). Indeed, sub classes and
classes implementing interfaces also expose the APIs of the super classes or interfaces defined
in the frameworks. If those APIs change, the affected sub classes and interface implemen-
tations will carry the changes to where they are used in the client programs. However, it is
not always possible to eliminate API inheritance-style usages completely. Frameworks are
designed for the purpose of inversion of control (IOC) (Gamma et al., 1995), i.e., client pro-
grams become a part of frameworks by overriding or implementing methods in the classes or
interfaces provided by the frameworks. However, if a sub class extending framework classes or
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Table 3.4 Description of framework API usage types
Type Framework API Usage Change-propagating
U1 Inheritance for IOC Yes
U2 Optional inheritance Yes
U3 As generic types Yes
U4 As method return types Yes
U5 As method formal parameter types Yes
U6 With method implementations No

implementing framework interfaces does not override any methods invoked inside the frame-
work, it is not for IOC and probably is an optional-inheritance, that can be replaced with a
composition (Bloch, 2008), to encapsulate framework APIs with client program classes, thus
to reduce the impact of the APIs changes. An example of composition-style usage is the
use of framework reference types as private fields in client classes while only accessing them
within method implementations.

Besides inheritance-style usages, there is also the possibility to use framework classes or
interface types or their subtypes in change-propagating ways, as U3 − U5 in Table 3.4.
If client programs use framework APIs as generic types, method return types, or formal
parameter types, client programs still propagate the API changes within the framework
classes or interfaces used, even they do not inherit these framework classes or interfaces. As
illustrated in Figure 3.2, in Client A, the developer extends framework class A to create class
X and use X as parameter in other methods. If there is an API change in A, every place using
X must be modified. In Client B, A is used in a composition-style. When A changes, only
the wrapper X is affected. Thus, avoiding API change-propagation can help developers adapt
to API changes while upgrading frameworks. They only need change the code that directly
uses framework APIs.

Framework V1

A.a()

Framework V2

B.b()

Client B

X{
A frA;
a(){  frA.a(); }

}
// Protected
// from the changes to A
Y.y(X x){

x.a();
}

Use

Client A

X extends A{ }   

// Directly affected
// by the changes to A
Y.y(X x){

x.a();
}

Figure 3.2 API change propagation
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To capture how widespread API usage is in client programs, we first define the Infiltration
Ratio (IR) metric. IR reflects the percentage of client program entities that use the framework
APIs directly. The lower is the value of IR, the easier it will be for developers to adapt
API changes. In Equation (3.11), RefTypes stands for reference types (e.g., classes and
interfaces).

IR = #RefTypes Using APIs
#Total RefTypes (3.11)

Then, based on our API usage type classification, we also define the Ideal Infiltration Ra-
tio (IIR) metric to compute the lowest IR value that a client program can reach. Here,
#RefTypes For IOC is computed using the number of reference types in client programs
that override framework methods called inside frameworks. An IOC (i.e., inversion of con-
trol) reference types must use framework APIs through inheritance. Other types of API
usages can be encapsulated with small numbers of local classes. The practical lowest IR
value should be slightly larger than IIR, because we must consider encapsulating classes.

IIR = #RefTypes For IOC
#Total RefTypes (3.12)

Figure 3.3 shows an example of API usage by a client program. In this example, FC is a
framework class and FI is a framework interface of IOC, because its method fr_mi() is
invoked inside the framework. The client program has three classes: C1 extends FC, C2
implements FI, and C3 does not use framework APIs. Among them, only C2 is the class
connecting with the framework through IOC. Therefore, IR and IIR values for this client
program are 67% and 33%, respectively.

As shown in Table 3.4, Type U1− U5 are change-propagating ways to use framework APIs.

// Framework
public class FC {

public void fr_mc ( FI f r I ){ f r I . fr_mi ( ) ; } }

public interface FI{
public void fr_mi ( ) ; }

// C l i e n t
public class C1 extends FC{ . . . }

public class C2 implements FI{
public void fr_mi ( ){ . . . } }

public class C3 { . . . }

Figure 3.3 IR and IIR example
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U1 is required if client programs want to integrate with frameworks. U2 − U5 propagate
framework APIs, when the API changes, because not only they are affected when the used
APIs change, but also they propagate the impact to where these client program elements
are used. Also, some cases of U6 may be caused by U2 − U5. Therefore, reducing the
cases of U2 − U5 is a way to decrease IR. Consequently, we define ACPR (API Change-
Propagation Ratio) to measure the severity level of API change-propagation. Lower value of
ACPR represents less API change-propagation.

ACPR = #RefTypes With U2 − U5
#Total RefTypes (3.13)

Summary

We study API usage frequency at method level first, then investigate it from the point of views
of API change-propagation. We report them in UR, the percentage of used APIs in client
programs, and UDR, the percentage of used and deprecated APIs, to describe API usages
at method level. We also report IR, the percentage of the classes and interfaces in client
programs to measure the wideness of API usage. Based on our API usage classification, we
compute IIR, the lowest IR that a client program can reach without changing the interaction
with a used framework, and ACPR, the percentage of APIs used in a way that carries their
changes to where they are used. UR and UDR give us a reference point of API usage study.
IR, IIR, and ACPR provide basis when developers estimate the cost to upgrade the client
programs to new releases of frameworks.

3.1.4 API Change Effects

After investigating API changes and usages individually, we study further to see the magni-
tude of changed APIs affecting client programs.

API Change Effects at Method Level

To describe API change effects at method level, we define two metrics: Used Changed Ratio
(UCR), the percentage of changed APIs in used APIs by client programs, and Used, Changed,
and Deprecated Ratio (UCDR), the percentage of APIs used in client programs, marked as
deprecated in one release, and not existing in the next releases of frameworks.
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UCR = Used & Changed API#
Total API# (3.14)

UCDR = Used & Changed & Deprecated API#
Total API# (3.15)

API Change Type Effects

To observe the effects of each type of API change T on a client program, we use the metric
PT _U to measure the proportion of APIs that experienced a change of type T and are used by
client programs, in the total number of changed APIs used by client programs. We compute
PT _U following Equation (3.16).

PT _U = #T_U
#ALL_U (3.16)

where #T_U is the number of changed APIs of Type T used by client programs and
#ALL_U is the number of all changed APIs used by client programs.

Figure 3.1 shows an example of PT _U calculation. In this example, client A only uses one
changed API affected by NEC and client B uses another change API affected by WCM
additionally. Thus, PMSC_U is 100% for A and PMSC_U is 50% for B. Developer and researchers
can know which types of API changes affect client programs more often with PT _U .

Summary

Besides API change and usage frequency, we study the magnitude of changed APIs affecting
client programs. We measure the magnitude at method level with UCR, the percentage of
changed APIs used in client programs, and UCDR, the percentage of changed and deprecated
APIs used in client programs. To measure the magnitude of the effects of API change types,
we define PT _U , the percentage of the APIs under a change type T used in client programs.

3.1.5 Research Questions

With the set of metrics defined above, we can provide more detailed information to answer
three high-level research questions:

— RQ1: How do framework APIs evolve?
— RQ2: How do client programs use framework APIs?
— RQ3: How do framework API changes affect client programs?
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Concretely, we can use these metrics to answer the following detailed research questions:

— RQ1.1: How often frameworks and client programs evolve? (ANRF and ANRC)
— RQ1.2: How many client programs adapt to framework evolution? (PUF and PUC)
— RQ1.3: How many APIs change during framework evolution? (CR)
— RQ1.4: How many APIs are marked as deprecated during framework evolution? (DR)
— RQ1.5: How often does each type of API changes happen in frameworks? (PT )

— RQ2.1: How many APIs are used by client programs? (UR)
— RQ2.2: How many used APIs are marked as deprecated? (UDR)
— RQ2.3: How widely do APIs infiltrate in the client programs? (IR )
— RQ2.4: How widely does API change-propagation exist in client programs? (ACPP )
— RQ2.5: How many API usages in client programs can be encapsulated? (IIR)

— RQ3.1: How many client programs adapt to frameworks with API changes? (PUCF ,
PUCC, PUCUF , and PUCUC,)

— RQ3.2: How many changed APIs are used by client programs? (UCR)
— RQ3.3: How often is each type of API changes used in client programs? (PT _U)

In the next section, we present how to conduct our study.

3.2 Study Execution

To present our study execution, we first introduce the tool, ACUA, to collect API changes
and usages to compute the metrics defined above. After, we describe the dataset to analyse.

3.2.1 Tooling

At the beginning, we describe the modules of ACUA in brief, then provide more detailed
information about its API change and usage detection algorithms. In the end, we demonstrate
the work flow, and the inputs and the outputs of ACUA with a running example. The
functional modules of ACUA are shown in Figure 3.4. The elements with gray background
are the modules and those with white background are the inputs and outputs.

Inputs

Maven Projects For frameworks and their client programs managed as Maven projects,
ACUA takes the Maven POM (Project Object Model) configuration files of two releases of
frameworks as inputs, because ACUA analyses API changes between the two releases. Maven
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is a project management tool from the Apache Software Foundation 3. Maven projects store
the information about the dependencies between client programs and frameworks in POM
files. The advantage of using Maven POM files is that Maven is widely used in software
development and provides the complete information required by ACUA, such as dependencies
and Jar file locations.

Other projects We convert other projects with dependency information, such as Eclipse
plug-ins, to Maven projects, then analysed by ACUA. For example, the dependency informa-
tion of Eclipse plugins are managed in two ways. From Eclipse 1.x to 3.0, the required plug-ins
are specified under the requires node in the plugin.xml file contained in the plug-in folders.
From Eclipse 3.1 to 4.x, the plug-in dependencies are configured in the Require-Bundle or
Import-Package sections of the MANIFEST.MF files of the Jar files. We use the two formats of
dependency information in Eclipse plug-ins, converts them into POM files and install the gen-
erated POM files and corresponding plug-in Jars into the Maven repository, so that Eclipse
plug-ins can be processed uniformly as Maven projects. For non-Maven programs whose
dependencies do not always have version information, like projects managed by Apache Ant,
developers must complete the version information.

Modules

Framework Usage Analyser (FUA) uses the information in POM files to detect the changes
in framework versions. FUA also requires a connection to Maven repository to download the
Jar files of the corresponding versions of the frameworks and their client programs. FUA
interacts with Maven repository through Aether library (Bentmann and Zyl, 2012).

Next, Model Builder parses the Jar files of the frameworks and the client programs to build
the models containing reference types, method definitions, call and inheritance relations of
framework and client program releases, according to our meta-model. Model builder uses
the ASM Java bytecode analysis framework Bruneton et al. (2000) to extract the model data
from the Jar files. We analyse Jar files because they contain fully-qualified names of Java
entities, such as classes and methods. We save the effort to resolve the entity names, which
is required to analyse Java source code.

Taking the models as input, API Change Analyser (ACA) detects the API changes between
the two releases of frameworks and classifies them into the types presented in Section 3.1.2.
ACA outputs the API changes as API change reports of the two releases of each framework.

3. http://maven.apache.org/
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POM files of 
two releases

Framework 
Usage 

Analyser

Jars of 
Frameworks 
to Upgrade

API Change 
Analyser

API change
reports

Client Jars API Usage 
Analyser

API Usage 
Reports

Post Processors

Data for 
Summarization

Data for Other 
Analyses

Model 
Builder

Maven 
Repo

Framework 
Models

Client Models

Data for 
Visualization

Figure 3.4 ACUA Modules

Based on the API change reports and the client models, API Usage Analyser (AUA) detects
which, where, and how the APIs of the frameworks used in the client programs, then verifies
if the used APIs are changed in the new releases of frameworks and are affected by which
types of API changes. As the output, AUA generates API usage reports for each framework
including how the used APIs are affected by API changes.

API change analysis ACUA detects API changes between two releases of a framework at
reference type (classes and interfaces) level and method-level in ACA. To analyse reference-
type-level API changes, ACA first classifies the reference types of two releases of a framework
into four categories as shown in Table 3.5: EBO (Existing in Both releases from the Old),
EBN (Existing in Both releases from the New), EOO (Existing Only in the Old release), and
EON (Existing Only in the New release). The names of classes and interfaces contain their
package names and reference type names, without considering type kind (class or interface),
modifiers, and generic type parameters. So, an interface in EBO may become a class in
EBN with the same name. Also, a class with the same name in EBO and EBN may have
differences in their methods because of behaviour changes.

Then, ACA checks if the classes and interfaces in EOO have counterparts in the EON with
the same type names, but different package names. Those having such counterparts are
classified as Moved types (classes, interfaces) and the rest are classified as Missing types.

Next, ACA checks the classes and interfaces in EBO and EBN to detect the types of the
rest API changes. Figure 3.5 is the flowchart of the reference-type-level API change type
detection algorithm.

For classes and interfaces in EBO, ACA detects method-level API changes as follows. First,
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Figure 3.5 Type-level API change detection algorithm
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Table 3.5 Categories of classes and interfaces

Releases Classes and interfaces
With same names in both releases With names only in one release

Old EBO (Existing in Both from Old) EOO (Existing Only in Old)
New EBN (Existing in Both from New) EON (Existing Only in New)

ACA checks if there is another method with the same name in EBN. If there is not, ACA
classifies the method as a Missing Method. If there is one, ACA checks if the other method-
level API changes happened to the method. The flowchart of the method-level detection
algorithm is shown in Figure 3.6.

A changed API can belong to more than one API change types. For example, added field to
interface and added method to interface can happen to the same interface.

API Usage Analysis AUA checks which and how APIs are used by analysing API type
inheritances and API method invocations in client programs. It reports the usage types
U1− U6 in Table 3.4. The detection algorithm is shown in Figure 3.7. AUA collects which
APIs are used, if they are used for inversion of control, where they are used and the types of
API changes by which they are influenced. The results of API usage detection are stored in
a data structure shown in Figure 3.8.

Running Example We describe the working flow of ACUA using solr-core 4 version 3.6.2
as a running example. Solr is a open source search platform based on Apache Lucene 5.
One framework used by solr-core v3.6.2 is lucene-core v3.6.2 and the Solr development team
wants to upgrade to lucene-core v4.0.0 in the next release (assuming it is also v4.0.0). They
use ACUA to collect the information about the API changes between lucene-core v3.6.2 and
v4.0.0 and how the changes used in Solr v3.6.2, because they need to estimate the upgrading
work load and plan upgrading task accordingly.

Solr developers first create a POM file for v4.0.0 in which the version of lucene-core is
changed to v4.0.0 according to the upgrading goal. A snippet of the POM file is shown
in Figure 3.9. In POM file, The releases of solr-core and lucene-core are represented by
<groupId>, <artifactId>, and <version>. The release information of lucene-core is under
<dependency> node and that of solr-core is at the root level.

Then, Solr developers run ACUA with the two POM files of Solr, v3.6.2 and v4.0.0, respec-

4. http://lucene.apache.org/solr/
5. http://lucene.apache.org/
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. . .
<groupId>org . apache . s o l r</ groupId>
<a r t i f a c t I d>s o l r −core</ a r t i f a c t I d>
<version>4 . 0 . 0</version>
. . .

<dependenc ies>
<dependency>

<groupId>org . apache . lucene</ groupId>
<a r t i f a c t I d>lucene−core</ a r t i f a c t I d>
<version>4 . 0 . 0</version>

</ dependency>
. . .

Figure 3.9 Snippet of solr-core v4.0.0 POM file
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tively. ACUA detects the version changes in lucene-core (v3.6.2 to v4.0.0), then it analyses
the Jar files of the two releases of lucene-core and solr-core v3.6.2 to generate API change
and API usage reports for them. To facilitate post processing, API change and API usage
reports generated by ACUA are in XML format. Figure 3.10 is a part of API change report
for lucene-core v3.6.2 to v4.0.0. In the report, the information of two releases of frameworks,
the types of API changes, the levels and the changed APIs are stored in specific nodes.
Developers can search, analyse them according to the changed APIs.

The API usage report lists the information of the release of the client program and of the two
releases of the framework to upgrade, the used APIs, the types of the usages and the change
types affecting the APIs in the new release of the framework, as shown in Figure 3.11.

The reports in XML format are easy to automatically process, but difficult to read by human.
ACUA also provides post-process modules to convert the reports to plain text format and
to summarize the contents in the reports for statistical analysis or visualization. As shown
in Section 5.3, developers can process the API change and API usage reports and generate
the graph of the distributions of the types of API changes in the frameworks and compare it
with that of the distributions of the types of API changes used in the client programs.

3.2.2 Dataset Description

In our study, we use two sources of data: Maven central repository (van Zyl and Apache,
2005) and Eclipse SDKs (Eclipse, 2014). The programs from these two sources have struc-
tured dependency and version information between client programs and frameworks. We aim
to study both API changes and usages, so we need not only frameworks and their client pro-
grams, but also their dependencies and versions. Because of the increasing inter-dependencies
between programs (Bavota et al., 2013), a program can be both a client program of other
frameworks or used as a framework by other programs. In our study, if a program exists in
the dependencies of other programs, we treat it as a framework and analyse its API changes.
If the program also depends on other programs, we analyse the used APIs as well.

Our exploratory study of API changes and usages has two objectives: an overview and a
more detailed investigation into different types of API changes and usages. We use different
datasets to achieve the two goals.

To present an overview of API changes and usages, we analyse the programs for Maven
central repository at method level. There are 14,987 programs in our snapshot of Maven
central repository taken by September 2014. Among them, 3673 programs are developed
by Apache and 115 programs are developed by Eclipse. Methods are the most important
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<I n c o m p a t i b i l i t i e s>
<programName>
org . apache . l u c e n e : l u c e n e −core
</programName>
<oldVers ion>3 . 6 . 2</ o ldVers ion>
<newVersion>4 . 0 . 0</ newVersion>
<i n c o m p a t i b i l i t i e s>

<type>AddAbstractMethod</ type>
<i n s t a n c e s>

<l e v e l>type</ l e v e l>
<oldAPI>
c l a s s org . apache . lucene . a n a l y s i s . Analyzer

</oldAPI>
</ i n s t a n c e s>

. . .
</ i n c o m p a t i b i l i t i e s>

. . .
</ I n c o m p a t i b i l i t i e s>

Figure 3.10 Snippet of lucene-core v3.6.2-v4.0.0 API change report

<exposureReport>
<clientName>
org . apache . s o l r : s o l r −core
</ clientName>
<c l i e n t V e r s i o n>3 . 6 . 2</ c l i e n t V e r s i o n>
<frameworkName>
org . apache . l u c e n e : l u c e n e −core
</frameworkName>
<oldVers ion>3 . 6 . 2</ o ldVers ion>
<newVersion>4 . 0 . 0</ newVersion>
<apiUsages>

<type>EXTENSION</ type>
<apiUsages>

<oldAPI>
c l a s s org . apache . lucene . a n a l y s i s . Analyzer

</oldAPI>
<invocatedInFramework>
true
</ invocatedInFramework>
<i n s t a n c e s>

<e n t i t i e s>
c l a s s org . apache . s o l r . a n a l y s i s . TokenizerChain

</ e n t i t i e s>
<incompat ib i l i tyType>
AddAbstractMethod
</ incompat ib i l i tyType>

</ i n s t a n c e s>
. . .

</ apiUsages>
. . .

</ apiUsages>
. . .

</ exposureReport>

Figure 3.11 Snippet of solr-core v3.6.2 API usage report on lucene-core v3.6.2-v4.0.0
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software elements (Ali et al., 2012) and are studied by most of previous works (Dagenais and
Robillard, 2011; Godfrey and Zou, 2005; Kim et al., 2007; Kpodjedo et al., 2013; Schäfer
et al., 2008; Wu et al., 2010; Xing and Stroulia, 2007a).

To investigate the different types of API changes and usages, we use the frameworks from
two framework ecosystems Apache and Eclipse as the dataset. The frameworks provided by
these two ecosystems are widely used in open-source software development (IBM, 2006; van
Zyl and Apache, 2005) and have evolved during the last two decades. The two ecosystems
are different in managing API evolution. Eclipse provides Provisional API Guidelines 6 to
distinguish internal APIs and official APIs. By the definition, internal APIs can be changed
without notice and documentation while official APIs are more stable. Apache does not have
explicit regulations on API changes. We want to investigate if there is any difference between
the frameworks from the two ecosystems with respect to API changes and usages. Also, since
internal and third party client programs may use frameworks in different ways, we study the
two types of client programs separately.

For Apache frameworks and their client programs, we identified the projects whose IDs start
with “org.apache" as Apache frameworks or client programs and others as third party. For
Eclipse frameworks and internal client programs, we select 16 releases of Eclipse SDK (1.0-
4.3) directly from Eclipse archive website (Eclipse, 2009) instead of Maven central repository,
because not all Eclipse frameworks are hosted there. We have 145 Eclipse frameworks (we
treat each plug-in as a framework) with 1,017 releases. Eclipse does not have a central repos-
itory (as Maven repository) to host third-party plug-ins with structured version information.
Businge et al. (2010) studied the evolution of 21 Eclipse third-party plug-ins. Thus, we se-
lected 15 plug-ins and downloaded 41 releases of the third-party plug-ins used in Businge
et al. (2012), which have explicit mapping to Eclipse API levels on their host websites. We
manually downloaded these releases and build the client-framework version mappings.

Based on the results of the study on the overview of API changes and usages, we sort the
framework releases by the numbers of changed APIs that are used by their client programs.
Only 11 Eclipse framework releases were used by both internal and third-party client pro-
grams. To compare the same number of frameworks of the two ecosystems, we choose also
top-11 framework releases from Apache. Finally, our data set contains 198 internal and 130
third-party client program releases for the 11 Apache framework releases and 84 internal and
28 third-party client program releases for the 11 Eclipse framework releases, in our dataset
for the study on API change and usage types.

6. http://wiki.eclipse.org/Provisional_API_Guidelines
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3.3 Study Results

This section presents and discusses the results of our study, according to the research ques-
tions introduced in Section 3.1.5.

3.3.1 API Evolution Overview

Following the methodology used by Robbes et al. (2012), we investigate framework API
evolution in terms of frequency, adaptation, and magnitude. In this section, we present the
results about the former two and the results of magnitude will be presented in Section 3.3.4.

RQ1.1: How often frameworks and client programs evolve?

For frequency, on average, each framework and client program in Maven repository have 11
(ANRF) and 12 (ANRC) releases, respectively.

RQ1.2: How many client programs adapt to framework evolution?

For adaptation, 78% (PUC) of client programs upgraded to new releases of frameworks and
only 42%(PUF) of frameworks have upgraded client programs, as shown in Figure 3.12. The
data on release numbers are similar with PUCR of 78% and PUFR of 49%.

Summary

Frameworks and client programs evolve with similar frequency, 11 and 12 releases per frame-
work and client program, respectively. We argue that the increasing inter-dependencies
between programs (Bavota et al., 2013) make the differences between framework and client
programs less and less obvious.

Most client programs (78%) adapted to new releases of frameworks at least once, but only
to less than half (42%) of frameworks. It is interesting to investigate further to find out the
characteristics of the frameworks that client programs keep evolving with.

3.3.2 API Changes

API changes are the consequence of framework evolution. Better understanding of how APIs
change helps developers estimate and perform upgrading tasks. Also, it helps researchers
develop more effective to reduce upgrading costs. General information of API changes at
large scale can provide a reference point to evaluate the severity of API changes. Different
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Figure 3.12 Percentages of framework and client program upgraded

types of API changes may have different impacts on client programs. Knowing which types
of API change happen the most in frameworks is important for client program developers
and researchers in software engineering. The answer of this question can help them better
understand how framework developers modify APIs. Client program developers could take
more precautions to frequent API change types and researchers can give higher priorities to
develop approaches or tools for the API changes which occur more often.

RQ1.3: How many APIs change during framework evolution?

Most upgraded frameworks change their APIs, but only in a small percentage of their releases.
API changes exist in more than half (59%) of these frameworks and in about one quarter
(24%) of their releases. At method level, 10% APIs changed during framework evolution.
Also, we find that, among all the methods with signature changes, 80% are API methods.
Therefore, most changes that developers made to method signatures are in API methods,
although the changed APIs are a small part of APIs.
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RQ1.4: How many APIs are marked as deprecated during framework evolution?

Only 2% of changed APIs are marked as deprecated by framework developers and 52% of
methods marked as deprecated are not API methods. Robbes et al. (2012) found the same
phenomenon in Smalltalk frameworks. Developers do not document most API changes. In
half of the cases, framework developers document the changes in methods for internal use.

RQ1.5: How often does each type of API changes happen in frameworks?

Figure 3.13 and 3.14 show the distributions of reference-type-level and method-level API
change types in Apache and Eclipse frameworks. The total numbers of API change types in
frameworks are shown in Table 3.6. At reference-type-level, the total number of API changes
are 807 for Apache frameworks and 2,731 for Eclipse plug-ins. Three of the top four API
change types in both ecosystems are the same: WMC (With Method-level Changes, 1st),
MSC (Missing Class, 2nd), and ESIS (Expand Super Interface Set, 4th). The third most
frequent type of API change in Apache frameworks is CSIS (Contract Super Interface Set).
In Eclipse framework, the third most frequent type of API change is CSCS (Contract Super
Class Set). These four types of API changes represent more than 80% of all the changes
(87% for Apache and 82% for Eclipse).

The more detailed classifications of WMC are presented at method-level API changes. In
total, Apache frameworks have 1,403 and Eclipse plug-ins have 3,393 method API changes.
The top four types of API changes are the same, i.e., MSM (Missing Method), CFP (Change
Formal Parameter), CRT (Change Return Type), and DMA (Decrease Method Access), in
both ecosystems and they cover 98% of the total number of method-level API changes.

Adapting different types of API changes does not require the same effort. MSC is the second
and MSM is the most frequent API change at reference type and method-levels, respectively.
MSC, and MSM may be caused by renaming and removing. Although renaming is relatively
easy to adapt, finding the correct replacements for a large number of renamed methods or
classes is still time-consuming. The adaptation of client programs to removed APIs is even
more challenging.

Table 3.6 Numbers of API changes and usages
Framework Apache Eclipse

API Type-level Method-level Type-level Method-level
Change 807 1,403 2,731 3,393

Usage Internal 493 378 96 43
Third-party 77 58 35 25
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If APIs still have the same reference type or method name after being changed, finding the
replacements of the changed APIs is easier for client program developers because modern
IDEs, such as Eclipse, support searching by name effectively. If reference type names are
changed, developers will spend time on identifying a suitable starting point for their upgrade.
There is no reliable way for developers to locate the replacements of reference types with
different names yet. Although IDEs support fuzzy searches and there are approaches to
generate API change rules, the results of fuzzy searches depend on the quality of the queries
and API change rule tools are not 100% accurate. Developers must find the replacements
of the missing classes, interfaces, and methods manually, when the searches do not provide
the right replacements or the change rules are not correct. Therefore, framework developers
should avoid removing reference types and methods used as APIs or changing their names.

For unavoidable API name changes, effective documentations can ease the upgrading process.
Especially, more detailed descriptions about where and when the new APIs are used in the
new releases of frameworks are necessary for inheritance-style usage. It is time-consuming
to provide detailed documentations for frameworks. However, the imperfect change rules
generated by tools, such as (Arnaoudova et al., 2014; Dagenais and Robillard, 2011; Kim
et al., 2007; Meng et al., 2012; Wu et al., 2010), do help developers to find the replacement of
missing APIs and can be used as supplements to insufficient documentations, as shown by our
empirical study (Wu et al., 2014b). If tools can generate documentations while performing
code-refactoring, it would also be a great help, because Dig and Johnson (2006) showed
more than 80% API changes are caused by refactoring. In practice, the percentages of the
API changes caused by refactoring vary between frameworks, but these API changes may be
difficult to detect because sequential refactorings can confuse the tools.

Summary

Most (59%) upgraded frameworks change their APIs but, only in a small percentage (24%)
of their releases. Most changes (80%) that developers made to method signatures are in
API methods, although the changed APIs are a small part (10%) of APIs. Developers only
document small part (2%) of API changes. In about half (52%) of the cases, framework
developers document the changes in methods for internal use.

Missing classes (MSC) and methods (MSM) are the most frequent API change. MSC and
MSM may be caused by renaming and removing. Adapting client programs to frameworks
with such API changes is challenging. Framework developers should provide more detailed
documentation to guide client program developers upgrading. When such documentations
are missing, the imperfect change rules generated by tools, such as (Arnaoudova et al., 2014;
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Dagenais and Robillard, 2011; Kim et al., 2007; Meng et al., 2012; Wu et al., 2010), can help
developers find the replacement of missing APIs. Tools generating documentations while
performing code-refactoring is interesting future work.

3.3.3 API Usages

Framework APIs may change between releases. Knowing how widely APIs infiltrate or are
used in client programs will help developers estimate the upgrading cost of API changes. For
example, a changed API used in many locations in client programs may cause the Shotgun
Surgery (Fowler et al., 1999) code smell, i.e., lots of little changes in multiple classes, which
would result in high upgrade costs. General information of API usages at large scale can
provide a reference point when developers perform such evaluations.

API infiltration can be caused and amplified by using API in change-propagating ways, such
as U2−U5 in Table 3.4. It is interesting to know how much of the API usages belonging to
U2−U5, from which developers can start reducing API infiltration. Researchers can develop
approaches or tools to facilitate this task.

RQ2.1: How many APIs are used by client programs?

Client programs use only 16% of the APIs provided by the frameworks. The low number of the
used APIs may be caused by that client program developers do not need or do not know how
to use the other APIs (Kawrykow and Robillard, 2009). In both cases, framework developers
should examine the design and documentation of the APIs that they currently provide, then
decide to encapsulate the unwanted APIs or provide more efficient documentation to help
client program developers use those necessary.

RQ2.2: How many used APIs are marked as deprecated?

We did not find any case where client programs use APIs marked as deprecated by framework
developers. This is a positive reaction from client program developers to the warnings given
by framework developers about API changes. However, framework developers still keep 98%
of the APIs marked deprecated, as we show in Section 3.3.2.

RQ2.3: How widely do APIs infiltrate in the client programs?

Table 3.7 lists the numbers of releases and the average numbers of the reference types in the
client programs of Apache and Eclipse frameworks. Generally, the internal client programs
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are larger than those from third-party. Figure 3.15 shows their IRs. Similar to their sizes,
internal client programs have higher IRs than third-party client programs in general, but
both can reach 100%, which means that all the reference types of these client programs
could be affected by API changes. In Figure 3.15, the Y axis represents the values of IRs
of client programs while the width of the graph in X axis represents the number of client
programs with corresponding IR values. For example, from Figure 3.15(a), we can learn that
the number of client programs with IR of 10% is as double as the number of those with IR
of 40% in Apache internal client programs.

Framework APIs are used in more places in internal client programs than third-party client
programs. The IRs are 44% and 38% in Apache, and 37% and 26% in Eclipse, for internal
and third-party client programs, respectively. The average IR is 36%.

RQ2.4: How widely does API change-propagation exist in client programs?

As shown in Figure 3.16, the values of ACPRs are 22% and 24% in Apache, and 16% and
14% in Eclipse, for internal and third-party client programs, respectively. On average, ACPR
is 18% for the client programs in our dataset. Developers can encapsulate the framework
API usages of U2 − U5 with local APIs, such as using composition to replace U2. First,
such encapsulation can reduce IRs directly by avoiding U2−U5. Second, the number of U6
caused by U2 − U5 also decreases. Consequently, client programs will be affected less by
framework API changes.

RQ2.5: How many API usages in client programs can be encapsulated?

However, the framework API usages in client programs can be reduced except U1, i.e.,
inheritance for IOC. We use IIR to represent the lowest boundary of API usage in client
programs. It is the ratio of client program classes and interfaces used for IOC.

As shown by the IIR distributions in Figure 3.17. The IIRs are 11% and 3% for Apache
internal and third-party client programs, respectively, while those are 4% and 1% for Eclipse
client programs.

Table 3.7 Numbers of and average numbers of reference types in client program releases

Ecosystems Apache Eclipse
Internal Third-party Internal Third-party

# Client Program releases 198 130 84 28
Average # Reference Type 193 140 400 72
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On average, the differences between IRs and IIRs are 33% and 35% in Apache, 33% and 25%
in Eclipse, for internal and third-party client programs, respectively. In total, the average IR
and IIR of all the client programs in our study are 36% and 5%, i.e., more than 80% of API
usages can be encapsulated with composition.

Besides IRs and IIRs, the distributions of the number of APIs used by each reference type in
client programs can provide more detailed information of API usages in a specific client pro-
gram. Figure 3.18 shows an example between cse.green.relationship.composition v2.5.0 us-
ing eclipse.jdt.core v3.2 and anyedit.AnyEditTools v1.8.2 using eclipse.ui.editor v3.2. The
Y axis represents the numbers of the APIs from the two frameworks that the two client pro-
grams use in a class or interface. The width of the graph in X axis represents the proportion of
classes and interfaces where the two client programs use corresponding numbers of framework
APIs. Figure 3.18(a) and Figure 3.18(b) shows that cse.green.relationship.composition uses
more APIs from eclipse.jdt.core than those anyedit.AnyEditTools uses from eclipse.ui.editor.
Also, the API usages in cse.green.relationship.composition spread wider than anyedit.Any
EditTools, because the former has more reference types using many APIs than the lat-
ter. Therefore, cse.green.relationship.composition is more likely to get affected by the API
changes in eclipse.jdt.core.

Based on the shapes of the distributions, we can learn that the Kisses shape of the usages of
APIs in anyedit.AnyEditTools is preferred over the Vase shape of API usages in cse.green.
relationship.composition. The former has less reference types using framework APIs, also
using smaller numbers of APIs in classes and interfaces, than the latter.

Summary

Client programs only use a small part (16%) of framework APIs and do not use APIs marked
as deprecated. Framework developers should have more concise design to encapsulate the
unwanted APIs or provide more effective documentation to help client programs to use APIs.

Besides API changes, API usage is another factor affecting client program upgrading costs.
Widely-spread API usages are more difficult to adapt to API changes. On average, framework
APIs are used in 36% (IR) of the classes and interfaces of client programs and 18%(ACPR)
of them are used in change-propagating ways. The results of IIR (5%) show that 80% of API
usage can be reduced. Also, the low value of IIR reveals that frameworks are designed for
IOC, but their APIs are accessed as libraries more often.

Client developers should keep monitoring the IRs of their client programs and keep their
values as low as possible. The difference between IR and IIR shows the room for reducing
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API infiltrations. As recommended by Bloch (2008), composition-style usage can encapsulate
framework APIs and prevent propagating their changes. Also, composition-style usage avoids
fragile base class problem (Mikhajlov and Sekerinski, 1998) affecting client programs, i.e.,
internal changes in base classes could break client programs, even there is no API change.
Approaches and tools help developer for such specific encapsulation tasks are interesting for
researchers in software engineering.

Reducing framework API usages in client programs can be further illustrated as Figure
3.19. Ideally, client programs should only keep U1 and U6 and encapsulate U2 − U5 with
composition-style usage. Tools like ACUA can help developers by identifying U2−U5 usages.

IIR is the lower boundary of IR, but it is not necessary for client programs to reach this
boundary for all the frameworks. Developers decide on how tight the coupling between
their programs and a framework should be. For stable frameworks, developers can stay with
the current IR level because their APIs will rarely change between releases. They should
reduce IRs for unstable or to-be-replaced frameworks because this will probably minimize
the changes required to upgrade to new releases.

Inheritance-style usage or U1 is also not avoidable, because frameworks are designed for
inversion of control. However, developers still can protect client programs by loosening the
coupling to framework APIs (Gamma et al., 1995). Facade or Adapter patterns (Gamma
et al., 1995) can provide a buffer layer between client programs and frameworks. Thus, client
programs and frameworks can evolve relatively independently.
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3.3.4 API Change Effects

After investigating how APIs change in frameworks and are used in client programs, we fur-
ther study how the changed APIs affect client programs. First, we check API change effects at
program level. On the one hand, we investigate how many upgraded client programs depend
on frameworks with API changes. Such client programs may not directly use changed APIs,
but may use them in future releases. On the other hand, we analyse how many upgraded
client programs directly use changed APIs. Second, we check how many APIs are used at
method level. Third, because different types of API changes do not occur with the same
frequency in frameworks. They may not happen in client programs equally either. Knowing
the frequency of different types of API changes in client programs, framework developers
could decide to avoid these types of API changes whenever possible and–or provide more
detailed documentation (e.g., about how to upgrade client programs accordingly) whenever
they occur during a framework evolution. Researchers could also develop techniques and
tools to ease the upgrading process of client programs to adapt such frequent changes.
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RQ3.1: How many client programs adapt to frameworks with API changes?

For the magnitude of the effect of API changes, most upgraded frameworks change their
APIs, but only in a small percentage of releases as shown in Figure 3.20. PUCF and PUCFR
show that API changes exist in 59% of frameworks upgraded and 24% of their releases. On
client program side, most of client programs upgraded (90% of PUCC) use frameworks with
API changes in 60% (PUCCR) of client program releases.

API changes in about one third (37% of PUCUF) of upgraded frameworks with changed
APIs affect client programs and 24% (PUCUFR) of the releases of frameworks upgraded
with changed APIs are used by client programs, as shown in Figure 3.21. Comparing to
frameworks, higher percentages of client programs and their releases affected by API changes
in frameworks. 69% (PUCUC) of client programs depending frameworks with changed APIs
used the changed APIs in 45% (PUCUCR) of their releases.

RQ3.2: How many changed APIs are used by client programs?

At method level, only 3% of the used APIs are changed in the next releases of frameworks,
but none of them are marked as deprecated.

RQ3.3: How often is each type of API changes used in client programs?

The numbers of API changes affecting client programs are less than those in frameworks as
shown in Table 3.6. We present API changes affecting client programs as used API changes.
The API changes that occur more frequently in frameworks are not always the more often
used in client programs. Figure 3.22 show the proportions of API changes at the reference-
type-level that are used in client programs. ESIS (ExtendSuperInterfaceSet) is the fourth
most frequent API change type in frameworks of both ecosystems, but it does not affect
client programs. The other most frequent API change types in frameworks also affect client
programs more often, just in different orders.

Moreover, reference-type-level API changes not only affect client program at class and in-
terface level, but also at method-level. For example, two classes A and B from V 1 of a
framework FR do not exist in V 2. Their API change type is MSC. One method a1 from
class A, two methods b1 and b2 from class B are used in a client program CL of FR. At
reference level, MSC affects CL two times. If we examine closer, we can notice that the
effect caused by B is more serious than that caused by A, because B has two methods used
by CL while A only has one. We call the methods in the changed classes and interfaces, such
as a1, b1, and b2, as affected methods.
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Table 3.8 Numbers of reference-type-level API changes with affected methods
Framework Apache Eclipse

API Type-level without Type-level with Type-level without Type-level with
affected methods affected methods affected methods affected methods

Usage Internal 493 1,453 96 232
Third-party 77 137 35 47
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Figure 3.22 Reference-type-level API changes used in client programs

Therefore, we want to check the values of PU_T at reference-type-level, when we take their
affected methods in classes and interfaces into account. In our detection, we only detect
method-level changes in the classes and interfaces under reference type API change WMC

which have the same signatures in two releases of frameworks, because we can match two ver-
sions of methods reliably to detect detailed changes, such as those in parameters or modifiers.
However, we still can count reliably how many methods in the classes and interfaces under
each API change type without knowing the detailed changes in their methods. The columns
under “Type-level with affected methods” in Table 3.8 show the numbers. We can see that
more than one method from the changed classes and interfaces used by client programs.

Figure 3.23 shows the proportions of each reference-type-level API changes with affected
methods. The top-2 API change types that are used in client programs is the same (in some
cases the 1st and 2nd positions are switched) as the top-2 types of API changes that occurred
the most in frameworks, i.e., WMC and MSC. The other API change types used in client
programs become different when we take the affected methods into account.
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Figure 3.23 Reference-type-level API changes with affected methods used in client programs

In Apache frameworks, the order of used API changes in client programs is different than
the order of API changes in frameworks. The 3rd to 5th top API change types are CSIS,
ESIS, and MSI with 9%, 3%, and 3% of PT values, respectively. In Apache internal client
programs, the 3rd to 5th used API changes are MSI (Missing Interface) and MVC (Moved
Class), and CSIS with PT _Us of 24%, 6%, and 3%, respectively. The data show that MSI
and MVC affect client programs more often than they occur in frameworks. In Apache third-
party client programs, CSIS and CSCS, and MSI are the 3rd to 5th top used API changes
with 13%, 6%, and 5% of PT _U values. Each of these three change types only represents less
than 3% of reference-type-level API changes.

The results of Eclipse frameworks and their client programs are similar. In Eclipse frame-
works, CSCS, ESIS, and MVC are the 3rd to 5th top API change types with 12%, 6%, and
5% of PT values, respectively. They are not the 3rd to 5th top used API changes in client
programs. In Eclipse internal client programs, MSI, MVC, and MVI are the 3rd to 5th most
used API changes with 17%, 9%, and 3% PT _U values. In Eclipse third-party client programs,
MVI, CSIS take the 3rd and 4th positions with 11% and 9% PT _U values respectively. CSCS
is only at the 5th position with 6% of PT _U value.

At method-level, the top-3 API changes used in client programs are the same as those that
occurred the most in the frameworks from both ecosystems, i.e., MSM, CFP, and CRT.
However, the ranking orders are different as shown in Figure 3.24.
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Figure 3.24 Method-level API changes used in client programs

Summary

We observe that about half of client programs are directly affected by changed APIs of small
percentages of frameworks, as shown in Figure 3.25. Only 9% of total frameworks with
changed APIs in 3% of framework releases are used by client programs. However, these
changed APIs are used by 49% of total client programs in 21% of client program releases.
Considering the number of frameworks and client programs, the magnitude of the influence of
API changes is large. More than 29,000 releases of 5,845 client programs are directly affected
by API changes.

The API change types at reference type level occurring more often in frameworks also affect
client programs more often, except ESIS (ExtendSuperInterfaceSet) which does not used in
client programs. Also, we find that some less frequent API changes at reference type level in
frameworks affect client programs more often, when we consider the number of methods in the
changed classes and interfaces used in client programs. For example, MSI (Missing Interface)
are only in 3% of all the API change types at reference type level in the frameworks from both
Apache and Eclipse. However, when we investigate the numbers of methods in such changed
reference types used in client programs, it affects 24% and 17% of such methods in internal
client programs from Apache and Eclipse, respectively. MSI affects 5% of the methods in
the changed classes and interfaces used by Apache third-party client programs, but it does
not affect Eclipse third-party client programs. This phenomenon may be caused by that
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Figure 3.25 Percentages of framework and client program upgraded with changed and used
APIs in all

third-party client programs use less framework APIs and Eclipse has strong restriction on
API changes in its Provisional API Guidelines 7. The API change types at method level
affect the client programs with similar frequencies in which they occur in frameworks.

3.4 Discussion

In this section, we discuss the differences between special tools such as ACUA and compilers
for framework upgrade tasks and the threats to validity of this study.

3.4.1 Comparison to Compilers

Compilers can be used to find the impact of API changes in client programs, but do not pro-
vide the following information needed to plan and estimate the cost of framework upgrades:

API change type: compilers can detect API changes by showing compilation errors, but
they do not report which types of API changes caused the errors. Because API changes are
not equally difficult to adapt, it is important to know which type of API change caused the
errors, to plan program upgrade effectively. ACUA analyses client programs and framework
releases and generates API usage reports that summarize which APIs are used, where they

7. http://wiki.eclipse.org/Provisional_API_Guidelines
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are used (in client programs) and the types of API changes affecting them. With ACUA API
usage reports, developers have a clearer picture of API change impacts.

API infiltration: compilers cannot report how widely an API is used in client programs.
APIs keep evolving, developers should know how APIs infiltrate their client programs to
prepare for future API changes. If large numbers of the APIs of a framework are widely used
in client programs, it will be difficult for these programs to adapt to major changes in the
framework or to switch to another framework with similar functions. ACUA can compute IR
and IIR to tell developers the current API infiltration ratio and its possible lower boundary.
The API usage data collected by ACUA can also be used to visualize API infiltration, as
shown in Figure 3.15.

API change-propagation: compilers cannot inform developers of which API usages can
be contained. Composition-style usage can encapsulate frameworks APIs with local APIs and
reduce API infiltration. The IOC purpose of framework requires that client programs must
use some APIs in inheritance-style, but not all of them. ACUA analyses API usage types
and reports which APIs are not for IOC and can be encapsulated. AUCA also detects API
change-propagation in client programs, i.e., optional inheritance, using framework reference
types or their subtypes as generic types, method return types, or formal parameter types.
Reducing API change-propagation cases can control API spreading, thus brings down IR in
client programs.

Such information can be obtained with special tools on framework usages and upgrades, such
as Exapus (Roover et al., 2013) and ACUA (Wu et al., 2014a).

3.4.2 Threats to Validity

Some threats can limit the validity of our study. In this section, we discuss them following
the guidelines provided by Wohlin et al. Wohlin et al. (1999).

Construct Validity Construct validity verifies that the observation really reflects the
theory, i.e., if the treatment reflects the cause and the outcome reflects the effect. We
wanted to investigate how APIs change during framework evolution and how APIs are used
in client programs. These phenomena can be observed from different perspectives. Those
that we chose are suggested by experienced practitioners and summarized according to the
literature. We also defined a set of metrics, such as ANRF , CR, UR,IR, IIR, ACPR, PT ,
PT _U , and Ptc_tu, to measure the outcomes. Thus, we believe that there is no construct
validity threats affecting this study.
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Internal Validity Internal validity verifies that the outcome is really caused by the treat-
ment. There may be errors in the tools used to collect data in our study. We carefully tested
the tools and verified their outputs. During the data analysis, we did not observe any in-
consistent or conflicting result. We believe the threats to internal validity are well controlled
in our study. We also described the methodology and algorithms of our study in details, in
order to facilitate future replications by other researchers.

External Validity External validity verifies that the results of a study are generalizable.
We identify two threats to external validity. First, we only analysed the frameworks in Maven
repository. Although popular and large, these frameworks may not be representative of the
general population of frameworks. Second, many client programs are also frameworks. The
lack of clear difference between API usages in frameworks and pure client programs may
affect our results.

3.5 Conclusion

We summarize the results of our first study, a large-scale and fine-grained analysis of the
reality of API changes and usages by answering the following questions:

RQ1: How do framework APIs evolve?

Frameworks and client programs evolve with similar frequency. This phenomenon may be
caused by the increasing inter-dependencies between programs (Bavota et al., 2013). Most
(59%) upgraded frameworks change their APIs in a small percentage (24%) of their releases.

Most changes (80%) that framework developers made to method signatures are in API meth-
ods, although the changed APIs are a small part (10%) of the APIs. Developers only docu-
ment small part (2%) of API changes. In about half (52%) of the cases, framework developers
document the changes in methods for internal use.

Missing classes (MSC) and methods (MSM) are the most frequent API changes. MSC and
MSM may be caused by renaming and removing. Adapting client programs to frameworks
with such API changes is challenging. Framework developers should provide more detailed
documentation to guide client program developers upgrading. When such documentations
are missing, the imperfect change rules generated by tools, such as (Dagenais and Robillard,
2011; Kim et al., 2007; Kpodjedo et al., 2013; Meng et al., 2012; Wu et al., 2010), can help
developers find the replacement of missing APIs.
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RQ2: How do client programs use framework APIs?

Most client programs (78%) adapted to new releases of frameworks at least once, but only to
less than half (42%) of the frameworks. It would interesting to investigate the characteristics
of the frameworks with which client programs evolve.

Client programs only use a small part (16%) of framework APIs and do not use APIs marked
as deprecated. Framework developers should have more concise design to encapsulate the
unwanted APIs or provide more effective documentation to help client programs to use APIs.

On average, framework APIs are used in 36% (IR) of the classes and interfaces of client
programs and 18% (ACPR) of them are used in change-propagating ways. The results of IIR
(5%) show that 80% of API usage can be reduced through refactoring.

IIR is the lower boundary of IR, but it is not necessary for client programs to reach this
boundary for all the frameworks. Developers decide on how tight the coupling between their
programs and a framework should be. Because frameworks are designed for inversion of
control, inheritance-style usage is not avoidable. However, developers still can protect client
programs by loosening the coupling to framework APIs (Gamma et al., 1995).

RQ3: How do framework API changes affect client programs?

We observe that about half (49%) of client programs are directly affected by changed APIs
of small percentages (9%) of frameworks. Considering the number of frameworks and client
programs, the magnitude of the influence of API changes is large. More than 29,000 releases
of 5,845 client programs are directly affected by API changes.

Missing classes and methods affect client programs more often as well, which confirms the
usefulness of existing API change rule building approaches. Other API change types occurring
the most in frameworks and affecting client programs the most are not always the same, and
such difference should be considered when documenting API changes or developing tools to
support framework upgrading.

Based on these findings, we suggest that client program developers use tools, such as ACUA,
to analyse the framework API usages regularly to plan proactive framework upgrades and
apply solutions, like the Adapter design patterns, to control API change-propagation. For
framework developers, we suggest to avoid or provide more-detailed documentations for the
API changes that occur in client programs more often and which are more difficult to adapt.

Because missing classes and methods occur in frameworks and affect client programs more
often, previous change rules building approaches could help framework developers provide
upgrading documentation and help client program developers identify the replacements of
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these missing classes and methods. However, there are no empirical studies to quantitatively
evaluate the benefits of API change rules. Consequently, we conduct our second study to
evaluate the usefulness of the API change rules generated by previous approaches.
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CHAPTER 4 EMPIRICAL STUDY ON THE USEFULNESS OF
API CHANGE RULES

As shown by our study on the reality of API changes and usages, missing classes and methods
occur more frequently in frameworks and also affect client programs more often. Frameworks
are often not well documented regarding their upgrading process (Wu et al., 2014b). To ease
this problem, previous approaches, such as Dagenais and Robillard (2011), Kim et al. (2007),
Meng et al. (2012), Schäfer et al. (2008),Wu et al. (2010), and Xing and Stroulia (2006),
generate API change rules to recommend replacements of missing APIs. However, there is
no previous approaches to evaluate the usefulness of these API change rules.

To adapt the API changes of frameworks, developers usually perform four tasks: (1) find
possible replacements of missing APIs, (2) find work-arounds for missing APIs if their re-
placements cannot be found, (3) implement the replacements or the work-arounds and, (4)
test the implementation. Finding replacements for missing APIs (or identifying them as sim-
ply deleted, i.e., without replacements) avoids looking for unnecessary work-arounds and–or
trying wrong replacements, thus reducing the overall time to adapt to new frameworks.

An effective way to help find the replacements of missing APIs is documentation, but few
companies have upgrading documentation or provide such information to the public (Wu
et al., 2014b). Many approaches have been developed to recommend replacements for missing
APIs. Some approaches require that the framework developers do additional work, such as
providing explicit upgrade rules with annotations (Chow and Notkin, 1996) or that they
record API updates to the framework (Dig et al., 2007; Henkel and Diwan, 2005; Kemper
and Overbeck, 2005). However, framework developers may not be able or willing to build
change rules manually or use specific tools. Thus, to avoid the extra work for framework
developers, other approaches automatically identify change rules that describe a matching
between target methods, i.e. methods existing in the old release of a framework but not in
the new one, and replacement methods in the new release (Antoniol et al., 2004; Dagenais
and Robillard, 2011; Kim et al., 2005, 2007; Meng et al., 2012; Schäfer et al., 2008; Wu et al.,
2010; Xing and Stroulia, 2006). The change rules generated by these approaches are imperfect
or not all of them are correct. Their precision varies in the frameworks analysed.

When using the change rules built by these approaches as with upgrading documents, de-
velopers do not know if the change rules are correct until having used them to modify their
client programs. Based on their understanding of the frameworks, if they believe that the
change rules are correct, they will modify their code accordingly and test if the replacements
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indeed fix the errors and provide the expected behaviour. For the missing methods whose
change rules they believe incorrect or whose replacements do not pass the tests, developers
must explore the documents or source code of the releases of the framework to search for the
replacements manually.

There is no empirical study of the usefulness of the imperfect change rules (generated by
tools or from other sources) to show that these change rules help developers to identify the
replacements more accurately and faster than without change rules or, rather, that they
confuse developers because they are not all correct.

Although we could expect that using already-known all-correct change rules would help
developers, it could actually slow them down in the case which developers would not be
certain that the change rules are correct. According to Fagard et al. (1996), providing no
information is actually better than providing the wrong information: it is less confusing and
distracting. Knowing the usefulness of imperfect change rules could encourage and direct
research on framework API evolution.

Therefore, we design and conduct an experiment to evaluate the usefulness of framework API
evolution change rules and answer these two research questions:

— RQ1: Is there a difference between the precision of the replacements of the target
methods found by the subjects with all-correct, imperfect, and no change rules?

— RQ2: Is there a difference between the times that the subjects spend to find replace-
ments with all-correct, imperfect, and no change rules?

In the experiment, the subjects find the replacements of target methods with the help of all-
correct, imperfect, and no change rules. Then, we measure the performance of the subjects
by the precision of the replacement methods that they find and the time that they spend. To
limit the influence of a specific framework on the results, we ask the subjects to analyse three
medium size frameworks (JHotDraw v5.2–v5.3, JFreeChart v0.9.11–v0.9.12, and JEdit v4.1–
v4.2). To limit the experiment time to about one hour, we did a pre-experiment evaluation
of the required time and found that analyzing seven changed APIs in each framework can
meet the experiment time requirement. Thus, we randomly select seven change rules for
each framework. Among them, five correct rules and two incorrect change rules in the
imperfect change rules of JEdit v4.1–v4.2 and six correct rules and one incorrect change
rule for JFreeChart v0.9.11–v0.9.12 and JHotDraw v5.2–v5.3. The precision of the imperfect
change rules is similar to that of the state-of-the-art approaches to framework API evolution.

We use a randomized, complete block design (Wohlin et al., 1999) in our experiment to min-
imize the number of subjects required and to lessen some threats to validity, discussed in
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Section 4.4.7. Under this design, each subject performs experiments with all the three frame-
works and the three sets of change rules, but the orders of the combinations of frameworks
and change rule sets are randomized. In total, 31 subjects participated in the experiment.
The statistical analysis shows that the precision of the replacements of target methods found
by the subjects with all-correct, imperfect, and no change rules are significantly different with
average values of 82%, 71%, and 57%, respectively. The effect size, Cliff’s Delta (Grissom
and Kim, 2005), of the difference in precision between the subjects with no and imperfect
change rules is large and that between the subjects with imperfect and all-correct change
rules is moderate. Different from the precision values, the time that the subjects with the
three treatments spend to find the replacement methods is not statistically different with
average values of 24, 23, and 25 minutes (1,413, 1,338, and 1,479 seconds), respectively.

These results are evidence that change rules generated by framework API evolution ap-
proaches are useful, even when some of the change rules are incorrect. Yet, as expected,
the higher precision the change rules have, the more help they provide. Thus, the imperfect
change rules can be used instead of unavailable documentation or as complement to partial
documentation. Developers of frameworks could also use them as starting point to build
upgrading documentation. The difference in accuracy between subjects with imperfect and
all-correct change rules is moderate. Therefore, improving the precision of change rules will
still help developers.

4.1 Study Design

The goal of our experiment is to verify that the imperfect change rules help developers to
find the replacements of target methods more accurately or faster than without them. The
usefulness of imperfect change rules describing API evolutions is the quality focus of our
experiment and its perspective is to help developers to decide if they should use imperfect
change rules when they upgrade their client programs to new releases of frameworks, when
documentation is not available, complete, or up-to-date. The context of our experiment is
finding the replacements of 21 target methods of three frameworks by 31 subjects with three
treatments: (1) all-correct, (2) imperfect, and (3) no change rules. The correctness of the
change rules is unknown to the subjects. We follow the guidelines described by Wohlin et al.
(1999) to present our experiment.
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4.1.1 Research Questions

We expect that the results of the experiment can answer the two research questions:

— RQ1: Is there a difference between the precision of the replacements of the target
methods found by the subjects with all-correct, imperfect, and no change rules?

— RQ2: Is there a difference between the times that the subjects spend to find replace-
ments with all-correct, imperfect, and no change rules?

In the experiment, although we do not give any time constraint to perform the tasks, we
cannot expect all subjects to be able or willing to finish all of them. Therefore, we take both
the time spent and the precision of the answers into account. The differences between our
experiment and real context are discussed in Section 4.4.5.

4.1.2 Objects

The objects of our experiment are the source code of two releases of three frameworks written
in Java. We choose three medium size programs as objects of our experiment. These three
programs are among those that we and other researchers have analyzed: JEdit v4.1–v4.2,
JFreeChart v0.9.11–v0.9.12, and JHotDraw v5.2–v5.3. JEdit is a text editor 1. It has 37
releases between 2000 and 2013. Its API and implementation between its v4.1 and 4.2
changed dramatically. JFreeChart is a chart library 2. There are 54 releases between 2000
to 2013. The APIs between its v0.9.11 and v0.9.12 also changed a lot and there are many
APIs in v0.9.12 with very similar names. The dramatic changes in the two programs are
challenging for both developers and the approaches to identify API changes. JHotDraw is
a GUI framework 3 developed by Gamma et al. to demonstrate the application of design
patterns (Gamma et al., 1995). It is less active compared to the former two programs with
only 12 releases between 2001 and 2011. Yet, between v5.2 and v5.3, there are several API
changes. Previous approaches to identify API changes have all very high precision when
applied on these two versions of JHotDraw.

We use these programs for four reasons. First, Java is supported by most framework API
evolution approaches (Dagenais and Robillard, 2011; Kim et al., 2007; Meng et al., 2012;
Schäfer et al., 2008; Wu et al., 2010; Xing and Stroulia, 2006). Second, by using programs
with which we are familiar, we can more easily identify correct and imperfect change rules
and better evaluate the results of the subjects on the tasks in the experiment. Third, these
programs have different characteristics regarding framework API evolution. We believe that

1. http://www.jedit.org
2. http://www.jfree.org/jfreechart
3. http://www.jhotdraw.org

http://www.jedit.org
http://www.jfree.org/jfreechart
http://www.jhotdraw.org
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they are representative of typical API evolution patterns. Fourth, these programs are of
medium sizes with numbers of lines of code ranging from 9,441 to 64,710, as shown in Table
4.1: the subjects do not have to spend too much time to explore them.

The source code of the three programs is provided to subjects in an Eclipse workspace. We
also recommend the subjects to explore the source code with Eclipse. They are available
online 4. We present change rules and collect subjects’ answers using a dedicated Web site
described in Section 4.2.1.

Table 4.1 Object Systems

Frameworks Releases # Methods # SLOC

JHotDraw 5.2 1,486 9,441
5.3 2,265 14,612

JEdit 4.1 2,773 46,176
4.2 3,547 59,804

JFreeChart 0.9.11 4,751 59,060
0.9.12 5,197 64,710

4.1.3 Tasks

We also consider the difference between experiment and real context, when we design the
tasks for the subjects. While finding replacements of missing methods, developers can use
the compiler and their tests to verify if a replacement is correct. We do not provide client
code in the experiment for two reasons. First, the client code could have helped the subjects
to verify if the replacements were correct, but it cannot help developers find the correct
replacements. Second, there would have been extra effort for the subjects to make the client
code executable using the replacements. For example, if there was a new parameter in a
replacement, to find out the proper value for that parameter would have taken time too.
Such effort cannot be saved by change rules and we excluded it from our experiment.

Consequently, we design our experiment tasks as program comprehension to verify if the
imperfect change rules can help subjects locate the replacements faster or more accurately
than with all-correct or no rules. In our experiment, we measure both the precision of the
answers of the subjects and the time that they spend. So, incorrect answers do not prevent
us to evaluate subjects’ performance.

4. http://www.ptidej.net/download/experiments/emse13a

http://www.ptidej.net/download/experiments/emse13a
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We select a set of target methods from each framework and ask the subjects to find their
replacements in the source code of the new release with all-correct, imperfect, and no
change rules. For example, a subject is given a target method from JEdit v4.1, void
org.gjt.sp.jedit.gui.FloatingWindowContainer.save(org.gjt.sp.jedit.gui.Docka
bleWindowManager.Entry), which does not exist in v4.2. She searches for its replacement by
going through the source code of JEdit v4.1 and v4.2. According to our design, she may be
provided with correct, incorrect, or no replacements methods, depending on her treatment.
The subject does not know if the change rule is correct or not, therefore she must verify it by
understanding the source code. In the end, she may or may not find that the actual replace-
ment is org.gjt.sp.jedit.GUIUtilities.saveGeometry(java.awt.Window,java.lang.
String). We measure her performance by the precision of the replacement methods that she
found and the time that she spent on the task.

4.1.4 Subjects

The subjects are volunteer software practitioners familiar with Java. Among the total 31
subjects, nine are B.Sc., four are M.Sc., and 16 are Ph.D. students in computer science or
software engineering, two subjects are professional software developers; 10 subjects are female
and 21 are male. Their task distribution is shown in Table 4.18 in the end of the chapter.

4.1.5 Independent Variable

The independent variable of our experiment is the kind of set of change rules provided to
subjects. We have three treatments:

— TRc: All-correct change rules.
— TRi: Imperfect change rules.
— TRn: No change rule.

A change rule is the mapping between a target method and their replacements in the new
release of a framework. It can be correct or incorrect if the replacement methods in the
change rule can replace the target method or not. A set of imperfect change rules, TRi,
represents a set of change rules mixing correct and incorrect replacement methods. Usually,
the change rules generated by framework API evolution approaches are imperfect. A set of
all-correct change rules, TRc, includes change rules manually verified to be correct, i.e., to
provide correct replacement method(s) to a given target methods. We do not inform subjects
that the change rules are imperfect or all-correct before performing the experiment. Because
the change rules are randomly selected, we do not control the relations between the target
methods and the type of change rules.
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To build TRc, TRi, and TRn, we first generate the change rules of the object systems with
AURA (Wu et al., 2010). We choose AURA, because it is a state-of-the-art approach to
framework API evolution. Our experiment studies the influence of all-correct, imperfect,
or no change rules, using other tools or even building change rules manually do not affect
the results of the study. Second, we randomly select five correct rules and two incorrect
change rules for JEdit v4.1–v4.2 and six correct rules and one incorrect change rule for
JFreeChart v0.9.11–v0.9.12 and JHotDraw v5.2–v5.3 to build the imperfect change rules,
TRi. The precision of TRi is close to that of the state-of-the-art approaches to framework
API evolution. Third, we manually correct the incorrect change rules to build TRc and
remove all the replacements from the change rules in TRi to build TRn. To limit the time
of the experiment approximately to one hour, we perform a pre-experiment and choose 21
change rules, seven from each program.

4.1.6 Dependent Variable

The dependent variables of our experiment are the precision of the replacements that the
subjects identify for the given target methods and the time that they spend on the task. We
compute the precision using the equation below. For each target method, we compare the
subjects’ answers, i.e., given set of methods, against the manually-validated set of replace-
ment methods. Time is counted in seconds when subjects work on the tasks. Break time, if
there were any, were excluded.

Precision = |{Correct Replacements}|
|{Given Target Methods}|

(4.1)

(4.2)

4.1.7 Mitigating variables

We collected several mitigating variables that could influence the results of our experiment:

— Subjects’ knowledge of the object programs;
— Subjects’ knowledge of Java;
— Subjects’ knowledge of Eclipse;
— Subjects’ experience in software engineering;
— Learning effect;
— Fatigue;
— Experiment environment.
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For the first four mitigating variables, we asked the subjects to fill a questionnaire to provide
their levels of knowledge on five-point Likert scales (Likert, 1932) (bad, quite good, good,
excellent or expert). Their knowledge levels are shown in Table 4.2. We provide a tutorial
about the functions related to our experiment to minimize the influence of the knowledge of
Eclipse. We verify if there is any correlation between the dependent variables and the four
mitigating variables during the result analysis. We limit learning effect and fatigue with a
randomized complete block design (Wohlin et al., 1999). To minimize the influence of the
environment, we require that the subjects complete the tasks in a quiet environment.

Table 4.2 Subjects’ Knowledge Levels

KnowledgeLevel Topics
SE Java Eclipse JHotdraw JEdit JFreechart

Bad 0 1 1 21 22 20
Quite Good 1 5 10 7 7 6

Good 18 19 16 3 2 3
Excellent 8 5 3 0 0 2
Expert 4 1 1 0 0 0

4.1.8 Hypotheses

The null hypotheses of our experiment are that there is no difference between the precision of
the replacements of the target methods found by the subjects and the time that they spend
with the help of all-correct, imperfect, and no change rules. For example:

— Hp1: There is no difference between the precision of the replacements of the target
methods found by the subjects without change rules and with imperfect change rules.

The completed null hypotheses are in Table 4.3.

4.2 Study Execution

4.2.1 Experiment Web Site

To conduct the experiment and abstract the presentation of the change rules from a particular
tool format, we develop a dedicated Web site. The screenshots of the main Web pages
are shown in Figure 4.1. Page 4.1(a) is the page where the subjects fill in background
information. Page 4.1(b) is the main task page. For each target method, the page displays
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Table 4.3 Null Hypotheses

Hp1 There is no precision of the without change rule and with imperfect change rules.
Hp2 replacement methods without change rule and with correct change rules.
Hp3 difference found by the subjects with imperfect change rules and with correct change rules.
Ht1 time spent without change rule and with imperfect change rules.
Ht2 between the without change rule and with correct change rules.
Ht3 by the subjects with imperfect change rules and with correct change rules.

the target method on the left (e.g., TextFigure.disconnect()) and a set of candidate
replacement methods, i.e., obtained from a change rule, on the right-bottom corner (e.g.,
TextFigure.disconnect(Figure)). The right-top box is for subjects to enter their answers.

The gathering of information from the subjects, such as background information and exper-
iment question answers, occurs in a Web browser. All the data that subjects enter and the
time that they spend on each question are stored in a database. The subjects do not need
paper or writing.

4.2.2 Experiment Workspace

Besides using the experiment Web site to read the questions, the target and suggested re-
placement methods (if any), and to enter their answers, the subjects had also to explore
the source code of the object programs to find the replacement methods. We provided
an Eclipse workspace to each subject with the source code of JEdit v4.1–v4.2, JFreeChart
v0.9.11–v0.9.12, and JHotDraw v5.2–v5.3, as shown in Figure 4.2 and available online4. With
Eclipse, the subjects could check the definitions and usage context of the target methods,
read the source code of both versions of the frameworks, and identify the replacements.

4.2.3 Experiment Process

For each program, the subjects had to find the replacements for the seven target methods
with all-correct, imperfect, or no change rules.

At the beginning of the experiment, each subject received two tutorials in PDF format.
One tutorial explains the procedure of the experiment without revealing the purpose of our
study: what subjects should do and how they fill in the answers of the questions. The other
tutorial was about the use Eclipse to explore the source code of the frameworks, in case
some subjects were not familiar with it. We asked the subjects to read these two documents
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(a) Background Information

(b) Question

Figure 4.1 Web Site
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Figure 4.2 Source Code Workspace

carefully before the experiment. If the subjects had any questions, they could ask us in
person if they performed the experiment in our laboratory or by email if they did it remotely.

When the subjects were familiarized with the experiment and Eclipse, we administered a
pre-experiment questionnaire to collect their gender, level of study, profession, knowledge
in software engineering, Eclipse, Java, and the frameworks used in the study, using the
background information page of our Web site.

Then, they completed the tasks by exploring the source code of the frameworks, looking for
the replacement methods of each target method displayed on the question pages. According
to the treatment, they had either all-correct or imperfect replacements methods or no method
at all to help them. When they found the replacement method(s), they copied the qualified
names of the replacement methods from Eclipse or from the box at the bottom-right corner
of the question pages and pasted them into the answer box on each question page. Eclipse
provides a context menu to copy the qualified names of methods easily and our tutorial
explained how to use this feature. If the subjects thought that the target method was simply
deleted, i.e., without any replacement, they could fill in “null" in the answer box.
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4.2.4 Analysis Method

We compared the subjects’ answers with the all-correct rules and classified those as wrong if
they were different from the all-correct rules.

We tested our hypotheses using Kruskal-Wallis test (Wohlin et al., 1999), which is applicable
for non-parametric randomized, complete block designs. The hypotheses testing results are
presented as Table 4.4. We chose Kruskal-Wallis test because we did not have to make any
assumption on the distribution of the data collected during the experiment. The regular α
value of single comparison Kruskal-Wallis test was 0.05. Our experiment had three object
programs for each treatment. Therefore, we adjusted the α value to 0.01 according to the
Bonferroni correction (Miller, 1981). If the p-value of Kruskal-Wallis tests was smaller than
0.01, the results with different treatments were statistically different. We also computed the
Cliff’s d (Grissom and Kim, 2005) of the results with different treatments to evaluate the
effect size of their differences. Cliff’s Delta is also a non-parametric and it does not require
any knowledge of the distribution of the data. The effect size is small for 0.147 ≤ d < 0.33,
medium for 0.33 ≤ d < 0.474, and large for d ≥ 0.474, respectively. We computed p-values
and Cliff’s Deltas of the results on all three frameworks and each framework separately to
distinguish the potential effect of one particular framework.

We always applied the statistical tests on the average precision values of the subject’s answers
and average times spent by the subjects for subjects using two different treatments, for
example subjects provided with all-correct change rules and subjects provided with no change
rules. In the next section, for the sake of simplicity, we talk about precision and time to mean
average precision values and average time spent by subjects.

4.3 Study Results

We now report the collected data and discuss the data analysis and the results of hypothesis
testing. First, we report the general results on the precision of the subjects’ answers and the
time that they spent. Then, we discuss the results on the three frameworks separately.

4.3.1 Overall Data Analysis

Precision The distribution of the data on precision is shown in Figure 4.3. On average, the
precision value of the answers of the subjects with all-correct change rules is the highest with
the value of 82%. The next is that with imperfect change rules with the value of 71%. The
precision of the answers without change rule is the lowest with the value of 57%. In Table
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Figure 4.3 Boxplots for Precision
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4.4, the hypothesis testing results show that there are statistically significant differences in
the precision of the subjects’ answers when they used all-correct, imperfect, and no change
rules. In the third column, the value of Cliff Delta is moderate between the subjects with
imperfect and all-correct rules and it is large between those with imperfect and no change
rules. These results support the expectation that even imperfect change rules help developer
find the correct replacements.

We conclude that the subjects with all-correct change rules could find the replacements of
the target methods more accurately than the subjects with the other two treatments. The
subjects with imperfect change rules did not perform as well as the former, but significantly
better than the subjects without change rule. However, even with all-correct change rules, the
subjects still could not correctly answer all the questions. This last observation is evidence of
the difficulty of framework API evolution. We further discuss this observation in Section 4.4.

Time Figure 4.4 shows the distribution of the times that subjects spent with the tree
treatments. The subjects spent almost the same time to find the replacement methods with
all-correct, imperfect, or no change rules. The subjects with imperfect change rules spent less
time than the subjects with the other two treatments. On average, they spent 23 minutes
(1,338 seconds) while the subjects with all-correct change rules and without change rule
used 24 minutes (1,413 seconds) and 25 minutes (1,479 seconds), respectively. However, the
hypothesis testing results do not confirm any statistically significance difference between the
times spent with each treatment, as shown in Table 4.5.

Discussion We examined the outliers in precision and time. There were two subjects with
precision of 14% on JHotDraw and JEdit, respectively, and three spent more than 46 minutes
(2,800 seconds) on a single program: one on JHotdraw and two on JFreechart. There was no
common subject between the two cases in precision and three cases in time. The results of
these five subjects were “normal" when they worked on the other programs. Four of the five
cases were on the first program that they analyzed in the experiment. We suspect that these
outlier cases were caused by these subjects being not really familiar with the experiment
tasks and tools. The other outlier case (more time on JFreechart) was on the third program.
Probably, the subject productivity was compromised by tiredness.

4.3.2 Data Analysis per System

The results presented above show that the change rules helped the subjects find the replace-
ments of the target methods more accurately but not faster than without them. We also
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Figure 4.4 Boxplots for Time
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Table 4.4 Hypothesis Testing Results for Precision

Treatements Kruskal-Wallis Cliff’s Deltap-value

No-Imperfect-Correct < 0.01 N/A(4.496e-06)

No-Imperfect < 0.01 Large
(0.006293) (0.619)

No-Correct < 0.01 Large
(5.269e-06) (1.325)

Imperfect-Correct < 0.01 Moderate
(0.002763) (0.443)

Table 4.5 Hypothesis Testing Results for Time

Treatements Kruskal-Wallis Cliff’s Deltap-value

No-Imperfect-Correct > 0.01 N/A(0.1378)

No-Imperfect > 0.01 N/A(0.02611)

No-Correct > 0.01 N/A(0.3348)

Imperfect-Correct > 0.01 N/A(0.6272)

want to investigate if this conclusion applies to all three frameworks. Thus, we compare the
results on different framework individually to see if the change rules helped similarly.

JHotDraw

Precision For JHotDraw, the boxplot in Figure 4.3 shows that the precision of the subjects’
answers with imperfect change rules was better than that of the subjects without change rule
and the precision of the subjects answers with all-correct change rules was the best, but
the differences between the precision of subjects’ answers with the three treatments are not
statistically significant, according to the hypothesis testing results in Table 4.6.
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Table 4.6 Hypothesis Testing Results for Precision on JHotDraw

Treatements Kruskal-Wallis Cliff’s Deltap-value

No-Imperfect-Correct > 0.01 N/A(0.01738)

No-Imperfect > 0.01 N/A(0.5376)

No-Correct > 0.01 N/A(0.01008)

Imperfect-Correct > 0.01 N/A(0.02132)

Time Regarding the time that subjects spent on JHotDraw, Figure 4.4 shows that the
average values of the subjects’ time with the three treatments were slightly different. Similar
to the general result on time, the hypothesis testing results (Table 4.7) show that the differ-
ences are not statistically significant. The change rules did not help to find the replacement
methods faster or slower, while adapting to the new release of JHotDraw.

Discussion JHotDraw is a program developed by Gamma et al. to demonstrate the appli-
cation of design patterns (Gamma et al., 1995). It was elegantly designed and consistently
coded. When we studied its v5.2 and v5.3, we found that it is very straightforward to nav-
igate and understand its source code. Between JHotDraw v5.2 and v5.3, the change rules
helped subjects, but it did not take much more time for subjects to complete the task without
them. Indeed, the hypothesis testing results on JHotDraw show that there is no statistically
significant differences between the subjects with the three treatments.

JFreeChart

Precision The change rules helped subjects to find replacements for the target methods
of JFreeChart more accurately. The boxplot in Figure 4.3 shows that the precision of the
subjects’ answers with correct change rules was the best and the precision of the subjects’
answers with imperfect change rules is better than that without change rule. There is much
less overlap between the precision values of the subjects’ answers with the three treatments
than that on JHotDraw and JEdit. The hypothesis testing results confirm that the differences
between the subjects’ answers with no vs. all-correct and no vs. imperfect change rules are
statistically significant with large effect size and the difference between the subjects’ answers
with imperfect and all-correct change rules is not significant.
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Table 4.7 Hypothesis Testing Results for Time on JHotDraw

Treatements Kruskal-Wallis Cliff’s Deltap-value

No-Imperfect-Correct > 0.01 N/A(0.3632)

No-Imperfect > 0.01 N/A(0.2353)

No-Correct > 0.01 N/A(0.2207)

Imperfect-Correct > 0.01 N/A(0.7223)

Table 4.8 Hypothesis Testing Results for Precision on JFreeChart

Treatements Kruskal-Wallis Cliff’s Deltap-value

No-Imperfect-Correct < 0.01 N/A(0.001069)

No-Imperfect < 0.01 Large
(0.004354) (1.60919)

No-Correct < 0.01 Large
(0.001702) (1.80291)

Imperfect-Correct > 0.01 N/A(0.08238)

Time Similar to JHotDraw, Figure 4.4 shows that the average values of the times spent by
the subjects with the three treatments are only slightly different. The subjects with imperfect
change rules have the largest value while the subjects with all-correct change rules have the
smallest. The hypothesis testing results in Table 4.9 show that there are no significant
differences. The change rules did not help save time to find the replacement methods while
upgrading to the new release of JFreeChart.

Discussion JFreeChart is a Java chart library to generate different types of charts. Be-
tween v0.9.11 and v0.9.12, there were many methods with similar names in the two ver-
sions, such as DefaultBoxAndWhiskerCategoryDataset.getMedianValue(int, int) and
DefaultBoxAndWhiskerXYDataset.getMedianValue(int, int). It would be time-consuming
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Table 4.9 Hypothesis Testing Results for Time on JFreeChart

Treatements Kruskal-Wallis Cliff’s Deltap-value

No-Imperfect-Correct > 0.01 N/A(0.5209)

No-Imperfect > 0.01 N/A(0.5676)

No-Correct > 0.01 N/A(0.4288)

Imperfect-Correct > 0.01 N/A(0.3198)

to go over all of these similar methods to find possible replacement methods and verify them.
Therefore, with the change rules, subjects used much less time to find the replacements than
those without them.

Because of the differences between a real context and our experiment, the subjects without
change rules spent almost the same time as the subjects with imperfect and all-correct change
rules, but with lower precision in their answers. Although we asked them to take as much
time as they needed, it seems that they just spent the same effort as the subjects with the
other treatments and did not verify their answers thoroughly. The hypothesis testing results
show that the precision of the subjects’ answers with imperfect and all-correct change rules
are statistically better than that without change rules, while the time that they spent is not
significantly different.

JEdit

Precision Similar to the precision for JFreeChart, the boxplot in Figure 4.3 shows that
the average value of precision of the subjects’ answers with imperfect change rules is better
than that of the subjects without change rule and that the precision of the subjects’ answers
with all-correct change rules is the best. In Table 4.10, the hypothesis testing results of
the precision for JEdit shows that there is no statistically significant difference between
the subjects’ answers with imperfect and no change rules while the difference between the
subjects’ answers with all-correct and no change rules is statistically significant with large
effective size.
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Table 4.10 Hypothesis Testing Results for Precision on JEdit

Treatements Kruskal-Wallis Cliff’s Deltap-value

No-Imperfect-Correct < 0.01 N/A(0.00329)

No-Imperfect > 0.01 N/A(0.1959)

No-Correct < 0.01 Large
(0.001198) (1.98641)

Imperfect-Correct > 0.01 N/A(0.02876)

Time The distribution of the times that subjects spent on JEdit is different than those on
JHotDraw and JFreeChart as shown in Figure 4.4. First, the subjects with imperfect change
rules used the least time to answer. Second, the times spent by the subjects with the three
treatments were very different. The hypothesis testing results (Table 4.11) confirm that only
the difference between times spent by the subjects with imperfect and no change rules is
significant with a large effect size. The differences between the times spent by the subjects
with imperfect and all-correct change rules and with all-correct and no change rules are not
statistically significant.

Discussion JEdit is a free text editor supporting plugins and syntax highlighting for more
than 200 programming languages. When we analysed JEdit, we found that the implementa-
tions of v4.1 and v4.2 changed dramatically. The major differences between the two versions
make the upgrading process more difficult for the subjects. The precision between the sub-
jects with all-correct and no change rules are significantly different, but not between the
subjects with imperfect and no change rules. However, the times that subjects spent with
imperfect and no change rules are statistically different. The subjects with imperfect change
rules spent much less time than the subject without change rule with similar precision in
their answers. So, the change rules did save some effort for JEdit.

One result on JEdit that we did not expect is that the average time spent by the subjects
with all-correct change rules was more than that for the subjects with imperfect change rules.
To explain this observation, we first checked if there was any correlation between the results
and the mitigating variables, but the answer was negative. Then, we checked if the ten
subjects with all-correct change rules on JEdit also spent more time than the other subjects
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Table 4.11 Hypothesis Testing Results for Time on JEdit

Treatements Kruskal-Wallis Cliff’s Deltap-value

No-Imperfect-Correct < 0.01 N/A(0.008001)

No-Imperfect < 0.01 Large
(0.001939) (0.7322)

No-Correct > 0.01 N/A(0.4812)

Imperfect-Correct > 0.01 N/A(0.04125)

when they worked on JHotDraw and JFreechart with imperfect and no change rules. We
found that these subjects did spend 39% more time than the others, on average. We applied
Kruskal-Wallis test to the time spent by these ten subjects and others on other tasks. The
p-values are 0.20, 0.20, 0.05 and 0.83 on JHotdraw with imperfect and no change rules and
JFreechart with imperfect and no change rules, respectively. These results show that, in
three of the four other tasks, these ten subjects spent more time than the other subjects with
more the 80% confidence. The only exception was when they worked on JFreechart with no
change rule. We suspect that all these ten subjects reached the upper bound of the time that
they could spend on one program, because JFreechart’s code is more difficult to comprehend.

4.3.3 Summary

Based on the results of the experiment and the statistical analyses, we answer the research
questions as follows:

RQ1: Is there a difference between the precision of the replacements of the target methods
found by the subjects with all-correct, imperfect, and no change rules?

Answer: Yes, the precision values of the subjects’ answers with the help of all-correct,
imperfect, and no change rules shows statistically significant differences. The subjects with
all-correct change rules have the higher value, the next is with imperfect change rules, and
the subjects without change rules have the lowest value. The effect size of the differences in
precision values between the subjects with no and imperfect change rules is large and that
between the subjects with imperfect and all-correct change rules is moderate.
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RQ2: Is there a difference between the times that the subjects spend with all-correct,
imperfect, and no change rules?

Answer: No, there is no significant difference between the times spent by the subjects with
all-correct, imperfect, and no change rules.

These results show that the change rules generated by framework API evolution approaches
are useful. Yet, different to upgrading to new releases of frameworks in a real context, the
subjects could only spend limited times on the tasks, no matter how serious they were. So,
they could give wrong answers. In a real context, the change rules will help developers to
adapt their client code to new releases of frameworks faster, because they must work on the
upgrading until they have 100% precision. As we discussed after presenting the results on
each object program, the effect of the change rules can vary on a specific framework.

4.4 Discussion

In this section, we discuss the influence of the mitigating variables and other issues impacting
the results of our study.

4.4.1 Mitigating Variables

For mitigating variables like fatigue and learning effect, we used a randomized, complete
block design to minimize their influences. There are five other mitigating variables whose
influence we could not neutralize: gender, degree, knowledge of software engineering, Java,
and Eclipse, because we did not have this information until the subjects performed the
experiment. Therefore, we verified if there was any correlation between the precision of the
subjects’ answers (the times spent by the subjects) and the five mitigating variables, using
permutations tests. A permutation test (Baker, 1995) is non-parametric and does not require
normal data distribution.

We also consider gender as a mitigating variable, because the differences between male and
female in problem solving activities have been studied before (Beckwith et al., 2005; Meyers-
Levy, 1989; O’Donnell and Johnson, 2001; Sharafi et al., 2012). We want to see if the results
of our experiment are correlated with gender.

Tables 4.12 to 4.16 show that the precisions of the subjects’ answers are not correlated to
the five mitigating variables. (The times that the subjects spent are not correlated to the
five mitigating variables either and the results can be found online 5.)

5. http://www.ptidej.net/download/experiments/emse13a
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Table 4.12 Precision: Two-way Permutation Test by Change Rule Type and Knowledge in
Software Engineering

Df R Sum Sq R Mean Sq Iter Pr(Prob)
Treatment 2 9961.83 4980.91 500000.00 <0.01
SE 1 18.39 18.39 232090.00 0.81
Treatment: SE 2 1042.32 521.16 500000.00 0.20
Residuals 87 27276.64 313.52

Table 4.13 Precision: Two-way Permutation Test by Change Rule Type and Knowledge in
Java

Df R Sum Sq R Mean Sq Iter Pr(Prob)
Treatment 2 9961.83 4980.91 500000.00 <0.01
Java 1 64.57 64.57 500000.00 0.64
Treatment: Java 2 83.80 41.90 408504.00 0.88
Residuals 87 28188.98 324.01

4.4.2 NASA Task Load Index

Besides the two objective measurements of subjects’ performance (precision and time), we
also asked the subjects to fill in the NASA Task Load Index (NASA-TLX) (Hart and Staven-
land, 1988) after each program to give their subjective evaluation of the effort to complete
the tasks. The NASA-TLX is a subjective measurement of subjects’ workload in human–
machine environments, using six sub-scales: Mental Demands, Physical Demands, Temporal
Demands, Own Performance, Effort and Frustration, as shown in Figure 4.5. Each sub-
scale is measured from 1 to 20. Level 1 represents the lightest or the best while level 20
means heaviest or worst. We computed the average value of the six sub-scales as the overall
NASA-TLX value Hart and Staveland (1988).

Because the NASA-TLX depends on the subjects’ personal feeling, we did not use it as a
dependent variable, but it is interesting to see the relations between NASA-TLX value and
the two objective measurements of subject performance. The distribution of the NASA-
TLX values (see Figure 4.6) and the hypothesis testing results on NASA-TLX values (see
Table 4.17) show that there is no statistical difference between the subjects with all-correct,
imperfect, and no change rules. We argue that the main reason for observing statistically-
similar NASA-TLX values is that the subjects’ feelings vary dramatically between subjects.

We cross-referenced the NASA-TLX values and the times that the subjects spent. For the
same NASA-TLX value, the times could be very different. For example, 11 subjects gave
a NASA-TLX value of 7 for their tasks, but the times that they spent varied between 14



95

Table 4.14 Precision: Two-way Permutation Test by Change Rule Type and Knowledge in
Eclipse

Df R Sum Sq R Mean Sq Iter Pr(Prob)
Treatment 2 9961.83 4980.91 500000.00 <0.01
Eclipse 1 55.64 55.64 469963.00 0.68
Treatment: Eclipse 2 291.67 145.84 500000.00 0.64
Residuals 87 27990.04 321.72

Table 4.15 Precision: Two-way Permutation Test by Change Rule Type and Gender

Df R Sum Sq R Mean Sq Iter Pr(Prob)
Treatment 2 9545.85 4772.92 500000.00 <0.01
Gender 1 582.55 582.55 500000.00 0.17
Treatment: Gender 2 156.21 78.11 500000.00 0.78
Residuals 87 27598.60 317.23

minutes (849 seconds) and 40 minutes (2,379 seconds). Similarly, we observed a subject with
a NASA-TLX value of 2 who spent 40 minutes (2,378 seconds) on the tasks.

We suspect that the randomized, complete block design of the experiment amplified the
variance of the subjects’ feelings regarding their workload. If we had used only one object
program, the subjects could have reported consistent feelings between the treatments. How-
ever, an experimental design with one object program would have been a serious threat to
the generalizability of the results. The lesson learned is that it is risky to use only subjective
measurements as dependent variables in experiments. Subjects may choose different values
for similar personal feeling on same tasks, especially when the experiment design is complex.

4.4.3 Change Rule Types

The change rules can be classified in different ways. While considering code element changes,
the change rules can be return type , package , class, method, and parameter changes.
The change rules used in the experiment cover all these code element change types. While
considering the mapping between changed API and its replacements, the types of the change
rules include one-replaced-by-one, one-replaced-by-many, many-replaced-by-one, and simply-
deleted. In our experiment, besides one-replaced-one change rules as illustrated in Section
4.1.3, the randomly selected change rules in our experiment also include one-replaced-by-
many and simply-deleted rules. For the target methods of one-replaced-by-many change
rules, the answers of subjects are correct only when they find all the replacements. Subjects
can answer “null" as replacement when they think that the target methods are simply-deleted.
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Table 4.16 Precision: Two-way Permutation Test by Change Rule Type and Degrees

Df R Sum Sq R Mean Sq Iter Pr(Prob)
Treatment 2 9956.99 4978.49 500000.00 <0.01
Degree 2 91.86 45.93 500000.00 0.86
Treatment: Degree 4 2014.42 503.60 500000.00 0.17
Residuals 84 26231.07 312.27

Figure 4.5 NASA-TLX

The goal of our experiment is to investigate the influence of all-correct and imperfect change
rules in comparison to no change rules. The influence of different types of change rules is an
interesting future study.

4.4.4 Skeptical Subjects

The results of the experiment show that the subjects were serious and skeptical about the
provided change rules. Because they do not know a priori, even with the correct change
rules, most of the subjects spent almost the same time as the subjects without them to find
the replacement methods. The hypothesis testing results on time confirm this conclusion
statistically. Moreover, the average precision of the subjects’ answers with all correct change
rules is just 82%. Even with correct change rules, the subjects did correctly answer all the
questions during the time that they spent for our experiment even though we did not give
any time limitation to the subjects. This observation is a further evidence of the difficulty of
framework API evolution.
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(a) General (b) On JHotDraw

(c) On JFreeChart (d) On JEdit

Figure 4.6 Boxplots for NASA-TLX
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Table 4.17 Hypothesis Testing Results for NASA-TLX

Treatements Kruskal-Wallis p-value
General JHotDraw JFreeChart JEdiit

No-Correct- > 0.01 > 0.01 > 0.01 > 0.01
Imperfect (0.978) (0.6182) (0.6777) (0.8287)

No- > 0.01 > 0.01 > 0.01 > 0.01
Imperfect (0.9379) (0.507) (1) (0.7228)

No- > 0.01 > 0.01 > 0.01 > 0.01
Correct (0.9211) (0.3443) (0.4208) (0.4989)

Imperfect- > 0.01 > 0.01 > 0.01 > 0.01
Correct (0.8209) (0.7191) (0.4954) (1)

4.4.5 Experiment vs. Real Tasks

The differences between our experiment and framework upgrading tasks in a real context are
caused by the goal of this study, which focuses only on a part of the framework upgrading
tasks. In the experiment, the subjects are volunteers. No matter how serious they are, they
can only spend a limited amount of time on the experiment. We cannot expect all of them
to be able or willing to finish all the tasks correctly if they take too long. In a real context,
developers first would try to find the replacements of missing methods. If they could not
find any proper replacements, then they would need to find a work-around. Finally, whether
with replacements or work-arounds, they would test their programs after changes. If the test
passes, then the upgrading task would be done, else they would keep working on it or they
would stay with the previous release of the framework.

Our study focuses on the impact of imperfect change rules on framework API evolution
identification. We want to investigate if the imperfect change rules still help developers find
the replacements of missing methods caused by software evolution, such as class or parameter
changes. It does not cover finding work-arounds and testing. If we had asked the subjects
to perform real framework upgrading tasks, finding work-arounds and testing would have
increased the precision and the time spent. However, following previous works on change-
rules for framework APIs (Dagenais and Robillard, 2011; Kim et al., 2007; Meng et al., 2012;
Schäfer et al., 2008; Wu et al., 2010; Xing and Stroulia, 2007b), we assume that providing
more accurate replacement methods can only help developers by reducing (1) the time spent
understanding the new framework, (2) the time spent performing the changes necessary to
adapt their programs, and (3) the overall time spent in the cycle {search-for-replacement,
change, test}. Yet, identifying the replacements is only one step of the framework upgrading
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process and the influence of API change rules on other steps has not been investigated.
Therefore, in addition to the threats to the validity to our experiment discussed in Section
4.4.7, it is possible that other factors impact the accuracy and time of the overall cycle and
future work is necessary (1) to study these factors in details, (2) to understand how time is
spread throughout the cycle, and (3) to assess the impact of the change rules (and of their
accuracy) on the whole cycle.

We argue that finding replacements for missing methods is a program comprehension task
and, consequently, we designed our experiment as other program comprehension experiments,
asking the subjects to answer questions based on their understanding of the frameworks. In
our experiment, the subjects were volunteers. No matter how serious they were, they could
only spend a limited amount of time on the experiment. We could not ask them to perform
real framework upgrading tasks, because they could take very long time. Therefore, subjects
may have given answers even if they were not 100% confident. Although we asked the subjects
to take as much time as they needed, the time that the subjects spent ranges from 40 to
120 minutes and the precision of their answers lies between 14% and 100%. The average
times for choosing a replacement method are 24, 23, and 25 minutes (1,413, 1,338, and 1,479
seconds). The times spent by the subjects with all-correct, imperfect and no change rules
are not statistically different. These times are quite short and likely to be shorter than the
times necessary to test the changes. On the one hand, such times show the importance of
using API change rules to reduce the overall time of choosing and testing a change. On the
other hand, such times do not show the total times needed to complete the changes to satisfy
the tests in the absence of change rules, which may be longer than the average times with
no change rules, because developers must find a work-around and not just provide a possible
replacement, as in our experiment.

There is another difference between a real context and our experiment. In a real context,
developers must have client code to test the replacements. In our experiment, we did not
provide such client code for two reasons. First, the test code could have helped the subjects
to verify if the replacements were correct, but it cannot help developers find the correct
replacements. Second, there could have been extra effort for the subjects to make the client
code executable using the replacements. For example, if there was a new parameter in a
replacement, to find out the proper value for that parameter could have taken time too.
Such effort cannot be saved by change rules and we excluded it from our experiment.
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4.4.6 Subjects vs. Professional Developers

In our experiment, most subjects are students. From their answers, we can see that they
understood the frameworks well because most of their answers are correct. Still, they are
different from professional developers. We can see subjects as inexperienced developers.
Change rules may help experienced and inexperienced developers in different ways. For
experienced developers, their experience can help them to distinguish the correct and wrong
change rules. So, change rules let them quickly focus on “difficult” changes. For inexperienced
developers, change rules can reduce the general comprehension effort by guiding them to a
relatively small part of the frameworks. Only further studies with professional and expert
subjects could help identify differences, if any.

4.4.7 Threats to Validity

Construct Validity Construct validity verifies that the observation really reflects the
theory, i.e., if the treatment reflects the cause and the outcome reflects the effect. We
wanted to evaluate if change rules help subjects find the replacements of target methods more
accurately and faster. We used correct, imperfect, and no change rules as the treatments.
We used the precision of the subjects’ answers and the time that they spent as the outcomes.
Some mitigating variables could affect the outcomes and we minimized their influence as
described in Section 4.1.7. We did not observe correlations between the mitigating variables
and the outcomes in the collected data. Thus, we argue that the treatments and outcomes
reflect the cause and the effect. We use our tool, AURA (Wu et al., 2010), to collect raw
change rules from which we selected 21 correct change rules, verified manually. Moreover,
we used a dedicated Web site to present the change rules to the subjects. Therefore, we used
AURA only to make it easier for us to build the sets TRc and TRi. The experiment does
not depend on AURA, its algorithms or the formats of its change rules. We could have used
another tool but choose AURA by convenience and due to his high precision on the three
object programs.

Internal Validity Internal validity verifies that the outcome is really caused by the treat-
ment. To overcome threats to internal validity, first, we selected three object programs to
avoid that the experiment results depended on the properties of a single program. Second,
we used a randomized, complete block design to avoid maturation threats, such as fatigue
and learning effect. Third, we did not provide feedback to the subjects’ answers, so the sub-
jects could complete subsequent tasks using the answers of previous questions. Fourth, we
chose Eclipse, a popular IDE as a tool to explore the source code to avoid instrumentation
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threat. Among the 31 subjects, only one reported poor skills with Eclipse. We provided a
tutorial about the Eclipse features required for the experiment to help such inexperienced
subjects. Fifth, because wrong answers may be due to misunderstood tasks, we provided de-
tailed experiment instructions and asked the subjects to read them carefully before answering
questions. The experiment results showed that the subjects well understood the tasks. Sixth,
asking subjects for their genders could lead to anxiety and decreased performances (stereo-
type threat). However, our study shows that gender could not explain any differences among
subjects and, therefore, that this threat does not impact the results of our study. Last, no
subject participated in the development of the experiment design, documents, tasks, and
Web site. We also asked the subjects not to talk about the experiment with other people
before the end of the study to avoid diffusion threat.

Conclusion Validity Conclusion validity verifies that the relation between the outcome
and the treatment can be proved statistically. The null hypotheses are well defined. In total,
31 subjects participated in the experiment. We applied Kruskal-Wallis test (Wohlin et al.,
1999), which is proper for randomized, complete block design to verify the significance level
and Cliff’s Delta (Grissom and Kim, 2005) to evaluate the effect size. Both Kruskal-Wallis
test and Cliff’s Delta do not make any assumption on the distribution of data collected.

External Validity External validity verifies that the results of a study are generalizable.
We identify two threats to external validity. The first is the interaction between selection
and treatment. In our experiment, the subjects acted as software developers. Yet, because of
their limited number and specific demographics, they may not represent generally software
developers accurately. However, all the 31 subjects who participated in the experiment were
university-level students or had a degree in computer science or software engineering. Most of
them had a good knowledge in Java, Eclipse, and software engineering. Among 29 subjects,
20 of them were graduate students. Thus, we believe that they represent junior software
developers. The second threat is interaction of setting and treatment. We only used three
Java programs and 21 target methods in our experiment. They may not reflect the whole
framework API evolution problem. Considering the popularity of frameworks in Java and the
variety of the three object programs, we believe this setting is not a major threat to external
validity. We also chose the 21 target methods randomly, so there was no bias for this factor
in our experiment design.
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4.5 Conclusion

We conduct an experiment to evaluate the precision of the replacement methods that subjects
find and the time that they spend with all-correct, imperfect, and no change rules.

The dependent variables of the experiment are the precision of the replacement methods that
the subjects found and the times that they spent with and without the help of change rules.
We choose randomly 21 target methods as the independent variable of the experiment and
defined three treatments: all-correct, imperfect, and no change rules. To limit the influence
of a specific framework on the results and to control experimental time, we choose three
medium-size frameworks (JHotDraw v5.2–v5.3, JFreeChart v0.9.11–v0.9.12, and JEdit v4.1–
v4.2) and seven target methods for each framework. Because of the numbers of treatments
and object frameworks, we use a randomized, complete block design (Wohlin et al., 1999) to
minimized the number of subjects required and to overcome some threats to validity.

In total, 31 subjects participate in the experiment. In general, the statistical analysis results
showed that the precision values of subjects’ answers with all-correct, imperfect, and no
change rules are significantly different with average values of 82%, 71% and 57%, respectively.
The effect size Cliff’s Delta of the differences between the precision of the subjects’ answers
with no and imperfect change rules is large and that between the subjects with imperfect and
correct change rules is moderate. The times that the subjects spend with the three treatments
to find the replacements methods are not statistically different with average values of 24, 23,
and 25 minutes (1,413, 1,338, and 1,479 seconds), respectively.

In conclusion, the results of our study show that the change rules built by previous approaches
are useful. The higher precision the change rules have, the better help they provide. Thus, the
imperfect change rules can be used instead of unavailable documentation or as complement
to partial documentation. Developers of frameworks could also use them as starting point to
build upgrading documentation.

In our first study on the reality of API changes and usages, we find that missing classes and
methods are the most frequent API changes in frameworks and affecting client programs.
From the experiment presented in this section, we confirm that the API change rules built
by previous approaches do help developers find the replacements of these missing APIs,
even these change rules are not 100% correct. The more precise the change rules are, the
better they help developers. Consequently, we conduct our third study to improve previous
approaches to build API change rules.
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CHAPTER 5 EMPIRICAL STUDY ON FEATURE USAGES
IN API CHANGE RULE BUILDING

To prove our thesis, we conduct three studies on framework API evolution. The results of the
first study on the reality of API changes and usages show that missing classes and methods
occur more frequently in frameworks and also affect client programs more often. The second
study on the usefulness of the API change rules shows that the API change rules do help
developers find the replacements more accurately. The more precise the change rules are, the
better they help developers. Consequently, we conduct our third study to investigate how
we can improve previous approaches to build API change rules. Specifically, we investigate
the effectiveness of the features used to build changes rules and multi-objective-optimization-
based approaches to outperform previous approaches.

All the previous approaches use the similarity values between some features of t and m, such
as call dependency (Dagenais and Robillard, 2011) or signature similarity (Kim et al., 2007).
Given a target method t, these approaches use similarity values to sort the methods in the
new releases of framework and suggest change rules to developers by recommending those at
the top as potential replacements. Previous approaches use multiple features to detect change
rules by prioritizing features. They implement prioritization in two ways. One explicitly gives
high priority to certain features in their algorithm, e.g., AURA (Wu et al., 2010) gives higher
priority to call-dependency over signature similarity. Another assigns weights to features,
such as the approach of Kim et al. (2005).

For a given program, if an API method and its replacement are not similar with respect to
one feature, approaches using this feature cannot detect a correct change rule. For example,
some replacement methods may be appropriate when considering only call dependency but
not when considering signature similarity. Also, a specific program may require favouring
one feature over the others, i.e., an approach using that feature would detect more correct
change rules than those using the others.

To detect more correct change rules, considering more features is promising but not straight-
forward, because multiple features may give contradictory information, confusing prioritizing
approaches. An incorrect change rule suggested by a high-priority (heavy-weight) feature
cannot be overridden by lower-priority (light-weight) features. Besides, these approaches are
difficult to extend to new features, because their developers must choose the priorities, pa-
rameters, and thresholds of the new features with respect to the other features (Kim et al.,
2005; Kpodjedo et al., 2013).
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Although there are many approaches to build API changes using different features, the effec-
tiveness of individual feature and of different ways to use them have not been fully investi-
gated. Such studies would help researchers devise more accurate and extendible approaches
to build API change rules.

We could use Multi-Objective OPtimization (MOOP) techniques to handle possibly con-
tradictory information given by multiple features while building API change rules. MOOP
(Sawaragi et al., 1985) is the process of finding solutions to problems with potentially con-
flicting objectives. No previous work uses MOOP techniques to combine features.

Consequently, we conduct a study to compare approaches using different features in different
ways, including MOOP-based and prioritizing techniques, to build change rules. The goal
of our study is two-fold: (1) identify features that are really beneficial to detect API change
rules and (2) find the combining process that obtains the best accuracy from the features.
We want to answer the following research questions:

RQ1: How effective are the features used in the literature to build change rules?
RQ2: Do the approaches using multiple features outperform those using single features?
RQ3: Do MOOP-based approaches outperform the non-MOOP approaches?
RQ4: Do MOOP-based approaches outperform state-of-the-art approaches?

We study previous works (Cossette and Walker, 2012; Dagenais and Robillard, 2011; Godfrey
and Zou, 2005; Kim et al., 2005, 2007; Kpodjedo et al., 2013; Meng et al., 2012; Schäfer et al.,
2008; Wu et al., 2010; Xing and Stroulia, 2007a) and select six metrics of four features
used by them: call dependency similarity, comment similarity, inheritance relation, and
signature similarity used by them. We use these features to build six approaches using each
feature metric, five approaches prioritizing these features, and five corresponding MOOP-
based approaches using the same features.

We compare these approaches on six open-source frameworks in Java. For each target
method, we generate a list of candidate replacement methods with a maximum size of six
methods using each approach. We chose six to abide by the human capacity to process infor-
mation (seven plus or minus two) (Miller, 1956). Then, we compare the sets of change rules
using two criteria: the number of change rules with correct replacements and the average
position of correct replacements. We find that not all features are useful individually. Signa-
ture similarity is more effective than the other features. Not all the multi-feature approaches
outperform single feature approaches and the result of the MOOP-based approaches is more
stable and accurate than that of the corresponding prioritising approaches.

Also, we compared the MOOP-based approach using all the six feature metrics with a state-
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of-the-art approach MADMatch (Kpodjedo et al., 2013). The MOOP-based approach build
more change rules with correct replacements on two of four programs and the same number
of change rules on the other two. The results showed that MOOP is an effective way to
combine multiple features to build change rules, especially, when there is no prior knowledge
to favour certain features.

5.1 Study Design

In this section, we describe the design and the implementation of our study. First, we present
the features selected in our study. Then, we describe the implementations of the individual,
non-MOOP, and MOOP-based approaches.

5.1.1 Feature Selection

In our study, we select four features: method signature, call-dependency, inheritance relation,
and source code comments. The first three are the top-three features used by previous works,
as shown in Section 2.2. Although source code comments are only used by UMLDiff (Xing
and Stroulia, 2007a), we still include them in this study because Cossette and Walker (2012)
reported that developers often use them to find the replacements of missing methods. We
want to investigate the effectiveness of source code comments too.

We use six metrics to measure the features. These metrics represent different characteristics of
methods. Method signature has three metrics to reflect different levels of lexical similarities.
Five of the six feature metrics are used by previous approaches. LCS of inheritance relation
is derived from the approach of Schäfer et al. (2008). We present how to compute these
feature metrics below.

— Confidence value for call-dependency relations
— LCS for source code comments
— LCS for inheritance relations
— Method-level distance (MD) for method signatures
— LCS for method signatures
— LD for method signatures

5.1.2 Feature Metric Computation

To compute the LD and the LCS, we tokenise the strings as proposed by Lawrie et al.
(2006) by splitting them at upper-case letters and other characters, such underscore, space,
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punctuation. Previous works also follow the same process.

Call-dependency Relation

To compute call-dependency relation similarity, we first define an anchor a as a pair of meth-
ods with the same signature (including return type, declaring module, name, and parameter
lists) that exist in both the old and new releases. The set of anchors A is defined as:

a = < ai, aj > ∧ j > i (5.1)

A = {a | (ai ∈ Ri ∧ aj ∈ Rj ∧ S(ai) = S(aj))} (5.2)

where the function S(ai) returns the signature of method ai and i and j represent the releases
of a program.

There are different implementations of call-dependency analyses. We choose that based
on association rule mining (Agrawal et al., 1993) which is used by SemDiff (Dagenais and
Robillard, 2011) and the approach of Schäfer et al. (2008). Association rule mining is a
machine learning technique to build and verify the links between the items of two data sets.
It uses Confidence Value (CV) and Support to measure the quality of the links. CV is a
percentage to show how reliable a link. When we measure call dependency relations, the
confidence value CV (t, c) for a given target method t and its candidate replacement method
c are computed as follows:

A(t) = |{ a | a ∈ A ∧ ai → t }| (5.3)

A(t, c) = |{ a | a ∈ A ∧ ai → t ∧ aj → c }| (5.4)

CV(t, c) = A(t, c)
A(t) (5.5)

where ai → t represents method ai calls method t.

Comments

Same as UMLDiff (Xing and Stroulia, 2007a), we use LCS to represent the similarity of the
comments of two methods and analyse Javadoc comments in the source code, because they
are directly connected with methods by the Java compiler. In the Javadoc comments for
methods, we extract the textual parts and exclude the parts under annotations, such as the
parts after @param and @return. Usually, the text part is the description of the functions
of methods and should be relatively stable even their signatures are changed. Parameters
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and return values of methods are subject to change when the signature changes, so the
annotations related to them are likely to be different also, even if the functions of methods
are equivalent.

Inheritance Relation

To compute the similarity of the inheritance trees between two methods, we extended that
used in the approach of Schäfer et al. (2008). Schäfer et al. extract extension and imple-
mentation as two different inheritance relations, we combine them into one metric. First, we
convert the whole inheritance tree of the class of each method into a string by traversing both
inheritance trees and implementation trees in lexicographic order. We sort the interfaces in
the implementation trees by their qualified names to avoid the influence of interface order.

Using a Java example in Figure 5.1, if a methodm belongs to a class C, the parent class tree of
C is java.lang.Object, p1.P1, and p2.P2. C also implements two interfaces p1.I1 and p2.I2
whose parent interfaces are p1.P I1 and p2.P I2 respectively. Then the string representing
the inheritance tree of C is p1.P1.p2.P2.p1.P I1.p1.I1.p2.P I2.p2.I2 1.

Then, we use LCS between the two strings representing the inheritance trees of the classes in
which the two methods are defined to measure the similarity of their inheritance relations.

Method Signature

Previous works use three metrics to compare method signature similarity. Method-level Dis-
tance (MD) (Wu et al., 2010) reflects coarse-grain similarity between two methods’ signatures.
Levenshtein Distance (LD) (Schäfer et al., 2008; Wu et al., 2010) and Longest Common Sub-
sequence (LCS) (Kim et al., 2007; Xing and Stroulia, 2007a) represent finer-grain methods
signature similarities.

To compute Method-level Distance MD(c, t), we define functions R(c), D(c), N(c), P (c) to
get the return type, declaring class, name, and formal parameters of method c, respectively.
MD measures the similarity of method signatures in a coarse way and can prevent that
a dramatic change in one from R(c), D(c), N(c), P (c) misleads change rule building. The

1. In this example, we do not take java.lang.Object into account, because it is the root of all Java classes
and adding it has no influence on the result
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Figure 5.1 Inheritance Tree Example

method level distance between c and a target method t is:

Ec = {R(c), D(c), N(c), P (c)} (5.6)

di(c, t) =

 0 if Ec(i) = Et(i)
1 if Ec(i) 6= Et(i)

(5.7)

MD(c, t) =
4∑

i=1
di(c, t) (5.8)

where Ec(i) returns R(c), D(c), N(c), P (c) respectively while i = 1, ..., 4. MD(c, t) returns
how many of the four elements (return types, declaring classes, names, and parameters) of
the signature of c are different to those of t.

The LD and LCS of the signatures of two methods are denoted as LD(S(c), S(t)) and
LCS(S(c), S(t)) respectively. A candidate method with the smallest LD does not always
have the largest LCS. For example, let us assume that we want to identify the method most
similar to ab between a, abc, and abcd. Both a and abc have the same LD and both abc and
abcd have the same LCS. So, if we only use one of these measures, we obtain two methods
with the same similarity value. Thus, first using LD, the candidate set can be narrowed to a
and abc, then comparing them with LCS, abc is identified as the most similar to ab.

5.1.3 Approach Implementations

In our study, we first build the experiment approaches using the feature metrics to investigate
the effectiveness of single features and of prioritising and MOOP ways to combine these
features. We try to avoid influences of other factors, e.g., input data granularity. As discussed
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above, some approaches (Dagenais and Robillard, 2011; Kim et al., 2005; Meng et al., 2012)
take software repository commits as input. Software repository commits can be seen as
small releases. The fine-grained change information in the commits may help improve the
precision and recall of the detected rules. Because the goal of the study is not to investigate
the contributions of the fine-grained information to the improvement of precision and recall,
we exclude the influence of different inputs.

Some approaches use complex processes, such as the multi-iteration algorithms in AURA
(Wu et al., 2010) and UMLDiff (Xing and Stroulia, 2007a), to make the best of one feature.
For example, the multi-iteration algorithms used by AURA and UMLDiff are to improve the
accuracy of call-dependency and signature similarity analyses, respectively. Such complex
processes can tune the usage of one feature which affects prioritized and MOOP-based ap-
proaches equally. Therefore, we exclude them from the implementations of the approaches in
our study. Furthermore, many approaches use thresholds and parameters and their values are
difficult to choose. We want to avoid their influences too. To demonstrate the effectiveness
of MOOP techniques, we directly compare with MADMatch (Kpodjedo et al., 2013), one of
the state-of-the-art approaches from previous work. The approaches that we implemented
for this study are described in details below.

Individual and Prioritised Approaches

The approaches used in our study are shown in Table 5.1. Individual approaches I1 to I6
use a single feature metric to build change rules for target methods. Based on each of the six
metrics described in Section 5.1.2, they compute the similarity of the potential replacement
methods to a target method in subject programs, sort them and keep the six most similar
candidates as potential change rules.

With six individual feature metrics, building the prioritised approaches with all possible
permutations is impractical. We select five combinations shown in Table 5.1 in our exper-
iment. AURA (Wu et al., 2010), a derived approach based on P1, showed that combining
call-dependency similarity and method signature LCS and LD is effective. We want to verify
if combining other features with method signature similarity has comparable performances.

In prioritised approaches, candidates are compared with the metrics from high to low pri-
orities as previous approaches. For example, similar to AURA (Wu et al., 2010), with P1,
if two candidate methods have different call-dependency similarities, the approach does not
compare them by their signature LCS. If they are the same, then their similarities are decided
according to the signature LCS and so on.
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Using call-dependency, comment, and inheritance similarities at high priority, approaches can
discover the replacements whose signatures are not alike to the target methods (Dagenais
and Robillard, 2011; Schäfer et al., 2008; Wu et al., 2010). In P5, we combine all the four
metrics used in P1 − P4. With the priorities from high to low, the feature metrics used
are call-dependency, comment, inheritance and method-level distance with method signature
LCS and LD.

MOOP Formulation

We formalise framework API evolution problem as a MOOP problem as follows. Let us
assume that there is a framework with two releases Ri and Rj with i < j. F is the set of
features that we consider to build change rules between Ri and Rj:

F = {f1, ..., fn} (5.9)

We want to identify replacement methods for the target methods in Ri but no longer in Rj,
in terms of their signatures including return type, declaring class, method name, and formal
parameters. Then, the target methods set T is defined as:

T = {t | t ∈ Ri ∧ @ m ∈ Rj : S(t) = S(m)} (5.10)

For each target method t in T , every method in Rj is a potential replacement method, i.e.,
candidate method. We define the candidate method set C, where x is the size of C and cj is
a method in Rj, as:

C = {c1, ..., cx} (5.11)

Table 5.1 Individual, Prioritised and corresponding MOOP approaches

Approaches Features
I1 Call-dependency
I2 Comment
I3 Inheritance
I4 MD (Method-level Distance)
I5 MLCS (Method Signature LCS)
I6 MLD (Method Signature LD)

P1, M1 Call-dependency MLCS MLD
P2, M2 Comment MLCS MLD
P3, M3 Inheritance MLCS MLD
P4, M4 MD MLCS MLD
P5, M5 All Four in P1-P4 MLCS MLD
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For each feature fi, we abstract the feature metrics as simi(t, ck) between t and ck as the mea-
surements of the objectives in the MOOP formulation. The computations of simi(t, ck) are
implemented according the fitness functions described in Section 5.1.2. The set of similarities
is SIM(t, ck):

SIM(t, ck) = {sim1(t, ck), ..., simn(t, ck)} (5.12)

For two candidate methods cp and cq in Rj, we define cp I cq to represent that cp dominates
cq, which means that, for each feature fi, simi(t, cp) is better than or equal to simi(t, cq) and
there is at least a feature fz for which simz(t, cp) is strictly better than simz(t, cq):

cp I cq (5.13)

iff simi(t, cp) ≥ simi(t, cq) ∀ i ∈ {1, ..., n} (5.14)

∧ ∃ i ∈ {1, ..., n} | simi(t, cp) > simi(t, cq) (5.15)

We thus build the Pareto front (Zitzler and Thiele, 1999) Pt for each target method t. Pt is
a subset of C that each element pt is not dominated by the other methods in C.

Pt = {pt | ∀ c ∈ C ∧ c /∈ Pt : pt I c} (5.16)

We expect that the correct replacement methods for a target method t in T belong to its
Pareto front. The Pareto fronts are the recommendation sets detected by MOOP approaches
and we use recommendation sets and Pareto fronts interchangeably.

MOOP Implementation

For each prioritised approaches described in Section 5.1.3, we implement a MOOP-based
approach that uses the same feature metrics and name themM1, ...,M5. The implementation
of our MOOP-based approaches is based on jMetal (Durillo and Nebro, 2011), a package for
solving MOOP problems in Java. As discussed in Section 5.1.3, the number of potential
replacement methods is not large and it is feasible to traverse all of them to find the non-
dominated methods. Therefore, we replace the meta-heuristic search in jMetal with a simple
traversal of all solutions in our implementation.

A typical MOOP algorithm is multi-iterative. At each iteration, the first step is population
generation to generate a pre-defined number of solutions. The second step is population
selection that selects the non-dominated solutions and adds them to the Pareto front. When
all the solutions are covered or a predefined maximum number of iteration is reached, the
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algorithm reports the Pareto front.

In the implementation of our MOOP-based approaches, the solutions are the methods in the
potential replacement methods. We map the feature metrics for a target method t and a
potential replacement method c to the objectives and implemented the six fitness functions
defined in Section 5.1.2 to compute their values.

We do not give any constraints to the objectives in our study because we want to compare
the approaches as generally as possible. Many previous approaches (Dagenais and Robillard,
2011; Kim et al., 2007; Schäfer et al., 2008) use thresholds to increase the precision of detected
change rules. With thresholds, approaches may not report detected change rules because the
similarities of a target method and its potential replacements are not high enough.

The change operator of our MOOP implementation is traversing the candidate method list
with a predefined step size s, i.e., each population has s candidate methods. Because we
traverse all the methods defined in the new releases of frameworks, the value of s does not
have any influence on the generated Pareto front. In our implementation, we set s to six.
We use the binary tournament operator to select the solutions.

Contrary to the individual and prioritised approaches, the methods in the original recom-
mendation list of MOOP-based approaches are not sorted, because they are non-dominating
each other when considering all the feature metrics. However, one can be better or worse
than the others in a specific objective. In our MOOP implementation, we sort the recommen-
dation list according to the Best Objective Number (BON), i.e., the number of objectives of
a method which are better than those of the others in the list. If all the recommendations
are the same for a feature metric, none of them are better in this metric.

For example, if method a is the best in signature LCS and inheritance tree LCS, method
b has the largest comment LCS, method c has the same CV as a and b, then the sorted
recommendations are a, b, and c with BON of 2, 1, 0 respectively.

5.2 Study Execution

We now present our experiment. We first describe the subject programs and how to evaluate
the results, then present the results.

5.2.1 Subject Programs

We select two releases of six open-source Java programs: Android SDK, jEdit, jFreeChart,
jHotDraw, Log4j, and Struts. Table 5.2 shows their statistic data.
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Table 5.2 Subject Programs

Subject Programs Releases # Methods # Target Methods

Android SDK 2.1_r2.1p2 20,516 1062.2.3_r2 21,214

jEdit 4.1 2,773 874.2 3,547

jFreeChart 0.9.11 4,751 300.9.12 5,197

jHotDraw 5.2 1,486 435.3 2,265

Log4j 1.0.4 906 151.1.3 1,110

Struts 1.1 5,973 911.2.4 6,111

These programs are medium size systems and have different characteristics regarding API
evolutions. Android (Google, 2007) is a mobile operating system developed by Google. An-
droid is written in several programming languages but its SDK is in Java. We analysed
Android SDK releases 2.1_r2.1p2 and 2.2.3_r2 in our study. They are the latest versions of
two releases of Android: Eclair (API Level 7) and Froyo (API Level 8). No previous work has
evaluated the API changes of Android SDK. JEdit (jEdit, 2014) is a text editor. Its API and
implementation between v4.1 and 4.2 changed dramatically. JFreeChart (jFreechart, 2014)
is a chart library. The APIs between its v0.9.11 and v0.9.12 also changed a lot and there are
many APIs in v0.9.12 with very similar names. The dramatic changes in the two programs
are challenging for both developers and the approaches to build API changes. JHotDraw
(jHotDraw, 2014) is a GUI framework developed by Gamma et al. to demonstrate the appli-
cation of design patterns (Gamma et al., 1995). Yet, between v5.2 and v5.3, there are several
API changes. Log4j (Apache, 2014a) is a logging framework and Struts (Apache, 2014b) is a
Java web application framework. Both are developed by Apache. The release pairs that we
choose are in their early stages and with API changes.

5.2.2 Target Methods

In our experiment, we detect and validate the change rules for public and protected target
methods with changed class or method names in the new releases, because developers do need
change rules to find their replacements. Most previous works (Godfrey and Zou, 2005; Kim
et al., 2007, 2005; Kpodjedo et al., 2013; Meng et al., 2012; Schäfer et al., 2008; Wu et al., 2010;
Xing and Stroulia, 2007a) evaluated the change rules for all the target methods. However,
Des Rivières classified API changes according to program elements (Rivières, 2008), such as
class or method name changes, method parameter changes, modifier changes, etc. From this
classification, we can find out that only class or method name changes (including moving,
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renaming, and removing) require change rules to help developers find the replacements,
because developers do not have a reliable way to locate their replacements. For other type
of changes, e.g., only method parameter changes, developers can easily find the replacements
in the new releases of frameworks based on the unchanged class names and method names.

Therefore, the evaluation on the change rules of public and protected target methods with
class name and method name changes has two advantages: (1) the results reflect the effec-
tiveness of approaches more accurately than evaluations on the change rules of all the target
methods and (2) the amount of manual validation work is greatly reduced. The numbers of
target methods of the six subject programs in our experiment are shown in Table 5.2.

5.2.3 Evaluation

To evaluate the change rules of the approaches in our study, we read the source code of
the subject programs carefully to verify if the change rules have correct replacements. The
replacement candidate method set contains the methods defined in the new releases of the
subject programs and the methods called in the subject programs, but defined in other frame-
works developed by the same providers. We identify the same providers using the package
names. For example, if both the package names of two methods start with “org.apache",
we consider them as developed by the same provider. Other methods are excluded from the
candidate set. At least two of the authors agreed on the results. Then, we count the numbers
of the change rules with correct replacements and the positions of the correct replacements
in the recommendation lists as the metrics to compare the approaches. The approaches with
larger number of the change rules with correct replacements and smaller position of correct
replacement are better.

5.3 Study Results

In this section, we present the results of individual, prioritising, and MOOP-based approaches
on the subject programs.

Individual Feature Metrics

To investigate more efficient ways to combine multiple features, we first observe the effec-
tiveness of these features to build change rules individually. Table 5.3 shows the numbers of
change rules with correct replacements built by approaches using individual feature metrics.
Among these approaches, only I5 and I6 that use method signature LCS and method sig-
nature LD, respectively, provide stable good results. The results of others fluctuate between
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programs and are worse than those of I5 and I6 except for the result of I4 on jHotDraw.
The results of the overlaps between five 2 individual feature metrics are shown in Figure 5.2.

In Figure 5.2, each large oval represents a feature metric. The sum of the numbers in an oval
is the number of the correct change rules that can be detected by that feature metric. The
numbers in the small overlapped areas of the ovals represent the numbers of correct change
rules that can be detected by the feature metrics represented by the overlapped ovals.

In Figure 5.2, we observe that the signature LCS detects the most correct change rules. Other
feature metrics help to detect more change rules, but their numbers vary between programs.
Call-dependency similarity helps detect more correct change rules for four programs while
comment similarity helps for two programs.

If a feature metric does not bring any new correct replacement alone, it does not mean that the
feature metric cannot help detect more correct change rules when combined with other feature
metrics. For example, if the correct replacement r and other methods M = {m1,m2, ...,mn}
have the same comment LCS to a target method t, the approach using comment similarity
only may not report r in the change rules. If r is more similar to t in signature LCS than the
methods in M , combining comment LCS and signature LCS can promote r to the top and r
is not necessary to be the most similar one to t in signature similarity while considering all
the potential replacement methods.

The approaches using call-dependency relations or source code comments alone can only build
change rules for a part of the target methods, because not all the target methods are called
by anchors inside frameworks or have comments. The other approaches can detect change
rules for all the target methods. Figure 5.3 shows that the percentages of target methods
called by anchors and with comments vary between programs. Call-dependency similarity
applies to only less than 50% of target methods and less than 5% between Struts 1.0.4 to

2. We do not include method signature LD, because the libraries available to draw Venn diagrams only
support maximum five dimensions and the results of signature LD are similar to those of signature LCS, as
we presented in Table 5.3.

Table 5.3 Numbers of change rules with correct replacements - individual feature metrics

I1:CallDependency I2:Comment I3:Inheritance I4:SignatureMD I5:SignatureLCS I6:SignatureLD
Android 22 20 9 39 50 51
jEdit 12 13 5 22 30 27

jFreeChart 5 15 3 19 29 26
jHotDraw 14 20 14 39 36 38
Log4j 6 8 3 10 12 10
Struts 2 8 17 18 19 18
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Figure 5.2 Effectiveness of individual features
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1.1.3 as worst case. More than 50% of target methods have comments, i.e., the replacement
methods of these target methods could be detected by comments similarity. On average,
call-dependency similarity and comment similarity apply to 31% and to 75%, respectively, of
all the target methods in our study.

Number of Change Rules with Correct Replacements

Figure 5.4 shows the numbers of change rules with correct replacements built by the ap-
proaches in this study. We observe that, MOOP-based approaches give results better than or
close to those of the non-MOOP approaches using the same feature metrics, except between
P3 and M3 on jHotDraw (this case will be discussed in Section 5.4.3). More important,
P5 which prioritises all the feature metrics does not always give better results than other
prioritised approaches using less features (P1 to P4). There are even large decreases in three
programs (jEdit, jFreeChart, and Struts). In contrary,M5, the MOOP-based approach using
the same feature metrics as P5, generally outperforms all the other approaches, only build
one and two less correct change rules than P1 on Android SDK and jFreeChart, respectively.

In Section 5.3, we found that the results of approaches only using lexical similarities are
stable, because most of the replacements have similar method signatures. Here, we observe
that combining lexical similarities with other features, such as call-dependency, comment and
inheritance relations, is not always helpful to detect more correct change rules. Only P1,
which combines call-dependency similarity with signature similarity, is consistently better
than the approaches using only lexical similarity. P5, the approach combining all the feature
metrics in a prioritised way, is not consistently better than the two single feature approaches
either. This result confirms that integrating multi-feature is not straightforward.

On the other hand, MOOP-based approaches provide more stable and generally good results.
Combining multiple features in a MOOP way can mitigate the confusion caused by possibly
contradictory information of multi-features.

Besides the number of change rules with correct replacements, the positions of the correct
replacements are also important for developers to use the change rules. The correct replace-
ments with higher ranks are easier to be picked up by developers.

Positions of Correct Replacements

The approaches in our study output maximum six recommendations. Even with the same
numbers of target methods with correct recommendations, the approaches with smaller cor-
rect recommendation positions are preferable to developers. Figure 5.5 shows the average
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Figure 5.3 Number of change rules

correct replacement positions of the approaches in our study. Generally, the correct re-
placement positions of MOOP-based approaches are higher than those of the corresponding
non-MOOP approaches. There are three cases where MOOP-based approaches with lower
average correct replacement positions, M2 on jFreeChart and M3 on jEdit and Log4j. How-
ever, the MOOP-based approaches build 36%, 79%, and 100% more correct change rules
than corresponding non-MOOP approaches, respectively in the three cases.

Comparison with MADMatch

MADMatch (Kpodjedo et al., 2013) is one of the state-of-the-art approaches matching pro-
gram elements. It combines four features (call-dependency, inheritance, code-structure, and
signature) to improve the precision and recall. The authors analysed four of the six subject
programs used in this study and shared the results with us. We compared M5 with MAD-
Match on the numbers of change rules with correct replacements and the results are in Table
5.4. MADMatch and M5 have the same results on jFreeChart and Struts and M5 detects
more change rules with correct replacements on jEdit and jHotDraw.

Two reasons cause that the change rules are missed by MADMatch: (1) MADMatch was
mislead by the conflicting features. For example, DisplayTokenHandler.getChunks() is
replaced by DisplayTokenHandler.getChunkList() between jEdit 4.1 and 4.2. This change
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(c) jFreeChart

M1, P1 M2, P2 M3, P3 M4, P4 M5, P5 
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(e) Log4j

M1, P1 M2, P2 M3, P3 M4, P4 M5, P5 

MOOP 19 19 18 18 20 
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Figure 5.4 Numbers of change rules with correct replacements - non-MOOP vs MOOP
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M1, P1 M2, P2 M3, P3 M4, P4 M5, P5 

MOOP 1.09 1.28 1.39 1.14 1.13 

Non-MOOP 1.39 1.52 1.56 1.52 1.33 
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(b) jEdit

M1, P1 M2, P2 M3, P3 M4, P4 M5, P5 

MOOP 1.07 1.60 1.21 1.08 1.19 

Non-MOOP 1.21 1.00 1.42 1.23 1.06 

0.90 

1.00 

1.10 

1.20 

1.30 

1.40 

1.50 

1.60 

1.70 

C
o

rr
e

ct
 R

e
co

m
m

e
n

d
at

io
n

 P
o

s jFreechart 

(c) jFreeChart
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(d) jHotDraw
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(e) Log4j
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Figure 5.5 Average correct replacement positions - non-MOOP vs MOOP
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rule can be built by method signature text similarity. However, MADMatch reported Display
TokenHandler.canMerge(...), which has much lower lexical similarity. (2) The thresholds
used prevents MADMatch building some change rules, because the results under thresholds
are discarded. This is a typical limitation of using thresholds.

Because M5 give the recommendation list with maximum six elements and MADMatch only
gives one recommendation, we cannot say thatM5 outperforms MADMatch for all the cases.
Interested readers can refer to (Kpodjedo et al., 2013) for details of the implementation of
MADMatch. Yet, the MOOP-based approach can provide comparable or better results with a
more straightforward way to combine features than non-MOOP approaches. More discussions
about recommendation list size are in Section 5.4.1.

5.3.1 Summary

We can answer the research questions based on the results of the experiment as follows:

RQ1: How effective are the features used in the literature to build change rules?
A: Among the individual feature metrics, only method signature LCS and method sig-

nature LD can build change rules with reliable quality. These two metrics perform
slightly different between programs.

RQ2: Do the approaches using multiple features outperform those using single features?
A: No, combining more features does not necessarily help build more correct change rules.

It depends on the features and how to combine them. The approach combining call-
dependency and signature similarities produces stable good results, while the results
of other combinations very between programs.

RQ3: Do MOOP-based approaches outperform the non-MOOP approaches?
A: Yes, MOOP-based approaches generally detect more correct change rules with higher

correct replacement positions, compared to the prioritised approaches using the same
features. On average, MOOP-based approaches detect 13% more correct change rules
with 3% smaller average correct replacement position than the corresponding priori-
tising approaches.

Table 5.4 Numbers of change rules with correct replacements - M5 vs MADMatch

jEdit jFreeChart jHotDraw Struts
M5 36 26 42 20

MADMatch 26 26 31 20
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RQ4: Do MOOP-based approaches outperform state-of-the-art approaches?
A: Yes, the MOOP-based approach M5 detects more change rules than MADMatch on

two of four subject programs and the same number of change rules on the other two.

Furthermore, the prioritised approach considering all the feature metrics, P5, perform dif-
ferently between subject programs. Its results are less accurate than individual approaches
sometimes, because of the contradictory information between the feature metrics. Therefore,
considering more features is a source of decrease in accuracy. The stable results given by the
MOOP-based approaches show that MOOP is an effective way to handle the potential con-
flicts between feature metrics. Also, MOOP-based approaches do not use context-sensitive
thresholds or parameters and easy to be extended to new features.

5.4 Discussion

We now discuss issues on framework API evolution identification and approaches comparison.

5.4.1 Recommendation List Size

We argue that approaches on framework API evolution should give recommendation list,
as Google search results, instead of one recommendation, because of the asymmetric costs
between searching for correct replacements and identifying wrong change rules. Developers
are better at understanding semantic differences between two methods than any tools, but
not at searching the whole source code of the new releases of a framework to find the most
similar methods to a method with respect to some features. We prefer recommendation lists
with three conditions:

First, the recommendation lists should be suggested by different features. Cossette and
Walker (2012) manually analysed three Java programs and discovered that only a part of the
target methods can be found by one feature. Therefore, a larger recommendation set based
on single feature does not give more correct change rules efficiently, because the positions
of the correct replacements may be low. Developers must spend more effort to evaluate the
recommendations above.

In our study, the features used represent different characteristics of API methods, including
call-dependency, comment, inheritance and different level of method signature similarities.
The results fluctuate when we only combine two of them. Combining them in MOOP-based
approach makes the best of the diversified features and produces stable good results.

Second, the size of recommendation set must be small enough. Large data set will overwhelm
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developers. Psychological research shows that human capacity to process information is
around a magical number seven (plus or minus two) (Miller, 1956). If the size of a data set
is much larger than seven, it would much more difficult for developer to process directly.

In our study, prioritising approaches have fixed recommendation list size of six and those of
MOOP-approaches are changed between one and six depending on programs and features.
Table 5.5 lists the average recommendation list sizes of the five MOOP-based approaches in
our study. All of them are less than six and those of M5 are larger than the others because
M5 considered more features.

Third, the positions of the correct replacements are better when closer to the top. Joachims
et al. (2005) found in an eye-tracking experiment that subjects scan answer lists from top to
bottom before deciding which answers to explore and about 50% of the subjects only scan
the top three answers in the list. So if the ranks of correct recommendations are too low,
users might not check them at all. Like how people use Google, it is fine if the relevant links
are not the first one, but usually we do not check the links on the second page.

As shown in Section 5.3, the average positions of correct replacements are less than 1.6 for
M5 even the average recommendation sizes are larger than 2.7.

5.4.2 Change Rules without Correct Replacements

Change rules without correct replacements for target methods have two categories: the ap-
proach is not able to detect the correct replacements or the target methods are simply deleted
without replacement.

An approach cannot detect exiting replacements for two reasons. First, these replacements
are not the most similar to the target methods according to the used features. Second, the
replacements are not in the new releases of the frameworks, e.g., from third party frameworks
or deleted because of framework behaviour changes.

In our study, we found that most of the target methods, for which all approaches in our
study cannot find the correct replacements, are simply deleted, because of behaviour changes

Table 5.5 Average recommendation list sizes

Android jEdit jFreeChart jHotDraw Log4j Struts
M1 1.75 2.36 1.67 1.79 1.93 1.88
M2 1.99 2.66 2.43 1.95 1.87 2.64
M3 1.93 2.39 1.57 1.81 2.47 2.23
M4 1.63 2.18 1.60 1.95 1.80 1.95
M5 2.91 3.87 2.93 2.70 4.07 3.67
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between the framework releases. We proposed a heuristic treating target methods with the
replacements existing also in the old releases of framework as simply-deleted in AURA (Wu
et al., 2010). However, this heuristic is not 100% accurate and there is no reliable way to
detect simply-deleted change rules yet.

For the target methods whose correct replacements cannot be detected by the approaches,
the sizes of recommendation lists are important for developers because they must potentially
traverse all of them. If two approaches cannot detect the correct change rule for a target
method, the approach with smaller recommendation list size performs better than the other.

In our study, the individual (except that using call-dependency similarity) and prioritised
approaches always give six recommendations because we do not use threshold to filter out the
recommendations. Figure 5.6 shows the results between M5, the individual approach using
call-dependency similarity, and the others. The recommendation list size without correct
replacements of the individual approach using call-dependency similarity is the smallest, but
it can only build change rules for the target methods called by anchors.

On average, the recommendation list sizes without correct replacements of M5 is 4.63 com-
paring to six of the others. For jHotDraw and Log4j, M5 only has one target method for
each without correct replacements. These two target methods are simply-deleted in the new
releases as confirmed by manual validation.

Simply-deleted methods are more difficult to adapt. Developers must validate all the recom-
mendations of the target methods, but still are sure if the target methods are really removed
or just missed by the tools. Without a reliable way to detect simply-deleted rules, approaches
with high recall and smaller recommendation sizes, such as M5, are more desirable for de-
velopers to save effort on searching the non-existing replacements.

5.4.3 Limitation

The main limitation of MOOP-based approaches is that the replacement methods must be
non-dominated by the other methods according to the features used. This limitation caused
M3 to detect less change rules with correct replacements than the corresponding prioritised
approach P3 on jHotDraw. BothM3 and P3 use inheritance tree LCS and method signature
LCS and LD. Between jHotDraw 5.2 and 5.3, there are many target methods replaced by
other methods with less signature similarity in the same classes. These replacement methods
are dominated by the methods in the same declaring classes and more similar to the target
methods in method signatures. Therefore, M3 cannot report them.
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Figure 5.6 Average recommendation list sizes without correct replacements

For example, ConnectionFigure.start() in jHotDraw 5.2 is replaced by ConnectionFigure
.getStartConnector() in v5.3. In class ConnectionFigure v5.3, another method start
Figure() is more similar to start() in method signature. Because startFigure() and
getStartConnector() have the same inheritance tree LCS, the former dominates the latter
andM3 recommended startFigure() as the replacement. P3 also recommended startFigure()
first. P3 has fixed recommendation list size of six and it recommends getStartConnector()
at third position.

The results of M5 show that this limitation can be ameliorated by including more features.
The easiness to extend to new features is an advantage of MOOP-based approaches.

Another limitation of MOOP-based approaches is that the sizes of recommendation list may
increase with the numbers of features considered. However, in Figure 5.5, we can see that
the average correct replacement positions do not have the same trend and can be lower than
the approaches using less features.

5.4.4 Threats to Validity

Construct validity Threats to construct validity concern the relation between theory
and observation. In our context, we want to see if MOOP approaches generate more cor-
rect change rules with higher positions in the recommendation list and smaller all-incorrect
recommendation list sizes than individual and prioritised approaches. We use different ap-
proaches as treatments and we observe the number of correct change rules of their outputs,
the average correct recommendation positions and the average recommendation list sizes.
Thus, we believe that there is no threat compromise the construct validity.
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Internal validity Internal validity verifies if the outcome is really caused by the treatment.
We identify two threats to internal validity. First, we inspected the change rules generated by
the approaches manually. We cannot rule out human error in validating results. To mitigate
this threat, we first reduce the possibility of human errors by reducing the number of change
rules to validate without compromising the generalizability. As we explained in Section 5.2.1,
not all the API changes need to be detected by tools, but those with different class, interface,
or method names. Only analysing the change rules of the latter is reliable enough to evaluate
approaches and reduces the chance of making errors caused by fatigue. Also, we read the
source code of the subject programs carefully and at least two of the authors evaluated and
agreed on the results of each program we believe that this threat does not compromise the
internal validity. Second, there may be errors in our implementations of the approaches. We
carefully implemented and tested these approaches and did not observe errors in the output.
Third, we only consider the methods from the new releases of the subject programs and of
other programs from the same providers. During the evaluation, we found less than 1% of
the replacement methods belonged to third-party frameworks. We believe that it does not
harm the internal validity either.

Conclusion validity Threats to conclusion validity concern the relation between the treat-
ment and the outcome. We used un-biased systematic measures and the data generated by
the approaches. Thus, we believe that no threat to the validity of our conclusion exists.

Reliability validity Threats to reliability validity concern the possibility of replicating this
study. We attempted here to provide all the necessary details of our study to replicate it.
Moreover, all studied programs and data from the previous approaches are publicly available
or available upon request to their authors.

External validity Threats to external validity concern the possibility to generalize our
findings. We studied six programs of different sizes, belonging to different domains, and
evaluated by the previous approaches. The results on them are consistent and thus, mitigate
the threat to generalizability. However, we only analysed Java code. Therefore, it is possible
that the results of this study would be different on other programming languages. Further
validation on a larger set of programs are desirable.
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5.5 Conclusion

We present a study to investigate the effectiveness of four features and of their combinations
to build API change rules during framework evolution. We select six metrics of these features
used by previous approaches: call-dependency confidence value, comment LCS, inheritance
tree LCS, method-level distance, method signature LCS, and method signature LD. We
compare the change rules built by six approaches using each feature metric, five approaches
using multi-features in prioritised ways and five corresponding MOOP-based approaches using
the same multi-features. We discover the features really beneficial to build API change rules
and a more effective way of combining different features.

We evaluate the approaches with six open-source Java frameworks and the results showed
that (1) approaches only using method signature LCS or LD have comparable results to multi-
feature approaches; (2) approaches combining multi-features do not always provide better
results than individual approaches; (3) approaches using more features do not always perform
better than the approaches using less features. An approach prioritising all the feature
metrics gives less accurate results than approaches using a single feature on some subject
frameworks; (4) MOOP-based approaches provide more stable results than the corresponding
prioritised approaches using the same features. On average, MOOP-based approaches detect
13% more correct change rules with 3% smaller average correct replacement position than
the corresponding prioritising approaches. M5, the MOOP-based approach using all the
features, produces the best results in most cases.

Also, we compare M5 with a state-of-the-art approach MADMatch and M5 built more
change rules with correct replacements on two of four frameworks and the same number of
change rules on the other two when compared to MADMatch. Thus, we conclude that the
MOOP-based approach can replace advantageously a more complex approach, which is hard
to extend and requires parameter tuning.

We conclude that features have different effectiveness to build API change rules. Combining
different features can produces better results than using single feature but they depend on
the features and the combinations thereof. MOOP is an effective way to combine multiple
features, especially when there is no reason to favour certain features or specific ways to com-
bine multiple features. A MOOP-based approach can handle the contradictory information
between features and is easy to be extended to new features.
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CHAPTER 6 CONCLUSION

Frameworks keep evolving and client programs must upgrade to new releases to use added
features or to patch security vulnerabilities. New releases of frameworks do not always
guarantee backward compatibilities and may change their APIs. It is time-consuming for
client programs to adapt to the API changes.

The motivations of this dissertation are: (1) helping developers and researchers better un-
derstand the reality of API changes and usages together at large-scale and fine-grained level
and (2) proposing better approaches to build API change rules for missing APIs caused by
framework evolution. The thesis of this dissertation is:

Following analyses of the reality of API changes and usages, of the usefulness of
API change rules, and of the effectiveness of the features used to build these rules,
we can build more effective and extendible API change-rule recommendation tools.

6.1 Contributions

To prove our thesis, we first investigate the API changes and usages in the frameworks from
Maven repository and two framework ecosystems: Apache and Eclipse. In total, only 9% of
frameworks with changed APIs in 3% of their releases are used by client programs. However,
these changed APIs are used by about half (49%) of all the client programs in about one fifth
(21%) of their releases. The magnitude of the influence of API changes is large. More than
29,000 releases of 5,845 client programs are directly affected by API changes.

At method level, 10% APIs changed during framework evolution and only 2% are marked
as deprecated by framework developers. 52% of the methods marked as deprecated are not
API methods. Missing classes and missing methods are the two most frequent API change
types in frameworks. Client programs use 16% of the APIs provided by the frameworks and
3% them are affected by API changes, but none of them are marked as deprecated. Missing
classes and missing methods affect client programs more often as well.

On average, the API of one framework is used in 36% of client classes and interfaces, and
more than 80% of such usages could be reduced through refactoring. About 18% of APIs are
used in change-propagating ways.

Missing classes and missing methods are the most frequent API changes in frameworks and
affecting client programs. Previous approaches build API change rules to recommend the
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replacements for the missing APIs. However, the usefulness of these API change rules had
not been confirmed empirically. We conduct an empirical study to verify if the API change
rules generated by the previous approaches can help developers find the replacements of
missing APIs more accurately or quickly, especially when these API change rules are not
100% correct.

The results of our study confirm that change rules built by previous approaches are useful,
even when some of the change rules are incorrect. The higher precision the change rules have,
the more help they provide. Thus, imperfect change rules can be used instead of unavailable
documentation or as complement to partial documentation. Developers of frameworks could
also use them as starting point to build upgrading documentation.

With the confirmation of the usefulness of API change rules, we want to improve the previous
approaches to build API change rules. First, we investigate how useful each feature used in
previous approaches is. We find that (1) approaches only using method signature have
comparable results to multi-feature approaches, (2) previous approaches combining multi-
features do not always provide better results than individual approaches and, (3) previous
approaches using more features do not always perform better than those using less features.

The possible decrease in the results of previous multi-feature approaches are caused by
the conflicting recommendations given by the features. Thus, we propose multi-objective-
optimization-based approaches to build API change rules to overcome the limitation of pre-
vious multi-feature approaches and conduct an experiment to compare these two types of ap-
proaches. The comparison shows that multi-objective-optimization-based approaches provide
more stable results than the corresponding prioritising approaches using the same features.
Thus, multi-objective-optimization-based approaches can replace advantageously previous
approaches. Also multi-objective-optimization-based approaches require less configurations
and are easy to extend with new features.

We thus conclude that it is possible to implement more efficient and extendible approaches
with multi-objective-optimization techniques to build API change rules. All the replication
packages related to our study can be found on line 1.

6.2 Future Work

Based on the results of our studies, the following extensions are possible future work. We
present them from short-term and long-term perspectives.

1. http://www.wuweidavid.net/replications.html
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6.2.1 Short-term

We suggest the four possible directions to which the current research on framework API
evolution could follow.

Extensive Qualitative Analyses

Our exploratory study on API changes and usages is mainly quantitative. The results help
developers better understand the scale of API changes and the severity of the changes affect-
ing the client programs. Qualitative analyses on API changes and usages on a large scale will
lead more understanding. Generally, qualitative analyses are still conducted by researchers
manually and are difficult to extend to large number of frameworks and client programs.
Our quantitative analyses can help researchers locate the possible interesting frameworks
on which researchers would apply qualitative analyses, such as the studies of Hou and Yao
(2011) and Roover et al. (2013). Also, the results of quantitative analyses can help developers
conduct controlled experiments on framework API changes and usages by providing data to
select experimental and control groups.

Tools to Help Framework Upgrading

The API change and usage reports generated by ACUA provide the basis for developers
to estimate upgrading cost before making decisions. With the detailed information in the
reports, researchers can develop dedicate tools to help framework upgrading, automatically
or requiring involvement from client program developers. For example, tools to help client
program developers apply Adapter or Facade patterns to control API change-propagation, or
tools to help framework developers provide documentations for API changes automatically.

Inter-framework API Change Rule Building

The assumption of the current formulation of API change rule building is that the missing
methods are replaced by methods defined in the new releases of frameworks. Future research
could extend to find inter-framework replacements, i.e., replacements defined in other frame-
works. Also, if the search space of replacements is extended to multiple frameworks, exhaus-
tive search may not be feasible and we may have to use meta-heuristic search to build API
change rules. Furthermore, researchers should evaluate different multi-objective-optimization
algorithms (Panerati and Beltrame, 2014) and implementations, such as PyGMO (ESA, 2013)
and jMetal (Durillo and Nebro, 2011), and choose them according the application contexts.
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More Effective Features to Build API Change Rules

We find that the features used in API change rule building have different effectiveness. Com-
bining features using multi-objective-optimization techniques is more effective than previous
approaches, especially when there is no reason to favour certain features or specific ways
to combine them. The performance of multi-objective-optimization-based approaches still
depends on the used features. If the replacement of a missing API is not dominant according
to the features, multi-objective-optimization-based approaches will miss it. Thus, researches
could now focus on finding which features to combine and new more effective features.

Approaches on Other Steps of Upgrading Process

Our second empirical study shows that the change rules generated by framework API evo-
lution approaches are useful. The imperfect change rules can be used instead of unavailable
documentation or as complement to partial documentation. Developers of frameworks could
also use them as starting point to build upgrading documentation. API change rules mainly
help developers to find replacements of missing APIs more accurately. However, identify-
ing the replacements of missing APIs is only one step in client program upgrading process.
Studies proposing approaches to help developers in other steps, such as code changing and
testing, are important.

6.2.2 Long-term

Base on the literature, our studies and observations, we argue that the following changes will
happen to frameworks and their APIs.

Simplification

Simplification can come in both frameworks and client programs. On the framework side,
we find that only 16% of the APIs provided by frameworks are used by client programs.
This phenomenon shows that the current ways to expose APIs based on visibility is not
efficient. Large number of unused APIs is distracting and also increase the maintenance
and documentation workload. The Provisional API Guideline of Eclipse divides the APIs
of frameworks into official and internal. This practice helps developers focus on the APIs
that frameworks provide by design. Not all framework providers follow the same strategy.
Language-supported API visibility, besides public, protected, default, and private, could be
an effective solution. On the client program side, we find that 80% of API usages in client
programs can be reduced by applying refactoring. Optimisation to keep API usage level to
minimum could be achieved automatically by refactoring tools at compilation time to save
client program developers’ effort in upgrading tasks.
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Standardization

Standardization can make frameworks easier to use and provide more alternatives of the same
function to client programs. As the components used in computer hardware and auto-mobile
manufacture, many frameworks provide similar functions, such as database access, needed by
wide ranges of client programs. However, there are still not many standards to specify the
APIs of frameworks, like JDBC. If there were more such standards, client programs could
switch between the frameworks providing the same functions from different suppliers easily.
Nowadays, open-source software gives a catalogue of frameworks for developers to choose,
but the APIs of these frameworks are still not standards. More widely-accepted standards
of functions and APIs could reduce software development and maintenance costs.

Verification

Verification, specially automated, will become more feasible when frameworks are standard-
ised. Framework providers could supply the specifications of their implementations, such
as reliability, execution time, memory usage, energy consumption, etc. Third-party organi-
zations could independently verify if these implementations comply with the standards and
compare them. Client program developers can also use and switch frameworks as off-the-shelf
products of different brands according to their requirements and budgets.
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