4

Formalising Solutions to REST API Practices '
as Design (Anti)patterns

By Van Tuan Tran
Under supervision of Dr. Yann-Gaél Guéhéneuc

Examining Committee:
e Dr. Joey Paquet - Chair
e Dr. Brigitte Jaumard - Examiner

Table of Contents

1.
2.
3.
4.
d.
6.
7.

Introduction
Related Work
Approach
(Anti)patterns
Evaluations
Discussion
Conclusion

- Introduction - Context

M B The World Wide Web project X

< @] A Notsecure | info.cem.ch

World Wide Web

The WorldWideWeb (W3
universe of documents.

Everything there i
j failing 11

What's out there?

Pointers to the world
Help

on the browser you a
Software Products

A list of W3 project ¢

robot , Library
Technical

Details of protocols,
Bibliography:

Paper documentatios
People

A list of some peopld
History

A summary of the hi
How can I help ?

If you would like to {
Getting code

Getting the code b;

_introduction.tex - pattemn-abic X =
C (3 https;//huntertran-patter-abiding-api-paper-wq6j.github.dev

X

v OPEN EDITORS c n on.te

X 1 \section{Introduction
 PATTERN-ABIDING-API-PAPER [CODESPACES] {sec:introduction}
X In the last decade, the information presented on the internet moved fr{
simple static Web pages to sophisticated interactive Web applications 1
can be customized by and react to user actions. Users expect to find ir
their Web browser the same applications that they run on their local
computers, making these Web applications more complicated than ever.

vscode

media

More and more Web applications use the REpresentational State Transfer
(REST) architectural style, which separates the concerns of the server
(store, process, and serve resources) with the client application (pres
information). Simple Object Access Protocol (SOAP) used to be adopted f
X 5_evaluation.tex expose services to clients. However, starting from the 2000s, many

x 6_discussion.tex organizations migrated their services from SOAP to REST to widen the

_approach.tex

ural_designs_best_practice

v

(]
~

-

Sucbury
e

x 7_conclusiondex developer's accessibility to their data. For example, in 2006, Google famsy

8 setup
arouns aooala comlalananla nuhlis wah-anicZc [NOMDWSA-ERALY . Ansthan o

gitignore
x bibliography.bib

20 1 TERMINAL
- X s
main.pdf

main.tex

README.md

> OUTLINE
> SONARLINT RULES
> SONARLINT ISSUE LOCATIONS
X Codespaces P main® & ®1A0019 %1 latex| v Lintroductiontex ¢ anonymous ¢ 93 overall score v/ @ GoLive Layout: US

- https://www.windy.com/

deprecated SOAP for its Search API and moved to REST\footnote{\url{http o

Windy: Wind map & weather for X | 4=

C

(o]

hitps://www.windy.com,
Lepet-sur-cvevion

c |’

e

) e
U Windycom 3 Nl
~ it
=

B

8

Cootoy etey
Radar & Satellite
Wind

Wind gusts

Rain, thunder
Temperature

Clouds

NOo =070

Waves

Air quality

A D

More layers...

G wpee (D) 5
@& S 1 X WD Morelyers..
EWWED s nav con

R 0 5 10 22003 4 6

sat21 © Opensireetisp conrbutors

https://github.com/features/codespaces

1 - Introduction - Context

1 - Introduction - Context

=

REpresentational State Transfer
Application Programming Interface

I|'<

-
-

1 - Introduction - Context

REpresentational State Transfer
Application Programming Interface

1 - Introduction - Terms

Good practice
good way to implement the REST API

Practice noun

/' preektis/
way of doing something

Bad practice
Bad way to implement the REST API

https://www.oxfordlearnersdictionaries.com/us/definition/english/practice_1

1 - Introduction - Terms

Anti-pattern

negative consequences”

“A commonly occurring solution to a problem that generates

Problem Bad solution(s)

Alternative good solution(s)

atterns

Refactoring Software, Architectures,
and Projects in Crisis _

William H. Brown Raphael C. Malveau
Hays W.“Skip” McCormicklll Thomas J. Mowbray

1 - Introduction

We propose 3 contributions
e Review academic and gray literature to identify REST API practices
e Propose practical solutions to these practices
e Validate our solutions with surveys and interviews

2 - Related Work - Practices

2008 - Breaking Self-descriptiveness
Forgetting Hypermedia
Ignoring MIME type
Ignoring status code
Misusing cookies

Use the wrong HTTP Verbs

2010 - Content Negotiations

Automatically Detecting Opportunities for Web Service
Descriptions Improvement

Juan Manuel Rodriguez'*
Alejandro Zunino'~, and

Marco Crasso',
arcelo Campo'?

" ISISTAN Research Institute, Universidad Nacional del Centro de la Provincia de Buenos

Rodriguez,
Crasso,

Zunino, and
Campo

1 Introduction

2011 - CRUDYs URIs
Use the wrong HTTP Verbs
Ignoring MIME Type

Lscnw/ioon v A

= InfoQ

InfoQ Homepsge > Aricles > REST AntiPatters

REST Anti-Patterns

Hue FHe @ [

JUL02.2008 + TIMNREAD

ﬁ Stefan Tilkov FoLiow |

Stfan Tikor, CEOPrincial Consuftant st o0

d a ot of examples that
a specific service that

When people start trying ou|
claim to be “RESTful", or are]
claims to do REST actually

Stefan Tilkov
‘Why does this happen? HT le of them were in line
with the ideas the Web's ded# - — - - - - - - W% HTTP applications,
whether you build them for human consumption, for use by another program, or both, means that you do the exact opposite:
You try to use the Web “correctly”, o if you object to the idea that one is “right” and one is “wrong”: in a RESTful way. For
many, this is indeed a very new approach.

The usual standard disclaimer applies: REST, the Web, and HTTP are not the same thing; REST could be implemented with
many different technologies, and HTTP is just one concrete architecture that happens to follow the REST architectural style.
So I should actually be careful to distinguish “REST" from “RESTful HTTP". I'm not, so let's just assume the two are the same
for the remainder of this article.

As with any new approach, it helps to be aware of some common patterns.
In the first two articles of this series, I've tried to outline some basic ones

RELATED SPONSORED CONTENT

such as the concept of collection resources, the mapping of calculation 3 o1 security for the Moder Enterprise
results to resources in their own right, or the use of syndication to model =

) sestpracticesforWrking withWicosevices
events. A future article will expand on these and other pattems. For this

The Business Bottleneck - Download the

one, though, | want to focus on anti-patterns — typical examples of B e s

ractices

attempted RESTful HTTP usage that create problems and show that L R N
someone has attempted, but failed, to adopt REST ideas [Hype vs. Reality (On-demand webinar)
Watch Now

ntext-less resource nai

RESTful Service Best Practices

n-hierarchical nodes

gularized/Pluralized N OREILLY’

t Pagination d
| Versioning

Recommendations for Creating Web Services

Todd Fredrich

Pearson eCollege
@tfredrich
www.RestApiTutorial.com

08702713

Page 1 of 40

“Www RestApiTuioral.com

2 - Related Work - Practices

2008 - Breaking Self-descriptiveness
Forgetting Hypermedia

Ignoring MIME type
Ignoring status code 2011 - CRUDYs URIs Non-pertinent documentation - 2017

Misusing cookies Use the wrong HTTP Verbs

Use the wrong HTTP Verbs Ignoring MIME Type

“ World Scientifi
ol on

Semantic Analysis of RESTful APIs for the Detection of
Linguistic Patterns and Antipatterns

Context-less resour i
Non-hierarchical no Palma et al.
Singularized/Plurali

List Pagination
2012 - API Versioning

2010 - Content Negotiations

2 - Related Work - Practices

2008 - Breaking Self-descriptiveness
Forgetting Hypermedia
Ignoring MIME type

Ignoring status code 2011 - CRUDYs URIs Non-pertinent documentation - 2017
Misusing cookies Use the wrong HTTP Verbs
Use the wrong HTTP Verbs Ignoring MIME Type

2010 - Content Negotiations Server Timeout

Context-less resource name Post-Put-Patch return - 2021
Non-hierarchical nodes

Singularized/Pluralized Nodes

List Pagination

2012 - API Versioning

2 - Related Work - Existing Solutions

Content Negotiation
Forgetting Hypermedia
API Versioning

Server Timeout
Response Caching

List Pagination

2 - Related Work - Existing Solutions

Content Negotiation

NAC: A Basic Core for the Adaptation and Negotiation of
Multimedia Services

Tayeb Lemlouma and Nabil Layaida
OPERA Project

INRIA Rhéne Alpes
Zirst 655 Avenue de IEurope ~ 38330, Montbonnot, Saint Martin, France
Tel: +33 4 7661 5281, +33 4 7661 5384

Tayeb.L inrialpes.fr

Nabil.Layaida@inri fr

ABSTRACT

e preen n s paper NAC & base coo o e segpision
i bl guchandiogesdiogiedrin
ovironments. The biective of the implemenied coe s 1y alow
clients (PDA, WAP phones, laptops, etc) o use a mulimedia
content which is adapted automatically to their preferences and
capacities. Client descriptions (ic. profiles) are declared in CC/PP.
tures stored in an XML format and can be modified at
anytime. NAC includes two kinds of adaptations: structural
adaptation such as adapting XHTML to WML, SMIL and HTML
filtering, and media adaptation such as image comression. text to

Existing servers use several multimedia models to store and
handle multimedia services. Among the existing models, we find:
HTML [10), MHEG [7), HyTime 5], SMIL [22] ete. Clients in
heterogencous _environments are characterized by several
5 e, b b mebl o ety S ER
‘multimedia models without achieving some adaptation tasks
Indeed, clients and networks in such systems are subject of many
costmins such 1 Jow pover, ks of dan, sl uscr e,
small sto capacities, low and high variabilty
oFthe twork bandidh (4] o

: 4 emlouma o o
ot

by transformation progra
needs.

architecture. They lack of
t support the large devices

and Laya'l'da P

Multimedia adaptation, cor
heterogencous environment)

1. INTRODU

for different clents
environments is very important since the use of a wide diversity
of digital storage and small devices is nowadays increasing.
Making multimedia services understandable and usable by this
range of clients s a hard task 1o achieve. This last requires the
knowledge of users, servers and network contexts; but also
demands efficient mechanisms that allow delivering the aimed
in the best w

irchieeture is ecessay. Th

adapting services to different contexts no matter what is the kind
of the user device.

tailor on them many rich

audio, and video of high

used to transfer these

- tations and constraints of

the target . 1 we take the example of the HTTP protocol

18], we ey negotiation mechanisms based on_the

versioning principle and with limited expressive powers [8]9]

Following stuch approach, requires providing the content in many
versions for cach target context which is hard to do in a wi

diversity of clients. Furthermore, the description of the client

capabilities and preferences isn't well expressed using the HTTP.

accept headers.

In this paper we present the NAC (Negotiation and Adapiation
Core): a new basic core for multimedia servi
e e e A LT
10 ensure that ents existng in the glot

s s ki e 5 A
of heterogeneity tolerance, we have built our corc on the base of

for other models and kind of adaptation. Hence, th
architecture can be reused to meet the needs of other particular
environments with their proper specifications.

XML

JSON

2 - Related Work - Existing Solutions

Content Negotiation

A

Impl ting Content N iation using CC/PP and
WAP UAProf

Mark H. Butler

Information Infrastructure Laboratory
HP Laboratories Bristol
HPL-2001-190

August 7t , 2001*

E-mail: marbut@hplb.hpLhp.com

device Content negotiation is a technique relevant to device
independence,, i o thaot allowe corvors to ide clients with
content a number of
negotiation, proposed for
composite B tI server based
capabilities / u er H most recently
preferences rofile (CC/PP).
profile, S ’ ’ only concerned
CC/PP, with the client profile and does not specify mechanisms for
resource describing alternate versions of content or matching client
description profiles to content descriptions. In order to better
framework, understand how CC/PP may be used this report describes
RDF, jena, an implementation of HTTP/1.1-style content negotiation
WAP, wireless that uses CC/PP client profiles and RDF content
access descriptions. The Jena RDF Framework developed at HP
protocol Labs is used to a i i similar
forum, user to that used by Apache Web Server. As CC/PP is
agent profile, compatible with the forthcoming Wireless Access Protocol
UAProf (WAP) User Agent Profile (UAProf) these techniques are
applicable to the next generation of WAP devices. This is
demonstrated using an example profile taken from the
current WAP Forum documentation.
* Internal Accession Date Only Approved for External Publication

© Copyright Hewlett-Packard Company 2001

E: 0

XML

JSON

Content Negotiation
Forgetting Hypermedia

Teaching Old Services New Tricks:

Adding HATEOAS Support as an Afterthought

Olga Liskin, Leif Singer, Kurt Schneider
Leibniz Universitat Hannover
Software Engineering Group

Welfengarten 1, D-30167 Hannover, Germany
+49 (0) 511 762 19667

{olga.liskin,leif.singer kurt.schneider}@inf.uni-hannover.de

ABSTRACT

Hypermedia as the Engine of Application State, or HATEOAS, is

one of the constraints of the REST architectural style. It requires
service responses to link to the next valid application states. This
fiees clients from having to know about all the service’s URLs
and the details of its domain application protocol.

ew services support HATEOAS, though. In most cases, client
programmers need to duplicate business logic and URL schemas
already present in the service. These dependencies result in clients
that are more likely to break whd
services cannot be easily updated

could cease working correctly w . .
client developers might not have IS I n
)

code, be it for technical or political

We discuss which information is

:
peseet® and Schneider

based on UML State Charts. We
advantages of our approach by

existing service and its wrap

ki client de»elopm to wrap third-party services behind an
HATEOAS-compliant layer. This moves the tight coupling away
|m||| potentially many clients to a single wrapper service that may
easily be regenerated when the original service changes.

Categories and Subject Descriptors
D211 [Software Archlleclum] Service-oriented architecture
(SOA) ~ REST, HATEO.

General Terms
Design, Reliability.

Keywords
\erwm: Hypermedia, HATEOAS, RES

. Wrapper.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copics arc
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists
R e S Syl s

INTRODUCTION

Services encapsulate functionality behind an interface that ideally
complies with open standards and is accessible over a network.
‘The two most popular examples for service strategies are the Web
Services standards (/S-*) and the REST architectural style.
‘The former are more often found in enterprises that depend on
comprehensive vendor support and have strict o
concerning security, reliability, and similar aspects. They

" SIS Standard (2] which pemms

executable business processes.

. a technology, but an architectural
S I n e r forked applications. The style itself
Rl <::irc< 1o implement it were first

most popular implementation of

eb using the Hypertext Transfer

and more popular as means for
h other while at the same time
ta available to all authorized
applications on the network. While services may of course be
called using general programming languages, _specialized
approaches exist. One of these is the aforementioned WS-BPEL,
catering to enterprises. To combine publicly available services,
several mashup tools are available, enabling even end-users to
create new, albeit simple, applications from existing services. An
example for such a tool is Yahoo! Pipes', which allows the user to
connect services with operators and with other servic

Because services, akin to web pages, can easily be deployed on
the Web and Web 2.0 companies have more and more data
available, publicly accessible services have risen in number in
recent years. It is an ongoing discussion as to which degree these
fulfill the REST constraints, but ProgrammableWeb provides
some rough statistics, showing that conceming public service
APIs, the REST style is clearly dominant with 74% of all APIs
listed on the site

One attempt at bringing some order into the discussion of whether
a given service may be considered RESTful - satisfying the REST

2 - Related Work - Existing Solutions

Content Negotiation
Forgetting Hypermedia
API Versioning

A Design Technique for Evolving Web Services

Piotr Kaminski Marin Litoiu Hausi Miiller
University of Victoria IBM Canada Ltd. University of Victoria
Dept. of Computer Science ~ IBM Toronto Lab., CAS Dept. of Computer Science

Abstract

In this paper, we define the problem of simultane-
ously deploying multiple versions of a web ser-
vice in the face of independently developed unsu-
pervised clients. We then propose a solution in
the form of a design technique called Chain of
Adapters and argue that this approach strikes a
good balance between the various requircments.
We recount our experiences in automating the
application of the technique and provide an initial
analysis of the performance degradations it may

g Kaminski, Litoiu,

1. Introdi

Ao and Muller

always been a tri
shortened develd
vised links betw aep e
plications, and increasingly self-managing sys-
tems, the complexity of cvolving “live” applica-
tions is becoming a critical issuc. In this paper,
we explore the problem and propose a design
technique that makes managing version evolution
simpler—whether for human administrators or
self-managing systems.

Since casing version management is an overly
broad target, we focus specifically on versioning
of web services—broadly understood as applica-
tions whose functionality is exposed to third-party
clients over a network. Our goal is to permit the
evolution of a service’s interface and implementa-

Copyright © 2006 Piotr Kaminski, Hausi Maller,

tion while remaining backwards-compatible with
clients written to comply with previous versions.
Section 2 lists all our requirements in detail and
demonstrates why a number of common version-
ing strategies arc inappropriate in this context.

Our solution, which we call Chain of Adapters
and present in Section 3, is a design technique that
can be applied by the service developer and im-
poses no requirements on clients or server infra-
structure. While our solution is simple enough to
be applied manually, in Section 4 we also de-

s. The Chain of
d to deployment
it affords the
hfe configuration

, and Section 6
i future research

An carlier version of this paper appeared in the
proceedings of the SEAMS 2006 ICSE workshop
[16].

Interface v An interface (with datatype
definitions) exposed to
clients through an endpoint

Web Service Asenvice
v implementation.

A persistent data store
s g S

2 - Related Work - Existing Solutions

Interface v,

7

Interface v,

Interface v,

Current
Interface

Adapter
VieVo

Adapter | Adapter

Voe2V3 Vne=Vnag

Chain of Adapter

Web
Service

o

2 - Related Work - E

Content Negotiation
Forgetting Hypermedia
API Versioning

2008 IEEE International Conference on Services Computing

End-to-End Versioning Support for Web Services

Philipp Leitner, Anton M

Florian Rosenb hah Dustdar

Distributed Systems Group
Vienna University of Technology
Argentinierstrasse 8/184-1, 1040 Vienna, Austria
lastname @infosys.tuwien.ac.at

Abstract

Software services are, just like any other software sys-
tem, subject to permanent change. We argue that these
changes should generally be transparent to service con-
sumers. However, currently consumers are nﬁen tied 1o

a WSDL-driven clc

vice providers often want to provide several versions in par-

allel, offering specific variants to some customers or older

service versions for legacy applications. On the other hand,

some service requesters may want to access different ser-

vice versions in a uniform manner or even switch between

them at runtime, while others do not want to explicitly deal
m

) . ,‘ =
el ol Leltner, Mlchlmay

and client-side.

goed Rosenberg, and — peetee

is implemented in

a realistic case stu

o the new contract.

VRESCo. Furthe uch as UDDI[11]
Vaar e Dustdar :

1. Introduction

Software systems in the real world are subject to per-
manent change - vendors constantly add new functional-
ity or change the requirements of existing applications, and
strive to increase quality aspects such as reliability or se-
This software adaptation process is usually referred
to as “software evolution”, and is subject to a vital rescarch
community [1].

With the advent of servi iented

ssues of hmdmg and mcdl:mng ‘between diffcent servios
versions are not addressed by pure registry technologies at
all, and are left entirely to the service requesters. In con-
trast to these standards, we argue that managing Web ser-
vice evolution in an end-to-end fashion should be a core
feature of any real-world SOA solution.

The contributions of this paper are threefold: firstly, we
present a classification of various service change types: sec-
ondly, we introduce a general versioning approach to man-

(SOA) [12] one could believe that evolution of services is
10 longer an important issue since services have a dedicated
service contract and evolution aspects can be hidden from

age y changes in Web services within Web ser-
vice registries. and thirdly, we propose a client-side ap-
proach using proxies that enables transparent binding and
mediation between different versions of a service. We have
SR s e S e e

xisting Solutions

.:
XX

Version 1

Version 2

Version 1

Version 2

2 - Related Work - Existing Solutions

e Content Negotiation
° . .
Forgetting Hypermedia] | il]

e API Versioning r r
. | POST »: : :
e Server Timeout .] : |
A | |
: | |
| GET | |
Asynchronous Request-Reply pattern . =) I
< | HTTP 202 | |
07/23/2021 = 9 minutes to read = IJ o (9 ‘l?v'--\ +3 |'< 1 |
Decouple backend processing from a frontend host, where backend processing needs to be asynchronous, : GET : :
needs a clear response. T >| |
| HTTP 302 | |
| e |
Context and problem | o |
In modern application development, it's normal for client applications — often code running in a web-clien{ [>
| HTTP 200 |

on remote APIs to provide business logic and compose functionality. These APIs may be directly related to 4

—_—
shared services provided by a third party. Commonly these API calls take place over the HTTP(S) protocol and follow REST semantics.

' f PO f f

Eastbury et al.

In most cases, APIs for a client applicat’ 100 ms or less. Many factors can affect

the response latency, including:

¢ An application’s hosting stack.
e Security components.

The relative geographic location of the caller and the backend.
Network infrastructure.

Current load.

The size of the request payload.

Processing queue length.

The time for the backend to process the request.

2 - Related Work - Existing Solutions

Content Negotiation
Forgetting Hypermedia
APl Versioning ASP.NET
Server Timeout
Response Caching
List Pagination

€ spring

- https://spring.io/trademarks

https://github.com/campusMVP/dotnetCoreLogoPack

2 - Approach - Literature Review

InfoQ
e [RB] st

InfoQ Homepage > Articles >

NAC: A Basic Core for the Adaptation and Negotiation of

Multimedia Services

oy ke
Automatically Detecting Opportunities for Web Service m
" "
Descriptions Improvement
by
ABSTRACT
§ sernior We present in this
Juan Manuel Rodriguez'?, Marco Crasso! and " adptation” of
Stean iy, Alejandro Zunino'~, and Marcelo Campo" syt | Impleme
content wh WAP UA
When people staf ' ISISTAN Research| . . - capacities. Client des o -
claim to be "RES] Ajres (UNICEN), § Designing Consistent RESTful Web Service Interfaces v, NAG ine] Mark H. By Teaching Old Services New Tricks:
claims to do RES] * Consejo Nacions prtmmionadsr ati
‘adaptation such as a¢ Informatior
S, e et o] HP Laborat Adding HATEOAS Support as an Afterthought
e o assumption on the & HPL-2001-| el L i
with the ideas must only point the 1 A st 7th
whether you bl Abstract. Mos} t_“ s the Aig ugust 7th |
s will be the
Youtry to use th Computing par NAC i flexible to b E-mail: marby
many, this is indg s. When by transformation p
dynamically di needs.
The usual stands perability o unj device
ather diffic Keywords
So should actu :‘l:""l‘(“r“‘ﬂ"‘l"" 3 heterogencous envirg content
forthe remaindy world Web Ser) RESTful Service Best Practices 1. INTRODU{ negotiation X
As with any new " W Providing adapiable composite ABSTRACT A Design Technique for Evolving Web Service:
Y Keywords: WeJ e 3 % capabilities Hypermedia as thi
I the first f preferences one of the constral
suchas hecon e of ot 5§ profile, serviesrepocses] Pi
results to resourt frees clients from
. C/PP.
events. A future 1 Introduction CC/PP, and the details of i DCU“‘V:
one, though, 1 w3 TSR Few services supj pLo 2008 IEEE International Conference on
attempted REST! The success encount bl | phiclbesticeicin. |
someone has atf ernments to create sof of the user device. framework, already present in{ Ab
made public in the W RDF, jena, that are more like stra
their information andy WAP, wirel| services cannot be In this pape
namely e-applicatio P could cease worki ously depla End-to-End Versioning Suppor
Oriented Computing protocol client developers | vice in the |
: s . 4 code, be it for techi W |
With SOC, softvg RESTful Service Best Practices forum, user pevied 4
and advertises them i = _ _ aseitovotd We discuss which the form of
to find the services th] Recommendations for Creating Web Services Ug\P Pf compliant wrappet Adapters al
L e AProf notation for mode good balany
B - ph based on UML St We recoun
ry becouse these 51y advantages of oul application
pendently of their pl existing service § e |
using Web Service I) enables client devi oo
il s e International Journal of Cooperative Information Systems HATEOAS-compl S S nc ro n 5]
which uses XML fc 1742001 (37 pages) from potentially m psticwariy
heepiaplindy 1d S Publishing Company easily be regeneral since it mal
erm Web Services BOL: 10.1142/S0z1884301 7420011 tion tasks st
& 07/23/2021 = 9 minutes to read =
Categories an
W. Cellary and E. Esteve] ey | D211 [Software 1. Intr Software se)
© IFIP International Feder o (SOA) - REST, HA Version mi tem, subject 10 Decouple backend processing
Semantic Analysis of RESTful APIs for the Detection of i i always beet changes shoul
Linguistic Patterns and Antipatterns General Tern shortened ¢ sumers. How needs a clear response.
O’REILLY. Design, Reliability vised links a given version
plications, upgrading to
Francis Biling® Keywords tems, the ¢ a WSDL-driver
Department muw ical and Computer Engincering Services, Hypermg :‘:mc\l;ltf; and .h\'('l;\\ a
oncordia University : Rl
1 e | e Context and
Jrancispaimaphd@gmail.com Prrmission fo rmakd simpler—w R
rsonal or classr gl z N
Javier Gonzalez-Huerta Poen o sclf-managi t0-end versioni

2 - Approach - Categorization

s
i

Architectural

Technical

Non-technical

Entity Endpoint

Endpoint redirection

Contextless Resource name

Entity Linking

Non-hierarchical Nodes

Response caching

Amorphous URIs

API Versioning

CRUDy URIs

Server Timeout

Singularized & Pluralized Nodes

POST-PUT-PATCH Return

Non-pertinent Documentation

List Pagination

Breaking Self-descriptiveness

Ignoring status code

Using the wrong HTTP Verbs

Misusing Cookies

Devs pay attention

2 - Approach - Looking for Solutions

° -
GS I | | Gr I S B Microsoft | Docs Documentation Learn Q&A Code Samples £ Search Sign in
Azure Product documentation ~ Architecture v Leam Azure v Develop v Resources Portal

ns @ Save [Feedback ¢ Edit |& Share

Elements of Reusable

. e Asynchronous Request-Repl s this page
Object-Oriented,Software —— pa¥tern : PY . o

2 No

Architecture icons

Erien Camog S
Richard Helm e e @ spring) et e o o L
Ralph Johnson e

John Vlissides o

07/23/2021 - 9 minutes to read - () Jo (B 9% () @

Guide Cor

> Microsoft Azure Well- ALL GUIDES

In mod
Architected Framework cade i . . Get the Code
~ Design Ptterrs wsines - Caching Data with Spring © GoToRepo
Overview applicat ‘ ’
> Catogories API call: This guide walks you through the process of enabling caching on a Spring managed bean.

Ambassador

In most - - § stackoverflow Products
What You Will bui

Anti-corruption Layer Gt
Asynchronous Request- 5 X .)
You will build an application :
Raply o Ar ' e Home How do you kill a Thread in Java? Ask Question
Btk o Fitonle * Se PUBLIC Asked 12 years, 5 months ago Active 7 months ago V 550k times
) : | — * T What Youneed @ queion |
Conrr 1 © 1994 MC |1« fom A ‘ J— G L How do you kill a java.lang.Thread in Java?
Cache-Aside T3 (et e About 15 minutes Tags Y - - The Overflow Blog
/ NC Choreography .
Foreword l)\ Grady Booch graphy Th o Afavorite text editoror Users 391 [jaa | multthreading /' Celebrating the Stack Exchange sites that
R eNt Areakes o Pr tumed 10 years old
Claim Check L R 10K S orlater - ° Shar asked Mar 2209 at 14 # Podcast 367: Building a better developer
8 Go Language platform
Command and Query Ay of1 R Grodl= T arh 2 —— :
Responsibility Segregation scaling Google Cloud Featured on Meta
cas ihe con S Don't be that t: bt d sell
= . S Don't be that account: buying and selling
Conpensag Baaiion S « spring Tool siite (A 2 :ilc;mw S S O e R I e ton Sl RS
prone—AZ_Jun 10°11 at 14:14
Competing Consumers asynch . T 2 Outdated Answers: results from flagging
o e asynchr 1 prefe the answer regarding | EXECHEGTSEAELS| on this ‘quesuroT - St ae
Consolidation e o Hot Meta
& Download PDF theors. HOW to complete i B, Create free Team 9 @loungerdork " think Java should implement a safe stop/destroy method for runaway
; v threads that you have no control over, despite the caveats of losing locks and other Let's not [bounce] around
minutes | ke most Spring G pitfalls* So you want an unsafe thread stop. I think you already have one. - th
N I 15 at 144 19 Is a small (but noteworthy) edit on several
can bypass basic setup steps o answers to one question acceptable?
code. It's amazing what kind of questions would get 212 upvotes in 2009. This would be
immediately destroyed today. — Ma at19:34
To start from scratch, move 4 Love this site?

7 @lonathonReinhart: Why is that? It seems to be a legit question, even these days. Maybe

4 - REST API Anti-patterns

4 - REST API Anti-patterns - Overview

Practice name
Problem
Expected result
Solution

4 - REST API Anti-patterns - Sample Implementation

https://github.com/huntertran/restapi-practices-impl

‘? huntertran Merge pull request #1 from huntertran/dependabot/maven/javaspring/co

.vscode

BB dotnet

B javaspring Bump xstream from 1.4.16

.gitignore add .gitignore

W

LICENSE

README.md

P

P

testing.postman_collection.json ipdate testing with postman

29

https://github.com/huntertran/restapi-practices-impl

4 - REST API Anti-patterns - Content Negotiation

e Problem

XML

L
‘ < [o

4 - REST API Anti-patterns - Content Negotiation

e Expected result

Easily modifiable
L \ XML

‘ defaylt
— D JSON

e JSON-XML e JSON e GSON/Jackson/Javax.Json
e JPG, PNG, Base64 e JPG, e Javax.ImagelO/ImageJ/imgscalr
e C(CSV XLSX, ODS e CSV e FileReader/XStream/JacksonXML

4 - REST API Anti-patterns - Content Negotiation

e Solution

@ XmlObject

© serialize():String

@ JsonObiject @ ObjectFactory

© serialize():String © BaseObiject getObject()

extends extends

@ BaseObject
© String serialize()

4 - REST API Anti-patterns - Content Negotiation

e Comparison

Java Spring | ASP.NET Core

Our solution

Common media types

Customizable serializer

No data annotation on model

Built-in support ignorable

Yes Yes Yes
Yes Yes
Yes Yes
Yes Yes N/A

4 - REST API Anti-patterns - Endpoint Redirection

e Problem

New location of
moved resources

\\
\\
~
ol
"

4 - REST API Anti-patterns - Endpoint Redirection

e Solution
V2 \
_ call API vl
Client O— S == —>©V2Logic
@ actionC() ©V1L°9ic
© actionD() ® actionAl)
© actionB()
|
extends |
I
jimplement
implémgnt J,
implement V1Redirector |- }|— > IV1Logic
. 7 g
resource mappin
mechanism PP / sy actionA()
© actionB() actionB()

4 - REST API Anti-patterns - Entity Linking

e Problem
{
llpostll: {
"title": "Lorem ipsum",
"content": "Lorem ipsum",
"links": [
{
"rel": "comment",

"method": "post",
"uri": "/post/123/comment”

"rel": "like",
"method": "get",
"uri": "/post/123/1ike"

4 - REST API Anti-patterns - Entity Linking

e Solution c9t

© RelatedResource © RelatedResource2
oa Oa
Ob Ob Client use array of LinkedResource Bh
Oc¢c Oc
od od e
© accept(resourceVisitor) © accept(resourceVisitor) ’ ’
7
\ : %

N\
» .
« implements
N

implements 7

e
-

N\

|
I
|
|
- |

> . <
) ©LogicCDResourceVisitor @LogicABResourceVisitor
LinkedResource
Il'ogic for CD resouces Il'ogic for AB resources
accept(resourceVisitor)
1=====*==—=: @ visit(e) © visit(e)
\ 7/ i "
\ ¢ 2
\visit "implements extends _ < implements /extends
\ -
\ | N5
\ Y o

ResourceVisitor]

visit(e)

@ CommonResourceVisitor|

4 - REST API Anti-patterns - API Versioning

e Problem

4 N

-:
XX

Version 1

XX

Version 2

_)

4 - REST API Anti-patterns - API Versioning

Solution

Cﬁt

Api

call API

2\

©) vaLogic

oldV1Logic.actionA() BL-
oldV1Logic.actionB() © actionC()
@ actionD()

- O oldV1Logic: V1Logic

@ actionA()
@ actionB()

!

I
Jmplement
\

o4
IV2Logic

actionC()
actionD()

@ CommonLogic

© actionA()
@ actionB()

actionA()
actionB()

4 - REST API Anti-patterns - Server Timeout

e Problem

4 - REST API Anti-patterns - Server Timeout

Client API Endpoint Status Endpoint Resource Endpaint
. 1 1 1 I
e Solution - : : :
initiate / i { i
yPOST | \ :
] A | |
| | |
! HTTP 202 ! !
1 . | |
| register for status_ |
| i |
1 |
! e |
r T |
ollin | |
| |
1 GET (polling) 1 2 |
r T ol |
|_HTTP 202 | |
(.3 + |
| | |
| | |
1 | |
| GET (polling) | = i
| | - |
. HTTP 202 | !
I | |
| | |
| | |
I GET (polling) ! - !
= |
% HTTP 202 ! :
| . |
| | |
| | |
1 1 i
: : termination / :
. : polling timeout 0
! ! < | !
: : Terminate operation \:
I I i 7ol |
I I T T

4 - REST API Anti-patterns - POST-PUT-PATCH return

e Problem

CREATE - UPDATE D

HTTP 200 OK

Is object created correctly?

4 - REST API Anti-patterns - POST-PUT-PATCH return

e Solution

]
Contraller
/ \

% /inject > \nject
X

/ A
Unit of Work] Unit of Work

]

]
RepaositoryA

RepasitoryB

£]
DatabaseConnector

5 - Evaluations - Survey Design

S participants

e Have you faced this problem(s)
in some of your project

e Isthe proposed solution a good
solution?

' ACM SIGSOFT

, Empirical Standards

| Version 0.1.0
l

https://acmsigsoft.github.io/EmpiricalStandards/docs/

5 - Evaluations - Survey Result - Age Groups & Education

18-29 Bachelor degree

17 or younger

Graduate degree
30-39 Up to high school degree

Age Groups Educati

5 - Evaluations - Survey Result - Profession

Fullstack Developer

Back-end Developer

Others

Front-end Developer

Project Manager

Software Architect

5 - Evaluations - Survey Result - Experience

6

Count

0 2 4 6 8 10 12 14

Years of experience

5 - Evaluations - Survey Result - Countries

Vietnam

USA
5 Germany

New Zealand

5 - Evaluations - Survey Result - Positive on Solutions

Face this problem | Std. dev. | Good solution | Std. dev.
Content Negotiation 52.40% 2.289 76.20% 1.952
Endpoint Redirection 45% 2.225 75% 1.936
Entity Linking 47.40% 2177 57.90% 2.152
API Versioning 72.20% 1.901 72.20% 1.901
Server Timeout 77.80% 1.763 66.70% 1.999
POST-PUT-PATCH return 58.80% 2.029 82.40% 1.57

The Measurement of Observer Agreement for Categorical Data

J. RICHARD LANDIS

Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109 U.S.A.

5 - Evaluations - Survey Result - Explained

Entity Linking - 57.9% agreed good solution

@ RelatedResource1 © RelatedResource2
Oa Oa
ob Ob
Oc Oc
od od

© accept(resourceVisitor)

© accept(resourceVisitor)

\

\

~ .
« implements
%

implements

N
~

-V £

LinkedResource l

accept(resourceVisitor) '

\
\

\visit
%

e

|
l
|
|

’
|

N |

S Y

/

/7

"implemems

Q@
Client

Visitor Pattern

Client use array of LinkedResource B‘

7

©LogicCDResourceVisitor

@ LogicABResourceVisitor

Il logic for CD resouces

I/ logic for AB resources

O visit(e)

© visit(e)

ResourceVisﬂorr ;

visit(e) I

-
-
-

”-
extends _ < implements /extends
-

@ CommonResourceVisitor]

5 - Evaluations - Survey Result - Explained

Entity Linking - 57.9% agreed good solution

List of permissions

5 - Evaluations - Survey Result - Explained

Server Timeout - 66.7% agreed good solution

init;ate /) ; /
R— 5 HTTP Polling
D |

register for status_ i

. | 0
polling J : ‘

) GET (polling): !

E(HTTP 202 | :

: : : Publisher D

Y

1
| GET (polling) |
) |

Y

_HTTP 202 |
{ e |

1]
| GET (polling) i

¥

1 |
% HTTP 202 !

termination ”'/t‘ t ; HTTP/2 g RPC
£ !

. x (]
Terminate operation
i

\l
>

5 - Evaluations - Survey Result - Explained

Server Timeout - 66.7% agreed good solution

WebSocket Tunnel .
C

e

HTTP Polling

5 - Evaluations - Survey Result - Explained

Server Timeout - 66.7% agreed good solution

]
L]

Publisher

5 - Evaluations - Survey Result - Explained

Server Timeout - 66.7% agreed good solution

HTTP/2 gRPC

5 @

Forced Encryption TPC Head-of-line Blocking

®

https://engineering.salesforce.com/the-full-picture-on-http-2-and-hol-blocking-7f964b34d205

6 - Discussion - Internal Threats

Gin Grails Apache Struts

n]
o@d ¢

JavaScript Groovy Java

6 - Discussion - External Threats

Year of experiences

A

Easier to spot potential
problems of the practices

Favor new technologies

Domain Knowledge

7 - Conclusion

Our contributions:

1. Review REST API practices in both academic and gray literature.
2. Provide concrete solutions to 6 technical practices.

3. Validate the solutions with professional developers.

Thank you
Q&A

The 19th International Conference on Service Oriented Computing (ICSOC 2021)

Early submitted and get positive feedback in July
Resubmitted on August 22nd. Notification on Sept 20th.

62

