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RÉSUMÉ

L’identification de concepts est l’activité qui permet de trouver et localiser l’implémen-

tation d’une fonctionnalité d’un logiciel dans le code source. L’identification de concepts

permet d’aider les développeurs à comprendre les programmes et de minimiser l’effort de

maintenance et d’évolution des logiciels. Dans la littérature, plusieurs approches statiques,

dynamiques et hybrides pour l’identification des concepts ont été proposées. Les deux types

statiques et dynamiques ont des avantages et des inconvénients et se complètent mutuel-

lement en approches hybrides. Par conséquent, de nombreux travaux récents ont porté sur

des approches hybrides pour améliorer les performances en terme de temps et de précision

du processus d’identification de concepts. De plus, les traces d’exécution sont souvent trop

larges (en termes de nombre de méthodes invoquées) et elles ne peuvent pas être utilisées

directement par les développeurs pour les activités de maintenance.

Dans cette thèse, nous proposons d’extraire l’ensemble des concepts des traces d’exécution

en se basant sur des approches hybrides. En effet durant la maintenance d’un logiciel, les

developpeurs cherchent à trouver et à comprendre le(s) segment(s) qui implémente(nt) le

concept à maintenir au lieu d’analyser en détails toute la trace d’exécution. L’extraction

de concepts facilite les tâches de maintenance et d’évolution des logiciels en guidant les

développeurs sur les segments qui implémentent les concepts à maintenir et ainsi réduire le

nombre de méthodes à analyser.

Nous proposons une approche basée sur la programmation dynamique qui divise la trace

d’exécution en segments qui représentent des concepts. Chaque segment implémente un et

un seul concept et est défini comme une liste ordonnée des méthodes invoquées, c’est-à-dire

une partie de la trace d’exécution. Un concept peut être implémenté par un ou plusieurs

segments.

Ensuite, nous proposons une nouvelle approche (SCAN) pour attacher des étiquettes aux

segments de la trace d’exécution. Nous utilisons la recherche d’information (IR) pour extraire

une étiquette formée par des mots clés qui définissent le concept implémenté par un segment.

Les étiquettes permettent aux développeurs d’avoir une idée du concept implémenté par les

méthodes du segment et de choisir les segments qui implémentent les concepts à maintenir.

Les segments qui implémentent les concepts à maintenir peuvent être de larges tailles en

terme de nombre de méthodes invoquées et ainsi difficiles à comprendre. Nous proposons de

diminuer la taille des segments en gardant juste les plus importantes méthodes invoquées.

Nous réalisons des expériences pour évaluer si des participants produisent des étiquettes

différentes lorsqu’on leur fournit une quantité différente d’informations sur les segments. Nous
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montrons qu’on conserve 50% ou plus des termes des étiquettes fournies par les participants

tout en réduisant considérablement la quantité d’informations, jusqu’à 92% des segments,

que les participants doivent traiter pour comprendre un segment.

Enfin, nous étudions la précision et le rappel des étiquettes générées automatiquement par

SCAN. Nous montrons que SCAN attribue automatiquement des étiquettes avec une préci-

sion moyenne de 69% et de un rappel moyen de 63%, par rapport aux étiquettes manuelles

produites par au moins deux participants.

L’approche SCAN propose aussi l’identification des relations entre les segments d’une

même trace d’exécution. Ces relations fournissent une présentation globale et de haut niveau

des concepts misent en œuvre dans une trace d’exécution. Ceci permet aux développeurs de

comprendre la trace d’exécution en découvrant les méthodes et invocations communes entre

les segments. Nous montrons que SCAN identifie les relations entre les segments avec une

précision supérieure à 75% dans la plupart des logiciels étudiés.

À la fin de cette thèse, nous étudions l’utilité de la segmentation automatique des traces

d’exécution et l’affectation des étiquettes durant les tâches d’identification des concepts. Nous

prouvons que SCAN est une technique qui supporte les tâches d’identification de concepts.

Nous démontrons que l’extraction de l’ensemble des concepts des traces d’exécution présentée

dans cette thèse guide les développeurs vers les segments qui implémentent les concepts à

maintenir et ainsi réduire le nombre de méthodes à analyser.
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ABSTRACT

Concept location is the task of locating and identifying concepts into code region. Concept

location is fundamental to program comprehension, software maintenance, and evolution.

Different static, dynamic, and hybrid approaches for concept location exist in the literature.

Both static and dynamic approaches have advantages and limitations and they complement

each other. Therefore, recent works focused on hybrid approaches to improve the performance

in time as well as the accuracy of the concept location process. In addition, execution traces

are often overly large (in terms of method calls) and they cannot be used directly by developers

for program comprehension activities, in general, and concept location, in particular.

In this dissertation, we extract the set of concepts exercised in an execution trace based on

hybrid approaches. Indeed, during maintenance tasks, developers generally seek to identify

and understand some segments of the trace that implement concepts of interest rather than

to analyse in-depth the entire execution trace. Concept location facilitates maintenance tasks

by guiding developers towards segments that implement concepts to maintain and reducing

the number of methods to investigate using execution traces.

We propose an approach built upon a dynamic programming algorithm to split an exe-

cution trace into segments representing concepts. A segment implements one concept and it

is defined as an ordered list of the invoked methods, i.e., a part of the execution trace. A

concept may be implemented by one or more segments.

Then, we propose SCAN, an approach to assign labels to the identified segments. We

uses information retrieval methods to extract labels that consist of a set of words defining the

concept implemented by a segment. The labels allow developers to have a global idea of the

concept implemented by the segment and identify the segments implementing the concept to

maintain.

Although the segments implementing the concept to maintain are smaller than the ex-

ecution traces, some of them are still very large (in terms of method calls). It is difficult

to understand a segment with a large size. To help developers to understand a very large

segment, we propose to characterise a segment using only the most relevant method calls.

Then, we perform an experiment to evaluate the performances of SCAN approach. We

investigate whether participants produce different labels when provided with different amount

of information on a segment. We show that 50% or more of the terms of labels provided by

participants are preserved while drastically reducing, up to 92%, the amount of information

that participants must process to understand a segment.

Finally, we study the precision and recall of labels that are automatically generated by
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SCAN. We show that SCAN automatically assigns labels with an average precision and

recall of 69% and 63%, respectively, when compared to manual labels produced by merging

the labels of at least two participants.

SCAN also identifies the relations among execution trace segments. These relations pro-

vide a high-level presentation of the concepts implemented in an execution trace. The latter

allows developers to understand the execution trace content by discovering commonalities

between segments. Results show also that SCAN identifies relations among segments with

an overall precision greater than 75% in the majority of the programs.

Finally, we evaluate the usefulness of the automatic segmentation of execution traces and

assigning labels in the context of concept location. We show that SCAN support concept

location tasks if used as a standalone technique. The obtained results guide developers on

segments that implement the concepts to maintain and thus reduce the number of methods

to analyse.
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CHAPTER 1

Introduction

Program comprehension is an important preliminary activity that may require half of the

effort devoted to software maintenance and evolution (Dehaghani et Hajrahimi, 2013). The

first step to understand a program is to identify which concept this program implements.

Concept location is an important task during program comprehension. Several researchers

proposed concept location approaches from execution traces. These approaches used differ-

ent techniques to locate concept in source code and–or execution traces, e.g., Antoniol and

Guéhéneuc (2006) proposed an epidemiological metaphor to analyse source code; Poshyvanyk

et al. (2007) used latent-semantic indexing (LSI) to locate concept in source code and exe-

cution traces; Rohatgi et al. (2008) used graph dependency ranking on static and dynamic

data; Asadi et al. (2010a; 2010b) proposed a hybrid approach to identify the concepts by

segmenting exection trace based on a genetic algorithm; Pirzadeh and Hamou-Lhadj (2011)

studied psychology laws describing how the human brain groups similar methods in execu-

tion traces; Shafiee (2013) introduced a new trace visualisation technique to represent the

execution phases invoked in a trace. The proposed approaches cannot gives a global idea of

the concept implemented in a segment by providing labels (i.e., a set of terms) describing the

relevant information of a segment. None of these approaches helps developers to understand

execution traces by identifying the relations between execution trace segments.

We believe that extracting concepts from execution traces helps developers by reducing the

number of methods that they must investigate using trace segments compared to analysing

the entire trace during maintenance tasks.

Indeed, developers generally must understand some segments of the trace that implement

concepts of interest rather than to analyse in-depth the entire execution trace. Extract-

ing concepts from execution traces facilitates maintenance tasks by guiding developers to

segments that implement the concepts to maintain. Our conjecture is that a high-level pre-

sentation of the concepts implemented in an execution trace allows developers to understand

the execution trace content.

In this dissertation, to reduce the complexity of analysing execution traces, we auto-

matically split them into meaningful segments, each representing a concept. A segment is

defined as a set of successive method calls, i.e., a part of the execution trace. A concept

is implemented by one or more segments. Then, we propose SCAN, an approach to assign

labels to the identified segments. The labels allow developers to have an idea of the con-
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cept implemented by the segment and help them to identify the segments implementing the

concept to maintain. We identify the relations among trace segments to provide a high-level

presentation of the concepts implemented in an execution trace and to allow developers to

understand the concepts implemented in the execution trace.

This thesis aims to identify concepts and facilitate the analysis of large execution traces

for maintenance tasks. The proposed techniques in this thesis (1) provide developers with

trace segments composed of method calls; (2) to assign labels to the identified segments

representing the most important terms that characterise the concepts of the segments; (3) to

find the relations among the segments to give developers a high-level view of the execution

traces. Finally, we show the usefulness of the proposed techniques in practice.

The organisation of this chapter is as follows: We present first the definitions of the main

notions used in this dissertation in Section 1.1. Then, we present the motivations of our

dissertation in Section 1.2. We present the contributions of the dissertation in Section 1.3.

Finally, in Section 1.4, we describe the organisation of the rest of the dissertation.

1.1 Definitions

In this section, we present the basic definitions used in this dissertation. Concept loca-

tion aims at identifying concepts and locating them within code regions or, more generally,

into segments (Kozaczynski et al., 1992; Biggerstaff et al., 1993). A feature is defined as

a user-observable functionnality of the program and hence a concept is more general than

a feature (e.g., “Draw circle” is a feature of JHotDraw program) (Dapeng et al., 2007). A

concept represents a functionality of a program that is accessible to developers (e.g., “Save

automatically a circle” is a concept of JHotDraw program) (Biggerstaff et al., 1993). The dis-

tinction between a concept and a feature is often unclear and a concept is sometimes referred

to a feature in the litterature (Chen et Rajlich, 2000; Asadi et al., 2010b; Poshyvanyk et al.,

2013). In this thesis, we use the term concept. A functionality is an operation provided by a

program and accessible to the user. Source code is a set of instructions written by a developer

using a computer language. A failure is the action exercising an unwanted funtionnality of

a program. An execution trace is represented as a sequence of methods called during the

execution of a scenario. Execution traces are generally very large and the called methods

likely relate to multiple concepts of the program. We define a segment as a set of successive

method calls representing a concept, i.e., a portion of an execution trace. A concept is im-

plemented by one or more segments. The label of a segment is a set of words describing the

possible concept activated by the segment. Two or more segments implementing the same
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concept are part of the same phase such as the segments S1 and S6 in Figure 1.1 implements

the same concept C1 and then are part of the same phase P1. A phase implements a concept

and thus represents one or more segments. Finally, we abstract repeated sequences of phases

(e.g., P1, P2 and P3 in Figure 1.1) into macro-phases (e.g., Marco-Phase1 in Figure 1.1). A

macro-phase implements a set of concepts (e.g., C1, C2, and C3).

Figure 1.1 Overview of segments relations.

1.2 Motivation and Problem Statement

A typical scenario in which concept location takes part is as follows:

1 Let us suppose that a failure has been observed in a program under certain execution

conditions

2 Unfortunately, such execution conditions are hard to reproduce

3 But one execution trace was saved during such a failure.

Developers then face the difficult and demanding task of analysing the one execution

trace of the program to identify in the trace the set(s) of methods producing the unwanted

functionality.

Some approaches (Wilde et al., 1992; Wilde et Scully, 1995) rely on multiple execution

traces of a program but sometimes only one trace is available. For example, when a bug

occurs, it may be difficult to reproduce the same execution scenario. For this reason, we are

interested to identify concepts using one or possibly more execution traces.

Cornelissen et al. (Cornelissen et al., 2009) present a systematic survey of 176 articles

from the last decade on program comprehension through dynamic analysis. They found the

first article on program comprehension through dynamic analysis dates back to 1972 where
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Biermann builds finite state machines from execution traces (Biermann, 1972). Despite the

advantages of dynamic analysis approaches, there are also known drawbacks, one of which

is scalability (Cornelissen et al., 2009): “The scalability of dynamic analysis due to the large

amounts of data that may be introduced in dynamic analysis, affecting performance, storage,

and the cognitive load humans can deal with.” Indeed, execution traces are a precious source

of information but they can be overly large and noisy. For example, the trace corresponding

to the simple scenario “Draw a rectangle” in JHotDraw v5.1 contains almost 3,000 method

calls. Hence, the problem is that execution traces might not be of immediate support to

developers for identifying the set of methods to maintain. To address scalability issues, some

approaches propose to compact execution traces (e.g., (Reiss et Renieris, 2001), (Hamou-

Lhadj et Lethbridge, 2006)), build high-level behavioral models (e.g., (Hamou-Lhadj et al.,

2005), (Safyallah et Sartipi, 2006)), extract dynamic slices (e.g., (Agrawal et al., 1993), (Zhang

et al., 2003)), and segment execution traces (e.g., (Asadi et al., 2010b), (Pirzadeh et Hamou-

Lhadj, 2011)). None of the proposed approaches guide developers towards segments that

implements the concepts to maintain by labeling such segments and identifying relations

between segments.

Furthermore, concept location approaches typically use static and–or dynamic information

extracted from the source code of a program or from some execution traces to relate method

calls to concepts. Both static and dynamic approaches have some limitations. Dynamic

approaches most often rely on multiple executions of the programs, i.e., multiple execution

traces. Static approaches can rarely identify methods contributing to a specific execution sce-

nario. Recent works focus on hybrid approaches integrating static and dynamic information

to improve the performance in time as well as precision and recall of the concept location

process (Antoniol et Guéhéneuc, 2005; Poshyvanyk et al., 2007; Rohatgi et al., 2008; Asadi

et al., 2010b). Thus, we focus on a hybrid approach to identify concepts.

1.3 Research Contributions

The contributions of this thesis are as follows:

– An execution traces segmentation approach that splits execution traces into segments

using conceptual cohesion and coupling based on a dynamic programming (DP) algo-

rithm. The proposed trace segmentation allows developers to focus on segments to

maintain instead of analysing the entire execution trace and thus facilitate their main-

tenance tasks.

– Labeling execution traces segments using information retrieval techniques. The labels

allow developers to understand the concept implemented by the segment and guide
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them towards segments implementing the concept to maintain. We investigate SCAN

capability to label segments and select the most important methods of a segment.

– Identifying relations among execution traces segments using Formal Concept Analysis

(FCA), which we also evaluate empirically.

– A study of the usefulness of an automatic trace segmentation and labeling in the context

of concept location. We aim to assess whether SCAN supports concept location tasks

if used as a standalone technique in practice.

Execution
Trace(s)

Trace 
Segmentation

Segment
Merger

Segment
Labeling

Identification 
of relations 
between 
segments

Figure 1.2 Overview of SCAN.

Figure 1.2 provides a high-level view of SCAN. It consists of the following main blocks:

1. Trace segmentation to split traces into cohesive segments.

2. Segment merger to merge similar segments using the Jaccard measure on terms ex-

tracted from the segments.

3. Segments labeling to assign labels to segments using an IR-based approach.

4. Identification of relations between segments using FCA.

1.3.1 Execution Trace Segmentation

Execution traces are very large and thus very difficult to explore and understand (Cor-

nelissen et al., 2009). In addition, developers generally are interested to understand some

parts of the trace that implement the concept of interest rather than to analyse in-depth the

entire execution trace. The proposed trace segmentation simplify the comprehension of large

execution traces. We aim to split execution trace into cohesive and decoupled fragments

of the trace. The cohesion and coupling computations are used in previous works for seg-

ments identification and we assume that using the same computations will be helpful (Asadi

et al., 2010b). Differently to the previous approaches based on genetic algorithms (GA), our

approach can compute the exact solution to the trace segmentation problem. We use two

programs, JHotDraw and ArgoUML, to show that our approach improves the accuracy of

Asadi et al. results. Results show that our approach significantly out-performs the previous

approach in terms of the optimum segmentation score vs. fitness function and the times
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required to produce the segmentations. We simplify the comprehension of large execution

traces by representing them as execution trace segments. However, developers still must

understand the concept implemented by each segment to identify the segments that imple-

ment the concepts to maintain. For this reason, we propose to assign labels to the identified

segments.

1.3.2 Segments Labeling

We propose SCAN (Segment Concept AssigNer) an approach to assign labels to sequences

of methods in execution traces. The assigned label provides relevant information on the con-

cept implemented by each segment to help developers understand the concept implemented

by each segment.

We perform a manual validation by one person on several traces of both JHotDraw and

ArgoUML to evaluate the accuracy and effectiveness of assigning meaningful sets of words

representative of the concepts implemented in segments. Results show that SCAN is success-

ful in assigning labels very similar to manually-defined labels and that these labels actually

correspond to the concepts encountered in the segment based on documentation, source code,

and method execution.

A manually labeled segments by one person may bias our evaluation of labels generated

by SCAN. To cope with this limitation, we perform an experiment aiming at verifying SCAN

capability to select the most important methods of a segment. We ask 31 participants

to label segments in the traces of six Java programs (ArgoUML, JHotDraw, Mars, Maze,

Neuroph, and Pooka). To evaluate the accuracy of SCAN to label segments, we compare the

labels of the trace segments generated by SCAN with respect to the labels produced by the

participants. Results show the ability of SCAN to accurately reduce the size of segments and

assign labels to the segments. Segments labeling provides a high-level presentation of the

concepts implemented in each segment. Yet, developers would also benefit of the relations

between segments in the entire execution trace to identify the segments that implement the

concepts to maintain. For this reason, we propose to identify relations among trace segments.

1.3.3 Segments Relations Identification

We propose to identify the different relations among segments to provide a high-level pre-

sentation of the concepts implemented in the execution trace to developers and guide them

towards the segments that implement the concepts to maintain. We identify three types of

relations among segments: same phase, sub/super-phase, and macro-phase. We use formal

concept analysis (FCA) to discover commonalities between segments. We perform an experi-
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ment to evaluate SCAN capability to identify relations among segments using 31 participants

and six Java programs (ArgoUML, JHotDraw, Mars, Maze, Neuroph, and Pooka). Results

show the ability of SCAN to accurately identify relations between segments. These results

show the accuracy of SCAN, which is a prerequisite to studying its usefulness.

1.3.4 SCAN Usefulness

We study the usefulness of SCAN automatic trace segmentation and labeling in the con-

text of performing a concept location task. We evaluate the usefulness of SCAN for two Java

programs: JabRef and muCommander. We assess whether SCAN can be used to reduce the

burden of developers when identifying the set of methods impacted by a concept, once a

concept location technique identifies these methods. Our hypothesis is that methods related

to a concept should be contained in one or few segments. Hence, to analyse the concept

impact set, a developer could only focus on one or few segments instead of looking at the

entire execution trace. In addition, we also want to investigate whether, instead of relying on

concept location techniques, SCAN can be used as a standalone technique to automatically

identify segments relevant for a query. We show that SCAN has alone the potential to be

useful during concept location because it groups gold set methods in only two segments in

general. We thus show that SCAN supports concept location tasks if used as a standalone

technique.

1.4 Organisation of Dissertation

The rest of this dissertation is organised as follows:

Chapter 2 - Background This chapter presents a brief background of thechniques and

approaches useful to understand this dissertation. First, we define the information retrieval

(IR) techniques that we use in this dissertation and we briefly illustrate the IR processing

with an example.

Second, we present IR performance measures, i.e., precision, recall, and Jaccard index

used in this dissertation. We define the search-based optimization algorithms e.g., Genetic

Algorithm (GA) and Dynamic Programming (DP) algorithm used in this dissertation. Then,

we introduce Formal Concept Analysis (FCA) that we use to identify the relations among

execution trace segments and illustrate the algorithm by an example. Finally, we explain the

statistical tests used to assess the performances of the proposed approaches.



8

Chapter 3 - Related Work This chapter presents the research areas that are related to

our dissertation. The chapter starts by briefly presenting state-of-the-art concept location

approaches: static, dynamic and hybrid approaches. Finally, summarisation of source code

works related to our dissertation are presented.

Chapter 4 - Trace Segmentation This chapter starts by introducing execution trace

segments. An approach for segmenting a trace into execution segments using dynamic pro-

gramming is then presented. The chapter proceeds by discussing different steps of our pro-

posed trace segmentation approach. Evaluation of the trace segmentation approach is then

presented on two Java programs: JHotDraw and ArgoUML.

Chapter 5 - Segments Labeling This chapter starts by introducing the different steps of

SCAN approach to assign labels to the identified trace segments. In this chapter, we perform

a qualitative as well as a quantitative analysis in which only one participant assign manual

labels. The chapter proceeds by improving this evaluation by an experiment to assess SCAN

capability to select the most important methods of a segment and compare the resulting

labels against labels provided by 31 participants. We assess also the quality of the generated

labels generated by SCAN compared to the manual labels provided by the participants.

Chapter 6 - Segments Relations This chapter starts by introducing SCAN approach to

identify different relations among trace segments. In this chapter, we perform a qualitative

analysis to validate the relations identified automatically by only one participant. The chapter

proceeds by improving this evaluation with an experiment to assess SCAN capability to

identify relations among segments in comparison to 31 participants. We verify the relations

among the execution trace segments identified by SCAN compared to the relations provided

by the participants.

Chapter 7 - SCAN Usefulness In this chapter we evaluate whether SCAN is useful

for concept location tasks—when an issue request and an execution trace are available—in

addition to concept location techniques or as an alternative. The results of the evaluation

of the usefulness of SCAN for two Java programs: JabRef and muCommander are then

presented.

Chapter 8 - Conclusion This chapter revisits the main contributions of this dissertation.

The chapter continues by describing opportunities for future research.

Appendix A: It provides the list of publications published during my Ph.D.
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CHAPTER 2

Background

This chapter provides the details of the main techniques, i.e., Information Retrieval (IR)

techniques, search-based optimization algorithms, Formal Concept Analysis (FCA), and sta-

tistical tests, which are used in this dissertation. First, we briefly define IR techniques, i.e.,

VSM and LSI. We explain also the different steps of the IR process by using an example.

Second, we present IR performance measures, i.e., precision, recall, and Jaccard index used

in this dissertation. We define the search-based optimization algorithms e.g., Genetic Algo-

rithm (GA) and Dynamic Programming (DP) algorithm used in this dissertation. Then, we

explain the Formal Concept Analysis, which we use to identify relations among segments of

the same execution trace and illustrate the algorithm by an example. Finally, we explain the

statistical tests used to assess the performances of the proposed approaches.

2.1 IR Techniques

In this dissertation, we use some IR techniques, in particular VSM (De Lucia et al., 2012;

Le et al., 2013) and LSI (Marcus et al., 2004; Poshyvanyk et al., 2007) to identify concepts in

execution traces. Both techniques use term-by-document matrices. To build these matrices

we choose the well-known TF -IDF weighting scheme (Baeza-Yates et Ribeiro-Neto, 1999).

In the following, we explain the IR techniques and weighting in details and then we present

an example of IR process.

2.1.1 Vector Space Model (VSM)

Information Retrieval (IR) is a family of techniques for searching information within

documents. Vector Space Model (VSM) is an IR technique used in software engineering

for concept location. VSM represents documents as vectors in the space of all the terms of

the documents of the corpus. In a VSM, documents are represented by a term-by-document

matrix, i.e., m × n matrix, where m is the number of terms and n is the number of documents.

The values of the matrix cells represent the weights of the terms in a document. After the

generation of the term-by-document matrix, we calculate the similarity value between each

pair of documents.

The similarity value between two documents is computed as the cosine of the angle (θ)

between the two vectors (e.g., vectors D and Q) of these two documents. Cosine values are in
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[−1, 1] but similarity between documents cannot be negative. Thus, we discard the negative

values (i.e., use zero). The similarity between two documents is calculated as:

Similarity(D,Q) =
D ×Q

||D|| × ||Q||
=

∑
ti
wtiD × wtiQ√∑

ti∈D w
2
tiD
×
√∑

ti∈Qw
2
tiQ

(2.1)

where tiD is the weight of the ith term in the vector D, and tiQ is the weight of the ith term

in the vector Q. The smaller the vector angle, the higher similarity between two documents.

2.1.2 Term Weighting

To represent the documents as vectors of terms, each term is assigned a weight. Different

schemes for weighting terms have been proposed in literature (Poshyvanyk et al., 2007; De

Lucia et al., 2012). Widely used weighting schemes are based on two main factors:

– TF (Term Frequency) indicates the occurrence of the term in one document

– IDF (Inverse Document Frequency) indicates the importance of the term in the corpus.

TF is calculated as the number of occurrences of the term in the document divided by the

occurrences of all the terms of the document.

TF(i,j) =
n(i,j)∑
k n(k,j)

(2.2)

where k is the number of terms in the document and n(i,j) is the number of occurrences of

the term ti in the document Dj.

TF is a term weighting, it does not include the distribution of terms through the docu-

ments. If a term appears multiple times in a single or multiple documents then the IR tech-

nique would recommend that document as relevant to a query. However, multiple occurrences

of a term does not guarantees that it is an important term. For this reason, Jones (1972)

proposed IDF to reduce the weight of a term that appears in several documents. The IDF

of a term is computed using the following equation:

IDFi = log(
|N |

|d : ti ∈ D|
) (2.3)

where |N | is the number of all documents in the corpus and d : ti ∈ D is the number of

documents that contains the term ti.

TF -IDF is computed using the following equation:

(TF -IDF )(i,j) = TF(i,j) × IDFi (2.4)
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where TF(i,j) is the term-frequency of the term ti in the document Dj, and IDFi is the inverse

document frequency of the term ti.

2.1.3 Latent Semantic Indexing

VSM does not address the synonymy and polysemy problems and relations among terms

(Deerwester et al., 1990). For example, one document having a term “car” and another

document having a term “vehicle” are non-similar documents using VSM. To address this

limitation, LSI identifies relations among terms and documents. The first step of LSI is to

transform the corpus of documents into a term-document matrix A as explained in 2.1.1.

Latent Semantic Indexing uses a mathematical technique called Singular Value Decomposi-

tion (SVD) to decompose the matrix into the product of three other matrices (Deerwester

et al., 1990): T , S, and V where T is the term-concept vector matrix, S is the diagonal

matrix ordered by weight values and V is a concept-document matrix. The relation between

the four matrices is as follows:

A = T × S × V (2.5)

LSI orders the matrix S by size and then set to zero all the values after the first largest k

value. Thus, deleting the zero rows and columns of S and corresponding columns of T and

rows of V would produce the following reduced matrix:

A ≈ Ak = Tk × Sk × Vk (2.6)

where the matrix Ak is approximately equal to A. The choice of the k value is critical and

still an open issue in the literature (Deerwester et al., 1990; Marcus et al., 2004). We should

choose a k value that is large enough to accommodate all the data structures, but also small

enough to discard unimportant details in the data.

2.1.4 IR Process Example

We explain the process of VSM with an example. Given the following documents:

Document 1 (D1): I love fish.

Document 2 (D2): I eat meat and I do not eat fish.

Document 3 (D3): No fish, no meat, I eat vegetables.

If we have the following query: Query: I do not eat fish.
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A vector space model is represented as a matrix in which we have the vectors of the

documents shown in Table 2.1 and the vector of the query represented in Table 2.2. The

values represent the weight of each term in the documents. We present the results of the

computation of weights using TF and TF -IDF . We want to produce the vector space model

for these documents. After deleting the punctuations from the documents, the terms of

our vector space model are: <I>, <love>, <fish>, <eat>, <meat>, <do>, <not>, <no>,

<vegetables>.

Table 2.1 Document-Term Matrix of the example

I love fish eat meat do not no vegetables

D1 1 1 1 0 0 0 0 0 0

D2 2 0 1 2 1 1 1 0 0

D3 1 0 1 1 1 0 0 2 1

Each row of Table 2.1 represent a vector of weights of the terms in the corresponding

document Di. The weight represent the number of occurrences of the term in the document.

We construct the vector of the query as shown in Table 2.2.

Table 2.2 Query-Term Vector of the example

I love fish eat meat do not no vegetables

Query 1 0 1 1 0 1 1 0 0

Tables 2.3 and 2.4 presents the results of the computation of TF and TF -IDF , respec-

tively, of all the terms for the same example. When we compare the matrices of the Tables 2.3

and 2.4, we observe that, using TF -IDF , the weights of the terms existing in all documents

is zero as desired because in general, these terms are non significant terms for a particular

document with respect to others.

To find the document satisfying the query, we calculate the similarity between each doc-

ument and the query. To calculate the similarity between two documents, we calculate the

cosine of the angle (θ) between the two vectors (vectors di and vector q) of these two docu-

ments as defined in Equation 2.1. The similarity values between the documents and the query

are presented in Table 2.5 based on TF and TF -IDF weights where the list of the documents

is sorted by similarity values. Document D2 is the most similar document to the query while

document D1 is the least similar to the query. Because TF -IDF reduces the weight of the

terms <I> and <fish> that exists in all the documents, it increases the similarity between
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document D1 and the query but decreases the similarity between the documents D3 and the

query.

Table 2.3 TF Matrix of the example

I love fish eat meat do not no vegetables

D1 1/3 1/3 1/3 0 0 0 0 0 0

D2 2/8 0 1/8 2/8 1/8 1/8 1/8 0 0

D3 1/7 0 1/7 1/7 1/7 0 0 2/7 1/7

Table 2.4 Document-Term Matrix using TF-IDF of the example

I love fish eat meat do not no vegetables

D1 0 0.16 0 0 0 0 0 0 0

D2 0 0 0 0.04 0.02 0.06 0.02 0 0

D3 0 0 0 0.02 0.02 0 0 0.5 0.07

Table 2.5 Sorted relevant documents using TF and TF-IDF weights.

TF TF-IDF

D2 0.9 0.98

D3 0.75 0.08

D1 0.52 0

2.2 IR Performance Measures

In the following, we describe the metrics used to compute the accuracy of our results.

2.2.1 False Positives and Negatives

We use the numbers of false positives and false negatives to evaluate the accuracy of

the generated labels (i.e., set of words describing the concept). False positive is defined as

number of relevant terms not retrieved and false negative represents the number of retrieved

terms that are not relevant.
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2.2.2 Jaccard Index, Precision, and Recall

The Jaccard index is used to compare the similarity and diversity of sets of segments. It

has values in the interval [0, 1]:

Jaccard(A,B) =
|A ∩B|
|A ∪B|

The Jaccard index is defined as the size of the intersection between two sets A and B

devided by the size of the union of A and B. We use Jaccard similarity to calculate the overlap

between segments.

We use also two well-known IR metrics, precision and recall, to evaluate the accuracy

of our results. Both measures have values in the interval [0, 1]. Precision is defined as the

number of relevant documents retrieved divided by the number of retrieved documents by an

approach. If all the recovered documents are correct, the precision value will be 1. Recall is

defined as the relevant documents retrieved divided by the number of relevant documents. If

all the relevant documents are retrieved, the recall value will be 1.

Precision =
| {relevant documents} ∩ {retrieved documents} |

| {retrieved documents} |

Recall =
| {relevant documents} ∩ {retrieved documents} |

| {relevant documents} |

2.2.3 F-Measure

The precision and recall are two independent metrics to measure two different accuracy

concepts. F-measure is a summary measure of precision and recall and is used to compare

the results of different approaches.

F-measure is computed as:

F = 2× Precision×Recall
Precision+Recall

2.3 Search-based Optimization Algorithms

In the following, we define the search-based optimization algorithms, e.g., Genetic Algo-

rithm (GA) and Dynamic Programming (DP) algorithm used in this dissertation.
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2.3.1 Genetic Algorithm

Genetic algorithms are evolutionary algorithms. In a genetic algorithm, an initial pop-

ulation of individuals that are generated randomly to an optimization problem is evolved

toward better solutions. The number of individuals of the initial population depends on the

nature of the problem and is the same for all generations. In each iteration, some of the

individuals of the current generation are selected (parents) to generate the next generation.

The selected parents are chosen using a predefined fitness function. The fitness function

selects good quality parents because the parents have more chance to produce good quality

descendants according to the fitness function. The selected parents are modified to form a

new generation using two genetic operators: crossover and mutation. The new generation is

expected to increase the average fitness. The generation process continues until reaching a

terminating critera. A very low diversity of the solutions or a maximum number of iterations

can be considered as a stopping criteria.

Crossover

Crossover is a genetic operator that takes two parents and produce two new chromosomes

(offsprings). Several types of crossover exist, such as one-point, two-point, and uniform. The

one-point crossover operator selects randomly one split point within the parents chromosomes

and splits them at this point. Then, two offsprings are generated by exchanging the tails of

the parents chromosomes. An example of one-point crossover is presented in Figure 2.1.

Figure 2.1 One-Point Crossover Example.

The two-point crossover operator selects randomly two split points within the parents

chromosomes and splits them at these points. Then, two offsprings are generated by exchang-

ing the genes located between these two split points. An example of two-point crossover is

presented in Figure 2.2.

Finally, the uniform crossover operator mixes the genes of parents chromosomes with each

other. For each gene of the first child, it flips a coin to decide from which parent this child
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Figure 2.2 Two-Point Crossover Example.

should inherits this gene. Then, the gene of the other parent will be assigned to the second

child. An example of uniform crossover is presented in Figure 2.3.

Figure 2.3 Uniform Crossover Example.

Mutation

Mutation alters some gene values to generate a new chromosome. An example of applying a

mutation operator is illustrated in Figure 2.4.

Figure 2.4 Mutation Example.

Several types of mutation exist, such as flip-bit, boundary, and uniform. A flip-bit mu-

tation inverts the value of the selected gene, i.e., it replaces a 0 with a 1 and vice-versa. A

boundary mutation replace the value of the selected gene by the lower or the upper bound

defined for that gene. The change by the upper or the lower bound is chosen randomly. A

uniform mutation replaces the value of a selected gene with a random value selected between

the user defined lower and upper bounds for that gene.
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2.3.2 Dynamic Programming Algorithm

Dynamic Programming (DP) is a technique to solve search and optimization problems

with overlapping sub-problems and an optimal substructure. It is based on the divide-and-

conquer strategy where a problem is divided into a set of sub-problems, recursively solved,

and where the solution of the original problem is obtained by combining the solutions of the

sub-problems (Bellman et Dreyfus, 1962; Cormen et al., 1990). Sub-problems are overlapping

if the solving of a (sub-)problem depends on the solutions of two or more other sub-problems,

e.g., the computation of the Fibonacci numbers. The sequence Fn of Fibonacci numbers is

defined by the recurrence relation Fn = Fn−1 + Fn−2, such as the numbers in the following

integer sequence: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 . . .

The original problem must have a particular structure to be solved by DP. First, it

must be possible to recursively break it down into sub-problems up to some elementary

problem easily solved; second, it must be possible to express the solution of the original

problem in term of the solutions of the sub-problems; and, third, the Bellman’s principle

of optimality must be applicable. Bellman’s principle of optimality states that: An optimal

solution has the property that whatever the initial state and initial decision are, the remaining

decisions must constitute an optimal solution with regard to the state resulting from the first

decision (Bellman et Dreyfus, 1962).

An important aspect of dynamic programming is that the solutions of sub-problems are

saved to avoid computing them again later on. The solution of one sub-problem may be

used multiple times to solve several larger sub-problems. Thus, for some problems, dynamic

programming algorithms are more efficient than classical recursive algorithms.

2.4 Formal Concept Analysis (FCA)

Formal Concept Analysis (FCA) (Ville, 1999) is a technique to group objects that have

common attributes. The starting point for FCA is a context (O,A, P ), i.e., a set of objects

O, a set of attributes A, and a binary relation among objects and attributes P , stating which

attributes are possessed by which objects. A FCA concept is a maximal collection of objects

that have common attributes, i.e., a grouping of all the objects that share a set of attributes.

More formally, for a set of objects X ⊆ O, a set of attributes Y ⊆ A, and the binary relation

between them P , a FCA concept is the pair (X, Y ) such that:

X 7→ X ′ = {a ∈ A | ∀o ∈ X : (o, a) ∈ P}

Y 7→ Y ′ = {o ∈ O | ∀a ∈ Y : (o, a) ∈ P}
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where X ′ = Y and Y ′ = X. X ′ is the set of attributes common to all objects in X and Y ′ is

the set of objects possessing all attributes in Y . X is the extent of the concept and Y is its

intent. The extent X of a concept is obtained by collecting all objects reachable from (X, Y )

down to the bottom node (e.g., the node bot in the Figure 2.7). The intent Y is obtained

following the opposite direction, i.e., from (X, Y ) to the top node (e.g., the node top in the

Figure 2.7), and by collecting all reachable attributes. The concepts define a lattice.

Figure 2.5 Context of the example.

Figure 2.6 Extent and intent of the concepts of the example.

In this dissertation we use the general bottom-up algorithm described by Siff and Reps (1999).

Given an example of three objects o1, o2, and o3 and four attributes a1, a2, a3, and a4, Fig-

ure 2.5 shows which objects are considered to have which attributes. The binary relations

between attributes and objects are also given in Figure 2.5. For example, (o1, a2) is a binary

relation but (o2, a2) is not.
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Figure 2.7 Concept lattice of the example.

To build a FCA lattice the bottom-up algorithm first computes the bottom element of

the concept lattice. Next, it computes atomic concepts. Atomic concepts are the smallest

concepts with an extent containing each object treated as a singleton set, such as c0 in

Figure 2.6. Then, the algorithm closes the set of atomic concepts under join. Initially, a

work-list is formed containing all pairs of atomic concepts (c′, c) where c * c′ and c′ * c.

While the work-list is not empty, the algorithm removes the element (c0, c1) from the work-

list and computes c′′ = c0 ∪ c1. If c′′ is a concept that is not yet discovered, then it adds all

pairs of concepts (c′′, c) to the work-list, where c * c′′ and c′′ * c. This process is repeated

until the work-list is empty. The result is shown in Figure 2.6. It shows the computed

concepts as well as the extent and the intent of each concept of the example. To visualize the

lattice we use Concept Explorer 1 (Yevtushenko, 2000). The concept lattice of the example is

shown in Figure 2.7. Each node in the lattice represents a concept. Blue (black) filled upper

(lower) semi-circle indicates that an attribute (object) is attached to the concept.

2.5 Statistical Hypothesis Testing

In this dissertation, we use statistical hypothesis testing to compare the performance of

an approach to another. To perform a statistical test, first, we analyse the distribution of our

data to choose an appropriate statistical test. Second, we establish a null hypothesis that

we want to reject. We define α the significance level of the test to reject the null hypothesis.

Finally, we perform the selected statistical test to compute the probability value, i.e., p-

value. We compare the p-value and α and we reject the null hypothesis if the p-value is less

than α. The null hypothesis is rejected if the result value of the statistical test is below α

and an alternate hypothesis is accepted. In this dissertation, we perform two statistical tests

1. http://conexp.sourceforge.net/
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(Wilcoxon paired test and Permutation test). These tests assess whether the obtained results

are statistically significant or not. In addition, we measure the magnitude of the differences

between two approaches.

2.5.1 Statistical Tests

In the following, we present the statistical tests that we use in this dissertation.

Wilcoxon Paired Test

The Wilcoxon paired test is a non-parametric statistical hypothesis test and an alternative

to the two-sample student’s t-test. It evaluate whether the difference between two related

samples or repeated measurements on a single sample is significantly (Wohlin et al., 2000).

Permutation Test

The permutation test (Baker, 1995) is a non-parametric alternative to the two-way ANalysis

Of VAriance (ANOVA). Different from ANOVA, it does not require the data to be normally

distributed. It builds the data distributions and compares the distributions by computing all

possible values of the statistical test while rearranging the labels (representing the various

factors being considered) of the data points.

2.5.2 Effect Size Measure

Other than studying the significant differences between studied approaches, we also use

effect-size measure to analyse the magnitude of the difference between two approaches.

Cliff’s Delta

We compute the magnitude of the differences using the non-parametric effect-size Cliff’s δ

measure (Grissom et Kim, 2005), which, for dependent samples is defined as the probability

that a randomly-selected member of one sample A is better than a randomly-selected member

of the second sample B, minus the reverse probability. The effect size δ is considered small

for 0.148 ≤ δ < 0.33, medium for 0.33 ≤ δ < 0.474, and large for δ ≥ 0.474 (Grissom et Kim,

2005).
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CHAPTER 3

Related Work

In this chapter, we present existing concept location approaches related to this disserta-

tion. Concept location approaches typically use static and–or dynamic information to relate

method calls to concepts. In addition, we describe source code summarisation techniques

because we summarise trace segments using labels to provide developers with a global idea

of the concept implemented by each segment.

3.1 Concept Location

The litterature proposed concept location techniques using static analysis, dynamic anal-

ysis, and their combination.

3.1.1 Static Approaches

Static approaches relied on information statically collected from the program under anal-

ysis, such as a source code.

Anquetil and Lethbridge (1998) proposed an approach to locate concepts by extracting

abbreviations from file names. The authors hypothesised that abbreviations extraction from

file names provided high-level abstractions that could support design activities and were more

helpful for developers than statement-level information. The file name was considered as an

abbreviation of a concept. To verify the accuracy of the results, they decomposed manually

some file names and extracted a representative abbreviation. They observed that using only

file names gived poor results. For this reason, they used other sources of information: com-

ments, identifiers, and abbreviations of English words. Adding these sources of information,

they guided file names decomposition and observed better results. We shared with Anquetil

and Lethbridge the use of source code but we consider a different granularity of source code:

they used program files and we analyse program methods. While Anquetil and Lethbridge

extracted the abbreviations from file names, they were not able to associate these abbrevia-

tions with concepts. Anquetil and Lethbridge did not group files representing a same concept

while we propose a trace segmentation approach that also groups methods implementing a

same concept.

Chen and Rajilich (2000) developed an approach to locate concepts using only graph

dependency. They studied search scenarios for concept location using extracted Abstract
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System Dependency Graph (ASDG) of the components in a program (i.e., functions and

global variables). A search graph is a part of the ASDG and is composed of the components

visited by a developer. The first step of the approach was to locate a starting component

(e.g., main() function or a randomly chosen component or a component with similar name to

the concept). Second, for each component, a developer explored the source code, dependence

graph, and documentation to understand the component and to decide whether it was related

or unrelated to the concept. Different strategies were used to create search graph: bottom-up

and top-down. The top-down strategie expanded the search graph from the function main()

until reaching the desired functionnality. The bottom-up strategie expanded the search graph

through calling functions. We shared with Chen and Rajilich the use of source code lo locate

concepts but our purpose and the granularity of the source code were different. Chen and

Rajilich extracted dependencies using methods and variables but we analyse methods because

generally for maintance tasks, a developer must change some methods in the program. While

our approach identifies automatically the segments of the concepts; using Chen and Rajilich

approach, a developer should choose a starting point component, guide the search graph, and

check if she reached all the components of the concept.

Marcus et al. (2004) proposed a technique to identify the part of source code that im-

plement a specific concept. They analysed the source code using Latent Semantic Indexing

(LSI) to find semantic similarities between user queries and documents to locate concepts

of interest in the source code. A document represented a declaration block, a function, or

a “.h file”. Their results were compared to two other approaches: Chen and Rajilich (2000)

approach and the traditional grep-based method. Their approach was as easy and flexible

to use as grep and provided better results. In addition, they identified some components

of a concept that were missed by the dependence-graph search approach (Chen et Rajlich,

2000). The proposed approach identified terms and identifiers from the source code related

to a given term or a set of terms within the context of the program. Thus, they were able to

automatically generate queries starting with one or more terms. The results of the automat-

ically generated queries were comparable with the queries formulated manually by the users.

As Marcus et al., our approach strongly relies on the textual content of the program source

code but our purpose is different. While they applied LSI to identify documents implement-

ing a concept of interest, we use LSI to split execution trace into meaningful segments, each

representing a concept.

Bassett and Kraft (2013) focused on a static Latent Dirichlet Allocation-based concept

location technique. They compared the accuracy of the results of an LDA-based concept

location technique using 16 weighting schemes (configurations) for structural term weight-

ing. The purpose of this comparison was to determine whether structural term weighting
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could improve the performance of an LDA-based concept location technique. The results

showed that some configurations of structural term weighting provide better performance

than uniform term weighting. The results proved that increasing the weights of terms origi-

nating from method names tended to improve accuracy but increasing the weights of terms

originating from method calls tended to decrease accuracy. Bassett and Kraft suggested to

use a multiplier of eight for terms extracted from method names and a multiplier of one for

terms extracted from method calls. Terms derived from method names could be given more

importance than terms derived from local variable names. These results prove and justify our

choice to extract labels from method names. We share also with Bassett and Kraft the use

of text retrieval models to locate concepts but they applied structural term weighting (i.e.,

latent Dirichlet allocation) while we use latent semantic indexing (LSI) to compute execution

trace segmentation.

3.1.2 Dynamic Approaches

While static approaches use only source code, dynamic approaches use one or more exe-

cution traces to locate concepts in the source code.

Wilde et al. (1992; 1995) used test cases to produce execution traces; concepts location

was performed by comparing two sets of traces: one in which the concepts were executed and

another without concepts. Using probabilistic and deterministic formulations, they identified

methods that were only invoked in the execution traces that implement the concepts. The

latter approach was evaluated on small C programs and a small number of scenarios. The

results showed that this approach was useful to indicate the parts of source code where

developers should look. They conduct a study (Wilde et Scully, 1995) with professional

participants and showed that this technique could be adopted by professional developers.

This approach was useful to detect the parts of source code that uniquely belong to some

particular concepts but it did not guarantee to find all the source code parts that participate

in implementing all concepts. In addition, the approach could not guarantee the identification

all of the related artifacts for a concept. Thus, the results of this technique presented only a

starting point. Same as Wilde et al. (1992; 1995), we use execution traces to locate concepts.

However, we need at least two execution traces (i.e., with and another without the concepts

of interest exercised) to apply Wilde et al. approach while our approach is suitable if only

one execution trace is available.

Eisenbarth et al. (2001b; 2001a) presented a technique for generating concept component

maps using dynamic analysis. They applied concept analysis to reveal relations between

concepts and components as well as to concept relations to a set of execution traces imple-

menting different scenarios. Given execution traces resulting from various usage scenarios
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(covering a set of concepts of a program), Eisenbarth et al. applied concept analysis to reveal

relations between concepts and components. Based on the resulting concept lattice, a concept

component map was derived and used to identify components of interest given a particular

concept. They performed a case study on C programs to show that their approach generated

concept component maps and grouped related concepts in the concept lattice. As Eisenbarth

et al., we apply concept analysis to discover commonalities among concepts but they consid-

ered functions and procedures names as objects and we use terms in methods signatures as

objects. Our work is close to this work but using their approach a developer must analyse

a concept lattice to discover relations while our approach identifies automatically relations.

A large concept lattice would be difficult to analyse to identify concept relations and thus,

using Eisenbarth et al. approach, a developer would hardly make the effort to discover these

relations. In addition, to obtain these relations using their approach, a set of scenarios must

be prepared where each scenario exploit preferably only one relevant concept. However, us-

ing our approach, only one scenario is needed. Finally, their technique was not suited for

concept that are only internally visible. Internal concepts (i.e., non user-observable) could

only be detected by looking at the source, because it is not clear how to invoke them from

the program and how to derive from an execution trace whether these concepts are present

or not. Our approach is suitable for any type of concept (user-observable or not).

Hamou-Lhadj et al. (2002) proposed an approach to remove the repeated instances of pat-

terns of events from a trace and keep only one of such instance. First, they filter contiguous

repetitions of events and then find and filter non-contiguous repetitions. Thus, they gener-

ate a compressed trace without repetitions. Hamou-Lhadj et al. (2006) extended their trace

summarisation approach by measuring whether an event is considered an utility event or not.

The proposed metric ranks the system components according to whether they implement

key system concepts or are related to implementation details. Their trace summarisation

approach is based on the removal of implementation details such as utilities from execution

traces. It also removes also constructors, destructors, accessers, nested classes, and methods

related to programming languages libraries because they do not implement key system con-

cepts. According to the developers of the studied system, the generated summaries of the

execution traces are adequate high-level representations of the main interactions of the traces.

Hamou-Lhadj et al. (2002; 2006) proposed approaches to generate a summary of execution

traces by removing utility events. In contrast, we propose to split a trace into cohesive seg-

ments and then extract relevant information from each segment to assign meaningful labels

to each segment.

Eisenberg (2005) proposed a concept location approach by using test cases. Eisenberg

developed a tool to locate concepts in three steps. First, a developer must devise a test suite.
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The developer provided the tool with concepts mapping that, as much as possible, grouped

all test cases that collectively and comprehensively exhibited all parts of the concepts of

interest; this is the exhibiting test set. Next, the tool performed execution trace analysis and

produced execution trace by executing the exhibiting test set. Then, for each test execution,

all method calls and their call depth were stored by the tool. Each method caller and callee

of the execution trace was extracted and ranked based on their relevance to the concepts.

The rank was based on three heuristics: multiplicity, specialisation, and depth. Multiplicity

was the score of the number of times a method is called in one test compared to the number

of times it is exercised in all other test sets. Specialisation represented how much a method

was only executed by some concepts and no others. A method exercised by many different

test sets was considered as likely unrelated to any concept (i.e., utility method). Depth gived

how a test set exhibits directly some concepts compared to all other test sets. Eisenberg

expected that, for a well-designed and well-partitioned test suite, a test set will exhibit the

behavior of the conepts of interest in the most direct manner. They associated directness

with call depth. Eisenberg presented a study to show that the approach could be useful for

concept location. Same as Eisenberg (2005), we use execution traces to locate concepts but

our aim is different, i.e., identify cohesive segments relevant for a concept rather than to

identify single methods related to a concept. In addition, we require a set of execution traces

(e.g., exhibiting test set) to apply Eisenberg approach but our approach is applicable even if

only one execution trace is available.

Safyallah and Sartipi (2006) introduced an approach applying a data mining technique

on the execution traces. This approach analyses a set of execution traces collected from a set

of concept-specific scenarios using sequential pattern mining. They identified execution pat-

terns, which were frequent continuous fragments of execution traces. A frequently occurring

sequence of transactions (i.e., a pattern) was defined as a sequence supported by a user-

specified minimum number of customer-sequences (i.e., MinSupport of this pattern). The

results of this approach were a set of execution patterns corresponding to a given concept.

They performed a case study on a medium size C program and showed that they identified

the methods specific to a given concept. This technique identified the relevant parts of the

execution trace to reduce the complexity to analyse large execution traces. They extended

their approach (Sartipi et Safyallah, 2010) using concept lattice to locate the common group

of functions of the execution traces. The advantage of using the concept lattice was to iden-

tifying the related concepts in the source code. They evaluated their approach on two C

program and showed that they identified the methods specific to a given concept as well as

common functions. Same as Safyallah and Sartipi (2010; 2006), we use concept lattice how-

ever our purpose is different. While, they used it to locate the common group of functions
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of the execution traces, we use it to identify relations among execution trace segments and

locate the common concepts of the execution traces.

Kuhn et al. (2006) drew an analogy between dynamic analysis and signal processing. They

proposed an approach to reduce the huge volume of data in traces by grouping sequences

of events. First, they transformed method calls into time series by representing the nesting

levels of the calls by points. Then, they grouped sequences of events based on the amounts of

changes in their nesting levels. Finally, they applied several filters, such as a minimal nesting

level threshold. Their approach also allows to visualise large numbers of calls in multiple

traces on a single screen. It identifies the similarity between trace signals and arranges them

accordingly on the screen. It thus summarises traces by reducing the length of the trace signal

by 50% to 90% while preserving relevant information. Their approach displays the different

groups of sequences of events in traces but it do not present the concepts implemented by

each group. In contrast, we propose to split a trace into cohesive segments and to assign

labels to describe the concepts implemented by each segment.

Cornelissen et al. (2008) proposed an assessment methodology to evaluate and compare

trace reduction techniques. The authors selected four trace abstraction techniques found in

the literature, which they evaluated and compared using a test set of seven large execution

traces. They proposed an assessment methodology based on a common context, common

evaluation criteria, and a common test set to ensure that these techniques could be properly

compared. They found that the abstraction techniques performed well in terms of reducing

trace size but were less useful in preserving high-level and medium-level information contained

in the execution traces. Thus, the abstracted traces in their study were not representative

of the original traces. The main challenge when reducing the volume of data of execution

traces is to preserve relevant information. To overcome this limitation, in this dissertation,

we present an approach to reduce the size of segments based on TF-IDF and we show that

the reduced segments are representative of the original segments.

Our work is close to the work of Pirzadeh and Hamou-Lhadj (2011) who divided execution

traces into segments corresponding to the program’s main execution phases (e.g., initializing

variables, performing a specific computation, etc.). Their algorithm for phase detection was

inspired by psychology laws describing how the human brain grouped similar items. Poten-

tial execution phases were identified by applying the similarity and continuity gravitational

schemes. The similarity scheme reduced the distance between same method calls, where

distance was defined using a mapping from the execution order of the method calls to an in-

terval scale, i.e., ruler distance. The continuity scheme reduced the distance between method

calls in higher nested levels and the previous method calls. Applying the schemes may result

in a rearrangement of the methods calls compared to the original trace, i.e., the order of
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execution was not preserved. Pirzadeh and Hamou-Lhadj then used the K-means clustering

algorithm to group potential phases thus identifying the execution phases. In contrast with

this work of Pirzadeh and Hamou-Lhadj (2011), SCAN preserves the order of method calls

when segmenting an execution trace.

Pirzadeh et al. (2011b) proposed a trace sampling framework. They used stratified sam-

pling to obtain traces of reduced size with respect to the original trace by distributing the

desired characteristics of an execution trace similarly in both the sampled and the original

trace. They used random sampling techniques to generate sampled execution traces. How-

ever, random sampling may generate samples that are not representative of the original trace.

They extended their approach (Pirzadeh et al., 2011a) by extracting higher-level views that

characterise the relevant information about execution traces. They proposed a technique

called content prioritisation to weight the trace elements of each phase and keep the most

representative elements of a phase. The first step of the proposed approach is to remove util-

ity methods from the execution phases to reduce the noise in the data. Second, they applied

a weighting function to weigh methods of a phase according to their relevance. The higher

the weight, the more representative the method. They selected the most representative meth-

ods in a phase from the obtained list of ranked methods. Pirzadeh et al. approach (2011a)

extracted higher-level views that characterise the relevant information of execution segments

in terms of method calls while we characterise execution segments by relevant terms. While

they also used the weighted elements to detect similar phases, we use FCA to identify the

relations among trace segments based on the extracted terms.

3.1.3 Hybrid Approaches

Both static and dynamic techniques have some limitations. Dynamic techniques most

often rely on multiple executions of the programs, i.e., multiple execution traces. Execution

traces are often very large, cumbersome to manipulate and furthermore they may contain

uninteresting events from the developers’ point of view. Static analyses can rarely identify

methods contributing to a specific execution scenario. They often fail to properly capture a

program behavior. Hybrid approaches have been introduced to overcome the limitations of

dynamic and static approaches. For these reasons, researches developed hybrid approaches

to identify concepts.

Antoniol and Guéhéneuc (2005) presented a hybrid approach for concept location and

reported its results on real-life, large, object-oriented, multi-threaded programs. They used

knowledge filtering and probabilistic ranking to overcome the difficulties of getting rid of

uninteresting events. The approach was improved (Antoniol et Guéhéneuc, 2006) by using

the notion of disease epidemiology. Antoniol and Guéhéneuc (2006) proposed an epidemi-
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ological metaphor to analyse source code to assist program understanding tasks in large

multithreaded object-oriented programs. They identified the microarchitectures implement-

ing some concepts of interest and highlighted the variables, classes, functions, and methods

activated when exercising a concept. They produced also a ranked list of methods participat-

ing in a concept to support maintenance and program understanding tasks. They used case

studies to assessed the usefulness of their approach. They compared their process of concept

location with previous works by Eisenbarth et al. (2003) and showed that their epidemiolog-

ical metaphor dramatically decreased the number of methods in comparison to Eisenbarth

et al. works and the size of the microarchitecture implementing the concepts of interest. We

share with Antoniol and Guéhéneuc the use of static (i.e., source code) and dynamic (i.e.,

execution traces) analysis but our purpose is different. While Antoniol and Guéhéneuc pro-

posed an approach to identify the microarchitectures implementing some concepts of interest

and to rank methods of the source code based on their similarity to the concepts of interest,

we propose an approach to identify the trace segments implementing the concepts of interest.

Liu et al. (2007) proposed concept location technique named SIngle Trace and Information

Retrieval (SITIR). They combined the information from the execution trace and from the

identifiers and comments of the source code. Concept location using SITIR required little

domain or program specific knowledge. It consisted of four steps: formulating and executing

a single scenario, formulating the query, ranking the executed methods, and examining the

results. The first step of concept location using SITIR is to formulate a scenario that capture

the concept of interest. Using SITIR, we should have a single execution trace execising one

concept. Second, a developer should selected a set of terms describing the concept to find.

Given this set of terms and an execution trace, the approach proposed by Liu et al. ranked

methods of the source code that appear in the execution trace based on their textual similarity

with this set of words. They hypothesised that once the starting point of the modification was

known, the developer could identify the other methods that would be impacted by any change

related to the concept of interest. They presented two different case studies. In the first case

study, they used SITIR to locate three concepts associated with change requests. In the

second case study, they compared the results obtained by SITIR with two other approaches,

namely Probabilistic Ranking Of Methods based on Execution Scenarios and Information

Retrieval (PROMESIR) (Poshyvanyk et al., 2007) and Scenario-based Probabilistic Ranking

(SPR) (Antoniol et Guéhéneuc, 2006). The results of the first case study showed that, in

most cases, the relevant methods to the located concepts were ranked in the top ten. The

results of the second case study confirmed that SITIR outperformed LSI and SPR in locating

bug related concepts and were very close to PROMESIR results. We share with Liu et al. the

combination of dynamic analysis (i.e., execution trace) and textual analysis based on Latent
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Semantic Indexing (LSI) but our goal is different. While Liu et al. proposed an approach to

rank methods of the source code that appear in the execution trace based on their textual

similarity with the change request, we propose an approach to identify the relevant segments.

Rohatgi et al. (2008) presented a hybrid approach for concept location. They used dy-

namic analysis to generate an execution trace by exercising a concept of interest. Then,

they proposed two impact analysis metrics to rank the extracted classes. Both metrics were

based on a static class-dependency graph built from the classes invoked in the execution

trace. They ranked the classes based on identifying the impact of a class modification on the

rest of the program. The first proposed metric, TWI (Two Way Impact), showed very good

results and the second proposed metric, WTWI (Weighted Two Way Impact), improved the

results of the first metric by adding information from the program architecture. The ranking

mechanism guided developers to locate methods implementing a concept of interest, without

the need for a deep understanding of the program. We share with Rohatgi et al. the anal-

ysis of source code and execution traces but our purpose is different. While Rohatgi et al.

proposed an approach to rank methods by relevance to the concept of interest, we propose

approaches to split the execution trace into segments, assign label to each segment describing

the implemented concept, and identify relations among trace segments.

Asadi et al. (2010b) presented a concept location approach using genetic algorithm. They

identified concepts by finding cohesive and decoupled fragments in a trace. They used a tex-

tual analysis of the source code using LSI. Although, they found that genetic algorithm

identified concepts with high precision, the fitness function of their approach has a polyno-

mial evaluation cost and was computationally intensive. A run of their approach on a trace

of thousands of methods may require several hours of computation on a standard PC. Con-

sequently, they extended their work (Asadi et al., 2010a) to reduce computation times by

parallelising the genetic algorithm over a standard network. They developed four distributed

architectures and compared their performances. Although they decreased of computation

time up to 140 times, their approach was still taking hours for some execution traces. Fur-

thermore, it was based on metaheuristic search and thus each run may produced a different

concept assignment. In this dissertation, we propose an approach using dynamic program-

ming to overcome the limitations of Asadi et al. approach.

Poshyvanyk et al. (2013) used Formal Concept Analysis (FCA) and LSI to locate concepts

in source code corresponding to a textual description, e.g., description of a concept or a bug

report. Given a query, i.e., a summary of the description, source code elements are ranked

using LSI. From the top-most elements in the ranked list, the top-most descriptive terms

are selected and a concept lattice is built. As Poshyvanyk et al. did, our approach uses LSI

and FCA. It also uses both static and dynamic information whereas the previous authors
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used static information only. When building FCA lattices, we operated at a higher level of

abstraction, i.e., in our case objects are segments of execution traces rather than methods.

This is because our aim is different, i.e., identify cohesive segments relevant for a concept

rather than to identify single methods related to a concept. Finally, we used relations among

FCA concepts in the lattice to automatically identify relations among segments.

3.2 Source Code Summarisation

Software artifact summarisation consists of techniques extracting short descriptions from

software artifacts to help developers during program comprehension. There are different

approaches to summarise source code. Some of them use heuristics to extract structured or

natural-language summaries (Sridhara et al., 2010, 2011a) whereas others use IR techniques

to extract relevant keywords representing program artifacts (Haiduc et al., 2010a,b; De Lucia

et al., 2012).

Sridhara et al. (2010) proposed a novel technique to automatically generate comments for

Java methods. They used the signature and the body of a method to generate a descriptive

natural language summary of the method. After the automatic generation of a summary,

developers verified the accuracy of the generated summary with the method source code.

They judged that the generated summaries were accurate and reasonably concise. The work

was extended (Sridhara et al., 2011a) by using a classification of code into fragments, to

generate a natural language description of “actions” related to each fragment. The authors

identified three types of fragments: sequence fragments, conditional fragments and loop frag-

ments. Haiduc et al. (2010a; 2010b) applied and combined several automatic summarisation

techniques. In a reported case study, they found that a combination of techniques making

use of the position of terms in a program and traceability recovery techniques capture the

meaning of methods and classes better than any other of the studied techniques. In addi-

tion, an experiment conducted with four developers revealed that the summaries produced

using this combination are accurate, reasonably concise, and do not miss important infor-

mation. We share with Sridhara et al. and Haiduc et al. the goal of representing artifacts

with shorter descriptions. The main difference between labeling source code artifacts and

labeling execution traces is that execution traces must be (1) pruned, else utility methods

and event handlers dominate the creation of labels thus producing meaningless labels, and

(2) segmented, else labels would not be meaningful to developers.

De Lucia et al. (2012) experimented the use of different IR techniques to extract keywords

from source code artifacts. They compared the labeling obtained using a Vector Space Model

(VSM) and TF or TF -IDF weighting schemes with those of more complex techniques, such
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as LSI. They used a manual labeling performed by 17 students as oracle against which to

compare the various techniques. They found that simpler indexing techniques, such as VSM,

outperform LSI, whose results were better only for larger artifacts in which LSI clustering

capabilities help to reduce the noise. As De Lucia et al. (2012), we use LSI to compute the

exact splitting of execution trace and we use a VSM (properly complemented with some

heuristics to remove noise) to label execution trace segments.

Wang et al. (2014) proposed an approach that automatically segments source code meth-

ods into meaningful blocks for the purpose of automatic blank line insertion . The approach

used the program structure and identifiers to identify consecutive statements that logically

implemented a high-level action. Examples of meaningful blocks were a sequence of state-

ment belonging to the same syntactic category (e.g., method call, variable declaration), a

sequence of statements related through data flow, and a sequence of statements grouped in

a while loop including the immediately preceding statements initializing variables that con-

trol the condition. Wang et al. also defined a statement-pair similarity measure to segment

syntactical blocks; the measure is based on the program identifiers—the use of words that

constitute them and naming conventions. Syntactical blocks were defined with a sliding win-

dow of three statements. For each three consecutive statements, there were a segmentation

if the similarity between the first two and the last two statements was different. Wang et al.

studied how developers inserted blank lines to define heuristics that automatically mimiced

their behavior. We cannot use a similar approach as execution traces are not manually writ-

ten. In contrast to the sliding window used by Wang et al., we start with one method and

we keep adding the following methods one by one as long as the fitness function is improved;

we segment when adding a statement decreases the value of the fitness function.

3.3 Summary

Developers generally are interested to understand some parts of the trace that imple-

ment concepts of interest rather than to analyse in-depth the entire execution trace. For

this reason, several approaches tried to split execution traces into segments (Asadi et al.,

2010a,b; Pirzadeh et Hamou-Lhadj, 2011). Asadi et al. (2010b; 2010a) identified concepts

by finding cohesive and decoupled fragments in a trace using genetic algorithm. Although

they found that genetic algorithm identify concepts with high precision, their approach is

computationally intensive and could not be applied to traces of thousands of methods. Fur-

thermore, it was based on metaheuristic search and thus each run could produce a different

concept assignment. To address these limitations, our trace segmentation approach directly

extends Asadi et al. works (2010b; 2010a) by reformulating the trace segmentation problem
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as a DP problem. We split the execution trace into segments similarly to what also Pirzadeh

and Hamou-Lhadj (2011) did, although based on a different approach, incorporating concep-

tual similarity in a search-based optimization technique (Asadi et al., 2010b). Pirzadeh and

Hamou-Lhadj (2011) divided execution traces into segments corresponding to the program’s

main execution phases. They only considered exact naming when evaluating the similarity

between methods and they did not take into account other types of information, such as the

source code of methods.

In addition, the extraction of the essence of the information of the segments is helpful to

developers to understand the concept implemented by the segment. For this reason, several

approaches characterised execution trace segments with relevant information (Pirzadeh et al.,

2011b,a), extracted structured or natural-language summaries (Sridhara et al., 2010, 2011a)

for program artifacts, and others labeled program artifacts (Haiduc et al., 2010a,b; De Lucia

et al., 2012). However, none of the proposed approaches label trace segments. Labeling

segments allow developers to have an idea of the concepts implemented by the segments and

guide them towards segments implementing the concepts to maintain.

Our work is close to Eisenbarth et al. (2001b; 2001a) works, which presented semi-

automatic approaches in which a developer should analyse a concept lattice to discover

relations among concepts but our approach identify automatically relations. In addition,

their technique was not suited for concepts that are only internally visible while our ap-

proach is suitable for any type of concepts (user-observable or not). The relations among

trace segments provide a high-level presentation of the concepts implemented in an execution

trace and allow developers to understand the concepts implemented in the execution trace.
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CHAPTER 4

Trace Segmentation

Developers generally are interested to understand some parts of the trace that implement

the concepts of interest rather than to analyse in-depth the entire execution trace. To reduce

the complexity of analysing execution traces Asadi et al. (2010b; 2010a) identified concepts

by finding cohesive and decoupled fragments in a trace using a genetic algorithm. Although,

they found that the genetic algorithm identifies concepts with high precision, their approach

is computationally intensive. Furthermore, it is based on metaheuristic search and thus each

run may produce a different concept assignment. To address these limitations, we automati-

cally split exection traces into meaningful segments, each representing a concept. To do so,

we reformulate the trace segmentation problem as a dynamic programming problem. This

chapter describe the new problem formulation and the algorithmic details of our approach.

We then compare and discuss the results of the performances of dynamic programming with

those of a genetic algorithm.

4.1 Trace Segmentation Approach

The execution trace segmentation approach consists of five steps. First, a program is

instrumented. Second, the program is exercised to collect execution traces. Third, the

collected traces are compacted to reduce the search space that must be explored to identify

concepts. Fourth, each method of the program is represented by means of the text that it

contains. Finally, a search-based optimisation technique is used to identify, within execution

traces, sequences of method invocations that are related to a concept, this latter step will be

detailed in the section 4.1.2 here we simply report the computed fitness function.

4.1.1 Trace Segmentation Problem

This section summarises essential details of a previous trace segmentation approach (Asadi

et al., 2010a,b), which problem we reformulate as a dynamic programming problem. There-

fore, the five steps of the two approaches are identical, with the only difference that the trace

segmentation was previously performed using a GA algorithm and that we describe the use

of DP in Section 4.1.2.
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Step 1 and 2 – Program Instrumentation and Trace Collection First, a program

under study is instrumented using the instrumentor of MoDeC to collect traces of its ex-

ecution under some scenarios. MoDeC is an external tool to extract and model sequence

diagrams from Java programs (Ng et al., 2010), implemented using the Apache BCEL byte-

code transformation library 1. The tool also allows to manually label parts of the traces

during executions of the instrumented programs, which we did to produce our oracle. In this

dissertation MoDeC is simply used to collect and manually tag traces.

Step 3 – Pruning and Compacting Traces Usually, execution traces contain methods

invoked in most scenarios, e.g., methods related to logging or Graphical User Interface (GUI)

events. Yet, it is unlikely that such invocations are related to any particular concept, i.e., they

are utility methods. We build the distribution of method invocation frequency and prune

out methods having an invocation frequency greater than Q3 + 2 × IQR, where Q3 is the

third quartile (75% percentile) of the invocation frequency distribution and IQR is the inter-

quartile range because these methods do not provide useful information when segmenting

traces and locating concepts.

Execution trace contains repetitions of method calls, for example m1();m1();m1(); or

m1();m2();m1();m2();. Since the repetition does not define a new concept we remove the

repetitions using the Run Length Encoding (RLE) algorithm and we just keep one occurrence

of any repetition. We compact any sub-sequences of method invocations having an arbitrary

length. The examples would become m1() and m1();m2(), respectively.

We compact the traces using a Run Length Encoding (RLE) algorithm to remove rep-

etitions of method invocations. We still apply the RLE compaction to compare segments

obtained with the DP approach with those obtained using the GA approach when segment-

ing the same traces.

Step 4 – Textual Analysis of Method Source Code Trace segmentation aims at

grouping together subsequent method invocations that form conceptually cohesive groups.

The conceptual cohesion among method is computed using the Conceptual Cohesion metric

defined by Marcus et al. (2008).

We first extract a set of terms from each method by tokenizing the method source code

and comments, removing out special characters, programming language keywords, and terms

belonging to a stop-word list for the English language. We split compound identifiers sepa-

rated by Camel Case, e.g., getBook is split into get and book. Then, we perform stemming

using a Porter stemmer (Porter, 1980). We then index the obtained terms using the TF -IDF

1. http://jakarta.apache.org/bcel/
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indexing mechanisms (Baeza-Yates et Ribeiro-Neto, 1999). We obtain a term–document ma-

trix, and where documents are all methods of all classes belonging to the program under

study and where terms are all the terms extracted (and split) from the method source code.

Finally, we apply Latent Semantic Indexing (LSI) (Deerwester et al., 1990) to reduce the

term–document matrix into a concept–document 2 matrix, choosing, as in previous works

(Asadi et al., 2010a,b), a LSI subspace size equal to 50.

Step 5 – Trace Splitting through Optimization Techniques Since the execution

traces are very large and the execution trace segmentation solution must be found in large

search spaces. Due to the potentially large size of the search space we need to apply some

optimization techniques to segment the obtained trace. Applying an optimization technique

requires a representation of the trace and of a trace segmentation and a means to evaluate

the quality of a trace segmentation, i.e., a fitness function. In the following paragraphs, we

reuse where possible previous notations and definitions (Asadi et al., 2010b) for the sake of

simplicity.

The fitness function drives the optimization technique to produce a (near) optimal seg-

mentation of a trace into segments likely to relate to some concepts. It relies on the software

design principles of cohesion and coupling, already adopted in the past to identify modules

in programs (Mitchell et Mancoridis, 2006), although we use conceptual (i.e., textual) cohe-

sion and coupling measures (Marcus et al., 2008; Poshyvanyk et Marcus, 2006), rather than

structural cohesion and coupling measures.

Segment cohesion (COH) is the average (textual) similarity between the source code any

pair of methods invoked in a given segment l. It is computed using the formulas in Equation

4.1 where begin(l) is the position of the first method invocation of the lth segment and end(l)

the position of the last method invocation in that segment. The similarity σ between methods

mi and mj is computed using the cosine similarity measure over the LSI matrix from the

previous step. COH is the average of the similarity (Marcus et al., 2008; Poshyvanyk et

Marcus, 2006) of all pairs of methods in a segment.

Segment coupling (COU) is the average similarity between a segment l and all other seg-

ments in the trace, computed using Equation 4.2, where N is the trace length. It represents,

for a given segment, the average similarity between methods in that segment and those in

different ones.

Thus, we compute the quality of the segmentation of a trace split into K segments using

the fitness function (fit) defined in Equation 4.3, which balances segment cohesion and their

2. In LSI “concept” refers to orthonormal dimensions of the LSI space, while in the rest of the dissertation
“concept” means some abstraction relevant to developers.
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coupling with other segments in the split trace.

COHl =

∑end(l)−1
i=begin(l)

∑end(l)
j=i+1 σ(mi,mj)

(end(l)− begin(l) + 1)× (end(l)−begin(l))
2

(4.1)

COUl =

∑end(l)
i=begin(l)

∑N
j=1,j<begin(l) or j>end(l)σ(mi,mj)

(N − (end(l)− begin(l) + 1))× (end(l)− begin(l) + 1)
(4.2)

fit(segmentation) =
1

K
×

K∑
i=1

COHi

COUi + 1
(4.3)

4.1.2 Search-based Optimization Technique

Now we use previous notations and definitions to describe the use of a GA algorithm

to segment traces and the reformulation of the trace segmentation problem as a dynamic

programming problem.

Trace Segmentation using a Genetic Algorithm

Asadi et al. (2010a; 2010b) represent a problem solution, i.e., a trace segmentation, as

a bit-string as long as the execution trace in number of method invocations. Each method

invocation is represented as a “0”, except the last method invocation in a segment, which is

represented as a “1”. For example, the bit-string 00010010001︸ ︷︷ ︸
11

represents a trace containing

11 method invocations and split into three segments: the first four method invocations, the

next three, and the last four.

Now, the mutation, crossover, and selection operators, used by a GA to segment traces

are described (Asadi et al., 2010a,b). The mutation operator randomly chooses one bit in

the trace representation and flips it over. Flipping a “0” into a “1” means splitting an existing

segment into two segments, while flipping a “1” into a “0” means merging two consecutive

segments. The crossover operator is the standard 2-points crossover. Given two individuals,

two random positions x, y, with x < y, are chosen in one individual’s bit-string and the bits

from x to y are swapped between the two individuals to create a new offspring. The selection

operator is the roulette-wheel selection. Asadi et al. use a simple GA with no elitism, i.e., it

does not guarantee to retain best individuals across subsequent generations.
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Trace Segmentation using Dynamic Programming

DP technique is divided into three steps: first, recursively breaking the problem down into

sub-problems; second, expressing the solution of the original problem in term of the solutions

of the sub-problems; and finally applying the Bellman’s principle of optimality.

For our trace segmentation problem, we interpret the obove steps as follows. When

computing a trace segmentation, at a given intermediate method invocation in the trace

and for a given number of segments ending with that invocation, only the best among those

possible partial splits, will be, possibly, part of the final optimal solution. Thus, we must

record only the best fitness for any segmentation and we must expand only the corresponding

best segment to include more method invocation, possibly including the entire trace.

Figure 4.1 Example of execution trace segmentation.

Let’s consider the example of the trace segmentation in the Figure 4.1. The existing

solution is that we compose the first five methods into two segments: Segment 1 composed of

the first three methods of the trace and Segment 2 included the fourth and the fifth methods.

When extending the existing solution two things can happen: either a third segment is added

starting from the method “m1” or the method “m1” is attached to Segment 2. Given the trace

of the example in the Figure 4.1, suppose we compute and store all possible optimal splits

of a trace into two segments. The sub-trace of the first five method invocations, we compute

its optimal (in terms of fitness function) split into two segments. Clearly there are several

ways to split the five methods into two segments, however we only consider the best in term

of fitness function. The same can be done for a sub-trace of length six and seven. When

we reach the end of the trace we will have the best segmentation on the given trace into

two parts. When computing the segmentation into three parts, there is no need to redo all

computations. For example, three segments ending at position seven can be computed in

terms of two segments ending at any previous position (e.g., position five), and forming a

third segment with the remaining methods. Thus, a possible solution consists of the two

segments ending at position five, plus a segment of length two.

More formally, let A = {1, 2, . . . , n} be an alphabet of n symbols, i.e., method invocations,

and T [1 . . . N ] be an array of method invocations of A, i.e., an execution trace. Given an

interval T [p . . . q] (1 ≤ p ≤ q ≤ N) of T [1 . . . N ], as explained in Section 4.1.1, we compute
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COH as the average similarity between the elements of T [p . . . q] and the interval coupling,

COU , as the average similarity between any element of T [p . . . q] (methods between p and q)

and any element of T [1 . . . N ]−T [p . . . q]. We compute the score of an interval as COH/COU .

A segmentation S of T [1 . . . L](L ≤ N) is a partition S of T [1 . . . L] in kS intervals:

S = {T [1 . . . a1], T [a1 + 1 . . . a2] . . . T [ak−1 + 1 . . . ak = N ]}. We denote such a segmentation

by (a0 = 0, a1, . . . , akS = L). We then define the segmentation score (e.g., fitness) of an array

as the average score of its intervals. Therefore, the trace segmentation problem consists to

find a segmentation of T [1 . . . N ] maximizing the score fit, as defined in Section 4.1.1.

We introduce the definitions D1–D4 to explain our DP approach:

(D1) A(p, q) = Σq−1
i=pΣq

j=i+1σ(i, j)

(D2) B(p, q) = Σq
i=pΣj=1...N(j /∈[p,q])σ(i, j)

(D3) f(p, q) = 2×(N−(q−p+1))
(q−p) × A(p,q)

B(p,q)

(D4) fit(k, L) = max{(ai)i=0..k:a0=0,ai<ai+1,ak=L}Σi=1..kf(ai−1 + 1, ai)

We notice that the COH and COU of an interval T [p . . . q] correspond to 2×A(p,q)
(q−p)×(q−p+1)

and
B(p,q)

(N−(q−p+1))×(q−p+1)
, respectively. Thus f(p, q) represents the score of the interval T [p . . . q].

It also represents the contribution of the interval to a solution and fit(k, L) corresponds to

the maximum score of a (k, L)-segmentation, i.e., a segmentation of T [1 . . . L] in k intervals.

Therefore, the optimum segmentation score is max
N/2
k=1

fit(k,N)
k

.

If we consider a solution ending at p (sub-trace T [1 . . . p]) and made up by k segments, then

its score is fit(k, p) and we have multiple optimum segmentations: one for each possible k in

1 < k < p/2. When we extend the sub-trace to q, T [1 . . . p . . . q] and given a solution made up

of k segments ending in p, we seek the solution fit(k+ 1, q) into maxp=k...q(fit(k, p) + f(p+

1, q)), where 1 ≤ k < q ≤ N . If we pre-compute and store fit(k, p) in a table, we do not need

to recompute the expensive COH and COU every time to evaluate fit(k + 1, q). However,

we still must compute f(p + 1, q) for every sub-problems and we perform this computation

efficiently using the following definitions:

(D5) ∆(p, q) = Σq−1
i=pσ(T [i], T [q])

(D6) Θ(p) = Σi=1..N(i 6=p)σ(T [i], T [p])

It can be proved that ∆(p, q) = ∆(p + 1, q) + σ(T [p], T [q]) and, thus, A(p, q) = A(p, q −
1)+∆(p, q) and B(p, q+1) = B(p, q)+Θ(q+1)−2×∆(p, q+1) and thus we can recursively

update A(p, q) and B(p, q+1). We choose q = p+1, which means that we extend the current

solution one method at the time from left-to-right and that A(p, q) becomes A(p, p+ 1) and
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B(p, q+1) becomes B(p, p+2), which we can pre-compute (from previous values) and stored

into two arrays.

To conclude, we can compute fit(k + 1, p + 1) using fit(k, i) and the sum of the values

of f(i+ 1, p+ 1), which we can compute by dividing A(i+ 1, p+ 1) by B(i+ 1, p+ 1), both

already pre-computed. The DP approach is thus fast because it goes left-to-right and reuses

as much as possible of previous computation.

We show below the pseudo-code of (a basic version of) the algorithm at the core of the

DP approach.

Algorithm DP split

Input:

integers n and N , matrix of similarities Sim[1..n][1..n], array T [1..N ]

Output: matrix of fitness values fit[1..N ][1..N ]

1. For L=1..N do

2. Theta := comp theta(L)

3. Delta := 0

4. A[L] := 0

5. B[L] := Theta

6. For p=L-1..1 do

7. Delta := Delta + Sim[T[p]][T[L]]

8. A[p] := A[p-1] + Delta

9. B[p] := B[p-1] + Theta − 2 × Delta

10. For L=1..N do

11. fit[1][L] := comp f(1,L)

12. For k=2..L do

13. F max := 0

14. For p=k..L-1 do

15. F max:=max(F max, fit[k-1][p] + comp f(p+1))

16. fit[k][L] := F max

17. Return fit

where the input matrices Sim[1..n][1..n] and T [1..N ] contain the similarities between methods

and the trace encoding, respectively. The function comp f() computes the value of f based

on definition D3 and comp theta recursively evaluates Θ(p). The function comp f(p) and

the function comp theta(p) are computed as follows:

1. Function comp f(int p)

2. Return (2 ∗ (N − (q − p+ 1)))/(q − p)) ∗ (A[p]/B[p])

3. Function comp theta(int p)
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4 Res := 0

5. For i=1..p-1 do

6. Res := Res+simil(i,p)

7. For i=p+1..N do

8. Res := Res+simil(i,p)

9. Return Res

The most expensive part of the algorithm are the nested loops at lines 10, 12, and 14.

The algorithm, in this basic formulation, has a complexity of O(N3), which is also the (worst

case) complexity of the evaluation of the GA fitness function as both COH and COU have

worst case complexity of O(N2) and in the worst case must be evaluated for N/2 segments.

Thus, a single step of the GA approach equates the entire calculation of the DP approach.

4.2 Case Study

This section reports an empirical study comparing the GA approach proposed by Asadi

et al. (2010b) with our novel DP approach. The goal of this study is to analyse the per-

formances of the trace segmentation approaches based on GA and DP with the purpose of

evaluating their capability to identify meaningful concepts in traces. The quality focus is the

accuracy and completeness of the identified concepts. The perspective is that of researchers

who want to evaluate which of the two techniques (GA or DP) better solves the trace seg-

mentation problem. The context consists of two trace segmentation approaches, one based

on GA and one on DP, and of the same execution traces used in previous work (Asadi et al.,

2010b) and extracted from two open-source programs, ArgoUML and JHotDraw.

ArgoUML 3 is an open-source UML modelling tool with advanced concepts, such as reverse

engineering and code generation. The ArgoUML project started in September 2000 and is still

active. ArgoUML has been widely studied and used in various research works. We analysed

ArgoUML release 0.19.8, which contains 1,230 classes in about 113 KLOC. JHotDraw 4 is a

Java framework for drawing 2D graphics. JHotDraw started in October 2000 with the main

purpose of illustrating the use of design patterns in a real context. Similarly to ArgoUML,

JHotDraw has been widely used in various research works due to its structure (based on

extensive adoption of design patterns) and documentation. We analysed release 5.1, which

consists of 155 classes in about 8 KLOC.

Table 4.1 summarises the programs statistics. We generated traces by exercising various

scenarios in the two programs. Table 4.2 summarises the scenarios and shows that the

3. http://argouml.tigris.org
4. http://www.jhotdraw.org
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Table 4.1 Statistics of the two programs.

Programs NOC KLOC Release Dates

ArgoUML v0.18.1 1,267 203 30/04/05

JHotDraw v5.4b2 413 45 1/02/04

Table 4.2 Statistics of the collected traces.

Programs Scenarios Original Cleaned Compacted

Sizes Sizes Sizes

ArgoUML
Start, Create note, Stop 34,746 821 588

Start, Create class, Create note, Stop 64,947 1,066 764

JHotDraw

Start, Draw rectangle, Stop 6,668 447 240

Start, Add text, Draw rectangle, Stop 13,841 753 361

Start, Draw rectangle, Cut rectangle, Stop 11,215 1,206 414

Start, Spawn window, Draw circle, Stop 16,366 670 433

generated traces include from 6,000 to almost 65,000 method invocations. The compacted

traces include from 240 up to more than 750 method invocations.

This study aims at answering the three following research questions:

– RQ1. How do the performances of the GA and DP approaches compare in terms of

fitness values, convergence times, and number of segments? This research question

analyses whether DP approach outperfoms a GA approach. Because our goal is to

find the trace segmentation with the best fitness function value, we compare the fitness

function values of GA and DP approaches. The DP approach is proposed to overcome

the scalability problem of GA approach, so we compare the computation times of both

approaches.

– RQ2. How do the GA and DP approaches perform in terms of overlaps between the au-

tomatic segmentation and the manually-built oracle, i.e., recall? This research question

evaluates whether the identified segments are meaningful and representing concepts

with respect to the manually-built segments. We compare the overlap between the

manually-built segments and the segments identified by both approaches.

– RQ3. How do the precision values of the GA and DP approaches compare when splitting

execution traces? This research question investigates how precise are the GA and DP

approaches to identify segments representing a concept in comparison to the manually-

built segments.

The GA approach is implemented using the Java GA Lib 5 library. Asadi et al. use

a simple GA with no elitism, i.e., it does not guarantee to retain best individuals across

subsequent generations. They set the population size to 200 individuals and a number of

5. http://sourceforge.net/projects/javagalib/
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generations of 2,000 for shorter traces (those of JHotDraw) and 3,000 for longer ones (those

of ArgoUML). The crossover probability is set to 70% and the mutation to 5%, which are

values used in many GA applications.

The DP approach scans the trace from left-to-right building the exact solution and in its

current formulation does not have any configuration parameter.

In previous work, the results of the GA approach were reported for for multiple (10)

runs of the algorithm to account for the nondeterministic nature of the technique. We only

report the results of the DP approach for one of its run per traces because it is by nature

deterministic and multiple runs would produce exactly the same results. Also, we compare

DP results with the best result regarding fitness function values achieved among the 10 GA

runs.

To address RQ1, we compare the value of the fitness function reached by the GA approach

with the value of the segmentation score obtained by the DP approach. The values of

the fitness function and segmentation score do not say anything about the quality of the

obtained solutions. Yet, we compare these values to assess, given a representation and a

fitness function/segmentation score, which of the GA or DP approach obtain the best value.

We also compare the execution times of the GA and DP approaches. We finally report the

number of segments that the two approaches create for each execution trace.

For RQ2, we compare the overlap between a manually-built oracle and segments identified

by the GA and DP approaches. We build an oracle by manually assigning a concept to

trace segments—using the tagging concept of the instrumentor tool—while executing the

instrumented programs. Given the segments determined by the tags in the oracle and given

the segments obtained by an execution of either of the approaches, we compute the Jaccard

overlap (Jaccard, 1901) between each manually-tagged segment in the oracle and the closest,

most similar segment obtained automatically. Let us consider a (compacted) trace composed

of N method invocations T ≡ m1, . . .mN and partitioned in k segments s1 . . . sk. For each

segment sx, we compute the maximum overlap between sx and the manually-tagged segments

soy as max(Jaccard(sx, soy)), y ∈ {1 . . . k} where:

Jaccard(sx, soy) =
|sx ∩ soy|
|sx ∪ sy|

For RQ3, we evaluate (and compare) the precision of both the GA and DP approaches

in terms of precision, which is defined as follows:

Precision(sx, soy) =
|sx ∩ soy|
|sy|
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where sx is a segment obtained by an automatic approach (GA or DP) and soy is a segment

in the corresponding trace of the oracle.

For RQ1, RQ2, and RQ3, we statistically compare results obtained with the GA and DP

approaches using the non-parametric, paired Wilcoxon test. We also compute the magnitude

of the differences using the non-parametric effect-size Cliff’s δ measure (Grissom et Kim,

2005), which, for dependent samples, as in our study, is defined as the probability that a

randomly-selected member of one sample DP has a higher response than a randomly-selected

member of the second sample GA, minus the reverse probability:

δ =

∣∣DPi > GAj
∣∣− ∣∣GAj > DPi

∣∣
|DP| |GA|

The effect size δ is considered small for 0.148 ≤ δ < 0.33, medium for 0.33 ≤ δ < 0.474 and

large for δ ≥ 0.474 (Grissom et Kim, 2005).

4.3 Results and Discussions

4.3.1 Results

This section reports the results of the empirical study.

Table 4.3 Number of segments, values of fitness function/segmentation score, and times
required by the GA and DP approaches.

Program Scenario
# of Segments Fitness Time (s)

GA DP GA DP GA DP

ArgoUML
(1) 24 13 0.54 0.58 7,080 2.13

(2) 73 19 0.52 0.60 10,800 4.33

JHotDraw

(1) 17 21 0.39 0.67 2,040 0.13

(2) 21 21 0.38 0.69 1,260 0.64

(3) 56 20 0.46 0.72 1,200 0.86

(4) 63 26 0.34 0.69 240 1.00

Regarding RQ1, Table 4.3 summarises the obtained results using both the GA and DP

approaches, in terms of (1) number of segments in which the traces were split, (2) achieved

values of fitness function/segmentation score, and (3) times needed to complete the segmen-

tations (in seconds). The DP approach tends to segment the trace in less segments than the

GA one, with the exception of Scenario (1) of JHotDraw, composed of one concept only and

for which the DP approach creates 21 segments whereas GA creates only 17 segments, and of

Scenario (2) of JHotDraw, for which the number of segments is 21 for both approaches. The

difference of the number of segments is not statistically significant (p-value=0.10), although

Cliff’s δ effect size is high (1.16) and in favor of the GA approach.
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Looking at the values of the fitness function/segmentation score, the DP approach always

produces better values than the GA one. The Wilxocon test indicates that the difference

is statistically significant (p-value=0.03) and the Cliff’s δ effect size is high (0.76): the DP

approach performs significantly better than the GA approach, given the representations de-

scribed in Section 4.1.1. The better convergence of the DP also explains the smaller number

of segments obtained; that is, DP is able to converge to better solutions that—according to

the fitness function of equation (4.3)—favor a smaller number of segments.

Finally, the convergence times of the GA approach are by far higher than that of the

DP one: from several minutes or hours (for ArgoUML) to seconds. The difference between

the GA and DP approaches is statistically significant (p-value=0.03) and the effect size high

(1.05).

We thus answer RQ1: How do the performances of the GA and DP approaches compare

in terms of fitness values, convergence times, and number of segments? The DP approach

out-performs the GA approach by stating that in terms of fitness values, convergence time,

and number of segments.

Table 4.4 Jaccard overlaps and precision values between segments identified by the GA and
DP approaches.

Program Scenario Concept
Jaccard Precision

GA DP GA DP

ArgoUML
(1) Create Note 0.33 0.87 1.00 0.99

(2) Create Class 0.26 0.53 1.00 1.00

(2) Create Note 0.34 0.56 1.00 1.00

JHotDraw

(1) Draw Rectangle 0.90 0.75 0.90 1.00

(2) Add Text 0.31 0.33 0.36 0.39

(2) Draw Rectangle 0.62 0.52 0.62 1.00

(3) Draw Rectangle 0.74 0.24 0.79 0.24

(3) Cut Rectangle 0.22 0.31 1.00 1.00

(4) Draw Circle 0.82 0.82 0.82 1.00

(4) Spawn window 0.42 0.44 1.00 1.00

To address RQ2, we evaluate the Jaccard overlap between the manually-identified seg-

ments corresponding to each concept of the execution scenarios and the segments obtained

using the GA and DP approaches. Columns 4 and 5 of Table 4.4 report the results. Jaccard

scores are always higher for the GA approach than for the DP one, with the only exception

of the Draw Rectangle concept in JHotDraw, for which the Wilcoxon paired test indicates



45

that there is no significant difference between Jaccard scores (p-value=0.56). The obtained

Cliff’s δ (0.11) is small, although slightly in favor of the DP approach. We thus answer RQ2

by stating that in terms of overlap, segments obtained with the GA and DP approaches do

not significantly differ and the DP approach has thus a recall similar to that of the GA one..

We thus answer RQ2: How do the GA and DP approaches perform in terms of overlaps

between the automatic segmentation and the manually-built oracle, i.e., recall? DP is similar

to the GA in terms of overlaps between automatic segmentation and manually-built oracle.

Regarding RQ3, Columns 6 and 7 of Table 4.4 compare the precision values obtained

using the GA and DP approaches. Consistently with results reported in previous work

(Asadi et al., 2010b), precision is almost always higher than 80%, with some exceptions, in

particular the Add Text and Draw Rectangle concepts of JHotDraw. There is only one case for

which the DP approach exhibits a lower precision than the GA one: for the Draw Rectangle

concept of JHotDraw (Scenario 3) where the DP approach has a precision of 0.24 whereas

the GA one has a precision of 0.79. Yet, in general, the Wilcoxon paired test indicates no

significant differences between the GA and DP approaches (p-value=0.52) and the Cliff’s δ

(0.04) indicates a negligible difference between the two approaches. In conclusion, we answer

RQ3 by stating that the precision obtained using the DP approach does not significantly

differ from the one obtained using the GA approach.

We thus answer RQ3: How do the precision values of the GA and DP approaches compare

when splitting execution traces? The precision of DP is similar to the GA one when comparing

automatic segmentation and the manually-built oracle.

4.3.2 Discussions

Qualitative Analysis

We analyse in depth the segmentation results to understand how our approach splits the

traces into segments. The Jaccard score is lower for JHotDraw thus we focus on the cases

where the Jaccard score is low. For other cases, because they are consistent with the oracle,

we claim that the segments are meaningful.

The concept Cut rectangle of JHotDraw was tagged as a sequence of 172 method invoca-

tions. However, only 55 of these methods were grouped together by the DP approach. We

analysed this sequence and observed that it is related to (1) add the rectangle content to



46

the clipboard and (2) modify the properties of the drawn rectangle to appear as “cut” in the

painter. The remaining sequence of 117 (= 172 - 55) method invocations was splited in many

small segments in which GUI events were interleaved. So, we claim that the DP approach

produced meaningful segments.

Moreover, in the scenario 3 of JHotDraw, the concepts Cut rectangle and Draw rectangle

are implemented using similar sequence of method invocations (i.e., add the rectangle content

to the clipboard and modify the properties of the drawn rectangle). Because these concepts

are executed one after the other, our DP approach splits the trace into segments dissimilar

to the ones from the oracle. Consequently, the overlap and precision of Draw rectangle was

24%, which were very high in the scenario 1 with 75% of overlap and 100% of precision.

The concept Add text of JHotDraw presented also a low overlap. This lower overlap

does not mean that our approach was unable to successfully identify the concepts. In fact,

the concept Add text was created by adapting a textual-editing concept as a shape-drawing

concept, using the Adapter design pattern. This adaption of the concepts generate non-

cohesive sequences of methods. Thus, our algorithm splits these sequences in small segments

resulting in low overlaps.

Finally, we highlighted the capability of the DP approach to split execution traces into

cohesive segments despite the low Jaccard overlap with respect to the oracle. Indeed, the

extensive use of design patterns in JHotDraw explains the lower results when compared to

those obtained for ArgoUML. Inheritance and design patterns lead to create many method

invocations not directly related to a concept, but supporting the implementation of this

concept. Consequently, these method invocations were present in different segments related

to different concepts.

DP approach Scalability

To evaluate which of the two techniques (GA or DP) better solves the trace segmentation

problem, we compared the segmentation results of the same execution traces used in a previ-

ous work (Asadi et al., 2010b) and extracted from two open-source programs, ArgoUML and

JHotDraw. However, the sizes of the studied traces are from 240 to less than 800 method

invocations. To understand the scalability of the DP approach, we studied its computation

time to split large traces into segments. Thus, we generated traces by exercising various sce-

narios in the two programs: ArgoUML and JHotDraw. Table 4.5 summarises the generated

traces, which range from 28,000 to almost 3,000,000 method invocations. The compacted

traces include from 1,000 up to more than 50,000 method invocations. Table 4.5 shows also

the computation times spent by the DP approach to split these traces into segments, which

are from 5 seconds to about 29 hours. Figure 4.2 presents the computation times spent by the
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DP approach as a function of the sizes of the studied traces. We observe in Figure 4.2 that

the increase in the computation times is most dramatic from 25,000 method invocations. We

conclude that the computation times exponentially increase with trace sizes. This increase

could be due to the limited memory available on the computer running the experiments, re-

sulting in memory swapping. In average, splitting a compacted trace of about 38,000 methods

took about one day. To make the DP approach appealing, we must improve scalability in

time to handle huge traces and to obtain results in a reasonable amount of time.
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Figure 4.2 Computation Times of DP approach.

4.3.3 Threats to Validity

We now discuss the threats to the validity of our empirical study.

Construct validity Threats to construct validity concern the relation between theory

and observation. We cannot compare the times required by the GA and DP approaches to

achieve the same fitness value/segmentation score because the DP approach always reaches,

by construction, the global optimum while the GA approach does not. Moreover, even if

the achieved fitness values and segmentation scores are different, we showed that the DP

approach is able to reach a better score in a shorter time.
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Table 4.5 Statistics of the collected traces.

Programs Original Compacted Time (s)

Sizes Sizes

ArgoUML

924,645 10,877 3,244

458,504 16,870 5,460

302,349 23,174 9,869

1,231,732 27,869 26,086

1,918,062 32,459 39,287

2,934,261 34,517 63,796

1,054,994 38,817 87,854

613,413 47,016 90,544

162,577 50,341 103,786

JHotDraw

27,894 1,004 5

351,810 12,987 4,827

370,189 21,920 9,981

287,984 26,769 21,350

243,313 29,765 37,292

464,729 37,140 72,238

688,526 43,193 89,926

Internal validity Threats to internal validity concern confounding factors that could affect

our results. These could be due to the presence, in the execution traces, of extra method

invocations related to GUI events or other program events. The frequency-based pruning

explained in Step 3 of Section 4.1.1 mitigates this threat.

Conclusion validity Threats to conclusion validity concern the relationship between treat-

ment and outcome. We statistically compared the performances of the GA and DP ap-

proaches using the non-parametric Wilcoxon paired test and used the non-parametric Cliff’s

δ effect size measure.

4.4 Summary

In this chapter we reformulate the trace segmentation problem as a DP problem and,

specifically, as a particular case of the string splitting problem. We showed that we can

benefit from the overlapping sub-problems and an optimal substructure of the string splitting

problem to reuse computed scores of intervals and segmentation scores and, thus, to obtain

dramatic gains in performances without loss in precision and recall. Indeed, differently from

a GA approach, the DP approach reuses pre-computed cohesion and coupling values among

subsequent segments of an execution trace, which is not possible using genetic algorithms,

due to their very nature.

We empirically compared the DP and GA approaches, using the same data set from
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previous work (Asadi et al., 2010a,b). Our empirical study consisted in the execution traces

from ArgoUML and JHotDraw, which were previously used to validate the GA approach.

Results indicated that the DP approach can achieve results similar to the GA approach

in terms of precision and recall when its segmentation is compared with a manually-built

oracle. They also show that the DP approach has significantly better results in terms of the

optimum segmentation score vs. fitness function. More important, results showed that the

DP approach significantly out-performed the GA approach in terms of the times required to

produce the segmentations: where the GA approach would take several minutes, even hours;

the DP approach just takes a few seconds.

We introduced the DP approach to overcome the GA limitations in terms of computa-

tions time and fitness function value for trace segmentation. This trace segmentation allows

developers to focus on segments to maintain instead of analysing the entire execution trace.
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CHAPTER 5

Labeling Segments

We split execution traces into segments allowing developers to focus on segments to main-

tain instead of analysing an entire execution trace. However, most segments are still too large

and difficult to understand and thus we do not guide a developer to the segments implement-

ing the concepts to maintain. To solve this problem, we propose to label segments using a set

of terms describing the concepts implemented by segments and thus facilitate maintenance

tasks. In this chapter, we present an approach inspired from previous works on program

summarisation (Haiduc et al., 2010b; Sridhara et al., 2010, 2011a,b) to assign meaningful

labels by applying Information Retrieval (IR) techniques to terms extracted from method

signatures. We then compare the quality of the obtained labels with manually-assigned la-

bels obtained by 1) inspecting the source code, 2) checking the available documentation, and

3) performing a step-by-step analysis of the execution traces. We perform a qualitative as

well as a quantitative analysis in which only one participant assign manual labels. Then,

we improve this evaluation by an experiment to assess SCAN capability to select the most

important methods of a segment and compare the resulting labels against labels provided by

31 participants.

5.1 Labeling Trace Segments Approach

SCAN accepts as input one or more execution traces obtained by exercising some scenarios

in a program. Such execution traces can be obtained by executing the scenarios for which the

developer is interested to perform concept location. As depicted in Figure 1.2 in Chapter 1,

it consists in a series of four steps.

In Step 1, SCAN analyses an execution trace to identify segments by finding cohesive

and decoupled fragments of the trace. The trace segmentation approach based on dynamic

programming is presented in Chapter 4. The identified segments represents a higher-level

view of the trace to allow developers to explore execution trace segments instead of low-level

events (i.e., method calls).

Then, in Step 2, SCAN merges similar segments using the Jaccard measure on terms

extracted from the segments. After that, in Step 3, it uses an IR-based approach to label

segments. Finally, in Step 4, it uses FCA to identify relations among segments.

In the following, we provide details of Steps 2 and 3.
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5.1.1 Segmentation Merger

Modern programming languages such as C, C++ or Java provide mechanisms to handle

multi-threading, to take advantage of multi-processors, multi-core CPUs and in general par-

allel hardware. In a multi-threading application multiple threads co-exist within the context

of the same process. Process threads share resources but are executed in parallel and inde-

pendently. Multi-threading on one hand makes an application run faster; on the other hand

there is no way to predict the order in which individual threads are executed. This means

that even for a simple scenario, the sequence of methods in a trace may or may not be the

same upon multiple executions of the same scenario. Consider for example, ArgoUML, a Java

application used to validate SCAN. ArgoUML has an auto-save functionality, but the user

has no way to decide, or define, when the auto-saving thread is activated. If involving the

auto-save functionality, two executions of the same scenario will therefore produce different

sequences of methods and thus potentially different, though, consistent, segmentations.

SCAN merges similar segments using the Jaccard measure on terms extracted from the

segments. The aim of the merging is to recognize similarities among segments belonging

to multiple execution traces and merge these segments. Indeed, we expect to have a great

number of common segments between multiple execution traces of a same scenario or, even,

of different scenarios even though the ordering of the segments and some other segments

may be different among traces due to thread interleaving, variations in application inputs

(some of which cannot be fully controlled while instrumenting the programs to collect traces),

or variations in machine-load conditions. We thus suppose that highly similar segments in

different traces contribute to the same concept, regardless of the specific thread interleaving

or trace region in which they occur. SCAN merges segments from different execution traces

of a same scenario only.

Let S = (s1, . . . , sn) and Z = (z1, . . . , zm) be two segmentations of two traces, i.e., two

sequences of segments. For each si, SCAN computes all similarities σ(si, zj) and keeps pairs

above a given threshold. The similarity between two segments is computed as the Jaccard

coefficient between the segments terms, extracted from the term–document matrices of the

segments. (The Jaccard coefficient for two sets A and B is defined as the ratio between

the intersection A ∩ B and the union A ∪ B.) The higher the number of terms in common

between two segments, the higher the similarity. Once SCAN has identified all pairs of similar

segments, it generates a synthetic trace containing n segments. Each segment is the result

of a (possibly multiple) union of si and zj where σ(si, zj) is above the threshold. SCAN

attempts to find both one-to-one as well as one-to-many relations among the segments. It

keeps track of the pairs of merged segments to allow mapping the information computed in

subsequent steps back to the original segments.
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Consider for example a trace Z split into four segments Z = (z1, z2, z3, z4) and a threshold

equal to 70%. First, SCAN computes the similarities between s1 and the segments of the

trace Z as follows σ(s1, z1) = 0.8, σ(s1, z2) = 0.2, σ(s1, z3) = 0.6, and σ(s1, z4) = 0.9. Then

SCAN generates a synthetic segment s′1 by merging the segments s1, z1, and z4 since σ(s1, z1)

and σ(s1, z4) are greater than 70%.

SCAN expects a (reasonably) high similarity between segments to merge two segments

but this similarity is not necessarily close to one. Indeed, two segments might deserve to be

merged even though their similarity is lower: let us suppose that one of the two segments is

contained in the second segment as a sub-segment. In this situation, the segment similarity

may not be very high. Therefore, the threshold should also not be very high. Using a lower

threshold does not compromise the accuracy of the merging because the computed segments

are ensured to be cohesive and decoupled, as explained in Chapter 4 and, consequently, the

algorithm has no incentive in putting together non-cohesive methods.
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Figure 5.1 False positives and negatives according to different threshold values.

To determine a threshold providing a good accuracy when SCAN merges segments, we

performed an experiment using five scenarios for ArgoUML and JHotDraw and their 11 cor-

responding execution traces. We varied the threshold values from 30% to 90% and evaluated

the accuracy of the merged segments using the labels that SCAN generates for these merged

segments and the manual labels. Our hypothesis is that the variation of the false positives

and negatives is due to the merging of segments. Thus, when segments that pertain to the

same concept are merged the number of false positives and negatives will be lower compared

to when segments pertaining to different concepts are merged. The solid line in Figure 5.1

shows the average number of terms in the manual labels that did not appear in the automatic
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labels, i.e., false negatives. The average is between 26.5 for a threshold at 30% and 25.7 at

90%. The minimum value is equal to 25.5, at 60% and 70%. The values are very close thus

the threshold does not significantly affect the merged segments in terms of false negatives.

The dotted line in Figure 5.1 shows the average number of terms in the automatic labels

that did not appear in the manual labels, i.e., false positives. The average is between 71.8

for a threshold at 30% and 52.9 at 90%. Using 30% as a similarity threshold, the number of

different terms is more important because SCAN merges segments that pertain to different

concepts. False positive values are more stable between 70% and 90%, between 54.7 and 52.9.

Thus, we choose the value 70%. If only one segmentation is provided the merger trivially

produces as output the same input segmentation.

5.1.2 Relevant Term Identification

This step represents the core of the proposed approach, and aims at labeling segments.

The first issue when labeling segments is the choice of the most appropriate source of in-

formation. Each segment may contain thousands of method calls from hundreds of different

methods; the problem is select a subset of terms hopefully relevant for the functionality im-

plemented by the segment sequence of method calls. Several strategies are possible. First and

foremost, since we are interested in linguistic information, we have to decide if method bodies

should be considered or not. If method bodies are considered one has to decide if both com-

ments and identifiers contribute to assigning labels or if only one of the two suffices. A second

strategy is to disregard the method body and just concentrate on the signatures. However,

a previous study (De Lucia et al., 2012) reported that lexicon from method signatures pro-

vide more meaningful terms when labeling software artifacts than other sources. Moreover,

developers often pay more attention to method signature when understanding source code.

Consequently, we decided to use only terms contained in the signatures of invoked methods

and their parameters.

In this step, SCAN uses an IR-based approach to label segments. Given a trace seg-

mentation S = (s1, . . . , sn), SCAN extracts the signatures of all the called methods in each

identified segment si. Then, it models the segments as a set of documents, uses Vector Space

Model (VSM) to represent segments as vectors of terms and computes for each term tl ∈ si
the TF -IDF weighting scheme (Baeza-Yates et Ribeiro-Neto, 1999). Specifically, TF -IDF

provides a measure of the relevance of the terms for a segment, rewarding terms having a

high term frequency in a segment (high TF ) and appearing in few segments (high IDF ). We

make the hypothesis that a term appearing often in a particular segment but not in other

segments provides important information for that segment.

SCAN ranks the terms in segments by their TF -IDF values and keeps the topmost
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ranked terms. The number of retained terms must be a compromise between a succinct and

a verbose description. Several possible strategies are foreseeable to select the top-ranked

terms. First, it is possible to retain a maximum percentage (e.g., top 10%) of the terms

that have the highest ranking; second, a gap-based strategy is applicable (i.e., retaining all

terms up to when the difference between two subsequent terms in the ranked list is above a

certain percentage of gap); and third, one could choose a fixed number of topmost terms. In

this work, we adopt the latter strategy and we found that considering the topmost 10 terms

represents a reasonable compromise, which yields meaningful segment labels. Note that this

value represents the maximum number of terms, thus, segments containing very few methods

may be labeled by SCAN with fewer terms.

The terms of the labels are extracted from method signatures because the studied traces

are generated as ordered lists of methods. However, our approach is applicable to any other

traces such as log traces after applying the same pre-processing (i.e., pruning and removing

English stop words).

5.2 Preliminary Evaluation

The goal of this study is to evaluate SCAN, with the purpose of assessing its capabilities

to label segments. The quality focus is the comprehension of execution traces. Maintainers

have to perform this task during program understanding. The context consists of execution

traces collected from two Java programs, JHotDraw and ArgoUML. In this evaluation, we use

JHotDraw release 5.1 and ArgoUML release 0.19.8. For both programs, we collected execution

traces for different scenarios. Specifically, we reuse some of the scenarios previously used to

validate trace segmentation (Asadi et al., 2010b; Medini et al., 2011), plus we add some more,

based on the knowledge we gain about this application. Tables 5.1 and 5.2 reports details

about the exercised scenarios and the collected traces. In the following, we refer to each

scenario with a brief English sentence such as “Draw Ellipse, Delete Ellipse”. We imply that,

when the scenario is executed, other than the two concepts (drawing an ellipse and deleting

it), also application start-up and shut-down are executed.

The study aims at answering the following research question:

RQ1. How effective is SCAN in assigning labels to segments? This research question

verifies whether the assigned labels corresponds to the concept encountered in a segment and

thus help developers to understand the concept implemented by each segment. To address

RQ1, we manually built labels for segments and validate the SCAN results. We then compare

manually built labels with the ones produced by SCAN by computing precision and recall

(Frakes et Baeza-Yates, 1992) for each segment i of a scenario j:
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Precisioni,j =
|Mi,j ∩ Si,j|
|Si,j|

Recalli,j =
|Mi,j ∩ Si,j|
|Mi,j|

where Mi,j is the set of words contained in the manually generated label for segment i of

scenario j and, similarly, Si,j is the set of words produced by SCAN. Note that, before

computing precision and recall, we preprocess the manual labels similarly to what done when

producing labels automatically. Specifically, (i) we split compound words (using camel case

and underscore heuristics), (ii) we remove English stop words, and (iii) we perform Porter

stemming.

5.2.1 Results

In the following, we report results aimed at addressing the research question, presenting,

for the sake of clarity, all results for JHotDraw first, and then all results for ArgoUML.

JHotDraw

Table 5.3 shows SCAN generated labels in the first column and the manual labels in the

second column for one of the JHotDraw scenarios. The top part of Table 5.4 reports descrip-

tive statistics (first and third quartile, median, mean and standard deviation) of precision

and recall. It can be noticed that, for instance, the mean Precision varies between 0.56 of

“Draw Rectangle, Draw Eclipse” and 0.65 of “Draw Rectangle, Delete Rectangle”, while the

mean recall is stable around 0.81-0.82. Hence, for JHotDraw the automatic labeling performs

relatively well, also considering that such results are perfectly in line with performances of

automatically labeling of source code artifacts (De Lucia et al., 2012), which we argue are

easier to label than execution traces.

To better understand the rationale of the identified segments and check the meaningfulness

of the provided labels, we performed a fine-grained analysis of the segments. By exploring

the content of each segment of the trace described in Table 5.3, we found, for example, that

Segment 1 contains methods that start the application (menu and icons creation). Segment 2

to Segment 24 correspond to phases needed to prepare canvas for creating and adding a figure

to it. Furthermore, Segment 2, Segment 4 and Segment 24 contain methods to execute the

“draw figure” command. Differently from the others, Segment 19 contains methods involved

in bringing the selected figure to front and to send the other figures to back. Segment 20

contains methods needed to create box and figure locations. For segments between 24 and 33,
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Table 5.1 Statistics of JHotDraw collected traces.

Programs Scenarios Original Compacted Number of

Sizes Sizes Segments

JHotDraw

Draw Rectangle (1) 15,706 930 54

Draw Rectangle (2) 4,850 555 35

Draw Rectangle, Delete Rectangle (1) 5,960 554 32

Draw Rectangle, Delete Rectangle (2) 5,960 554 32

Draw Ellipse (1) 4,545 556 36

Draw Ellipse (2) 5,252 562 33

Draw Ellipse, Delete Ellipse (1) 10,760 953 53

Draw Ellipse, Delete Ellipse (2) 17,931 1,433 74

Draw Rectangle, Draw Ellipse (1) 10,908 864 23

Draw Rectangle, Draw Ellipse (2) 17,471 1,096 46

Draw Rectangle, Draw Ellipse (3) 8,790 690 30

Table 5.2 Statistics of ArgoUML collected traces.

Programs Scenarios Original Compacted Number of

Sizes Sizes Segments

ArgoUML

New Class (1) 82,579 2,785 22

New Class (2) 60,853 2,239 19

New Package(1) 13,115 800 15

New Package (2) 21,423 1,642 19

New Class, New Package (1) 38,940 1,220 13

New Class, New Package (2) 50,650 1,146 13

New Class, New Package (3) 36,408 1,251 12

we found that each of these segments corresponds to deletion and removal of figures, change

listeners and events. Similar results have been obtained for the other scenarios.

ArgoUML

Table 5.2 reports information about traces and identified segments for ArgoUML. As for

JHotDraw, we compared the automatically generated labels with the ones produced manually.

Table 5.5 shows, for the ArgoUML scenario “New Class”, automatic and manually generated

labels for the identified trace segments. For ArgoUML, the performance analysis of the

comparison between manually produced labels and labels produced by SCAN (reported in the

bottom part of Table 5.4) reveals that performances are relatively lower than those obtained

for JHotDraw. In particular, the mean precision ranges between 0.36 of “New Package” and

0.40 of “New Class”, while the mean recall ranges between 0.48 of “New Class, New Package”

and 0.64 of “New Class”. The lower performances can be explained by the ArgoUML lexicon

which is not as good as the JHotDraw one (JHotDraw was designed for pedagogical purposes,

i.e., to show the usage of design patterns, hence source code artifacts are carefully named).
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Table 5.4 Descriptive statistics of precision and recall when comparing SCAN labels with
manually-produced labels.

JHotDraw

Scenario Precision Recall

Q1 median Q3 mean σ Q1 median Q3 mean σ

Draw Rectangle 0.50 0.60 0.83 0.64 0.25 0.75 0.83 1.00 0.81 0.20

Draw Rectangle, Delete Rectangle 0.50 0.60 0.72 0.65 0.21 0.70 0.80 1.00 0.82 0.15

Draw Rectangle, Draw Eclipse 0.40 0.60 0.70 0.56 0.22 0.67 0.80 1.00 0.81 0.19

ArgoUML

Scenario Precision Recall

Q1 median Q3 mean σ Q1 median Q3 mean σ

New Class 0.29 0.40 0.50 0.40 0.13 0.50 0.67 0.75 0.64 0.14

New Package 0.29 0.33 0.50 0.36 0.17 0.50 0.50 0.71 0.54 0.21

New Class, New Package 0.20 0.33 0.50 0.38 0.24 0.25 0.50 0.67 0.48 0.20

We performed an in-depth analysis by exploring the content of each segment of the traces.

By manually inspecting code and documentation of ArgoUML, as well as the Cookbook

for developers (Tolke et al., 2004), we found that Segment 1 contains methods for system

start-up: Setup the project and implement factory and helper interfaces that control the

lifetime and properties of elements in the repository. Segment 2 to Segment 7 correspond to

“prepare creation” and “addition” of a new UML Class. For example, Segment 2 and Segment

3 contain methods to generate the module identification key. Segment 4 contains methods

to create a class and define parameters. Similar results have been obtained for the other

scenarios.

In summary, we can claim that SCAN is able to assign labels in most of cases similar

or representative to manually defined labels and that these labels actually correspond to the

concepts encountered in the segments based on our manual inspection of code, documentation

and executions.

5.2.2 Discussions

Quantitative results might be read as indicators of poor performance of the label assign-

ment algorithm, with the recall/precision around 50% and above. As mentioned above, the

achieved performance are in line with those obtained when comparing automatically gener-

ated and manually generated labels for source code artifacts (De Lucia et al., 2012); moreover,

the obtained results confirm that also for execution traces a simple labeling based on lexicon

extracted from method signature is enough.

Also, if we complement the quantitative data with the qualitative investigation performed

on the automatically labeled segments, we can conclude that this level of similarity between
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automatic and manual label sets is definitely adequate to support program understanding

tasks. This is because we expect that developer with some knowledge about the application

would find it relatively easy to distill the relevant concepts from the automatic labels, even if

such labels contain some noise and overlap only by 50% with the manually produced labels.

For instance, consider the label set produced for Segment 1 of JHotDraw (see Table 5.3):

it is relatively easy for someone having a (even limited) application knowledge to recognize

the terms creat draw palett button tool iconkit as key terms for the implemented concept.

Even though the manually produced label is longer and more explanatory (Create drawing

palette button tool and create icons kit), the terms selected from the automatically produced

label represent a very good and crisp summary of it. Similar considerations can be applied

for Segment 18 of ArgoUML, where synch composite state are a meaningful summary for

Display SynchState and composite state.

5.3 Labeling Segments Evaluation

In a preliminary evaluation, we manually labeled segments which may bias our evaluation

of the labels generated by SCAN. In addition, we applied our approach on traces from two

different programs, further studies on larger traces and more complex programs are needed

to better demonstrate SCAN accuracy in assigning labels representative of concepts imple-

mented by the segments. For this reason, we conduct a study to analyse the ability of SCAN

to accurately reduce the size of segments and identify labels from segments.

5.3.1 Study Set Up

We describe the set up of the experimental evaluation. It presents the objects, i.e.,

execution traces of six Java programs, and the participants, i.e., 31 students and professionals

that participated in the experiment.

Objects

The objects of our evaluation are execution traces collected from six Java programs belong-

ing to different domains. ArgoUML and JHotDraw are described in Section 4.2 in Chapter

4. Mars 1 is a simulator for the MIPS assembly language. It also includes a lightweight inter-

active development environment (IDE) for programming in MIPS. Maze 2 is a micro-mouse

maze editor and simulator. It provides statistics on the comparisons of different mazes and

1. http://courses.missouristate.edu/kenvollmar/mars/index.htm
2. http://code.google.com/p/maze-solver/



61

Artificial Intelligence (AI) algorithms. Neuroph 3 is a lightweight Java neural network frame-

work to develop common neural network architectures. It includes a library of neural network

concepts and a user-interface to create, train, and save networks. Pooka 4 is an email client

written in Java, using Swing and JavaMail. It supports IMAP, POP3, and Unix-style mailbox

folders. It also has support for encryption using PGP and S/MIME.

Table 5.6 Program characteristics.

Programs LOCs Trace Trace

size

ArgoUML v0.19.8 163K New class new package 36K

JHotDraw v5.1 8K Draw rectangle delete rectangle 6K

Mars v4.3 32K Screen magnifier 673K

Maze r186 9K Micro mouse 1,075K

Neuroph v2.1.0 10K Kohonen visualizer 75K

Pooka v2.0 44K
New account new e-mail 36K

Create folder open folder 23K

Total for the 6 programs 7 traces

Table 5.7 Segments characteristics.

Programs - Traces # of Number of method calls

segments Min. 1st Qu. Median Mean 3rd Qu. Max.

ArgoUML - New class new package 12 2 2 2 104 37 714

JHotDraw - Draw rectangle delete rectangle 32 2 2 2 17 3 183

Mars - Screen magnifier 30 2 2 2 11 3 167

Maze - Micro mouse 75 2 2 2 30 3 999

Neuroph - Kohonen visualizer 4 2 2 4 8 10 23

Pooka - New account new e-mail 60 2 2 2 33 3 1,038

Pooka - Create folder open folder 18 2 2 2 78 5 957

Overall 231 2 2 2 34 3 1,038

The choice of these six programs was of convenience, driven by the availability of docu-

mentation to ease the participants’ task of labeling the segments and by the possibility to

generate traces related to different execution scenarios. Table 5.6 summarises characteristics

of the programs, i.e., their sizes (in terms of lines of code), short descriptions of the scenarios

used to generate the execution traces, and the sizes of the traces (in terms of number of ex-

ecuted events, i.e.,constructor and method calls). We used one scenario per program, except

for Pooka, for which we used two scenarios. Table 5.7 reports descriptive statistics about the

numbers and sizes of the segments that SCAN identifies in the execution traces.

3. http://neuroph.sourceforge.net/index.html
4. http://www.suberic.net/pooka/
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Participants

Table 5.8 Participants characteristics.

# of Years of programming experience

Participants Min. Median Max.

Students 23 3 7 14

Professionals 8 4 9 14

Overall 31 3 7 14

The experiment involved a total of 31 participants. Eight of them were professionals,

i.e., developers, researchers, or postdoctoral research fellows, and the others were students,

i.e., Ph.D., M.Sc., or B.Sc. Table 5.8 provides descriptive statistics of the participants’

programming experience. All participants were volunteers.

None of the participants is an original developer of the object programs. This lack of

knowledge could decrease the participants’ ability to properly comprehend the traces. How-

ever, developers of large software programs may not be familiar with the entire program

and thus would have been subject to the same threat. To cope with this threat, we ask

more than one participant to perform the same task. Because none of the participants know

the programs, we do not have to take into account possible differences between “novices” or

“experts” that could influence our results (Soh et al., 2012).

5.3.2 Experimental Design and Analysis

The evaluation aims at answering the following research question:

– RQ2: How do the labels of the trace segments produced by the participants change when

providing them different amount of information? This research question is formulated

to verify whether the relevant methods characterising a segment are reasonably concise

to describe the related concepts and thus help developers to understand the concept

implemented by each segment.

To address this research question, we investigate whether providing participants with

the list of the most relevant methods in a segment is sufficient to produce labels. We

rank methods by relevance according to their TF -IDF (Baeza-Yates et Ribeiro-Neto,

1999), i.e., methods frequently invoked in the particular segment but not in other

segments.

– RQ3: How do the labels of the trace segments produced by the participants compare to

the labels generated by SCAN? This research question is formulated to verify whether

the assigned labels summarise the concepts encountered in segments and thus help

developers to understand the concept implemented by each segment. To address this
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research question, we evaluate the performances of SCAN when labeling segments.

Similarly to De Lucia et al. (De Lucia et al., 2012) when evaluating the labeling of

software artifacts, we aggregate labels produced by the participants and compare the

sets of most frequent terms with the labels automatically produced by SCAN.

Table 5.9 Segments used to evaluate the filtering using TF -IDF .

Programs Traces Segments Full segments # of unique

IDs sizes methods

ArgoUML New class new package s5 92 49

JHotDraw Draw rectangle delete rectangle
s1 183 77

s20 69 41

Mars Screen magnifier
s1 167 160

s22 93 82

Maze Micro mouse
s4 142 71

s45 102 36

Pooka
New account new e-mail s52 131 91

Create folder open folder s1 88 67

Overall 9 segments 1,067 674

In the following, we describe the evaluation design and procedure followed to answer the

two research questions.

RQ2: How do the labels of the trace segments produced by the participants

change when providing them different amount of information?

When the size of a segment (in terms of its numbers of method calls) is large, it is difficult

to understand. To reduce the time and effort for understanding a segment, we characterise

a segment using only the calls to 5 or 15 different, unique methods. Note that a method

can be called more than once in a segment. We selected the values in a way to have one

small and one medium versions of the segment (5 and 15 respectively). The small version

reduces the number of methods to understand substantially but may result in loss of relevant

information. The medium version of the segment is likely to better preserve the relevant

information but at the expense of the larger number of methods that one must understand.

To address RQ2, we compare the labels produced by the participants when showing them

three versions of a same segment: full, i.e., the segment in its original size; medium, i.e., a

subset of the segment reduced to the calls to only 15 unique methods; and small, i.e., a

subset of the segment reduced to the calls to only 5 unique methods. We select the unique

methods using the top-most ranked methods according to the TF -IDF weighting scheme

(Baeza-Yates et Ribeiro-Neto, 1999). A segment subset is obtained by removing all method

calls other than the top 5 or 15 from the original segment. The order of the method calls are
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preserved.

The experiment is designed as follows. We select nine segments (belonging to different

programs) whose full sizes, i.e., numbers of method calls, is between 50 and 200. We set an

upper limit to control the participants’ effort. We set a lower limit to ensure that the medium

and small subsets of the segments are still meaningful and do not reduce only to a couple of

methods. Table 5.9 shows the segments used for this part of the experiment, their original

sizes, and the numbers of unique methods.

We group participants into three groups, G1, G2, and G3. We assign each version of a

segment to a different group. For example, to G1, we assign the subset of the top 5 unique

method calls of segment s5 of ArgoUML, “New class new package”, representing a total of

12 method calls as some methods are called more than once. To G2, we assign the subset

of the top 15 unique method calls of the same segment resulting in a total of 31 method

calls. To G3, we give the segment in its original version (92 method calls to 49 unique

methods). Participants belonging to each group label an equal number of small, medium,

and full segments.

We evaluate the filtering approach, i.e., the approach of reducing the size of segments,

from two aspects: (1) the degree to which information is preserved and (2) the degree to

which it preserves the agreement between participants, as explained in the following.

Preservation of Information. We use the labels produced by the participants working on

the full segments as oracle to assess the preservation of information in the medium and small

subsets of the segments. Thus, to evaluate the preservation of information, we compute

the intersection between terms provided by participants working with medium and small

segments and those produced with the full segments. The greater the intersection between

the reduced (medium and small) and full versions of the segments, the higher the recall.

Preservation of Agreement among Participants. We consider the number of terms

on which participants agree to be representative of a segment and of the degree of agreement

among participants. Again, we use as oracle the labels produced by the participants working

on full segments. To evaluate the preservation of agreement among participants, we use a

two-way permutation test (Baker, 1995) to verify if the degree of agreement is significantly

influenced by (1) the number of participants considered to compute the agreement, (2) the size

of the segment subset given to the participants (i.e., full segment, medium and small subsets),

and (3) the interaction between the number of participants and the segment size. Thus, we

investigate if the agreement decreases when a larger number of participants provide labels

(because different participants may provide different labels) and the agreement changes when
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providing participants with a different amount of information, i.e., full or reduced versions

of the segments. We use also a two-way permutation test (Baker, 1995) to verify if the

degree of agreement is significantly influenced by the experience of participants considered to

compute the agreement. We investigate if the agreement changes when participants have high

or low experience. The mean of the experience of participant is seven years. We consider

highly experienced participants who have an experience period of more than seven years

and low experienced participants who have a duration of experience less than seven years of

experience.

We used the implementation of a permutation test available in the lmPerm R package.

We have set the number of iterations of the permutation test to 500,000. The permutation

test does sample permutations of combinations of factor levels and, therefore, multiple runs

of the test may produce different results. We made sure to choose a high number of iterations

so that results did not vary over multiple executions of the test. When performing the test,

we assume a significance level α = 0.05.

To assess the agreement among participants, we follow a rule to decide when two terms

are considered equivalent. In Chapter 5, we ruled that there exist an agreement between two

participants on a term if both participants provide two terms sharing the same stem. In the

following, we extend this rule to synonyms (e.g., shape and figure), terms holding a hyper-

nym/hyponym relation (e.g., display and screen), and terms holding a holonym/meronym

relation (e.g., point and location). We use WordNet (Miller, 1995) to obtain these taxonomic

relations among terms and we will refer to terms sharing those relations as synsets.

We considered different options to select the numbers of participants that must choose a

synset to consider this synset representative of a segment. For example, we could consider

a synset if at least one participant chooses it. Such a choice is equivalent to considering the

union of all terms proposed by all participants. A minimum of two participants would mean

that we consider only synsets chosen by at least two participants. The number of required

participants can grow until it reaches the total number of participants, which would mean

that a synset must be chosen by all participants to be considered representative. To avoid

making choice that could bias the results of the experiment, we consider the entire range of

possible values in our experiment.

RQ3: How do the labels of the trace segments produced by the participants

compare to the labels generated by SCAN?

To evaluate the labels produced automatically by SCAN, we first build an oracle consisting

of 210 segments labeled manually by the participants. The inclusion criteria was that these

segments must include less than 100 method calls to ease the participants’ labeling tasks,
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because larger segments could have been more difficult for participants to understand. Each

segment is labeled by at least one participant. More than half of the segments (116) are

labeled by two participants. Then, we evaluate SCAN by computing the precision and recall

of its automatically-generated labels with respect to the labels provided by the participants.

Table 5.10 Examples of labels provided by SCAN and the participants.

Labels
SCAN

Precision Recall

SCAN figure, listener, add, internal, multicaster,

event, change

Participants - intersection figure, event, change 43% 100%

Participants - union trigger, figure, event, change, listener, 86% 75%

multicaster, manage, add

To explain how we performed the evaluation of the labels generated by SCAN, let us

consider the automatic label produced by SCAN for a segment of JHotDraw and the corre-

sponding manual labels provided by the participants, shown in Table 5.10. The two possible

operators to combine the manual labels are intersection and union. The first operator (i.e.,

intersection) considers a synset to be relevant if both participants suggested it. The second

operator (i.e., union) considers a synset to be relevant if at least one of the participants

suggested it. We observe that, depending on the operator, the precision and recall of SCAN

varies. When the more conservative operator (intersection) is chosen, the number of synsets

in the manual oracle significantly decreases thus resulting in higher recall but lower preci-

sion. Union provides a balance between the two measures. We show results for union and

intersection.

Term Frequency. On the same basis, we evaluate the labels produced using term fre-

quency (TF ). We compare 210 segments labeled manually by the participants and the labels

produced based on tf using the inclusion and union criterias. Then, we evaluate the produced

labels using tf by computing the precision and recall of these labels with respect to the labels

provided by the participants.

5.3.3 Experiment Results and Discussions

This section reports the results of our experimental evaluation to address the research

questions formulated in Section 5.3.2.
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Figure 5.2 Agreement among participants for full segments.

RQ2: How do the labels of the trace segments produced by the participants

change when providing them different amount of information?

Before analysing the participants’ labels with different subsets of the segments, we assess

the quality of the participants’ labels with full segments, i.e., when using all information

available. When the sizes of segments are large, the agreement among participants could be

low due to the overwhelming amount of method calls, the complexity of the segments, or other

factors, resulting in a random selection of terms. Figure 5.2 shows the number of synsets on

which participants agree as a function of the sizes of the segments in their full version. To

simplify the figure, we only show the cases of two and five participants. The figure shows

that there is no linear relation between agreement and sizes, but rather a constant relation.

This constant relation is confirmed by building a linear regression model and observing that

the size of the segments is never a significant variable.
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Preservation of Information. To analyse the amount of information lost when reducing

the sizes of segments, we calculate the precision and recall of the labels produced with the

reduced segments, i.e., the small and medium subsets of the segments, with respect to the

labels produced with the full segments. Table 5.11 shows the results. We vary the number

of participants considered for agreement and we show results for two and five participants 5.

We observe that, with the increase of the minimum number of participants, the variation

of both precision and recall increases too. Thus, a smaller number of participants results

in a smaller standard deviation of precision and recall across different segments. The larger

standard deviation when increasing the number of participants is due to the small number of

synsets in the manual labels of the segments. Thus, the size of the manual oracle decreases

when the number of participants increases, which impacts negatively the evaluation of the

precision of SCAN because the number of terms in the automatic labels is constant.

Considering the mean values of precision and recall and varying the numbers of participant

between two and five, precision for small subsets varies between 44% and 52% and recall varies

between 44% and 46%. For medium subsets of the segments, the mean values for precision

and recall are greater and vary between 50% and 68% for precision and between 56% and

58% for recall. These results show that we can significantly reduce the number of methods

that participants must use to understand a segment, i.e., on average 92% for small and 76%

for medium subsets, while keeping about half of the synsets that would appear if the segment

was not reduced in size.

Considering small and medium subsets, we loose about half of the information, which ex-

plains the difference between labels produced using, on the one hand, medium and small seg-

ment, and, on the other hand, labels produced using the full segments.

Participants analysing reduced segments have less information and thus may tend to

provide more details regarding the key concepts. However, participants understanding the

full segments must provide more effort to extract the key concepts; they may produce more

concise labels concerning the key concepts while trying to reach as many concepts as possible.

Preservation of Agreement among Participants. Figure 5.3 shows the mean value and

the standard deviation of agreements among participants for the nine segments, considering

their full versions, as well as their reduced versions, i.e., small and medium subsets. The

only notable decrease in the number of synsets on which participants agree happens when

two participants consider a synset as representative for a segment. We tested whether the

5. When six participants is the minimum number required to consider a synset as representative for a
segment, the resulting labels for some of the analysed segments are empty.



70

●

●

●

●

●

●

●
●

● ●

2 4 6 8 10 12

0
5

10
15

Minimum number of participants to agree on a synset

N
um

be
r 

of
 c

om
m

on
 s

yn
se

ts

● Small
Medium
Full

Figure 5.3 Agreement among participants.

agreement was influenced by (1) the number of participants, (2) the size of the provided

segment subset (full, medium, small), and (3) their interactions. Results of the permutation

test, shown in Table 5.13, indicate that, while there is a significant difference of agreement

when considering a different number of participants, as expected, the sizes of the subsets and

their interactions with the number of participants do not significantly influence the agreement.

Results of the permutation test, shown in Table 5.14, indicate that the experience of the

participants do not significantly influence the agreement.

We thus answer RQ2: How do the labels of the trace segments produced by the participants

change when providing them different amount of information? Small and medium subsets

of segments preserve 50% or more of the synsets provided by participants while drastically

reducing the amount of information that participants must process to understand a segment.

The reduction of size with respect to the original size of the segment is on average 92% for

small subsets and 76% for medium subsets.
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Table 5.13 Results of two-way permutation test of agreement by number of participants and
size of the segment subset (full, medium, small).

Df R Sum Sq R Mean Sq Iter Pr(Prob)

Participants 1 2448.7364 2448.7364 500000 <0.0001

Size 2 0.8222 0.4111 156267 0.8915

Participants:Size 2 11.3515 5.6758 500000 0.2062

Residuals 264 968.0566 3.6669

Table 5.14 Results of two-way permutation test of agreement by experience (high, low).

Df R Sum Sq R Mean Sq Iter Pr(Prob)

Experience 1 1.68 1.6806 65 0.6154

Residuals 70 500.64 7.1520

RQ3: How do the labels of the trace segments produced by the participants

compare to the labels generated by SCAN?

Figure 5.4 shows violin plots for the number of synsets in the manually-labeled segments.

Violin plots (Hintze et Nelson, 1998) combine boxplots and kernel density functions, thus

showing the shape of a distribution. The dot inside a violin plot represents the median; a

thick line is drawn between the lower and upper quartiles; a thin line is drawn between the

lower and upper tails. We observe from Figure 5.4 that segments that have been labeled by

two participants have a median of 3 common synsets when considering intersection, but with

a large proportion of values being concentrated at 2 synsets. We consider this number of

common synsets to be a reasonable agreement provided that the median for segments that

have been labeled by one participant only is at 5.5, again with high concentration in lower

values—5. When considering the union of the synsets the median is higher at 7.

Table 5.15 Precision (P) and Recall (R) of automatic labels assigned by SCAN compared to
oracle built by participants.

Program 1 participant 2 participants 2 participants

only intersection union

P R P R P R

ArgoUML - - 27% 50% 48% 37%

JHotDraw - - 53% 91% 82% 62%

Mars 60% 100% 48% 97% 65% 64%

Maze 60% 53% 18% 92% 32% 45%

Neuroph 28% 48% - - - -

Pooka 85% 82% 43% 93% 74% 73%

Averages 58% 71% 38% 85% 60% 56%

Table 5.15 reports the results of evaluating the automatic labels when considering both
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operators. When considering all programs, the average values for precision and recall for

segments labeled by one participant are 58% and 71%, respectively. For segments labeled

by two participants, precision and recall values are 60% and 56% on average, respectively.

Finally, when we consider the intersection of synsets for segments labeled by two participants,

the recall is high, 85% on average, but precision can be as low as 18% with an average of 38%.

This low precision is partially due to the lower number of synsets in the manually-labeled

segments compared to the number of terms in the labels generated by SCAN. As shown in

Figure 5.4, the median for the number of synsets in manual labels is three when intersection

is considered. However, SCAN generates 10 terms for any label.

Table 5.12 shows examples of labels assigned by SCAN and the corresponding labels

assigned by the participants. The first part of the table shows labels for which both precision

and recall are low (≤ 40%). The second part shows cases where SCAN has a precision and

recall greater than 75%.

Term Frequency. Table 5.16 reports the results of evaluating the automatic labels using

term frequency when considering both operators. When considering all programs, the average

of precision and recall for segments labeled by one participant are the same as for SCAN

labels. For segments labeled by two participants, overall the average of precision and recall

for term frequency are lower than the average of precision and recall for SCAN when we

consider the intersection. For segments labeled by two participants, the average of recall for

term frequency is higher than the average of recall for SCAN and the average of precision for

term frequency is the same as the average of precision for SCAN when we consider the union.

We analyse in depth the labels produced using term frrequency, labels generated by SCAN
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and labels produced by participants and we conclude that the increase of the precision and

recall for Maze program is due to the term maze. The term maze is selected as a top term in

the majority of the segments of the execution trace of Maze program using term frequency

but using SCAN (i.e., TF -IDF ) the term maze is selected in some segments. Table 5.17

shows an example of label of the segment s50 of Maze program assigned using term frequency,

SCAN label and the corresponding labels assigned by two participants (i.e., P1 and P2). One

of the two participants believe that the term maze is significant for the segment s50 of Maze

program but the second participant did not mention it. For this reason, precison and recall

for term frequency is higher than precison and recall using SCAN for Maze program when

we consider the union. Table 5.17 shows also that term frequency filter some relevant terms

that SCAN and participants identify as relevant terms for segments such as the term explore.

Thus, we could conclude that SCAN base on TF -IDF gives better results than using term

frequency to assign labels to execution trace segments.

Table 5.16 Precision (P) and Recall (R) of labels assigned using term frequency compared to
oracle built by participants.

Program 1 participant 2 participants 2 participants

only intersection union

P R P R P R

ArgoUML - - 27% 50% 48% 37%

JHotDraw - - 53% 91% 82% 62%

Mars 60% 100% 48% 97% 65% 64%

Maze 60% 53% 15% 75% 34% 52%

Neuroph 28% 48% - - - -

Pooka 85% 82% 42% 92% 73% 72%

Averages 58% 71% 37% 81% 60% 58%

Table 5.17 Example of labels of the segment s50 of Maze program produced using term
frequency and participants.

Term frequency label SCAN label Participants label

cell location wall robot current direction wall cell P1: move direction explore robot

current floodfill master explored master location P2: check wall explore direction draw maze

direction maze model robot floodfill model Intersection: direction explore

Union: move robot check wall explore direction

draw maze
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We thus answer RQ3: How do the labels of the trace segments produced by the participants

compare to the labels generated by SCAN? SCAN automatically assigns labels with an av-

erage precision and recall of 69% and 63%, respectively, when compared to manual labels

produced by merging the labels of two participants using union.

5.3.4 Threats to Validity

This section discusses the threats to the validity of our evaluation and explains how we

tried to mitigate them when possible.

Construct validity Construct validity concerns the relation between theory and observa-

tions. Our theory is that participants consistently understand execution traces and, thus,

that an automated approach can accurately segment execution traces and label trace seg-

ments. In the preliminary evaluation, to compare manual and automatic labels, we validated

the terms having the same stem but we did not consider that manual and automatic terms

could be synonymous. We considered other type of relations among manual and automatic

terms in Section 5.3. Moreover, for the preliminary evaluation, we manually labeled segments

ourselves which may bias our evaluation of the labels generated by SCAN. For this reason,

we performed a study with participants to validate SCAN labeling segments in Section 5.3.

Threats to the construct validity of our evaluation could mainly be due to our evaluation

of the capability of SCAN to label segments. For the former, we compare the automatically

generated labels with the manually generated labels in RQ3. To limit bias due to subjective-

ness, we also report results obtained by applying union or intersection over labels produced

by multiple participants.

The participants of the experiment are not the original developers of the studied programs.

To address this threat to validity, we asked more than one participant to manually label the

same segment. Note also that developers of large software programs may not be familiar with

the entire program and thus would have been subject to the same threat.

In RQ2, we show that using an approach based on TF -IDF to identify terms for labeling

segments makes sense, as labels produced by participants when using reduced segment subsets

with the most frequently invoked methods are not significantly different from those obtained

when having the full segments available.

The terms of the labels are extracted from method signatures that represent low-level

information. We extract the relevant terms describing the concepts implemented by segments

and thus we are switching from a low-level description that contains all the terms extracted
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from method signatures to a high-level description that contains only the relevant information

of the extracted terms.

Internal Validity The internal validity of an evaluation is the extent to which a treatment

changes the dependent variable. Threats to internal validity could be due to the presence,

in the execution traces, of extra method invocations related to GUI events or other program

events. Also, the order of invocation in different executions may depend on multi-threading.

This may affect TF -IDF values and could produce different results in terms of relevant infor-

mation. The frequency-based pruning and the analysis of different execution trace instances

for one scenario mitigate these threats.

The internal validity of our empirical evaluation could be threatened by our choice of the

traces to segment and label as well as related thresholds (e.g., the threshold used to merge

two segments). We mitigated this threat by using different traces obtained from executing

different scenarios on different programs. Also, participants confirmed the precision and recall

of the segment labels.

External Validity Although in the preliminary evaluation we applied our approach on

traces from two different programs, further studies on larger traces and more complex pro-

grams are needed, especially to better demonstrate SCAN accuracy in assigning labels repre-

sentative of concepts implemented by trace segments. For this reason we performed a study

in Section 5.3 using different programs. Our choices reduce the threat to the external validity

of our empirical evaluation. As explained in Section 5.3.1, participants involved in the eval-

uation of the performances of SCAN are not original developers of the analysed programs,

hence results might be different when considering people having a better knowledge of the

programs.

Conclusion validity Conclusion validity threats deal with the relation between the treat-

ment and the outcome. Wherever appropriate, we use statistical tests to support our claims.

Specifically, for RQ2, we use permutation test, which is a non-parametric alternative to

ANOVA, hence it does not require data to be normally distributed.

5.4 Summary

Our tool SCAN aims at supporting developers to discover concepts in segments of ex-

ecution traces by assigning sets of words to each segment. SCAN has been conceived and

developed with the trace segmentation approach presented in Asadi et al. (2010b); Medini

et al. (2011) in mind. However, it is not tied to any specific trace segmentation approach. We



76

presented a preliminary evaluation investigating the accuracy and effectiveness of SCAN in

assigning meaningful sets of words representative of the concepts implemented in segments.

We performed a manual validation on several traces of both JHotDraw and ArgoUML, two

known Java programs, often used as a benchmark in software engineering research. JHotDraw

and ArgoUML are small enough to allow manual validation, still they are real programs of

non trivial size. ArgoUML in particular is a real world application with a large user commu-

nity and is actively maintained by several developers. We performed both a qualitative and

a quantitative validation aiming at verifying the relation between manually defined labels

and segment labels automatically generated by SCAN. Quantitative analysis shows different

ranges of similarities between manual and automatic labels. Manual inspection of several ex-

amples of the automatically produced label sets indicates that these are quite informative and

useful to reconstruct the target concepts associated with each segments. So the relatively low

similarity values should not be interpreted as poor performance. On the contrary, our qual-

itative analysis indicates that such performance is sufficient for manual concept assignment

and phase recognition. In summary, we can claim that SCAN was successful in assigning

labels very similar to manually defined labels and that these labels actually correspond to

the concepts encountered in the segment based on source code documentation and method

execution. Moreover, in the preliminary evaluation, we manually labeled segments ourselves,

which may bias our evaluation of the labels generated by SCAN. Consequently, we conducted

a study aiming at analysing the ability of SCAN to accurately reduce the size of segments

and identify labels.

In this study, we ask 31 participants (professionals and students) to assign labels to seg-

ments extracted from six Java programs (ArgoUML, JHotDraw, Mars, Maze, Neuroph, and

Pooka). First (RQ2), we investigate whether providing the participants with the most rele-

vant methods only is sufficient to understand segments; we compare the quality of the labels

and participant agreement with those obtained when full segments are used to produce labels.

Then (RQ3), we compare manually-produced labels for 210 segments with those produced

by SCAN. Results of the empirical evaluation confirmed the ability of SCAN to select the

most representative methods of a segment, thus reducing on average 92% of the information

that participants must process while guaranteeing that close to 50% of the knowledge is pre-

served (RQ2)—the labels produced by participants when analysing the reduced segments

contained 50% of the information of the labels produced from the original segments. Results

also showed that SCAN can automatically label segments with 69% precision and 63% recall

when compared to the manual labels produced by the participants (RQ3).

Results showed that SCAN was successful in assigning labels very similar to labels manually-

defined by participants and that these labels actually correspond to the concepts encountered
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in the segment based on source code, documentation, and method execution. Results also

showed that we provide the relevant information on the concept implemented by each seg-

ment, helping developers to understand the concept implemented by each segment.
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CHAPTER 6

Relating Segments

We split execution traces into segments allowing developers to focus on segments to main-

tain instead of analysing the entire execution trace. Segment labeling provides a description

of the concepts implemented in each segment. However, developers would benefit to know the

relations among segments and concepts. We propose to identify different relations between

segments to help developers identify the segments that implement the concepts to maintain.

In this chapter, after defining the approach relating segments in details, we perform a

qualitative analysis to validate the relations identified automatically by only one participant.

Then, we improve this evaluation with an experiment to assess SCAN capability to identify

relations among segments in comparison to 31 participants. We describe the design of the

experiment and how we analyse results. Finally, we present and discuss the results of the

evalutation.

6.1 Relating Segments Approach

As depicted in Figure 1.2 in Chapter 1, SCAN consists in a series of four steps. In Step 1,

SCAN uses execution traces to identify segments by finding cohesive and decoupled fragments

of the trace. The trace segmentaion approach based on dynamic programming is presented in

Chapter 4. Then, in Step 2, it merges similar segments using the Jaccard measure on terms

extracted from the segments. After that, in Step 3, it uses an IR-based approach to label

segments. Step 2 and 3 are presented in Chapter 5. This chapter presents Step 4, which uses

FCA to identify relations among segments.

While we expect the labels produced in Step 3 to fully describe the concept implemented

by a segment, they do not help developers to relate segments in a same trace with one another.

For example, segments with identical labels may appear multiple times, in different trace

regions. Furthermore, two segments may share many terms, which could possibly indicate

the existence of a higher-level concept common to both segments. To discover such relations

among segments, SCAN uses Formal Concept Analysis (FCA) and highlights commonalities

and differences among segments by identifying terms shared between multiple segment labels

and terms that are specific to particular segment labels.

As described in Section 2.4 in Chapter 2, FCA groups objects that have common attributes.

In SCAN, objects are segments and attributes are the terms of the segments labels. The
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binary relation states which term is included in which label. A FCA concept is a cohesive

set of segments sharing some terms in their labels. Figure 6.1 shows an example of a FCA

lattice for the ArgoUML scenario “add a new class” in which each node represents a formal

concept (X, Y ). SCAN uses the lattice to identify relations among segments as explained in

the following.

Figure 6.1 ArgoUML FCA lattice for the scenario “add a new class”.

Types of Relations. By applying FCA on the segments and terms from their labels and

analysing the resulting lattices, we identified the following relations among segments: same

phase, sub/super concept, and macro-phase.

Two distinct segments sharing the same relevant terms are considered to activate the

same concept, thus forming a phase. For example, in Figure 6.1, SCAN identifies Segments

2, 8, and 14 as part of the same phase because these segments belong to the same concept.

These three segments share the same terms and actually activate the same concept.

Sub-concept relation exists when a set of segment(s) activate part of a concept of another

set of segment(s). SCAN identifies a sub-concept relations between two segments when

relevant terms in the label of one segment are a superset of the terms of the label of another

segment, i.e., by selecting the intent of a concept of interest in the lattice. For example, in

Figure 6.1, Segments 2, 8, and 14 share the terms “generat, key, java, and modul” with the

Segments 3, 9, and 15 and thus are a sub-concept of these segments. Conversely, a super-

concept relation exists when terms in the label of one segment are a subset of the terms of

another.

A macro-phase is the result of the abstraction of repeated sequences of identical phases,
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which activates a set of concepts. SCAN identifies macro-phases by finding repeating se-

quences of FCA concepts. For example, in Figure 6.1, there are several phases such as:

Phase 2: Segments 2, 8, and 14; Phase 3: Segments 3, 9, and 15; Phase 4: Segments 4, 10,

and 16; Phase 5: Segments 5, 11, and 17; and Phase 6: Segments 6, 12, and 18. A segment

activates the phase that it belongs to, thus, for example, Segment 2 activates Phase 2. The

next segment in the trace, Segment 3, activates Phase 3. In the same way segments 4, 5, and

6 activate respectively Phases 4, 5, and 6. Thus, the sequence of Segments 2 to 6 activates

the sequence of Phases 2 to 6. However, the same sequence of phases is also activated with

the sequence of Segments 8 to 12 as well as with the sequence of Segments 14 to 18. Thus,

the three sequences of Segments 2 to 6, Segments 8 to 12, and Segments 14 to 18, activate

the same concepts, i.e., activate the concepts of Phases 2 to 6. SCAN abstracts those five

phases and identifies the macro-phase containing Phases 2 to 6.

Sequence Diagram. The FCA lattice shown in Figure 6.1 can be used by developers in

the more familiar form of a UML sequence diagram. To obtain a sequence diagram from the

FCA lattice, segments are considered in the order in which they appear in the execution trace.

Each segment is associated with its most specific FCA concepts in the FCA lattice. Methods

are activated in the sequence diagram for each FCA attribute of the segment-specific FCA

concepts. The topmost reachable FCA attributes are activated first and all FCA attributes

in the sub-FCA concepts are activated as nested operations.

A portion of the sequence diagram for the FCA lattice in Figure 6.1 is shown in Figure

6.2 (generated using PlantUML 1). The sequence diagram shown in Figure 6.2 contains the

same information available from the FCA lattice, but the sequential ordering of the called

method makes it easier to read and understand for developers.

Segment 1 is associated with a FCA concept that has three super-FCA concepts, two of

which are annotated with FCA concept-specific attributes. Starting from the topmost anno-

tated FCA concept, the following methods are activated in the sequence diagram: “model,

notat, ...”, “factori, diagram, ..”, and “implement”. Similarly, Segment 2 activates “generate,

key, ...”, which has a nested activation labeled “display”, while Segment 3 activates only

“generate, key, ...”. For the sake of clarity, only a portion of the method calls in Segment 4

are shown.

1. http://plantuml.sourceforge.net/
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Figure 6.2 ArgoUML sequence diagram derived from the FCA lattice for the scenario “add a
new class”.

6.2 Preliminary Evaluation

We aim to evaluate SCAN capabilities to identify relations among segments. In this

evaluation, we reuse the scenarios previously used to validate segments labels reported in

Tables 5.1 and 5.2 in Chapter 5.

The study aims at answering the following research question:

RQ1. Does SCAN help to discover relations between segments? Does it help to discover

the macro-phases in a trace? This research question is formulated to verify the efficiency

of SCAN when relating segments. To address this research question, we analyse the lattice

produced by FCA to identify relations between different segments.
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6.2.1 Results and Discussions

In the following, we report results aimed at addressing RQ1. We exploited FCA to

identify linguistically overlapping segments. In other words, segments having the same or

shared labels implement similar or related concepts. By looking at Figure 6.3 we can notice

that, for example, segments 4 and 23 are identical and implement the same concept. This

was confirmed by manual inspection of the source code. A developer can therefore use lattice

information to infer relations between segments and identify segments implementing the same

concept. We can also notice that sometimes a computation phase, represented as an FCA

concept, is contained in a more abstract one. For example, in Figure 6.3 segments 28 and 30

are contained in a super-concept of the concept containing segments 26 and 31. In fact, they

all share some labels (listen, change, remove, figure), but the latter segments (26, 31) have

their own specific labels (intern, multicast).

Figure 6.3 Excerpt of the JHotDraw FCA lattice for the scenario “Draw Rectangle, Delete
Rectangle”.

Figure 6.1 shows the FCA lattice for the execution trace of the scenario “New Class”.

As for JHotDraw, also for ArgoUML FCA helps to highlight relations between segments.

For example, segments 4, 10 and 16 implement the same concept. The concept containing

segments 3, 9 and 15 is a sub-concept of the one containing segments 2, 8 and 14 and in

fact it points to higher level concepts (generate key java module), while the super-concept

includes segments specific of the display functionality.

To identify macro-phases in a trace, we consider relations between cohesive sets of seg-

ments, regarded as execution phases. A macro-phase is built by repeated segments in a trace.

For example, in Figure 6.1, segments 2, 3, 4, 5 and 6 define an execution phase on the trace

and this phase is repeated two times: first with segments 8, 9, 10, 11 and 12, and then with
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segments 14, 15, 16, 17 and 18. The rest of the segments are also converted to an execution

phases.

Qualitative results indicate that the automatically-produced labels, organised into a con-

cept lattice where similar or identical segments are grouped together, are extremely useful

to understand commonalities and differences between segments and to extract a view where

macro-phases can be labeled by the terms associated with the super-concepts of the involved

segments. Cohesive sets of similar segments can be identified in the concept lattice. Such

sets, in turn, define macro-phases, that labeled with super-concept terms. The temporal or-

dering of the segments involved in different macro-phases suggests the temporal organization

of the recognized phases. We think this has huge potential in supporting comprehension of

complex execution scenarios for large programs.

Flow Diagram of Phases. After defining the phases we can draw a higher level flow

diagram of phases with labels as shown in Figure 6.4, using the temporal relations between

phases. The “New Class” scenario, generating 19 segments, can be summarised into four

macro-phases. The first phase deals with the program startup, this is followed by activity

needed to create class and properties (e.g., state, composite, etc). The third phase is devoted

to managing diagram events and, finally, the last phase models add events and model changes.

Figure 6.4 Flow diagram of phases for the scenario “New Class”.
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6.3 Relating Segments Evaluation

In the preliminary evaluation, a developer should analyse a concept lattice to discover

relations. However a large concept lattice is difficult to analyse to identify concept relations.

For this reason, we extend our approach to identify automatically relations among trace seg-

ments. Moreover, in the preliminary evaluation, we validated the relations among segments

ourselves, which may bias our evaluation. For this reason, we conduct a study in which

we reuse the set up of the experimental evaluation of labeling segments detailed in 5.3.1 in

Chapter 5. Table 5.6 summarises characteristics of the programs, i.e., their sizes (in terms of

lines of code), a short description of the scenarios used to generate the execution traces, and

the sizes of the traces (in terms of number of executed events, i.e., constructor and method

calls). Table 5.8 provides descriptive statistics of the participants’ programming experience.

6.3.1 Experimental Design and Analysis

The evaluation aims at answering the following research question: RQ2: To what extent

does SCAN correctly identify relations among segments? This research question is formu-

lated to verify the efficiency of relating segments and thus providing an accurate high-level

description of the concepts implemented in an execution trace. This research question assess

the use of FCA by scan to identify relations among segments. We ask participants to assess

the relations among segments identified by SCAN.

In the following, we describe the evaluation design and procedure followed to answer the

research questions.

To address RQ2, we ask the participants to validate all relations among segments identi-

fied by SCAN. We do not ask participants to manually identify the relations among segments

for two reasons. First, identifying the relations requires to compare each segment in a trace

with any other segments, taking into account the possible reordering of method calls as well

as inclusions. Thus, such a task would have been very demanding for the participants. Sec-

ond, identifying these relations is not a task commonly undertaken by participants and, thus,

its results would have been of a quality inferior to that of the labeling task, which partici-

pants perform implicitly or explicitly when understanding a segment. Participants validating

the relations between segments use the full segments to understand and label the segments.

Next, they use the labels that they just produced and the comprehension they have gained

to validate the possible relations. We provide definitions for the different types of relations

between segments: same concept (phase) or sub/super concept. For macro-phases, we ask

the participants to validate all the phases of a given macro-phase. If all phases participating

in a sequence of SCAN phases is validated by the participants then the macro-phase is also
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considered valid by construction.

We report the accuracy, i.e., the percentage of relations that SCAN has correctly identified

as vetted by the participants. We also report separately the accuracy for SCAN capability

to identify super/sub-concept relations because of the participants’ difficulty to distinguish

sub-, super-, and same-concept as illustrated by the following example. Table 6.1 shows two

segments from JHotDraw labeled by SCAN and by two participants, Participant I and Partic-

ipant J. Both SCAN and Participant I identify Segment 9 as activating a sub-concept of the

concept activated by Segment 10. However, according to Participant J, the two segments ac-

tivate the same concept. This example shows that distinguishing between sub/super concept

and same concept is difficult. Therefore, when presenting the results, we report the per-

centages of agreements between the participants and SCAN with and without distinguishing

between sup/super concept and same concept.

Table 6.1 Example of relations among segments.

Segments Labels Relations

SCAN
9 listener, add, change, figure

sub/super concept
10 figure, listener, add, internal, multicaster, event, change

Participant I
9 composite, figure, trigger, event

sub/super concept
10 manage, figure, change, event, trigger

Participant J
9 abstract, figure, change, add, listener

same concept
10 figure, change, event, multicaster, add, listener

6.3.2 Experiment Results and Discussions

This section reports the results of our experimental evaluation to address RQ2.

Figure 6.5 shows an excerpt of the Pooka FCA lattice for the scenario “New account new

e-mail” and Table 6.2 shows some of the relations identified by SCAN for this scenario. For

example, SCAN identifies that Segments 16, 28, and 41 form a phase, i.e., Phase 16 in Table

6.2, as they all activate the same concept, which is loading the state through the wizard

editor pane. SCAN automatically labels this phase as “load state wizard editor pane”.

Hence, Segment 16 activates Phase 16. The next segment in the trace, Segment 17,

activates Phase 17. In the same way Segments 18, 19, and 20 activate respectively Phases

18, 19, and 20. Thus, the sequence of Segments 16 to 20 activate the sequence of Phases 16

to 20. However, the same sequence of phases is also activated with the sequence of Segments

28 to 32 as well as with the sequence of Segments 41 to 45. Thus, the three sequences of

Segments 16 to 20, Segments 28 to 32, and Segments 41 to 45, activate the same concepts,

i.e., activate the concepts of Phases 16 to 20. Thus, SCAN identifies a macro-phase from the

repeated execution of Phase 16 → Phase 17 → Phase 18 → Phase 19 → Phase 20.
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Figure 6.5 Excerpt of the Pooka FCA lattice for the scenario “New account new e-mail”.

Considering the automatic labels produced by SCAN, we observe that Phase 17 and

Phase 19 activate concepts pertaining to the state of the wizard editor pane. However, Phase

17 is more specific as it is concerned with beginning states. SCAN identifies a sub/super-

concept relation between Phase 17 and Phase 19, as shown in Figure 6.5. SCAN also reports

that Segment 38 has a super-concept relation with Segment 15. The former raises different

property events, including property committing events, in common with Segment 15.

Table 6.3 reports the number of relations identified by SCAN in the six programs (we do

not report numbers for Neuroph, as no relation was identified among its segments), with and

without the numbers of sub/super relations. SCAN identifies 100 relations: 59 sub/super, 7

macro-phase, and 34 same concept relations. An agreement between SCAN and the partici-

pants occurs when the same relation is identified by SCAN and at least one of the participants.

We do not show results when both participants agree, as the number of cases in which par-

ticipants disagree is low (six and eight relations in case of no distinction and distinction,

respectively).

We can conclude that, depending on whether we distinguish sub/super relations or not,

the overall accuracy of SCAN in identifying relations between segments is 96% and 63%,

respectively. When evaluating relations with distinction, the precision of SCAN is greater

than 75% in the majority of the programs. The two exceptions are ArgoUML and Mars,

and for both of these programs, the proportion of detected sub-concept relations is extremely

high with respect to other relation, i.e., 100% and 82% for ArgoUML and Mars, respectively.
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Table 6.2 Examples of relations detected by SCAN for Pooka, scenario “New account new
e-mail”.

Phases Segments in the Phase SCAN Labels

Phase 16 Segments 16, 28, and 41 load state wizard editor pane

Phase 17 Segments 17, 29, and 42 wizard state controller editor pane beginning

Phase 18 Segments 18, 30, and 43 set end wizard focus accept state editor pane

property beginning

Phase 19 Segments 19, 31, and 44 controller wizard state pane editor

Phase 20 Segments 20, 32, and 45 composite focus accept label editor swing

property

Macro-phases Involved Phases Number of Repetitions

Macro-phase 1 Phases 16, 17, 18, 19, and 20 The sequence of phases is repeated 3 times

Sub-concepts Segments/Phases involved Details

Sub-concept 5 Phase 17 activates Both activate concepts regarding state of the

a sub-concept of Phase 19 wizard editor pane. Phase 17 is specific to

beginning state.

Sub-concept 10 Segment 38 activates Both fire property committing events.

a sub-concept of Segment 15 Segment 38 fires additional property events.

Table 6.3 Evaluation of the automatic relations.

Programs Relations Sub/Super Agreements Agreements

identified by concept with participant(s) with participant(s)

SCAN relations without distinction with distinction

btw. sub/super relations btw. sub/super relations

ArgoUML 6 6 100% 33%

JHotDraw 9 5 100% 100%

Mars 22 18 100% 9%

Maze 12 1 100% 83%

Pooka 51 29 82% 78%

Total 100 59 96% 63%

For ArgoUML, the majority of the detected relations involve class MetaTypesMDRImpl,

which retrieves objects that represent the different UML types. SCAN labels Segment 2 as

“mdr meta impl types”, which is the general concept implemented by the class. SCAN la-

bels the rest of the segments by specifying additional terms, e.g.,“composite state meta impl

synch mdr types” for Segment 11. Thus, Segment 2 is identified as the super-concept of five

other segments, as SCAN considers them as addressing more specific concepts. Both partic-

ipants labeling ArgoUML traces produced similar label for Segment 2, e.g., “implementation

dependent UML class type” but also for the rest of the segments and, thus, considered all seg-

ments to implement the same concept. We observe a similar phenomenon for Mars, as shown

in Table 6.3, i.e., when no distinction is made participants agree 100% with the identified

relations.
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We thus answer RQ2: To what extent does SCAN correctly identify relations among seg-

ments? SCAN identifies relations among segments with an overall precision of 63% and a

precision greater than 75% in the majority of the programs.

6.3.3 Threats to Validity

Although our approach performed well, there are some aspects that can impact its

efficiency.

Construct validity Construct validity concerns the relation between theory and obser-

vations. Our theory is that participants consistently understand trace segments and, thus,

that an automated approach can accurately relate execution trace segments. Threats to the

construct validity of our evaluation could mainly be due to our evaluation of the capability

of SCAN to identify relations between them. To limit bias, we report results obtained by

multiple participants. The participants of the experiment are not the original developers of

the studied programs. To address this threat to validity, we asked more than one participant

to validate the same segment relation. Note also that developers of large software programs

may not be familiar with the entire program and thus would have been subject to the same

threat. We asked participants to validate relations among segments and, because they do

not know how our approach works, their bias is limited.

Internal Validity The internal validity of an evaluation is the extent to which a treatment

changes the dependent variable. The internal validity of our evaluation could be threatened

by our choice of the segments to relate. We mitigated this threat by using segments from

different traces obtained from executing different scenarios on different programs. Also,

participants confirmed the precision and recall of the relations among the segments.

External Validity The external validity of an evaluation relates to the extent to which we

can generalize its results. In the preliminary evaluation, we applied our approach on traces

from two different programs, further studies on larger traces and more complex programs were

needed. We performed a study in Section 6.3. Our choices reduce the threat to the external

validity of our empirical evaluation. As explained in Section 5.3.1, participants involved in

the evaluation are not original developers of the analysed programs, hence results might be

different when considering people having a better knowledge of the programs.
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6.4 Summary

Our tool SCAN aims at supporting developers to discover concepts in segments of exe-

cution traces by identifying relations among segments via formal concept analysis. It also

supports grouping segments into macro-phases. We presented a preliminary evaluation inves-

tigating the accuracy and effectiveness of SCAN in identifying relations among segments. We

performed a manual validation on several traces of both JHotDraw and ArgoUML. We per-

formed a qualitative validation to verify the relations among segments generated by SCAN.

Results shows that SCAN detect relations between segments, to easily identify repeated com-

putational phases and to abstract them into macro-phases execution traces. In the prelimi-

nary evaluation, a developer should analyse a concept lattice to discover relations. However,

for a large concept lattice it would be difficult to analyse and to identify concept relations. For

this reason, we extended our approach to identify automatically relations among segments.

Moreover, in the preliminary evaluation, we validated relations among segments ourselves

which may bias our evaluation. Thus, we conducted a further study in which we asked 31

participants (professionals and students) to validate relations among segments extracted from

six Java programs (ArgoUML, JHotDraw, Mars, Maze, Neuroph, and Pooka). We use SCAN

to identify relations among segments and ask participants to validate them. Results of the

empirical evaluation confirm that participants agreed at 63% with the identified relations

among segments identified by SCAN (RQ2).

Results confirmed that SCAN detects automatically relations between segments, accu-

rately, to help identify repeated computational phases and to abstract them into macro-

phases. Results showed also that SCAN can provide a high-level representation of the con-

cepts implemented in the entire execution trace by identifying different relations between

segments and abstracting them into macro-phase. We evaluated the accuracy of SCAN with

participants but a key evaluation point must be on its usefulness.
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CHAPTER 7

SCAN Usefulness Evaluation

During maintenance, developers generally are interested to understand some segments

of a trace that implement concepts of interest rather than to analyse in depth the entire

execution trace. We assess the usefulness of SCAN to group these concepts of interest in

few segments and thus ensure that our trace segmentation approach facilitates maintenance

tasks. In addition, we assess the usefulness of SCAN to guide developers towards segments

that implement the concepts to maintain and reduce the number of methods to investigate.

We also present the evaluation of the usefulness of SCAN through an empirical study. Finally,

we report and discuss the results.

7.1 Applying SCAN to Support Concept Location

According to Dit et al. (2013b) concept location is “one of the most frequent maintenance

activities undertaken by developers because it is a part of the incremental change process (Ra-

jlich et Gosavi, 2004)”. Given the importance of concept location in the context of software

maintenance tasks, we further explore how trace segmentation and labeling performed by

SCAN can be used to support concept location to help developers in their everyday activity.

Consider a concept location techniques that uses dynamic analysis, as the Single Trace

and Information Retrieval approach (SITIR) proposed by Liu et al. (2007), which combines

dynamic analysis and textual analysis based on Latent Semantic Indexing (LSI). Given a

change request—e.g., bug description—and an execution trace, the approach proposed by

Liu et al. (2007) ranks methods of the source code that appear in the execution trace based

on their textual similarity with the change request—e.g., the bug description or title. It

is important to point out that concept location techniques aim at finding a starting point

of the modification, i.e., the “seed”—a method in the source code that is relevant for the

change request and where developers will start the necessary modifications to implement the

change request. The motivation for that is because, once the seed is known, the developer can

identify the other methods that would be impacted by any change related to such a concept,

e.g., impacted by a bug fixing activity.

For this reason, the effectiveness of a concept location technique is evaluated in terms of

the number of methods in the ranked list produced by the technique that a developer has

to scrutinize before reaching any method belonging to the impact set of the concept. Such
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a method would be the seed for a modification. In order to perform this kind of evaluation,

we require the availability of a gold set, i.e., the set of all methods (and those methods only)

that a developer should modify in order to fix a bug. The lower the number of methods to

explore before finding the seed, the better the technique.

In this context, we are interested to evaluate whether SCAN can be used to reduce the

burden of developers when identifying the set of methods impacted by a concept, once a

concept location technique identifies one of these methods (i.e., the seed). The conjecture is

that methods related to a concept should be contained in one or few segments. Hence, to

analyse the concept impact set, a developer could only focus on one or few segments instead

of looking at the entire execution trace. In addition to that, we also want to investigate

whether, instead of relying on concept location techniques, SCAN can be used as a standalone

technique to automatically identify segments relevant for a query.

7.1.1 Typical Scenario

Figure 7.1 shows an example of a bug report for JabRef and the top 5 ranked methods

produced by SITIR. In a typical scenario the developer assigned to implement the changes

will start by looking into the first method of the ranked list—i.e., method isiAuthorsCon-

vert(String) defined in IsiImporter—by trying to understand the source code and–or exe-

cution trace. The execution trace in this particular case consists of 13, 616 method calls.

To ease the analysis of the execution trace, a developer can use SCAN to segment it.

Figure 7.1 shows one segment of this trace—the segment containing the top 1 ranked method

provided by the concept location technique. The segment shows the methods in their order

of execution, thus method isiAuthorsConvert(String) occurs two times (in positions 2 and

16) as it was executed twice. Since SCAN’s segmentation is guided by the textual cohesion

between methods, segment 4 can be regarded as the smallest, highly cohesive part of the

trace activating the problematic concept that provides the context in which the top 1 ranked

method is executed. In other words, rather than considering the entire execution trace, one

may limit the context of a method to the segment in which it appears. From the methods

of segment 4, one can quickly grasp that the author conversion is indeed performed in the

context of importing a bibliographical entry. A further analysis of the methods contained

in segment 4 reveals that the segment also contains a couple of other gold set methods—

appearing at positions 1, 3, 4, 6, 7, 17, 18, 20, and 21. Indeed, the developer fixing the wrong

author import also fixed other related problems in the import of an ISI entry—the parsing

of month and pages in particular. Thus, we conjecture that methods relevant to a change

request are grouped in few segments. If this is indeed the case, SCAN can be used to reduce

the analysis of the trace to the analysis of few segments, i.e., reduce the number of methods
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to be analysed. This assumes that a concept location technique is used to guide the search

and is able to retrieve the segments containing the gold set methods.

However, when no concept location technique is available to guide the search, SCAN can

also be used to retrieve the segments that contain relevant methods by using the FCA lat-

tice produced in the earlier stage and the title of the issue report as a query to guide the

search. Figure 7.2 shows the partial FCA lattice corresponding to the trace of the example

shown in Figure 7.1. We include the query as part of the set of objects and use the terms

of the query to retrieve the segments it is related to. In other words, in order to identify

the relevant segments, we look for the segments that share terms with the query. Thus, we

start from the node representing the query and following the paths towards the top node the

first two reachable nodes connect Query with Segment 3 (as they share the words “isi” and

“inspec”) and Query with Segment 4 (as they share the words “isi” and “author”). Those are

the segments containing the methods from the gold set. In general, the closer we are to the

top node, the more segments we collect as we are less restrictive on the terms that those

segments must contain. The closer we are to the Query node, the less segments we collect as

we impose greater number of terms to be shared between them. Our conjecture is that SCAN

can be used to automatically identify the segments containing the relevant methods. We also

hypothesize that the automatically retrieved segments reduce the number of methods to be

analysed, compared to the analysis of the entire execution trace.

7.1.2 Empirical Study Definition and Planning

In the rest of this section we describe the study that we performed to evaluate the useful-

ness of SCAN to support concept location. The goal of the study is to assess the usefulness

of SCAN for developers with the purpose of showing its usefulness when performing concept

location tasks as a complement to a concept location technique or as a standalone technique.

The quality focus is the possible effort reduction achieved when using SCAN, due to the

smaller number of methods a developer should scrutinize. The perspective is of researchers

interested in providing support to program comprehension by labeling and relating segments

in execution traces.

Study Set-Up

This section details the study set-up, specifically describing the datasets that we use, i.e.,

the execution traces and gold set methods of selected issue reports for two Java programs.
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Figure 7.2 Bug#460 in JabRef: resulting FCA lattice.

The objects of our evaluation are execution traces collected from two Java programs be-

longing to different domains. JabRef 1 is an open source bibliography reference manager. It

uses the BibTeX file format and provides a user-interface to manage BibTeX files. muCom-

mander 2 is a lightweight, cross-platform file manager with a dual-pane interface. It allows

users to perform file operations on a variety of local and networked file systems, including

FTP, Windows shares, and so on.

Table 7.1 summarises characteristics of the programs, i.e., the interval considered (i.e.,

from release x to release y) the numbers of bugs occurred in such a time interval, the number

of traces that include two or more gold set methods, and the total number of gold set methods.

The execution traces were generated for the latter release—i.e., 2.6 for JabRef and 0.8.5 for

muCommander.

The choice of JabRef and muCommander for this study is related to the availability of

execution traces for the issue reports considered in the study as well as the associated gold

set methods. Given the available dataset from Dit et al. (2013a), to evaluate the usefulness

of SCAN we analysed a total of 65 execution traces from the two programs—17 from JabRef

and 48 from muCommander.

Table 7.2 reports descriptive statistics about the numbers of method calls in the execution

traces as well as in the segments that SCAN identifies.

1. http://jabref.sourceforge.net/
2. http://www.mucommander.com/
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Table 7.1 Programs characteristics.

Program Release Range Issues Traces with two Gold set methods

or more gold set

methods

JabRef 2.0–2.6 39 17 280

muCommander 0.8.0–0.8.5 92 48 717

Overall 131 65 997

Table 7.2 Traces and segments characteristics.

Number of method calls

Min. 1st Qu. Median Mean 3rd Qu. Max.

Traces 3K 57K 95K 95K 126K 264K

Segments 2 2 2 104 3 5K

7.2 Experimental Design and Analysis

The study aims at answering the following research questions:

– RQ1: Does SCAN has a potential to support concept location? During maintenance,

developers generally are interested to understand some segments of the trace that im-

plement concepts of interest rather than to analyse in-depth the entire execution trace.

We formulate this research question to verify that the concepts of interest are grouped

in few segments and thus ensure that our trace segmentation approach facilitates main-

tenance tasks. This research question aims at evaluating SCAN’s ability to group gold

set methods into a low number of segments thus reducing the number of methods to

be analysed by developers when limiting the analysis to the set of segments contain-

ing the gold set methods rather than the entire execution trace. The conjecture—as

explained in Section 7.1.1—is that such segments would contain most of the methods

related to the concept, hence the developer could easily determine the set of methods

impacted when performing the change—e.g., the bug fixing—by looking at the segments

containing the seeds only.

– RQ2: To what extent does SCAN support concept location tasks if used as a standalone

technique? We formulate this research question to verify the efficiency of our approach

to guide developers towards segments that implement the concepts to maintain and re-

duce the number of methods to investigate. This research question investigates whether

it is possible to automatically retrieve segments containing relevant methods and evalu-

ates the number of methods to be analysed compared to the number of methods in the

entire execution trace. We calculate the recall with respect to the segments containing

the gold set methods as well as the recall with respect to the gold set methods.
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To address RQ1, we first investigate whether methods from the gold set are grouped

within few segments. To this end, we provide the number of segments containing the gold set

methods and the total number of segments of the traces. The lower the number of segments

containing the gold set methods the more grouped they are and thus the more potentially

useful SCAN is. For example, the execution trace for the example bug report in Figure 7.1

is segmented by SCAN into 26 segments, and the gold set methods are concentrated in 2 of

those segments—Segment 3 and Segment 4. Clearly, the sizes of the segments also impact

the extent to which SCAN would help to reduce the effort: analysing many small segments

would not be effort-prone as analysing few bigger segments (representing the execution of

a whole concept), although the absence of cohesive segments would provide no guidance to

the developer for knowing when to stop analysing methods. To mitigate this problem, we

consider the size of the segments in terms of total number of method calls and in terms of

unique methods.

We estimate the number of methods in the segments containing the gold set methods

and divide it by the number of methods in the entire execution trace. This ratio represents

the number of methods to be analysed if one is able to retrieve the segments containing

the gold set methods. The lower such ratio, the better. In the above example, the total

number of method calls is 52—2 in Segment 3 and 50 in Segment 4. The ratio is thus 0.0038

(= 52/13, 616).

We also estimate the ratio of the unique number of methods in the segments containing the

gold set methods over the total number of methods in the execution trace. The lower the

ratio the greater the gain in terms of number of unique methods that developers need to

understand. This ratio indicates the upper bound limit for the reduced number of methods

that an automatic technique retrieving the segments must return to developers. It is an

upper bound as reducing more, i.e., not analysing some of those segments, would result

in incomplete change implementation. Any technique that identifies additional segments

would be decreasing the reduction of methods to be analysed. Reaching the upper bound

assumes that we have a perfect way to identify those and only those segments. For the above

example, the unique number of methods called in Segments 3 and 4 is 34 and the unique

number methods in the entire execution trace is 479 resulting in a ratio of 0.07 (= 34/479).

This ratio is a proxy for the effort that developers would need to spent if they concentrate

on the segments containing the gold set methods rather than the entire trace.

To address RQ2, we use the labels of segments, the relations among the segments pro-

duced by SCAN, and the title of the bug report as search query to retrieve the segments

having one or more terms in common with this query. For each trace, SCAN builds the FCA

lattice using the segments of the trace while adding the title of the bug report (query) to the
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set of objects of the lattice. SCAN considers as objects segments and the query; attributes

are the terms in the segments/query. By analysing the resulting FCA lattice, SCAN identifies

the segments in relation with the query: First, starting from the node representing the query

and following the paths towards the top node SCAN collects all encountered nodes. Next, for

all the collected nodes SCAN identifies the segments they are connected to. The set of col-

lected segments contains all segments with which the query has same concept, sub-concept,

or super-concept relation.

We evaluate the ability of SCAN to retrieve relevant segments using the gold set methods

and calculating two types of recall. We calculate the recall with respect to the segments

containing the gold set methods as well as the recall with respect to the gold set methods only.

To calculate the recall for segments, we divide the number retrieved segments containing gold

set methods by the total number of segments containing the gold set methods (see Equation

7.1). For the example shown in Figure 7.2, the recall for segments is 1 (i.e., 100%) as both

Segments 3 and 4 are retrieved.

To calculate the recall for methods, we divide the number retrieved gold set methods by the

total number of gold set methods (see Equation 7.2). The recall for methods in the above

example is also 1 (= 7/7) as SCAN retrieves all the gold set methods.

RecallSegments =
retrieved segments containing gold set methods

total number of segments containing the gold set methods
(7.1)

RecallMethods =
retrieved gold set methods

total number of gold set methods
(7.2)

Here we also provide a proxy for the effort that developers would need to spent if they

concentrate on the segments retrieved by SCAN rather than the entire trace. This estimate

of effort is expressed as the ratio of the number of methods to be analysed if analysing the

methods contained in the retrieved by SCAN segments and the entire trace. For the above

example, SCAN retrieves 5 segments with a total of 133 unique methods being called. The

trace consists of 479 unique methods being called thus resulting in a ratio of 0.27 (= 133/479),

i.e., 27%.

Finally, we also analyse how the recall varies when the number of terms in labels varies

from 10 to 100. Previously, we limited the number of words in a label to ten as we were seeking

to provide a concise summary of a segment—this constraint for conciseness was imposed by

the purpose of the label, i.e., help developers to quickly grasp the concepts of a segment. For

the purpose of automatic concept location, we increase the number of words as the labels will
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be used to automatically retrieve the relevant segments and thus a higher amount of terms

is not an issue.

7.3 Experiment Results and Discussions

This section reports the results of our experimental study to address the research questions

formulated in Section 7.2.

RQ1: Does SCAN has a potential to support concept location?

To answer this research question, we investigate whether multiple methods from the gold

set are grouped within the same segments. Thus, from the 131 traces of JabRef and mu-

Commander, we are interested in those containing at least two gold set methods, i.e., 65 of

those traces, see Tables 7.1. Table 7.3 shows statistics of the numbers of gold set methods

for those traces. We observe that the gold sets consist of around six methods on average, as

shown by the column Mean of Table 7.3.

Table 7.3 Number of gold set methods.

Program Min 1st Qu. Median Mean 3rd Qu. Max

JabRef 2 3 4 5.5 7 16

muCommander 2 2 3 6 7 35

Overall 2 2 3 5.9 7 35

Table 7.4 Distribution of the gold set methods across the segments.

Min 1st Qu. Median Mean 3rd Qu. Max

Number of segments containing the gold set 1 1 2 2.2 3 5

methods

Overall number of segments in a trace 14 30 38 35.9 41 68

Percentage of the size of the segments contai- 0% 1.56% 2.16% 2.48% 3.37% 6.47%

ning gold set methods (over the size of the

trace)

Unique number of methods appearing in seg- 0% 29.63% 44.77% 47.09% 61.92% 81.83%

ments required to understand (compared to

the unique number of methods required to

understand the entire trace)

Table 7.4 provides statistics on the distribution of the gold set methods across the different

segments of the traces. We observe that the gold set methods are usually concentrated in

only two segments, as shown by the column Mean of Table 7.4 (first row) while on average

the total number of segments for a trace is close to 36 (second row). Therefore, we conclude
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that, indeed, methods of the gold set are grouped into segments and thus SCAN has the

potential to guide developers to other methods useful to their concept location task.

As explained in Section 7.2, we also provide a rough estimate of the effort developers

would save if they focus their understanding activity on segments containing the gold set

methods rather than understanding the entire trace. The effort to understand a segment

(respectively, a complete trace) is estimated by the number of unique method calls in that

segment (respectively, trace). Table 7.4 presents statistics regarding the percentage of the

sizes of the segments containing the gold set methods with respect to the overall sizes of the

traces. The percentage is also provided in terms of unique methods. We conclude that the

size of the segments containing the gold set methods is smaller than 3% of the size of the

entire traces. If focusing the understanding on relevant segments only (i.e., those containing

methods from the gold set) rather than on the entire trace, we can reduce the number of

methods to analyse by about 47%.

Consider again the example shown in Figure 7.1. Rather than analysing the entire exe-

cution trace, the developers may focus on Segment 4, which provides the context in which

method isiAuthorsConvert(String) is called. By looking at the method calls in Segment 4,

they can understand that the author conversion is performed in the context of importing a

bibliographical entry. They can also realise that, in general, importing an ISI entry also re-

quires parsing the month and pages, which were not performed adequately. Hence, Segment

4 also contains other gold set methods, appearing at positions 1, 3, 4, 6, 7, 17, 18, 20, and

21, which were modified to fix problems in the import of an ISI entry, the parsing of month

and pages in particular, while fixing the author conversion.

We thus answer RQ1: Does SCAN has a potential to support concept location? SCAN has

the potential to be useful during concept location because it groups gold set methods in only

two segments in general. Assuming that the segments containing the gold set methods can

be retrieved, understanding those relevant segments saves about 53% of the methods that

developers would need to understand compared to the entire execution traces.

RQ2: To what extent does SCAN support concept location tasks if used as a

standalone technique?

In RQ1, we assumed that the results from a concept location technique are available and

that developers are guided by those results to select the segments to understand—segments

relevant to a given concept. However, such results may be unavailable and we are interested

to know whether we can retrieve the relevant segments even without such results.
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Table 7.5 shows the results of RecallSegments, i.e., the recall with respect to the segments

containing the gold set methods, for different sizes of the labels (we vary the size from 10 to

100, step by 10). We observe that, for example, when the maximum number of terms in a

label is 100, we can retrieve 75% of the segments containing the gold set methods; for 68%

of the traces, we retrieve all segments—i.e., 100% recall. The minimum retrieved segments is

0% because gold set methods are sometimes filtered in the preprocessing of the segmentation.

Table 7.5 RecallSegments: retrieving segments containing gold set methods.

Label Size Min 1st Qu. Median Mean 3rd Qu. Max

10 0% 0% 0% 35.48% 100% 100%

20 0% 0% 33.33% 45.22% 100% 100%

30 0% 0% 50% 50.86% 100% 100%

40 0% 0% 50% 56.55% 100% 100%

50 0% 28.57% 100% 64.59% 100% 100%

60 0% 33.33% 100% 67.41% 100% 100%

70 0% 50% 100% 73.18% 100% 100%

80 0% 50% 100% 74.31% 100% 100%

90 0% 50% 100% 74.31% 100% 100%

100 0% 50% 100% 75.08% 100% 100%

Table 7.6 RecallMethods: retrieving gold set methods.

Label Size Min 1st Qu. Median Mean 3rd Qu. Max

10 0% 0% 0% 36.05% 100% 100%

20 0% 0% 33.33% 43.26% 100% 100%

30 0% 0% 33.33% 46.72% 100% 100%

40 0% 0% 50% 53.27% 100% 100%

50 0% 20% 66.67% 58.88% 100% 100%

60 0% 33.33% 80% 62.36% 100% 100%

70 0% 33.33% 100% 68.18% 100% 100%

80 0% 33.33% 100% 69.24% 100% 100%

90 0% 33.33% 100% 69.24% 100% 100%

100 0% 33.33% 100% 70.01% 100% 100%

Table 7.6 shows RecallMethods, i.e., the recall with respect to the gold set methods (rather

than the segments that contain them). Thus, considering again the case where the number

of terms in a label is limited to 100, we observe that, on average, we retrieve 70% of the gold

set methods. Table 7.7 shows that analysing the retrieved segments represents on average

57% of the methods that one would have to understand to analyse the entire trace.

Finally, we observe that increasing the size of the labels leads to more gold set methods

and more segments that contain them to be retried. However, it also increases the number

of methods to be analysed.
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Table 7.7 Number of methods needed to understand the retrieved segments compared to the
number of methods needed to understand the entire trace.

Label Size Min 1st Qu. Median Mean 3rd Qu. Max

10 0% 0% 3.88% 27.05% 50.24% 81.83%

20 0% 0.32% 30.11% 33.39% 67.07% 81.83%

30 0% 1.65% 38.08% 37.2% 67.07% 81.83%

40 0% 22.57% 43.73% 42.66% 68.61% 81.83%

50 0% 25.5% 54.93% 47.78% 71.82% 81.83%

60 0% 31.99% 57.32% 50.6% 77.3% 82.85%

70 0% 35.74% 63.16% 53.75% 77.3% 82.85%

80 0% 40.79% 63.16% 54.4% 77.3% 82.85%

90 0% 44.78% 65.08% 55.76% 77.3% 82.85%

100 0% 49.31% 65.08% 56.56% 77.08% 82.85%

From Tables 7.5, 7.6 and 7.7, we conclude that a value ranging between 70 and 100 terms

in the labels seems to be optimal as it retrieves close to 74% of the segments containing the

gold set methods, which corresponds close to 69% of the gold set methods, while saving near

45% of the methods to analyse.

We thus answer RQ2: To what extent does SCAN support concept location tasks if used as

a standalone technique? When no technique is used to guide developers, SCAN can retrieve

relevant segments. For the analysed traces, the recall with respect to the gold set methods

is close to 69% while saving near 45% of the methods to analyse compared to the entire

execution traces.

7.3.1 Threats to Validity

This section discusses the threats to the validity of our evaluation.

In RQ1 and RQ2, we estimate a proxy of the effort a developer has to spend when

performing concept location in terms of the number of methods to be analysed. We are

aware that this is a roughly estimate, because the actual effort could involve many factors,

such as the length and complexity of those methods, the overall code complexity, quality of

the lexicon, experience of the developer, etc. However, in a context in which the impact set

will be determined by performing a basic understanding of each candidate method—e.g., by

looking at its signature and comments if any—such an approximation may result reasonable.
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7.4 Summary

In this chapter, we conducted a study aimed at investigating the usefulness of SCAN to

support concept location tasks. We investigated how SCAN could help in a concept location

task, when used in combination with a state-of-the-art concept location approach (RQ1),

or when used as a standalone approach (RQ2). Our conjecture was that methods relevant

for a concept would be grouped by SCAN in one or two segments and therefore limiting the

analysis to the methods in these segments would reduce the effort compared to analysing

the methods in the entire execution traces (RQ1). We also investigated whether SCAN is

able to automatically retrieve these relevant segments and whether analysing the retrieved

segments reduces the number of methods to be analysed compared to the entire execution

trace (RQ2). Results show that in general relevant methods are grouped in two segments and

analysing only those segments reduces about 53% of the methods that developers would need

to understand compared to the entire execution traces (RQ1). Results also show that, for

the analysed traces, SCAN can retrieve close to 69% of the relevant methods while reducing

the number of methods to analyse by 43% compared to analysing the entire traces (RQ2).

We showed that SCAN provides useful information to developers performing concept location

tasks: it provides relevant segments, labels for these segments, and relations among segments.

During maintenance, developers generally are interested to understand some segments of

the trace that implement concepts of interest. We proposed an approach that groups the

concepts to maintain in few segments (i.e., one or two). We showed also the usefulness of

our approach to facilitate maintenance tasks by guiding developers towards segments that

implement the concepts to maintain and reduce the number of methods to investigate.
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CHAPTER 8

Conclusion

Program comprehension activities are crucial and preliminary to any maintenance or

evolution tasks. Execution traces help developers to understand programs and relate methods

(and methods calls) with concepts. The problem is that execution traces are often overly

large and they cannot be used directly by developers for program comprehension activities,

in general, and concept location, in particular.

Concept location approaches typically use static and–or dynamic information extracted

from the source code of a program or from some execution traces to relate method calls

to concepts. Both static and dynamic techniques have some limitations. Recent works

focused on hybrid approaches integrating static and dynamic information to improve the

performance in time as well as precision and recall of the concept location process (Antoniol

et Guéhéneuc, 2005; Poshyvanyk et al., 2007; Rohatgi et al., 2008; Asadi et al., 2010b).

Several approaches use different techniques to locate concepts in source code and–or execution

traces, e.g., Antoniol et al. (2006) proposed an epidemiological metaphor to analyse source

code, Poshyvanyk et al. (2007) used latent-semantic indexing (LSI) to locate concept in source

code and execution traces, Rohatgi et al. (2008) used graph dependency ranking on static and

dynamic data, Pirzadeh and Hamou-Lhadj (2011) studied psychology laws describing how the

human brain groups similar methods in execution traces. None of the proposed approaches

provides a label (i.e., a set of terms) describing concepts implemented by segments or an

identification of the relations between the segments.

Developers generally are interested to understand some segments of the trace that im-

plement concepts of interest rather than to analyse in depth the entire execution trace.

Extracting the set of concepts from execution traces facilitates maintenance tasks by guiding

developers towards segments that implement the concepts to maintain. Our conjecture was

that a high-level description of the set of concepts implemented in an execution trace allows

developers to understand the execution trace and identify the segments implementing the

concepts to maintain.

To reduce the complexity of analysing execution traces, we automatically split them into

meaningful segments, each representing a concept. Then, we proposed SCAN, an approach

to assign labels to the identified segments. The labels allow developers to have an idea of

the concepts implemented by the segments and guide them towards segments implementing

the concepts to maintain. We identified the relations among trace segments to provide a
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high-level description of the concepts implemented in an execution trace. We showed that

SCAN is efficient for selecting the most important methods of a segment, labeling segments,

and identifying relations among segments. We showed also that the information provided by

SCAN is useful to developers performing concept location tasks.

8.1 Research Contributions

The main contributions of this dissertation are as follows:

– An execution traces segmentation approach that splits execution traces into segments

using dynamic programming (DP) algorithm. The proposed trace segmentation ap-

proach helps developers by reducing the number of methods to investigate using exe-

cution traces during maintenance tasks.

The results of this contribution were published in the proceedings of the 3rd Interna-

tional Symposium on Search-based Software Engineering (SSBSE’11) (Medini et al.,

2011).

– Labeling execution traces segments using Vector Space Model (VSM). The assigned

labels allow developers to have an idea of the concepts implemented by the segments

and guide them towards segments implementing the concepts to maintain. We presented

an evaluation of the performances of SCAN. We investigated SCAN capability to select

the most important methods of a segment and label segments. The results confirmed

the ability of SCAN to select the most representative methods of a segment. We also

showed that SCAN can automatically label segments when compared to the manual

labels produced by participants.

– Identifiying relations among segments using Formal Concept Analysis (FCA). We pro-

vided a high-level description of the concepts implemented in an execution trace by

identifying the relations among segments. We investigated SCAN capability to identify

relations among segments. Results showed that participants agreed with the identified

relations among segments identified by SCAN.

The results of the second and third contributions were published and received the best

paper award in the proceedings of the 19th Working Conference on Reverse Engineering

(WCRE’12) (Medini et al., 2012).

– A study of the usefulness of the automatic trace segmentation and labeling in the

context of concept location. We assessed whether SCAN supports concept location

tasks if used as a standalone technique in practice. The results showed that SCAN

can be useful during concept location because it groups gold set methods in only two

segments in general. Results showed also that SCAN supports concept location tasks
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if used as a standalone technique.

A part of the results of the three last contributions were published in the Journal of

Software: Evolution and Process 2014.

In the following, we explain these contributions in more detail.

Trace Segmentation

Developers generally are interested to understand some parts of the trace that imple-

ment the concept of interest rather than to analyse in-depth the entire execution trace. We

proposed a new technique based on dynamic programming (DP) to identify segments in

execution traces by finding cohesive and decoupled fragments of the execution trace. The

proposed trace segmentation simplified the comprehension of large execution traces and al-

lows developers to focus on segments to maintain and thus facilitate their maintenance tasks.

Differently to the previous approaches based on genetic algorithms (GA), our dynamic pro-

gramming (DP) approach can compute the exact solution to the trace segmentation problem.

We empirically compared the DP and GA approaches, using execution traces from ArgoUML

and JHotDraw, which were previously used to validate the GA approach (Asadi et al., 2010b).

Results indicated that the DP approach can achieve results similar to the GA approach in

terms of precision and recall when its segmentation is compared with a manually-built or-

acle. Results also showed that the DP approach has significantly better results in terms of

the optimum segmentation score vs. fitness function. More importantly, results showed that

DP reduces dramatically the time required to segment traces: where the GA approach would

take several minutes, even hours; the DP approach just takes a few seconds.

Labeling Trace Segments

We proposed SCAN (Segment Concept AssigNer) to assign labels to segments. The

assigned labels provide relevant information on the concepts implemented by segments to

help developers understand each segment.

We performed a manual validation on several traces of both JHotDraw and ArgoUML to

evaluate the accuracy and effectiveness of assigning meaningful sets of words representative of

the concepts implemented in segments. Results showed that SCAN was successful in assigning

labels very similar to manually-defined labels and that these labels actually correspond to

the concepts encountered in the segment based on documentation and method execution.

A segment manually labeled by one person may bias our evaluation of the labels gener-

ated by SCAN. To cope with this limitation, we performed an experiment to verify SCAN

capability to select the most important methods of a segment and to label segments by 31

participants for six Java programs (ArgoUML, JHotDraw, Mars, Maze, Neuroph, and Pooka).
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To evaluate the accuracy of SCAN to label segments, we analysed the labels of the trace seg-

ments generated by SCAN with respect to the labels produced by the participants. Results

of the empirical evaluation confirmed the ability of SCAN to select the most representative

methods of a segment, thus reducing on average up to 92% the information that partici-

pants must process while guaranteeing that close to 50% of the knowledge is preserved. We

also showed that SCAN can automatically label segments with 69% precision and 63% recall

when compared to the manual labels produced by the participants. Results also showed that

participants agreed at 63% with the identified relations among segments identified by SCAN.

Relating Trace Segments

We proposed to identify different relations between segments to provide a high-level de-

scription of the concepts implemented in the entire execution trace. Our approach allowed us

to detect relations between segments to automatically identify repeated computational phases

and to abstract them into macro-phases. The approach related (1) segments activating the

same concepts, (2) segments activating parts of concepts activated by other segments, and

(3) segments activating the same set of concepts. We performed an experiment to evaluate

SCAN capability to identify relations among segments against 31 participants on six Java

programs (ArgoUML, JHotDraw, Mars, Maze, Neuroph, and Pooka). Results showed that

participants agreed at 63% with the identified relations among segments identified by SCAN.

SCAN Usefulness Evaluation

We evaluated the usefulness of SCAN in the context of performing a concept location

task for two Java programs: JabRef and muCommander. Results showed that SCAN has

the potential to be useful during concept location because it groups gold set methods in only

two segments in general. To understand those relevant segments reduces 53% of the methods

that developers would need to understand compared to the entire execution traces. Results

showed also that SCAN support concept location tasks if used as a standalone technique.

The FCA lattice and the labeled segments produced by SCAN allows to retrieve 69% of the

relevant methods while still saving 43% of the effort needed to analyse the entire trace. We

concluded that SCAN provides useful information to developers performing concept location

tasks: it provides relevant segments, labels for these segments, and relations among segments.

8.2 Limitations

Despite the above promising contributions, our work has the following limitations that

should be addressed in the future:
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Limitation of Trace Segmentation

Parallel and distributed systems use hundreds of thousands of processors. The compre-

hension of the behavior of a massively parallel code is a challenge. However, our approach

cannot split parallel execution traces.

SCAN accepts as input one or more execution traces obtained by exercising some scenarios

in a program. In this thesis, an execution trace is represented as a sequence of methods called

during the execution of a scenario. However, SCAN is not available for operating system

execution traces, such as Linux traces, in which a trace is a sequence of system calls.

Although our trace segmentation approach outperformed the GA approach in terms of

computation times and fitness function values, we further studied the scalability of the DP

trace segmentation approach on large systems and observed that the DP trace segmentation

approach took about one day on traces of about 38,000 method invocations. We concluded

that the computation times increase with trace sizes.

We proposed an approach to split traces based on conceptual cohesion and coupling. The

trace segmentation proposed works offline, i.e., the traces are generated and saved. Our trace

segmentation require the entire execution trace to compute the cohesion and coupling and

thus split the trace. Thus, our trace segmentations could not split traces online.

To calculate the similarity of methods, we considered only the identifiers for splitting the

execution traces. The quality of identifiers plays also a role and affects the quality of the

obtained results. Many other factors could affects the similarity of methods and they are not

considered such as method calls or methods belonging to the same class affect.

Table 4.4 in Chapter 4 shows a lower precision of concepts when we used execution traces

with more than one concept. For example, the precision of “Draw Rectangle” concept of

JHotDraw of Scenario (2) and Scenario (3) are lower than the precision of “Draw Rectangle”

of Scenario (1) composed of one concept only. For ArgoUML also, the precision of “Create

Note” concept of Scenario (2) is lower than the precision of the same concept of Scenario

1 composed of one concept only. The DP approach exhibits a lower precision for a given

concept where an execution trace is composed of more than one concept than the precision

for the same concept where an execution trace is composed of only one concept.

Limitation of Labeling and Relating Segments

Because the trace segmentation proposed in this thesis works offline, then labeling would

also be performed offline. Yet, developers might need to perform labeling online.

Our approach defined a high-level description of the concepts implemented in the entire

execution trace by automatically identifying repeated computational phases and abstracting

them into macro-phases. We did not provide a visualisation of the extracted phases and
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macro-phases and of the identified relations between phases as shown in Figure 6.4 in Chap-

ter 6. Developers need such visualisation to quickly understand the set of concepts extracted

from execution traces.

SCAN uses method signature to extract relevant terms of a segment but sometimes we

notice a mismatch between the functionnalies of methods and their names. The presence of

short acronyms in method names could also generate labels containing short acronyms that

could not be understandable to developers. SCAN depends on the quality of method names

of programs. Low quality of method names will negatively impact the results by a low quality

of labels.

8.3 Future works

We describe our plan to extend the work presented in this dissertation by following:

Execution Trace Segmentation

As mentioned earlier, in this thesis, we only considered the similarity of methods to calcu-

late the exact splitting of the execution trace. The result might be improved if more informa-

tions are used. For example, right now, the fitness function has two factors (i.e.,conceptual

cohesion and coupling). One direction of future work is to investigate how other factors can

affect execution trace segmentation; for example, the nesting level of methods or methods

belonging to a same class. These factors would be to our conceptual cohesion and coupling

factors.

During the pruning of the execution trace, we removed the most frequent methods but

we did not garantee that we removed all low-level utilities. In the future, we must study the

impact of removing utility methods from execution traces before performing trace segmenta-

tion.

We believe that other problems, such as segmenting composed identifiers into component

terms, could be modelled using dynamic programming and, thus, that we should be careful

when analysing a problem: a different problem formulation may lead to surprisingly good

performances.

We observed that our execution trace segmentation approach based on DP improves the

previous GA results, despite the above mentioned limitations. As in previous work, we built

a term-document matrix using a LSI subspace size equal to 50 to calculate the similarity

between two methods. We plan to evaluate the accuracy of our execution trace segmentation

with respect to different LSI subspace sizes. We plan to apply splitting algorithm on execution

traces using different values of LSI subspace size and different programs.
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Labeling and Relating Trace Segments

After defining automatically execution trace phases, we plan to present a tool to draw a

flow diagram of phases with labels as shown in Figure 6.4. This diagram provides a high level

presentation of the context of the execution trace using useful information about phases.

We plan also to perform user studies in which developers use SCAN generated segments,

labels, phases and macro-phases of execution traces during their maintenance activities.

For example, we could group participants into two groups, G1 and G2. We would give

the segments (i.e., method calls) and the labels describing the concepts to G1 while we would

give only the segments to G2. Then, we could compare the performance of both groups to

see if the generated labels help developers to be more productive when solving maintenance

tasks.

Another direction of future work is to extend our approach (1) to identify execution

segments from parallel execution traces.

Because the trace segmentation proposed in this thesis works offline, then labeling would

be also performed offline. Developers might need to perform labeling online. Therefore, one

direction for future work would be to adapt our approach to online labeling of traces while

they are being generated.

Because the number of execution trace segments increases with the number of considered

objects, the scalability of our approach is threaten. It would be better to investigate more

the scalability of using formal concept analysis, such as to divide the relations identification

problem into sub-problems and identify the result by combining the solutions of the sub-

problems.

Manual labels contains the same keywords as SCAN generated labels but the manual

ones are more informative. Table 5.5 in Chapter 5 presented SCAN generated and manual

labels for the ArgoUML trace “New Class”. For example, in this table the SCAN generated

label is “vertex state meta mdr type impl” and the manual label is “Display the vertex

state” which is much more informative and helpful to developers. Using Natural Language

Processing (NLP) techniques, we plan to generate natural language sentences using terms of

the generated labels. Natural language sentences makes the generated labels more informative

and the produced segments better suitable for program comprehension activities. Also, we

will investigate the applicability of extracting labels as a re-documentation tool.

SCAN uses method signature to extract terms relevant to a segment but, sometimes,

we observed a mismatch between the functions of methods and their names. Because SCAN

depends on the quality of method names, low quality of method names will negatively impact

the results, yielding low quality labels. We plan to add other source of information, such as

emails, bug reports, and documentation of programs, to label segments.
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MEDINI, S., ANTONIOL, G., GUÉHÉNEUC, Y.-G., DI PENTA, M. et TONELLA, P.

(2012). SCAN: an approach to label and relate execution trace segments. Proceedings

of Working Conference on Reverse Engineering (WCRE). IEEE Computer Society Press,

135–144.

MEDINI, S., GALINIER, P., DI PENTA, M., GUÉHÉNEUC, Y.-G. et ANTONIOL, G.
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