
Evaluating Design
Decay during

Software Evolution

Salima Hassaine

Context and
Motivation

Evaluating Design
Decay

Change Impact
Analysis

Design Defects
Detection

Conclusion and
Future work

Evaluating Design Decay during
Software Evolution

Salima Hassaine

Under the supervision of:
Yann-Gaël Guéhéneuc1 and Sylvie Hamel2

1 Ptidej Team – DGIGL, École Polytechnique de Montréal, Canada
2 LBIT – DIRO, Université de Montréal, Canada

Ph.D. Defense
December 17th, 2012

Pattern Trace Identification,
Detection, and Enhancement in Java

Evaluating Design
Decay during

Software Evolution

Salima Hassaine

Context and
Motivation

Evaluating Design
Decay

Change Impact
Analysis

Design Defects
Detection

Conclusion and
Future work

Outline

1 Context and Motivation

2 Evaluating Design Decay

3 Change Impact Analysis

4 Design Defects Detection

5 Conclusion and Future work

2 / 64

Evaluating Design
Decay during

Software Evolution

Salima Hassaine

Context and
Motivation

Evaluating Design
Decay

Change Impact
Analysis

Design Defects
Detection

Conclusion and
Future work

Context and Motivation (1/7)

Software systems play a crucial role in modern societies.
They are everywhere from small game applications to
large embedded systems

Software developers build larger and more complex
software

3 / 64

Evaluating Design
Decay during

Software Evolution

Salima Hassaine

Context and
Motivation

Evaluating Design
Decay

Change Impact
Analysis

Design Defects
Detection

Conclusion and
Future work

Context and Motivation (2/7)

Software maintenance is the most costly and difficult
activity [1]

The maintenance effort has been estimated to be more
than 70% of the overall software development cost [1]

[1] Ian Sommerville. Software Engineering. Addison-Wesley, 6th edition, 2000.

4 / 64

Evaluating Design
Decay during

Software Evolution

Salima Hassaine

Context and
Motivation

Evaluating Design
Decay

Change Impact
Analysis

Design Defects
Detection

Conclusion and
Future work

Context and Motivation (3/7)

Software systems evolve continuously, requiring
continuous maintenance and development [2]

[2] M. M. Lehman. Laws of Software Evolution Revisited. In Proceedings of

the 5th European Workshop on Software Process Technology, 1996.

5 / 64

Evaluating Design
Decay during

Software Evolution

Salima Hassaine

Context and
Motivation

Evaluating Design
Decay

Change Impact
Analysis

Design Defects
Detection

Conclusion and
Future work

Context and Motivation (4/7)

Software design tends to decay with time and becomes
less adaptable to new requirements [3,4]

Design decay occurs when developers do not understand
the original design [4]

[3] Jilles van Gurp and Jan Bosch. Design erosion: problems and causes.
Journal of Systems and Software, 61(2): 105-119, 2002.

[4] David L. Parnas. Software aging. In Proceedings of the 16th International

Conference on Software Engineering, ICSE’94, 279-287, 1994.
6 / 64

Evaluating Design
Decay during

Software Evolution

Salima Hassaine

Context and
Motivation

Evaluating Design
Decay

Change Impact
Analysis

Design Defects
Detection

Conclusion and
Future work

Context and Motivation (5/7)

Future changes become more difficult and are more
likely to introduce new bugs [4]

Experience shows that 40% of bugs are introduced
while correcting previous bugs [5]

[4] David L. Parnas. Software aging. In Proceedings of the 16th International
Conference on Software Engineering, ICSE’94, 279-287, 1994.

[5] R. Purushothaman and D. E. Perry. Toward understanding the rhetoric of

small source code changes. IEEE Transactions on Software Engineering, 2005.

7 / 64

Evaluating Design
Decay during

Software Evolution

Salima Hassaine

Context and
Motivation

Evaluating Design
Decay

Change Impact
Analysis

Design Defects
Detection

Conclusion and
Future work

Context and Motivation (6/7)

Making changes without understanding their effects
may lead to the introduction of bugs [6]

Understanding change propagation requires source
code analysis, which is a difficult and error-prone
activity [7]

[6] S. A. Bohner and R. S. Arnold, Software Change Impact Analysis. IEEE
Computer Society Press, 1996

[7] S. Pfleeger, Software Engineering: Theory and Practice. PrenticeHall, 1998

8 / 64

Evaluating Design
Decay during

Software Evolution

Salima Hassaine

Context and
Motivation

Evaluating Design
Decay

Change Impact
Analysis

Design Defects
Detection

Conclusion and
Future work

Context and Motivation (7/7)

Developers who lack knowledge and experience may
introduce design defects [8]

Developers spend a lot of time in correcting defects
before completing a maintenance task [9]

[8] W. J. Brown et al. Anti Patterns: Refactoring Software, Architectures, and
Projects in Crisis. John Wiley and Sons, 1st edition, 1998

[9] Z. Xing. Analyzing the evolutionary history of the logical design of
object-oriented software. IEEE Transactions on Software Engineering, 2005

9 / 64

Evaluating Design
Decay during

Software Evolution

Salima Hassaine

Context and
Motivation

Evaluating Design
Decay

Change Impact
Analysis

Design Defects
Detection

Conclusion and
Future work

Motivating Example (1/2)

On 1998, Netscape decided to release their own browser
as open source. After 6 months, the developers decided
to start rewriting another version from scratch [3]

AOL announced that on February 1st , 2008 it would
drop support for the Netscape web browser and would
no longer develop new releases [10]

[3] Jilles van Gurp and Jan Bosch. Design erosion: problems and causes.
Journal of Systems and Software, 61(2): 105-119, 2002.

[10] http://blog.netscape.com

10 / 64

http://blog.netscape.com

Evaluating Design
Decay during

Software Evolution

Salima Hassaine

Context and
Motivation

Evaluating Design
Decay

Change Impact
Analysis

Design Defects
Detection

Conclusion and
Future work

Motivating Example (2/2)

It’s a large project, and it takes a long time for a new
developer to dive in and start contributing [11]

The code was too hard to modify ... when developers
try to make a small change and find that it’s taking
them longer than few hours, they give up [11]

[11] Web page of Jamie Zawinski: http://www.jwz.org/gruntle/nomo.html

11 / 64

http://www.jwz.org/gruntle/nomo.html

Evaluating Design
Decay during

Software Evolution

Salima Hassaine

Context and
Motivation

Evaluating Design
Decay

Change Impact
Analysis

Design Defects
Detection

Conclusion and
Future work

Thesis

Software maintenance is severally impacted by
design decay, uncontrolled changes, and
design defects. Therefore, to assist develop-
ers during software maintenance, we propose to
evaluate design decay, to analyse change
impact, and to detect design defects.

12 / 64

Evaluating Design
Decay during

Software Evolution

Salima Hassaine

Context and
Motivation

Evaluating Design
Decay

Change Impact
Analysis

Design Defects
Detection

Conclusion and
Future work

Contributions

(1) Design Decay Evaluation.
Developers should detect classes that are decaying.
These classes should be fixed to control their decay

(2) Change Impact Analysis.
Once developers decide which classes should be
fixed they can analyse the impact of their changes

(3) Design Defects Detection
Finally, developers should improve the quality of
software design by detecting design defects

13 / 64

Evaluating Design
Decay during

Software Evolution

Salima Hassaine

Context and
Motivation

Evaluating Design
Decay

Change Impact
Analysis

Design Defects
Detection

Conclusion and
Future work

Design Decay

“Design Decay is the deviation of actual or concrete
design from planned or conceptual design” [4]

“Design Decay is the cumulative, negative effect of
changes on the quality of a software system” [12]

[4] David L. Parnas. Software aging. In Proceedings of the 16th International
Conference on Software Engineering, ICSE’94, 279-287, 1994

[12] Van Gurp et al. Design preservation over subsequent releases of a
software product: a case study of Baan ERP. In Journal of Software
Maintenance and Evolution, 277-306, 2005

14 / 64

Evaluating Design
Decay during

Software Evolution

Salima Hassaine

Context and
Motivation

Evaluating Design
Decay

Change Impact
Analysis

Design Defects
Detection

Conclusion and
Future work

Our goal

Identification of structural changes that invalidate the
original design

Identification of stable and unstable of micro-designs

Evaluation of design decay

15 / 64

Evaluating Design
Decay during

Software Evolution

Salima Hassaine

Context and
Motivation

Evaluating Design
Decay

Change Impact
Analysis

Design Defects
Detection

Conclusion and
Future work

Approach ADvISE

Figure: Approach Overview
16 / 64

Evaluating Design
Decay during

Software Evolution

Salima Hassaine

Context and
Motivation

Evaluating Design
Decay

Change Impact
Analysis

Design Defects
Detection

Conclusion and
Future work

Step 1: Extraction of Class Diagrams

Figure: An example of class diagram (PADL Model [13])

[13] Yann-Gaël Guéhéneuc and Giuliano Antoniol. DeMIMA: A Multi-layered

Framework for Design Pattern Identification. IEEE Transactions on Software

Engineering, 2008

17 / 64

Evaluating Design
Decay during

Software Evolution

Salima Hassaine

Context and
Motivation

Evaluating Design
Decay

Change Impact
Analysis

Design Defects
Detection

Conclusion and
Future work

Step 2: Class Renaming Detection (1/4)

Figure: Example of class renaming

18 / 64

Evaluating Design
Decay during

Software Evolution

Salima Hassaine

Context and
Motivation

Evaluating Design
Decay

Change Impact
Analysis

Design Defects
Detection

Conclusion and
Future work

Step 2: Class Renaming Detection (2/4)

(1) Structural Similarity:

StrS(CA,CB) =
2× |S(CA) ∩ S(CB)|
|S(CA)|+ |S(CB)|

∈ [0, 1]

Example 1:
S(CA) ∩ S(CB) = {2 attribute types (String and double),
1 constructor, 2 methods (void method1(double) and
int method2()), 1 inheritance }.
|S(CA) ∩ S(CB)| = 6, |S(CA)| = 9, |S(CB)| = 6.

StrS(CA,CB) =
2× 6

9 + 6
= 0.80

19 / 64

Evaluating Design
Decay during

Software Evolution

Salima Hassaine

Context and
Motivation

Evaluating Design
Decay

Change Impact
Analysis

Design Defects
Detection

Conclusion and
Future work

Step 2: Class Renaming Detection (3/4)

(2) Camel Similarity

CamelS(CA,CB) =
2× |T (CA) ∩ T (CB)|
|T (CA)|+ |T (CB)|

∈ [0, 1]

Example 2:
T (CA) = {Horizontal, Axis}
T (CB) = {Horizontal, Category, Axis}.
|T (CA)| = 2, |T (CB)| = 3, |T (CA) ∩ T (CB)| = 2.

CamelS(CA,CB) =
2× 2

2 + 3
= 0.8

20 / 64

Evaluating Design
Decay during

Software Evolution

Salima Hassaine

Context and
Motivation

Evaluating Design
Decay

Change Impact
Analysis

Design Defects
Detection

Conclusion and
Future work

Step 2: Class Renaming Detection (4/4)

(3) Normal Edit Distance

ND(CA,CB) =
LEV (CA,CB)

length(CA) + length(CB)
∈ [0, 1]

Example 3:

ND(CA,CB) =
8

14 + 22
= 0.22

.

(4) Combination of all similarities:

(1) StrS(CA,CB)↗, CamelS(CA,CB)↗, ND(CA,CB)↘

(2) CamelS(CA,CB) ≥ 0.5, ND(CA,CB) ≤ 0.4

21 / 64

Evaluating Design
Decay during

Software Evolution

Salima Hassaine

Context and
Motivation

Evaluating Design
Decay

Change Impact
Analysis

Design Defects
Detection

Conclusion and
Future work

Step 3: Design Diagram Matching (1/2)

Generation of the String Representation (EPI tool [14])

(a) Class Diagram (b) Eulerian Model

(c) Generating the string representation

[14] O. Kaczor, Y.-G. Guéhéneuc, and S. Hamel, Efficient identification of

design patterns with bit-vector algorithm, In Proceedings of the 10th European

Conference on Software Maintenance and Reengineering, pp.175–184, 2006.

22 / 64

Evaluating Design
Decay during

Software Evolution

Salima Hassaine

Context and
Motivation

Evaluating Design
Decay

Change Impact
Analysis

Design Defects
Detection

Conclusion and
Future work

Step 3: Design Diagram Matching (2/2)

Bit-Vector Algorithm

Input: List of class renamings and string representations
of program versions

Output: Sets of triplets stables/unstables

23 / 64

Evaluating Design
Decay during

Software Evolution

Salima Hassaine

Context and
Motivation

Evaluating Design
Decay

Change Impact
Analysis

Design Defects
Detection

Conclusion and
Future work

Step 4: Design Diagram Clustering

Figure: Example of Clustering, each Cluster represents a SµD

24 / 64

Evaluating Design
Decay during

Software Evolution

Salima Hassaine

Context and
Motivation

Evaluating Design
Decay

Change Impact
Analysis

Design Defects
Detection

Conclusion and
Future work

Step 5: Design Decay Evaluation

Tunnel Triplets Metric (TTM(i))

STunnel (i) = {T ∈ Triplets|T ∈ Vj , ∀j ∈ [0, i]}}

TTM(i) = |STunnel(i)|

Common Triplets Metric (CTM(i,j))

ST (i , j) = {T ∈ Triplets|T ∈ Vn,∀n ∈ [k, j],∃k ∈ [i , j [}

CTM(i , j) = |ST (i , j)|

where Triplets is the set of all triplets T = (CSource ,R,CTarget).

25 / 64

Evaluating Design
Decay during

Software Evolution

Salima Hassaine

Context and
Motivation

Evaluating Design
Decay

Change Impact
Analysis

Design Defects
Detection

Conclusion and
Future work

Empirical Study Design

System Releases
Entities Bit-vectors History

(in classes) (in bits) (in releases)

ArgoUML
v0.10.1 1447 12,265,560

17
v0.34 1984 105,456,260

DNSjava
v1.2.0 164 49,759

33
v2.1.3 124 93,067

JFreeChart
v0.5.6 100 87,227

51
v1.0.13 778 1,089,345

Rhino
v1.5.R1 163 40,803

11
v1.6.R5 449 266,265

XercesJ
v1.0. 296 162,583

36
v2.9.0 697 1,195,353

Table: Statistics for the first and last version of each system

26 / 64

Evaluating Design
Decay during

Software Evolution

Salima Hassaine

Context and
Motivation

Evaluating Design
Decay

Change Impact
Analysis

Design Defects
Detection

Conclusion and
Future work

Results (1/6)

RQ1: What are the thresholds for class renaming
detection?

(a) F-measure (Camel Similarity)

(b) F-measure (Normalized Edit Distance)27 / 64

Evaluating Design
Decay during

Software Evolution

Salima Hassaine

Context and
Motivation

Evaluating Design
Decay

Change Impact
Analysis

Design Defects
Detection

Conclusion and
Future work

Results (2/6)

RQ2: What is the efficiency of ADvISE for class
renaming detection in a software system?

Systems Similarities CamelS ND StrS Combination

JFreeChart Precision 65.90% 77.27% 72.72% 95.45%
v0.5.6-v1.0.13 Recall 67.41% 79.06% 74.41% 97.67%

XercesJ Precision 84.61% 38.46% 57.69% 92.30%
v1.0.1-v2.9.0 Recall 88.00% 40.00% 60.00% 96.00%

28 / 64

Evaluating Design
Decay during

Software Evolution

Salima Hassaine

Context and
Motivation

Evaluating Design
Decay

Change Impact
Analysis

Design Defects
Detection

Conclusion and
Future work

Results (3/6)

RQ3: What are signs of design decay and how can they
be tracked down?

XercesJ 1.4.4 – 2.0.0: “XercesJ 2.0.0 is a nearly
complete rewrite of the XercesJ 1.x code base to make
the code cleaner, more modular, and easier to maintain.
It includes a completely redesigned and rewritten XML
Schema validation engine”

29 / 64

Evaluating Design
Decay during

Software Evolution

Salima Hassaine

Context and
Motivation

Evaluating Design
Decay

Change Impact
Analysis

Design Defects
Detection

Conclusion and
Future work

Results (4/6)

RQ3: What are signs of design decay and how can they
be tracked down?

Rhino 1.5R5 – 1.6R1: Rhino 1.6R1 as the new major
release of Rhino, there are important changes in Rhino
1.6R1, “... without affecting the existing code base”

30 / 64

Evaluating Design
Decay during

Software Evolution

Salima Hassaine

Context and
Motivation

Evaluating Design
Decay

Change Impact
Analysis

Design Defects
Detection

Conclusion and
Future work

Results (5/6)

RQ4: Do stable and decaying micro-designs have the
same bug-proneness?

Bug-prone classes Clean classes

DµA 973 763
SµA 148 301

Fisher’s test (p − value) 2.2e−16

Odd-ratio (OR) 2.59

RQ5: Do stable and decaying micro-designs have the
same design defect-proneness?

Design defect-prone classes Clean classes

DµD 1305 431
SµD 210 239

Fisher’s test (p − value) 2.2e−16

Odd-ratio (OR) 3.44

Table: Contingency tables (ArgoUML) and Fisher’s test

31 / 64

Evaluating Design
Decay during

Software Evolution

Salima Hassaine

Context and
Motivation

Evaluating Design
Decay

Change Impact
Analysis

Design Defects
Detection

Conclusion and
Future work

Results (6/6)

RQ6: How effective is ADvISE?

Pre-processing ADvISE
Systems PADL EPI Step 2 Step 3 Step 4 Step 5

ArgoUML 7.047 18,098.000 4.835 10.651 10.140 908.329
DNSjava 2.249 44.209 0.862 0.935 0.075 7.150
JFreeChart 2.197 62.268 3.135 1.907 0.099 50.030
Rhino 2.150 50.350 1.783 0.450 0.064 7.985
XercesJ 4.520 179.410 1.273 0.549 0.032 15.488

Median 2.249 62.268 1.783 0.935 0.075 15.488
Average 3.632 3,686.840 2.377 2.898 2.082 197.796

Table: Execution time (in seconds) for each step of ADvISE

32 / 64

Evaluating Design
Decay during

Software Evolution

Salima Hassaine

Context and
Motivation

Evaluating Design
Decay

Change Impact
Analysis

Design Defects
Detection

Conclusion and
Future work

Lessons learned ...

Our metrics provide valuable insight about design decay

If TTM decreased, then the original design decayed
If TTM is stable, then the original design is stable
If CTM increased, then there are new requirements
If CTM is stable, then the system is stable and the most
of maintenance activities are bug fixes

Decaying classes are more bug-prone and
defect-prone than stable classes

Class renamings detection has good precision/recall

Design diagram matching using Bit-vector is efficient

33 / 64

Evaluating Design
Decay during

Software Evolution

Salima Hassaine

Context and
Motivation

Evaluating Design
Decay

Change Impact
Analysis

Design Defects
Detection

Conclusion and
Future work

Contributions

(1) Design Decay Evaluation
Developers should detect classes that are decaying.
These classes should be fixed to control their decay

(2) Change Impact Analysis
Once developers decide which classes should be
fixed they can analyse the impact of their changes

(3) Design Defects Detection
Finally, developers should improve the quality of
software design by detecting design defects

34 / 64

Evaluating Design
Decay during

Software Evolution

Salima Hassaine

Context and
Motivation

Evaluating Design
Decay

Change Impact
Analysis

Design Defects
Detection

Conclusion and
Future work

Change Impact Analysis

Change impact analysis is defined by Bohner and
Arnold [15] as “identifying the potential consequences of
a change, or estimating what needs to be modified to
accomplish a change”.

[15] S. A. Bohner and R. S. Arnold, Software Change Impact Analysis. IEEE
Computer Society Press, 1996.

35 / 64

Evaluating Design
Decay during

Software Evolution

Salima Hassaine

Context and
Motivation

Evaluating Design
Decay

Change Impact
Analysis

Design Defects
Detection

Conclusion and
Future work

Existing approaches (1/3)

Structure-based Analysis

Dependency analysis of source code is performed using
static or dynamic program analyses

The relationships between classes make change impact
difficult to anticipate (e.g., hidden propagation)

[15] S. A. Bohner and R. S. Arnold, Software Change Impact Analysis. IEEE
Computer Society Press, 1996

[16] J. Law et al., Whole program Path-Based dynamic impact analysis. In
proceedings of ICSE, 2003

[17] X. Zhang et al., A study of effectiveness of dynamic slicing in locating
real faults. Journal of Empirical Software Engineering, 2007

36 / 64

Evaluating Design
Decay during

Software Evolution

Salima Hassaine

Context and
Motivation

Evaluating Design
Decay

Change Impact
Analysis

Design Defects
Detection

Conclusion and
Future work

Existing approaches (2/3)

History-based Analysis
Mining software repositories to identify co-changes of
software artefacts within a change-set
It is often able to capture change couplings that cannot
be captured by static and dynamic analyses

They lack to capture how changes are spread over space
(e.g., class diagram) V They could not help developers
prioritise their changes according to the forecast scope
of changes

[18] T. Zimmermann et al., Mining Version Histories to Guide Software
Changes. In proceedings of ICSE, 2004

[19] Annie T. Ying et al., Source code that talks: an exploration of Eclipse
task comments and their implication to repository mining. MSR, 2005

[20] S. Bouktif et al., Extracting Change-patterns from CVS Repositories. In
proceedings of WCRE, 2006

37 / 64

Evaluating Design
Decay during

Software Evolution

Salima Hassaine

Context and
Motivation

Evaluating Design
Decay

Change Impact
Analysis

Design Defects
Detection

Conclusion and
Future work

Existing approaches (3/3)

Probabilistic Approaches
Building change propagation models to predict future
change couplings using probabilistic tools (e.g.,
Bayesian Networks, Time Series Analysis, etc.)

They lack to capture how changes are spread over space
(e.g., class diagram) V They could not help developers
prioritise their changes according to the forecast scope
of changes

[21] S. Mirarab et al., Using Bayesian Belief Networks to Predict Change
Propagation in Software Systems. In Proceedings of ICPC, 2007

[22] Y. Zhou et al., A Bayesian Network Based Approach for Change Coupling
Prediction. In Proceedings of WCRE, 2008

[23] M. Ceccarelli et al., An eclectic approach for change impact analysis. In
Proceedings of ICSE, 2010

38 / 64

Evaluating Design
Decay during

Software Evolution

Salima Hassaine

Context and
Motivation

Evaluating Design
Decay

Change Impact
Analysis

Design Defects
Detection

Conclusion and
Future work

Approach: Seismology-inspired Metaphor

Active seismic areas “Important” classes
Earthquake Software change
Epicenter “Important” changed class
Seismic wave propagation Change propagation
Damaged sites “Impacted” classes
Distance from an epicenter Class level

39 / 64

Evaluating Design
Decay during

Software Evolution

Salima Hassaine

Context and
Motivation

Evaluating Design
Decay

Change Impact
Analysis

Design Defects
Detection

Conclusion and
Future work

Step 1: Identifying the most important classes

40 / 64

Evaluating Design
Decay during

Software Evolution

Salima Hassaine

Context and
Motivation

Evaluating Design
Decay

Change Impact
Analysis

Design Defects
Detection

Conclusion and
Future work

Step 2: Identifying class levels

Bit-Vector Algorithm

Input:

The Epicenter Class (e.g., class A)
The String Representation of the program

Output:

Class levels (e.g., Level0 = {A}, Level1 = {B,F},
Level2 ={D,E ,C}, Level3 = {G})

41 / 64

Evaluating Design
Decay during

Software Evolution

Salima Hassaine

Context and
Motivation

Evaluating Design
Decay

Change Impact
Analysis

Design Defects
Detection

Conclusion and
Future work

Step 3: Identifying impacted classes

42 / 64

Evaluating Design
Decay during

Software Evolution

Salima Hassaine

Context and
Motivation

Evaluating Design
Decay

Change Impact
Analysis

Design Defects
Detection

Conclusion and
Future work

Empirical Study Results (1/2)

RQ1: Does our metaphor allow us to observe the scope
of change propagation?

(e) class XMLEventImpl (f) class TypeValidator

Figure: Change propagation

Epicenter class XMLEntityScanner: we found the bug
ID1099 that relate the changes to the epicenter class
with changes to XMLParser (level 3).

43 / 64

Evaluating Design
Decay during

Software Evolution

Salima Hassaine

Context and
Motivation

Evaluating Design
Decay

Change Impact
Analysis

Design Defects
Detection

Conclusion and
Future work

Empirical Study Results (2/2)

RQ2: What is the level most impacted by a change?

Homogenous subsets for alpha = 0.1
Levels Range 1 Range 2 Range 3
6 6.4015
5 10.8485
4 24.8333
3 50.2789
2 83.7273
1 895.2652

Table: Xerces-J: Duncan’s test applied on “number of changes”

RQ3: What is the farthest reached level by a change?

Homogenous subsets for alpha = 0.1
Max Level Range 1 Range 2 Range 3
6 10.5333
5 16.3333
4 21.6667
3 30.0033
2 43.2000
1 54.8667

Table: Xerces-J: Duncan’s test applied on “number of earthquakes”
44 / 64

Evaluating Design
Decay during

Software Evolution

Salima Hassaine

Context and
Motivation

Evaluating Design
Decay

Change Impact
Analysis

Design Defects
Detection

Conclusion and
Future work

Lessons learned ...

Seismology provides an interesting metaphor for
identifying the scope of change propagation

The scope of change propagation could reach the 6th

level. Thus, our intuition, about the impacted classes by
a change must be near to the changed class, is incorrect
in some cases

Identifying the scope of change propagation could help
developers to rapidly pinpoint the source of a bug by
only analysing the indicated levels in priority instead of
inspecting all the source code

45 / 64

Evaluating Design
Decay during

Software Evolution

Salima Hassaine

Context and
Motivation

Evaluating Design
Decay

Change Impact
Analysis

Design Defects
Detection

Conclusion and
Future work

Contributions

(1) Design Decay Evaluation
Developers should detect classes that are decaying.
These classes should be fixed to control their decay

(2) Change Impact Analysis
Once developers decide which classes should be
fixed they can analyse the impact of their changes

(3) Design Defects Detection
Finally, developers should improve the quality of
software design by detecting design defects

46 / 64

Evaluating Design
Decay during

Software Evolution

Salima Hassaine

Context and
Motivation

Evaluating Design
Decay

Change Impact
Analysis

Design Defects
Detection

Conclusion and
Future work

Design Defects

Design Defects are“bad solutions to recurring software
design and implementation problems. They are
conjectured to have a negative impact on the quality
and life-time of systems” [6,8]

[8] W. J. Brown et al. Anti Patterns: Refactoring Software, Architectures, and
Projects in Crisis. John Wiley and Sons, 1st edition, 1998.

[24] M. Fowler. Refactoring – Improving the Design of Existing Code.

Addison-Wesley, 1st edition, 1999.

47 / 64

Evaluating Design
Decay during

Software Evolution

Salima Hassaine

Context and
Motivation

Evaluating Design
Decay

Change Impact
Analysis

Design Defects
Detection

Conclusion and
Future work

Existing approaches (1/4)

DECOR: Rule Cards based on fixed threshold
Cannot report accurate information for borderline
classes (Submarine effect)
Requires experts’knowledge and interpretation to define
the rule cards

[25] N. Moha et al., DECOR: A Method for the Specification and Detection of

Code and Design Smells. In journal of TSE, 2009

48 / 64

Evaluating Design
Decay during

Software Evolution

Salima Hassaine

Context and
Motivation

Evaluating Design
Decay

Change Impact
Analysis

Design Defects
Detection

Conclusion and
Future work

Existing approaches (2/4)

BBN: returns the probabilities of classes to be
antipatterns but...

Input Nodes: characterizations of the design of a class.
Output Nodes: probability that the class is an
antipattern
Requires experts’knowledge to define a learning
structure

[26] F. Khomh et al., A Bayesian Approach for the Detection of Code and

Design Smells. In Proceedings of QSIC, 2009

49 / 64

Evaluating Design
Decay during

Software Evolution

Salima Hassaine

Context and
Motivation

Evaluating Design
Decay

Change Impact
Analysis

Design Defects
Detection

Conclusion and
Future work

Existing approaches (3/4)

ABS (Antipattern identification using B-Splines)
A class is modeled using specific interpolation curves
(i.e., B-splines) of plots mapping metrics and their
values for the class
Focuses on detecting one kind of design smells at a time

[27] R. Oliveto et al., Numerical Signatures of Antipatterns: An Approach

based on B-Splines. In Proceedings of CSMR, 2010

50 / 64

Evaluating Design
Decay during

Software Evolution

Salima Hassaine

Context and
Motivation

Evaluating Design
Decay

Change Impact
Analysis

Design Defects
Detection

Conclusion and
Future work

Existing approaches (4/4)

Kessentini et al: returns the risk of classes but...
Input: characterizations of a good design...
Output: risk that the class is an antipattern
There is no guarantee of obtaining the same results for
different runs

[28] M. Kessentini et al., Deviance from perfection is a better criterion than
closeness to evil when identifying risky code. In Proceedings of ASE, 2010

51 / 64

Evaluating Design
Decay during

Software Evolution

Salima Hassaine

Context and
Motivation

Evaluating Design
Decay

Change Impact
Analysis

Design Defects
Detection

Conclusion and
Future work

Approach: Immune-inspired Metaphor

Concepts of Immune System
In Biology In Software

Body Software design
Immune system Design defects detection approach
Antigen Sequence of quality metrics
Antibody Known pattern of quality metrics values (Defect Class)
Affinity Similarity measure between sets of metrics values

Table: Instantiation of an AIS to detect design defects
52 / 64

Evaluating Design
Decay during

Software Evolution

Salima Hassaine

Context and
Motivation

Evaluating Design
Decay

Change Impact
Analysis

Design Defects
Detection

Conclusion and
Future work

Clonal Selection Principle in Biology

53 / 64

Evaluating Design
Decay during

Software Evolution

Salima Hassaine

Context and
Motivation

Evaluating Design
Decay

Change Impact
Analysis

Design Defects
Detection

Conclusion and
Future work

Artificial Immune System

Encoding of Antigens and Antibodies
Vector X = {x1, x2, ..., xn, y}, where xi is a real number
representing a quality metric (xi ∈ R for i ∈ [1..n]), and
y = {+1, 1} is a label (defect class or clean class)

Affinity Measure (Euclidean Distance (ED))
Between an Antigen=(ag1, ag2, ..., agk) and an
Antibody=(ab1, ab2, ..., abk), given by

ED(Ag ,Ab) =

√√√√ k∑
i=1

(agi − abi)2

54 / 64

Evaluating Design
Decay during

Software Evolution

Salima Hassaine

Context and
Motivation

Evaluating Design
Decay

Change Impact
Analysis

Design Defects
Detection

Conclusion and
Future work

CLONALG Algorithm

55 / 64

Evaluating Design
Decay during

Software Evolution

Salima Hassaine

Context and
Motivation

Evaluating Design
Decay

Change Impact
Analysis

Design Defects
Detection

Conclusion and
Future work

Empirical Study

Numbers of
Classes KLOCs Blobs FDs SCs

Gantt Project 188 31 4 4 4
XercesJ 589 240 15 15 18
Total 777 271 19 19 22

Table: System characteristics

56 / 64

Evaluating Design
Decay during

Software Evolution

Salima Hassaine

Context and
Motivation

Evaluating Design
Decay

Change Impact
Analysis

Design Defects
Detection

Conclusion and
Future work

Empirical Study Results (1/3)

RQ1: To what extent an AIS-based approach can
detect design defects in a system?

Numbers of
Design Defects False Positives Precisions Recalls

Subset 1 16 1 94.11% 100%
Subset 2 16 2 88.23% 100%
Subset 3 16 2 88.23% 100%
Average 90.19% 100%

Table: Intra-system detection on XercesJ: 3-fold cross validation

Numbers of
Design Defects False Positives Precisions Recalls

GanttProject
20 7 65.0% 100%

(on XercesJ)
XercesJ

54 10 81.48% 100%
(on GanttProject)

Table: Inter-system detection, trained on Blobs, FDs and SCs

57 / 64

Evaluating Design
Decay during

Software Evolution

Salima Hassaine

Context and
Motivation

Evaluating Design
Decay

Change Impact
Analysis

Design Defects
Detection

Conclusion and
Future work

Empirical Study Results (2/3)

RQ2: Is our approach better than state of-the-art
approaches, such as DECOR and BBNs?

GanttProject XercesJ
DECORE 26.73% 36.22%
BBN 57.10% 36.50%
IDS 65.00% 81.48%

Table: Results of comparing the detection approaches

58 / 64

Evaluating Design
Decay during

Software Evolution

Salima Hassaine

Context and
Motivation

Evaluating Design
Decay

Change Impact
Analysis

Design Defects
Detection

Conclusion and
Future work

Lessons learned ...

The immune system provides an interesting metaphor
for detecting design defects

The CLONALG algorithm provides good performance in
time, precision, and recall

The CLONALG algorithm detects design defects in
general: although we train our approach on only three
kinds of design defects, it can detect any kind of design
defects

59 / 64

Evaluating Design
Decay during

Software Evolution

Salima Hassaine

Context and
Motivation

Evaluating Design
Decay

Change Impact
Analysis

Design Defects
Detection

Conclusion and
Future work

Conclusion

Stable designs are easier to implement, change, and
maintain

Decaying classes are more bug-prone and defect-prone
than stable classes

The detection of decaying designs early in the process
substantially reduce the cost of subsequent steps of
software development

Design decay is inevitable, but it can be slow down if we
control software changes and software quality

60 / 64

Evaluating Design
Decay during

Software Evolution

Salima Hassaine

Context and
Motivation

Evaluating Design
Decay

Change Impact
Analysis

Design Defects
Detection

Conclusion and
Future work

Future work (Short Term)

Design Decay Evaluation

Analysing class renamings

Investigating other metrics to estimate the “mortality”
rate of classes

Change Impact Analysis

Applying our approach on other systems to compute its
precision and recall

Artificial Immune Systems

Comparing our approach with other machine learning
techniques, such as support vector machine, and to
further study the parameters of the approach, including
refining the choice of characteristics of classes

61 / 64

Evaluating Design
Decay during

Software Evolution

Salima Hassaine

Context and
Motivation

Evaluating Design
Decay

Change Impact
Analysis

Design Defects
Detection

Conclusion and
Future work

Future work (Long Term)

Design Decay Evaluation

Identifying refactoring opportunities to fix decaying
designs

Change Impact Analysis

Predicting futures changes using seismology metaphore

Studying the type of changes which favors change
propagation

Artificial Immune Systems

Predicting changes which lead to the introduction of
bugs

62 / 64

Evaluating Design
Decay during

Software Evolution

Salima Hassaine

Context and
Motivation

Evaluating Design
Decay

Change Impact
Analysis

Design Defects
Detection

Conclusion and
Future work

Publications

Journal Papers
1. Salima Hassaine, Fehmi Jaafar, Yann-Gäel Guéhéneuc, Sylvie Hamel

and Bram Adams (submitted on 2012). Evaluating Design Decay during
Software Evolution, Journal of Empirical Software Engineering (EMSE),
36 pages

Conference Papers

1. Fehmi Jaafar, Salima Hassaine, Yann-Gäel Guéhéneuc, Sylvie Hamel
and Bram Adams (2013). Program Evolution and Bug-proneness: An
Empirical Study. CSMR’13.

2. Salima Hassaine, Yann-Gäel Guéhéneuc, and Sylvie Hamel and Giulio
Antoniol (2012). ADvISE: Architectural Decay In Software Evolution.
CSMR’12.

3. Salima Hassaine, Ferdaous Boughanmi, Yann-Gäel Guéhéneuc, and
Sylvie Hamel and Giulio Antoniol (2011). A Seismology-inspired
Approach for Change Impact Analysis. ICSM’11.

4. Salima Hassaine, Ferdaous Boughanmi, Yann-Gäel Guéhéneuc, and
Sylvie Hamel and Giuliano Antoniol (2011). Change Impact Analysis :
An earthquake Metaphor. ICPC’11.

5. Salima Hassaine, Foutse Khomh, Yann-Gaël Guéhéneuc, and Sylvie
Hamel (2010). IDS: An Immunology-inspired Approach for the
Detection of Software Design Smells. QUATIC’10.

63 / 64

Evaluating Design
Decay during

Software Evolution

Salima Hassaine

Context and
Motivation

Evaluating Design
Decay

Change Impact
Analysis

Design Defects
Detection

Conclusion and
Future work

Thesis

Software maintenance is severally impacted by
design decay, uncontrolled changes, and
design defects. Therefore, to assist develop-
ers during software maintenance, we propose to
evaluate design decay, to analyse change
impact, and to detect design defects.

64 / 64

	Context and Motivation
	Evaluating Design Decay
	Change Impact Analysis
	Design Defects Detection
	Conclusion and Future work

