
Université de Montréal

Evaluating Design Decay during Software Evolution

par
Salima Hassaine

Département d’informatique et de recherche opérationnelle
Faculté des arts et des sciences

Thèse présentée à la Faculté des arts et des sciences
en vue de l’obtention du grade de Philosophiæ Doctor (Ph.D.)

en Informatique

Août, 2012

c⃝ Hassaine, 2012

Université de Montréal
Faculté des arts et des sciences

Cette thèse intitulée:

Evaluating Design Decay during Software Evolution

présentée par :

Salima Hassaine

a été évaluée par un jury composé des personnes suivantes :

Président-rapporteur : Guy Lapalme

Directeur de recherche : Yann-Gaël Guéhéneuc

Codirectrice : Sylvie Hamel

Membre du jury : Bruno Dufour

Examinateur externe : David W. Binkley

Représentant du doyen de la FAS :

RÉSUMÉ

Les logiciels sont en constante évolution, nécessitant une maintenance et un

développement continus. Ils subissent des changements tout au long de leur vie,

que ce soit pendant l’ajout de nouvelles fonctionnalités ou la correction de bogues

dans le code. Lorsque ces logiciels évoluent, leurs architectures ont tendance à se

dégrader avec le temps et deviennent moins adaptables aux nouvelles spécifications

des utilisateurs. Elles deviennent plus complexes et plus difficiles à maintenir. Dans

certains cas, les développeurs préfèrent refaire la conception de ces architectures

à partir du zéro plutôt que de prolonger la durée de leurs vies, ce qui engendre

une augmentation importante des coûts de développement et de maintenance. Par

conséquent, les développeurs doivent comprendre les facteurs qui conduisent à la

dégradation des architectures, pour prendre des mesures proactives qui facilitent

les futurs changements et ralentissent leur dégradation.

La dégradation des architectures se produit lorsque des développeurs qui ne

comprennent pas la conception originale du logiciel apportent des changements au

logiciel. D’une part, faire des changements sans comprendre leurs impacts peut

conduire à l’introduction de bogues et à la retraite prématurée du logiciel. D’autre

part, les développeurs qui manquent de connaissances et–ou d’expérience dans la

résolution d’un problème de conception peuvent introduire des défauts de con-

ception. Ces défauts ont pour conséquence de rendre les logiciels plus difficiles à

maintenir et évoluer. Par conséquent, les développeurs ont besoin de mécanismes

pour comprendre l’impact d’un changement sur le reste du logiciel et d’outils pour

détecter les défauts de conception afin de les corriger.

Dans le cadre de cette thèse, nous proposons trois principales contributions.

La première contribution concerne l’évaluation de la dégradation des architectures

logicielles. Cette évaluation consiste à utiliser une technique d’appariement de dia-

grammes, tels que les diagrammes de classes, pour identifier les changements struc-

turels entre plusieurs versions d’une architecture logicielle. Cette étape nécessite

l’identification des renommages de classes. Par conséquent, la première étape de

notre approche consiste à identifier les renommages de classes durant l’évolution de

l’architecture logicielle. Ensuite, la deuxième étape consiste à faire l’appariement

de plusieurs versions d’une architecture pour identifier ses parties stables et celles

iii

qui sont en dégradation. Nous proposons des algorithmes de bit-vecteur et de

clustering pour analyser la correspondance entre plusieurs versions d’une archi-

tecture. La troisième étape consiste à mesurer la dégradation de l’architecture

durant l’évolution du logiciel. Nous proposons un ensemble de métriques sur les

parties stables du logiciel, pour évaluer cette dégradation. La deuxième contri-

bution est liée à l’analyse de l’impact des changements dans un logiciel. Dans

ce contexte, nous présentons une nouvelle métaphore inspirée de la séismologie

pour identifier l’impact des changements. Notre approche considère un change-

ment à une classe comme un tremblement de terre qui se propage dans le logiciel

à travers une longue châıne de classes intermédiaires. Notre approche combine

l’analyse de dépendances structurelles des classes et l’analyse de leur historique

(les relations de co-changement) afin de mesurer l’ampleur de la propagation du

changement dans le logiciel, i.e., comment un changement se propage à partir de

la classe modifiée à d’autres classes du logiciel. La troisième contribution concerne

la détection des défauts de conception. Nous proposons une métaphore inspirée

d’un système immunitaire naturel. Comme toute créature vivante, la conception

de systèmes est exposée aux maladies, qui sont des défauts de conception. Les

approches de détection sont des mécanismes de défense pour les conception des

systèmes. Un système immunitaire naturel peut détecter des pathogènes similaires

avec une bonne précision. Cette bonne précision a inspiré une famille d’algorithmes

de classification, appelés systèmes immunitaires artificiels (AIS), que nous utilisions

pour détecter les défauts de conception.

Les différentes contributions ont été évaluées sur des logiciels libres orientés ob-

jets et les résultats obtenus nous permettent de formuler les conclusions suivantes:

• Les métriques Tunnel Triplets Metric (TTM) et Common Triplets Metric

(CTM), fournissent aux développeurs de bons indices sur la dégradation de

l’architecture. La décroissance de TTM indique que la conception originale

de l’architecture s’est dégradée. La stabilité de TTM indique la stabilité de

la conception originale, ce qui signifie que le système est adapté aux nouvelles

spécifications des utilisateurs.

• La séismologie est une métaphore intéressante pour l’analyse de l’impact

des changements. En effet, les changements se propagent dans les systèmes

iv

comme les tremblements de terre. L’impact d’un changement est plus im-

portant autour de la classe qui change et diminue progressivement avec la

distance à cette classe. Notre approche aide les développeurs à identifier

l’impact d’un changement.

• Le système immunitaire est une métaphore intéressante pour la détection

des défauts de conception. Les résultats des expériences ont montré que la

précision et le rappel de notre approche sont comparables ou supérieurs à

ceux des approches existantes.

Mots clés: dégradation de l’architecture, impact des changements, défauts de

conception.

ABSTRACT

Software systems evolve, requiring continuous maintenance and development.

They undergo changes throughout their lifetimes as new features are added and

bugs are fixed. As these systems evolved, their designs tend to decay with time

and become less adaptable to changing users’ requirements. Consequently, software

designs become more complex over time and harder to maintain; in some not-so-

rare cases, developers prefer redesigning from scratch rather than prolonging the

life of existing designs, which causes development and maintenance costs to rise.

Therefore, developers must understand the factors that drive the decay of their

designs and take proactive steps that facilitate future changes and slow down decay.

Design decay occurs when changes are made on a software system by developers

who do not understand its original design. On the one hand, making software

changes without understanding their effects may lead to the introduction of bugs

and the premature retirement of the system. On the other hand, when developers

lack knowledge and–or experience in solving a design problem, they may introduce

design defects, which are conjectured to have a negative impact on the evolution

of systems, which leads to design decay. Thus, developers need mechanisms to

understand how a change to a system will impact the rest of the system and tools

to detect design defects.

In this dissertation, we propose three principal contributions. The first con-

tribution aims to evaluate design decay. Measuring design decay consists of using

a diagram matching technique to identify structural changes among versions of a

design, such as a class diagram. Finding structural changes occurring in long-lived,

evolving designs requires the identification of class renamings. Thus, the first step

of our approach concerns the identification of class renamings in evolving designs.

Then, the second step requires to match several versions of an evolving design to

identify decaying and stable parts of the design. We propose bit-vector and incre-

mental clustering algorithms to match several versions of an evolving design. The

third step consists of measuring design decay. We propose a set of metrics to evalu-

ate this design decay. The second contribution is related to change impact analysis.

We present a new metaphor inspired from seismology to identify the change im-

pact. In particular, our approach considers changes to a class as an earthquake that

vi

propagates through a long chain of intermediary classes. Our approach combines

static dependencies between classes and historical co-change relations to measure

the scope of change propagation in a system, i.e., how far a change propagation

will proceed from a “changed class” to other classes. The third contribution con-

cerns design defects detection. We propose a metaphor inspired from a natural

immune system. Like any living creature, designs are subject to diseases, which

are design defects. Detection approaches are defense mechanisms of designs. A

natural immune system can detect similar pathogens with good precision. This

good precision has inspired a family of classification algorithms, Artificial Immune

Systems (AIS) algorithms, which we use to detect design defects.

The three contributions are evaluated on open-source object-oriented systems

and the obtained results enable us to draw the following conclusions:

• Design decay metrics, Tunnel Triplets Metric (TTM) and Common Triplets

Metric (CTM), provide developers useful insights regarding design decay. If

TTM decreases, then the original design decays. If TTM is stable, then the

original design is stable, which means that the system is more adapted to the

new changing requirements.

• Seismology provides an interesting metaphor for change impact analysis.

Changes propagate in systems, like earthquakes. The change impact is most

severe near the changed class and drops off away from the changed class.

Using external information, we show that our approach helps developers to

locate easily the change impact.

• Immune system provides an interesting metaphor for detecting design defects.

The results of the experiments showed that the precision and recall of our

approach are comparable or superior to that of previous approaches.

CONTENTS

CHAPTER 1: INTRODUCTION . 2

1.1 Research Context . 2

1.2 Problem Statement and Contributions 6

1.3 Motivating Scenario . 9

1.4 Roadmap . 11

CHAPTER 2: RELATED WORK . 12

2.1 Design Decay Evaluation . 12

2.1.1 Software Design Evolution 13

2.1.2 Discussion . 14

2.1.3 Renamings Detection . 15

2.1.4 Discussion . 15

2.2 Change Impact Analysis . 16

2.2.1 Structure-based Change Impact Analyses 16

2.2.2 History-based Change Impact Analyses 17

2.2.3 Probabilistic Approaches . 18

2.2.4 Hybrid Approaches . 18

2.2.5 Discussion . 19

2.3 Design Defects . 20

2.3.1 Specification of Design Defects 20

2.3.2 Detection of Design Defects 21

2.3.3 Impact of Design Defects . 22

2.3.4 Discussion . 23

CHAPTER 3: DESIGN DECAY EVALUATION 24

3.1 Approach . 26

3.1.1 Step 1: Extraction of Design Diagrams 28

3.1.2 Step 2: Detection of Class Renaming 28

3.1.3 Step 3: Design Diagram Matching 34

3.1.4 Step 4: Design Diagram Clustering 39

3.1.5 Step 5: Design Decay Evaluation 40

3.2 Study Definition and Design . 41

3.2.1 Objects . 42

viii

3.2.2 Research Questions . 42

3.2.3 Analysis Methods . 44

3.3 Empirical Study Results . 49

3.4 Summary . 60

CHAPTER 4: A SEISMOLOGY-INSPIRED APPROACH TO STUDY

THE CHANGE IMPACT 63

4.1 The Earthquake Metaphor . 65

4.1.1 Seismology . 65

4.1.2 Change Impact Analysis . 66

4.1.3 Change Impact Analysis and Seismology 67

4.2 Approach . 68

4.2.1 Step 1: Measuring Class Importance 69

4.2.2 Step 2: Identifying Class Levels 71

4.2.3 Step 3: Identifying Impacted Classes 73

4.3 Empirical Study Design . 73

4.3.1 Research Questions . 74

4.3.2 Analysis Methods . 75

4.4 Empirical Study Results . 77

4.5 Discussions . 82

4.6 Threats to Validity . 83

4.7 Summary . 84

CHAPTER 5: AN IMMUNE-INSPIRED APPROACH FOR THE

DETECTION OF DESIGN DEFECTS 86

5.1 Artificial Immune Systems . 87

5.1.1 Biological Background . 87

5.1.2 Computer Models . 88

5.1.3 Implementations . 89

5.2 Study Definition and Design . 91

5.2.1 Objects . 91

5.2.2 Research Questions . 92

5.3 Study Results, Analyses and Discussions 93

5.4 Threats to Validity . 95

5.5 Summary . 96

ix

CHAPTER 6: CONCLUSION . 98

6.1 Dissertation Findings and Conclusions 98

6.2 Opportunities for Future Research 99

BIBLIOGRAPHY . 102

APPENDIX A:DEFINITIONS OF METRICS AND QUALITY AT-

TRIBUTES . 117

A.1 Definitions of metrics . 117

A.2 Software Quality Attributes . 120

APPENDIX B: SPECIFICATION OF CODE SMELLS AND AN-

TIPATTERNS . 121

B.1 Detailed Definitions of the code Smells 121

B.2 Detailed Definitions of the Antipatterns 124

LIST OF FIGURES

1.1 Steps of software maintenance process (From [92]) 3

3.1 Approach Overview . 27

3.2 An example of class renaming . 30

3.3 String Representation of a software design (from [66]) 36

3.4 F-measure in function of thresholds values for CamelS and ND Sim-

ilarities . 50

3.5 The evolution of the ArgoUML design 52

3.6 The evolution of the DNSjava design 53

3.7 The evolution of the JFreeChart design 54

3.8 The evolution of the Rhino design 55

3.9 The evolution of the XercesJ design 56

4.1 Epicenters distribution in space and time. The map shows the ex-

pected number of earthquakes of a given magnitude occurring within

a given radius from each point (From [95]) 66

4.2 Earthquake Metaphor . 68

4.3 Representations of a simple example system (from [66]). 71

4.4 Change propagation from XMLEventImpl 77

4.5 Change propagation from TypeValidator 78

LIST OF TABLES

3.1 Statistics for the first and last version of each system 43

3.2 Amount of class renaming . 46

3.3 Sample sizes after startified Sampling 47

3.4 The performance of ADvISE in terms of precision and recall for

class renaming detection . 51

3.5 Contingency table (ArgoUML) and Fisher test results for unstable

classes with at least one bug . 57

3.6 Contingency table (Rhino) and Fisher’s test for unstable classes with

at least one bug . 58

3.7 Contingency table (ArgoUML) and Fisher’s test for unstable classes

with at least one design defect . 58

3.8 Contingency table (Rhino) and Fisher’s test for unstable classes with

at least one design defect . 59

3.9 Execution time (in seconds) for each step of ADvISE 59

4.1 Mapping between Change Impact Analysis and Seismology 67

4.2 Statistics for the systems. 74

4.3 Epicenter classes in Rhino . 76

4.4 Epicenter classes in XercesJ . 76

4.5 Duncan’s test applied on “number of changes of the impacted classes”

in Rhino . 80

4.6 Duncan’s test applied on “number of changes of the impacted classes”

in XercesJ . 80

4.7 Duncan’s test applied on “number of earthquakes” in Rhino 81

4.8 Duncan’s test applied on “number of earthquakes” in XercesJ . . . 82

5.1 Instantiation of an AIS to detect design defects. 89

5.2 System characteristics . 91

5.3 Intra-system detection on XercesJ: 3-fold cross validation 93

5.4 Inter-system detection . 94

xii

5.5 Results of applying the detection approaches. Group 1 represents

the training on Blob. Group 2 represents the training on Blob, FD,

SC. (In each row, the first line is the number of detected classes,

the second is the number of classes being design defects, the third is

the precision. Numbers in parentheses are the percentages of classes

being reported). 94

LIST OF ACRONYMS

ADvISE Architectural Decay In Software Evolution

AIS Artificial Immune Systems

ANOVA ANalysis Of VAriance

API Application Programming Interface

AURA AUtomatic change Rule Assistant

BBN Bayesian Belief Network

CVS Concurrent Versions System

DECOR Defect dEtection for CORrection

FD Functional Decomposition

IDS Immune-inspired approach for the Detection of Smells

OO Object Oriented

PADL Pattern and Abstract-level Description Language

SC Spaghetti Code

SVN apache SubVersioN

UML Unified Modeling Language

To my parents and grandmother

To my brothers and sister

ACKNOWLEDGEMENTS

Feeling gratitude and not expressing it is like

wrapping a present and not giving it.

William Arthur Ward (1921–1994).

Many people accompanied me during the endeavor of my doctoral studies. I am

deeply grateful for their support. First of all, I would like to thank my supervisor,

Yann-Gaël Guéhéneuc, for giving me a chance to select research problems and

pursue them. He taught me how to assess the research value of each proposal

and how to be selective. He is a patient and thoughtful mentor; he listens to his

students, not only what they are saying but also what they are not saying. I am

proud to be one of his students. I would also like to thank my co-supervisor, Sylvie

Hamel, for her support and advocacy. Her advice as a bioinformatic researcher was

very valuable to this dissertation.

My thankful admiration goes to Prof. Giuliano Antoniol, for his advice. He

always made time to listen to my research ideas. A great thanks goes also to

Prof. Bram Adams for his insightful discussions and his valuable comments on this

dissertation.

Special thanks go to Prof. David W. Binkley for enthusiastically accepting to

be my external examiner and for reviewing my dissertation. I thank Prof. Bruno

Dufour for accepting to be on my committee and for reviewing my dissertation. I

thank Prof. Guy Lapalme who have enthusiastically accepted to chair my doctoral

committee.

Great thanks to my fellow doctoral students from the Ptidej and Soccer labs

for creating an enjoyable working environment. Special thanks go to Fehmi Jaafar,

Foutse Khomh, and Segla Kpodjedo. I always enjoy discussing and brainstorming

research ideas with you. I would also like to thank all my friends who made the

long experience of graduate school more manageable.

Special grateful to my parents Ahmed Hassaine and Soltana Belhandouz for

their unconditional love and support, and for believing in me–whenever and wher-

ever. They taught me the importance of passion and persistence in everything I do.

1

I am also grateful to my grandmother Kheira who always pray for me. Many thanks

go to my sister Nacima and my brothers Amine and Aymen for their unlimited love

and encouragement.

This research was partially supported by FQRNT, NSERC, and the Research

Chairs in Software Patterns and Patterns of Software and in Software Evolution.

— Salima Hassaine

CHAPTER 1

INTRODUCTION

1.1 Research Context

Software systems play a crucial role in modern societies. They are omnipresent

from small game applications on smart phones to large embedded systems, such as

navigation systems in spacecrafts.

Software systems must evolve to adapt to new requirements to stay useful, else

they risk an early death [81, 82]. Therefore, they undergo changes throughout

their lifetimes as developers add features, fix defects, or implement changing re-

quirements. As these systems evolve, their designs tend to decay with time and

they become less adaptable to new, emerging requirements [28, 122]. Thus, the

systems become more complex over time and harder to maintain [12, 55].

Software maintenance is “the process of modifying a software system or com-

ponent after delivery to correct faults, improve performance or other attributes, or

adapt to a changed environment” [2]. The steps of the maintenance process [92]

are: change management, change impact analysis, system release planning, change

design, implementation, testing and system release/integration (see Figure 1.1).

While the “traditional maintenance” applies only to corrective maintenance, which

deals with fixing bugs in the code, there are three other types of maintenance that

are related to software evolution [117]: adaptive maintenance deals with adapting

the software to new environments, perfective maintenance deals with adding new

functionalities to the software according to changes in user requirements, and pre-

ventive maintenance deals with updating documentation and making the system

more maintainable. The long-term effect of corrective, adaptive, and perfective

maintenance increases the system’s complexity [118]. As systems are continuously

changed, their complexity increases and their maintenance cost grow unless pre-

ventive maintenance is done to maintain or reduce it.

Over the past two decades, maintenance has been recognised as the most costly

and difficult phase in the software life cycle [12, 115]. The maintenance effort has

3

Figure 1.1 – Steps of software maintenance process (From [92]).

been estimated to be frequently more than 70% of the overall software development

cost [104]; an increase due in part to design decay.

Design decay is a broad term, because a software design can be interpreted

either as architectural design or detailed design. Architectural design is “the struc-

ture or structures of the system, which comprises software elements, the externally

visible properties of those elements, and the relations among them” [1]. It aims at

organising the system in components that meet a set of non-functional requirements

[11] relying on architectural styles [44], i.e., principles of organisation to optimize

certain quality requirements, such as the client-server architecture. Detailed design

is concerned by the contents of the identified components [22], i.e., a set of func-

tional requirements relying on design patterns [43], which are “good” solutions to

recurring design problems. In this dissertation, we use the term software design to

mean the detailed design.

Parnas [99] attributed design decay to a phenomenon that he called ignorant

surgery. This phenomenon occurs when changes are made on a system by people

who do not understand its original design; these new changes sometimes invalidate

4

the original design of the system and cause design decay. A system that has been

repeatedly changed and maintained in this manner is understood by less people

over time, i.e., neither the original designers of the system, nor those who made the

changes understand the modified system. As a result, the documentation becomes

increasingly inaccurate and future changes become more difficult, i.e., they take

longer and are more likely to introduce new bugs [99]. Experience [105] shows that

40% of bugs are introduced while correcting previous bugs. Therefore, every new

maintenance activity becomes more expensive, because the cost of removing these

bugs is high [99].

Van Gurp et al. [123] attributed design decay to a phenomenon that they

called design erosion. This phenomenon is due to the cumulative, negative ef-

fect of changes on the quality of a system. They suggested that decayed designs

make systems more prone to bugs and that, in some not-so-rare cases, a soft-

ware design and its implementation code must be thrown away because they are

too hard to maintain, unless the decay can be stopped before the design is com-

pletely unworkable [47, 122, 123]. This phenomenon was observed in many systems

[20, 116, 122, 123], such as the Mozilla Web browser: “Netscape was experienc-

ing fierce competition from Microsoft’s Internet Explorer. They decided to release

their own browser as open source and started working on transforming it into the

next generation browser. After half a year of development the developers of the

open-source Netscape came to the conclusion that the original Netscape source was

eroded beyond repair. They took a major decision and started from scratch” [122].

This example illustrates the difficulty that developers face in maintaining decayed

software design and its implementation code. On the one hand, design decay may

become an obstacle for further development. On the other hand, fixing design de-

cay may be expensive. In fact, some developers may prefer to redesign from scratch

rather than spend effort on trying to fix the existing design. Therefore, developers

must understand the factors that drive design decay and take proactive steps that

facilitate future changes and ensure that software design does not decay.

Moreton [92] argued that controlling the input of the maintenance process is

essential to ensure an effective maintenance. The change management and change

impact analysis are the first two steps in the maintenance process (see Figure 1.1).

Change management is the identification, estimation, allocation, and monitoring

5

of the resources used to perform a change [1]. Change impact analysis is defined

by Pfleeger and Bohner [102] as “the evaluation of the many risks associated with

the change, including estimates of the effects on resources, effort, and schedule”,

while Arnold and Bohner [17] defined change impact analysis as “identifying the

potential consequences of a change, or estimating what needs to be modified to

accomplish a change”. The software maintenance process can only be optimised

if precise and unambiguous information is available about the potential change

impact. Experience [99] shows that making changes without understanding their

effects can lead to the premature retirement of a system. Therefore, change impact

analysis is essential to reduce the amount of corrective maintenance, because fewer

bugs will be introduced, and thus design decay will be slow down and its effects

will be limited.

A major factor affecting the effort required for maintenance is the design qual-

ity of systems [134]. Design quality deterioration manifests itself in the form of

design defects, which are “poor” solutions to recurring software design and imple-

mentation problems, such as code smells [40] and design anti-patterns [23]. They

occur generally in object-oriented systems when developers lack knowledge and–or

experience in solving a design problem or applying some design patterns: “some-

thing that looks like a good idea, but which backfires badly when applied” [34].

They are conjectured to have a negative impact on some quality characteristics (eg.,

change-proneness and fault-proneness [69, 71]) and evolution of systems [23, 40].

Design quality is assessed and improved mainly during formal technical reviews

that involve expert inspections. Experience [134] shows that developers spend a

lot of time in correcting defects before completing a maintenance task. Thus, the

detection of design defects early in the process could substantially reduce the cost

of subsequent steps in the development and maintenance phases [104]: designs free

of design defects are easier to implement, change, and maintain. However, their

manual detection in large designs are highly time- and resource-consuming and

error-prone activities [111], because design defects crosscut classes and methods

and their descriptions are subject to misinterpretation.

6

1.2 Problem Statement and Contributions

The above section lead us to formulate our thesis:

Thesis:

Software maintenance is severally impacted by design decay, uncontrolled

changes, and design defects. Therefore, to assist developers during software

maintenance, we propose to evaluate design decay, to analyse change impact,

and to detect design defects.

To verify our thesis, we propose to address three main problems: design decay

evaluation, change impact analysis, and design defects detection. To confirm our

findings, we propose to use external information, such as bug reports and mailing

lists, and to improve the precision and recall of design defects detection.

Problem 1: Design Decay Evaluation

Authors [63, 99, 100, 123, 127] suggested that design decay is the deviation

of a software design from the original one. Others [65, 75] suggested stability or

resilience as a primary criterion for evaluating a design. However, none of the

mentioned studies have been developed to quantify design decay.

To analyse design stability, we must study the traceability of classes across

several versions, even if these classes are renamed. Other authors proposed different

approaches to analyse the evolution of software designs [73, 75, 130–132]. Most

of these previous approaches aim at finding design changes and class renamings

occurring in long-lived evolving designs. Identifying class renamings can provide

a useful support when a project manager is interested to study the evolution of a

set of classes across all the versions of a system. Indeed, if a class disappears in

a given release, it could have been renamed or simply deleted. Thus, identifying

class renamings is also relevant to study class traceability across versions, which

is useful for evaluating design decay. However, existing approaches [75, 132] have

somewhat limited performances in time, precision, and recall.

Therefore, our first contribution [58, 59] is a novel approach, called ADvISE,

that exploits a set of metrics to measure design decay during software evolution.

7

The first step in measuring design decay is to use a diagram matching technique to

identify structural changes among versions of a software design. Finding structural

changes occurring in long-lived, evolving designs requires the identification of class

renamings. Thus, the first step of our approach concerns the identification of class

renamings in evolving designs. Then, the second step requires to match several

versions of an evolving design to identify decaying and stable parts of a software

design. We propose bit-vector and incremental clustering algorithms to match

several versions of an evolving design and find stable and decaying micro-designs1.

The third step consists of measuring the design decay as a whole using stable and

decaying micro-designs and we propose a set of metrics that measure design decay.

Finally, we performed an empirical study of the impact of bugs and design defects

on design decay. We found that decaying designs are more prone to bugs and

to design defects than other designs, confirming the importance and usefulness of

measures of design decay a posteriori.

Problem 2: Change Impact Analysis

Existing approaches for change impact analysis are based on class dependen-

cies and use static, dynamic, and–or textual analyses [7, 17, 79, 80]. However, in

object-oriented systems, the relations between classes make change impact difficult

to anticipate because of possible hidden propagation [19]. Historical analysis of

data from software repositories [21, 42, 135, 139] provides useful information that

complement static and dynamic analyses. Such techniques identify change-impact

relations based on the co-changes of software artefacts within a change-set. How-

ever, they may fail to capture how changes are spread over “space” (eg., in class

diagram) and through a long chain of relations, i.e., they cannot capture how far

changes propagate from a given class to the others and whether two co-changing

classes are in direct relations or are separated through a long chain of relations.

Consequently, they could not help developers prioritise their changes according to

the forecast scope of changes.

1We use the concept of “micro-design” to mean any subset of a software design, eg., a set of
classes and their relations.

8

Therefore, our second contribution [57] is a novel approach to change impact

analysis specifically designed to study the scope of change propagation. In Chapter

4, we propose a metaphor between seismology and change impact analysis. In

particular, if we analyse the relations chain of a changed class, we may have the

intuition that the classes impacted by a change are near the changed class. However,

in some cases, the actual classes that must be modified are far away from the

changed class. If these classes are not considered before implementing a change,

bugs may occur. Our approach considers changes to a class as an earthquake that

propagates through a long chain of intermediary classes. Our approach combines

static dependencies between classes and historical co-change relations to measure

the scope of change propagation in a system, i.e., how far a change propagation

will proceed from a “changed class” to other classes.

Problem 3: Design Defects Detection

Several detection approaches [88, 90, 93] detect design defects according to sets

of rules and thresholds defined on various metrics. However, threshold values are

not easy to define. For example, the Blob and Spaghetti Code design defects (see

Appendix B) both describe classes that are too large and too complex. However,

a class that is considered large in a given system could be considered average in

another. Also, all previous approaches [70, 90, 108] require experts’ knowledge and

interpretation of the design defects. They focus on detecting one design defect

at a time, while some defects share similar characteristics, and exclude classes

that are not identical to the defect (given some thresholds). Yet, in the course of

our experiments with various detection approaches (based on rules [90], Bayesian

Beliefs Networks [70], and B-Splines [108]), we noticed that:

• Several smells have similarities. For example, the Blob and Spaghetti Code

antipatterns both describe classes that are too large and too complex; the

Blob further describing that these classes should relate to data classes.

9

• Classes similar but not equal to some design smell are also of interest to

developers and quality assurance personnel because they could, in the future,

emerge as smells themselves in the “submarine”2 effect [108].

Moreover, previous approaches have somewhat limited performances in time,

precision, and recall.

Therefore, our third contribution [56] is a novel approach for design defects

detection, called IDS (Immune-based Detection Strategy), based on Artificial Im-

mune Systems, and presented in Chapter 5. A natural immune system protects

the body by identifying, learning from, and defending against invading pathogens.

Similarly, our contribution is built on the same defense mechanism: a software

design is comparable to a body, that we wish to protect from pathogens, such as

design defects. Design defect detection approaches are defense mechanisms of the

software design. Like pathogens, design defects come in a variety of forms with

some defects being only slightly different from others. A natural immune system

can handle such similar pathogens with good precision. This good precision is

essential for the body and have inspired a family of supervised learning and clas-

sification algorithms: Artificial Immune Systems (AIS). We propose to use an AIS

algorithm, called Immunos-99 [24], to detect design defects.

1.3 Motivating Scenario

Developers are often concerned with different types of maintenance [117]. In

corrective maintenance, developers must understand why a previous change intro-

duces a bug and how it can be fixed. In adaptive and perfective maintenance,

developers must understand how to adapt the system to new environments or how

to add new functionalities without introducing new bugs. In preventive mainte-

nance, developers are often required to detect design defects and correct them to

make the system more maintainable and ensure that its design does not decay.

In a typical maintenance scenario, developers are often concerned with imple-

menting new changes in the code. They usually have existing knowledge of the

2The term “submarine” was introduced by Oliveto et al [108], it is used when several classes
may be very close to be identified as antipatterns but remain under the threshold during their
evolution.

10

code or a tip from an expert on the system and know of at least one class that is

relevant to the maintenance task. However, developers need help to identify the

impact of their changes and locate the rest of the code that is relevant to the main-

tenance task to make the new changes work properly. When the design is decayed,

maintenance costs developers time, effort, and money. Therefore, developers should

evaluate the design decay to assess the ratio cost/benefit before implementing new

changes.

To illustrate the difficulty developers sometimes face during a maintenance, we

outline the main steps involved in a maintenance task:

• Step 1: Design Decay Evaluation. First of all, developers should evaluate

whether the design of the current system version is decayed or not. For

example, the release notes of XercesJ3, a family of software packages for

parsing XML, report that “XercesJ 2.0.0 is a nearly complete rewrite of the

XercesJ 1.x code base to make the code cleaner, more modular, and easier

to maintain. It includes a completely redesigned and rewritten XML Schema

validation engine”. This example illustrates the importance of evaluating

design decay, because developers can decide to start rewriting another version

from scratch instead of working on the current version. Section 3.1 (p. 26)

explains how to evaluate design decay.

• Step 2: Change Impact Analysis. Once developers decide which classes

should be changed they can analyse the impact of their changes, to identify

the set of classes that should be modified to accomplish the change. For

example, the bug ID2005514 reports a bug in Rhino5, an open-source imple-

mentation of a JavaScript interpreter, that was introduced by a developer

when he implemented a change to class Kit and missed a required change

to class DefiningClassLoader. This example illustrates the importance of

identifying the impacted classes before implementing a change. Section 4.2

(p. 68) explains our change impact analysis.

3http://xerces.apache.org/
4https://bugzilla.mozilla.org/show_bug.cgi?id=200551
5http://www.mozilla.org/rhino/

11

• Step 3: Design Defects Detection. Finally, developers should improve

the quality of software design by detecting the design defects and correct

them. For example, in XercesJ v2.7.0 there are 44 instances of design defects.

Section 5.1 (p. 87) explains how to identify these design defects.

In summary, our approaches help developers in evaluating design decay, identi-

fying the change impact, and detecting design defects to ensure an efficient main-

tenance and to limit the effects of design decay.

1.4 Roadmap

The remainder of this dissertation provides the following content: Chapter 2

(p. 12) reviews related work on design decay, change impact analysis, and design

defects detection. Chapter 3 (p. 24) reports our first contribution for evaluating the

design decay. Chapter 4 (p. 63) reports our second contribution for studying the

scope of change propagation using a seismology metaphor.Chapter 5 (p. 86) reports

our third contribution that concerns the design smells detection using an Artificial

Immune System. Chapter 6 (p. 98) presents the conclusions of this dissertation

and outlines some directions of future research. Appendix A (p. 117) presents

the definitions of metrics and quality attributes considered in this dissertation.

Appendix B (p. 121) presents the complete list of code smells and antipatterns

considered in this dissertation with their definitions.

CHAPTER 2

RELATED WORK

This chapter provides a survey of existing works related to this thesis and

identifies the limitations that are addressed by our contributions.

The structure of the chapter is as follows: Section 2.1 provides a description of

leading work in design decay evaluation. Section 2.2 discusses the state of the art

in change impact analysis. Section 2.3 summarises exiting works in design defects

detection.

2.1 Design Decay Evaluation

Design decay is the deviation of actual software design from the original one,

i.e., the violation of design choices during evolution [63, 100, 127]. Van Gurp et al.

[123] suggested that decayed designs make systems more prone to bugs and that,

in some not-so-rare cases, a software design and its implementation code must be

thrown away because it is too hard to maintain, unless the decay can be stopped

before the design is completely unworkable [47]. Macia et al. [85] presented a case

study on the impact of design antipatterns on design decay.

Perry et al. [100] suggested that design decay is due to violation of architecture

caused by the process of evolution. Eick et al. [37] suggested that a piece of code

has decayed if it is more difficult to change than it used to be. Van Gurp et al.

[123] defined design decay as the cumulative, negative effect of changes on the

quality of a software system. Hochstein et al. [63] defined design decay as the

deviation of actual or concrete design from planned or conceptual design. Williams

et al. [127] defined design decay as the deviation from the original design. Parnas

[99] suggested that the structure of the software system degrades when changes to

software are made by people who do not understand the original design concept,

because the modifications often invalidate the initial design.

Design decay evaluation relates to two main research directions: design evolu-

tion and class renamings detection. Techniques for analysing the design evolution

13

detect structural changes between versions of a software design, typically repre-

sented as class diagrams. Identifying class renamings can provide a useful support

when a project manager is interested to study the evolution of a set of classes

across all the versions of a software system. In fact, even if a class disappears in

a given version, it could have been renamed, or simply deleted. Thus, identifying

class renamings is also relevant to study class traceability across versions, which is

useful for evaluating design decay. The following sections present related work on

design evolution and renamings detection techniques.

2.1.1 Software Design Evolution

Antoniol et al. [4] proposed an approach that helps its users to deal with incon-

sistencies by pointing out regions of code that do not match, i.e., added, deleted,

and modified classes and methods. They first recovered UML-like class diagrams

from the source code of a software system in the Abstract Object Language (AOL).

Then, they compared the recovered designs of subsequent software versions using

bipartite graph matching. Nodes in the graphs represent the classes of a version

and the similarity between two graphs is derived from class and attribute/method

names by means of a String Edit Distance. Their approach does not support neither

the relations between classes nor the class renamings.

Antoniol et al. [5] proposed an automatic approach, based on cosine similarity

on class identifiers to automatically identify links between classes obtained from

refactoring between two subsequent releases. In particular, the approach aimed

at identifying cases of class replacement, split, merge, as well as feature migration

from/to other classes. They represented classes of different releases as documents

and queries, then applied a vector space model that treats documents and queries as

vectors [41], with documents ranked against queries by computing some similarity

functions between the corresponding vectors. Their approach does not take into

account the relations between classes.

Xing and Stroulia [132] presented the UMLDiff tool to automatically detect

structural changes between two versions of a software design. They modeled each

design as a directed graph, where nodes are software entities (packages, classes,

interfaces, and their fields and methods), and edges represent the relation between

14

them. They used UMLDiff to compare the two directed graphs in terms of addi-

tions, removals, moves, renamings, and signature changes of software entities. They

also used UMLDiff to study class evolution [131] at the design level to understand

phases and styles of evolution [130].

Kpodjedo et al. [75] proposed an Error Correcting Graph Matching (ECGM)

algorithm to study design diagram evolution. This algorithm is derived from search-

based techniques: given two design diagrams D1 and D2, the authors aims at

finding, among the large set of all possible matchings, a solution that is the best

true match between classes of D1 and D2. They identified evolving classes that

maintain a stable structure of relations (association, aggregation, and inheritance)

with other classes and that constitute the stable backbone of a software design.

Kimelman et al. [73] designed a Bayesian framework to perform diagram match-

ing. They represented diagrams as graphs whose nodes have attributes, such as

name, type, connections to other nodes, and containment relations. Probabilistic

models are used for rating the quality of candidate correspondences based on var-

ious features of the nodes in the graphs. Given the probabilistic models, they can

find high-quality correspondences between two diagrams using search algorithms.

2.1.2 Discussion

We share with all the above authors the idea that design decay is the deviation

of a software design from the original one. Existing approaches for design evolution

compare two versions of a software design to study its evolution. However, to the

best of our knowledge, none of the mentioned studies have been developed to

automatically quantify design decay. In Chapter 3, we propose an approach to

evaluate design decay. The first step in measuring design decay is to use a diagram

matching technique to identify structural changes among versions of a software

design. Finding structural changes occurring in long-lived, evolving designs requires

the identification of class renamings. Then, we propose a set of structural and

textual similarity measures to identify class renamings in evolving designs. The

second step requires to match several versions of an evolving design. Then, we

propose a bit-vector algorithm to match several design versions. The final step is

to measure design decay. We propose a set of software metrics that measure design

15

decay: the Tunnel Triplets Metric and Common Triplets Metric. We use these

metrics to study the impact of design defects on design decay.

2.1.3 Renamings Detection

Eshkevari et al. [39] presented a study of identifier renamings in software sys-

tems, studying how terms (identifier atomic components) change in source code

identifiers. They proposed an approach based on the normalized edit distance to

detect identifier renamings. Wei et al. developed AURA [129], a novel hybrid

approach that combines call dependency and text similarity analyses to provide

developers with change rules when adapting their systems from one version of a

framework to the next. Dagenais et al. developed SemDiff [35], a tool that recom-

mends replacements for framework methods that were accessed by a client system

and deleted during the evolution of the framework. Schäfer et al. [112] mined

framework-usage change rules from already-ported instantiations. The three previ-

ous approaches compute support and confidence value on call dependency analysis.

Godfrey et al. [48] presented a semi-automatic hybrid approach to perform origin

analysis using text similarity, metrics, and call dependency analyses. Xing and

Stroulia [133] developed Diff-CatchUp to analyse textual and structural similari-

ties of UML class diagram to recognise API changes. Kim et al. [72] presented an

automated approach to infer high-level renaming patterns.

2.1.4 Discussion

The above renamings detection techniques detect renamings at method level and

use text-based similarities. Thus, they cannot detect renamed methods that do not

have similar names with their target methods. Call dependency-based approaches

provide useful information to identify renamed methods that may not be detected

by text-based approaches. However, they cannot detect renamed methods for target

methods that are not used in frameworks. In Chapter 3, we propose similarity

measures to detect renamings at class level. Our approach could also be adapted

to detect renamings at method level.

16

2.2 Change Impact Analysis

Change impact analysis aims at identifying software artefacts being affected by

a change; it provides the potential consequences of a change and estimates the set

of artefacts that must be modified to accomplish a change [17].

2.2.1 Structure-based Change Impact Analyses

Arnold and Bohner proposed several models of change propagation [7, 17].

These models are based on code dependencies and algorithms, including slicing and

transitive closure, to assist in assessing the impact of changes. Dependency analy-

sis of source code is performed using static or dynamic analyses. When performing

change impact analysis with call graphs, the impact of a change in a method is the

transitive closure of all callers and callees. Therefore, it can be inaccurate, by re-

porting false candidates that do not change (low precision) and failing to estimate

some classes that actually do change because the analysis is restricted to method

calls (low recall).

Weiser et al. [126] proposed also slicing techniques to determine all the code

locations that may affect a reported location of a failure. Static slicing is typically

based on data- and control-flow graphs that are computationally expensive to pro-

cess and analyse and can report large slices [16]. Thus, dynamic slicing [3, 137]

and probabilistic slicing [110], have been proposed in the literature to reduce the

size of slices. However, their analysis is expensive.

Law et al. [80] argued that static slicing is much more precise than transitive

closure on call graphs but it may return large sets of classes that are supposed to

be impacted by a change. Dynamic slicing can improve the conservative behavior

of static slicing. However, it is subject to the risk of lower precision and recall

as it depends on the chosen scenarios and–or executed test cases. Consequently,

Law et al. [80] introduced a new approach to method-level change impact analysis.

They used path profiling technique [79] to compress dynamic traces, then they

applied PathImpact algorithm to predict dynamic change impact. Their approach

can provide potentially more useful predictions of change impact than method-level

static slicing in situations where specific system behaviors are the focus.

17

Rajlich et al. [106] described some incremental change activities, such as impact

analysis and change propagation, in which programming concepts and program de-

pendencies play a key role. They argued that different kinds of class interactions

have different likelihoods of change propagation. (TODO:Contrary to their

approach, we propose to use class interactions to measure change im-

pact...)

Zaidman et al. [136] proposed a technique for uncovering important classes in a

system architecture. They used a technique that was originally developed to iden-

tify important hubs on the Internet, i.e., pages with many links to “authorative”

pages [74]. They verified that important classes in the system correspond to the

hubs in the dynamic call-graph of a system.

2.2.2 History-based Change Impact Analyses

Ying et al. [135] and Zimmermann et al. [139] proposed to mine version-control

systems, using association rules, to identify logical couplings [42] between classes.

A change occurring in class A may have an impact on another class B if in the

past they changed together. Such historical analysis can capture change couplings

that cannot be captured by static and dynamic analyses.

Bouktif et al. [21] used a technique from speech recognition to infer cause–effect

relations from the revision histories. Their approach relies on the technique of dy-

namic time warping to group files with histories of changes of different lengths. The

values of their approach precision and recall are higher than previous approaches

[135, 139].

Canfora et al. [27] proposed an approach based on information-retrieval tech-

niques to derive the set of classes impacted by a proposed change request. They

argued that the histories of change requests is a useful descriptor of classes when

it is used for change impact analysis.

German et al. [45] proposed a method which determines the impact of previous

code changes on a particular code segment based on a change impact graph. Given

a location of failure, their method annotates the neighbours of this failure in the

graph by marking the recent changes. Thus, it determines all the changed areas of

the software system that affect the reported location of a failure.

18

2.2.3 Probabilistic Approaches

Zhou et al. [138] and Mirarab et al. [89] presented a change propagation analysis

based on Bayesian networks that incorporates static source code dependencies as

well as different features extracted from the history of systems and uses a sliding

window algorithm to group them. Their change propagation model can predict

future change couplings. Mirarab et al. [89] used Bayesian belief networks as a

probabilistic tool to make such predictions systematically. Their approach mainly

relies on dependency metrics calculated using static analysis and change history

extracted from a version-control system.

Antoniol et al. [6] incorporated static source code dependencies and other

features extracted from the release history of a system, such as author information.

Then, they applied the LPC/Cepstrum technique to mine a version-control system

for classes having evolved in the same or very similar ways. Their approach can

find classes having very similar maintenance evolution histories.

Ceccarelli et al. [31] proposed the use of a generalisation of univariate autore-

gression model to capture the evolution and inter-dependencies between multiple

time series. They applied the bivariate Granger causality test [49] to infer the

mutual dependencies between classes, analysing the time series representing the

change histories of a class A to predict the changes of another class B. Their

preliminary results showed that change impact relations inferred with the Granger

causality test are complementary to those inferred with association rules.

2.2.4 Hybrid Approaches

Girba et al. [46] proposed an approach, named Yesterday’s Weather, to identify

classes that are likely to change in the next version. This approach is based on

the retrospective empirical observation that classes that changed the most in the

recent history will also undergo important changes in the near future.

Malik and Hassan [86] proposed the use of adaptive change propagation heuris-

tics. These heuristics combine the use of history heuristic, containment heuristic,

call use depends heuristic, and code ownership heuristic. The proposed adaptive

heuristic uses a best heuristic table to track for each change entity the best heuris-

19

tic, and uses the development replay framework [61] to measure the performance

of that heuristic.

Hassan et al. [60] proposed a model of change propagation, based on several

heuristics for predicting the set of classes that should change after a particular class

has been changed. In their approach, they combined various sources of data for

change impact analysis, such as static dependencies between classes and historical

co-change relations.

2.2.5 Discussion

Some existing approaches for change impact analysis are based on class depen-

dencies and use static, dynamic, and–or textual analysis [7, 17, 79, 80]. However,

in object-oriented systems, the relations between classes make change impact dif-

ficult to anticipate because of possible hidden propagation [19]. Historical analysis

[21, 42, 135, 139] of data from software repositories provides useful information that

complement static and dynamic analyses. Such techniques learn change impact re-

lations based on the co-changes of software artefacts within a change-set. However,

they may fail to capture how changes are spread over “space” (eg., among classes

in class diagram) and through class levels (i.e., the distance between co-changed

classes). Thus, they could not help developers prioritise their changes according to

the forecast scope of changes, which can lead to poor effort and cost estimations.

Consequently, none of these approaches have been used to study how far changes

propagate from a given class to the others, i.e., whether two co-changing classes are

in direct relation or are separated through a long chain of relations. In particular,

if we analyse the relation chain of a changed class, we may have the intuition that

the classes impacted by a change are near the changed class. However, in some

cases, the actual classes that must be modified are far away from the changed class.

If these classes are not considered before implementing a change, bugs will occur.

In Chapter 4, we propose an approach to change propagation analysis specifically

designed to study the scope of change propagation, based on a metaphor between

seismology and change impact analysis. We use this approach to study the impact

of design defects on change propagation.

20

2.3 Design Defects

Code smells [40] and antipatterns [23], collectively called in the following de-

sign defects, are poor solutions to recurring software design and implementation

problems. They occur generally in object-oriented systems when developers lack

knowledge and–or experience in solving a design problem or applying some design

patterns [43].

2.3.1 Specification of Design Defects

Several books relate to design defects. Webster [125] wrote the first book on

anti-patterns in object-oriented development; his contribution covers conceptual,

political, coding, and quality-assurance problems. Riel [107] defined 61 heuristics

characterising “good” object-oriented programming. These heuristics deal with

classes, objects, and relations. They allow developers to assess the quality of their

systems manually and provide a basis to improve designs and implementations.

Fowler [40] defined 22 code smells that are low-level design defects in the source

code of systems, suggesting that developers should apply refactorings. Code smells

are described in an informal style and associated with methods to locate them

smells through manual inspections of the source code. Mäntylä [87] and Wake

[124] proposed classifications of code smells. Brown’s book [23] is more focused on

the design and implementation of object-oriented systems than Webster’s. Brown

et al. described about 40 anti-patterns textually, which are general object-oriented

design defects and include well-known antipatterns, eg., Blob.

These books provide in-depth views on heuristics, code smells, and anti-patterns

aimed at a wide academic and industrial audience. However, it is difficult to build

detection and correction algorithms from their textual descriptions, because they

lack precision and are prone to misinterpretations. We build upon this work to

propose an approach to characterise design defects and identify classes with similar

characteristics. We use the term defect to acknowledge that, in certain contexts,

a code smell or an antipattern may be unavoidable and the best way to design

and–or implement (part of) a system, eg., parsers are often Spaghetti Code.

21

2.3.2 Detection of Design Defects

Several approaches to specify and detect design defects have been proposed in

the literature. They range from manual approaches, based on inspection techniques

[120], to metric-based heuristics [88, 90, 93], where smells are detected according

to sets of rules and thresholds defined on various metrics. Manual approaches were

defined, for example, by Travassos et al. [120], who introduced manual inspections

and reading techniques to detect code smells.

Marinescu [88] presented a metric-based approach to detect smells with detec-

tion strategies, which capture deviations from good design principles and consist of

combining metrics with set operators and comparing their values against absolute

and relative thresholds. Similarly to Marinescu, Munro [93] proposed metric-based

heuristics to detect code smells; the heuristics are derived from template similar

to the one used for design patterns [43]. He also performed an empirical study to

justify the choice of metrics and thresholds.

Moha et al. [90] proposed the DECOR method to specify and automatically

generate detection algorithms. DECOR includes a domain-specific language based

on a literature review of existing work. It also includes algorithms and a platform

to automatically convert specifications into detection algorithms and apply these

algorithms on any system. DECOR produces detection algorithm with good pre-

cision and perfect recall while allowing quality assurance personnel to adapt the

specifications to their context.

Khomh et al. [70] argued that threshold-based approaches do not handle the

uncertainty of the detection results and, therefore, miss borderline classes, i.e.,

classes with characteristics of design smells “surfacing” slightly above or “sinking”

slightly below the thresholds because of minor variations in their characteristics.

Consequently, they proposed a Bayesian Belief Network (BBN) for the detection

of design smells in systems, which output is the probability that a class exhibiting

the characteristics of a smell be truly a smell. Thus, their approach handles the

degree of uncertainty for a class to be a smell. They also showed that BBNs can be

calibrated using historical data both from a similar and from a different context.

Oliveto et al. [108] proposed ABS, an approach to detect design smells in

systems using signatures of the classes and of the smells. The signature of a smell is

22

computed as the average of the signatures of a set of known classes participating to

that smell. For each class in a system, using B-splines, they compared the signature

of the class with that of a smell and computed their similarity to detect occurrences

of the smell. They reported a case study and claimed that ABS outperforms

previous approaches in precision and recall while being simpler in practice.

Some visualisation techniques, for example [114], were used to find a com-

promise between fully-automatic detection techniques, which are efficient but lose

track of the context, and manual inspections, which are slow and subjective. Other

approaches perform fully-automatic detection and use visualisation to present the

detection results [78, 121].

Catal et al. [30] used several machine learning algorithms to predict the defec-

tive modules. They investigated the effects of dataset size, metrics set, and feature

selection techniques for software fault prediction problem. They employed several

algorithms based Artificial Immune Systems.

Kessentini et al. [68] independently used an Artificial Immune System [24]

to estimate the risks of classes to deviate from “normality”, i.e., a set of classes

representing a “good” design. They used structural data to describe a design, i.e.,

classes, fields, methods. . . They showed that 90% of the more riskiest classes in

GanttProject and Xerces are defects.

2.3.3 Impact of Design Defects

Despite the above studies on design defects, only a few studies empirically anal-

ysed the impact of design defects on source code-related phenomena, in particular

class change- and fault-proneness.

Bois et al. [18] showed that the decomposition of God Classes into a number

of collaborating classes using well-known refactorings can improve comprehension.

They did not consider source code evolution phenomena.

Wei and Shatnawi [84] investigated the relation between the probability of a

class to be faulty and some antipatterns based on three versions of Eclipse and

showed that classes with the antipatterns God Class, Shotgun Surgery and Long

Method have a higher probability to be faulty than other classes. They concluded

on the need for broader studies to validate their results.

23

Olbrich et al. [97] analysed the historical data of Lucene and Xerces over several

years and concluded that God Classes and Shotgun Surgery have a higher change

frequency than other classes; with God Classes featuring more changes. They

neither performed an analysis to control the effect of the size on their results nor

studied the kinds of changes affecting these antipatterns.

Khomh et al. [69, 71] studied the impact of classes with design defects (code

smells and antipatterns) on change-proneness and fault-proneness. They showed

that classes participating in design defects are more change- and fault/issue-prone

than classes not participating in design defects.

2.3.4 Discussion

Previous approaches advanced the state-of-the-art in the specification and de-

tection of design defects but all require experts’ knowledge and interpretation.

Moreover, they focus on detecting one kind of design defects at a time, while some

design defects are similar and classes with characteristics similar but no identical

to some design defects are also of interest to developers and quality assurance per-

sonnel. In Chapter 5, we propose an immune-inspired approach for the detection of

design defects. We use object-oriented metrics [32] computed on instances of smells

as input to our algorithm following our parallel between object-oriented software

systems and living bodies. We analyses our approach in two distinct, industrial-

like scenarios. We also discuss all the advantages of our approach over previous

approaches, including precision and recall.

This previous work raised the awareness of the community towards the impact

of code smells and antipatterns on software development. We build on this previous

work and propose a more detailed and extensive empirical study of the impact of

design defects on design decay phenomena (see Chapter 3).

CHAPTER 3

DESIGN DECAY EVALUATION

Software design plays an important role in software development, because it

contains information that eases the communication among stakeholders, such as

developers and project managers. Each stakeholder is concerned with different

software characteristics1 that are affected by the design. For example, developers

use designs to verify whether their implementation is conform to earlier design

decisions. Project managers use designs to create teams and allocate resources

among them. Architects are concerned with ensuring that the design meets their

design goals [11]. The above examples illustrate the importance of software design

during development. Thus, each stakeholder must keep track of the design stability.

On top of that, there is often a gap between the design and its implementation [94]

from the start, because it is not easy to design software reflecting the intention of

developers [64].

Software systems evolve continuously, requiring continuous maintenance and

development. They undergo changes throughout their lifetimes as developers add

features, fix bugs, or implement changing requirements. As these systems evolve,

their designs tend to decay with time and they become less adaptable to new,

emerging requirements [28, 122]. Design decay is the deviation of actual software

design from the original one, i.e., the violation of design choices during evolution

[63, 100, 127]. Van Gurp et al. [123] suggested that decayed designs make systems

more prone to bugs and that, in some not-so-rare cases, a software design and

its implementation code must be thrown away because it is too hard to maintain,

unless the decay can be stopped before the design is completely unworkable [47].

Macia et al. [85] presented a case study on the impact of design defects on design

decay. Their study revealed that 78% of design decay in the software systems were

related to design defects [23].

In this chapter, we propose a novel approach, ADvISE, that proposes design

decay indicators, which could serve as symptoms of decay, in the context of an

1We use the term “software characteristics” to mean quality attributes (see Appendix A.2).

25

evolving design. In our approach, we use the term “design” to mean any structural

model of a system, eg., a UML class diagram. ADvISE aims at analysing the

evolution of a software design at various abstraction levels to calculate measures

of design decay. Our approach uses so-called “triplets”, which we define as T =

(CSource, R, CTarget), where CSource and CTarget represent two classes and R is a

relation between them. We use the concept of “micro-design” to mean any subset

of a software design.

The first step in measuring design decay is to use a diagram matching technique

to identify structural changes among versions of a software design. Finding struc-

tural changes occurring in long-lived, evolving designs requires the identification of

class renamings. Thus, a first contribution of this chapter is a set of structural and

textual similarity measures to identify class renamings in evolving designs.

The second step requires to match several versions of an evolving design to

identify decaying and stable micro-designs. Thus, the second contribution of this

chapter is an incremental clustering algorithm to match versions of a design in

order to find stable micro-designs (SµD) that exist in all versions, and decaying

micro-designs (DµD), which are represented by the set of “triplets” that are deleted

in a given version.

The third step consists of using the previously-identified, stable micro-designs

to propose metrics that measure design decay. Thus, the third contribution is a set

of software metrics that measure design decay: the Tunnel Triplets Metric (TTM)

and Common Triplets Metric (CTM). These metrics could be used as predictors

of bug proneness [123] and design defect proneness [85].

We validate ADvISE by studying the design history of five systems, ArgoUML,

DNSjava, JFreeChart, Rhino and XercesJ, and observing when and how their de-

signs decayed. We also use this validation to show that decaying designs are more

prone to design defects and to bugs than stable designs, basically confirming the

importance and usefulness of measures of design decay a posteriori. Thus, we first

answer the following preliminary questions:

• RQ1: What are the thresholds for class renaming detection? We

show that we can systematically choose adequate thresholds that provide an

optimal F-measure (precision and recall) for class renaming detection.

26

• RQ2: What is the efficiency of ADvISE for class renaming detection

in a software system? We show that our approach has good precision and

recall for class renamings detection.

Then, we answer the following research questions:

• RQ3: What are signs of design decay and how can they be tracked

down? We show that our design decay metrics (TTM and CTM) provide

us useful insights regarding the signs of software aging.

• RQ4: Do stable and decaying micro-designs have the same risk to

be bug-prone? We show that stable micro-designs, belonging to the original

design, are significantly less bug-prone than decaying micro-designs.

• RQ5: Are decaying micro-designs more prone to design defects

than stable micro-designs? We show that stable micro-designs, belong-

ing to the original design, are significantly less prone to design defects than

decaying micro-designs.

• RQ6: How does ADvISE perform? We show that the time performance

of our approach is good, outlining the execution time of each step ofADvISE.

The chapter is organised as follows. Section 3.1 describes our approach. Section

3.2 and 3.3 present five case studies and discuss our approach. Finally, Section 3.4

concludes and outlines future work.

3.1 Approach

This section presents ADvISE, our approach to compute metrics of design

decay. Figure 3.1 shows an overview of the steps of our approach, which we de-

scribe in detail below. Our approach consists of five steps. Given two versions of

an object-oriented software system, ADvISE extracts their designs as UML-like

class diagrams [50] using an existing tool, PADL[52]. Second, it identifies class re-

namings using a novel combination of structural and textual similarities. Third, it

matches each pair of two subsequent versions of software designs, using a bit-vector

algorithm, to identify their stable triplets T = (CSource, R, CTarget), where CSource

27

and CTarget represent two classes and R is a relation linking them. Fourth, it ap-

plies an incremental clustering algorithm to group connected triplets into clusters

to find stable (SµD) and decaying (DµD) micro-designs. Finally, our approach uses

the sets of stable triplets between two design versions to compute the TTM and

CTM metrics that measure the design decay.

Figure 3.1 – Approach Overview.

28

3.1.1 Step 1: Extraction of Design Diagrams

In our approach, we represent a software design by a reverse-engineered UML-

like class diagram [50]. We use an existing tool, PADL [52], to automatically

reverse-engineer class diagrams from the source code of object-oriented software

systems. The PADL meta-model defines all the constituents required to describe

the static structure of software and part of their behaviour, including message sends

and binary class relations, such as: associations, use relations, inheritance relations,

creations, aggregations, and container-aggregations (special case of aggregations

[51]). The PADL tool is associated with several parsers to build models of software

from AOL, C++, C#, and Java. A model of a software is represented as a digraph

(directed graph) with vertices being the classes and edges representing the relations

among classes, as illustrated in Figure 3.2(a).

3.1.2 Step 2: Detection of Class Renaming

The second step in measuring design decay consists of analysing the changes

between two subsequent versions Vi and Vi+1 of a software design, such as: addi-

tions, deletions, and renamings of classes. Thus, based on two subsequent versions

of class diagrams (obtained in the previous step), we first extract the set of classes

that exist in version Vi and disappear in version Vi+1. Then, we apply our class

renaming detection to assess whether these classes were renamed or deleted. Our

approach has the potential to discover two cases of renamings in a fully-qualified

class name: (1) Class renaming with or without changing the package name; (2)

Package renaming without changing the class name. We use structural and textual

metrics to assess the similarities between some original and candidate renamed

classes, which we describe in detail in the following.

3.1.2.1 Structural Similarity

We define a structure-based similarity, StrS, between a candidate original class

CA and a a candidate renamed class CB, as the percentage of their common meth-

ods, attribute types, and relations (i.e., those having the same target2). We assume

2We compare six types of logical connections: associations, use relations, inheritance relations,
creations, aggregations, and container-aggregations (special case of aggregations [51]).

29

that two methods M1 and M2 are common in CA and CB if they have the same

signatures (return types, names, modifiers, and parameter list).

Let S(CA) and S(CB) be the set of methods, attribute types, and relations

of CA (respectively, CB). We are inspired by the Jaccard coefficient to quantify

similarity between the S(CB) and S(CB). The Jaccard coefficient is a measure used

for comparing the similarity of sample sets. It provides a percentage of similarity

defined as the size of the intersection divided by the size of the union of the sample

sets. In our formulas, instead of dividing the size of the intersection by the size of

the union, we divide it by the sum of sizes of the two sets and multiply it by 2.

Thus, if the two sets are equal their similarity will be equal to 1. The structural

similarity of CA and CB is computed by comparing S(CA) to S(CB) as:

StrS(CA, CB) =
2× |S(CA) ∩ S(CB)|
|S(CA)|+ |S(CB)|

∈ [0, 1]

If StrS(CA, CB) = 0, then CA and CB do not have any common methods, attribute

types, or relations. If StrS(CA, CB) = 1, then classes CA and CB have the same

sets of methods, attribute types, and relations. Given CA, our algorithm reports

CB with the highest StrS similarity as the best candidate renamed from CA.

Example 1: Figure 3.2 illustrates the structure of two classes CA=HorizontalAxis

and CB=HorizontalCategoryAxis. Let S(CA) and S(CB) be the set of methods,

attribute types, and relations of CA (respectively, CB). S(CA) ∩ S(CB) = {2 at-

tribute types (long and double), 1 constructor, 2 methods (void setTickSize(double)

and void getTickSize()), 1 inheritance }. |S(CA) ∩ S(CB)| = 6, |S(CA)| = 9,

|S(CB)| = 6. The StrS of CA and CB is:

StrS(CA, CB) =
2× 6

9 + 6
= 0.80

3.1.2.2 Textual Similarity

Given an original class CA, our previous algorithm reports a set of best candi-

date renamed classes {CB1 , ..., CBn} that have the highest StrS similarity values.

We want to select one best candidate renamed class, i.e., the one whose name is the

most similar to CA in addition to having the greater number of common attribute

30

(a)

(b)

Figure 3.2 – An example of class renaming.

types, methods and relations. Consequently, we compute the textual similarity be-

tween the original class CA and each of the candidate renamed classes CBi
i ∈ [1, n],

using a Camel-Case-based Similarity (CamelS) and the Normalised Edit Distance

(ND).

We first tokenise the names of CA and CB using a Camel Case Splitter, which

is the fastest and most widely used identifier splitting algorithm [15], it operates

as follows. First, special symbols (such as underscore, pointer access, etc.) are

replaced with the space character. Second, identifiers are split where terms are

separated using the Camel Case convention. For example, “familyName” is split

into “family” and “Name”.

Then, we compute CamelS similarity between CA and CB as the percentage of

common tokens between the names of CA and CB. Let T (CA) (respectively, T (CB))

be the set of tokens in the name of CA (respectively, name of CB). We compute

the CamelS similarity between CA and CB by comparing T (CA) to T (CB) as:

31

CamelS(CA, CB) =
2× |T (CA) ∩ T (CB)|
|T (CA)|+ |T (CB)|

∈ [0, 1]

If CamelS(CA, CB) = 0, then the names of CA and CB do not have common tokens.

If CamelS(CA, CB) = 1, then the names of CA and CB have the same set of tokens.

Example 2: The CamelS similarity between two classes CA=HorizontalAxis

and CB=HorizontalCategoryAxis is computed as follows. T (CA) = {Horizontal,
Axis} and T (CB) = {Horizontal, Category, Axis} are the set of tokens in CA and

CB names. |T (CA)| = 2, |T (CB)| = 3, T (CA) ∩ T (CB) = {Horizontal, Axis},
|T (CA) ∩ T (CB)| = 2. The CamelS similarity between CA and CB is:

CamelS(CA, CB) =
2× 2

2 + 3
= 0.8

The Levenshtein Edit Distance[83] between the names of CA and CB returns

the number of edit operations (insertions, deletions, and substitutions) of charac-

ters required to transform the name of CA into that of CB. To have comparable

Levenshtein distances, we use the normalised edit distance (ND), given by:

ND(CA, CB) =
LEV (CA, CB)

sum(length(CA), length(CB))
∈ [0, 1]

where LEV computes the Levenshtein distance (we count substitution as an edit

operation with cost 1, not as a deletion followed by an insertion with cost 2). If

ND(CA, CB) = 0, then the names of CA and CB are the same. If ND(CA, CB) is

close to 1, then the names of CA and CB are different.

Example 3: Let CA=HorizontalAxis and CB=HorizontalCategoryAxis. The

Normalised Edit Distance ND(CA, CB) = 0.22.

3.1.2.3 Combination of Similarities

We combine ND and CamelS to compare the textual similarity between names

of an original class CA and some candidate renamed classes CBi
i ∈ [1, n], because

ND and CamelS assess different aspects of string comparison: ND is concerned

with the difference between strings but cannot tell if they have something in com-

32

mon, while CamelS focuses on their common tokens but cannot tell how different

the other tokens are. Our algorithm reports the CBj
j ∈ [1, n], with the highest

CamelS and the lowest ND scores as the class renamed from CA. If CBj
has ND

lower than the 0.40 threshold and CamelS higher than the 0.50 threshold. Else,

CA is considered as deleted.

Algorithm 1 presents the pseudo-code of how we combine structural and textual

similarities. When we compare the similarities of an original class CA to many can-

didate renamed classes {CB1 , ..., CBn}, we first compare their structural similarity

StrS. We select the subset of candidate renamed classes having the highest StrS

value. Then, we compute their textual similarities using ND and CamelS. We

select a best candidate renamed class CBj
that has the lowest ND and the highest

CamelS. Then, we compare its ND and CamelS similarities to given thresholds.

If CBj
has not ND lower than the 0.40 threshold and CamelS higher than the

0.50 threshold, we consider that class CA was deleted and not renamed. Else, we

consider that class CA was renamed to CBj
.

Previous authors[39] have fixed the threshold value of normalized edit distance

(ND) to 0.40. We set the 0.5 threshold of CamelS similarity through our experi-

mental evaluations on two systems: JFreeChart and XercesJ (see Section 3.3).

Example 4: We want to identify a candidate renamed class that has the most

similar name to the original class DataSource between JFreeChart v0.5.6 and

v0.6.0. Let us assume that three candidate renamed classes DataSet, Dataret,

and DataSetdescription, have the highest StrS = 0.70 score. Then, we com-

pute their textual similarities (ND and CamelS). Both DataSetdescription and

DataSet have the same CamelS = 0.50, while their ND is different (0.42 for

DataSetdescription and 0.29 for DataSet). Also, DataSet and Dataret have

the same ND = 0.29, while their CamelS is different (0.0 for Dataret and 0.50

for DataSet). Thus, by combining ND and CamelS, we can identify that DataSet

has the lowest ND and the highest CamelS. Then, by comparing the ND and

CamelS similarities to the given thresholds, we conclude that DataSet has ND

lower than 0.40 threshold and CamelS equal to 0.5 threshold. Thus, DataSet is the

most similar to DataSource. We inspected the source code of JFreeChart (v0.5.6

and v0.6.0), our manual validation reveals that class DataSource was indeed re-

33

Algorithm 1 Similarities Combination Principle.
1: R← EmptyList{}
2: S← EmptyList{}
3: camelThreshold = 0.50
4: ndThreshold = 0.40
5: A← List{{CA1 , ..., CAn}, candidate renamed classes (version1)}
6: B← List{{CB1 , ..., CBm}, candidate target classes (version2)}
7: for each Class CAi in A, i ∈ [1, n] do
8: for each Class CBj in B, j ∈ [1,m] do
9: Compute Similarity StrS(CAi , CBj).
10: if StrS(CAi , CBj) > strMax then
11: R← EmptyList{}.
12: ADD CBj to R.
13: strMax← StrS(CAi , CBj).
14: else
15: if StrS(CAi , CBj) = strMax then
16: ADD CBj to R.
17: end if
18: end if
19: end for
20: for each Class CBr in R, r ∈ [1, |R|] do
21: Compute Similarity CamelS(CAi , CBr).
22: Compute Similarity ND(CAi , CBr).
23: ndMin←Min(ND(CAi , CBr), ndMin).
24: camelMax←Max(CamelS(CAi , CBr), camelMax).
25: end for
26: for each Class CBr in R, r ∈ [1, |R|] do
27: if ND(CAi , CBr) == ndMin AND CamelS(CAi , CBr) == camelMax then
28: if ND(CAi , CBr) <= ndThreshold AND CamelS(CAi , CBr) >=

camelThreshold then
29: S← {CBj}, having ndMin and camelMax
30: end if
31: end if
32: end for
33: if |S| = 0 then
34: Class CAi is deleted.
35: else
36: Class CAi is renamed to CBj .
37: end if

38: end for

34

named to DataSet.

Example 5: we want to identify a candidate renamed class that has the most sim-

ilar name to the original class BlankAxis between JFreeChart v0.5.6 and v0.6.0.

HorizontalDateAxis and HorizontalCategoryAxis are two candidate classes

having the highest StrS scores (0.66) to BlankAxis. Then, we compute their

textual similarities (ND and CamelS).

Both HorizontalDateAxis and HorizontalCategoryAxis have the same CamelS

equal to 0.40. However, it is not higher than the 0.50 threshold. Also, their ND

similarities are not lower than the 0.40 threshold (0.44 for HorizontalDateAxis

and 0.51 for HorizontalCategoryAxis). Thus, by comparing theND and CamelS

similarities to the given thresholds, we conclude that the original class BlankAxis

was deleted and not renamed. We inspected the source code of JFreeChart (v0.5.6

and v0.6.0), our manual validation reveals that class BlankAxis was indeed deleted.

3.1.3 Step 3: Design Diagram Matching

Given two subsequent design versions and the names of renamed classes, we

now use a bit-vector algorithm [13] to match the two design versions to each other.

We summarise our iterative bit-vector algorithm for software design matching as

follows: we first convert software designs into strings, because bit-vector algorithms

are designed for strings, defined by the sequence of triplets T = (CSource, R, CTarget),

each triplet representing a relation between the two classes CSource and CTarget.

Then, we analyse these strings to identify the sets of stable and deleted triplets

using a bit-vector algorithm. This algorithm consists of traversing the string rep-

resentation of the first version, triplet by triplet, then recording the triplets in the

first version that match those in the second version. Finally, we obtain the sets

of stable triplets that exist in all versions and the set of deleted triplets. We use

these sets to find stable (SµD) and decaying (DµD) micro-designs, which we use

to measure the impact of design decay, such as bug proneness and design defect

proneness.

35

3.1.3.1 String Representations of Software Designs

We use an existing tool, EPI [66], to convert the software designs [50] previously

generated by PADL, into string representations, defined by sequences of triplets

T = (CSource, R, CTarget), each triplet representing a connection between the CSource

and the CTarget. This conversion consists of two steps:

• First, it takes as input the digraph (software design) previously generated by

PADL. Then, it transforms the digraph into a Eulerian digraph (see Figure

3.2(b)). A digraph is typically not Eulerian, because it does not contain a

Eulerian circuit, i.e., a path that passes through each edge exactly once. A

digraph is Eulerian if and only if every vertex has equal numbers of incom-

ing and outgoing edges for a vertex. The transformation consists in adding

“dummy” edges, noted dm, between vertices with unequal numbers of incom-

ing and outgoing edges. EPI uses the transportation simplex [62] to obtain

the number of dummy edges to be added.

• Second, by traversing the minimum Eulerian circuit, it generates a unique

string representation of the software design (see Figure 3.2(c)). Hence, we it

solves the directed Chinese Postman problem: the shortest path of a graph

that visits each edge at least once [38].

3.1.3.2 Characteristic Vectors

To use a bit-vector algorithm for matching two subsequent versions of software

designs, we use the string representation S = t1...tm, as V = (v1...vm) of version 2

and the set ST of all tokens in the string representation of version 1 as input, then,

for each token t in ST , we build the characteristic vector of the token t associated

with the string S = t1...tm, as V = (v1...vm):

vi =

{
1 if ti = t

0 otherwise.

Example 6: For the example shown in Figure 3.2(c), the characteristic vectors of

tokens A, in, and B are defined as:

36

(a) UML-like class diagram

C

B

A

D

F

E

G

cr cr cr

co

in

ag as

in

in

in

(b) Eulerian model

C D

A

B

E

F G

dm dm

cr

dmdm

cr cr

co

dm

in

ag as

in

in

in

(c) String representation of the Eulerian model

Figure 3.3 – String Representation of a software design (from [66]).

A = 1 0000000000000000︸ ︷︷ ︸
30

1

in = 010100010001 0000000︸ ︷︷ ︸
19

B = 00100010001 00000000︸ ︷︷ ︸
20

Characteristic vectors are sequences of bits on which we operate with: bit-wise

logical AND (∧), OR (∨) operators, left (←) and right (→) shifts. We define the

right shift of a characteristic vector V = (v1, v2..., vm−1, vm) by shifting all the bits

to the right by one position (circularly) as → V = (vm, v1, v2..., vm−1). Similarly,

the left shift of v is ← V = (v2..., vm−1, vm, v1).

3.1.3.3 Bit-vector Algorithm

Given the string representation of system version 1, the characteristic vectors

of system version 2, and the names of renamed classes, we now use a bit-vector

algorithm to match the designs of two system versions to each other. It can find

37

all stable triplets between two versions of a design in a bounded number of vector

operations, regardless of the length of the input (i.e., the number of tokens of

each string representation). Such an algorithm can be implemented with bit-wise

operations available in processors, leading to highly efficient computations [13].

Algorithm 2 works as follows: Let SetTriplets be the set of all triplets of the

first version, V ectors be the set of all characteristic vectors of the second version,

and Renamings be the set of the names of renamed classes. First, our algorithm

traverses the set SetTriplets, then for each triplet T = (CSource, R, CTarget) in

SetTriplets: If V ectors contains the characteristic vector of CSource and CTarget

then we initialize vectorSource with the characteristic vector of CSource, and the

vectorTarget with the characteristic vector of CTarget, and vectorR with the char-

acteristic vector of R. Then, we apply bit-wise operations on those characteris-

tic vectors to compute the conjunction : (→→ vectorSource) ∧ (→ vectorR) ∧
(vectorTarget). If the conjunction is not NULL, then T is added to the set

StableTriplets. Else, T is considered deleted and added to the setDeletedTriplets.

If CSource or CTarget were renamed, then we use the characteristic vector of the new

class name, of CSource or CTarget, using the list of class renamings (see Step 2). If

CSource or CTarget were deleted in the second version (as described in Step 2), then

the triplet T is considered deleted and is added to the set DeletedTriplets. Finally,

our algorithm stores the triplets identified as being stable or deleted between two

design diagram versions.

Example 7: Let assume that the triplet T = (A, in,B) exists in the first version,

and we would like to verify whether T exists in the second version too. Thus, we

build characteristic vectors of each token of T from the string representation of the

second version to compute the following conjunction:

38

Algorithm 2 Bit-Vector Principle.
1: StableTriplets← EmptyList {}
2: DeletedTriplets← EmptyList {}
3: Renamings← List { All renamings (sourceClass , renamedClass)}
4: SetTriplets← List {All triplets of system version 1}
5: V ectors← List{All characteristic vectors of system version 2}
6: for each Triplet T = (CSource, R,CTarget) in SetTriplets do
7: vectorR = CharacteristicV ector(R)
8: if V ectors contains CharacteristicV ector(CSource) then
9: vectorSource = CharacteristicV ector(CSource)
10: else
11: if Renamings contains CSource then
12: RenamedSource = getRenamings(CSource)
13: vectorSource = CharacteristicV ector(RenamedSource)
14: else
15: ADD T to DeletedTriplets
16: continue
17: end if
18: end if
19: if V ectors contains CharacteristicV ector(CTarget) then
20: vectorTarget = CharacteristicV ector(CTarget)
21: else
22: if Renamings contains CTarget then
23: RenamedTarget = getRenamings(CTarget)
24: vectorTarget = CharacteristicV ector(RenamedTarget)
25: else
26: ADD T to DeletedTriplets
27: continue
28: end if
29: end if
30: Conjunction = (→→ vectorSource) ∧ (→ vectorR) ∧ (vectorTarget)
31: if Conjunction is not NULL then
32: ADD T to StableTriplets.
33: else
34: ADD T to DeletedTriplets.
35: end if

36: end for

39

(→→ A) = 011 0000000000000000000︸ ︷︷ ︸
29

(→ in) = 0010100010001 000000︸ ︷︷ ︸
18

B = 00100010001 00000000︸ ︷︷ ︸
20

Conjunction = (→→ A) ∧ (→ in) ∧B

= 001 00000000000000000000︸ ︷︷ ︸
29

and assess whether the bit vector Conjunction is null (contains only zeros). If

the Conjunction is not null, then the class B is related to class A through the

inheritance relation in (in the second version) and thus, the triplet T = (A, in,B)

is stable between the two versions.

3.1.4 Step 4: Design Diagram Clustering

Once we obtained the set of all stable and deleted triplets between two design

diagram versions using the bit-vector algorithm, we apply our incremental clus-

tering algorithm to find the sets of connected triplets that form the sets of stable

(SµD) and decaying (DµD) micro-designs between two design versions.

To find stable micro-designs (SµD), our incremental clustering algorithm re-

quires one and only one scan of all stable triplets. Each triplet is read and then

either assigned to one of the SµDs or used to start a new SµD. Then, the set of

existing SµDs is reduced by merging two SµDs if a new triplet join them, i.e., it

includes a relation between classes belonging to the two SµDs.

We describe our Algorithm 3 as follows: Let S be the list of all stable triplets.

First, it traverses S, then for each triplet T in S and for each cluster C, if there

is a triplet T ∗ in C that has a relation with T, then the triplet T is added to the

cluster C, which is also marked as Cluster to be merged (lines 3-8). If there is

another cluster that contains another triplet T ∗ that has a relation with triplet T,

then the current cluster is merged with the marked cluster (lines 9-10). If, after

40

Algorithm 3 Incremental Clustering Principle.
1: L← EmptyList{Clusters}
2: S ← List {Stable Triplets between two system versions}
3: for each Triplet T in S do
4: for each Cluster C in L do
5: if T has a relation with the existing triplet T ∗ in C then
6: if T is not added to any cluster then
7: ADD T to C.
8: ClusterToBeMerged← C.
9: else
10: MERGE ClusterToBeMerged to C.
11: end if
12: end if
13: end for
14: if T is not added to any cluster then
15: Create a new Cluster C∗.
16: ADD T to C∗.
17: ADD C∗ to L.
18: end if

19: end for

checking all clusters C in L, the triplet T was not assigned to any cluster, a new

cluster C∗ is created and the triplet T is added to it (lines 14-17).

Our algorithm returns the clusters that represent stable micro-designs SµDs

between two versions. Similarly, we can apply the same algorithm to find decaying

micro-designs (DµD) using the set of deleted triplets as input.

3.1.5 Step 5: Design Decay Evaluation

Given the set of stable micro-designs of each subsequent pair of software designs,

we can measure the design stability, as follows:

• Tunnel Triplets Metric (TTM): this metric represents the stability of the

design with respect to the original design (the first version). It reports the

number of triplets that have a match in all the versions. These triplets are

considered to be the backbone of the system, i.e., a kind of tunnel across

time. Let STunnel(T) be the set of triplets T = (CSource, R, CTarget) that are

present in the SµD from the first to the last version of a software design. We

41

define, TTM(V ersioni), the number of tunnel triplets at V ersioni as:

STunnel(T) = {T |T ∈ {SµD(j)
∩

SµD(j + 1),∀j ∈ [0, i]}}

SµD(V ersioni) = {Tk|Tk ∈ V ersionj,∀k ∈ [0, N],∀j ∈ [0, i]}

TTM(V ersioni) = |STunnel(T)|

• Common Triplets Metric (CTM): this metric represents the stability of the

design with respect to the previous version. It consists of computing the

number of triplets that have not changed since their first appearance in a

given version. Let S(T) be the set of triplets T = (CSource, R, CTarget) that

are never deleted since their first appearance. We define, CTM(V ersioni),

the number of stable triplets at V ersioni as:

S(T) = {T |T ∈ Vj, ∀j ∈ [k, i],∃k ∈ [0, i[}

CTM(V ersioni) = |S(T)|

We show in Section 3.2 how these measures provide useful insights to developers

regarding the evaluation of design decay in object-oriented systems.

3.2 Study Definition and Design

Following the Goal Question Metric (GQM) methodology [10], the goal of our

study is to analyse the performance of our approach ADvISE. The purpose is

to provide an approach for identifying class renaming and evaluating design decay.

The quality focus is to evaluate the design decay of software systems, and to provide

a set of renamings occurrences with good precision and recall and in a reasonable

time. The perspective is that of both researchers who want to study class renaming,

and practitioners who analyse software evolution to estimate the effort required for

future maintenance tasks. The context of our experiments is five open-source Java

systems: ArgoUML, DNSjava, JFreeChart, Rhino and XercesJ.

42

3.2.1 Objects

We perform our study on five well-known, open-source software systems: Ar-

goUML, DNSjava, JFreeChart, Rhino, and XercesJ. We selected these systems be-

cause: (1) they are open source belonging to different domains, (2) several versions

of these systems are available, (3) the lengths of their histories are long enough

to make interesting observations on the signs of the design decay, (4) they vary

from medium-sized to large open-source projects, (5) defect data (bugs and design

defects) are available from previous authors [36, 71] for Rhino and ArgoUML, (6)

these systems were previously studied in previous work [36, 71, 76, 77]. The last

condition reduces the bias in the selection of the subject systems and facilitates

the comparison with previous work. Table 3.1 shows some descriptive statistics of

these systems.

ArgoUML3 is a graphical software design environment that supports the design,

development and documentation of object-oriented software systems. DNSjava4

is an implementation of the DNS protocol in Java. DNSjava includes a set of

classes that can be used within other systems and several user tools. JFreeChart5

is a powerful and flexible open-source charting library. Rhino6 is an open-source

implementation of JavaScript written entirely in Java. XercesJ7 is a family of

software packages for parsing XML.

3.2.2 Research Questions

We break down our study into four phases. First, we study the performance of

our class renaming detection and we seek answers to the following questions:

• RQ1: What are the thresholds for class renaming detection? This

question aims at studying how thresholds can be systematically derived for

our renaming detection technique.

3http://argouml-stats.tigris.org/
4http://www.dnsjava.org/
5http://www.jfree.org/jfreechart/
6http://www.mozilla.org/rhino/
7http://xerces.apache.org/

43

System Releases
Entities Bit-vectors History

Dates
(in classes) (in bits) (in releases)

ArgoUML
From v0.10.1 1447 12,265,560

17
07/07/2002

To v0.34 1984 105,456,260 15/12/2011

DNSjava
From v1.2.0 164 49,759

33
07/04/2001

To v2.1.3 124 93,067 24/10/2011

JFreeChart
From v0.5.6 100 87,227

51
25/11/2000

To v1.0.13 778 1,089,345 20/04/2009

Rhino
From v1.5.R1 163 40,803

11
10/05/1999

To v1.6.R5 449 266,265 19/11/2006

XercesJ
From v1.0. 296 162,583

36
05/11/1999

To v2.9.0 697 1,195,353 22/11/2006

Table 3.1 – Statistics for the first and last version of each system.

• RQ2: What is the efficiency of ADvISE for class renaming detection

in a software system? This question aims at studying the performance of

ADvISE in terms of precision and recall for class renaming detection. We

investigate how our structure-based and text-based similarities can help the

identification of class renaming in the evolution of a software system.

Then, we investigate whether it is possible to apply our approach to study the

design decay of object-oriented software systems:

• RQ3: What are signs of design decay and how can they be tracked

down? This question aims at studying whether TTM and CTM are good

indicators of design decay and if they provide useful insights to developers

regarding the signs of software aging.

Then, we investigate whether decayed designs make systems more prone to bugs

and design defects:

• RQ4: Do stable and decaying micro-designs have the same risk to

be bug-prone? This question leads to the following null hypothesis:

– H0: There is no significant difference between the proportions of bugs

carried by stable (SµD) and decaying micro-designs (DµD).

• RQ5: Are decaying micro-designs more prone to design defects

than stable micro-designs? This question leads to the following null hy-

pothesis:

44

– H0: There is no significant difference between the proportions of design

defects carried by stable (SµD) and decaying micro-designs (DµD).

Finally, we study the performance of our approach ADvISE:

• RQ6: How does ADvISE perform? This question aims at studying the

performance of ADvISE outlining the execution time for each step and for

each examined system.

3.2.3 Analysis Methods

We perform the following analyses to answer the research questions:

RQ1: What are the thresholds for class renaming detection?

For RQ1, we compute the F-measure of the class renamings for different threshold

values, in comparison to our oracle (see RQ2) to find the optimal threshold values

of the ND and CamelS similarities for JFreeChart and XercesJ. The maximum

values of the F-measure correspond to a balanced compromise between precision

and recall [8], threshold values before the peak favor precision, while threshold

values after the peak promote recall.

F −measure =
2× (precision× recall)

(precision+ recall)

precision =
|correct ∩ detected|

|detected|

recall =
|correct ∩ detected|

|correct|
where correct represents the set of known renamed classes and detected that of

candidate occurrences detected by our approach.

RQ2: What is the efficiency of ADvISE for class renaming detection in

a software system?

For RQ2, we first apply our approach on JFreeChart and XercesJ to detect class

renamings using one type of similarity at a time, in order to investigate how our

45

structural similarity (StrS), textual similarities (CamelS and ND), and their com-

bination can help the identification of class renaming in a software system.

We need an oracle to study the efficiency of ADvISE and validate its detection

of class renamings. Such an oracle must provide for a set of systems, the true class

renamings between different pairs of versions. Manually building the oracle for all

releases is a time consuming task even for small sized systems, such as XercesJ.

Producing an oracle for medium sized systems may require inspection of thousands

of matches. Indeed, there are about 3, 570 class renaming candidates for 51 releases

of JFreeChart. Thus, an exhaustive manual verification is not feasible.

To reduce the required manual verification, we propose a semi-automated oracle

building process that consists of three main phases:

• First, we apply ADvISE on JFreeChart and XercesJ to detect class renamings.

• Second, we use a stratified random sampling to gather a representative set of

class renamings for each system.

• Finally, we applied the ECGM algorithm [75] on the set of sampled Java

classes. Let S(ADvISE) and S(ECGM) be the set of class renamings de-

tected by ADvISE (respectively, ECGM). We consider that S(ADvISE)∩
S(ECGM) is a true class renaming and we inspect manually the differences

S(ADvISE)−S(ECGM) and S(ECGM)−S(ADvISE) to build our oracle.

Stratified Random Sampling is a probability sampling technique, also sometimes

called proportional random sampling. It is used to estimate population parame-

ters efficiently when there is substantial variability between sub-populations [33].

A stratum is a subset of elements in the population sharing at least one common

characteristic, i.e., they have similar values of one or more stratification variables.

The values of the stratification variables are known for the entire population. This

technique involves partitioning the entire population (N) into homogeneous sub-

groups (S1, S2, S3,..., Si) called strata, such that N = S1 ∪ S2 ∪ S3 ∪ ... ∪ Si, and

then taking a random sample proportional to the fraction ni/N in each subgroup Si,

where ni is the sample size of Si. With the stratified sampling technique, we have

a higher statistical precision compared to simple random sampling, because the

46

variability within the subgroups is lower compared to the variations when dealing

with the entire population.

In our case, we divide the set of fully qualified class names of all system versions

into two subgroups (strata) corresponding to two types of renamings:

1. Class renaming with or without changing the package name;

2. Package renaming without changing the class name.

Then, we randomly select from each subgroup as explained above. We compute

the total sample size using the following formula:

Samplesize =
Z2 × P × (1− P)

C2

Z= Z value, a standard value of 1.96 (the confidence level at 95%).

P = Percentage of picking a choice (0.5 used for sample size needed).

C = Confidence Interval, a standard value of 0.05 (the margin of error at 5%).

Table 3.2 shows the amount of class renamings in JFreeChart and XercesJ.

There are 3,570 cases of class renamings for 51 releases of JFreeChart (respec-

tively, 715 for 36 releases of XercesJ). Table 3.3 reports the results of the stratified

sampling. The sample size of JFreeChart is 347 (respectively, 250 for XercesJ). In

Table 3.3, we divided the set of class renamings into two strata using the percentage

of each subgroup obtained from Table 3.2.

System Releases Population Size # Package Renamings # Class Renamings
JFreeChart v0.5.6-v1.0.14 3,570 (100%) 2,127 (59.57%) 1,443 (40.43%)
XercesJ v1.0.1-v2.0.9 715 (100%) 389 (54.40%) 326 (45.60%)

Table 3.2 – Amount of class renaming.

Once we select the stratified random sample, we collect the numbers of true and

false positive occurrences of the class renamings in the sample using our oracle,

using the precision and recall values [8]:

precision =
|correct ∩ detected|

|detected|

47

System Releases Sample Size Stratum 1 Size Stratum 2 Size
JFreeChart v0.5.6-v1.0.14 347 (100%) 207 (59.57%) 140 (40.43%)
XercesJ v1.0.1-v2.0.9 250 (100%) 136 (54.40%) 114 (45.60%)

Table 3.3 – Sample sizes after startified Sampling.

recall =
|correct ∩ detected|

|correct|
where correct represents the set of known renamed classes and detected that of

candidate occurrences detected by our approach.

RQ3: What are signs of design decay and how can they be tracked down?

For RQ3, we first apply our approach to ArgoUML, DNSjava, JFreeChart, Rhino,

and XercesJ. Then, we perform a pair by pair matching of subsequent software

designs to identify stable triplets in these systems. To evaluate the deviation of

the actual design from the original design, we compute the number of triplets that

has a match in all the versions, using our TTM metric. These triplets are con-

sidered to be part of a tunnel, i.e., the backbone part of the system. Also, to

analyse the stability of the design with an enriched functionality, we compute the

number of triplets that have not changed since their first appearance in a given

version of a system, using our CTM metric. Then, we build a graph visualising

the evolution of a software design over time. The axes of the graphic are: the time

(software versions) and the values of our indicators of design decay (number of

triplets in the tunnel (TTM) and number of common triplets between two versions

(CTM)). Then, we validate the graph of designs evolution for each system using

external information provided by bug reports, mailing lists, and release notes to

assess whether these indicators provide useful insights regarding the signs of soft-

ware aging.

RQ4: Do stable and decaying micro-designs have the same risk to be

bug-prone?

For RQ4, we first apply the bit-vector algorithm to identify stable (SµD) and

48

decaying (DµD) micro-designs in ArgoUML and Rhino, using publicly available

data on the bugs collected 8 by previous authors [36, 71].

To test H0, we test whether the proportion of classes that compose decaying

(respectively stable) micro-designs take part (or not) in significantly more faults

than those in stable (respectively decaying) micro-designs. We use contingency

tables to assess the direction of the difference, if any. We use Fisher’s exact test

[113], to check whether the difference is significant. We also compute the odds ratio

[113] that indicates the likelihood for an event to occur. The odds ratio is defined

as the ratio of the odds that decayed classes are identified as fault-prone, to the

odds that stable classes are identified as fault-prone. An odds ratio greater than 1

indicates that the event is more likely in the first sample (decayed classes), while

an odds ratio less than 1 indicates that it is more likely in the second sample. An

odds ratio OR = p
(1−p)

. We expect OR > 1 and a statistically significant p-value.

RQ5: Are decaying micro-designs more prone to design defects than

stable micro-designs?

For RQ5, we first apply the bit-vector algorithm to identify stable micro-designs in

ArgoUML and Rhino, using publicly available data on the design defects collected9

by previous authors [71]. In this study, we consider 12 types of design defects, such

as: Anti-Singleton, Blob, ClassDataShouldBePrivate, ComplexClass, LargeClass,

LazyClass, LongMethod, LongParameterList, MessageChains, RefusedParentRe-

quest, SpeculativeGenerality, and SwissArmyKnife (see Appendix B).

To attempt rejectingH0, we test whether the proportion of classes that compose

decaying (respectively stable) micro-designs take part (or not) in significantly more

design defects than those in stable (respectively decaying) micro-designs. We use

contingency tables to assess the direction of the difference, if any. We use Fisher’s

exact test [113], to check whether the difference is significant. We also compute the

odds ratio that indicates the likelihood for an event to occur. We expect OR > 1

and a statistically significant p-value.

8ArgoUML http://www.ptidej.net/downloads/experiments/emse10

Rhino http://www.cs.columbia.edu/~eaddy/concerntagger/
9http://www.ptidej.net/downloads/experiments/emse10

49

RQ6: How does ADvISE perform?

For RQ6, we first apply our approach on ArgoUML, DNSjava, JFreeChart, Rhino,

and XercesJ, to investigate the impact of the size of software designs on match-

ing time. For each system, we apply our approach ADvISE to pairs of releases.

Then, we record the median across multiple runs for a particular configuration.

ADvISE’algorithms are coded in Java and run using a standard Intel Core i5

(2.53GHz) with 6GB RAM running Microsoft Windows 7 (64-bit). We measure the

time performance in Java using System.currentTimeMillis(). This method returns

the current time in milliseconds since midnight GMT on January 1st, 1970. We use

this technique, because we are interested in profiling events that run measurably

slow (more than 1 millisecond).

3.3 Empirical Study Results

We now report and discuss the results of our study.

RQ1: What are the thresholds for class renaming detection?

Figure 3.4 shows the F − measure graph of class renamings in JFreeChart and

XercesJ with different threshold values. For CamelS, we select 0.5 as best threshold

value, in which the optimal F −measure values are 95.99 for JFreeChart and 93.96

for XercesJ.

For ND, we have a range of threshold values Range = [0.4, 0.7], in which the

optimal F −measure values are 95.86 for JFreeChart and 85.95 for XercesJ. Pre-

vious authors[39] have fixed the threshold value of normalized edit distance (ND)

to 0.40, which belongs to our Range. Thus, we select 0.4 as best ND threshold.

RQ2: What is the efficiency of ADvISE for class renaming detection in

a software system?

In Table 3.4, we present the precision and recall on each subject system. The first

three columns represent the efficiency of class renaming using just one similarity

value (CamelS, ND, StrS). CamelS similarity alone provides the best results

for XercesJ with a precision of 84.61%. However, it provides the worst results

for JFreeChart with a precision of 65.90%. ND similarity alone provides the best

50

(a) Camel Similarity

(b) Normalized Edit Distance

Figure 3.4 – F-measure in function of thresholds values for CamelS
and ND Similarities.

results for JFreeChart with a precision of 77.27%, but it provides the worst results

for XercesJ with a precision of 38.46%. The precision of StrS similarity is 72.72%

for JFreeChart and 57.69% for XercesJ.

In the last column, we present the efficiency of our approach using the combina-

tion of all similarities. This combination yields a precision of 95.45% in JFreeChart

(respectively, 92.30% in XercesJ), while the recall of JFreeChart is 97.67% (respec-

tively, 96.00% in XercesJ). We conclude that the combination of structural and

textual similarities provide better results than each single similarity.

51

Systems Similarities CamelS ND StrS Combination

JFreeChart Precision 65.90% 77.27% 72.72% 95.45%
v0.5.6-v1.0.13 Recall 67.41% 79.06% 74.41% 97.67%

XercesJ Precision 84.61% 38.46% 57.69% 92.30%
v1.0.1-v2.9.0 Recall 88.00% 40.00% 60.00% 96.00%

Table 3.4 – The performance of ADvISE in terms of precision and
recall for class renaming detection.

RQ3: What are signs of design decay and how can they be tracked down?

Our bit-vector and incremental clustering algorithms identified the common triplets

in ArgoUML, DNSjava, JFreeChart, Rhino, and XercesJ. We then compared, on

the one hand the graphs visualising the number of triplets between two subsequent

versions, and on the other hand, external information in the bug reports, release

notes and mailing lists.

ArgoUML

The number of triplets in the tunnel (TTM metric) was decreasing from 10, 140 to

7, 398 triplets at version 0.26 (see Figure 3.5). Then, it remains stable throughout

the life of ArgoUML, which means that the design of argoUML evolves without

affecting its original design. Similarly, the number of common triplets (CTM met-

ric) between versions 0.24 and 0.26 decreased from 11, 234 to 8, 363 triplets. We

inspected the set of deleted triplets, and found a large decaying micro-design con-

taining 1879 triplets. Using external information10, 11, we explain the results shown

in Figure 3.5 as follows:

• 0.24 – 0.26: CTM metric between versions 0.24 and 0.26 decreased from

11, 234 to 8, 363 triplets. The release notes report an important remove ac-

tivity of “Group and Ungroup Actions” and GEF library (gef-0.12.jar) on

30-08-2006. The release schedule reports that 0.24 is the last release support-

ing Java 1.4.

• 0.26 – 0.26.2: CTM metric between versions 0.26 and 0.26.2 increased from

8, 363 to 10, 643 triplets. The release schedule reports that new features were

10http://argouml.tigris.org/wiki/ReleaseSchedule
11http://argouml.tigris.org/wiki/ReleaseSchedule/Past Releases in Detail

52

added, such as explorer drag and drop, profiles, settable diagram fonts, and

activity diagram swimlanes (partitions), etc.

• 0.26.2 – 0.28: CTM metric between versions 0.26.2 and 0.28 decreased from

10, 643 to 10, 146 triplets. The release schedule reports critical bug fixes for

multinational character support and profiles.

• 0.28 – 0.28.1: CTM metric between versions 0.28 and 0.28.1 increased from

10, 146 to 11, 163 triplets. The release schedule reports the integration of the

results of the GSoC12 projects. A new sequence diagram implementation is

provided. Additionally, functionalities is moved into separate modules, such

as draggable edge labels, C# source import, new diagram icons.

• 0.28.1 – 0.30: CTM metric between versions 0.28.1 and 0.30 decreased from

11, 163 to 10, 694 triplets. The release schedule reports the introduction of a

new implementation of property panels in XML files.

• 0.30 – 0.30.1: CTM metric between versions 0.30 and 0.30.1 increased from

10, 694 to 11, 215 triplets. The release schedule reports some transformations

and bug fixes.

Figure 3.5 – The evolution of the ArgoUML design.

12Google Summer of Code Project http://argouml.tigris.org/wiki/Ideas for GSoC 2010

53

DNSjava

The number of triplets in the tunnel (TTM metric) decreased from 749 to 329

triplets throughout the life time of DNSjava (see Figure 3.6). The number of

common triplets (CTM metric) between versions 1.5.2 and 1.6.1 decreased to 853

triplets. Using external information, we show that this period13 (24-02-2004 and

16-03-2004) corresponds to the largest number of changes during two successive

months14.

Figure 3.6 – The evolution of the DNSjava design.

JFreeChart

The number of triplets in the first (TTM metric) version decreased from 413 to

100 stable triplets in the tunnel (see Figure 3.7). This decrease is due to major

changes that have been made. Using external information, we explain the results

shown in Figure 3.7 as follows:

• 0.9.20 – 0.9.21: The number of common triplets (CTM metric) between ver-

sions 0.9.20 and 0.9.21 decreased to 1, 894 triplets, the release notes report

an important splitting activity of two packages org.jfree.data and org.

jfree.chart.renderer into sub-packages category and xycharts. The

fully qualified names of all entities in both packages have been changed, which

decreased the number of common triplets.

13http://www.dnsjava.org/download/old/
14http://sourceforge.net/mailarchive/forum.php?forum_name=dnsjava-changes&max_

rows=25&style=ultimate&viewmonth=200402

54

• 0.9.21 – 1.0.0: The CTM metric between versions 0.9.21 and 1.0.0 increased

to 3, 356. The release notes report v1.0.0 to be the first stable release of the

JFreeChart class library, all future releases in the 1.0.x series will aim to

maintain backward compatibility with this release.

• 1.0.12 – 1.0.13: The CTM metric between versions 1.0.12 and 1.0.13 in-

creased again. After version 1.0.0, we noticed that the number of common

triplets was increasing until the last version (1.0.13). The release notes re-

veal that some new features were added and some bugs fixed. The number of

common triplets in the tunnel (TTM metric) remains constant, the backbone

of the system is more stable.

Figure 3.7 – The evolution of the JFreeChart design.

Our approach has the potential to discover two cases of renamings in a fully-

qualified class name: (1) Class renaming without changing the package name; (2)

Package renaming without changing the class name. In the second case, the triplets

are not considered stable, because renamings are due to structural changes in the

design, such as splitting or merging packages, moving the class to a new package.

Rhino

The number of triplets in the tunnel (TTM metric) was decreasing from 677 to 421

triplets throughout all the life of Rhino (see Figure 3.8). The number of common

55

triplets (CTM metric) between versions 1.5R5 and 1.6R1 decreased from 1, 335 to

1, 228 triplets, while the TTM metric remains stable, the release notes report Rhino

1.6R1 as the new major release of Rhino, there are important changes in Rhino

1.6R1, “... without affecting the existing code base”15. Thus, the triplets in the

tunnel represent the existing code base.

Figure 3.8 – The evolution of the Rhino design.

XercesJ

The number of triplets in the first version (TTM metric) decreased from 1, 693 to

484 triplets throughout the life time of XercesJ (see Figure 3.9). This means that

28.58% of the triplets belong to the tunnel. Using external information, we explain

the results shown in Figure 3.9 as follows:

• 1.0.1 – 1.4.4: the number of common triplets (CTM metric) increased from

1, 693 to 3, 160 triplets, because new features were added and maintained

until version 1.44. The number of stable triplets in the tunnel (TTM metric)

decreased, some classes in the first version were deleted and replaced by new

ones.

• 1.4.4 – 2.0.0: the number of common triplets (CTM metric) decreased from

3, 160 to 959 triplets. There were major changes reported in version 2.0.0.

15http://www.mozilla.org/rhino/rhino16R1.html

56

Also, the number of stable triplets in the tunnel (TTMmetric) decreased from

1, 693 to 488 triplets, because classes from the first version were deleted. The

release notes report that “XercesJ 2.0.0 is a nearly complete rewrite of the

XercesJ 1.x code base to make the code cleaner, more modular, and easier

to maintain. It includes a completely redesigned and rewritten XML Schema

validation engine”.

• 2.0.0 – 2.0.9: the number of common triplets increased from 959 triplets to

6, 096. The software design became more stable, there were just new features

added and some bugs fixed. Also, the number of stable triplets in the tunnel

remained constant at 488, so the backbone of the system is now stable.

Figure 3.9 – The evolution of the XercesJ design.

Discussion

In our approach, a software design is represented by a (possibly reverse-engineered)

class diagram. In ArgoUML, DNSjava, JFreeChart, Rhino, and XercesJ, the num-

ber of common triplets between two subsequent versions (CTM) is increasing over

time. The first measure of design decay is related to how many of the triplets

(CTM) of the considered design are kept in subsequent versions or releases. As

a software evolves, additions of all sorts are to be expected, as new requirements

and new functionalities will be implemented in the software system. In contrast,

deletions are less “natural” and more likely to be associated with the correction of

early misconceptions, and related to design decay. The absence of those relations

in subsequent versions is an interesting measure of design decay. In particular,

57

there may be cases in which the classes are kept but the relations between them

are deeply modified.

The second measure considers the number of triplets in the tunnel (TTM).

For this preliminary study, we are only interested in evaluating how much of an

original design is present throughout a life time. To this end, we count the number

of triplets in the tunnel (TTM) of each system, to measure their design decay.

If TTM decreased, then the original design decayed. If TTM is stable, then the

original design is stable, which means that the system is more adapted to the new

changing requirements. For example, as illustrated in Figure 3.7 and 3.9, the tunnel

of JFreechart decreased faster than the tunnel of XercesJ over the n versions, which

means the structural changes are more frequent in JFreechart than in XercesJ. In

both systems, numbers of triplets in the tunnel become stable.

RQ4: Do stable and decaying micro-designs have the same risk to be

bug-prone?

Table 3.5 – 3.6 present 2×2 contengency tables for ArgoUML and Rhino. These ta-

bles report the number of (1) unstable classes, belonging to decaying micro-designs

(DµD), that are identified as bug-prone; (2) unstable classes that are identified as

clean; (3) stable classes, belonging to stable micro-designs (SµD), that are identi-

fied as bug-prone; and, (4) stable classes that are identified as clean. The result

of Fisher’s exact test and odds ratios when testing H0 are significant. The p-value

is less then 0.05 and the odds ratio for fault-prone unstable classes is two times

higher than for fault-prone stable classes.

Bug-prone classes Clean classes

DµD 973 763
SµD 148 301

Fisher’s test (p− value) 2.2e−16

Odd-ratio (OR) 2.59

Table 3.5 – Contingency table (ArgoUML) and Fisher test results
for unstable classes with at least one bug.

We can answer RQ4 as follows: we showed that stable micro-designs, belonging

to the original design, are significantly less bug-prone than decaying micro-designs

58

Bug-prone classes Clean classes

DµD 105 14
SµD 39 17

Fisher’s test (p− value) 0.005
Odd-ratio (OR) 3.244

Table 3.6 – Contingency table (Rhino) and Fisher’s test for unsta-
ble classes with at least one bug.

and thus, we confirm previous findings [123].

RQ5: Are decaying micro-designs more prone to design defects than

stable micro-designs?

Table 3.7 – 3.8 present 2× 2 contengency tables for ArgoUML and Rhino. These

tables report the number of (1) unstable classes, belonging to decaying micro-

designs (DµD), that are identified as prone to design defects; (2) unstable classes

that are identified as clean; (3) stable classes, belonging to stable micro-designs

(SµD), that are identified as prone to design defects; and, (4) stable classes that

are identified as clean. The result of Fisher’s exact test and odds ratios when

testing H0 are significant. The p-value is less then 0.05 for ArgoUML and less than

0.06 for Rhino. The odds ratio for unstable classes that are prone to design design

defects is three times higher in ArgoUML (respectively, two times in Rhino) than

for stable classes that are prone to design defects.

Design defect-prone classes Clean classes

DµD 1305 431
SµD 210 239

Fisher’s test (p− value) 2.2e−16

Odd-ratio (OR) 3.44

Table 3.7 – Contingency table (ArgoUML) and Fisher’s test for
unstable classes with at least one design defect.

We can answer RQ5 as follows: we showed that stable micro-designs, belonging

to the original design, are significantly less prone to design defects than decaying

micro-designs and thus we can confirm the results of the previous work [85].

59

Design defect-prone classes Clean classes

DµD 95 24
SµD 38 18

Fisher’s test (p− value) 0.06327
Odd-ratio (OR) 1.86

Table 3.8 – Contingency table (Rhino) and Fisher’s test for unsta-
ble classes with at least one design defect.

RQ6: How does ADvISE perform?

Table 3.9 shows the computation time in seconds of ADvISE for ArgoUML,

DNSjava, JFreeChart, Rhino, and XercesJ. The average times for Step 2 (class

renaming detection), Step 3 (bit-vector matching of two system versions), and

Step 4 (clustering algorithm) were less than 3 seconds. The median time of all

those steps were less than one second. Overall, the matching process (including

PADL and EPI) took less than one minute for small sized systems, 2 minutes for

medium-sized systems, and about 5 hours for a large-sized system.

Systems Releases Step 1 (PADL) Step 1 (EPI) Step 2 Step 3 Step 4 Step 5
ArgoUML v0.10.1 7.047 18,098 4.835 10.651 10.140 908.329
DNSjava v1.2.0 2.249 44.209 0.862 0.935 0.075 7.150
JFreeChart v0.5.6 2.197 62.268 3.135 1.907 0.099 50.030
Rhino v1.4.R3 2.150 50.350 1.783 0.450 0.064 7.985
XercesJ v1.0.1 4.520 179.41 1.273 0.549 0.032 15.488

Median Time 2.249 62.268 1.783 0.935 0.075 15.488
Average Time 3.6326 3,686.84 2.377 2.898 2.082 197.7964

Table 3.9 – Execution time (in seconds) for each step of ADvISE.

Threats to Validity

Several threats potentially impact the validity of our study.

Construct validity threats concern the relation between theory and observa-

tion; in our context, they are mainly due to errors introduced in measurements.

Our strategy of reverse engineering class diagrams may contain imprecision and

there is a need to compare obtained results with other reverse engineering tools.

Nevertheless, because all class diagrams were produced by the same tools chain,

any imprecision should factor out. However, we can not exclude the possibility that

60

by using a different reverse-engineering tool our algorithms may produce slightly

different results. Another critical element is the faults data sets (bugs and design

defects). We use manually-validated faults that have been used in previous studies
1617. Yet, we cannot claim that all fault-prone classes have been correctly tagged

or that fault-prone classes have not been missed. There is a level of subjectivity

in deciding if an issue reports a fault and in assigning this fault to classes. In this

context, we are just interested to check whether a class is faulty or not, rather than

quantifying the amount of faults (which is our future work).

Internal validity threats do not affect this particular study, being an exploratory

study. Thus, we cannot claim causation, but just relate decayed classes with the

occurrences of faults, although our discussion tries to explain why some decayed

classes could have been subject to faults.

Conclusion validity threats concern the relation between the treatment and the

outcome. We paid attention not to violate assumptions of the statistical tests that

we used (we mainly used Fisher test, which is a non-parametric test).

External Validity threats relates to the extent to which we can generalise our

results. The main threat to the external validity of our study that could affect the

generalisation of the presented results relates to the analysed systems. We per-

formed our study on five different Java systems belonging to different domains and

with different sizes. However, we cannot assert that our results can be generalised

to other larger systems and systems in other programming languages. Future work

includes replicating this study on other systems to confirm our results.

3.4 Summary

Design decay is defined as the deviation from an original design, i.e., the vio-

lation of design caused by the process of evolution [63, 100, 127]. When evolution

occurs in an uncontrolled manner, software systems become more complex over

time and, thus, harder to maintain [12, 55]. Thus, decayed designs make systems

more prone to bugs [123]. To the best of our knowledge, no previous approach

exists to quantify and study design decay.

16http://www.cs.columbia.edu/~eaddy/concerntagger/
17http://www.ptidej.net/downloads/experiments/emse10

61

In this chapter, we propose a novel approach, ADvISE, and a set of measures

(TTM and CTM) to measure design decay. The first step in observing design

decay is to use a diagram matching technique to identify structural changes among

versions of designs. Finding structural changes occurring in long-lived evolving

designs requires the identification of class renamings. The second step requires to

match evolving designs to identify stable/unstable triplets and thus, to identify

stable/decaying micro-designs. The third step consists of using the previously-

identified stable triplets in proposing metrics (TTM and CTM) to measure the

design decay.

Thus, this chapter presented three contributions:

1. The first contribution of this chapter is a set of structural and textual simi-

larities to identify class renamings in evolving designs.

2. The second contribution are a bit-vector and incremental clustering algo-

rithms to perform the matching between several versions of a design and find

stable/decaying micro-designs.

3. The third contribution is a set of metrics (TTM and CTM) that could be

used as indicators of decay in the context of an evolving design, and thus,

predictors of design defect- and bug- proneness.

We also performed a qualitative and a quantitative studies to show the applica-

bility and usefulness of our approach. We applied our approach on five open-source

systems: ArgoUML, DNSjava, JFreeChart, Rhino and XercesJ, and answered the

following research questions as follows:

• RQ1: What are the thresholds for class renaming detection? We

show that we can systematically choose adequate thresholds that provide an

optimal F-measure (precision and recall) for our renaming detection tech-

nique.

• RQ2: What is the efficiency of ADvISE for class renaming detection

in a software system? We show that our approach has good precision and

recall for class renamings detection.

62

• RQ3: What are signs of design decay and how can they be tracked

down? We show that our design decay metrics (TTM and CTM) provide

us useful insights regarding the signs of software aging. If TTM decreased,

then the original design decayed. If TTM is stable, then the original design

is stable, which means that the system is more adapted to the new changing

requirements. If CTM increased, then new requirements and new function-

alities are implemented in the software. If CTM is stable, then the system

is stable and the most of maintenance activities are bug fixes.

• RQ4: Do stable and decaying micro-designs have the same risk to

be bug-prone? We show that stable micro-designs, belonging to the original

design, are significantly less bug-prone than decaying micro-designs.

• RQ5: Are decaying micro-designs more prone to design defects

than stable micro-designs? We show that stable micro-designs, belong-

ing to the original design, are significantly less prone to design defects than

decaying micro-designs.

• RQ6: How does ADvISE perform? We show that the time performance

of our approach is good, outlining the execution time of each step ofADvISE.

CHAPTER 4

A SEISMOLOGY-INSPIRED APPROACH TO STUDY THE

CHANGE IMPACT

Although object-oriented programming has met great successes in modeling and

implementing complex systems, developers face problems with maintenance [103].

In particular, making changes without understanding their effects can lead to poor

effort estimation and delays in release schedules because of their dire consequences,

eg., the introduction of bugs [12, 55]. Therefore, both managers and programmers

must be aware of the ripple effects caused by a change. Thus, they need help to

identify the classes that must be changed to perform maintenance changes more

accurately. Change impact analysis aims at identifying software artefacts being af-

fected by a change; it provides the potential consequences of a change and estimates

the set of artefacts that must be modified to accomplish a change [17].

The following motivating example, illustrates the difficulty that developers face

in identifying the change impact: the bug ID2005511 reports a bug in Rhino2,

that was introduced by a developer when he implemented a change to class Kit

and missed a required change to class DefiningClassLoader. In this case, infor-

mation passes from class Kit to class DefiningClassLoader through an interme-

diary class ContextFactory. Thus, a change in Kit should trigger a change in

DefiningClassLoader, while the class ContextFactory remains unchanged.

This motivating example presents a situation where a bug was introduced by

a developer who missed changing a class, that must be considered before imple-

menting the change task. This example confirms that change impact is difficult

to anticipate between two classes separated by an intermediary class. This prob-

lem would be more difficult if the two classes (Kit and DefiningClassLoader) were

separated by a long chain of relations.

Studying the change impact, or more specifically the scope of change prop-

agation, could help developers prioritise their changes according to the forecast

1https://bugzilla.mozilla.org/show_bug.cgi?id=200551
2http://www.mozilla.org/rhino/

64

scope of changes. Understanding change propagation requires source code analy-

sis, which is a difficult, error-prone, and expensive activity [101]. We propose an

approach to change propagation analysis specifically designed to study the scope of

change propagation, based on a metaphor between seismology and change impact

analysis. Our approach considers changes to a class as an earthquake that propa-

gates through a long chain of intermediary classes. It combines static dependencies

between classes and historical co-change relations to study the scope of change

propagation in a system, i.e., how far a change propagation will proceed from an

“epicenter class” to other impacted classes.

In this chapter, we perform a qualitative and two quantitative studies, to show

the applicability and usefulness of our approach. We apply our approach on three

open-source systems: Pooka, Rhino, and XercesJ, and answer the following research

questions:

• RQ1: Does our metaphor allow us to observe the scope of change

propagation?

• RQ2: What is the level most impacted by a change?

• RQ3: What is the most reachable level by a change?

We answer these research questions as follows:

• RQ1: Like earthquakes the change impact seems to be more severe near the

epicenter class and decreases through class levels.

• RQ2: We applied ANOV A and Duncan−Multiple−Range tests, and we

can conclude that: a) level 1 is the most impacted, b) level 2 is the second

most impacted, but significantly less than level 1, c) levels 3, 4, 5, and 6, are

significantly less impacted than level 1 and 2.

• RQ3: We conclude that almost change propagation stops at the level 1 and

2. But, there are some earthquakes that propagate until 3, 4, 5 or 6 level.

This chapter is organised as follows: Section 4.1 describes our metaphor and

mapping. Section 4.2 presents our approach and its implementation. Section 4.3

65

presents the three research questions derived from our metaphor while Section

4.4 presents our study results and answers to the questions. Finally, Section 4.7

concludes and presents future work.

4.1 The Earthquake Metaphor

We now present a mapping between the concepts of seismology and change

impact analysis. We use this mapping to observe and identify the scope of change

propagation, i.e., how a change to a system will impact the rest of the system,

using seismology techniques.

4.1.1 Seismology

Seismology is the study of earthquakes and of the propagation of seismic waves.

A seismic wave, or shaking, is the vibration that occurs from the epicenter of an

earthquake until a damaged site. Seismic waves propagate along the surface and

through the Earth at varying speeds, depending on the types of soil through which

they move. In general, shaking is most severe near the epicenter and decreases

away from the epicenter, i.e., more a site is near to the epicenter, more the debris

are important [26]. Seismology includes three main research directions:

1. Earthquake predictions: Creating effective approaches for precise earth-

quake predictions, i.e., forecasting the probable timings, locations, and mag-

nitudes of earthquakes [67, 91].

2. Debris forecasting: Predicting and estimating debris, or structural dam-

age, after an earthquake, to assist debris managers in planning large scale

debris removals3.

3. Earthquake behaviour analysis: Studying short- or medium-term interac-

tions among earthquakes (fore shock, main shock, after shock), and long-term

behaviour of earthquakes[109].

3http://www.calema.ca.gov/WebPage/OESWebsite.nsf/Content/

88892A0B623B1F77882574270081DD56?OpenDocument

66

Figure 4.1 – Epicenters distribution in space and time. The map
shows the expected number of earthquakes of a given magnitude
occurring within a given radius from each point (From [95]).

Our approach is inspired from debris forecasting to identify where the impact

is located (i.e., the most risky classes). Figure 4.1 illustrates how the magnitude of

an earthquake varies in space and time. We see that the magnitude is maximum

in the epicenter and it decreases in function of the distance from the epicenter to

the considered site.

4.1.2 Change Impact Analysis

Change impact analysis has two main goals: supporting the processing of

changes and enabling the traceability of changes. It is important during devel-

opment and maintenance to help developers in assessing their effort to implement

change requests (typically, the more impacted classes by a change, the greater the

effort) and in performing the most adequate changes. Thus, it limits the risk of

introducing bugs by clearly identifying classes that could be impacted.

Change propagation begins with a class being changed. This change propagates

and forces other classes to change. These changed classes, in turn, may yield to

67

Change Impact Analysis Seismology
“Important” classes Active seismic areas
Software change Earthquake
“Important” changed class Epicenter
Change propagation Seismic wave propagation
“Other” changed classes Damaged sites
Class level Distance from an epicenter to a damaged site

Table 4.1 – Mapping between Change Impact Analysis and Seis-
mology.

other changes. Thus, change propagation is due to changes “moving” from one

class to another through system classes. For example, if a method is renamed

because of some change request, then all the classes that call this method must

be modified to use its new name; in turn, other classes may change because of the

changes in these methods.

4.1.3 Change Impact Analysis and Seismology

We now define a mapping between impact analysis and seismology, summarised

in Table 4.1.

In seismology, the epicenter of an earthquake is located in a most active seismic

areas. To determine the epicenter (location) of an earthquake, seismologists analyse

seismograms, which record the seismic activities for a given areas.

In change impact analysis, any class is potentially subject to changes. Yet,

changes to “important” classes will impact more a system than “peripheral” classes.

A class can be characterised as important according to different measures. If an

“important” class changes, then it is analogous to an epicenter in seismology. In

the following Section 4.2, we identify important classes and also apply our approach

to all the classes in three systems.

In seismology, seismic waves propagate from the epicenter of an earthquake until

a damaged site, depending on the types of soil through which they move. Shaking

is usually most severe near the epicenter and drops off away from the epicenter,

i.e., more the infrastructures are near the epicenter more the debris is important.

In change impact analysis, changes propagate from the epicenter class to the

impacted class, depending upon the class relations, other logical couplings among

68

Figure 4.2 – Earthquake Metaphor.

these classes, and their distance (called class level) to the epicenter class. We define

the distance between classes using the concept of class level: with respect to a class

A, a class B is in the level 1, if it is in direct relation with A (inheritance, call,

etc), and in the level 2, if it is related to A through an intermediary class C.

Change propagation is analogous to seismic waves propagation in seismology.

As in seismology, we assume that change impact is most severe near the epicenter

class, i.e., more the classes are near to the epicenter class more the impact is

important (see Figure 4.2). Yet, to the best of our knowledge, no previous work

reported observations on the propagation of changes through the systems, which is

the aim of our metaphor and the subject of our empirical study. Using this mapping

between impact analysis and seismology, we now present an approach to identify

the classes impacted by a change to a given class. This approach is complementary

to previous work. It uses structural and historical analysis with the specific aim to

study the scope of change propagation.

4.2 Approach

This section presents our approach, each step will be described in detail be-

low. We can apply our approach on any class. Specifically, as a developer starts

changing a class, it could analyse the change and recommend additional classes

69

for consideration. Also, before performing any change in a system, it could help a

developer to identify critical classes that are regularly changed and could have an

impact on the system.

Our approach consists of three steps. Given an object-oriented system, first, we

compute metric values to rank classes according to their importance and identify

“epicenter classes ”. Second, given an epicenter class, we compute the “distance”

from the epicenter class to each class of the system, using a bit-vector algorithm:

all classes that are directly connected to the epicenter class are assigned to the level

1, the classes that have a direct relation with one of these classes are put in level 2,

and so on. Third, we use a time window of duration T and collect the set of classes

that are modified after any change of the epicenter class and within T . Finally,

we report the set of classes that are involved in any change and their number of

changes.

4.2.1 Step 1: Measuring Class Importance

In this Step, we identify the most “important” classes in a system using a com-

bination of history-based and PageRank-based metrics.

A. History-based Metric

We define a history-based metric as the number of all commits related to a given

class in the entire history of a system, extracted from the system version-control

system. This measure represents the quantity of changes to a class. It does not

consider the size and the type of a change, which are future work.

We use Ibdoos, our framework for the analysis of control-version systems, to

compute the numbers of changes to every classes in a system. Ibdoos provides

parsers for various format of change logs, including CVS and SVN, and stores all

commits in a database, then we query this database to obtain the numbers of

changes per classes. We define the number of changes to a class as h(c) for any

class c.

70

B. PageRank-based Metric

PageRank [98] is one of the main algorithms used by the Google search en-

gine to measure the relative importance of Web pages. PageRank takes backlinks

into account and propagates the PageRank value of a page through links: a page

becomes important if the sum of the values of its backlinks is high. Using PageR-

ank, we can measure the relative importance of each class in a system. A class is

important if it has incoming calls from other (preferably important) classes. If a

class is the only reference of a very important class, it might be ranked higher than

another class in relation with low-ranked classes. We use the algorithm previously

developed by Kpodjedo [75] to compute for each class c, the PageRank value pr(c).

Then, we rank all classes in descending order of their pr(c) and we compute their

class rank value r(c): the most important class c has the highest pr(c) value.

C. Combination of the History- and PageRank-based Metrics

We combine the history- and PageRank-based metrics by dividing the rank of

each class by the number of changes to the class. Thus, given two classes with equal

ranks, the most important class of the two is the one with the greater number of

changes, which lead to its rank to become higher than that of the other class. We

thus define rh(c) = r(c)
h(c)

.

The metric rh provides an assessment of the class importance in a system, tak-

ing into account both the system structure (through the PageRank-based metric)

and the system history (through the history-based metric). The combination rh

ranks the most important classes first. A lower value of rh(c) indicates a lower

value r(c) and a higher value h(c), i.e., rh ranks the most important classes that

are often changed. Identifying these important classes helps reveal what classes of

the system are regularly evolved and should be analysed to identify their change

propagation.

71

(a) UML-like model

C

B

A

D

F

E

G

cr cr cr

co

in

ag as

in

in

in

(b) Eulerian model

C D

A

B

E

F G

dm dm

cr

dmdm

cr cr

co

dm

in

ag as

in

in

in

(c) String representation of the Eulerian model

Figure 4.3 – Representations of a simple example system (from
[66])..

4.2.2 Step 2: Identifying Class Levels

We assume that change propagation depends on the “distance” between classes

(called level). We represent a level as the number of the intermediary relations

between a given class and the epicenter class, i.e., this distance indicates whether

the two classes are in direct relation (level 1) or are separated by a long chain of

relations of length n.

Again, we use an existing tool, PADL [52], to automatically reverse-engineer

class diagram from the source code of object-oriented systems. We recall that a

model of a system is a graph with nodes being the classes and edges representing

the relations between classes, see Figure 4.2(a). To identify direct and indirect

relations with the epicenter class, we first convert the system model into its string

representation, as illustrated in Figure 4.2(c), using the algorithm previously de-

veloped by Kaczor [66]. Then, we apply a bit-vector algorithm [13]: we build the

characteristic vectors of each token in the string representation. The characteristic

72

vector of a token t associated with the string s = s1...sm, is t = (t1...tm):

ti =

{
1 if si = t

0 otherwise.

For the example shown in Figure 4.3, the characteristic vectors of tokens A, in,

and B are defined as:

A = 1 0000000000000000︸ ︷︷ ︸
30

1

in = 010100010001 0000000︸ ︷︷ ︸
19

B = 00100010001 00000000︸ ︷︷ ︸
20

Lets assume a class A as an epicenter class, to identify all classes that are

directly connected to this epicenter class: for each class X—using conjunctions

and shifts—between the characteristic vectors of A, X, and all relations: if X is

directly related to A through a relation, then we put X in level 1. For example, to

identify whether class B is directly related to class A through the inheritance in,

we compute:

(→→ A) = 011 0000000000000000000︸ ︷︷ ︸
29

(→ in) = 0010100010001 000000︸ ︷︷ ︸
18

B = 00100010001 00000000︸ ︷︷ ︸
20

R = (→→ A) ∧ (→ in) ∧B

= 001 00000000000000000000︸ ︷︷ ︸
29

and assess whether the bit vector R is null (contains only zeros). If R is not null,

then class B is in level 1 with respect to A. Once all classes of level 1 are defined,

we repeat this process, considering each class of level 1 as epicenter class to identify

73

all classes at level 2, i.e., classes that have a direct relation with a class of level 1.

The same process is repeated to identify level 3, and so on.

4.2.3 Step 3: Identifying Impacted Classes

We mine the version-control system of a system to identify epicenter classes:

we first define a time window T of observation as the median of time between two

subsequent changes to the important epicenter class. We choose the median because

it is robust to outliers. Then, we extract all the commits that happened after any

change to an epicenter class and within the chosen time window T . Finally, we

collect: (1) the names of all classes that are involved in any change and (2) the

number of changes to each class.

We use our framework Ibdoos to implement queries to collect the set of classes

changed after any change to the epicenter class and during T . The names of

all subsequently changed classes and the number of changes that these classes

underwent.

4.3 Empirical Study Design

Following the Goal Question Metric (GQM) [10], the goal of this study is to

show the applicability and usefulness of our approach, with the purpose of gathering

interesting observations on the scope of change propagation and confirming these

observations statistically. The quality focus is the accuracy of the identified scope

of change propagation (i.e., how far the propagation proceed from a given class

to the others), and also the variation of changes depending on the level of classes.

The perspective is of both researchers and practitioners who should be aware of

the scope of a change to estimate the effort required for future maintenance tasks.

The observed phenomena can help for making decisions concerning the process

of future software projects. The context consists of Pooka, Rhino, and XercesJ.

Pooka4 is an email client written in Java, using the Javamail API. Rhino5 is an

open-source implementation of a JavaScript interpreter written entirely in Java

4http://www.suberic.net/pooka/
5http://www.mozilla.org/rhino/

74

Systems Nbr. Classes Start Dates End Dates Last Version
Pooka 298 2000-01-02 2010-08-30 2.0
Rhino 132 1999-12-18 2009-01-17 1R6.0
Xerces 685 2005-10-12 2010-11-26 11.0

Table 4.2 – Statistics for the systems..

and developed for the Mozilla/Firefox browser. Xerces6 is an open-source family

of software packages for parsing and manipulating XML. Characteristics of these

systems are reported in Table 4.2. We choose these systems because they have

been studied in previous work, they are open-sources, thus we can find external

information, such as bug reports.

4.3.1 Research Questions

This study aims at answering the research questions:

• RQ1: Does our metaphor allow us to observe the scope of change

propagation?

We investigate whether it is possible to apply our approach to observe change

propagation through class levels. We perform a qualitative study to confirm

our observations of change propagation, using external information. Thus,

we can show that, indeed, like in seismology, certain levels are more impacted

by a change than others.

• RQ2: What is the level most impacted by a change?

We perform a quantitative study to confirm our observations of change prop-

agation, using statistical tests to investigate which level may be the most

impacted by a change, and classifying the levels having similar impact. Thus,

we can deduce all classes with a higher risk to be impacted by any change to

epicenter class.

• RQ3: What is the most reachable level by a change?

As in RQ2, we perform a quantitative study to confirm our observations

of change propagation, using statistical tests to investigate, for each level,

6http://xerces.apache.org/

75

the number of earthquakes that propagate until a given level. Thus, we can

deduce the most reachable level.

4.3.2 Analysis Methods

To answer RQ1, RQ2, and RQ3, we apply our approach on Pooka, Rhino, and

XercesJ.

RQ1: Does our metaphor allow us to observe the scope of change prop-

agation?

As in seismology, we are interested in the most important seismic sources. Thus,

we use metrics combination rh(c) to rank classes according to their importance.

We observed the two most important epicenter classes in Rhino, and XercesJ.

To illustrate our observations, we selected four representative epicenter classs, in

Rhino, and XercesJ, as shown in Table 4.3 and Table 4.4. For each epicenter class,

we report information from the systems bug trackers and mailing lists confirming

the propagation of a change to other classes in different levels.

Using the R statistical system7, we build the 3D graph visualising the change

propagation from the epicenter class to other classes, through their levels. The

axes of the graphic are the time, levels, and numbers of changes. Thus, we study

the graph of a representative epicenter class in each system to assess whether, as in

seismology, change impact is most severe near the epicenter and decrease far away

from the epicenter.

RQ2: What is the level most impacted by a change?

We perform an exhaustive study to confirm our observations, using a statistical

test, for all classes in Pooka, Rhino, and XercesJ. We consider each class as an

epicenter class. We compute, for each level, the number of classes that changed

after any change to the considered epicenter class and within the chosen time

window.

For each level, we create a subset that contains the number of changes per class.

We then apply ANOVA on these subsets to determine whether there are significant

7http://www.r-project.org

76

Epicenter Classes pr(c) r(c) h(c) rh(c)
Context 0.043243 2 135 67.5
IdScriptableObject 0.057838 1 9 9
Kit 0.038378 3 14 4.66
BaseFunction 0.027838 7 37 5.28

Table 4.3 – Epicenter classes in Rhino.

Epicenter Classes pr(c) r(c) h(c) rh(c)
TypeValidator 0.020261 3 25 0.12
XMLEventImpl 0.017062 6 21 0.28
DeferredDocumentTypeImpl 0.006441 25 68 0.36
XMLEntityScanner 0.002602 76 194 0.39

Table 4.4 – Epicenter classes in XercesJ.

difference between subset means. When differences between subsets exist, the null

hypothesis “H0: the number of changes is similar for each level” is rejected. Then,

we conduct Duncan’s multiple range test to classify the subsets with respect to the

differences between them. We choose Duncan’s multiple range test because it can

maintain a low overall type I error [14] and it uses a studentized range statistics

within a multiple range test. We interpret the range-value as follow:

• Range 1, if subsets mean value is the minimum.

• Range 2, if subsets mean is adjacent to Range 1 mean.

• Range 3, if subsets mean is adjacent to Range 2 mean.

RQ3: What is the most reachable level by a change?

This research question aims to verify whether most earthquakes would prop-

agate through all class levels or just the first level. For each level, we create a

subset that contains the number of earthquakes that stop at this level. We then

apply again ANOVA on these subsets to determine whether there are significant

differences between their means. When differences between subsets exist, the null

hypothesis “H0: the number of earthquakes is similar for each level” is rejected. If

the ANOVA results yield significant differences, we again apply Duncan’s multiple

range test to classify the subsets with respect to their differences. For example,

77

Figure 4.4 – Change propagation from XMLEventImpl.

in XercesJ, the most reachable level by the epicenter class XMLEventImpl is level 3,

while the epicenter class TypeValidator reaches at maximum level 6.

4.4 Empirical Study Results

We now present the results of our empirical study.

RQ1: Does our metaphor allow us to observe the scope of change prop-

agation?

We answer positively to this question using the epicenter classes selected in

Rhino, and XercesJ.

In one hand, we build the 3D graphs visualising the change propagation from

the selected epicenter classes in Pooka, Rhino, XercesJ. Due to the lack of space

in this chapter, we present just two graphs in XercesJ. Figure 4.5 and Figure 4.4

illustrate the change propagation phenomena through levels for a specific epicenter

78

Figure 4.5 – Change propagation from TypeValidator.

class commit, in XercesJ, for the epicenter classes XMLEventImpl and TypeValidator.

In XMLEventImpl, number of changes is very important for the first level, after that

it decreases through the 2nd and 3rd levels. In TypeValidator, we observe that

changes propagate until the 4th level and then it decreases significantly. However,

in some cases, they may propagate to 6th level. Thus, we conclude that change

propagation is different

In the other hand, we found external information in the system bug trackers and

mailing lists. Thus, we report four examples (in Rhino and XercesJ) of external

information illustrating the propagation of a change from the chosen epicenter class

to another class (in different level).

In Rhino

79

• Epicenter class IdScriptableObject: we found the bug ID2563218 that con-

firms that a change to the epicenter class propagated to ScriptableObject

(level 1) to make Rhino objects serialisable.

• Epicenter class BaseFunction: we found the bug ID2361179 that reports that a

change to the epicenter class propagated to classes Context and ScriptRuntime

(level 1), and ContextFactory and WrapFactory (level2).

• Epicenter class Context: we found the bug ID25589110 that relates the epi-

center class to three classes of level 1 (CompilerEnvirons, ContextFactory,

and ScriptRuntime).

• Epicenter class Kit: we found the bug ID20055111 that reports that a change

to the epicenter class propagates to the class DefiningClassLoader (level 2).

In XercesJ

• Epicenter class TypeValidator: we found a message12 in the mailing list stat-

ing that changes to TypeValidator propagate to PrecisionDecimalDV.

• Epicenter class XMLEventImpl: we found a SVN log commented in mailing

list131415 that confirms the change propagation from the epicenter class to the

classes: EndDocumentImpl, EntityReferenceImpl (level 1), and StartElementImpl

(level 2).

• Epicenter class DeferredDocumentTypeImpl: we found the on-line discussion16

showing that changes to the epicenter class must propagate to four classes in

8https://bugzilla.mozilla.org/show_bug.cgi?id=256321
9https://bugzilla.mozilla.org/show_bug.cgi?id=236117

10https://bugzilla.mozilla.org/show_bug.cgi?id=255891
11https://bugzilla.mozilla.org/show_bug.cgi?id=200551
12http://comments.gmane.org/gmane.text.xml.Xerces.devel/5855
13http://xerces.markmail.org/message/eskpra4vcmaugtx6?q=XMLEventImpl+

StartElementImpl
14http://xerces.markmail.org/message/33uxkvhfomocrngj?q=XMLEventImpl+

StartElementImpl
15http://xerces.markmail.org/message/3hkhyuwj6v5oa7hw?q=XMLEventImpl+

StartElementImpl+&page=2
16http://xerces.markmail.org/search/?q=DeferredDocumentTypeImpl#query:

DeferredDocumentTypeImpl+page:2+mid:iyb37kwel5rdmaod+state:results

80

Homogenous subsets for alpha = 0.1
Levels Range 1 Range 2 Range 3
5 107.5410
4 147.7778
3 150.0000
2 202.0408
1 354.4828

Table 4.5 – Duncan’s test applied on “number of changes of the
impacted classes” in Rhino.

Homogenous subsets for alpha = 0.1
Levels Range 1 Range 2 Range 3
6 6.4015
5 10.8485
4 24.8333
3 50.2789
2 83.7273
1 895.2652

Table 4.6 – Duncan’s test applied on “number of changes of the
impacted classes” in XercesJ.

level 2: DeferredElementImpl, DeferredEntityImpl, DeferredNotationImpl,

and DeferredTextImpl.

• Epicenter class XMLEntityScanner: we found the bug ID109917 that relate the

changes to the epicenter class with changes to XMLParser (level 3).

RQ2: What is the level most impacted by a change?

We apply our approach on Pooka, Rhino, and XercesJ. Then, we create subsets

that contains numbers of changes per class that propagates from each class, then

we apply ANOVA on these subsets. The ANOVA results yield significant difference

between subset means. We therefore conduct Duncan’s multiple range to classify

these subsets in each three systems. Table 4.5 summarises the results of Duncan’s

test applied on Rhino. We observe that change propagation, in some cases, reach

level 5. This table shows that all the sample means are significantly different for

levels 1 and 2 (because they are classified in different ranges), except the means

of levels 3 and 4, for which there is no evidence of a difference, and thus they are

grouped together in the same range. The non significant difference between levels

17https://issues.apache.org/jira/browse/XERCESJ-1099

81

3 and 4 suggests that the number of changes are similar. The number of changes

is much higher in level 1 (corresponding to the mean value 354.4828, and range 3)

and this high difference (with respect to other means) results in a separate range.

The same goes for the second level (corresponding to the mean value 202.0408, and

range 2).

Table 4.6 summarises the results of Duncan’s test applied on XercesJ. We ob-

served that change propagation, in some cases, reach level 6. This table shows that

level 1 differs significantly from the others, by being the most impacted. The levels

4, 5 and 6 are classified in range 1, thus the number of changes is almost similar at

these levels. But, they are less impacted than levels 2 and 3 that are classified in

range 2 (corresponding to the means values 50.2789 and 83.7273). The number of

changes is much higher in level 1 (corresponding to the mean value 895.2652).

From the results of the three systems, we can conclude that: a) level 1 is the

most impacted, b) level 2 is the second most impacted, but significantly less than

level 1, c) levels 3, 4, 5, ... are significantly less impacted than level 1 and 2, and

d) levels 3, 4, 5, ... are classified in the same range, because the number of changes

seems similar in these levels.

RQ3: What is the most reachable level by a change?

Homogenous subsets for alpha = 0.1
Max Level Range 1 Range 2 Range 3
5 .5833
4 1.3712
3 1.7500
2 4.6136
1 11.7121

Table 4.7 – Duncan’s test applied on “number of earthquakes” in
Rhino.

In this research question, we apply the same approach as for RQ2. Here, for

each level, the subset is the number of earthquakes that stop at this level. The

ANOVA results yield significant differences. Thus, we apply Duncan’s test.

Table 4.7 summarises the results of Duncan’s test applied on Rhino. We observe

that the number of earthquakes that reach at maximum level 1 is greater (corre-

sponding to the highest mean 11.7121) than those that reach the other levels. But,

82

Homogenous subsets for alpha = 0.1
Max Level Range 1 Range 2 Range 3
6 10.5333
5 16.3333
4 21.6667
3 30.0033
2 43.2000
1 54.8667

Table 4.8 – Duncan’s test applied on “number of earthquakes” in
XercesJ.

some changes propagate through levels 3, 4, and 5. The means of the number

of earthquakes that reach levels 3, 4, 5 are too similar (corresponding means are:

.5833, 1.3712, and 1.7500), consequently, they are grouped in the same range 1.

The earthquakes that reach level 2 are less than those that reach level 1, but sig-

nificantly greater than the others (levels 3, 4 and 5). As a result, earthquakes that

reach levels 1 and 2 cannot be classified with earthquakes that reach other levels.

Table4.8 summarises the results of Duncan’s test applied on XercesJ. We ob-

served that the number of earthquakes that reach at maximum level 1 are the most

frequent (corresponding to the mean 54.8667). But, the number of earthquakes

that reach at maximum the levels 4, 5, and 6, are almost similar, and the least

(corresponding means are 21.6667, 16.3333, and 10.5333). The number of earth-

quakes that reach at maximum levels 2 and 3, are significantly similar, and thus

are regrouped in the same range.

Thus, we conclude that almost change propagation stops at the level 1 and 2.

But, there are some earthquakes that propagate until 3, 4, 5 or 6 level.

4.5 Discussions

We now discuss our approach and its empirical study. With our approach,

we analysed change propagation in three different systems belonging to different

domains and with different sizes, and histories. We observed that changes did not

propagate through different class levels with the same proportion in each system.

We observe that the numbers of earthquake propagations that stops at the level

1 and 2 is the greatest. However, the number of earthquakes that stop at higher

levels (3, 4, and 5) are the least. By determining what levels might have been

83

affected by certain changes, we can help maintainers to rapidly pinpoint the source

of a bug. Consequently, maintainer needs to only examine the indicated levels in

priority instead of inspecting all the source code: our method is time saving.

We observed that some classes changes frequently and are changed periodically

by developers. This observation could help developers be aware of classes that

they should consider changing even if their changes is not directly linked to these

classes.

4.6 Threats to Validity

Several threats potentially impact the validity of our study.

Construct validity concerns the relation between theory and observations. In

this study, they could be due to the chosen time windows which may affect our

observations. A too long time window would be misleading while a very nar-

row time window would not allow to observe interesting facts. Conservatively, we

chose a class-dependent time window: the median of time between two subsequent

changes, because the median is robust to extreme outliers and thus minimises spu-

rious changes induced by too large time windows on classes connected to epicenter

classes. However, we may not have used the most revealing time windows. More

investigation is needed to better understand the role of time windows. Finally, it is

possible, despite the confirmation using external sources of information, that some

classes reported as impacted by a change did actually change for reason indepen-

dent of the changes to the epicenter class classes.

Internal validity is the extent to which a treatment impacts the dependent vari-

able. The internal validity of our study is not threatened because we have not

manipulated the independent variable, extent of the change propagation.

External validity relates to the extent to which we can generalise its results. The

main threat to the external validity of our study that could affect the generalisation

of the presented results relates to the analysed systems. We performed our study

on four different Java systems belonging to different domains and with different

sizes. However, we cannot assert that our results can be generalised to other larger

systems and other programming languages. Future work includes replicating this

study on other systems to confirm our results.

84

Conclusion validity deals with the relation between the treatment and the out-

come. We paid attention not to violate assumptions of the performed statistical

tests. We applied ANOVA and Duncan’s multiple range tests. ANOVA assumes

that the data are normally distributed. We may have a problem of assuring this

assumption. Thus, we improved our conclusion validity by increasing the risk of

making a Type I error (increase the chance that we will find a relation when in fact

there is not), we can do that statistically by raising the alpha level. For instance,

instead of using 0.05 significance level, we use 0.1 as our cutoff point.

4.7 Summary

Change propagation analysis in object-oriented systems is important to estimate

the effort required for future maintenance tasks. The observed phenomena can

help for making decisions concerning the process of future software projects, and

reducing the overall cost of source code inspection [101].

Existing approaches for change impact analysis are based on the software struc-

ture and use static, dynamic, textual, and–or historical analyses [7, 17, 21, 79, 80,

135, 139]. However, to the best of our knowledge, none of these approaches have

been used to study the scope of change propagation.

In this chapter, we proposed an approach to analyse change propagation and

to study how far a change propagation will proceed from a given class to the

others. Our approach considers changes to a class as an earthquake that propagates

through the class levels, defined by the length of relations chain that relate the

epicenter class to the other classes.

We performed a qualitative and two quantitative studies on three open sources:

Pooka, Rhino and XercesJ, and thus, we answered the following research questions:

• RQ1: Does our metaphor allow us to observe the scope of change

propagation?

• RQ2: What is the level most impacted by a change?

• RQ3: What is the most reachable level by a change?

85

We showed that our intuition, about the impacted classes by a change must be

near to the changed class, is incorrect in some cases. Therefore, Duncan’s multiple

range test confirms that level 1 has the highest number of changes. However,

there are some change propagations that reach the 5th level in Rhino (and 6th in

XercesJ). Identifying the scope of change propagation could help, both developers

and managers. Developers could locate easily the change impact, and thus they

do not have to analyse the whole source code to understand the ripple effect of

a change. They could include in their change set the classes belonging to the

identified levels. Managers could estimate the efforts required to perform changes

more accurately.

CHAPTER 5

AN IMMUNE-INSPIRED APPROACH FOR THE DETECTION OF

DESIGN DEFECTS

Code smells [40] and antipatterns [23], collectively called in the following design

defects, are bad solutions to recurring software design and implementation prob-

lems. They are conjectured to have a negative impact on the quality and life-time

of systems [23, 40]. Consequently, their detection has received attention from both

researchers and practitioners with approaches ranging from manual inspections to

rule-based detection algorithms.

In this chapter, we present an approach to systematically detect classes whose

characteristics violate some established design rules; rules inferred from sets of in-

stances (i.e., manually-validated occurrences) of defects reported in the literature

and freely-available [70, 90]. Our approach detects design defects in general: al-

though we train our approach on only three kinds of design defects, it can detect

any number and any kind of design defects specified during the training. Moreover,

it reports classes similar but not identical to the defects, which are of interest to

developers and quality-assurance personnel.

Our approach stems from a parallel between object-oriented software systems

and living bodies, which constantly fight invading pathogens, such as viruses, bac-

teria, and so on, through their immune system defense mechanisms. A natural

immune system is able to protect the body by identifying, learning from, and de-

fending against invading pathogens. It recognises pathogens after having fought the

disease once or by the use of vaccines. Vaccines work by stimulating the immune

system using small amounts of disactivated, disease-causing organisms. They cause

the immune system to produce antibodies matching the pathogens. Antibodies re-

act concretely to the presence of antigens carried by pathogens. Once antibodies

are developed, the immune system is able to respond quickly to the infection of

a similar or identical disease-causing organism entering the body, i.e., pathogens

carrying similar or identical antigens.

87

A useful parallel can be drawn from the natural immune system: a software

design is comparable to a body, we wish to protect it from pathogens, such as

design defects. Design defects detection approaches are defense mechanisms of the

software design. A design defect is a pathogen. A “vaccine” could be build using

instances of some defects, from which the software design should be protected.

Occurrences of a defect are classes with characteristics similar or identical to the

defect, i.e., cells contaminated by some pathogen. Antigen that should trigger a

response of the defense mechanism can be any characteristics of classes, eg., metrics,

binary class relations, and so on.

Like pathogens, defects come in a variety of forms with some defects being only

slightly different from others. A natural immune system can handle such similar

pathogens with good precision. This good precision is essential for the body and

have inspired a family of classification algorithms name Artificial Immune Systems

(AIS) algorithms. Oda and White commented that “if the immune system were

inaccurate, the lifespan of the average human would be much shorter as the system

would mistakenly attack vital cells or fail to attack viruses and other dangerous

pathogens” [96]. Therefore, an AIS-based approach could potentially overcome

the limitations of previous approaches regarding the detection of similar but not

identical defects as well as the performance in time, precision, and recall of current

state-of-the-art approaches. We propose a novel detection approach, called IDS

(Immune-based Detection Strategy), based on AIS.

The chapter is organised as follows. Section 5.1 describes our approach. Section

5.2 presents the design of the experiments carried out to evaluate our approach.

Section 5.3 reports and discusses the results. Section 5.5 concludes and suggests

future work.

5.1 Artificial Immune Systems

5.1.1 Biological Background

Innate immunity defends the body from any pathogens that enter the body.

Adaptive immunity allows the immune system to attack any foreign pathogens

88

that the innate system cannot destroy. It can distinguish between the body’s own

cells and foreign cells.

The adaptive immune system is directed against specific invaders and is mod-

ified by exposure to such invaders. It is made up of lymphocytes (B cells and T

cells). These cells aid in the process of recognizing and destroying specific antigens.

Immune responses are normally directed against the antigen that provoked them

and are said to be antigen-specific. The immune system learns to react to partic-

ular patterns of antigens. On the surface, each lymphocyte cell have receptors to

recognize antigens, which are specialized: each can match only one specific antigen.

5.1.2 Computer Models

An artificial immune system (AIS) is a classification algorithm that mimics the

immune system defense mechanisms. It can accept patterns of arbitrary length

and it has the ability to maintain and exploit previously learned data efficiently for

improved performance in future encounters with pathogens.

An AIS produces a large number of randomly-created detectors to recognise

the antigens located on the surface of the foreign pathogens. A negative selection

mechanism is applied to eliminate detectors that match the body’s own cells. Kept

detectors become naive detectors; they die after some time, unless they match

some antigens; in case of such a matching, they become memory cells. Detectors

that match a pathogen are quickly multiplied via the clonal selection to accelerate

the response to further attacks. Also, because the clones are not exact copies (they

are mutated, the mutation rate being an increasing function of affinity between

detectors and antigens), they can both better focus on pathogens and handle similar

pathogens (affinity maturation).

We draw a parallel between the immune system and the detection of defects.

A software design is similar to a living body. It is protected from design defects by

a detection approach, as a body is by its immune system. The detection approach

identify defect classes, i.e., pathogens, using some characteristics of the classes—in

the following, metrics values—by comparing them to sets of metrics values of defect

classes. Our novel detection approach, IDS (Immune-based Detection Strategy),

can classify cells (system classes) that are present in the body (software design) as

89

Concepts of Immune System
In Biology In Software

Body Software design
Immune system Design defects detection approach
Self-Cells Well-designed classes
Non-Self Cells (Pathogens) Defect classes
Antigen Sequence of metrics values
Antibody Known pattern of metrics values
Affinity Similarity measure between sets of metrics values
Negative Selection Antibodies created during the learning phase

Table 5.1 – Instantiation of an AIS to detect design defects..

body’s own cells (well-design classes) and foreign cells (defect-prone classes). We

choose to characterise the body’s and foreign cells with a set of metrics1 [53].

5.1.3 Implementations

In general, any AIS algorithm has five steps: initialization, antigen training,

competition for limited resources, memory cell selection, and classification [24].

The first step and the last step are applied only once, but Steps 2, 3, 4 are used

for each sample (antigens) in the dataset.

Carter [29] developed the first AIS-based classification algorithm. It is a super-

vised learning system based on a high-level abstraction of T cells, B cells, antibodies,

and an amino-acid library. The artificial T cells control the production of B-cell

populations, which compete for recognition of the unknowns. The amino-acid li-

brary acts as a library of epitopes or characteristics of antigens currently in the

system. When a new antigen is introduced into the system, its variables are en-

tered into this library. The T cells then use the library to create their receptors

that are used to identify the new antigen [119]. Brownlee [24] developed another

algorithm, called Immunos-99, to combine the benefits of AIS-based classification

algorithm with clonal selection classification algorithm [25]. Each step of this al-

gorithm is explained below:

1: Divided data into antigen-groups (by classification labels)

1http://www.ptidej.net/downloads/experiments/quatic10/

90

2: Prepare a B-cell population

3: for each antigen-group do

4: Create an initial B-cell population for an antigen-group

5: for each generation do

6: Create an initial B-cell population for an antigen-group.

7: Calculate fitness scorings

8: Perform population pruning

9: Perform Affinity maturation

10: Insert randomly selected Antigens of the same group

11: end for

12: end for

13: Perform final pruning for each B-cell population

14: Present the final B-cell populations as the classifier

First, the algorithm divides the provided antigens into groups. Once prepared, a

new B-cell population is created from each antigen group. The initial size of each B-

cell population equals the number of antigens in the original group. The population

is then exposed to all antigens, one antigen at a time and an affinity value is

calculated for each B-cell to the antigen. The B-cell populations are then sorted

in descending order of affinities. Once the training steps completed, the resulting

B-cell populations form the classifier for new (invading) antigens. Each B-cell

population is exposed to a new antigen and populations compete for “ownership”

of the new antigen using their affinity. The population that have the highest affinity

classifies the new antigen with its label.

Feature selection can be useful in reducing the dimensionality of the data to

be processed by the classifier: reducing the dimensionality of the data reduces

the sizes of the hypothesis space and, thus, results in faster execution time and

improving predictive accuracy (inclusion of irrelevant features can introduce noise

into the data, thus obscuring relevant features). Therefore, in our context of metric-

based software quality classification, we could need a subset of metrics that can

discriminate between the non-defect-prone and defect-prone classes. However, our

approach does not need any feature selection, because its classification algorithm

uses data reduction: deletion of irrelevant data (antigens) during the generation of

B-cells.

91

Numbers of
Classes KLOCs Blobs FDs SCs

Gantt Project 188 31 4 4 4
XercesJ 589 240 15 15 18
Total 777 271 19 19 22

Table 5.2 – System characteristics.

5.2 Study Definition and Design

We perform a series of experiments to assess the performance in time, precision,

and recall of our novel approach for design-defects detection. Following the Goal

Question Metric (GQM) methodology [10], the goal of our experiments is to analyse

the performance of our approach and understand whether it performs better than

previous approaches. The purpose is to provide an approach for design-defects de-

tection. The quality focus is to provide a set of defect occurrences (i.e., classes with

characteristics violating design principles) with good precision and recall and in a

reasonable time. The perspective is both of developers and quality assurance per-

sonnel, who perform evaluation activities and are interested in locating accurately

parts of a system that need improvements; and researchers, who want to study

design defects. The context of our experiments is two open-source Java systems:

GanttProject v1.10.2 and XercesJ v2.7.0.

5.2.1 Objects

We conduct our experiments using two open-source Java systems: GanttPro-

ject v1.10.2 and XercesJ v2.7.0, which characteristics are summarised in Table 5.2.

GanttProject2 is a system for creating project schedules by means of Gantt charts

and resource-load charts. It enables breaking down projects into tasks and estab-

lishing dependencies among tasks. XercesJ3 is a family of packages for parsing

and manipulating XML files. It implements a number of standard API for XML

parsing, including DOM, SAX, and SAX2. We chose these systems because they

are medium-size systems and manually-validated occurrences of Blob, Functional

Decomposition (FD), and Spaghetti Code (SC) are available [70, 90].

2http://ganttproject.biz/index.php
3http://XercesJ.apache.org/

92

5.2.2 Research Questions

We want to answer the two research questions:

• RQ1: To what extent an AIS-based approach can detect design

defects in a system?

• RQ2: Is our approach better than state of-the-art approaches, such

as DECOR, and BBNs?

We answer RQ1 in the following two scenarios:

• intra-system identification: In this first scenario, we study how knowledge of

previously-detected Blobs in a given system, XercesJ v2.7.0, can help predict

occurrences of other design defects in the same system. We divide the classes

of XercesJ in three subsets with 16 occurrences of Blobs in each subset. Then,

we train IDS on two of the subsets and apply it on the third subset (of the

same system) in a 3-fold cross-validation.

• extra-system identification: In this second scenario, we study the performance

of our approach using heterogeneous data. We assume that a developer has

access to historical data from one system, eg., GanttProject. We use this

data to detect occurrences of design defects in the other system, XercesJ. We

also perform the same study in the other direction, i.e., using design defects

in XercesJ to detect occurrences in GanttProject.

We answer RQ2 by comparing the performance of IDS in precision, and recall,

as computed in Scenario 2, against that of previous approaches.

In each scenario and research question, we use publicly-available data [70, 90]

as oracle. We collect the numbers of true and false positive occurrences of the

design defects detected by our approach and compare them with the oracle using

the following IR metrics defined in [8]:

precision =
|correct ∩ detectedd|

|detected|

recall =
|correct ∩ detected|

|correct|

93

Numbers of
Design Defects False Positives Precisions Recalls

Subset 1 16 1 94.11% 100%
Subset 2 16 2 88.23% 100%
Subset 3 16 2 88.23% 100%
Average 90.19% 100%

Table 5.3 – Intra-system detection on XercesJ: 3-fold cross valida-
tion.

where correct represents the set of known instances of the design defects and de-

tected that of candidate occurrences detected by an approach.

5.3 Study Results, Analyses and Discussions

We now discuss the results of our experiments.

RQ1: To what extent an AIS-based approach can detect design defects

in a system?

In this first scenario, we use 3-fold cross validation. Table 5.3 shows the precisions

corresponding to each fold. The average precision is 90.19% and the recall is 100%.

The results also confirmed that IDS is not limited to the detection of a specific

design defect: although we train our approach on instances of Blob, FD, and SC,

it was also able to detect LargeClass and LongMethod. Overall, IDS detects all

defect classes, i.e., classes deviating from specific good design rules, exemplified by

some design defects.

In the second scenario, we trained our approach on GanttProject v1.10.2 and ap-

plied it on XercesJ v2.7.0 and vice-versa. Table 5.4 shows the results. On XercesJ,

our approach achieved a precision above 80%. The precision for GanttProject,

although slightly lower at 65.0%, is still interesting considering that the approach

was trained on a system from a different context. Moreover, a review of the false

positives show that these classes have characteristics similar to the defects and,

therefore, may eventually degenerate in design defects in the near future. Hence,

they are also interesting to developers as they may be interested in preventing

their further decay. Our approach in both cases achieved 100% recall, succeeding

in returning all defect classes in the systems.

94

GanttProject XercesJ
(Trained on XercesJ’ (Trained on GanttProject’s
Blobs, FDs, SCs) Blobs, FDs, SCs)

of Classes 188 589
of Design Defects Instances 20 54
of False Positives 7 10
Precision 65.0% 81.48%
Recall 100% 100%

Table 5.4 – Inter-system detection.

GanttProject XercesJ

DECOR BBNs
IDS

DECOR BBNs
IDS

Group 1 Group 2 Group 1 Group 2

B
lo
b

16 (8.5%) 7 (3.7%) 34
20 (10.6)

44 (7.6%) 41 (6.9%) 55
54 (9.1%)4 (2.1%) 4 (2.1%) 4

13 (6.9%)
15 (2.5%) 15 (2.5%) 15

44 (7.4%)25 % 57.1 % 11.76%
65%

33.3% 36.5 % 27.27%
81.48%

F
D

15 (8.0%) – – 29 (5.6%) – –
4 (2.1%) – – 15 (2.9%) – –

26.7% – – 51.7% – –

S
C

14 (7.4%) – – 76 (14.8%) – –
4 (2.1%) – 11 18 (3.0%) – 18

28.5% – 32.35% 23.68% – 32.72%
Average 26.73% 57.1 % 65% 36.22% 36.5% 81.48%

Table 5.5 – Results of applying the detection approaches. Group
1 represents the training on Blob. Group 2 represents the training
on Blob, FD, SC. (In each row, the first line is the number of
detected classes, the second is the number of classes being design
defects, the third is the precision. Numbers in parentheses are the
percentages of classes being reported)..

We thus answer RQ1 positively: the results suggest that even in the absence

of historical data on a specific system, developers or quality assurance personnel

could use IDS on different systems and obtain good precision and recall.

RQ2: Is our approach better than state of-the-art approaches, such as

DECOR, and BBNs?

To answer RQ2, we compare the results of our approach against that of the

state-of-the–art approaches: DECOR [90] and BBNs [70]. Table 5.5 summarises

the results achieved by each approach. Globally, IDS outperforms DECOR and

BBNs in term of precision. Moreover, DECOR and BBNs require expensive tuning

95

by experts (in time and knowledge) to have acceptable precision and recall. Indeed,

DECOR relies on rule cards built by expert while BBNs need experts’ knowledge

to build their learning structure. For these two approaches, an incomplete experts’

knowledge can cause a high number of false positives, resulting in a waste of time

and resources for developers that must skim through the results. IDS does not rely

on any experts’ knowledge but on a set of metrics characterising known instances

of defects. Therefore, IDS reduces the bias introduced in BBNs by the experts

structuring the BBNs and in DECOR when crafting rule cards.

Moreover, contrary to DECOR and BBNs, IDS detects a larger set of design

defects. As presented in Table 5.5, when trained only on instances of Blob, IDS was

still able to detect the instances of the other defects: on GanttProject, it returned

all the 4 true occurrences of Blob and also 11 true occurrences of SC; on XercesJ, it

returned again all the 15 true occurrences of Blob, 18 true occurrences of SC, and

14 occurrences of LargeClass. IDS also reported classes with borderline structure

that may decay in design defects in the near future. Another strong point of IDS is

its computation time, i.e., in the order of milliseconds, eg., on XercesJ, IDS detects

Blob occurrences in 0.26s, while DECOR takes 2.4s.

We thus answer RQ2 also positively: our approach has precisions and recalls

superior than those of DECOR and BBNs and can detect similar defects as well as

classes similar but not identical to some design defects.

5.4 Threats to Validity

The main threat to the external validity of our experiments that could affect

the generalisation of the presented results relates to the analysed systems. We

only used two medium-size systems, yet they support different activities and are

open-source, thus available for replication. We plan to replicate our experiments

on larger systems to confirm our results.

The subjective nature of specifying and detecting design defects and assess-

ing detected classes is a threat to the internal validity of our experiments. Our

understanding of design defects may differ from that of others. Our oracle, used

to analyse our approach, was manually built by analysing the two systems used

in the experiments. Three of the authors independently re-validated the publicly-

96

available data [70, 90] to reduce the risk of classification errors. Finally, a candidate

occurrence was classified as a real defect only when two out of three authors classi-

fied it as such. Such a process makes us quite confident about the accuracy of the

oracle.

5.5 Summary

The detection of design defects in object-oriented software systems is important

to improve and assess the quality of the systems, to ease their maintenance and

evolution, and, thus, to reduce the overall cost of their development and ownership.

Current automated detection approaches are difficult to develop and put into

place because they require experts’ knowledge and interpretation. Moreover, they

focus on detecting one kind of design defects at a time, while some defects are

similar and classes with characteristics similar but not identical to some defects

are also of interest to developers and quality assurance personnel.

In this chapter, we presented the first systematic parallel between artificial

immune systems and the detection of design defects; a machine learning technique

inspired from the immune system of the human body.

We performed experiments using GanttProject v1.10.2 and XercesJ v2.7.0 and

the Blob, FD, and SC design defects. The experiments showed that an AIS can

detect defects in systems with good precision and recall and address the limitations

of previous work: it does not require experts’ knowledge and interpretation and it

can report classes that are similar but not identical to the detected defect.

Moreover, our AIS-based approach has the following additional benefits with

respect to previous approaches. Generalisation: It does not need all of the data

set to detect similar or identical occurrences of the design defects. It has data

reduction capability: it does not require feature selection, i.e., choosing the set of

metrics. Parameter Stability: Current freely-available implementation of AIS

are not optimised for the detection of design defects but already provide good pre-

cision and recall. Adaptability: It is adaptable and, in some cases, self-organising

and thus can automatically identify new patterns in the data to create a different

representation of the data being learnt. Portability across Systems: It has a

good precision and recall when applied to different systems while previous work

97

require recalibration of the conditional probabilities [70] or changes of thresholds

[90, 108]. Simplicity and Self-regulatory: It does not require a topology or

a rule card: no experts’ knowledge and interpretation. Thus, it does not embed

the experts’ subjective understanding of the design defects. However, it requires

an oracle providing occurrences of some defects. Performance: It has good per-

formance in terms of precision, and recall, and it computation is very fast. The

results of the experiments showed that its precision and recall are comparable or

superior to that of previous approaches.

We conclude that the application of an artificial immune system to detect de-

sign defects is valuable. The immune system provides an interesting metaphor for

detecting design defects.

CHAPTER 6

CONCLUSION

In this chapter, we summarise the results and conclusions of our dissertation.

We also discuss opportunities for extending our work.

6.1 Dissertation Findings and Conclusions

Software systems undergo changes throughout their lifetimes as new features

are added and bugs are fixed [81, 82]. As these systems evolved, their designs tend

to decay with time and become harder to maintain [28, 122].

Design decay is the deviation of actual software design from the original one,

i.e., the violation of design choices during evolution [63, 100, 127]. Design decay

occurs when changes are made on a system by developers who do not understand

its original design [99]. On the one hand, making software changes without un-

derstanding their effects may lead to the introduction of bugs and the premature

retirement of the system. On the other hand, when developers lack knowledge

and–or experience in solving a design problem, they may introduce design defects.

Therefore, developers need mechanisms to quantify design decay, to understand

how a change to a system will impact the rest of the system, and tools to detect

design defects. In this dissertation, we proposed to address three main problems:

design decay evaluation, change impact analysis, and design defects detection.

In our first contribution [58, 59], we proposed a novel approach, called ADvISE,

that exploits a set of metrics to measure design decay: the Tunnel Triplets Metric

(TTM) and Common Triplets Metric (CTM). These metrics could be used as

predictors of bug proneness [123] and design defect proneness [85]. We show that

our design-decay metrics (TTM and CTM) provide us useful insights regarding

the signs of design decay. If TTM decreases, then the original design decays. If

TTM is stable, then the original design is stable, which means that the system

is more adapted to the new changing requirements. If CTM increases, then new

requirements and new functionalities are implemented in the system. If CTM is

99

stable, then the system is stable and the most of maintenance activities are bug

fixes. As shown by our experiments, design decay is inevitable, but it is possible

to evaluate it.

In our seconde contribution [57], we proposed a novel approach to change im-

pact analysis specifically designed to study the scope of change propagation. We

showed that changes propagate in systems, like earthquakes. The change impact

is most severe near the epicenter class and drops off away for the classes in higher

levels. Identifying the scope of change propagation could help, both developers and

managers. Developers could locate easily the change impact and, thus, they do not

have to analyse the whole source code to understand the ripple effect of a change.

Managers could estimate the efforts required to perform changes more accurately.

In our third contribution [56], we proposed a novel approach for design defects

detection, called IDS (Immune-based Detection Strategy), based on Artificial Im-

mune Systems. We evaluated our approach on finding potential defects (Blob, FD,

and SC) in two open-source systems (GanttProject and XercesJ) and showed that

an AIS can detect defects in systems with good precision and recall and address

the limitations of previous work: it does not require experts’ knowledge and inter-

pretation and it can report classes that are similar but not identical to the detected

defects. We conclude that the application of an artificial immune system to detect

design defects is valuable. The immune system provides an interesting metaphor

for detecting design defects.

We found external information in bug reports and mailing lists that confirm

that our approaches are able to evaluate design decay and identify the impact

of changes. Also, we showed that our design-defects detection approach has a

good precision and recall. Therefore, it is possible to provide solutions that help

developers in evaluating design decay, analysing the change impact and detecting

design defects, and thus we confirm our thesis.

6.2 Opportunities for Future Research

We could explore different future work directions. Following our first contribu-

tion, we plan to investigate the use of other metrics: the first measure of design

decay is related to how many of the classes of a considered design are kept in sub-

100

sequent versions or releases. Such measure, although unidimensional, is simple,

intuitive, and can be used for more complex notions, such as estimating a “mor-

tality” rate for classes in a system. The second measure considers the number of

connected components (micro-designs) of a design in subsequent releases. Con-

sidering the set of the classes of a given design, it may happen that the overall

connectivity is not preserved. By deleting some relations (eg., when trying to in-

sert some new intermediary classes), one may add a degree of separation between

previously connected classes.

In the second contribution, we plan to adapt seismology models to predict

changes to classes. In the case of earthquakes, seismologists are interested in debris

forecasting, to predict the quantity of damage and seek to minimise the earthquake

impact through the improvement of construction standards. Earthquake prediction

technique generally use probabilistic methods to predict earthquake risk using past

history. We will study the possibility of using the data about previous changes to

forecast “earthquakes” that could occurs in a system, their potential damages, and

the factors influencing their propagations.

In the third contribution, we plan to compare our approach with other machine

learning techniques, such as support vector machine, and to further study the pa-

rameters of the approach, including refining the choice of characteristics of classes.

We also plan to extend our metaphor to other problems, such as the prediction of

“buggy” changes, when modifying a class. The idea is to classify the changes as

clean or buggy. After training an AIS by using change data from revisions 1 to

n, if there is a new and unclassified change, i.e., revision n + 1, this change can

be classified as either buggy or clean by using the trained classifier model. In this

manner, the change classification predicts whether a new change is more similar to

prior “buggy” or clean changes.

In this dissertation, we highlighted that the design quality of a software sys-

tem deteriorates throughout its evolution due to design decay. Therefore, we could

propose to improve the design quality of a system by identifying refactoring op-

portunities, which resolve design defects existing in source code. Thus, it could

possible to provide solutions that help developers in improving design quality by

appropriate refactorings.

RELATED PUBLICATIONS

The following is a list of our publications related to this dissertation.

Journal articles

1. Salima Hassaine, Yann-Gäel Guéhéneuc, Sylvie Hamel, Bram Adams, and

Giulio Antoniol (2012). Evaluating Design Decay during Software Evolution,

Journal of Empirical Software Engineering (EMSE) (submitted).

Conference articles

1. Salima Hassaine, Yann-Gäel Guéhéneuc, and Sylvie Hamel and Giulio

Antoniol (2012). ADvISE: Architectural Decay In Software Evolution. In

Proceedings of the 16th European Conference on Software Maintenance and

Reengineering (CSMR), March 27-30, 2012, Szeged, Hungary. IEEE Com-

puter Society Press.

2. Salima Hassaine, Ferdaous Boughanmi, Yann-Gäel Guéhéneuc, and Sylvie

Hamel and Giulio Antoniol (2011). A Seismology-inspired Approach for

Change Impact Analysis. In Proceedings of the 27th IEEE International Con-

ference on Software Maintenance (ICSM), September 25 - 30, 2011, Williams-

burg, VA, USA. IEEE Computer Society Press.

3. Salima Hassaine, Ferdaous Boughanmi, Yann-Gäel Guéhéneuc, and Sylvie

Hamel and Giuliano Antoniol (2011). Change Impact Analysis : An earth-

quake Metaphor. In Proceedings of the 19th International Conference on

Program Comprehension (ICPC), June 22 - 24, 2011, Kingston, Ontario,

Canada. IEEE Computer Society Press.

4. Salima Hassaine, Foutse Khomh, Yann-Gaël Guéhéneuc, and Sylvie Hamel

(2010). IDS: An Immunology-inspired Approach for the Detection of Software

Design Smells, In Proceedings of the Quality in Reengineering and Refactor-

ing track at the 7th International Conference on the Quality of Informa-

tion and Communications Technology (QUATIC), September 29 - October

2, 2010, Oporto, Portugal. IEEE Computer Society Press.

BIBLIOGRAPHY

[1] Ieee standard glossary of software engineering terminology. IEEE Std 610.12-

1990, page 84, 1990.

[2] Ieee standard for software maintenance. IEEE Std. 1219-1998, page 52, 1998.

[3] Hiralal Agrawal and Joseph R. Horgan. Dynamic program slicing. In Pro-

ceedings of the ACM SIGPLAN 1990 conference on Programming language

design and implementation, pages 246–256. ACM, 1990. ISBN 0-89791-364-7.

[4] G. Antoniol, G. Canfora, G. Casazza, and A. De Lucia. Maintaining trace-

ability links during object-oriented software evolution. Softw. Pract. Exper.,

31(4):331–355, 2001. ISSN 0038-0644.

[5] Giuliano Antoniol, Massimiliano Di Penta, and Ettore Merlo. An automatic

approach to identify class evolution discontinuities. Principles of Software

Evolution, International Workshop on, 0:31–40, 2004. ISSN 1550-4077.

[6] Giuliano Antoniol, Vincenzo Fabio Rollo, and Gabriele Venturi. Linear pre-

dictive coding and cepstrum coefficients for mining time variant information

from software repositories. In the 2005 international workshop on Mining

software repositories, pages 1–5. ACM, 2005. ISBN 1-59593-123-6.

[7] Robert S. Arnold and Shawn A. Bohner. Impact analysis - towards a frame-

work for comparison. In the Conference on Software Maintenance, pages

292–301. IEEE Computer Society, 1993.

[8] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Re-

trieval. Addison Wesley, 1999.

[9] Jagdish Bansiya and Carl G. Davis. A hierarchical model for object-oriented

design quality assessment. IEEE Transactions on Software Engineering, 28:

4–17, January 2002.

[10] Victor R. Basili and David M. Weiss. A methodology for collecting valid

software engineering data. IEEE Trans. Software Eng., 10(6):728–738, 1984.

103

[11] Len Bass, Paul Clements, and Rick Kazman. Software architecture in prac-

tice. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1998.

ISBN 0-201-19930-0.

[12] Douglas Bell. Software Engineering, A Programming Approach. Addison-

Wesley, 2000.

[13] Anne Bergeron and Sylvie Hamel. Vector algorithms for approximate string

matching. International Journal of Foundations of Computer Science, 13(1):

53–65, 2002.

[14] Viv Bewick, Liz Cheek, and Jonathan Ball. Statistics review 9: one-way

analysis of variance. Critical care, 8(2):130–136, 2004. ISSN 1466-609X.

[15] Dave Binkley, Marcia Davis, Dawn Lawrie, and Christopher Morrell. To

camelCase or Under score. In Proceedings of International Conference on

Program Comprehension, pages 158–167. IEEE Computer Society Press,

2009.

[16] David Binkley and Mark Harman. A large-scale empirical study of forward

and backward static slice size and context sensitivity. In the International

Conference on Software Maintenance, pages 44–54. IEEE Computer Society,

2003. ISBN 0-7695-1905-9.

[17] Shawn A. Bohner and Robert S. Arnold. Software Change Impact Analysis.

IEEE Computer Society Press, 1996.

[18] Bart Du Bois, Serge Demeyer, Jan Verelst, Tom Mens, and Marijn Tem-

merman. Does god class decomposition affect comprehensibility? In Peter

Kokol, editor, IASTED Conference on Software Engineering, pages 346–355.

IASTED/ACTA Press, 2006.

[19] Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling

Language User Guide. Addison-Wesley, 1998.

[20] Jan Bosch. Evolution and composition of reusable assets in product-line

architectures: A case study. In Proceedings of the TC2 First Working IFIP

104

Conference on Software Architecture (WICSA1), pages 321–340, Deventer,

The Netherlands, The Netherlands, 1999. Kluwer, B.V.

[21] Salah Bouktif, Yann-Gaël Guéhéneuc, and Giuliano Antoniol. Extracting

change-patterns from cvs repositories. In the 13th Working Conference on

Reverse Engineering, pages 221–230, 2006.

[22] Ghizlane El boussaidi. Développement logiciel par transformation de modèles.

PhD thesis, Université de Montréal, 2010.

[23] William J. Brown, Raphael C. Malveau, William H. Brown, Hays W. Mc-

Cormick III, and Thomas J. Mowbray. Anti Patterns: Refactoring Software,

Architectures, and Projects in Crisis. John Wiley and Sons, 1st edition, 1998.

[24] Jason Brownlee. Artificial immune recognition system: a review and analysis.

Technical Report 1-02, Swinburne University of Technology, 2005.

[25] Jason Brownlee. Clonal selection theory clonalg. the clonal selection classifi-

cation algorithm. Technical Report 2-02, Swinburne University of Technology,

2005.

[26] K. E. Bullen. An introduction to the theory of seismology. Cambridge Uni-

versity Press, Cambridge, 3rd ed. edition, 1963.

[27] Gerardo Canfora and Luigi Cerulo. Impact analysis by mining software and

change request repositories. In Proceedings of the 11th IEEE International

Software Metrics Symposium, pages 29–. IEEE Computer Society, 2005.

[28] S. Jeromy Carrière and Rick Kazman. The perils of reconstructing architec-

tures. In Proceedings of the third international workshop on Software archi-

tecture, pages 13–16, New York, NY, USA, 1998. ACM. ISBN 1-58113-081-3.

[29] Jerome H. Carter. The immune system as a model for pattern recognition

and classification. American Medical Informatics Association, 7(1):28–41,

2000.

[30] Cagatay Catal and Banu Diri. Investigating the effect of dataset size, metrics

sets, and feature selection techniques on software fault prediction problem.

Information Sciences, Elsevier, 179(8):1040–1058, 2009.

105

[31] Michele Ceccarelli, Luigi Cerulo, Gerardo Canfora, and Massimiliano Di

Penta. An eclectic approach for change impact analysis. In Proceedings

of the 32nd ACM/IEEE International Conference on Software Engineering,

pages 163–166. ACM, 2010. ISBN 978-1-60558-719-6.

[32] S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented

design. IEEE Transactions in Software Engineering, 20(6):476–493, 1994.

[33] William G. Cochran. Sampling Techniques, 3rd Edition. John Wiley, 1977.

ISBN 0-471-16240-X.

[34] James O. Coplien and Neil B. Harrison. Organizational Patterns of Agile

Software Development. Prentice-Hall, Upper Saddle River, NJ (2005), 1st

edition, 2005.

[35] Barthélémy Dagenais and Martin P. Robillard. Recommending adaptive

changes for framework evolution. In ICSE ’08: Proceedings of the 30th in-

ternational conference on Software engineering, pages 481–490. ACM, 2008.

[36] Marc Eaddy, Thomas Zimmermann, Kaitlin D. Sherwood, Vibhav Garg,

Gail C. Murphy, Nachiappan Nagappan, and Alfred V. Aho. Do crosscutting

concerns cause defects? IEEE Transactions on Software Engineering, 34:

497–515, 2008.

[37] S.G. Eick, T.L. Graves, A.F. Karr, J.S. Marron, and A. Mockus. Does code

decay? assessing the evidence from change management data. Software En-

gineering, IEEE Transactions on, 27(1):1 –12, 2001.

[38] H.A. Eiselt, M. Gendreau, G. Laporte, and Université de Montréal. Centre de

recherche sur les transports. Arc Routing Problems: The Chinese postman

problem. Publication (Université de Montréal. Technical Report CRT-960,

Centre de recherche sur les transports). Université de Montréal, Centre de

recherche sur les transports, 1993.

[39] Laleh M. Eshkevari, Venera Arnaoudova, Massimiliano Di Penta, Rocco

Oliveto, Yann-Gaël Guéhéneuc, and Giuliano Antoniol. An exploratory study

of identifier renamings. In Proceeding of the 8th working conference on Mining

software repositories, pages 33–42. ACM, 2011.

106

[40] Martin Fowler. Refactoring – Improving the Design of Existing Code.

Addison-Wesley, 1st edition, June 1999.

[41] William B. Frakes and Ricardo A. Baeza-Yates. Information Retrieval: Data

Structures & Algorithms. Prentice-Hall, 1992. ISBN 0-13-463837-9.

[42] Harald Gall, Karin Hajek, and Mehdi Jazayeri. Detection of logical coupling

based on product release history. In Proceedings of the International Con-

ference on Software Maintenance, ICSM ’98, pages 190–. IEEE Computer

Society, 1998.

[43] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design

Patterns – Elements of Reusable Object-Oriented Software. Addison-Wesley,

1st edition, 1994.

[44] David Garlan and Mary Shaw. An introduction to software architecture.

Technical Report CMU/SEI-94-TR-21, ESC-TR-94-21., Carnegie Mellon

University, Software Engineering Institute, 1994.

[45] Daniel M. German, Ahmed E. Hassan, and Gregorio Robles. Change im-

pact graphs: Determining the impact of prior codechanges. Information and

Software Technology., 51:1394–1408, 2009. ISSN 0950-5849.

[46] T. Girba, S. Ducasse, and M. Lanza. Yesterday’s weather: guiding early

reverse engineering efforts by summarizing the evolution of changes. In In

Proceedings of the 20th IEEE International Conference on Software Mainte-

nance, ICSM ’04, pages 40–49. IEEE Computer Society, 2004.

[47] Michael W. Godfrey and Eric H. S. Lee. Secrets from the monster: Extracting

Mozilla’s software architecture. In Proc. of the Second Intl. Symposium on

Constructing Software Engineering Tools (CoSET-00), 2000.

[48] Michael W. Godfrey and Lijie Zou. Using origin analysis to detect merging

and splitting of source code entities. IEEE Trans. Softw. Eng., 31(2):166–181,

2005.

[49] C.W.J Granger. Investigating causal relations by econometric models and

cross-spectral methods. Econometrica, 37(3):424–38, 1969.

107

[50] Yann-Gaël Guéhéneuc. Ptidej: Promoting patterns with patterns. In pro-

ceedings of the 1st ECOOP workshop on Building a System using Patterns.

Springer-Verlag, 2005.

[51] Yann-Gaël Guéhéneuc and Hervé Albin-Amiot. Recovering binary class re-

lationships: Putting icing on the UML cake. In Doug C. Schmidt, editor,

Proceedings of the 19th Conference on Object-Oriented Programming, Sys-

tems, Languages, and Applications (OOPSLA), pages 301–314. ACM Press,

2004. 14 pages.

[52] Yann-Gaël Guéhéneuc and Giuliano Antoniol. DeMIMA: A multi-layered

framework for design pattern identification. Transactions on Software Engi-

neering (TSE), 34(5):667–684, 2008. 18 pages.

[53] Yann-Gaël Guéhéneuc, Houari Sahraoui, and Farouk Zaidi. Fingerprinting

design patterns. In Eleni Stroulia and Andrea de Lucia, editors, Proceedings

of the 11th Working Conference on Reverse Engineering (WCRE), pages 172–

181. IEEE Computer Society Press, 2004. 10 pages.

[54] Yann-Gaël Guéhéneuc, Jean-Yves Guyomarc’h, Khashayar Khosravi, and

Houari Sahraoui. Design patterns as laws of quality. University of Mon-

treal, 2005. URL http://www.iro.umontreal.ca/~ptidej/Publications/

Documents/OODK05.doc.pdf.

[55] Dick Hamlet and Joe Maybee. The Engineering of Software. Addison-Wesley,

2001.

[56] Salima Hassaine, Foutse Khomh, Yann-Gaël Guéhéneuc, and Sylvie Hamel.

Ids: An immune-inspired approach for the detection of software design smells.

In Proceedings of the 2010 Seventh International Conference on the Quality of

Information and Communications Technology, QUATIC ’10, pages 343–348.

IEEE Computer Society, 2010.

[57] Salima Hassaine, Ferdaous Boughanmi, Yann-Gaël Guéhéneuc, Sylvie Hamel,

and Giuliano Antoniol. A seismology-inspired approach to study change prop-

agation. In Proceedings of the 2011 27th IEEE International Conference on

108

Software Maintenance, pages 53–62. IEEE Computer Society, 2011. ISBN

978-1-4577-0663-9.

[58] Salima Hassaine, Yann-Gaël Guéhéneuc, Sylvie Hamel, and Giuliano Anto-

niol. Advise: Architectural decay in software evolution. In Proceedings of

the 16th European Conference on Software Maintenance and Reengineering,

pages 267–276. IEEE Computer Society, 2012.

[59] Salima Hassaine, Fahmi Jaafar, Yann-Gaël Guéhéneuc, Sylvie Hamel, and

Bram Adams. Evaluating design decay during software evolution. Empirical

Software Engineering (submitted), 2012.

[60] Ahmed E. Hassan and Richard C. Holt. Predicting change propagation in

software systems. In the 20th IEEE International Conference on Software

Maintenance, pages 284–293. IEEE Computer Society, 2004.

[61] Ahmed E. Hassan and Richard C. Holt. Replaying development history to

assess the effectiveness of change propagation tools. Empirical Software En-

gineering, 11:335–367, 2006. ISSN 1382-3256.

[62] Frederick S. Hillier, Gerald J. Lieberman, Frederick Hillier, and Gerald

Lieberman. Introduction to Operations Research. McGraw-Hill, 2004.

[63] Lorin Hochstein and Mikael Lindvall. Combating architectural degeneration:

a survey. Information Software Technology, 47:643–656, 2005. ISSN 0950-

5849.

[64] Christine Hofmeister, Robert Nord, and Dilip Soni. Applied software archi-

tecture. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,

2000. ISBN 0-201-32571-3.

[65] Mehdi Jazayeri. On architectural stability and evolution. In da-Europe ’02:

Proceedings of the 7th Ada-Europe International Conference on Reliable Soft-

ware Technologies, pages 13–23, London, UK, 2002. Springer-Verlag. ISBN

3-540-43784-3.

[66] Olivier Kaczor, Yann-Gaël Guéhéneuc, and Sylvie Hamel. Efficient identifi-

cation of design patterns with bit-vector algorithm. csmr, 0:175–184, 2006.

109

ISSN 1052-8725. doi: http://doi.ieeecomputersociety.org/10.1109/CSMR.

2006.25.

[67] Y. Y. KAGAN and L. KNOPOFF. Statistical short-term earthquake predic-

tion. Science, 236(4808):1563–1567, 1987.

[68] Marouane Kessentini, Stephane Vaucher, and Houari Sahraoui. Deviance

from perfection is a better criterion than closeness to evil when identifying

risky code. In Proceedings of the 25th International Conference on Automated

Software Engineering. IEEE Computer Society Press, September 2010.

[69] Foutse Khomh, Massimiliano Di Penta, and Yann-Gaël Guéhéneuc. An ex-

ploratory study of the impact of code smells on software change-proneness.

In Proceedings of the 2009 16th Working Conference on Reverse Engineering,

pages 75–84. IEEE Computer Society, 2009.

[70] Foutse Khomh, Stéphane Vaucher, Yann-Gaël Guéhéneuc, and Houari

Sahraoui. A bayesian approach for the detection of code and design smells.

In Choi Byoung-ju, editor, Proceedings of the 9th International Conference

on Quality Software (QSIC). IEEE Computer Society Press, 2009. 10 pages.

[71] Foutse Khomh, Massimiliano Di Penta, Yann-Gaël Guéhéneuc, and Giuliano

Antoniol. An exploratory study of the impact of antipatterns on class change-

and fault-proneness. Empirical Software Engineering, 17(3):243–275, 2012.

[72] Miryung Kim, David Notkin, and Dan Grossman. Automatic inference of

structural changes for matching across program versions. In ICSE ’07: Pro-

ceedings of the 29th international conference on Software Engineering, pages

333–343, Washington, DC, USA, 2007. IEEE Computer Society. ISBN 0-

7695-2828-7.

[73] D. Kimelman, M. Kimelman, D. Mandelin, and D.M. Yellin. Bayesian ap-

proaches to matching architectural diagrams. Software Engineering, IEEE

Transactions on, 36(2):248 –274, 2010.

[74] Jon M. Kleinberg. Authoritative sources in a hyperlinked environment. Jour-

nal of ACM, 46:604–632, 1999.

110

[75] Segla Kpodjedo, Filippo Ricca, Philippe Galinier, and Giuliano Antoniol. Re-

covering the evolution stable part using an ecgm algorithm: Is there a tunnel

in mozilla? In CSMR ’09: Proceedings of the 2009 European Conference

on Software Maintenance and Reengineering, pages 179–188, Washington,

DC, USA, 2009. IEEE Computer Society. ISBN 978-0-7695-3589-0. doi:

http://dx.doi.org/10.1109/CSMR.2009.24.

[76] Segla Kpodjedo, Filippo Ricca, Philippe Galinier, Giuliano Antoniol, and

Yann-Gaël Guéhéneuc. Studying software evolution of large object-oriented

software systems using an etgm algorithm. Journal of Software Maintenance

and Evolution: Research and Practice, 2010.

[77] Segla Kpodjedo, Filippo Ricca, Philippe Galinier, Yann-Gaël Guéhéneuc, and

Giuliano Antoniol. Design evolution metrics for defect prediction in object

oriented systems. Empirical Software Engineering, 16(1):141–175, 2011.

[78] Michele Lanza and Radu Marinescu. Object-Oriented Metrics in Practice.

Springer-Verlag, 2006.

[79] James R. Larus. Whole program paths. SIGPLAN Not., 34(5):259–269, 1999.

ISSN 0362-1340.

[80] James Law and Gregg Rothermel. Whole program path-based dynamic im-

pact analysis. In the 25th International Conference on Software Engineering,

pages 308–318. IEEE Computer Society, 2003.

[81] M. M. Lehman. Laws of software evolution revisited. In EWSPT ’96: Pro-

ceedings of the 5th European Workshop on Software Process Technology, pages

108–124, London, UK, 1996. Springer-Verlag. ISBN 3-540-61771-X.

[82] Meir M. Lehman, Juan F. Ramil, P. D. Wernick, Dewayne E. Perry, and

W. M. Turski. Metrics and laws of software evolution - the nineties view. In

Proceedings of the IEEE Symposium on Software Metrics, pages 20–32. IEEE

Computer Society, 1997.

[83] Vladimir I. Levenshtein. Binary codes capable of correcting deletions, inser-

tions, and reversals. Cybernetics and Control Theory, 10(8):707–710, 1966.

111

[84] Wei Li and Raed Shatnawi. An empirical study of the bad smells and class

error probability in the post-release object-oriented system evolution. Journal

of Systems and Software, 80(7):1120–1128, 2007.

[85] Isela Macia, Roberta Arcoverde, Alessandro Garcia, Christina Chavez, and

Arndt von Staa. On the relevance of code anomalies for identifying archi-

tecture degradation symptoms. Software Maintenance and Reengineering,

European Conference on, 0:277–286, 2012.

[86] Haroon Malik and Ahmed E. Hassan. Supporting software evolution using

adaptive change propagation heuristics. In ICSM’08, pages 177–186, 2008.

[87] Mika Mantyla. Bad Smells in Software - a Taxonomy and an Empirical Study.

PhD thesis, Helsinki University of Technology, 2003.

[88] Radu Marinescu. Detection strategies: Metrics-based rules for detecting de-

sign flaws. In Proceedings of the 20th International Conference on Software

Maintenance, pages 350–359. IEEE CS Press, 2004.

[89] S. Mirarab, A. Hassouna, and L. Tahvildari. Using bayesian belief networks to

predict change propagation in software systems. In Program Comprehension,

2007. ICPC ’07. 15th IEEE International Conference on, pages 177–188,

June 2007.

[90] Naouel Moha, Yann-Gaël Guéhéneuc, Laurence Duchien, and Anne-Françoise

Le Meur. DECOR: A method for the specification and detection of code and

design smells. Transactions on Software Engineering (TSE), 2009. 16 pages.

[91] A. Morales-Esteban, F. Mart́ınez-Álvarez, A. Troncoso, J. L. Justo, and

C. Rubio-Escudero. Pattern recognition to forecast seismic time series. Expert

System Application, 37:8333–8342, 2010. ISSN 0957-4174.

[92] Robert Moreton. A process model for software maintenance. Journal of

Information Technology (Routledge, Ltd.), 5(2):100–104, 1990.

[93] Matthew James Munro. Product metrics for automatic identification of “bad

smell” design problems in java source-code. In Filippo Lanubile and Car-

olyn Seaman, editors, Proceedings of the 11th International Software Metrics

Symposium. IEEE Computer Society Press, 2005.

112

[94] Gail C. Murphy, David Notkin, and Kevin Sullivan. Software reflexion mod-

els: bridging the gap between source and high-level models. In Proceedings of

the 3rd ACM SIGSOFT symposium on Foundations of software engineering,

pages 18–28. ACM, 1995.

[95] Stephen C. Myers and William R. Walter. Using epicenter location to differ-

entiate events from natural background seismicity. Technical Report, it was

prepared for submittal to the 21 st Seismic Research Symposium: Technolo-

gies for Monitoring the Comprehensive Nuclear-Test-Ban Treaty UCRL-JC-

134301; GC0402000, Lawrence Livermore National Laboratory, 1999.

[96] Terri Oda and Tony White. Increasing the accuracy of a spam-detecting

artificial immune system. In Proceedings of the Congress on Evolutionary

Computation (CEC 2003), volume 1, page 390396, Canberra, Australia, 2003.

[97] Steffen Olbrich, Daniela S. Cruzes, Victor Basili, and Nico Zazworka. The

evolution and impact of code smells: A case study of two open source systems.

In Proceedings of the 3rd International Symposium on Empirical Software

Engineering and Measurement, pages 390–400, Washington, DC, USA, 2009.

IEEE Computer Society.

[98] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The

pagerank citation ranking: Bringing order to the web. Technical Report

1999-66, Stanford InfoLab, 1999.

[99] David Lorge Parnas. Software aging. In Proceedings of the 16th International

Conference on Software Engineering, pages 279–287, Los Alamitos, CA, USA,

1994. IEEE Computer Society Press.

[100] Dewayne E. Perry and Alexander L. Wolf. Foundations for the study of

software architecture. SIGSOFT Softw. Eng. Notes, 17:40–52, 1992. ISSN

0163-5948.

[101] Shari Lawrence Pfleeger. Software Engineering: Theory and Practice.

Prentice-Hall, 1998.

113

[102] S.L. Pfleeger and S.A. Bohner. A framework for software maintenance met-

rics. In Proceedings of the 6th International Conference on Software Mainte-

nance, pages 320 –327, 1990.

[103] Thomas M. Pigoski. Practical Software Maintenance: Best Practices for

Managing Your Software Investment. Wiley, 1996.

[104] Roger S. Pressman. Software Engineering – A Practitioner’s Approach.

McGraw-Hill Higher Education, 5th edition, November 2001.

[105] Ranjith Purushothaman and Dewayne E. Perry. Toward understanding the

rhetoric of small source code changes. IEEE Transactions on Software Engi-

neering, 31:2005, 2005.

[106] Vaclav Rajlich and Prashant Gosavi. Incremental change in object-oriented

programming. IEEE Softw., 21:62–69, July 2004.

[107] Arthur J. Riel. Object-Oriented Design Heuristics. Addison-Wesley, 1996.

[108] Giuliano Antoniol Rocco Oliveto, Foutse Khomh and Yann-Gaël Guéhéneuc.

Numerical signatures of antipatterns: An approach based on b-splines. In

Rudolf Ferenc Rafael Capilla and Juan Carlos Dueffas, editors, Proceedings

of the 14th Conference on Software Maintenance and Reengineering. IEEE

Computer Society Press, March 2010.

[109] A. Saichev and D. Sornette. Theory of earthquake recurrence times.

J.GEOPHYS.RES., 112:B04313, 2007.

[110] Raul Santelices and Mary Jean Harrold. Probabilistic slicing for predictive

impact analysis. Technical Report GIT-CERCS-10-10, Georgia Institute of

Technology. Center for Experimental Research in Computer Systems, 2011.

[111] Bordin Sapsomboon. Shared Defect Detection : The Effects of Annotations

in Asynchronous Software Inspection. PhD thesis, University of Pittsburgh,

2000.

[112] Thorsten Schäfer, Jan Jonas, and Mira Mezini. Mining framework usage

changes from instantiation code. In ICSE ’08: Proceedings of the 30th inter-

114

national conference on Software engineering, pages 471–480, New York, NY,

USA, 2008. ACM. ISBN 978-1-60558-079-1.

[113] David J. Sheskin. Handbook of Parametric and Nonparametric Statistical

Procedures. Chapman & Hall/CRC, 2007. ISBN 1584888148, 9781584888147.

[114] Frank Simon, Frank Steinbrückner, and Claus Lewerentz. Metrics based

refactoring. In Proceedings of the 5th European Conference on Software Main-

tenance and Reengineering (CSMR’01). IEEE CS Press, 2001.

[115] Ian Sommerville. Software Engineering. Addison-Wesley, sixth edition, 2000.

[116] Mikael Svahnberg and Jan Bosch. Characterizing evolution in product-line

architectures. In In Proceedings of the IASTED 3rd International Conference

on Software Engineering and Applications, pages 92–97, 1999.

[117] Burton E. Swanson. The dimensions of maintenance. In Intl. Conf. on

Software Engineering, pages 492–497, San Francisco, California, 1976. IEEE

Computer Society.

[118] Armstrong A. Takang and Penny A. Grubb. Software maintenance: concepts

and practice. International Thomson Computer Press, UK, 1996.

[119] Jon Timmis and Thomas Knight. Artificial immune systems: Using the

immune system as inspiration for data mining, 2001.

[120] Guilherme Travassos, Forrest Shull, Michael Fredericks, and Victor R. Basili.

Detecting defects in object-oriented designs: using reading techniques to in-

crease software quality. In Proceedings of the 14th Conference on Object-

Oriented Programming, Systems, Languages, and Applications, pages 47–56.

ACM Press, 1999.

[121] Eva van Emden and Leon Moonen. Java quality assurance by detecting code

smells. In Proceedings of the 9th Working Conference on Reverse Engineering

(WCRE’02). IEEE CS Press, 2002.

[122] Jilles van Gurp and Jan Bosch. Design erosion: problems and causes. Journal

of Systems and Software, 61(2):105–119, 2002.

115

[123] Jilles van Gurp, Sjaak Brinkkemper, and Jan Bosch. Design preservation over

subsequent releases of a software product: a case study of baan erp: Practice

articles. Journal of Software Maintenance and Evolution, 17:277–306, 2005.

ISSN 1532-060X.

[124] William C. Wake. Refactoring Workbook. Addison-Wesley Longman Pub-

lishing Co., Inc., 2003.

[125] Bruce F. Webster. Pitfalls of Object Oriented Development. M & T Books,

1st edition, 1995.

[126] Mark Weiser. Programmers use slices when debugging. Commun. ACM, 25:

446–452, 1982. ISSN 0001-0782.

[127] B.J. Williams and J.C. Carver. Characterizing software architecture changes:

An initial study. In Empirical Software Engineering and Measurement, 2007.

ESEM 2007. First International Symposium on, pages 410 –419, 2007.

[128] Rebecca Wirfs-Brock and Alan McKean. Object Design: Roles, Respon-

sibilities and Collaborations. Addison-Wesley Professional, 2002. ISBN

0201379430.

[129] Wei Wu, Yann-Gaël Guéhéneuc, Giuliano Antoniol, and Miryung Kim. Aura:

a hybrid approach to identify framework evolution. In Jeff Kramer, Judith

Bishop, Premkumar T. Devanbu, and Sebastián Uchitel, editors, ICSE ’10:

Proceedings of the 32nd ACM/IEEE International Conference on Software

Engineering, volume 1, pages 325–334. ACM, 2010.

[130] Zhenchang Xing. Analyzing the evolutionary history of the logical design

of object-oriented software. IEEE Trans. Softw. Eng., 31(10):850–868, 2005.

ISSN 0098-5589. Member-Stroulia, Eleni.

[131] Zhenchang Xing and Eleni Stroulia. Understanding class evolution in object-

oriented software. In Proceedings of the 12th IEEE International Workshop

on Program Comprehension, pages 34 – 43, june 2004.

[132] Zhenchang Xing and Eleni Stroulia. Umldiff: an algorithm for object-oriented

design differencing. In ASE ’05: Proceedings of the 20th IEEE/ACM inter-

116

national Conference on Automated software engineering, pages 54–65, New

York, NY, USA, 2005. ACM. ISBN 1-59593-993-4.

[133] Zhenchang Xing and Eleni Stroulia. API-evolution support with diff-

CatchUp. IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 33

(12):818 – 836, 2007.

[134] Aiko Yamashita and Leon Moonen. Do code smells reflect important main-

tainability aspects? In International Conference on Software Maintenance

(ICSM). IEEE, 2012.

[135] Annie T. T. Ying, James L. Wright, and Steven Abrams. Source code that

talks: an exploration of eclipse task comments and their implication to repos-

itory mining. In the 2005 international workshop on Mining software reposi-

tories, pages 1–5. ACM, 2005.

[136] Andy Zaidman, Toon Calders, Serge Demeyer, and Jan Paredaens. Applying

webmining techniques to execution traces to support the program comprehen-

sion process. In In Proceedings of the Conference on Software Maintenance

and Reengineering, pages 134–142. IEEE Computer Society, 2005.

[137] Xiangyu Zhang, Neelam Gupta, and Rajiv Gupta. A study of effectiveness

of dynamic slicing in locating real faults. Empirical Software Engineering,

12:143–160, 2007. ISSN 1382-3256.

[138] Yu Zhou, Michael Würsch, Emanuel Giger, Harald C. Gall, and Jian Lü. A

bayesian network based approach for change coupling prediction. In Proceed-

ings of the 15th Working Conference on Reverse Engineering, WCRE ’08,

pages 27–36. IEEE Computer Society, 2008.

[139] Thomas Zimmermann, Peter Weisgerber, Stephan Diehl, and Andreas Zeller.

Mining version histories to guide software changes. In the 26th International

Conference on Software Engineering, pages 563–572. IEEE Computer Society,

2004.

APPENDIX A

DEFINITIONS OF METRICS AND QUALITY ATTRIBUTES

This Appendix presents the definitions of the quality attributes [9, 43, 54], and

all the metrics used in this dissertation.

A.1 Definitions of metrics

ACAIC: ancestor Class-Attribute Import Coupling.

ACMIC: ancestors Class-Method Import Coupling.

AID: average Inheritance Depth of an entity.

ANA: count the average number of classes from which a class inherits informa-

tions.

CAM: computes the relatedness among methods of the class based upon the

parameter list of the methods.

CBOin: coupling Between Objects of one entity.

CBOout: coupling Between Objects of one entity.

CIS: counts the number of public methods in a class.

CLD: class to Leaf Depth of an entity.

CoAttributes: the degree of cohesion between methods and attributes of a class.

connectivity: returns the degree of connectivity of an entity in a system.

CP: the number of packages that depend on the package containing entity.

DAM: returns the ratio of the number of private (protected) Attributes to the

total number of Attributes declared in a class.

DCAEC: returns the Descendants Class-Attribute Export Coupling of one entity.

118

DCC: returns the number of classes a class is directly related to (by attribute

declarations and message passing.

DCMEC: returns the Descendants Class-Method Export Coupling of one entity.

DIT: returns the DIT (Depth of inheritance tree) of an entity.

DSC: count of the total number of classes in the design.

ICHClass: compute the complexity of an entity as the sum of the complexities

of its declared and inherited methods.

LCOM1: returns the LCOM (Lack of COhesion in Methods) of an entity.

LCOM2: returns the LCOM (Lack of COhesion in Methods) of an entity.

LOC: returns the number of line of code of an entity.

MFA: the ratio of the number of methods inherited by a class to the number of

methods accessible by member methods of the class.

MOA: count the number of data declarations whose types are user defined classes.

NAD: number of attributes declared.

NADExtended: number of attributes declared in a class and in its member

classes.

NCM: returns the NCM (Number of Changed Methods) of an entity.

NCP: the number of classes package containing entity.

NMA: returns the NMA (Number of New Methods) of an entity.

NMD: number of methods declared.

NMDExtended: number of methods declared in the class and in its member

classes.

NMI: returns the NMI (Number of Methods Inherited) of an entity.

NMO: returns the NMO (Number of Methods Overridden) of an entity.

119

NOA: returns the NOA (Number Of Ancestors) of an entity.

NOC: returns the NOC (Number Of Children) of an entity.

NOD: returns the NOD (Number Of Descendents) of an entity.

NOH: count the number of class hierarchies in the design.

NOM: counts all methods defined in a class.

NOP: returns the NOP (Number Of Parents) of an entity.

NOParam: compute the average number of parameters of methods.

NOPM: count of the Methods that can exhibit polymorphic behavior.

PIIR: the number of inheritance relationships existing between classes in the

package containing entity.

PP: the number of provider packages of the package containing entity.

REIP: EIP divided by the sum of PIIR and EIP.

RFP: the number of class references from classes belonging to other packages to

classes belonging to the package containing entity.

RPII: PIIR divided by the sum of PIIR and EIP.

RRFP: RFP divided by the sum of RFP and the number of internal class refer-

ences.

RRTP: RTP divided by the sum of RTP and the number of internal class refer-

ences.

RTP: the number of class references from classes in the package containing entity

to classes in other packages.

SIX: returns the SIX (Specialisation IndeX) of an entity.

McCabe: number of points of decision + 1.

CBO: coupling Between Objects of one entity.

120

LCOM5: returns the LCOM (Lack of COhesion in Methods) of an entity.

WMC: computes the weight of an entity by computing the number of method

invocations in each method.

PageRank: measures the relative importance of a class in the overall structure

of relations among classes.

A.2 Software Quality Attributes

• Attributes related to design:

− Expandability: The degree to which the design of a system can be

extended.

− Simplicity: The degree to which the design of a system can be under-

stood easily.

− Reusability: The degree to which a piece of design can be reused in

another design.

• Attributes related to implementation:

− Learnability: The degree to which the code source of a system is easy

to learn.

− Understandability: The degree to which the code source can be un-

derstood easily.

− Modularity: The degree to which the implementation of the functions

of a system are independent from one another.

• Attributes related to runtime:

− Generality: The degree to which a system provides a wide range of

functions at runtime.

− Modularity at runtime: The degree to which the functions of a sys-

tem are independent from one another at runtime.

− Scalability: The degree to which the system can cope with large amount

of data and computation at runtime.

− Robustness: The degree to which a system continues to function prop-

erly under abnormal conditions or circumstances.

APPENDIX B

SPECIFICATION OF CODE SMELLS AND ANTIPATTERNS

This Appendix presents the definitions of code smells and antipatterns studied

in this dissertation.

B.1 Detailed Definitions of the code Smells

In this dissertation we focused on the following code smells:

AbstractClass: this code smell is characteristic of the Speculative Generality

Antipattern. This odor exists when we have generic or abstract code that

isn’t actually needed today. Such code often exists to support future behavior,

which may or may not be necessary in the future.

ChildClass: this code smell occurs when the number of methods declared in a

class and the number of it’s declared attributes is very high. It is a symptom of

poor object decomposition. The public interface of the class differing greatly

from the one of its super-class. This code smell characterises the Tradition

Breaker antippatern.

ClassGlobalVariable: this code smell occurs when a class declares public class

variable that are used as “global variable” in procedural programming.

ClassOneMethod: this code smell occurs when a class has only one method.

ComplexClassOnly: this code smell is present when a class both declares many

fields and methods and which methods realise complex treatments, using

many if and switch instructions. Such a class is probably providing lots of

services while being difficult to maintain and fragile due to its complexity.

ControllerClass: this odor is present when a class monopolises most of the

processing done by a system, takes most of the decisions, and closely directs

the processing of other classes.

122

DataClass: this code smell is present when a class contains only data and per-

forms no processing on these data. It is composed of highly cohesive fields

and accessors.

FewMethod: this code smell characterise Lazy classes that declare few methods.

FieldPrivate: this code smell is present when many private fields are declared.

It’s generally symptomatic of the Functional Decomposition antipattern.

FieldPublic: this code smell is symptomatic of the Class Data Should Be Pri-

vate antippatern. It occurs when the data encapsulated by a class is public,

thus allowing client classes to change this data without the knowledge of the

declaring class.

LargeClass: this odor concerns classes that are trying to do too much. These

classes do not follow the good practice of divide-and-conquer which consists

of decomposing a complex problem into smaller problems. These classes also

have low cohesion.

LargeClassOnly: this code smell concerns classes with a very high number of

attributes and/or methods defined.

LongMethod: this odor is a method with a high number of lines of code. A lot

of variables and parameters are used. Generally, this kind of method does

more than its name suggests it.

LongParameterListClass: this odor corresponds to a method with high num-

ber of parameters. This smell occurs when the method has more than four

parameters. Long lists of parameters in a method, though common in proce-

dural code, are difficult to understand and likely to be volatile.

LowCohesionOnly: this code smell characterises the lack of cohesion in a class.

ManyAttributes: this code smell occurs when the number of attributes declared

in a class is too high.

MessageChainsClass: this code smell is present when you see a long sequence

of method calls or temporary variables to get some data. This chain makes

123

the code dependent on the relationships between many potentially unrelated

objects.

MethodNoParameter: this code smell occurs when a class declares methods

with no parameter.

MultipleInterface: this code smell occurs when a class implements a high num-

ber of interfaces. It is generally symptomatic of the Swiss Army Knife an-

tipattern.

NoInheritance: this odor is present when inheritance is scarcely used.

NoPolymorphism: this odor is present when polymorphism is scarcely used.

NotAbstract: this odor occurs when a developer haven’t yet seen how a higher-

level abstraction can clarify or simplify his code.

NotClassGlobalVariable: this odor manifest itself in the anipattern Anti-Singleton

when a class declares public class variable that are used as “global variable”

in procedural programming. It reveals procedural thinking in object-oriented

programming and may increase the difficulty to maintain the system.

NotComplex: this code smell characterises classes performing “atomic” func-

tionality, with little complexity.

OneChildClass: this code smell occurs when a class does not have child class.

ParentClassProvidesProtected: this code smell occurs when a subclass does

not use attributes and/or methods protected inherited by a parent.

RareOverriding: this code smell occurs when a class rarely overrides inherited

attributes and/or methods.

TwoInheritance: this odor characterises a hierarchy with a depth greater than

two.

124

B.2 Detailed Definitions of the Antipatterns

This dissertation focused on the following antipatterns:

Anti-Singleton: it is a class that declares public class variable that are used as

“global variable” in procedural programming. It reveals procedural thinking

in object-oriented programming and may increase the difficulty to maintain

the system.

Blob: (called also God class [107]) corresponds to a large controller class that

depends on data stored in surrounded data classes. A large class declares

many fields and methods with a low cohesion. A controller class monopolises

most of the processing done by a system, takes most of the decisions, and

closely directs the processing of other classes [128].

Class Data Should Be Private: it occurs when the data encapsulated by a

class is public, thus allowing client classes to change this data without the

knowledge of the declaring class.

Complex Class: it is a class that both declares many fields and methods and

which methods realise complex treatments, using many if and switch instruc-

tions. Such a class is probably providing lots of services while being difficult

to maintain and fragile due to its complexity.

Large Class: it is a class with too many responsibilities. This kind of class

declares a high number of usually unrelated methods and attributes.

Lazy Class: it is a class that does not do enough. The few methods declared by

this class have a low complexity.

Long Method: it is a method with a high number of lines of code. A lot of

variables and parameters are used.Generally, this kind of method does more

than its name suggests it.

Long Parameter List: it corresponds to a method with high number of param-

eters. This smell occurs when the method has more than four parameters.

125

MessageChains: it Occurs when you have a long sequence of method calls or

temporary variables to get some data. This chain makes the code dependent

on the relationships between many potentially unrelated objects [40].

Speculative Generality: it is an abstract class without child classes. It was

added in the system for future uses and this entity pollutes the system un-

necessarily.

Swiss Army Knife: it refers to a tool fulfilling a wide range of needs. The

Swiss Army Knife design smell is a complex class that offers a high number

of services, for example, a complex class implementing a high number of

interfaces. A Swiss Army Knife is different from a Blob, because it exposes

a high complexity to address all foreseeable needs of a part of a system,

whereas the Blob is a singleton monopolising all processing and data of a

system. Thus, several Swiss Army Knives may exist in a system, for example

utility classes.

The Refused Parent Bequest: it appears when a subclass does not use at-

tributes and/or methods public and/or protected inherited by a parent. Typ-

ically, this means that the class hierarchy is wrong or badly organized.

The Spaghetti Code: it is an antipattern that is characteristic of procedu-

ral thinking in object-oriented programming. Spaghetti Code is revealed

by classes with no structure, declaring long methods with no parameters,

and utilising global variables for processing. Names of classes and meth-

ods may suggest procedural programming. Spaghetti Code does not exploit

and prevents the use of object-orientation mechanisms, polymorphism and

inheritance.

