
i

Université de Montréal

A versatile location-based service Java control for Pocket-pc.

par

Paul Bertrand

Département d’informatique et de recherche opérationnelle
Faculté des arts et des sciences

Version courte du rapport de stage présenté à la Faculté des études supérieures
en vue de l’obtention du grade de

Maître ès Sciences (M.Sc.)
en informatique

Août, 2008

Copyright © Paul Bertrand, 2008

ii

Université de Montréal
Faculté des études supérieures

Ce rapport de stage intitulé :

A versatile location-based service Java control for Pocket-pc.

présenté par :

Paul Bertrand

a été évalué par un jury composé des personnes suivantes :

POULIN, Pierre (Président-rapporteur)

GUEHENEUC, Yann-Gaël (Directeur de recherche)

HAFID, Abdelhakim (Membre du jury)

iii

Abstract

 With the democratization of Pocket-pc devices and their constant

improvement in terms of performances, more and more companies equip their field

technicians with such devices. A concrete application involves technicians who can

use Pocket-pc to consult and organize their daily tasks synchronized with a central

system. Along with its backend system (Netweaver), SAP also provides Pocket-pc

software written in Java. As most of these technicians need to meet customers and

go on sites, these systems need to be shipped with an embedded mapping control that

must support any kind of mapping service independently from the technology used

by this latter. The aim of this work is to propose a versatile location-based service

Java control relying on a unique abstract interface that gives the possibility to adapt

any kind of mapping service and to satisfy SAP mobile software development

constraints. The proof of concept has been validated by implementing two services

using different technologies (Google maps using AJAX and Microsoft Mappoint

using Web services) and tested on two different devices: a Compaq Ipaq and a

Fujitsu Siemens Pocket LOOX. The results obtained were very encouraging and

conclusive enough to ship this control with SAP Pocket-pc systems. In conclusion,

this project brings a concrete and flexible solution to mapping controls that can be

integrated within any Java application running on Pocket-pc devices.

Keywords: LBS, Pocket-pc, SAP, Microsoft Mappoint, Google Maps, versatile Java

control, strategy design pattern, multiple GIS support.

iv

Résumé
 Grâce à la démocratisation des appareils mobiles ainsi qu’à leur constante

amélioration, nombreuses sont les compagnies qui fournissent à leurs techniciens des

appareils mobiles de type Pocket-pc pour organiser leur travail et rester en contact

avec leur entreprise. Grâce aux Pocket-pc et à la qualité des réseaux sans fils, les

techniciens peuvent en tout temps rester connectés au système central de leur

compagnie pour consulter, synchroniser et mettre à jour leurs tâches via des logiciels

embarqués. SAP fournit en plus de son système central Netweaver, des logiciels

écrits en Java destinés aux Pocket-pc capables de consulter, synchroniser et mettre à

jour les informations contenues sur le système central. Sachant que la majorité des

techniciens se déplacent chez des clients, ces logiciels doivent fournir une fonction

de géo-localisation intégrée pour faciliter les déplacements. Le but de ce travail est

de proposer un control Java de géo-localisation capable de supporter n’importe quel

système d’information géographique (SIG) et d’être intégré dans n’importe quel

logiciel SAP écrit en Java et destiné aux Pocket-pc. La validation a été réalisée via

l’implémentation et le déploiement du contrôle sur deux Pocket-pc : un Compaq Ipaq

et un Fujitsu Siemens Pocket LOOX. Le contrôle final peut utiliser deux SIG

différents : Microsoft Mappoint, accessible depuis des services Web et Google Maps

fourni via une API AJAX. Les résultats obtenus sont très encourageants et suffisants

pour pouvoir considérer l’intégration du contrôle au sein des logiciels SAP Pocket-pc

écrits en Java. En conclusion, ce travail apporte une solution prouvée concrète,

flexible, réutilisable et modifiable aux contrôles Java pour Pocket-PC dédiés à la

géo-localisation.

Mots-clés : LBS, Pocket-pc, SAP, Microsoft Mappoint, Google Maps, contrôle Java

versatile, géo-localisation, patron de conception stratégie, support de multiples SIG.

v

Table of Content

Abstract .. iii

Résumé ... iv

Table of Content ... v

List of Figures .. vi

1 Introduction ... 1

2 Problem: Adapt to Several GIS Providers .. 6

2.1. Requirements .. 6

2.2. Existing Solutions ... 8

3 Solution: Flexible Location-based Control ... 10

4 Conclusion .. 12

Bibliography ... 15

vi

List of Figures

Figure 1. 1. Service composite architecture. .. 2

Figure 1. 2. UCD stack architecture. .. 3

Figure 1. 3.UCD display and workflow example on Pocket-pc. 4

Figure 3. 1. Abstract interface as a black box ………………………………..10

Figure 4. 1. Future architecture……………………………………………………...13

Chapter 1

Introduction

For the last 10 years, continuous improvements of wireless networks have

encouraged more and more people to adopt mobile devices. Each day, they carry

billions of transactions and messages. With time, these networks get more secure,

cover more area, transport more data and therefore bring more connectivity among

people. Wireless networks can be accessed and used by a wide diversity of devices

including mobile devices such as Smartphone, PDA, Pocket-pc, and Blackberry. Just

like wireless networks, these devices get more powerful every year and consequently

offer more functionality. People can now, at any time and almost anywhere, consult

their emails, browse Web sites, take photos, record videos, use a GPS system, create

documents, and much more. Industries and companies naturally also acknowledged

mobile technologies assets and their adoption significantly increased companies’

productivity. For instance, a survey conducted by Nucleus Research showed that for

230 users, “the average mobile device user works 15 percent more each day” [18].

Because we are living in a fast moving economy, information needs to constantly

travel in and outside a company. Operations must be done in real time and employees

shall remain inter-connected to ensure proper information propagation. SAP provides

applications and solutions for companies to harmonize, unify, and facilitate

information exchange through mobile devices. Our work focuses on one of these

applications called User Centric Design (UCD) and more specifically on its

Geographical Information System control (GIS) responsible for providing Location-

based Service (LBS). UCD is a Java project that has been initiated in May 2007 and

aims at delivering efficient data display for on-field technicians using Pocket-pc

devices. This application consists of a work-order list from which the technician can

2

access various kinds of information related to each work-order: customer,

geographical information (given through the LBS control) such as location of the

customer, spare parts needed, work history, job priority, etc. This application is

embedded on a Pocket-pc and connects to a backend system to fetch and send data.

UCD stands on top of SAP Service Composite (see figure 1.1). Service

Composite enables SAP customers to define which SAP components they want to

use and by composing them together, they are free to organize, sort, manage and

prioritize data.

Figure 1. 1. Service composite architecture.

The data retrieved from Service Composite is displayed on the Pocket-pc using the

View Inspect and Act concept (VIA). VIA is a user interface design pattern specially

created for mobile devices. Each screen of the application either belongs to a V, I or

A pattern:

1. View: each screen labeled as a V pattern is used to provide general

information. For example, the work-order list we mentioned before is defined

as V pattern.

2. Inspect: each screen labeled as an I pattern is used to provide more detailed

information. For example, a typical I screen is the one displayed after the user

3

has clicked on a work-order from the list. There, he can find more

information related to the customer, the task, etc.

3. Act: each screen labeled as an A pattern is used to record inputs from a user.

For example, the signature capture screen is an A pattern.

These screens and the information they contain are arranged as a stack structure that

reflects the granularity of the information (see figures 1.2 and 1.3).

Figure 1. 2. UCD stack architecture.

4

Figure 1. 3.UCD display and workflow example on Pocket-pc.

Stack arrangements are pretty standard for Pocket-pc as they cannot display more

than one window at a time.

Mapping solutions recently gained a tremendous popularity as they have been

made accessible by different providers (Google, Microsoft, Yahoo, and others) for

free to anyone who can access the Internet. These solutions offer a rich set of

functionalities such as multiple visualization capacities (satellite, terrain, and map),

user friendly interfaces, address finding, business finding, driving directions, etc. In

addition, a large majority of these mapping providers opened their functionalities to

developers to build custom mapping applications. However, the way to access these

functionalities greatly differs among providers. For instance, Mappoint is being

offered through Web services while Google uses AJAX. Both have very different

implementations but share common purposes. Web services are remote function calls

that can be consumed from a wide diversity of programming languages (C++, Java,

Python, Ruby, etc.). On the other side, AJAX (Asynchronous JavaScript and XML)

also enables remote function calling but is limited to Web browsers as it requires a

JavaScript environment.

5

This work consists in designing a mapping Java control integrated within

UCD (as an ‘I’ pattern) that can adapt to any GIS provider independently from the

interface it uses (Web Services, AJAX, RMI) and capable of LBS tasks such as

routing and address finding. By enabling our control with any GIS provider, SAP

future customers will be given the choice rather than being forced to use a particular

mapping solution (most of them come with a license). None of the mapping solutions

proposed in the literature or on the market offer such flexibility. Some are capable of

continuously browsing maps stored on a server but cannot locate addresses while

some others embed GPS and LBS functionalities but render maps as spatial data and

depend on a specific GIS server. Therefore, our contribution consists in designing

and implementing a Java control capable of retrieving, requesting, and displaying

information from any GIS provider. Our proof of concept consists in being capable

of finding any location-based on a geographical address from two different GIS

providers and display the map on the Pocket-pc.

This work is presented through three parts. The first one deals with the

requirements and exposes the problems. The second part presents the previous

works, the state of art, the existing products. The third part introduces our solution

while the last part consists of the future work and the conclusion.

6

Chapter 2

Problem: Adapt to Several GIS Providers

Even though Pocket-pc devices are more and more powerful, they still cannot

compete with regular desktop stations. Consequently, developing applications for

Pocket-pc can be very challenging due to the limited memory, CPU, display,

chipsets, and energy. All these limitations are sources of constraints when writing an

application. This section covers the business requirements of our work along with

issues they may raise. A state of the art is also given covering the existing business

solutions and literature.

2.1. Requirements

The following list represents the requirements. It will be referred as the RC

list in the remaining sections of the report for further references. It states that the

control must:

1. Be written in Java (JDK1.3 compliant) and use eSWT as a graphical API;

2. Be easy to integrate into any other application (for reuse purpose);

3. Be capable of locating customers and display their position on a map;

4. Be capable of zooming in and zooming out;

7

5. Be capable of finding routes between multiple addresses, display the path

on a map, and propose directions;

6. Display interactive icons for locations which provide specific information

about the selected location;

7. Let the user drag the map to explore the surroundings;

8. Be capable of finding specific location types around a location such as

restaurants or hotels;

9. Support any kind of GIS provider so that customers are given a choice;

10. Be easy to extend in terms of functionalities;

11. Display the maps on a tap and drag component similar to Google Maps,

MapQuest and Yahoo Maps. This component must be very responsive to

make the touch and feel comfortable;

12. Take into consideration device limitations especially in terms of network

access.

Based on these requirements, 6 technical problems have been identified.

1. How can the control request the same information from different GIS

providers that use different technologies?

2. Is a Pocket-pc powerful enough to consume Web services?

3. Should we consider continuous map browsing? If yes, how can it be done?

4. How big should be the map and how far (in terms of geographical

distances) should the user be able to navigate on the map?

5. Should we download one big map or several little maps?

6. How can we deal with low connectivity areas?

8

2.2. Existing Solutions

As this work has been done in SAP Labs Canada, the first investigations have

been conducted within SAP internal solutions. Some previous projects such as

Mobile Asset Management (MAM) already provided GIS services to end users

through a third party software. It is triggered by a command line receiving longitudes

and latitudes as parameters. Unfortunately, this solution is unconceivable in our case

since we need a Java control we can control. This means that we cannot use any

tierce application like Google Maps for Pocket-pc or Microsoft Street Companion.

Further researches were conducted on open Source API but there is no such thing as

an API capable of dealing with more than one GIS provider. Few resources have

been found on forums explaining for example how to access the Google Map API

from a Java application or how to create a Midlet1 giving your instant location.

Lattanzi and Bogliolo [1] conducted a research on the continuous browsing of

remote maps from a PDA2. They designed a Java application which uses RMI to

request specific portions of a map from a unique server. Their study includes

multithreading based on process priorities and intelligent algorithms that

automatically download the next map based on border detection and minimum

threshold. They ran several tests on performance so that the frame rate of the map

displacement remains equal to 24 frames per second. Several parameters were

involved: image resizing, image compression, parameters of the method that draws

the image, minimum threshold, and job scheduling. Although many points of their

study crosscut our requirements, their application does not deal with LBS. Nor does

it adapt to different GIS providers and protocols.

1 Java application running on mobile devices equipped with J2ME virtual machine.
2 The difference between a PDA and a Pocket-pc mostly comes from the fact that a Pocket-pc only
runs Microsoft Mobile operating system while a PDA can be shipped with different ones. Design and
hardware can be identical.

9

Chen, et al. [2] proposed an application offering real time GPS navigation using

spatial data3 instead of digital maps. The architecture of their application consists of

a mobile device and a service center. Both communicate through a wireless network.

The service center (servers) is mainly used to execute complex calculations and other

resource consuming tasks. Tasks separation is the key of their solution where each

server can be dedicated to a different task such as spatial information service, spatial

data transmission, spatial data analysis, spatial data download, and update while

mobile device performs visualization, GPS, and projection. The main difference with

our project is the fact that they use vector maps. Because they propose real time GPS

navigation, they need to retrieve and download maps as fast as possible. However,

even if vector maps are much smaller (in terms of kilobytes), they are not as easy to

read as digital maps. Furthermore, their application depends on a single GIS provider

and does not deliver functionalities such as routing, address retrieval, directions, or

proximity business finding.

As none of the previous work offers similar or comparable features to our

requirements, a new solution has been created.

3 Spatial data: vector maps made of polygons, points, and lines.

Chapter 3

Solution: Flexible

The architecture

responsible for user interactions and rendering;

GIS solutions. Both communicate through

to a black box (see figure 3.1

Chapter 3

Solution: Flexible Location-based Control

he architecture of our control is made of two parts: a tap and drag component

responsible for user interactions and rendering; and a GIS side made of one or

communicate through an abstract interface that can be compared

igure 3.1).

Figure 3. 1. Abstract interface as a black box.

10

Control

tap and drag component

side made of one or more

an abstract interface that can be compared

11

As we can see on the figure 3.1, the interface enables the decoupling between the

rendering and the GIS sides. On the lower part of the box, the graphical display

initiates requests and renders what comes out from the black box. It does not need to

know how data is being retrieved and from which GIS provider they are coming

from. On the upper part, there must be at least one local GIS local proxy satisfying

the functionalities defined by the interface. This proxy acts as an interface to a

specific GIS provider. It is to note that the GIS local proxies, if more than one,

cannot be mixed or interact with each others. However, the user can easily switch

from one to another through a selection menu. Once the data has been downloaded,

the control displays digital images arranged in a grid architecture made of 9 sub-

squares acting as a single block when the user drags the map. The user can interact

with the map by zooming in and out, investigating further locations thanks to a map

expansion mechanism, and look for closest restaurants and hotels. This control relies

on a non persistent caching system storing maps (and their related information)

identified by a unique set of matrix coordinates. The caching system requests maps

and details from a single GIS provider through a unique abstract interface that each

GIS local proxy must implement. The validation has been made using two different

GIS providers to demonstrate the flexibility and adaptability capacities of our

control: Microsoft Mappoint that uses Web services (fully implemented) and Google

Maps that uses AJAX (partially implemented).

12

Chapter 4

Conclusion

This work proposes a reusable Java control for mobile devices capable of

adapting to any GIS provider (to the best of our knowledge). Even if results are very

encouraging, further investigations and coding would be required.

First, it would be necessary to complete the Google implementation and add

more GIS providers to guarantee total flexibility. Along with the development, more

functionality could be added to the interface.

Overall performances could be improved by adding a dedicated server to the

architecture as Chen et al. [2] did in their study. This server could be responsible to

generate the calls to the servers and would communicate with the Pocket-pc device

through a simple protocol that we could create. Indeed, test results showed that the

major overhead for the application on the Pocket-pc is not the map downloading

process but the Web service request that is quite a heavy task for such small amount

of resources. Thus, by delegating the hard work to a more powerful machine, the

application would run a lot faster (see figure 7.1).

Regarding the

satisfactory. However, with the release of future JVM for

implement a continuous drag wi

the JVM would integrate

features could be used to design an intelligent multithreaded algorithm for map

retrieval that would give the sensation to t

The next task could consist in making the caching system persistent. Indeed,

knowing that field technicians generally operate in the same region, the maps could

be stored and updated on a certain schedule. The persist

stored maps available for future requests speeding up the process and making it more

reliable (less connections). However, this feature would only be feasible for location

requests and not route requests as for most of the servi

on the maps meaning that we could not reuse the maps for other requests. On the

other hand, networks will keep being improved and will cover more and more areas

Figure 4. 1. Future architecture.

Regarding the tap and drag component, the performances have been proven

satisfactory. However, with the release of future JVM for Pocket

implement a continuous drag with no interruption during the map expansion. Indeed,

integrate non blocking I/O libraries (“nio” for instance)

features could be used to design an intelligent multithreaded algorithm for map

retrieval that would give the sensation to the end user that the map is infinite.

The next task could consist in making the caching system persistent. Indeed,

knowing that field technicians generally operate in the same region, the maps could

be stored and updated on a certain schedule. The persistency would make the already

stored maps available for future requests speeding up the process and making it more

reliable (less connections). However, this feature would only be feasible for location

requests and not route requests as for most of the services, routes are painted directly

on the maps meaning that we could not reuse the maps for other requests. On the

other hand, networks will keep being improved and will cover more and more areas

13

, the performances have been proven

Pocket-pc, we could

th no interruption during the map expansion. Indeed,

(“nio” for instance). These

features could be used to design an intelligent multithreaded algorithm for map

he end user that the map is infinite.

The next task could consist in making the caching system persistent. Indeed,

knowing that field technicians generally operate in the same region, the maps could

ency would make the already

stored maps available for future requests speeding up the process and making it more

reliable (less connections). However, this feature would only be feasible for location

ces, routes are painted directly

on the maps meaning that we could not reuse the maps for other requests. On the

other hand, networks will keep being improved and will cover more and more areas

14

delivering high speed rates. Therefore, taking into consideration future network

improvements, we decided not to modify the caching system.

Finally, it would be interesting to expand our project to a wider set of devices

such as Smartphones and Blackberries. It is believed that very soon, a unique Java

platform will be released, common to all mobile devices, abstracting all kinds of

hardware in the same environment. This release will enable to distribute applications

at a much larger scale ensuring interoperability. As a consequence, our solution

could be integrated within any system and within any Java mobile application.

15

Bibliography

[1] Java-based continuous browsing of remote maps from a wireless PDA: a feasibility
study. Lattanzi, Emanuele and Bogliolo, Alessandro. Urbino, Italy : IEEE
Computer Society Press, 29 Aug 2002, Vol. 1. 0-7803-7304-9.

[2] Research on mobile GIS based on LBS. Chen, Feixiang, et al. Inst. of Remote
Sensing Applications, Chinese Acad. of Sci., Beijing, China : IEE Computer Society
Press, 2005, Vol. 2. 0-7803-9050-4 .

[3] Corporate, Sap. SAP Development Standards And Tools. SAP Corporate Portal.
[Online] SAP , 2008.

[4] Software development process. Wikipedia. [Online] Wikimedia Foundation, Inc.,
2007. http://en.wikipedia.org/wiki/Software_development_cycle.

[5] Agile Software development. wikipedia. [Online] Wikimedia Foundation, Inc., 2007.
http://en.wikipedia.org/wiki/Agile_software_development.

[6] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented. s.l. : Addison-Wesley, 1994. ISBN 0-201-
63361-2.

[7] IBM. Widget Class. SWT Documentation. [Online] IBM, 2005.
http://help.eclipse.org/help31/nftopic/org.eclipse.platform.doc.isv/reference/api/org/
eclipse/swt/widgets/Widget.html.

[8] —. Control Class. SWT Documentation. [Online] IBM, 2005.
http://help.eclipse.org/help31/nftopic/org.eclipse.platform.doc.isv/reference/api/org/
eclipse/swt/widgets/Control.html.

[9] —. GC Class. SWT Documentation. [Online] IBM, 2005.
http://help.eclipse.org/help31/nftopic/org.eclipse.platform.doc.isv/reference/api/org/
eclipse/swt/graphics/GC.html.

[10] Web Service. Wikipedia. [Online] Wikimedia Foundation, Inc.
http://en.wikipedia.org/wiki/Web_service.

[11] Microsoft. Microsoft Mappoint Web Service. Microsoft. [Online] Microsoft.
http://www.microsoft.com/mappoint/products/webservice/default.mspx.

[12] —. MSDN Mappoint. MSDN. [Online] Microsoft. http://msdn2.microsoft.com/en-
us/library/aa286512.aspx.

[13] Foundation, Apache Software. Apache AXIS2. Apache. [Online] Apache
Software Foundation.

16

[14] MapPoint Multi-platform Assistance Center. Mappoint Web Service. [Online]
Infusiondev.com.
http://go.mappoint.net/mappointmpac/default.aspx?main=article.aspx&id=J20085&a
nchor=getLocationInfo(net.mappoint.s.mappoint_30.LatLong,%20java.lang.String,
%20net.mappoint.s.mappoint_30.GetInfoOptions.

[15] Method Stub . Wikipedia. [Online] Wikimedia Foundation, Inc.
http://en.wikipedia.org/wiki/Method_stub.

[16] Microsoft. Working With Map Views. msdn. [Online] Microsoft, 2007.
http://msdn2.microsoft.com/en-us/library/ms983235.aspx.

[17] Google. Google Map Api Documentation. Google Map. [Online] Google, 2007.
http://www.google.com/apis/maps/documentation/index.html.

[18] Nucleus. Evaluating the productivity impact of mobile devices. Nucleus. [Online]
March 2008.
http://nucleusresearch.com/index.php?option=com_remository&Itemid=65&func=d
ownload&id=808&chk=1de2affb11cdb6813653d48c44a6cbe4&no_html=1. Report
I30.

