> Neelesh Bhattacharya

Context and Motivation

Thesis

Major challenges of Search-Based Approaches

Studies Performed

Study 1: Raising Divide-by-Zero Exception

Study 2: Exposing Interference Bugs

Threats to Validity

Conclusion

Future Work

Test Data Generation for Exposing Interference Bugs in Multi-Threaded Systems

Neelesh Bhattacharya

Supervisors: Giuliano Antoniol and Yann-Gaël Guéhéneuc

SOCCER Lab and Ptidej Team, DGIGL École Polytechnique de Montréal, Québec, Canada

Thesis Presentation - December 10th, 2012

Pattern Trace Identification, Detection, and Enhancement in Java SOftware Cost-effective Change and Evolution Research Lab

> Neelesh Bhattacharya

Context and Motivation

Thesis

Major challenges of Search-Based Approaches

Studies Performed

Study 1: Raising Divide-by-Zero Exception

Study 2: Exposing Interference Bugs

Threats to Validity

Conclusion

Future Work

Summary

Outline

Context and Motivation

Thesis

Major challenges of Search-Based Approaches Studies Performed

Study 1: Raising Divide-by-Zero Exception

Study 2: Exposing Interference Bugs

Threats to Validity

Conclusion

Future Work

Summary

─ READ
→ WRITE

> Neelesh Bhattacharya

Context and Motivation

Thesis

Major challenges of Search-Basec Approaches

Studies Performed

Study 1: Raising Divide-by-Zero Exception

Study 2: Exposing Interference Bugs

Threats to Validity

Conclusion

Future Work

Summary

Context and Motivation (3/5)

 Test data generation is a solution to expose the data-race and interference bugs

Non-Deterministic Multi-threaded Environment

Selected Test Data

> Neelesh Bhattacharya

Context and Motivation

Thesis

Major challenges of Search-Based Approaches

Studies Performed

Study 1: Raising Divide-by-Zero Exception

Study 2: Exposing Interference Bugs

Threats to Validity

Conclusion

Future Work

Summary

Context and Motivation (5/5)

- Use of search-based approaches in multi-threaded systems for exposing interference bugs have been limited
- Previous approaches [1] required lot of effort to expose interference bugs and did not mitigate non-determinism factor of the environment

Need to reduce the effort for finding interference bugs and mitigate the non-determinism of the multi-threaded environment

Neelesh Bhattacharya

Context and Motivation

Thesis

Major challenges of Search-Based Approaches

Studies Performed

Study 1: Raising Divide-by-Zero Exception

Study 2: Exposing Interference Bugs

Threats to Validity

Conclusion

Future Work

Summary

Thesis

Thesis Statement

Search-based techniques can be used effectively to generate test data to expose interference condition in multi-threaded systems

> Neelesh Bhattacharya

Context and Motivation

Thesis

Major challenges of Search-Based Approaches

Studies Performed

Study 1: Raising Divide-by-Zero Exception

Study 2: Exposing Interference Bugs

Threats to Validity

Conclusior

Future Work

Summary

Major challenges of Search-Based Approaches

From the literature study of search-based approaches we found three major challenges:

- C1: Formulating the original problem as a search problem (R. Saravanan et Vijayakumar (2003))
- C2: Developing the right fitness function for the problem formulation (Lim et al. (2006))
 - C3: Finding the right (scalable) search-based approach using scalability analysis (Fang et al. (2002))

> Neelesh Bhattacharya

Context and Motivation

Thesis

Major challenges of Search-Basec Approaches

Studies Performed

Study 1: Raising Divide-by-Zero Exception

Study 2: Exposing Interference Bugs

Threats to Validity

Conclusion

Future Work

Summary

Studies Performed (1/4)

- Use of search-based approaches for single-threaded systems have been extensive
- The use have been limited for multi-threaded systems

Summary

> Neelesh Bhattacharya

Context and Motivation

Thesis

Major challenges of Search-Based Approaches

Studies Performed

Study 1: Raising Divide-by-Zero Exception

Study 2: Exposing Interference Bugs

Threats to Validity

Conclusion

Future Work

Summary

Studies Performed (3/4)

- We perform a preliminary study on single-threaded software systems to learn more about the challenges
- Study 1: Exposing divide-by-zero exceptions in single-threaded systems while addressing C1, C2 and C3

> Neelesh Bhattacharya

Context and Motivation

Thesis

Major challenges of Search-Based Approaches

Studies Performed

Study 1: Raising Divide-by-Zero Exception

Study 2: Exposing Interference Bugs

Threats to Validity

Conclusion

Future Work

Summary

Studies Performed (4/4)

- We apply our knowledge for study 1 into the major study with multi-threaded systems
- Study 2: Exposing interference bugs in multi-threaded systems while addressing C1, C2 and C3

> Neelesh Bhattacharya

Context and Motivation

Thesis

Major challenges of Search-Based Approaches

Studies Performed

Study 1: Raising Divide-by-Zero Exception

Study 2: Exposing Interference Bugs

Threats to Validity

Conclusior

Future Worl

Summary

Study 1: Raising Divide-by-Zero Exception

Test Data Generation for Exposing Interference Bugs in Multi-Threaded Systems	Motivation
Neelesh Bhattacharya	
Context and Motivation	
Thesis	
Major challenges of Search-Based Approaches	
Studies Performed	
Study 1: Raising Divide-by-Zero Exception	
Study 2: Exposing Interference Bugs	
Threats to Validity	
Future Work	

1

3

4 5

6

int z, x; 2 if (x<10)

else

if (x>3)

x = 4;

x = 1/(z-1);

Test Data
Generation for
Exposing
Interference Bugs
in Multi-Threaded
Systems

Neelesh Bhattacharya

Context and Motivation

Thesis

Major challenges of Search-Based Approaches

Studies Performed

Study 1: Raising Divide-by-Zero Exception

Study 2: Exposing Interference Bugs

Threats to Validity

Conclusion

Future Work

Summary

Motivation

1 int z, x; 2 if (x<10) If x = 5, z = 13 if (x>3)4 x = 1/(z-1);5 else 6 x = 4;

Test Data Generation for Exposing Interference Bugs in Multi-Threaded Systems	Motivation
Neelesh Bhattacharya	
Context and Motivation	
Thesis	
Major challenges of Search-Based Approaches	
Studies Performed	
Study 1: Raising Divide-by-Zero Exception	
Study 2: Exposing Interference Bugs	
Threats to Validity	
Future Work	
Summary	

1

3 4

 $\mathbf{5}$

6

int z, x; 2 if (x<10)

else

if (x>3)

x = 4;

Exception Raised, Program Failure

x = 1/(z-1);

> Neelesh Bhattacharya

Context and Motivation

Thesis

Major challenges of Search-Based Approaches

Studies Performed

Study 1: Raising Divide-by-Zero Exception

Study 2: Exposing Interference Bugs

Threats to Validity

Conclusion

Future Work

Summary

Related Work (1/3)

- Miller and Spooner (1976) introduced local search to generate input data to cover specific paths
- Baresel (2000) proposed the concept of approach level to enrich fitness functions
- Xanthakis et al. (1992) were the first to use Genetic Algorithm for test data generation for branch coverage

> Neelesh Bhattacharya

Context and Motivation

Thesis

Major challenges of Search-Basec Approaches

Studies Performed

Study 1: Raising Divide-by-Zero Exception

Study 2: Exposing Interference Bugs

Threats to Validity

Conclusion

Future Work

Summary

Related Work (2/3)

- Jones et al. (1976) used evolutionary based software testing approaches like genetic algorithm to generate test data automatically
- Mcminn (2004) presented a survey of evolutionary and other related techniques, emphasizing on their pros and cons
- Tracey et al. (2000) proposed an approach to automatically generate test data for raising divide-by-zero exceptions

> Neelesh Bhattacharya

> > +

Context and Motivation

Thesis

Major challenges of Search-Based Approaches

Studies Performed

Study 1: Raising Divide-by-Zero Exception

Study 2: Exposing Interference Bugs

Threats to Validity

Conclusior

Future Work

Summary

Related Work (3/3)

Study 1 stems from the work of Tracey et al. (2000) on test data generation for raising divide-by-zero exceptions

- C1: They formulated branch coverage problem as a search problem
- C2: They proposed a fitness function which was not well guided and behaved like random search
- C3: They did not provide a scalability analysis of the search-based approaches

> Neelesh Bhattacharya

Context and Motivation

Thesis

Major challenges of Search-Based Approaches

Studies Performed

Study 1: Raising Divide-by-Zero Exception

Study 2: Exposing Interference Bugs

Threats to Validity

Conclusion

Future Work

Summary

Problem Statement

Raising divide-by-zero exceptions for Programs Under Test (PUTs), using a set of optimization algorithms to overcome the previous limitations

Test Data
Generation for
Exposing
Interference Bugs
in Multi-Threaded
Systems

Neelesh Bhattacharya

1

2

3

4

5

Context and Motivation

Thesis

Major challenges of Search-Based Approaches

Studies Performed

Study 1: Raising Divide-by-Zero Exception

Study 2: Exposing Interference Bugs

Threats to Validity

Conclusior

Future Work

Summary

int z, x=4; if (Z>1 AND Z<=5) return z; else return (x*4)/(z-1);

C1: Reformulating the Problem (1/2)

Neelesh Bhattacharva

1

2

3

4

5.1

5.2

5.3

5.4

Study 1: Raising Divide-by-Zero Exception

C1: Reformulating the Problem (2/2)

int z, x=4; if (Z>1 AND Z<=5)return z; else if (Z == 1)print "Exception raised"; else return $(x^{4})/(z-1)$;

> Neelesh Bhattacharya

Context and Motivation

Thesis

Major challenges of Search-Based Approaches

Studies Performed

Study 1: Raising Divide-by-Zero Exception

Study 2: Exposing Interference Bugs

Threats to Validity

Conclusior

Future Work

Summary

C2: Reformulating the Fitness Function (1/2)

> Neelesh Bhattacharya

Context and Motivation

Thesis

Major challenges of Search-Basec Approaches

Studies Performed

Study 1: Raising Divide-by-Zero Exception

Study 2: Exposing Interference Bugs

Threats to Validity

Conclusior

Future Work

Summary

C2: Reformulating the Fitness Function (1/2)

Tracey Fitness Function = Branch Distance

> Neelesh Bhattacharya

Context and Motivation

Thesis

Major challenges of Search-Basec Approaches

Studies Performed

Study 1: Raising Divide-by-Zero Exception

Study 2: Exposing Interference Bugs

Threats to Validity

Conclusior

Future Work

Summary

C2: Reformulating the Fitness Function (1/2)

Tracey Fitness Function = Branch Distance

> Neelesh Bhattacharya

Context and Motivation

Thesis

Major challenges of Search-Basec Approaches

Studies Performed

Study 1: Raising Divide-by-Zero Exception

Study 2: Exposing Interference Bugs

Threats to Validity

Conclusior

Future Work

Summary

C2: Reformulating the Fitness Function (2/2)

CFG Node void example(int a, int b, int c, int d) (s) (1)if $(a \ge b)$ (2)if (b <= c) £ (3)if (c == d) 11 T false true if a >= b TARGET MISSED Approach Level = 2 Branch Distance = norm(b-a) true false if b <= c TARGET MISSED Approach Level = 1 true Branch Distance = norm(b - c)false if c == d TARGET MISSED Approach Level = 0 Т Branch Distance = norm(abs(c- d))

> Neelesh Bhattacharya

Context and Motivation

Thesis

Major challenges of Search-Basec Approaches

Studies Performed

Study 1: Raising Divide-by-Zero Exception

Study 2: Exposing Interference Bugs

Threats to Validity

Conclusior

Future Work

Summary

C2: Reformulating the Fitness Function (2/2)

-branch distance Fitness Function = Approach Level + (1 - 1.001

> Neelesh Bhattacharya

Context and Motivation

Thesis

Major challenges of Search-Basec Approaches

Studies Performed

Study 1: Raising Divide-by-Zero Exception

Study 2: Exposing Interference Bugs

Threats to Validity

Conclusior

Future Work

Summary

C2: Reformulating the Fitness Function (2/2)

-branch distance Fitness Function = Approach Level + (1 - 1.001

Neelesh Bhattacharya

Context and Motivation

Thesis

Major challenges of Search-Based Approaches

Studies Performed

Study 1: Raising Divide-by-Zero Exception

Study 2: Exposing Interference Bugs

Threats to Validity

Conclusion

Future Work

Summary

C3: Scalability Analysis

Neelesh Bhattacharya

Context and Motivation

Thesis

Major challenges of Search-Based Approaches

Studies Performed

Study 1: Raising Divide-by-Zero Exception

Study 2: Exposing Interference Bugs

Threats to Validity

Conclusion

Future Work

Summary

C3: Scalability Analysis

31 / 73

Summary

> Neelesh Bhattacharya

Context and Motivation

Thesis

Major challenges of Search-Based Approaches

Studies Performed

Study 1: Raising Divide-by-Zero Exception

Study 2: Exposing Interference Bugs

Threats to Validity

Conclusior

Future Work

Summary

Research Questions

Which of Tracey's fitness function and our fitness function is more effective in raising divide-by-zero exception?

- **RQ1**: Which is the best hill climbing variant?
- RQ2: Which is the most effective divide-by-zero exception raising technique?
- RQ3: Which of Tracey's fitness function and our fitness function is more efficient?
- RQ4: Which among CP and metaheuristics is better for divide-by-zero exception raising?

> Neelesh Bhattacharya

Context and Motivation

Thesis

Major challenges of Search-Based Approaches

Studies Performed

Study 1: Raising Divide-by-Zero Exception

Study 2: Exposing Interference Bugs

Threats to Validity

Conclusion

Future Work

Summary

Systems Studied

- Tracey exemplary code
- GridCanvas Class from Eclipse 2.0.1
- ProcessStats Class from Android 2.0

> Neelesh Bhattacharya

Context and Motivation

Thesis

Major challenges of Search-Based Approaches

Studies Performed

Study 1: Raising Divide-by-Zero Exception

Study 2: Exposing Interference Bugs

Threats to Validity

Conclusion

Future Work

Summary

HC3 best HC variant, GA best approach (Tracey Code)

Fitness Evaluations

RQ1 and RQ2

> Neelesh Bhattacharya

Context and Motivation

Thesis

Major challenges of Search-Based Approaches

Studies Performed

Study 1: Raising Divide-by-Zero Exception

Study 2: Exposing Interference Bugs

Threats to Validity

Conclusion

Future Work

Summary

HC3 best HC variant, GA best approach (Eclipse UUT)

30000 HC1 HC2 25000 HC3 SA GA GA 20000 15000 10000 2000 Ē HC1 HC2 HC3 SA GA

Fitness Evaluations

RQ1 and RQ2
> Neelesh Bhattacharya

Context and Motivation

Thesis

Major challenges of Search-Based Approaches

Studies Performed

Study 1: Raising Divide-by-Zero Exception

Study 2: Exposing Interference Bugs

Threats to Validity

Conclusion

Future Work

Summary

HC3 best HC variant, GA best approach (Android UUT)

Fitness Evaluations

RQ1 and RQ2

Neelesh Bhattacharya

Context and Motivation

Thesis

Major challenges of Search-Based Approaches

Studies Performed

Study 1: Raising Divide-by-Zero Exception

Study 2: Exposing Interference Bugs

Threats to Validity

Conclusion

Future Work

Summary

Proposed Fitness function performs better

GA: Original Tracey Fitness Versus new Fitness

RQ3

> Neelesh Bhattacharya

Context and Motivation

Thesis

Major challenges of Search-Based Approaches

Studies Performed

Study 1: Raising Divide-by-Zero Exception

Study 2: Exposing Interference Bugs

Threats to Validity

Conclusion

Future Work

Summary

Results are statistically significant (Tracey Code)

Comparisons	n voluos	Cohon divalues	
Compansons	p-values	Conen a values	
HC1-HC2	9.261e-10	2.55246	
HC1-HC3	6.376e-16	5.951003	
HC2-HC3	6.868e-08	2.428475	
HC3-SA	7.049e-14	4.147889	
HC3-GA	2.2e-16	8.223645	
SA-GA	8.763e-15	6.254793	

> Neelesh Bhattacharya

Context and Motivation

Thesis

Major challenges of Search-Based Approaches

Studies Performed

Study 1: Raising Divide-by-Zero Exception

Study 2: Exposing Interference Bugs

Threats to Validity

Conclusion

Future Work

Summary

Results are statistically significant (Eclipse UUT)

Comparisons	<i>p</i> -values	Cohen <i>d</i> values	
HC1-HC2	3.245e-10	2.682195	
HC1-HC3	7.167e-13	4.111778	
HC2-HC3	0.003998	0.9912142	
HC3-SA	2.387e-11	3.239916	
HC3-GA	1.933e-13	5.258295	
SA-GA	9.989e-09	2.694495	

> Neelesh Bhattacharya

Context and Motivation

Thesis

Major challenges of Search-Based Approaches

Studies Performed

Study 1: Raising Divide-by-Zero Exception

Study 2: Exposing Interference Bugs

Threats to Validity

Conclusion

Future Work

Summary

Results are statistically significant (Android UUT)

Comparisons	<i>p</i> -values	Cohen <i>d</i> values	
HC1-HC2	1.438e-06	1.894204	
HC1-HC3	2.981e-12	3.345377	
HC2-HC3	7.438e-08	2.12037	
HC3-SA	0.0003169	1.266088	
HC3-GA	1.283e-10	3.481401	
SA-GA	4.531e-09	2.696728	

> Neelesh Bhattacharya

Context and Motivation

Thesis

Major challenges of Search-Based Approaches

Studies Performed

Study 1: Raising Divide-by-Zero Exception

Study 2: Exposing Interference Bugs

Threats to Validity

Conclusion

Future Work

Summary

Execution Time: CP is superior

	Tracey Exemplary Code	Eclipse	Android	
GA	8.067/1.439	2.129/1.149	1.926/1.177	
CP	1.035/0.0135	0.01/0	0.01/0	

RQ4

> Neelesh Bhattacharya

Context and Motivation

Thesis

Major challenges of Search-Based Approaches

Studies Performed

Study 1: Raising Divide-by-Zero Exception

Study 2: Exposing Interference Bugs

Threats to Validity

Conclusion

Future Work

Summary

Results are statistically significant

Comparisons	<i>p</i> -values	Cohen d values	
HC1-HC2	1.438e-06	1.894204	
HC1-HC3	2.981e-12	3.345377	
HC2-HC3	7.438e-08	2.12037	
HC3-SA	0.0003169	1.266088	
HC3-GA	1.283e-10	3.481401	
SA-GA	4.531e-09	2.696728	

> Neelesh Bhattacharya

Context and Motivation

Thesis

Major challenges of Search-Based Approaches

Studies Performed

Study 1: Raising Divide-by-Zero Exception

Study 2: Exposing Interference Bugs

Threats to Validity

Conclusion

Future Work

Summary

Contributions

- C1: Reformulate existing divide-by-zero exception problem as branch coverage problem
 - C2: Reformulate the fitness function to the branch coverage problem
- C3: Analyse the scalability of HC, SA, GA, RND and compare them to CP

Neelesh Bhattacharya

Context and Motivation

Thesis

Major challenges of Search-Based Approaches

Studies Performed

Study 1: Raising Divide-by-Zero Exception

Study 2: Exposing Interference Bugs

Threats to Validity

Conclusior

Future Work

Summary

Study 2: Exposing Interference Bugs

45 / 73

> Neelesh Bhattacharya

Context and Motivation

Thesis

Major challenges of Search-Basec Approaches

Studies Performed

Study 1: Raising Divide-by-Zero Exception

Study 2: Exposing Interference Bugs

Threats to Validity

Conclusion

Future Work

Summary

Motivation

Interference Bugs

> Neelesh Bhattacharya

Context and Motivation

Thesis

Major challenges of Search-Based Approaches

Studies Performed

Study 1: Raising Divide-by-Zero Exception

Study 2: Exposing Interference Bugs

Threats to Validity

Conclusior

Future Work

Summary

Related Work (1/3)

- Artho et al. (2003) provided a higher abstraction level for data races to detect inconsistent uses of shared variables
- Hovemeyer and Pugh (2004) used bug pattern detectors to find correctness and performance-related bugs in several Java programs
- Bradbury et al. (2006) proposed a set of mutation operators for concurrency programs used to mutate the portions of code

> Neelesh Bhattacharya

Context and Motivation

Thesis

Major challenges of Search-Based Approaches

Studies Performed

Study 1: Raising Divide-by-Zero Exception

Study 2: Exposing Interference Bugs

Threats to Validity

Conclusior

Future Work

Summary

Related Work (2/3)

- Lei et Carver (2006) used reachability testing to generate synchronization sequences automatically and on-the-fly
- ConTest (Edelstein et al. (2003)), a lightweight testing tool used various heuristics to create scheduling variance in multi-threaded systems
- CHESS (Mutuvasi et al. (2007)), a concurrent systems testing tool tries all the possible schedules to find a bug

> Neelesh Bhattacharya

> > +

Context and Motivation

Thesis

Major challenges of Search-Basec Approaches

Studies Performed

Study 1: Raising Divide-by-Zero Exception

Study 2: Exposing Interference Bugs

Threats to Validity

Conclusior

Future Work

Summary

Related Work (3/3)

Previous approaches found interference bugs by testing all possible schedules

Do not mitigate the non-determinism of the multi-threaded environment

 Requires lot of effort (time and testing resources) to find a bug

> Neelesh Bhattacharya

Context and Motivation

Thesis

Major challenges of Search-Based Approaches

Studies Performed

Study 1: Raising Divide-by-Zero Exception

Study 2: Exposing Interference Bugs

Threats to Validity

Conclusior

Future Work

Summary

Problem Statement

Expose interference bug pattern for Programs Under Test (PUTs), using a set of optimization algorithms to mitigate the limitations

> Neelesh Bhattacharya

Context and Motivation

Thesis

Major challenges of Search-Based Approaches

Studies Performed

Study 1: Raising Divide-by-Zero Exception

Study 2: Exposing Interference Bugs

Threats to Validity

Conclusior

Future Work

Summary

C1: Reformulating the Problem (2/2)

Single delay injected

Neelesh Bhattacharya

Context and Motivation

Thesis

Major challenges of Search-Based Approaches

Studies Performed

Study 1: Raising Divide-by-Zero Exception

Study 2: Exposing Interference Bugs

Threats to Validity

Conclusion

Future Work

Summary

C2: Reformulating the Fitness Function (1/2)

> Neelesh Bhattacharya

Context and Motivation

Thesis

Major challenge of Search-Based Approaches

Studies Performed

Study 1: Raising Divide-by-Zero Exception

Study 2: Exposing Interference Bugs

Threats to Validity

Conclusion

Future Work

Summary

C2: Reformulating the Fitness Function (2/2)

53 / 73

> Neelesh Bhattacharya

Context and Motivation

1110313

of Search-Base Approaches

Studies Performed

Study 1: Raising Divide-by-Zero Exception

Study 2: Exposing Interference Bugs

Threats to Validity

Conclusion

Future Work

Summary

C3: Scalability Analysis

0s

_1s

> Neelesh Bhattacharya

Context and Motivation

Major challeng of Search-Bas

Studies Performed

Study 1: Raising Divide-by-Zero Exception

Study 2: Exposing Interference Bugs

Threats to Validity

Conclusion

Future Work

Summary

C3: Scalability Analysis

0s 1s

0s

1Mms

Test Data Generation for Exposing Interference Bugs in Multi-Threaded Systems	C3: Scalability Analysis	
Neelesh Bhattacharya		
Context and Motivation		
Thesis		
Major challenges of Search-Based Approaches	0s 1s	
Studies Performed		
Study 1: Raising Divide-by-Zero Exception	US 1NIMS	
Study 2: Exposing Interference Bugs	00	
Threats to Validity	10000	;
Future Work		
Summary		

> Neelesh Bhattacharya

Context and Motivation

Thesis

Major challenges of Search-Based Approaches

Studies Performed

Study 1: Raising Divide-by-Zero Exception

Study 2: Exposing Interference Bugs

Threats to Validity

Conclusior

Future Work

Summary

How to maximize interference probability between threads?

How the search space dimension impacts the search algorithm performance?

Research Questions

> Neelesh Bhattacharva

Study 2: Exposing Interference Bugs

ReSP: The Virtual Platform

No effect of the OS

- No delay in the hardware
- No cache effects

Thus our focus is only on the bug inherent in the code

> Neelesh Bhattacharya

Context and Motivation

Thesis

Major challenges of Search-Based Approaches

Studies Performed

Study 1: Raising Divide-by-Zero Exception

Study 2: Exposing Interference Bugs

Threats to Validity

Conclusior

Future Work

Summary

Systems Studied

- Matrix Multiplication (MM)
- Count Shared Data (CSD)
- Average of Numbers (AvN)
- Area of Circle (AC)
 - CFFT
- CFFT6
- ► FFMPEG

> Neelesh Bhattacharya

Context and Motivation

Thesis

Major challenges of Search-Based Approaches

Studies Performed

Study 1: Raising Divide-by-Zero Exception

Study 2: Exposing Interference Bugs

Threats to Validity

Conclusior

Future Work

Summary

SA, SHC outperforms RND

Search space upto 10Mms delay (RQ1)

> Neelesh Bhattacharya

Context and Motivation

Thesis

Major challenges of Search-Based Approaches

Studies Performed

Study 1: Raising Divide-by-Zero Exception

Study 2: Exposing Interference Bugs

Threats to Validity

Conclusion

Future Work

Summary

SA, SHC outperforms RND

Search space upto 1Mms delay (RQ2)

> Neelesh Bhattacharya

Context and Motivation

Thesis

Major challenges of Search-Based Approaches

Studies Performed

Study 1: Raising Divide-by-Zero Exception

Study 2: Exposing Interference Bugs

Threats to Validity

Conclusion

Future Work

Summary

SA, SHC outperforms RND

Search space upto 10s delay (RQ2)

> Neelesh Bhattacharya

Context and Motivation

Thesis

Major challenges of Search-Based Approaches

Studies Performed

Study 1: Raising Divide-by-Zero Exception

Study 2: Exposing Interference Bugs

Threats to Validity

Conclusion

Future Work

Summary

SA, SHC outperforms RND

Search space upto 1s delay (RQ2)

> Neelesh Bhattacharya

Context and Motivation

Thesis

Major challenges of Search-Based Approaches

Studies Performed

Study 1: Raisin Divide-by-Zero Exception

Study 2: Exposing Interference Bugs

Threats to Validity

Conclusion

Future Work

Summary

Execution Time: SA, SHC outperforms RND

Execution Times for Real-World Applications in ms

	CFFT		CFFT6		FFMPEG	
	1 ×10 ⁶	1×10 ⁷	1×10 ⁶	1×10 ⁷	1×10 ⁶	1×10 ⁷
SA	3118	5224	27443	2041	1562	4672
HC	3578	4976	27328	21943	1378	5100
RND	113521	107586	342523	339951	59599	133345

> Neelesh Bhattacharya

Context and Motivation

Thesis

Major challenges of Search-Based Approaches

Studies Performed

Study 1: Raising Divide-by-Zero Exception

Study 2: Exposing Interference Bugs

Threats to Validity

Conclusion

Future Work

Summary

Contributions

- C1: Formulate the interference bugs exposing problem as a delay-injection search problem
- C2: Develop a novel fitness function based on the problem formulation
- C3: Analyse the scalability of SHC, SA and RND
- Use ReSP for having deterministic environment

> Neelesh Bhattacharya

Context and Motivation

Thesis

Major challenges of Search-Based Approaches

Studies Performed

Study 1: Raising Divide-by-Zero Exception

Study 2: Exposing Interference Bugs

Threats to Validity

Conclusion

Future Work

Summary

Threats to Validity (1/2)

Study 1

- Construct Validity: One of the studied systems was a synthetic one
- Internal Validity: We limited the bias of intrinsic randomness of our results by repeating each experiment 20 times
- Conclusion Validity: We inspected box-plots, performed t-tests, and evaluated the Cohen d effect sizes
- External Validity: Evaluation was conducted on 3 systems, larger evaluation is desirable

> Neelesh Bhattacharya

Context and Motivation

Thesis

Major challenges of Search-Basec Approaches

Studies Performed

Study 1: Raising Divide-by-Zero Exception

Study 2: Exposing Interference Bugs

Threats to Validity

Conclusion

Future Work

Summary

Threats to Validity (2/2)

Study 2

- Construct Validity: Four of the studied systems were synthetic ones
- Internal Validity: Three of the four synthetic systems were developed long before the analysis, thus are unbiased
- External Validity: Evaluation was conducted on 7 systems, larger evaluation is desirable

> Neelesh Bhattacharya

Context and Motivation

Thesis

Major challenges of Search-Based Approaches

Studies Performed

Study 1: Raising Divide-by-Zero Exception

Study 2: Exposing Interference Bugs

Threats to Validity

Conclusion

Future Work

Summary

Conclusion (1/3)

- We propose an approach to see the effectiveness of search-based approaches in exposing interference bugs
- We found three challenges C1, C2 and C3 of using search based approaches from related work
- Search based approaches have been used extensively in single-threaded systems, unlike multi-threaded systems

> Neelesh Bhattacharya

Context and Motivation

Thesis

Major challenges of Search-Based Approaches

Studies Performed

Study 1: Raising Divide-by-Zero Exception

Study 2: Exposing Interference Bugs

Threats to Validity

Conclusion

Future Work

Summary

Conclusion (2/3)

- We use the knowledge of search based approach use in single-threaded systems to be applied in multi-threaded systems
- We conduct a empirical study to see the effect of using search based approaches in single-threaded software systems for raising divide-by-zero exception

> Neelesh Bhattacharya

Context and Motivation

Thesis

Major challenges of Search-Based Approaches

Studies Performed

Study 1: Raising Divide-by-Zero Exception

Study 2: Exposing Interference Bugs

Threats to Validity

Conclusion

Future Work

Summary

Conclusion (3/3)

- Using the knowledge of study 1, we conduct our major study of using search based approaches for exposing interference bugs, in the context of C1, C2 and C3
- From both the studies involving ten systems, we find that search based approaches can be effectively used to expose interference bugs in multi-threaded systems

> Neelesh Bhattacharya

Context and Motivation

Thesis

Major challenges of Search-Basec Approaches

Studies Performed

Study 1: Raising Divide-by-Zero Exception

Study 2: Exposing Interference Bugs

Threats to Validity

Conclusion

Future Work

Summary

Future Work (1/2)

Study 1

- We would generalize our study by validating our approach with more real-world systems which are very complex
- We would extend our approach to other kinds of exceptions like null-pointer and buffer overflow
- We would raising exceptions with codes having complex data structures

> Neelesh Bhattacharya

Context and Motivation

Thesis

Major challenges of Search-Based Approaches

Studies Performed

Study 1: Raising Divide-by-Zero Exception

Study 2: Exposing Interference Bugs

Threats to Validity

Conclusion

Future Work

Summary

Future Work (2/2)

Study 2

- We would validate our approach by running the systems on real hardware platform in presence of non-deterministic environment
- We would generalize our approach further by using more real-world, complex systems as case study
- We would propose extensions to our approach for exposing other bug patterns like deadlock
Test Data Generation for Exposing Interference Bugs in Multi-Threaded Systems

> Neelesh Bhattacharya

Context and Motivation

Thesis

Major challenges of Search-Based Approaches

Studies Performed

Study 1: Raising Divide-by-Zero Exception

Study 2: Exposing Interference Bugs

Threats to Validity

Conclusior

Future Work

Summary

73/73

Summary

Thesis

Search-based techniques can be effective in exposing interference bugs

Contributions

Study 1

- C1: Reformulate divide-by-zero exception problem
- C2: Reformulate fitness function accordingly
- C3: Analyse the scalability of HC, SA, GA, RND, CP

Study 2

- C1: Formulate the interference bugs exposing problem
- C2: Develop a novel fitness function accordingly
- C3: Analyse the scalability of SHC, SA and RND
- Use ReSP to have deterministic environment