Test Data
Generation for
Exposing
Interference Bugs
in Multi-Threaded
Systems

Neelesh
Bhattacharya

}

=
5

'C_)x
Z
3

ECOLE
ECHNIQUE
NTREAI

P
M

2

Test Data Generation for Exposing
Interference Bugs in Multi-Threaded
Systems

Neelesh Bhattacharya

Supervisors: Giuliano Antoniol and Yann-Gaél Guéhéneuc

] SOCCER Lab and Ptidej Team, DGIGL
Ecole Polytechnique de Montréal, Québec, Canada

Thesis Presentation - December 10th, 2012

P) tidei ﬁ' @ Pattern Trace Identifigation, Detection, and Enhancement in Java
< SOEEETLAS SOftware Cost-effective Change and Evolution Research Lab

Test Data H
Generation for OUtllne
Exposing
Interference Bugs
in Multi-Threaded

SREES Context and Motivation

satecna Thesis
Major challenges of Search-Based Approaches
Studies Performed
Study 1: Raising Divide-by-Zero Exception
Study 2: Exposing Interference Bugs
Threats to Validity
Conclusion
Future Work

Summary

2/73

s Gontext and Motivation (1/5)

Exposing
Interference Bugs
in Multi-Threaded

Systems
Neelesh
Bhattacharya
Context and | Master |
Motivation

—

/73

Iml I Slave 2 |

I Slave 3 |

K—

—
c—
—>

Multi-Threading

k—
—>

cmaz Context and Motivation (2/5)

Exposing
Interference Bugs
in Multi-Threaded

Systems
Neelesh
Bhattacharya
| Master | | Slave 1 | I Slave 2 | I Slave 3 |
Context and fy \WRITE
Motivation

Two threads writing |é—— READ
at the same time,

possible interference

E— READ

|y — — — [—>WRITE

WRITE [— ReaD

f—> WRITE

[6é—rEAD

Interference Bugs

4 /73

Test Data
Generation for
Exposing
Interference Bugs
in Multi-Threaded
Systems

Neelesh
Bhattacharya

Context and
Motivation

5/73

Context and Motivation (3/5)

Test data generation is a solution to expose the
data-race and interference bugs

INPUT

Environment

SUT

_—7

Slight Environment
variation can lead to
erroneous output

OUTPUT

Non-Deterministic Multi-threaded Environment

Test Data
Generation for
Exposing
Interference Bugs
in Multi-Threaded
Systems

Neelesh
Bhattacharya

Context and
Motivation

6/73

Context and Motivation (4/5)

Search-based approaches have been used to
generate test data over the years

0

]

TEST INPUT DATA 2

Intelligent Test Data Reduction
using Search-Based Approaches

o

)

Selected Test Data

@ e

Test Data
Generation for
Exposing
Interference Bugs
in Multi-Threaded
Systems

Neelesh
Bhattacharya

Context and
Motivation

7/73

Context and Motivation (5/5)

Use of search-based approaches in multi-threaded
systems for exposing interference bugs have been
limited

Previous approaches [1] required lot of effort to
expose interference bugs and did not mitigate
non-determinism factor of the environment

Need to reduce the effort for finding interference bugs
and mitigate the non-determinism of the multi-threaded
environment

Test Data
Generation for
Exposing
Interference Bugs
in Multi-Threaded
Systems

Neelesh
Bhattacharya

Thesis

8/73

Thesis

Thesis Statement

Search-based techniques can be used effectively to
generate test data to expose interference condition in
multi-threaded systems

s Major challenges of Search-Based
Exposing

Interference Bugs Appro aCh es

in Multi-Threaded

Systems
Neelesh
Bhattacharya
From the literature study of search-based approaches we
found three major challenges:
Major challenges C1: Formulating the original problem as a search
Approaches problem (R. Saravanan et Vijayakumar (2003))

C2: Developing the right fitness function for the
problem formulation (Lim et al. (2006))

C3: Finding the right (scalable) search-based
approach using scalability analysis (Fang et al.
(2002))

q9/73

Test Data
Generation for
Exposing
Interference Bugs
in Multi-Threaded
Systems

Neelesh
Bhattacharya

Studies Performed

10/ 73

Studies Performed (1/4)

Use of search-based approaches for single-threaded
systems have been extensive

The use have been limited for multi-threaded
systems

ez Studies Performed (2/4)

Exposing
Interference Bugs
in Multi-Threaded

Systems

Neelesh
Bhattacharya

K of h
Approach use in Muli-Thre
Systems

Studies Performed

d App! h use
in Single fhreade}l Softwaye Systems

11 /73

Test Data
Generation for
Exposing
Interference Bugs
in Multi-Threaded
Systems

Neelesh
Bhattacharya

Studies Performed

12 /73

Studies Performed (3/4)

We perform a preliminary study on single-threaded
software systems to learn more about the challenges

Study 1: Exposing divide-by-zero exceptions in
single-threaded systems while addressing C1, C2
and C3

e Studies Performed (4/4)

Exposing
Interference Bugs ‘
in Multi-Threaded |
Systems
Neelesh) AL g T .
Bhattacharya @ Jt.
il
Knuwl@% "fsea”:lh.'h d Knowlgude or Search-hased
?hpr':;;:d Q{ssz:‘;“u - ‘ approfch uﬁ in single-threaded
softwlare ms
| I
L ab] élﬁ
o Q‘

Studies Performed __‘%;

We apply our knowledge for study 1 into the major
study with multi-threaded systems

Study 2: Exposing interference bugs in
multi-threaded systems while addressing C1, C2 and
C3

13 /73

Test Data
Generation for
Exposing
Interference Bugs
in Multi-Threaded
Systems

Neelesh
Bhattacharya

Study 1: Raising
Divide-by-Zero
Exception

14 /73

Study 1: Raising Divide-by-Zero Exception

Test Data H H
Generation for M Ot | Vat | O n
Exposing
Interference Bugs
in Multi-Threaded
Systems

Neelesh
Bhattacharya

Study 1: Raising
Divide-by-Zero
Exception

15/ 73

= L2

[nkg 4

mnt 7, x;

if (x<10)

else

if (x>3)
p
x = 4;

Test Data H H
Generation for M Ot | Vat | O n
Exposing
Interference Bugs
in Multi-Threaded
Systems

Neelesh
Bhattacharya

I itz x
2 if(x<10) [fx=5,z=1]
3 if (x>3)
4 x = 1/(z1);
Divide by Zor0 5 else
Exception G . — -1:

16/ 73

Test Data H H
Generation for M Ot | Vat | O n
Exposing
Interference Bugs
in Multi-Threaded

Systems
Neelesh
Bhattacharya
1 mt 7, x;
2 if (x<10)
3 if (x>3)
4
=4 N
Study 1: Raising o l.'f]E-:l.'!
Divide-by-Zero
Exception 6 X = —.1:,

Exception Raised, Program Failure

17 /73

Test Data
Generation for
Exposing

Interference Bugs
in Multi-Threaded

Systems

Neelesh
Bhattacharya

Study 1: Raising
Divide-by-Zero
Exception

18 /73

Related Work (1/3)

Miller and Spooner (1976) introduced local search to
generate input data to cover specific paths

Baresel (2000) proposed the concept of approach
level to enrich fithess functions

Xanthakis et al. (1992) were the first to use Genetic
Algorithm for test data generation for branch
coverage

s Related Work (2/3)

Exposing
Interference Bugs
in Multi-Threaded

Systems

Neelesh
Bhattacharya

Jones et al. (1976) used evolutionary based software
testing approaches like genetic algorithm to generate
test data automatically

Mcminn (2004) presented a survey of evolutionary
and other related techniques, emphasizing on their

Study 1: Raising pros and cons

Evcopton Tracey et al. (2000) proposed an approach to
automatically generate test data for raising

divide-by-zero exceptions

19 /73

Test Data
Generation for
Exposing

Interference Bugs
in Multi-Threaded

Systems

Neelesh
Bhattacharya

Study 1: Raising
Divide-by-Zero
Exception

20/ 73

Related Work (3/3)

Study 1 stems from the work of Tracey et al. (2000) on
test data generation for raising divide-by-zero exceptions

+

C1: They formulated branch coverage problem as a
search problem

C2: They proposed a fitness function which was not
well guided and behaved like random search

C3: They did not provide a scalability analysis of the
search-based approaches

b Proplem Statement

Exposing
Interference Bugs
in Multi-Threaded

Systems

Neelesh
Bhattacharya

Raising divide-by-zero exceptions for Programs Under
Test (PUTSs), using a set of optimization algorithms to
overcome the previous limitations

Study 1: Raising

Divide-by-Zero
Exception

21 /73

oot C1: Reformulating the Problem (1/2)

Exposing
Interference Bugs
in Multi-Threaded

Systems

Neelesh
Bhattacharya

1 int z, x=4;
2 if (Z>1 AND Z<=5)
3 return z;
4 else
Study 1: Raising 5 return (x*4)/(z-1);

Divide-by-Zero
Exception

29 /73

o C1: Reformulating the Problem (2/2)
Interlfzégzi:gBugs
in Multi-Threaded

Systems
Neelesh
Bhattacharya
1 int z, x=4;
2 if (Z>1 AND Z<=5)
3 return z;
4 else
5.1 if (Z==1)
Study 1: Raising 52 print “Exception raised”;
[E)ix\,;:;%;zﬂo 53 else
5.4 return (x*4)/(z-1);

23 /73

s G2: Reformulating the Fitness Function (1/2)
Exposing
i Ml Threaded

Systems
Neelesh
Bhattacharya
CFG Node -
(s) void example(int a, int b, int c, int 4)
i
(1) if (a >= b)
1
(2) if (b <= o)
i
(3) if (c == d)
i
T
d
true . false
Study 1: Raising , ifa==b)" rincermssen
Divide—_by-Zero Branch Distance = (b-a) + k
Exception true -..._false
3 f " TARGET MISSED

B h Dist: ={b-c)+k
true fako ranch Distance = {b— c)
“'1 TARGET MISSED

Branch Distance = (abs(c- d))+ k

24 /| 73

s G2: Reformulating the Fitness Function (1/2)
Exposing
i

Systems
Neelesh Tracey Fitness Function = Branch Distance
Bhattacharya
CFG Node -
(s) void example(int a, int b, int c, int 4)
{
(1) if (a >= b)
{
(2) if (b <= @)
i
(3) if (c == d)
{
7
d
true . false
Study 1: Raising , ifa==b)" rincermssen
Divide-_by-Zero Branch Distance = (b-a) + k
Exception true -..._false
3 f " TARGET MISSED

true . take Branch Distance = {b-¢) + k
“'1 TARGET MISSED

Branch Distance = (abs(c- d))+ k

25 /73

s G2: Reformulating the Fitness Function (1/2)

Exposing
Interference Bugs
in Multi-Threaded

Systems
Neelesh Tracey Fitness Function = Branch Distance
Bhattacharya
CFG Node -
(s) void example(int a, imt b, int c, int d)
i - - - - -
) i (2= b Fora=10,b=15¢=20,d=30,k=5
{ . -
) if e o Leaving Branch 1, Fithess = 10
@ t i e — Leaving Branch 2, Fithess =0
1 Leaving Branch 3, Fithess = 15

" T

false
Study 1: Raising " TARGET MISSED
Divide-by-Zero 2

1 Branch Distance = (b-a) + k
Exception true ... false
3/ "‘~‘ TARGET MISSED
Branch Distance = {b—c) + k
true .. false
@ ‘-'n TARGET MISSED

Branch Distance = (abs(c- d))+ k

26/ 73

s G2: Reformulating the Fitness Function (2/2)

Exposing
Interference Bugs
in Multi-Threaded

Systems
Neelesh
Bhattacharya
CFG Node
(s) void example(int a, int b, int c, int d)
(1) if (a >= b)
{
(2) if (b <= ¢)
i
3) if (¢ = d)
i
HrT
PR
true _ false
Study 1: Raisin "« TARGET MISSED
Dividye—by-Zero e 2 Appr.oach Level =2
Exception true . false Branch Distance = norm(b-a)
3 "-,‘ TARGET MISSED

Approach Level = 1
true -.._ false Branch Distance = norm(b - c)
\‘1 TARGET MISSED

Approach Level = 0
Branch Distance = norm(abs(c- d))

27 /73

s G2: Reformulating the Fitness Function (2/2)

Exposing
Interference Bugs
in Multi-Threaded

Systems
. . -branch distance
Neelesh Fithess Function = Approach Level + (1 - 1.001)
Bhattacharya
CFG Node
(s) void example(int a, int b, int c, int d)
(1) if (a > b)
{
(2) if (b <= ©)
{
(3) if (c == d)
{
/T
1 4
true) false
ol "« TARGET MISSED
g?uf;y 1b' Rza's'ng 2 * Approach Level = 2
ivide-by-Zero i =
Exception true . false Branch Distance = norm(b-a)
3 "-‘ TARGET MISSED

Approach Level = 1
true -.._ false Branch Distance = norm(b - c)
“uw TARGET MISSED

Approach Level = 0
Branch Distance = norm{abs(c- d))

28 / 73

Test Data
Generation for
Exposing
Interference Bugs
in Multi-Threaded
Systems

Neelesh
Bhattacharya

Study 1: Raising
Divide-by-Zero
Exception

29 /73

C2: Reformulating the Fitness Function (2/2)

. N -branch distance
Fitness Function = Approach Level + (1 - 1.001]

CFG Node
(s) void example(int a, int b, int c, int d)
(1) if (a >= b) Fora=10,bh=15,¢=20,d=30,k=5
{ . -
(2) if (b <= ¢ Leaving Branch 1, Fithess ~=3
L Leaving Branch 2, Fithess = 1+1=2
(3) if (¢ == d) - .
{ Leaving Branch 3, Fithess~=1
HrT
true fafse
"4 TARGET M\SSED
Approach Level =
”ue Branch Distance = norm(b-a)
"-* TARGET MISSED
Approach Level = 1
true false Branch Distance = norm(b - c)

A “u TARGET MISSED
Approach Level =
Branch Distance = nurm(abs(c— d))

Test Data . HH H
st G3: Scalability Analysis
Exposing
Interference Bugs
in Multi-Threaded
Systems

Neelesh
Bhattacharya

+100

100 =3 +100
Study 1: Raising

Divide-by-Zero
Exception

20/ 73

Test Data
Generation for
Exposing
Interference Bugs
in Multi-Threaded
Systems

Neelesh
Bhattacharya

Study 1: Raising
Divide-by-Zero
Exception

21 /73

+1000

C3: Scalability Analysis

+100

=100 =3 +100

-1000

S, +1000

Test Data . HH H
Generation for CB Scalablllty AnaIYS|S
Exposing
Interference Bugs
in Multi-Threaded

Systems
Neelesh +50000
Bhattacharya
+1000
+100
-100 —> +100
Study 1: Raising
Divide-by-Zero
Exception
-1000) +1000

-50000

29 /73

Sy +50000
7

—=hae Regearch Questions

Exposing
Interference Bugs
in Multi-Threaded

Systems

Neelesh

Bhattacharya Which of Tracey’s fitness function and our fithess
function is more effective in raising divide-by-zero
exception?

RQ1: Which is the best hill climbing variant?
RQ2: Which is the most effective divide-by-zero
exception raising technique?
Dividoby.zZoro” RQ3: Which of Tracey’s fitness function and our
— fitness function is more efficient?
RQ4: Which among CP and metaheuristics is better
for divide-by-zero exception raising?

23 /73

Test Data H
Generation for SystemS StUdled
Exposing
Interference Bugs
in Multi-Threaded
Systems

Neelesh
Bhattacharya

Tracey exemplary code
GridCanvas Class from Eclipse 2.0.1

ProcessStats Class from Android 2.0
Study 1: Raising
Divide-by-Zero
Exception

24 /73

cenmmaner HC3 best HC variant, GA best approach

Interference Bugs (Tracey COde)

in Multi-Threaded

Systems
Neelesh
Bhattacharya
Fitness Evaluations
=
2
S -
2 T O Hcl
- | O Hcz
= | : o HC3
3 o A
H o GA
=
3
g
&
s 1
5]
= |
e L H
= T
- s T H
Study 1: Raising =4 -
Divide-by-Zero - H H
: 2 H
Exception S 4 H
& H
- i ,
2 i 7 .
2 i i T
3 H :
B
T T T T T
HC1 HC2 HC3 5A GA

RQ1 and RQ2

25 /73

cenmmaner HC3 best HC variant, GA best approach

Interference Bugs (ECl IpSG U UT)

in Multi-Threaded

Systems
Neelesh
Bhattacharya
Fitness Evaluations
o
2
= -
= o HCt
O Hez
g O HC3
2 O 34
o o Ga
=
3] .
27 1 H
]
. H
=
2
Study 1: Raising = T .
Divide-by-Zero ER i !
Exception -
= i
=
& 8
&
=
T T T T T
HC1 HC2 HC3 5A GA

RQ1 and RQ2

26 /73

cenmmaner HC3 best HC variant, GA best approach

Interference Bugs (AndrOid UUT)

in Multi-Threaded
Systems

Neelesh
Bhattacharya

Fitness Evaluations

O HCl

O HCz
O HC3
o s5A
o GA

Study 1: Raising
Divide-by-Zero
Exception

10000 15000 20000 25000 30000
1

1 |
-4

5000
I

1)
1

HC1 HC2 HC3 5A GA

RQ1 and RQ2

27 /73

s Proposed Fitness function performs better

Exposing
Interference Bugs
in Multi-Threaded

Systems

Neelesh
Bhattacharya GA: Original Tracey Fitness Versus new Fitness

30000 40000 S0000 60000

20000
I

il
t
i

Study 1: Raising
Divide-by-Zero
Exception

0
I

T T
Android Eclipse Tracey

RQ3

28 /73

Test Data

smatnr RESUItS are statistically significant (Tracey

Exposing
Interference Bugs COde)
in Multi-Threaded

Systems

Neelesh
Bhattacharya

Comparisons | p-values | Cohen d values
HC1-HC2 | 9.261e-10 2.55246
HC1-HC3 | 6.376e-16 5.951003
HC2-HC3 | 6.868e-08 2.428475

: [HC3-SA [7.049e-14| 4147889 |
Sy iz FELEE [HC3-GA | 22e-16 | 8223645 |
Divide-by-Zero
Exception [SAGA [8763e-15] 6.254793 |

29 /73

Test Data

smatiner RESUltS are statistically significant (Eclipse

Exposing

Interference Bugs U UT)

in Multi-Threaded
Systems

Neelesh
Bhattacharya

Comparisons | p-values | Cohen d values
HC1-HC2 | 3.245e-10 2.682195
HC1-HC3 | 7.167e-13 4111778
HC2-HC3 0.003998 0.9912142

[HC3-SA | 2.387e-11| 3.239916 |

Study N dhialing [HC3GA | 1.033e-13 | 5.258295 |
Divide-by-Zero
Exception [SA-GA [9.989e-09 [2694495 |

40/ 73

cnmrner - RESUILS are statistically significant (Android
Interlfzézzi:%ugs U U T)

in Multi-Threaded
Systems

Neelesh
Bhattacharya

Comparisons | p-values | Cohen d values
HC1-HC2 1.438e-06 1.894204
HC1-HC3 2.981e-12 3.345377
HC2-HC3 7.438e-08 2.12037

[HC3-SA_]0.0003169 | 1.266088 |
[HC3-GA [1.283e-10 [3.481401
[SAGA [4531e-09 | 2696728 |

Study 1: Raising
Divide-by-Zero
Exception

41 /73

Test Data

Generation for

Exposing

Interference Bugs
in Multi-Threaded

Systems

Neelesh
Bhattacharya

Study 1: Raising
Divide-by-Zero
Exception

42 /| 73

Execution Time:

CP is superior

Tracey Exemplary Code Eclipse Android
GA 8.067/1.439 2.129/1.149 | 1.926/1.177
CP 1.035/0.0135 0.01/0 0.01/0

RQ4

e RESults are statistically significant

Generation for
Exposing
Interference Bugs
in Multi-Threaded

Systems
Neelesh
Bhattacharya
Comparisons | p-values | Cohen d values
HC1-HC2 1.438e-06 1.894204
HC1-HC3 2.981e-12 3.345377
HC2-HC3 7.438e-08 2.12037
[HC3-SA [0.0003169 | 1.266088
HC3-GA] 1.283e-10 | 3.481401
Study 1: Raising [SAGA [4531e-09 | 2.696728 |
Divide-by-Zero
Exception

43 / 73

Test Data 1 H
Generation for COﬂtI’IbUtIOﬂS
Exposing
Interference Bugs
in Multi-Threaded
Systems

Neelesh
Bhattacharya

C1: Reformulate existing divide-by-zero exception
problem as branch coverage problem

C2: Reformulate the fitness function to the branch
coverage problem

B C3: Analyse the scalability of HC, SA, GA, RND and
Exception compare them to CP

44 | 73

Test Data
Generation for
Exposing
Interference Bugs
in Multi-Threaded
Systems

Neelesh
Bhattacharya

Study 2: Exposing
Interference Bugs

45 / 73

Study 2: Exposing Interference Bugs

fer,
erg "?TOQ}&/

refer&modify

share err

merr

merr

merr

merr

thread0
thread1
thread2
threadd

Test Data
Generation for
Exposing
Interference Bugs
in Multi-Threaded
Systems

Neelesh
Bhattacharya

Study 2: Exposing
Interference Bugs

46 / 73

Motivation

| Master |

——> WRITE

at the same time,

K—— READ

Twe threads writing

possible interference

| Slave 1 | I Slave 2 | I Slave 3 |
K—— READ
[é—RrerD
|y _ — —>WRITE
WRITE [— ReaD
——> WRITE

Interference Bugs

Test Data
Generation for
Exposing
Interference Bugs
in Multi-Threaded
Systems

Neelesh
Bhattacharya

Study 2: Exposing
Interference Bugs

47 /| 73

Related Work (1/3)

Artho et al. (2003) provided a higher abstraction level
for data races to detect inconsistent uses of shared
variables

Hovemeyer and Pugh (2004) used bug pattern
detectors to find correctness and
performance-related bugs in several Java programs

Bradbury et al. (2006) proposed a set of mutation
operators for concurrency programs used to mutate
the portions of code

Test Data
Generation for
Exposing
Interference Bugs
in Multi-Threaded
Systems

Neelesh
Bhattacharya

Study 2: Exposing
Interference Bugs

48 / 73

Related Work (2/3)

Lei et Carver (2006) used reachability testing to
generate synchronization sequences automatically
and on-the-fly

ConTest (Edelstein et al. (2003)), a lightweight
testing tool used various heuristics to create
scheduling variance in multi-threaded systems

CHESS (Mutuvasi et al. (2007)), a concurrent
systems testing tool tries all the possible schedules
to find a bug

Test Data
Generation for
Exposing
Interference Bugs
in Multi-Threaded
Systems

Neelesh
Bhattacharya

Study 2: Exposing
Interference Bugs

49 / 73

Related Work (3/3)

Previous approaches found interference bugs by
testing all possible schedules

Do not mitigate the non-determinism of the
multi-threaded environment

Requires lot of effort (time and testing resources) to
find a bug

Test Data
Generation for
Exposing
Interference Bugs
in Multi-Threaded
Systems

Neelesh
Bhattacharya

Study 2: Exposing
Interference Bugs

50/ 73

Problem Statement

Expose interference bug pattern for Programs Under Test
(PUTs), using a set of optimization algorithms to mitigate
the limitations

Test Data
Generation for
Exposing
Interference Bugs
in Multi-Threaded
Systems

Neelesh
Bhattacharya

Study 2: Exposing
Interference Bugs

51 /73

C1: Reformulating the Problem (2/2)

| Master |

—=> WRITE

{—— READ

| Slave 1 |

E—— READ

DELAY
INSERTED

| Slave 2 |

&— READ

- |—>WRITE

Single delay injected

| Slave 3 |

K— READ

—> WRITE

conetner G2: Reformulating the Fitness Function (1/2)
Interlfzégzi:gBugs
in Multi-Threaded
Systems

Neelesh
Bhattacharya

tu ->execution time of the jth event on the ith thread
a -> 0, if eventis Read
1, if event is Write

t t
1 1.1 1.2 R
t 1 t t
a, a., a5
t t
2 :2,1 :2 S R :
aZ 1 a2,2
Study 2: Exposing
Interference Bugs .
Threads*
. t
01 n2- - - - -
n t t t
nA a.

events

52 /73

Test Data
Generation for

C2: Reformulating the Fitness Function
Exposing
Interference Bugs

in Multi-Threaded
Systems
Neelesh
Bhattacharya

tw -> execution time of the jth event on the ith thread
a,> 0, f event s Read

1, if event is Write
A, > njected delay before the jth event in the ith thread

; A At‘2 A AZAIt‘a AAAAAAA .
1.2 1.3
2 AA t21 A AZ'tZZ -----
a a

Write event aligned <

Study 2: Exposing : :
Interference Bugs

Threads*

events

53 /73

Test Data . HH H
st G3: Scalability Analysis
Exposing
Interference Bugs
in Multi-Threaded
Systems

Neelesh
Bhattacharya

0s 1s

Study 2: Exposing
Interference Bugs

54 /73

Test Data
Generation for
Exposing
Interference Bugs
in Multi-Threaded
Systems

Neelesh
Bhattacharya

Study 2: Exposing
Interference Bugs

55 /73

C3: Scalability Analysis

Os

1s

0s

1Mms

ez C3: Scalability Analysis

Exposing
Interference Bugs
in Multi-Threaded

Systems

Neelesh
Bhattacharya

1s

1Mms

Os
0s
Study 2: Exposing
Interference Bugs Os

56 /73

10Mms

Test Data
Generation for
Exposing
Interference Bugs
in Multi-Threaded
Systems

Neelesh
Bhattacharya

Study 2: Exposing
Interference Bugs

57 /73

Research Questions

How to maximize interference probability between
threads?

How the search space dimension impacts the search
algorithm performance?

Test Data
Generation for
Exposing
Interference Bugs
in Multi-Threaded
Systems

Neelesh
Bhattacharya

Study 2: Exposing
Interference Bugs

58 /73

ReSP: The Virtual Platform

‘ Crossbar ‘

!

‘ Shared Memory ‘

No effect of the OS
No delay in the hardware
No cache effects

Thus our focus is only on the bug inherent in the code

Test Data
Generation for
Exposing
Interference Bugs
in Multi-Threaded
Systems

Neelesh
Bhattacharya

Study 2: Exposing
Interference Bugs

59 /73

Systems Studied

Matrix Multiplication (MM)

Count Shared Data (CSD)
Average of Numbers (AvN)
Area of Circle (AC)

CFFT

CFFT6

FFMPEG

oz SA, SHC outperforms RND

Exposing
Interference Bugs
in Multi-Threaded

Systems

Neelesh
Bhattacharya

1e+08

8e+05
I

Be+05
1

NBR Fitness Evaluation
Ae+05
1

2e+05
I

Study 2: Exposing | '
Interference Bugs 2 i g 3 . o B

T T T T T T T T T
SHC SA RND SHC SA RMD SHC SA RND

MM CFFT6 FFMFPEG
Search Strategy - Unit Under Test

Oe+00
I

Search space upto 10Mms delay (RQ1)

60 /73

oz SA, SHC outperforms RND

Exposing
Interference Bugs
in Multi-Threaded

Systems
Neelesh
Bhattacharya
=]
o
3
3 i .
; 1
' ;
o i |
g | !
2 ' ;
@ ! T I
oo | I !
= ! |
= : !
® o |
= g | !
2 '
a & |
U '
@
T r
s 8
I &7
o =T
m
= I T
o]
7 '
& 1 |
: '
Study 2: Exposing 3 | !
o i + o H
Interference Bugs 2] 3 H B 2 2 8 g :
&
o T T T T T T T T T

SHC SA RND SHC SA RND SHC SA RED
MM CFFT6 FFMFPEG
Search Strategy - Unit Under Test

Search space upto 1Mms delay (RQ2)

61/73

oz SA, SHC outperforms RND

Exposing
Interference Bugs
in Multi-Threaded

Systems
Neelesh
Bhattacharya
8
2
E - =
&
o
S
s 8 °
3 H
s |
R a
2 H
z o ;
-1
g £
o =
o
= 8
g
w -
Study 2: Exposing o @ H o .
3
Interference Bugs o g & E g b4 H
T T T T T T
SHC sa AND SHC sS4 AND
csD AN

Search Strategy - Unit Under Test

Search space upto 10s delay (RQ2)

B2 /73

oz SA, SHC outperforms RND

Exposing
Interference Bugs
in Multi-Threaded

Systems
Neelesh
Bhattacharya
=
& o
3
w
3
Z
1
2
]
g 8
=
2
a8
=
o o
&]
zZ » 8
2 | 9 $
S !
o H
Study 2: Exposing H Q
=
Interference Bugs S | - a I - 2 x
F
& T T T T T T
SHC sa AND SHC sS4 AND
CsD AN

Search Strategy - Unit Under Test

Search space upto 1s delay (RQ2)

B3 /73

o 2Xecution Time: SA, SHC outperforms RND

Generation for
Exposing
Interference Bugs
in Multi-Threaded
Systems

Neelesh
Bhattacharya

Execution Times for Real-World Applications in ms
CFFT CFFT6 FFMPEG
Tx105 | 1x107 | 1x10° | 1x107 | 1x10° | 1x107
SA | 3118 | 5224 | 27443 | 2041 1562 | 4672
HC | 3578 | 4976 | 27328 | 21943 | 1378 | 5100
RND | 113521 | 107586 | 342523 | 339951 | 59599 | 133345

Study 2: Exposing
Interference Bugs

64 /73

Test Data
Generation for
Exposing
Interference Bugs
in Multi-Threaded
Systems

Neelesh
Bhattacharya

Study 2: Exposing
Interference Bugs

B85/ 73

Contributions

C1: Formulate the interference bugs exposing
problem as a delay-injection search problem

C2: Develop a novel fitness function based on the
problem formulation

C3: Analyse the scalability of SHC, SA and RND
Use ReSP for having deterministic environment

sz Threats to Validity (1/2)

Exposing
Interference Bugs
in Multi-Threaded

Systems

Neelesh

Bhattacharya StUdy 1

Construct Validity: One of the studied systems was a
synthetic one

Internal Validity: We limited the bias of intrinsic
randomness of our results by repeating each
experiment 20 times

Conclusion Validity: We inspected box-plots,
performed t-tests, and evaluated the Cohen d effect
sizes

Threats to Validity External Validity: Evaluation was conducted on 3
systems, larger evaluation is desirable

66 /73

sz Threats to Validity (2/2)

Exposing
Interference Bugs
in Multi-Threaded

Systems

Neelesh
Bhattacharya

Study 2

Construct Validity: Four of the studied systems were
synthetic ones

Internal Validity: Three of the four synthetic systems
were developed long before the analysis, thus are
unbiased

External Validity: Evaluation was conducted on 7
systems, larger evaluation is desirable

Threats to Validity

B7 /73

s GoONclusion (1/3)
Exposing
Interference Bugs
in Multi-Threaded
Systems
Neelesh
Bhattacharya
We propose an approach to see the effectiveness of
search-based approaches in exposing interference

bugs

We found three challenges C1, C2 and C3 of using
search based approaches from related work

Search based approaches have been used
extensively in single-threaded systems, unlike
multi-threaded systems

Conclusion

A8 /73

s GONClusion (2/3)

Exposing
Interference Bugs
in Multi-Threaded

Systems

Neelesh
Bhattacharya

We use the knowledge of search based approach
use in single-threaded systems to be applied in
multi-threaded systems

We conduct a empirical study to see the effect of
using search based approaches in single-threaded
software systems for raising divide-by-zero exception

Conclusion

A9 /73

Test Data 1
et GONClusion (3/3)
Exposing
Interference Bugs
in Multi-Threaded
Systems

Neelesh
Bhattacharya

Using the knowledge of study 1, we conduct our
major study of using search based approaches for
exposing interference bugs, in the context of C1, C2
and C3

From both the studies involving ten systems, we find
that search based approaches can be effectively
used to expose interference bugs in multi-threaded
systems

Conclusion

70/ 73

oo Future Work (1/2)

Exposing
Interference Bugs
in Multi-Threaded

Systems

Neelesh
Bhattacharya

Study 1

We would generalize our study by validating our
approach with more real-world systems which are
very complex

We would extend our approach to other kinds of
exceptions like null-pointer and buffer overflow

We would raising exceptions with codes having
complex data structures

Future Work

71 /73

o Future Work (2/2)

Exposing
Interference Bugs
in Multi-Threaded

Systems

Neelesh
Bhattacharya

Study 2

We would validate our approach by running the
systems on real hardware platform in presence of
non-deterministic environment

We would generalize our approach further by using
more real-world, complex systems as case study

We would propose extensions to our approach for
exposing other bug patterns like deadlock

Future Work

792 /73

Test Data
Generation for SU m mary
Exposing
Interference Bugs

in Multi-Threaded Thesis

Systems
Bhl;l;:(lisarlya Search-based technigues can be effective in exposing

interference bugs

Contributions

Study 1
C1: Reformulate divide-by-zero exception problem
C2: Reformulate fitness function accordingly
C3: Analyse the scalability of HC, SA, GA, RND, CP

Study 2

C1: Formulate the interference bugs exposing
problem

C2: Develop a novel fitness function accordingly
C3: Analyse the scalability of SHC, SA and RND
Use ReSP to have deterministic environment

Summary

73 /73

	Context and Motivation
	Thesis
	Major challenges of Search-Based Approaches
	Studies Performed
	Study 1: Raising Divide-by-Zero Exception
	Study 2: Exposing Interference Bugs
	Threats to Validity
	Conclusion
	Future Work
	Summary

