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Thesis

Adding more sources of information and 

combining them with IR techniques could 
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combining them with IR techniques could 

improve the accuracy of IR techniques for 

requirements traceability



Sources of Information

• Software Repositories

• Static Class Relationship

• Source Code Entities

9

We use each source of information to create experts that 

verify a link created by an IR technique.
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Creation of Experts

• Histrace: It mines software repositories to 

build experts

• BCRTrace: It uses static relationships among • BCRTrace: It uses static relationships among 

classes to build experts

• Partrace: It partitions source code to use them 

as experts

11



Creation of Histrace Expert

R1 SVN/CVS Log Message 1

SVN/CVS Log Message 2

30%

10%

12



Creation of Histrace Expert

R1 SVN/CVS Log Message 1
Class - A

Class - B

SVN/CVS Log Message 2
Class - A

Class - C

30%

10%

12

Class - C



Creation of Histrace Expert

R1 SVN/CVS Log Message 1
Class - A

Class - B

SVN/CVS Log Message 2
Class - A

Class - C

30%

10%

12

R1 Class - A

Class - B

Class - C

Class - C

Class - AHistrace



Creation of BCRTrace Expert
0.70

0.65

0.59

0.56

0.35

R1 – Instant 

Messenger should 

support RSS 

13

IR

0.35

0.34

0.27

0.19

0.12

0.09

0.06

Messenger should 

support RSS 

protocol



Creation of BCRTrace Expert

B
C

R

0.70

0.65

0.59

0.56

0.35

R1 – Instant 

Messenger should 

support RSS 

13

IRB
C

R 0.35

0.34

0.27

0.19

0.12

0.09

0.06

Messenger should 

support RSS 

protocol



Creation of BCRTrace Expert

B
C

R

0.70

0.65

0.59

0.56

0.35

R1 – Instant 

Messenger should 

support RSS 

13

IRB
C

R 0.35

0.34

0.27

0.19

0.12

0.09

0.06

Messenger should 

support RSS 

protocol



Creation of BCRTrace Expert

R1

Class A

Class B

Class C

U
s
e

14

R1

Class A

Class B

Class C

In
h
e
ri
ta

n
c
e



Creation of Partrace Expert
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class SendEmail { 

private void eMailer(){
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Combining Experts’ Opinions
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30%

18

R1

Class - A

Class - B

Class - C

Expert (Histrace)



Combining Experts’ Opinions
TRUMO – Trust Model

 

 

19

 

 



Combining Experts’ Opinions
TRUMO – Trust Model

• It uses IR created links as baseline links 

(initial trust)

 

19

 

 



Combining Experts’ Opinions
TRUMO – Trust Model

• It uses IR created links as baseline links 

(initial trust)

• It asks experts, e.g., Histrace, for the evidence 

19

• It asks experts, e.g., Histrace, for the evidence 

of baseline links 

(reputation trust)

 



Combining Experts’ Opinions
TRUMO – Trust Model

• It uses IR created links as baseline links 

(initial trust)

• It asks experts, e.g., Histrace, for the evidence 

19

• It asks experts, e.g., Histrace, for the evidence 

of baseline links 

(reputation trust)

• Only keep a link if experts provide any 

evidence and discard remaining 

(constraint)
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• It counts how many times an experts provides 

evidence for a link

• It keeps the similarity values returned from 

the expert for a link and baseline links 
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the expert for a link and baseline links 

similarity values

• It assigns weights to: (i) similarity values (ii) 

number of times a link referred by an expert, 

to compute a new similarity for a link



Combining Experts’ Opinions
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R1 Class - A
λ1 0.4% + λ2 0.5 + λ3 0.2

where λ1 + λ2 + λ3 = 1



Usage of Experts
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λ1 = 0.1 , λ2 = 0.1 , λ3 = 0.8
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Static Weighting
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λ1 = 0.33 , λ2 = 0.33 , λ3 = 0.33
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Empirical Evaluation

• RQ1 - Does using an expert provide better 
accuracy than IR technique?

• RQ2 - Can Trumo be used for other software • RQ2 - Can Trumo be used for other software 
maintenance task, i.e., bug location?

• RQ 3 - How does the accuracy of the 
traceability links recovered  using DynWing
compare to that using static weight and PCA?
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RQ1 – Histrace Provides Better 

Accuracy Than VSM and JSM  
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Datasets’ Quality Analysis
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RQ1 – Partrace Improves the Accuracy 
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Effort Analysis

50,000

60,000

70,000

80,000

90,000

VSM

36

0

10,000

20,000

30,000

40,000

50,000

Pooka SIP Comm. iTrust

VSM

Coparvo



Empirical Evaluation

Trumo DynWing Trumo

(Ranker)

Static 

Weight

PCA-

based 

Weights

Voting JSM LSI VSM

Histrace � � � � � �

Partrace � �

37

Partrace � �

BCRTrace � � � �



RQ2: BCRTrace Consistently ranks the 

Buggy Classes Lower
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RQ3 – DynWing Automatically
Assigns Weights to Different Experts 
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Empirical Studies’ Results

• Trumo Model is a general model and can be 

used for other software maintenance tasks, 

e.g., bug location

41

• DynWing automatically assign weights

• Combining experts with weights provide 

better results than without, i.e., voting



Alert!

• What if we do not have:

– Software repositories

– All source code partitions

– Static Class Relationships– Static Class Relationships

42



Developers’ Knowledge
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Class, Method, 

Variables, Comments 

……………….

What the Developer Really Saw

44
Developer

ICSM 2012



Observing Developers Using Eye-Tracker

• Facelab by Seeing Machine

– Built-in cameras

– Infrared pad

– Monitor screen

45

– Monitor screen



Eye-Tracker Study

• RQ1: What Source Code Entities (SCEs) do 

Developers Value the Most?

• RQ2: Can we Improve IR Techniques by • RQ2: Can we Improve IR Techniques by 

making them Aware of the Developers’ 

Interests?
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Eye-Tracker Study Design

Statistics 

Total Subjects 26

Requirements 6

Total Source Code Snippet 6
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Example Task
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Output of Eye-Tracker
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eye fixation

==

developer importance



RQ1: What Source Code Entities (SCEs) do 

Developers Value the Most?
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RQ1: What Source Code Entities (SCEs) do 

Developers Value the Most?

Physical Conceptual
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1. Method Name

2. Comments

3. Variable Name

4. Class Name

1. Domain Related Terms

2. Application Related Terms



RQ2: Can we Improve IR Techniques by making 

them Aware of the Developers’ Interests?

1. Method

2. Comment

3. Variables

4. Class

51

IR

4. Class



1. SE / IDF

2. DOI /IDF

RQ2: Can we Improve IR Techniques by making 

them Aware of the Developers’ Interests?

51

IR



Weighting Scheme

• SE (Source Code Entities): It assigns different 

weights to all source code entities, e.g., 

method and class name

• DOI (Domain or Implementation terms): It 

assigns different weights to domain and 

implementation
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RQ2: Making IR Techniques aware of the 

Developers’ Interests Improves the 

Accuracy
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iTrustPooka
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Conclusion

• Using more sources of information improves the 

accuracy of IR techniques

• Trumo helps to combine the opinions’ of experts

• Using experts reduces developers’ effort and 

55

• Using experts reduces developers’ effort and 

improves the accuracy of IR techniques 

• Adding external information, i.e., software 

repositories, provides better results than internal 

information, i.e., source code partitions 



Future Work (Short Term)
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• Combine Histrace, BCTrace, and Partrace

• Analysing other sources of information, e.g., 
mailing lists and MyLyn logs, to create experts

• Using Trumo for other software maintenance 
tasks, e.g., anti-pattern detection



Future Work (Long Term)

• Updating traceability links during software 
evolution tasks

• Combining design pattern detection and IR 
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• Combining design pattern detection and IR 
techniques to trace non-functional 
requirements

• Analysing the impact of anti-pattern on IR-
based traceability techniques



Publications

Articles in journal and book chapter

• Nasir Ali, Yann-Gaël Guéhéneuc, and Giuliano Antoniol. 
Trustrace: Mining Software Repositories to Improve the Trustrace: Mining Software Repositories to Improve the 
Accuracy of Requirement Traceability Links, IEEE 
Transactions on Software Engineering (TSE), to appear, 
2013

• Nasir Ali, Yann-Gaël Guéhéneuc, and Giuliano Antoniol. 
Factors Impacting the Inputs of Traceability Recovery 
Approaches, chapter 7. Springer, September 2011 

58



Publications

Conference articles

• Nasir Ali, Zohreh Shara, Yann-Gaël Guéhéneuc, and Giuliano Antoniol, An Empirical 
Study on Requirements Traceability Using Eye-Tracking. In proceedings of the 
28th International Conference on Software Maintenance (ICSM), September 2012. 
IEEE Computer Society Press (Invited to a special issue of the Journal of Empirical 
Software Engineering (EMSE))Software Engineering (EMSE))

• Nasir Ali, Aminata Sabane, Yann-Gaël Guéhéneuc, and Giuliano Antoniol, 
Improving Bug Location Using Binary Class Relationships. In proceedings of the 
12th International Working Conference on Source Code Analysis and Manipulation 
(SCAM), September 2012. IEEE Computer Society Press

• Nasir Ali, Yann-Gaël Guéhéneuc, and Giuliano Antoniol. Requirements Traceability 
for OO systems by Partitioning Source Code. In Proceedings of the 18th Working 
Conference on Reverse Engineering (WCRE), October 17-20, 2011. IEEE Computer 
Society Press

59



Publications

Conference articles

• Nasir Ali, Wei Wu, Giuliano Antoniol, Massimiliano Di Penta, Yann-Gaël
Guéhéneuc, and Jane H. Hayes. MoMS: Multi-objective Miniaturization of 
Software. In proceedings of the 27th International Conference on Software 
Maintenance (ICSM), September 2011. IEEE Computer Society PressMaintenance (ICSM), September 2011. IEEE Computer Society Press

• Nasir Ali, Yann-Gaël Guéhéneuc, and Giuliano Antoniol. Trust-based Requirements 
Traceability. In Proceedings of the 19th International Conference on Program 
Comprehension (ICPC), 22 - 24 June, 2011. IEEE Computer Society Press

• Nasir Ali. Trustrace: Improving Automated Trace Retrieval Through Resource Trust 
Analysis. In Proceedings of the 19th International Conference on Program 
Comprehension (ICPC), 22 - 24 June, 2011. IEEE Computer Society Press

60



Thesis

Contributions

Binary Class Relationships

Adding more sources of information and combining them with IR 

techniques could improve the accuracy of IR techniques for 

requirements traceability
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Binary Class Relationships
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Trumo

(1)
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Trumo

(3)
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Eye-tracking Experiment Results

Source Code Entities Average Fixation Time (ms) of All Subjects

Method Name(s) 5701.10

Comments 4542.41

Variable Name(s) 3181.81

Class Name(s) 2317.25

66

Average Fixation Time (ms) of All Subjects

Domain (48% of all terms) 4865.30

Implementation (52% of all terms) 1729.80
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Source Code

Creation of Partrace Expert
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Class Name C

Class Name D

Class Name C

Class Name D

Performed same step for method, variable names, comments, and requirements
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Creation of Partrace Expert
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Requirement 1
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Usage of Partrace Expert
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Voting vs. Combination
Pooka SIP
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Alternative Weighting Scheme 2: DOI/IDF

domain term

implementation term
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