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I Traffic Safety
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Problems of Crash Data
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Traffic Safety — Problems of Crash Data

1. Do not happen that
frequently

2. Do notinclude useful
information
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Traffic Safety — Problems of Crash Data

1. Do not happen that
frequently

2. Do notinclude useful
information

3. Hard to differentiate
between random
occurrence or statistical
crashes
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I Traffic Safety — Problems of Crash Data

1. Do not happen that
frequently

2. Do notinclude useful
information

3. Hard to differentiate
between random
occurrence or statistical
crashes

4. Do not show the behavior
of road users before the
crash
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I Surrogate Safety Analysis

e Various surrogate safety
measures like PET, TTC,
deceleration rate, and Speed

e Studies showed the relations
between surrogate safety
measures and crash data

* In this work we focused on
two measures, PET and
Speed

Picture is from: https://umanitoba.ca/extended-education/programs-and-courses/business-and-management-programs/business-analysis



I Post Encroachment Time (PET)
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I Speed

1. Momentary Speed
2. Average Speed
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What We Have Done Characteristics

e Automated PET Detection and
Calculation Module
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Abstract

This paper presents an automated traffc sakety diagnostics solution named *Automated Roadway Conflict Identification
System’ (ARCIS) that uses deep learring techriques to process trafic videos collected by unmanned aerial vehicle (UAV).
to improve detection of vehicles in UAV videos. The
detected vehicles are tracked by a channel and spatial reliabity tracking algorithm, and vehicle trajectories are generated
based on the tracking algorithm. Missing vehicles can be identified and tracked by identifying stationary vehices and compar-
ing intersect of union (IOU) between the detection results and the tracking results. Rotated bounding rectangles based on
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at a typical signalized intersecton is presented; the resuks indicate that
the acauracy of the output data. Moreover, safety dagnostics for the

PET values for exch conflict evere. It is expected that the proposed d
diagnose o pr y

Traffic data collection is vital for traffic safety analysis.  selectes
Conventional traffic data collection relies on thousands  (e.g.,
of detectors (e.g., loop detectors, radar sensors) located  [PET])|
at fixed locations to analyz the traffic conditions for spe-  limitat
cific areas or road segments. The data are usually aggre-  colled
gated into certain time intervals (e.g., 30s, 5 min) without  whose
detailed traffic information. Tn 2018, Wu et al. analyzed  or fror
rear-end crash risk for individual vehicles through a  such a
radar sensor on a freeway location (/). Howeser, such  ments
analysis is still limited to certain locations that have  have al
detectors installed, and the detectors could not monitor g resel
many detailed driver behaviors, such as lane changing,  record
‘merging, interaction between road users, and so forth. In  collecti
recent years, with the development of various technolo-  exyrag
ges, it has become possible to collect trajectory data,

which is prevalently utlized in traffic safety research have
because it can provide more detailed traffic information

(24). Some studies have collected trajectory data T |
through in-vehicle devices (o investigate the relationship ‘07"
between driver characteristics/behaviors and crash risk.
Others have extracted road users’ trajectories by surveil-  Corresd
lance cameras and evaluated safety conditions for the  Yim W
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tion time to monitor stable trends. For example, before and after
safety evaluation is typically based on a few years of collision
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trians, is becoming a national and
‘ample, Transport Canada reported that across Canada, soqdms

were killed in traffic accidents with motor vehicles each year
during the period from 2004 to 2006 (Transport Canada 2010).
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1987). Second.

of collisions,

Traditionally,
data source for road traffic safety analysis (Chin and Quek 1997;
Laureshyn, et al. 2010). Thus, cyclist-involved collisions were in-
vestigated in several cyclist safety studies at signalized intersec-
tions (Huang et al. 2013; Jensen 2008; Wang and Nihan 2004;

i 1996;

collisions data (Laureshyn et al. 2010). Third, collision data does
not typically provide complete information about the collision
process. For example, pre-collision road users’ behaviour is usu-
aly 200

. 2008),

Riisinen et al. 1999) 1
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tion for vy Toatways (Sayed et al. 1954 Persaud and Musst 1995; Peter and
road Prahlad 199+ R

3 e of X
safety, is the inherent limitations in collision data.
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Gther mcasures (Thompaon and Perkins 1985 Fsparck et ol
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cific areas or road segments. The data are usually aggre-
gated into certain time intervals (¢.¢., 30s, 5 min) without
detailed traffic information. Tn 2018, Wu et al. analyzed
rearend crash risk for individual vehicles through a
radar sensor on a freeway location (7). Howeser, such
analysis is still limited to certain locations that have
detectors installed, and the detectors could not monitor
many detailed driver behaviors, such as lane changing,
merging, interaction between road users, and so forth. In
recent years, with the development of various technolo-
ges, it has become possible to collect trajectory data,
which is prevalently utilized in traffic safety research
because it can provide more detailed traflic information
(2-4). Some studies have collected trajectory data

collection could be conducted only for certain road users
whose with the in-vehicle devi
or from certain locations that had infrastructure sensors
such as radars and cameras installed. Recent develop-
ments in unmanned aerial vehicle (UAV) technologies
‘have attracted much atiention for traffic data collection,
as researchers can select the locations and views for video
recording. UAV is now advocated as an alternative data
collection method to analyz: road users’ trajectories and
extract traffic flow parameters (8).

Because of the advantages of UAVs, several studies
have been conducied to obtain traffic parameters
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* Focus on the Automated SSM
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* Precise
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e Combination of multiple SSMs




Approach

Serializer, PET Module, Noise Cancelation Modules,
Momentary Speed Module, Average Speed Module
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Output:
Inputs of Serializer Standard Input Unit (SIU)

Object ID
X and Y position in frame

Width and length of bounding

box timestamp,objectld _1,centerX_1,century 1,width _1,length 1,
angle 1,classType 1,0bjectld _2,centerX_2,century 2,width 2,
length_2,angle _2,classType 2,<End of the SIU Token>

Rotation of the bounding box
in frame

ClassType of the object
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PET: Detection and Calculation

* Overall process consists of following steps:

1. Fetching a SIU
2. For each object:

1 Calculate

2 Fetch candidates
3. Apply

4 Submit objects in the
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PET: Detection and Calculation

* Overall process consists of following steps:

1. Fetching a SIU
2. For each object:

1 Calculate

2 Fetch candidates
3. Apply

4 Submit objects in the



PET: Detection and Calculation
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Detection and Calculation: Calculate PET for Each Objects in Frame

* Conflict candidates need to be validated by some
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Detection and Calculation: Calculate PET for Each Objects in Frame

* Conflict candidates need to be validated by some
1. The conflict is not with
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Detection and Calculation: Calculate PET for Each Objects in Frame

* Conflict candidates need to be validated by some
1. The conflict is not with
2. The of the conflict is acceptable
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Detection and Calculation: Calculate PET for Each Objects in Frame

* Conflict candidates need to be validated by some
1. The conflict is not with
2. The of the conflict is acceptable
3. Time difference between objects is not bigger than
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Detection and Calculation: Calculate PET for Each Objects in Frame

* Conflict candidates need to be validated by some
1. The conflict is not with
2. The of the conflict is acceptable
3. Time difference between objects is not bigger than
4. Object is not conflicting with the object



Detection and Calculation: Calculate PET for Each Objects in Frame

* Conflict candidates need to be validated by some
1. The conflict is not with
The of the conflict is acceptable
Time difference between objects is not bigger than
Object is not conflicting with the object

Number of is more than a threshold (will be
discussed later)
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PET: Noise Cancellation

Detection and
Classification
Algorithms

PET Detection/Calculation Module

Noize
Canceliztion *

Serializer

PET Detectrion
Algorithm
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Noize
Cancslistion 2

W

Output
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PET: Fault Tolerance

1. False positive detection of
objects

85






PET: Fault Tolerance

1. False positive detection of
objects

2. Inaccurate bounding boxes
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PET: Fault Tolerance

1. False positive detection of
objects

2. Inaccurate bounding boxes

3. Inaccurate object class type
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PET: Fault Tolerance

1. False positive detection of
objects

2. Inaccurate bounding boxes
3. Inaccurate object class type

4. False negative detection of
objects
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I PET: Fault Tolerance

1. False positive detection of
objects
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I False positive detection of objects: Delayed SIUs

1. False positive detection of
objects




I Fault Tolerance: False positive detection of objects




False positive detection of objects: Delayed SIUs
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False positive detection of objects: Delayed SIUs
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PET Detection
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0B Counter o ID: csAL : 225xs | T ID: 556Ds 083 Validator ID: csAl ID: 556Ds
ID Count Expiration Valid Objects
i 2021-07- : ID | Expiration 5
15c30 01T05:08:44 7 :
02107 1 Uyd1 | 2021-07-01T05:08:6
450wC 1 01T05:08:65 :
. d6Dc | 2021-07-01T05:08:9
— :
2021207 : :
Xs223, 5 DITD5 %07 244 : 15¢3D | 2021-07-01T05:09:6 '
2021-07-
Qap23 6 01T05:07:55 :
2021-07-
1203 3 01T05:07:59 f

96



False positive detection of objects: Delayed SIUs
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False positive detection of object
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I False positive detection of objects: Validating Turning Movements é)

1. False positive detection of
objects




False positive detection of objects: Validating Turning Movements

* Different approach and sits
* Filters out the

* |t effects the Realtime process, however, does not change the continuity
of the module

 Needs to define each on the of the sensors

O
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False positive detection of objects: Validating Turning Movements

Noize
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False positive detection of objects: Validating Turning Movements

Legends

o4
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False positive detection of objects: Validating Turning Movements

Waiting For Validation

Turning | Turning
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False positive detection of objects: Validating Turning Movements
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False positive detection of objects: Validating Turning Movements
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False positive detection of objects: Validating Turning Movements
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Fault tolerance: Inaccurate bounding boxes



Fault tolerance: Inaccurate bounding boxes

should be avoided

* It reduces the precision of the module, but benefits are more than
shortcomings
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Fault tolerance: Inaccurate bounding boxes

Obj 2




Fault tolerance: Inaccurate bounding boxes

Obj 2




Fault tolerance: Inaccurate object class type






Speed: Momentary

* Need to have

* For overcome the inaccuracy
caused by detection we used

* Based on the position of an
object in its previous
frames, we calculate speed of
the object



Speed: Average Speed

* Need to define a region that

* Take the
of an
object inside of the region

* This analysis only considers
the of the speed

“"\:.._Qlu th
ightPedlLoo

2021-06-01 11:00:23
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Validation

Setup, PET annotation software,
PET Experiments, Speed
Experiments




Setup

e Qur solution is installed on
many BlueCity sensors in
different cities

* For our experiments we used
45 minutes data of
Edmonton sensor

* Raw data and annotated
video clip of that 45 minutes
were collected and analyzed

* Frame rate of the sensor is
11 fps

Ave

va Ave NV

BCT_3D

109 St NW, Edmonton, Alberta

_4G_0104001




I PET: Ground Truth

* Hard task to do and needed special software for
annotation




northLe




I PET: Ground Truth

e Hard task to do and needed special software for annotation

* Tests only PET conflict detection and only for PET less than 3
seconds

* Added 3 seconds tail to each road users on the clip for helping the
annotators

 Used 3 annotators for annotation




I PET: Annotation Software




I PET: Annotation Software

* Video clip player with shortcuts
for changing the frame rates,
skipping and .... Of clips

B ' PET Annotator

File

iyl 11:0:2
1| 11:0:2

_ | 11:0:41

T 11:0:41

11| 11:3:25

11:3:26

(| 11:5:19

_ | 11:5:20

7 11:6:33
| 11:6:34
7 11:6:34

| 11:7:14

\ "‘s.g_uthLeft\Psd\Eoop
64 ~south\(RhLdeg s

2021-06-01 11:07:1




PET: Annotation Software

* Video clip player with shortcuts o
for changing the frame rates, ] s

skipping and .... Of clips o

* Records the clicked position .

2| 11:7:14

op

] 3108 ;

e NOr tAY2BLOWS r thRLe Saloo
northLeftRedld: 3 \

o \

2021-06-01 11:07:17 ke




PET: Annotation Software

* Video clip player with shortcuts
for changing the frame rates,

| 11:0:41

skipping and .... Of clips s
e Records the clicked position —
* Captures the timestamp of the j3
click o

op

P e [ e
] 3108 3
e NOr tAY2BLOWS r thRLe Saloo
northLeftRedld: 3 \
o \

2021-06-01 11:07:17 Noe




PET: Annotation Software

B | PET Annotator = O X
File

* Video clip player with shortcuts
for changing the frame rates,

| 11:0:41

skipping and .... Of clips s
e Records the clicked position =
* Captures the timestamp of the j3
click o

* Ability to delete the
unintentional clicks

2021-06-01 11:07:17 e




PET: Annotation Software

B | PET Annotator = O X
File

* Video clip player with shortcuts
for changing the frame rates,

skipping and .... Of clips o
* Records the clicked position e
* Captures the timestamp of the 2
CIiCk : 11;7;14

* Ability to delete the
unintentional clicks

* Exports the clicked position and

timestamp of each click \

2021-06-01 11:07:17 ke




PET: Experiments

Exp 1: PET Performance

Check the
performance of PET
detection module with
and without Noise
removal modules

Exp 2: Delayed SIUs Setting

Checks the
performance of the
PET module with
different setting of
Delayed SIUs

Exp 3: Processing Speed

Checks the effect of
different noise
cancelation module on
processing speed of
the PET detection
module




I Exp 1: PET Performance

e Tested in 4 different modes:

1.

Without any noise cancelation
module

With delayed SIUs module active

With validating turning
movements

With both delayed SIUs and
turning movement validator
modules




No Filter Delayed Frame Turning Movement All Filters Ground truth

Detected PET 731 213 122 68 79
Matched 75 66 66 64 -
False PET 656 147 56 4 -
Missed PET 4 13 13 55 -
Precision 10.25 % 30.98% 54.09% 94.11% -
Recall 94.93 % 83.53 % 83.54 % 81.01 % -

F1-score 18.50% 45.11% 65.66% 86.29 % -




I Exp 2: Delayed SIUs Setting

e Effects of delayed SIUs on the
performance is significant

e Length of a noise appearance is
not a constant and depends on
the sensor and the environment
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ny No. Detected PET No. Matched PET Precision  Recall Fl

5 25 19 76% 79.16% 77.55%
10 25 19 76% 79.16% 77.55%
15 22 19 86.36% 79.16% 82.60%
20 22 19 86.36% 79.16% 82.60%
25 20 19 95% 79.16% 86.36%
30 20 19 95% 79.16% 86.36%
35 20 19 95% 79.16% 86.36%
40 20 19 95% 79.16% 86.36%
45 20 19 95% 79.16% 86.36%
50 20 19 95% 79.16% 86.36%
55 17 i 100% 70.83% 82.92%
60 10 10 100% 41.66% 58.82%
65 4 4 100% 16.66% 28.57%
70 4 4 100% 16.66% 28.57%
15 4 4 100% 16.66% 28.57%
80 3 3 100% 12.5% 22.22%
85 2 2 100% 8.33% 15.38%
90 1 1 100% 4.16% 8%
95 1 | 100% 4.16% 8%
100 | 1 100% 4.16% 8%

Ground truth 24 - - - -




I Exp 3: processing speed

e Goal is to evaluate the effects of
different noise removal modules
on the processing time of the
data

* Split the 45 minutes of data to 3
bins to account for the nuances
in performance of testing
machine

e Tested on a computer with 4 GB
of Ram and a Core i5 Intel CPU.




Time All Filters(s) Delayed Frame(s) Turning Movement(s) No Filter(s)

15:00 - 15:15 pm 537.61 537.70 635.90 643.00
15:15 - 15:30 pm 485.93 483.63 575.95 567.75
15:30 - 15:45 pm 490.78 490.49 581.68 576.40

Total Seconds 1514.33 1511.82 1793.55 1787.15




I Speed: Validating Average Speed

* Only through movements were
possible to validate

* Needed to define a region to
calculate average speed in that
region
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I Speed: Validating Average Speed

* Only through movements were
possible to validate

* Needed to define a region to
calculate average speed in that
region

 Shared the video clip of data
with our annotator and asked
them to annotate 400 through
movement




I Speed: Validating Average Speed

¥ | Speed Annotator - a X

* Only through movements were
possible to validate

* Needed to define a region to
calculate average speed in that
region

* Shared the video clip of data
with our annotator and asked
them to annotate 400 through
movement

e Created a custom annotation
software for capturing
entrance and exit time of
object in region




I Speed: Validating Average Speed

* We mapped the region on
google maps and using the
distance measures tool we
calculated the distance of each
through movements

* Using the entry time and exit
time of the object to the
region, calculated the speed of
an object

e We removed the outliers




Turning Movement North-South  South-North East-West West-East ~ Total
Count 143 65 95 92 395
AVG Speed (km/h) 47.50 43.87 43.13 45.35 45.35
AVG Speed GT (km/h) 46.021 43.89 43.37 45.46 44.90
Average Abs Speed off (km/h) 1.84 1.14 1.21 1.08 1.40
Error % 4.06 2.48 2.36 2.75 3.09




I Conclusion

1) Introduction

3) Approach

Traffic Safety, SSA and SSM,
PET and Speed, Our
Contribution

PET Detection and Calculation
Module, Average and
Momentary Speed Module

2) Background

4) Validation

Literature Review, Similar
Approaches, Short Comings of
Other Works

PET Validations and
Experiments, Speed
Validation Experiment
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Time All Filters(s) Delayed Frame(s) Turning Movement(s) No Filter(s)

15:00 - 15:15 pm 643.00
15:15 - 15:30 pm 567.75
15:30 - 15:45 pm 576.40

Total Seconds 1787.15
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15:15 - 15:30 pm 483.63 575.95 567.75
15:30 - 15:45 pm 490.49 581.68 576.40

Total Seconds 1511.82 1793.55 1787.15




Time All Filters(s) Delayed Frame(s) Turning Movement(s) No Filter(s)

15:00 - 15:15 pm 537.61 537.70 635.90 643.00
15:15 - 15:30 pm 485.93 483.63 575.95 567.75
15:30 - 15:45 pm 490.78 490.49 581.68 576.40

Total Seconds 1514.33 1511.82 1793.55 1787.15




ny No. Detected PET No. Matched PET Precision  Recall Fl

Ground truth 24 = o i =




ny No. Detected PET No. Matched PET Precision  Recall Fl

3 25 19 76% 79.16% 77.55%
10 25 19 76% 79.16% 77.55%

Ground truth 24 = o i =




ny No. Detected PET No. Matched PET Precision  Recall Fl

5 25 19 76% 79.16% 77.55%
10 25 19 76% 79.16% 77.55%
15 22 19 86.36% 79.16% 82.60%
20 22 19 86.36% 79.16% 82.60%

Ground truth

24




ny No. Detected PET No. Matched PET Precision  Recall Fl

5 25 19 76% 79.16% 77.55%
10 25 19 76% 79.16% 77.55%
15 22 19 86.36% 79.16% 82.60%
20 22 19 86.36% 79.16% 82.60%
25 20 19 95% 79.16% 86.36%
30 20 19 95% 79.16% 86.36%
35 20 19 95% 79.16% 86.36%
40 20 19 95% 79.16% 86.36%
45 20 19 95% 79.16% 86.36%
50 20 19 95% 79.16% 86.36%

Ground truth 24 = o i =




ny No. Detected PET No. Matched PET Precision  Recall Fl

5 25 19 76% 79.16% 77.55%
10 25 19 76% 79.16% 77.55%
15 22 19 86.36% 79.16% 82.60%
20 22 19 86.36% 79.16% 82.60%
25 20 19 95% 79.16% 86.36%
30 20 19 95% 79.16% 86.36%
35 20 19 95% 79.16% 86.36%
40 20 19 95% 79.16% 86.36%
45 20 19 95% 79.16% 86.36%
50 20 19 95% 79.16% 86.36%
55 17 17 100% 70.83% 82.92%

Ground truth 24 = o i =




ny No. Detected PET No. Matched PET Precision  Recall Fl

5 25 19 76% 79.16% 77.55%
10 25 19 76% 79.16% 77.55%
15 22 19 86.36% 79.16% 82.60%
20 22 19 86.36% 79.16% 82.60%
25 20 19 95% 79.16% 86.36%
30 20 19 95% 79.16% 86.36%
35 20 19 95% 79.16% 86.36%
40 20 19 95% 79.16% 86.36%
45 20 19 95% 79.16% 86.36%
50 20 19 95% 79.16% 86.36%
55 17 17 100% 70.83% 82.92%
60 10 10 100%  41.66% 58.82%

Ground truth 24 = o i =




ny No. Detected PET No. Matched PET Precision  Recall Fl
5 25 19 76% 79.16% 77.55%
10 25 19 76% 79.16% 77.55%
15 22 19 86.36% 79.16% 82.60%
20 22 19 86.36% 79.16% 82.60%
25 20 19 95% 79.16% 86.36%
30 20 19 95% 79.16% 86.36%
35 20 19 95% 79.16% 86.36%
40 20 19 95% 79.16% 86.36%
45 20 19 95% 79.16% 86.36%
50 20 19 95% 79.16% 86.36%
55 17 i 100% 70.83% 82.92%
60 10 10 100% 41.66% 58.82%
65 4 4 100% 16.66% 28.57%
70 4 4 100% 16.66% 28.57%
15 4 4 100% 16.66% 28.57%
Ground truth 24 - - - -




ny No. Detected PET No. Matched PET Precision  Recall Fl
5 25 19 76% 79.16% 77.55%
10 25 19 76% 79.16% 77.55%
15 22 19 86.36% 79.16% 82.60%
20 22 19 86.36% 79.16% 82.60%
25 20 19 95% 79.16% 86.36%
30 20 19 95% 79.16% 86.36%
35 20 19 95% 79.16% 86.36%
40 20 19 95% 79.16% 86.36%
45 20 19 95% 79.16% 86.36%
50 20 19 95% 79.16% 86.36%
55 17 i 100% 70.83% 82.92%
60 10 10 100% 41.66% 58.82%
65 4 4 100% 16.66% 28.57%
70 4 4 100% 16.66% 28.57%
15 4 4 100% 16.66% 28.57%
80 3 3 100% 12.5% 22.22%
Ground truth 24 - - - -




ny No. Detected PET No. Matched PET Precision  Recall Fl
5 25 19 76% 79.16% 77.55%
10 25 19 76% 79.16% 77.55%
15 22 19 86.36% 79.16% 82.60%
20 22 19 86.36% 79.16% 82.60%
25 20 19 95% 79.16% 86.36%
30 20 19 95% 79.16% 86.36%
35 20 19 95% 79.16% 86.36%
40 20 19 95% 79.16% 86.36%
45 20 19 95% 79.16% 86.36%
50 20 19 95% 79.16% 86.36%
55 17 i 100% 70.83% 82.92%
60 10 10 100% 41.66% 58.82%
65 4 4 100% 16.66% 28.57%
70 4 4 100% 16.66% 28.57%
15 4 4 100% 16.66% 28.57%
80 3 3 100% 12.5% 22.22%
85 2 2 100% 8.33% 15.38%
Ground truth 24 - - - -




No Filter

Delayed Frame

Turning Movement

All Filters

Ground truth

Detected PET
Matched
False PET
Missed PET
Precision
Recall
Fl-score

79




No Filter Delayed Frame Turning Movement All Filters Ground truth
Detected PET 731 79
Matched 19 -
False PET 656 -
Missed PET 4 -
Precision 10.25 % -
Recall 94.93 % -
F1-score 18.50% -




No Filter Delayed Frame Turning Movement All Filters Ground truth

Detected PET 131 213 79
Matched 13 66 -
False PET 656 147 .
Missed PET 4 13 -
Precision 10.25 % 30.98% -
Recall 94.93 % 83.53 % -

F1-score 18.50% 45.11% -




No Filter Delayed Frame Turning Movement All Filters Ground truth

Detected PET 131 213 122 79
Matched 13 66 66 -
False PET 656 147 56 -
Missed PET 4 13 13 -
Precision 10.25 % 30.98% 54.09% -
Recall 94.93 % 83.53 % 83.54 % -

F1-score 18.50% 45.11% 65.66% -




No Filter Delayed Frame Turning Movement All Filters Ground truth

Detected PET 731 213 122 68 79
Matched 75 66 66 64 -
False PET 656 147 56 4 -
Missed PET 4 13 13 55 -
Precision 10.25 % 30.98% 54.09% 94.11% -
Recall 94.93 % 83.53 % 83.54 % 81.01 % -

F1-score 18.50% 45.11% 65.66% 86.29 % -




