
POLYTECHNIQUE MONTREAL
affiliated to University of Montreal

Service Identification To Support The Migration Of Legacy Systems To SOA

MANEL ABDELLATIF
Département de Software Engineering And Computer Science

Thèse présentée en vue de l’obtention du diplôme de Philosophiæ Doctor
Génie informatique

May 2021

© Manel Abdellatif, 2021.



POLYTECHNIQUE MONTRÉAL
affiliée à l’Université de Montréal

Cette thèse intitulée :

Service Identification To Support The Migration Of Legacy Systems To SOA

Présentée par Manel ABDELLATIF
en vue de l’obtention du diplôme de Philosophiæ Doctor
a été dûment acceptée par le jury d’examen constitué de :

Boucheneb HANIFA, présidente
Mullins JOHN, membre et directeur de recherche
Guéhéneuc YANN-GAËL, membre et codirecteur de recherche
Moha NAOUEL, membre et codirectrice de recherche
Bellaïche MARTINE, membre
Lo DAVID, membre externe
Saunier NICOLAS, représentant du directeur des études supérieures



iii

DEDICATION

All my beloved family,
Thank you for your endless love, sacrifice and support.



iv

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisors Dr. Yann-Gaël Guéhéneuc
and Dr. Naouel Moha, for their continuous support and encouragement during my PhD.
Their positive outlook and constructive feedbacks in my research inspired me and gave me
confidence. I would like to thank them for their endless guidance and the sleepless nights we
spent working together before deadlines. I would also thank Dr. John Mullin for accepting
to supervise my thesis.

I also extend thanks to Dr. Hafedh Mili and Dr. Ghizlane El Boussaidi for their insightful
comments and suggestions that made an important part of this thesis.

I also extend thanks to the members of my examination committee: Dr. David Lo, Dr.
Hanifa Boucheneb and Dr. Martine Bellaïche for taking the time to review my work.

I would like to thank various interns for their excellent work during their internship to conduct
our experiments and investigating results. I would like to thank all the people participating
in the experiments.

I thank all the members of Ptidej team and Latece, especially Anas Shatnawi, Rafik Tighilt
and Geoffrey Hecht for the simulating discussions, collaborations and all the activities that
we did together.

My endless thanks go to my parents, my grandmother, my brother and my sister for their
love, encouragement and sacrifices. Without them, I could not get through the hard times
that I faced during my PhD. Thank you for all of the life lessons that taught me how to
become who I am now.

I do not know how to say thank you to my soul mate, my dearest husband and my best friend
for his never ending encouragement and unfailing love. It has taken a long time to achieve
this goal, and he has always been there for me; "thank you for every thing, loving you has
been my favourite adventure so far".

Finally, this thesis would not have been possible without the financial support of Fonds de
recherche du Québec (FRQNT) and he Ministry of Higher Education and Scientific Research
in Tunisia, for which I am incredibly grateful.



v

RÉSUMÉ

L’évolution des systèmes logiciels est devenue une activité centrale dans de nombreuses en-
treprises. Malgré leurs défis bien connus, les systèmes légataires demeurent un élément vital
et important dans de nombreuses entreprises, car les connaissances intégrées dans ces sys-
tèmes est d’une valeur significative. Les systèmes légataire ne peuvent pas être simplement
supprimés ou remplacés car ils exécutent généralement de manière efficace et précise une
logique métier critique et complexe. Outre leurs avantages bien connus, les systèmes lé-
gataires souffrent de plusieurs inconvénients liés par exemple à leur coût de maintenance,
leur évolutivité et leur flexibilité. Par conséquent, il existe un besoin croissant de migrer les
logiciels légataires vers des plates-formes plus flexibles et modernes sans perdre leurs valeurs
commerciales .

La migration des systèmes légataires vers l’architecture orientée services (SOA) est considérée
comme l’une des alternatives promises pour la modernisation des systèmes légataires. En
effet, l’infrastructure SOA en général a permis de développer des applications complexes et
inter-organisationnelles en intégrant des composants fonctionnels réutilisables, relativement
indépendants, généralement hétérogènes et distribués.

L’identification des services est considérée comme le processus le plus difficile dans le proces-
sus de migration. Il consiste à identifier à partir des systèmes légataires les fonctionnalités de
service potentielles et les artefacts réutilisables qui peuvent être regroupés tout en ayant une
logique métier précieuse. Le défi d’un tel processus est d’identifier à partir des systèmes lé-
gataires les services potentiels qui peuvent être développés de manière rentable, sont adaptés
à la réutilisation, faciles à entretenir et permettent de personnaliser les applications migrées
finales par une sélection et une orchestration appropriées des services.

Cette thèse soutient la migration des systèmes légataires vers SOA en (1) analysant l’état des
pratiques d’identification de services dans l’académie et l’industrie tout en étudiant l’écart
entre les approches d’identification de services dans les deux domaines, et (2) en proposant
une approche d’identification des services sensible au type qui repose sur l’analyse du code
source, car d’autres sources d’informations peuvent ne pas être disponibles ou ne pas être
synchronisées avec le code réel. Notre approche ascendante basée sur le code utilise des
critères de regroupement guidé par les types de services. Nous utilisons une catégorisation
des types de services qui s’appuie sur des taxonomies de services et décrivons des règles de
détection caractérisant les services ainsi que leur types à partir de l’analyse statique du code
source.



vi

ABSTRACT

The evolution of software systems has become a central activity in many businesses. De-
spite their well-known challenges, legacy systems are still a vital and important component
in many enterprises because the knowledge embedded in such systems is often of significant
values. Legacy systems cannot be simply removed or replaced as they effectively and ac-
curately execute critical and complex business logic. Besides their well-known advantages,
legacy systems still suffer from several drawbacks that are related to their maintenance cost,
scalability, flexibility, etc. Therefore, there is a rising need for migrating legacy software to
more flexible and modern platforms without losing their business values.

The migration of legacy systems to Service-Oriented Architecture (SOA) is considered one
of the promised alternatives for legacy system modernization. In fact, SOA infrastructure
in general have made possible to develop complex and inter-organizational applications by
integrating functional components that are reusable, relatively independent, generally het-
erogeneous, and distributed.

Service identification is considered as the most challenging process in the overall migration
process. It consists of identifying from legacy software systems potential service functionality
and reusable artifacts that may have valuable business logic. The challenge of such process
is to identify from legacy software systems potential services that can be developed in a cost-
effective manner, are suitable for reuse, easy to maintain, and provide capability to customize
end migrated applications by proper selection and orchestration of services.

This thesis supports the migration of legacy systems to SOA by (1) analyzing the state of
the practices of service identification in academia and industry while studying the gap be-
tween academic and industrial SIAs, and (2) proposing a type-sensitive service identification
approach that relies on source code analysis, because other sources of information may be
unavailable or out of sync with the actual code. Our bottom-up, code-based approach uses
service-type specific functional-clustering criteria. We use a categorization of service types
that builds on published service taxonomies and describes the code-level patterns character-
izing types of services.



vii

TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

RÉSUMÉ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF SYMBOLS AND ACRONYMS . . . . . . . . . . . . . . . . . . . . . . . . . xii

CHAPTER 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Research Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Other Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

CHAPTER 2 LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 Reusability = Usefulness + Usability . . . . . . . . . . . . . . . . . . 10
2.2.2 What is a Service? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Search Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 RQ1: What are the inputs used by SIAs? . . . . . . . . . . . . . . . . . . . . 14

2.4.1 Executable Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.2 Non-executable Models . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.3 Domain Artifacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21



viii

2.5 RQ2: What are the processes followed by SIAs? . . . . . . . . . . . . . . . . 23
2.5.1 Techniques of SIAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5.2 Quality of Identified Services . . . . . . . . . . . . . . . . . . . . . . . 27
2.5.3 Directions of SIAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5.4 Automation of SIAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6 RQ3: What are the outputs of SIAs? . . . . . . . . . . . . . . . . . . . . . . 31
2.6.1 Service Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.6.2 Service Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.6.3 Taxonomy of Service Types . . . . . . . . . . . . . . . . . . . . . . . 33
2.6.4 Type-sensitive SIAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.7 RQ4: What is the usability of SIAs? . . . . . . . . . . . . . . . . . . . . . . 36
2.7.1 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.7.2 Accuracy/Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.7.3 Tool Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.7.4 Result Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.7.5 Usability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.8 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.8.1 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.8.2 Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.8.3 Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.8.4 Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.8.5 Usability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.9 Other SLRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

CHAPTER 3 State of the Practice of Service Identification In Industry . . . . . . . 46
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2 Study Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3 Online Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4 Interview Sessions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4.1 Migration Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4.2 Directions of SI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.4.3 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

CHAPTER 4 Gap Analysis between Academia and Industry . . . . . . . . . . . . . 63



ix

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 Inputs of SIAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3 Processes of SIAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4 Outputs of SIAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.5 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

CHAPTER 5 Type Sensitive Service Identification Approach . . . . . . . . . . . . . 69
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2.1 Pre-processing Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2.2 Processing Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3 Experimental Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3.1 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3.2 Ground Truths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.3.3 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3.4 Quantitative Validation . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.3.5 Qualitative Validation . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.3.6 Comparison with State of the Art . . . . . . . . . . . . . . . . . . . . 82

5.4 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

CHAPTER 6 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.2 Discussions and Recommendations . . . . . . . . . . . . . . . . . . . . . . . 89
6.3 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91



x

LIST OF TABLES

2.1 Inputs of service identification approaches . . . . . . . . . . . . . . . 15
2.2 Targeted techniques of SIAs . . . . . . . . . . . . . . . . . . . . . . . 27
2.3 Targeted quality requirements by SIAs . . . . . . . . . . . . . . . . . 28
2.4 Targeted quality metrics by SIAs . . . . . . . . . . . . . . . . . . . . 29
2.5 Identification process directions of service identification methods . . . 30
2.6 Analyses types of SIAs . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.7 Automation of SIAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.8 A multidimensional service taxonomy . . . . . . . . . . . . . . . . . . 35
2.9 Usability of SIAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.10 Systematic literature reviews of service identification . . . . . . . . . 44
3.1 Information about the participants in the interview sessions . . . . . 57
5.1 Detection rules of services according to their types . . . . . . . . . . . 73
5.3 Overview of Service Identification Accuracy with ServiceMiner . . . 81
5.4 Comparison results of service identification approaches . . . . . . . . 84



xi

LIST OF FIGURES

1.1 Overview of our thesis work . . . . . . . . . . . . . . . . . . . . . . . 4
2.1 Paper selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Taxonomy of service identification approaches . . . . . . . . . . . . . 40
3.1 Study design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2 Languages of the systems migrated to SOA . . . . . . . . . . . . . . . 50
3.3 Reasons of legacy-to-SOA migration . . . . . . . . . . . . . . . . . . . 51
3.4 Inputs for SI in industry . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.5 Techniques for SI in industry . . . . . . . . . . . . . . . . . . . . . . 53
3.6 Desired services quality criteria for SI in industry . . . . . . . . . . . 54
3.7 Types of the migrated services . . . . . . . . . . . . . . . . . . . . . . 55
4.1 Inputs of SIAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2 Techniques of SIAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3 Types of analyses of SIAs . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4 Types of services in SIAs . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.1 Overview of our SIA . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2 3D call graph of Compiere . . . . . . . . . . . . . . . . . . . . . . . . 76
5.3 2D call graph of Compiere . . . . . . . . . . . . . . . . . . . . . . . . 77
5.4 Circular representation of dependencies in Compiere . . . . . . . . . . 77
5.5 Evaluation of the detection rules of Entity Services on Compiere . . . 80
5.6 Evaluation of the detection rules of Utility Services on Compiere . . . 80
5.7 Evaluation of the detection rules of Application Services on Compiere 80



xii

LIST OF SYMBOLS AND ACRONYMS

A2A Architecture2Architecture
AD Activity diagram
BPM Business Process Model
DB Database
DFD Data Flow Diagram
Doc documentation
Hu.Exp Human Expertise
LogT Log Traces
Ont Ontology
SMD State Machine Diagram
SC Source Code
SIA Service Identification Approach
SOA Service-Oriented Architecture
UAI User Application Interaction
UC Use Case



xiii

Publications

Portions of the material in this dissertation have previously appeared in the following publi-
cations.

1. Manel Abdellatif, Rafik Tighilt, Naouel Moha, Yann-Gaël Guéhéneuc, Hafedh Mili,
Ghizlane Elboussaidi, Jean Privat: Identifying Reusable Services in Legacy Object-
oriented Systems: A Type-sensitive Identification Approach. IEE Transactions on
Software Engineering (submitted)

2. Manel Abdellatif, Anas Shatnawi, Hafedh Mili, Naouel Moha, Ghizlane El-Boussaidi,
Geoffrey Hecht, Jean Privat, Yann-Gaël Guéhéneuc: A taxonomy of service identifi-
cation approaches for legacy software systems modernization. J. Syst. Softw. 173:
110868 (2021)

3. Manel Abdellatif, Rafik Tighilt, Naouel Moha, Hafedh Mili, Ghizlane El-Boussaidi,
Jean Privat, Yann-Gaël Guéhéneuc: A Type-Sensitive Service Identification Approach
for Legacy-to-SOA Migration. ICSOC 2020: 476-491

4. Anas Shatnawi, Hafedh Mili, Manel Abdellatif, Yann-Gaël Guéhéneuc, Naouel Moha,
Geoffrey Hecht, Ghizlane El-Boussaidi, Jean Privat: Static Code Analysis of Multilan-
guage Software Systems. CoRR abs/1906.00815 (2019)

5. Geoffrey Hecht, Hafedh Mili, Ghizlane El-Boussaidi, Anis Boubaker, Manel Abdellatif,
Yann-Gaël Guéhéneuc, Anas Shatnawi, Jean Privat, Naouel Moha: Codifying Hidden
Dependencies in Legacy J2EE Applications. APSEC 2018: 305-314

6. Manel Abdellatif, Geoffrey Hecht, Hafedh Mili, Ghizlane El-Boussaidi, Naouel Moha,
Anas Shatnawi, Jean Privat, Yann-Gaël Guéhéneuc: State of the Practice in Service
Identification for SOA Migration in Industry. ICSOC 2018: 634-650

7. Anas Shatnawi, Hafedh Mili, Ghizlane El-Boussaidi, Anis Boubaker, Yann-Gaël Guéhéneuc,
Naouel Moha, Jean Privat, Manel Abdellatif: Analyzing program dependencies in Java
EE applications. MSR 2017: 64-74

The following publications are not directly related to the material in this dissertation, but
they were produced in parallel to the research contained for this dissertation.



xiv

1. Manel Abdellatif, Rafik Tighilt, Abdelkarim Belkhir, Naouel Moha, Yann-Gaël Guéhéneuc,
Éric Beaudry:A multi-dimensional study on the state of the practice of REST APIs us-
age in Android apps. Autom. Softw. Eng. 27(3): 187-228 (2020)

2. Rafik Tighilt, Manel Abdellatif, Naouel Moha, Hafedh Mili, Ghizlane El-Boussaidi,
Jean Privat, Yann-Gaël Guéhéneuc: On the Study of Microservices Antipatterns: a
Catalog Proposal. EuroPLoP 2020: 34:1-34:13

3. Abdelkarim Belkhir, Manel Abdellatif, Rafik Tighilt, Naouel Moha, Yann-Gaël Guéhéneuc,
Éric Beaudry: An observational study on the state of REST API uses in Android mobile
applications. MOBILESoft@ICSE 2019: 66-75



1

CHAPTER 1 Introduction

1.1 Research Context

During the past decades, there has been an evolution in computing and information tech-
nology. Technological advances and the use of information technology increased at a rapid
pace. These advances present many significant opportunities for enterprises to grow and to
expand, especially when offering new ways of conducting businesses. The current economic
situation has, in part, been made possible by advances in information and communications
technology, which have reduced the cost and increased the speed of communications across
the globe, reducing the existing barriers of time and space. These advances impacted all
areas of economic and social life.

The actual business environment is characterized by rapid changes in business models, merg-
ers and acquisitions, laws and regulations, and changes in the supporting information and
communication technology infrastructure [1]. It is also characterized by mobility, globaliza-
tion, and increased competition [2]. It leads businesses to keep modernizing their information
systems to cope with new business requirements and improve their business operations.

Lehman’s law of software evolution claims that, without active countermeasures to software
aging, the quality of a software system gradually degrades as the system evolves. Besides,
productivity of software organizations and software quality generally fall short of expectations
as software systems suffer bugs and symptoms of aging. Failure to make continuous, gradual,
and remedial changes on these systems makes them costly to operate and hard to evolve.
Without explicit and immediate support for evolution and modernization, software systems
become impossibly complex and unreliable. They become legacy systems.

Yet, legacy systems are vital in many businesses because the knowledge embedded in these
systems is hidden but of significant value. They cannot simply be removed or replaced
because they effectively and accurately execute critical and complex business logic despite
high maintenance costs, poor flexibility, and scalability issues [3]. Therefore, there is a need
for modernizing legacy systems, without losing their business values, to more flexible, modern
and loosely coupled architectures such as Service Oriented Architectures (SOA).



2

1.2 Thesis Statement

The migration of legacy systems to Service Oriented Architecture (SOA) is one avenue for
modernizing legacy systems. SOA enables the development of complex, inter-organizational,
yet flexible applications by integrating services that are reusable, relatively independent, gen-
erally heterogeneous, and distributed [4]. However, the migration of legacy systems to SOA
is a difficult and complex process that must consider many factors: the choice of a migra-
tion process, the service identification method, the quality measurements of the generated
services, the implementation and integration challenges [5–7], etc.

The migration of a legacy system to a SOA usually follows six typical steps [8] that include:

1. Legacy system understanding: this step aims at acquiring information about the fea-
tures and functionalities of the legacy system;

2. Target system understanding: this step enables the design of major components of the
target SOA, the standards to be used, the expected quality of services, etc.;

3. Migration feasibility determination: this step concerns legacy-to-SOA migration feasi-
bility from technical, economical, and organizational perspectives to mitigate the risk
of migration failure;

4. Service identification, this step consists in identifying reusable groupings—clusters of
functionalities in the system that qualify as candidate services in the target architecture
to promote software reuse and avoid development from scratch;

5. Implementation and integration, during which step developers write the services in the
target SOA;

6. Service deployment and maintenance, this steps includes activities such as service pub-
lishing, service discovery, versioning, testing, etc.

Service identification (SI) is one of the most critical steps of the migration process because
it establishes the foundation for the later steps and the development of the target SOA
system [8, 9]. The identified services must meet a range of expectations concerning their
capability, quality of service, and efficiency of use [3].

We identified the three following potential problems from the literature related to service
identification:



3

Problem 1: Gap between academia and industry for the service identification
approaches Due to the importance of service-identification approaches (SIAs) and their
impact on the success of legacy migrations to SOA, the literature proposed several approaches
for identifying services in legacy systems. The selection of a SIA that is suitable for some
practitioners among all other SIAs is however difficult and depends on several factors, e.g.,
the available legacy artifacts, the process of analyzing these legacy artifacts, the available
inputs, the desired outputs and the usability degree of the approach. As a result, practitioners
need a comprehensive view of existing SIAs to select the one fulfilling their needs.

Problem 2: No highly-automated service identification approach that only relies
on source-code analysis Service identification consists in identifying reusable groupings/-
clusters of functionalities in the legacy system that qualify as candidate services in the target
architecture. Several SIAs have been proposed in the literature [10–16]. However, they have
limited identification accuracy. They often require several types of inputs (e.g., business
process models, use cases, activity diagrams, etc.) that may not be available with legacy
systems and they are not highly automated.

Problem 3: A lack of type-sensitive service identification approach that only
relies on static analysis of the source-code of legacy systems Many existing source-
code SI approaches use similar functional-clustering criteria, typically cohesion and coupling,
which lead to candidate services that are often architecturally irrelevant for the new SOA-
based system. Yet, there exists service types that could improve the identification accuracy
by narrowing the search space through the types and their associated code-patterns. Service
types could be used to classify service candidates according to a hierarchical-layered schema
and offers the possibility to prioritize the identification of specific types of services according
to the business requirements of the migration process.

Based on these problems, we formulate our thesis statement as follows:
There is a gap between academia and industry in their service identification approaches to
migrate legacy systems to SOA. To fill this gap, service identification should use static anal-
yses of the source code and be driven by service types. Service types could be used to classify
service candidates hierarchically and to prioritize the identification of specific types of services
according to the business requirements of the migration process.



4

Figure 1.1 Overview of our thesis work

1.3 Research Methodology

To answer our thesis, we propose a type-sensitive service-identification approach to help
migrating legacy object-oriented systems to SOA. Figure 1.1 presents an overview of our
proposed service identification approach with the five steps.

• Step 1: Taxonomy of service identification approaches. We study the state of
the practices of SIAs in academia through a systematic literature review. Based on this
study we provide a multi-dimensional taxonomy of service identification approaches
that consider the used inputs, the applied processes and the generated outputs of
academic SIAs.

• Step 2: Survey on legacy to SOA migration. We study the state of the practices
of SIAs in industry by performing a survey and interviews with practitioners who
migrated legacy systems to SOA. We report some migration strategies that have been
adopted by the participants. We also study the reasons of migrating legacy systems to
SOA as well as the importance of service identification in industrial migration projects.
Finally we report the used inputs the applied processes and the generated outputs of
industrial service identification approaches.

• Step 3: Gap analysis of SIAs in academia and industry. We compare academic
and industrial SIAs and derive several derive recommendations for how to identify
services in legacy systems to support their migration to SOA.

• Step 4: A type-sensitive service-identification approach. Based on the recom-
mendations in step 3, we propose ServiceMiner our type-sensitive service identification



5

approach that relies on the static analysis of the source code of legacy object-oriented
systems while identifying specific types of services.

• Step 5: Validation. We validate the approach on two case studies. We build ground
truths for our case studies, i.e., service-oriented versions of the systems to be migrated,
against which we compare the results of our identification approach. We compare the
identified services to the ground truth to assess the reliability of the approach and finally
compare the identification results with three state-of-the-art service identification tools.

1.4 Thesis Contributions

Contribution 1: A systematic literature review on service identification ap-
proaches. We propose a systematic literature review (SLR) of published SIAs, with fo-
cusing on bottom-up and hybrid approaches that use existing software artifacts. We chose
to focus on bottom-up and hybrid approaches because previous studies [17,18] and our own
preliminary study showed that companies often have only source code as most up-to-date
source of information about their legacy software systems. We analysed a total of 41 papers
retained from a first set of 3,246 papers. Based on this SLR, we generated a taxonomy
of SIAs, i.e., a multi-layer classification of SIAs. This classification helps practitioners in
selecting a suitable service identification approach that corresponds to their migration needs.

Contribution 2: Study of the state of the practices of services identification in
industry. We surveyed 45 industrial practitioners and interviewed eight of them to collect,
analyze, and report their experiences with the migration of legacy systems. Our results
showed that reducing maintenance costs and improving the flexibility and interoperability of
legacy systems are the main motivations to migrate these systems to SOA. They also showed
that SI is perceived by practitioners as an important step for the migration, in particular to
identify reusable code in the legacy systems. In addition, they showed that SI is a process
driven by business value rather than quality criteria, even though some practitioners consider
some quality criteria (mainly reusability, granularity, and loose coupling). Finally, our results
showed that SI should be driven by service types and it remains a manual process in which
human experts’feedbacks is essential.

Contribution 3: A type-sensitive service identification approach to support the
migration of legacy systems to SOA. We propose ServiceMiner, a bottom-up SIA,
which relies on source-code analysis, because other sources of information may be unavail-
able or out of sync with the actual code. ServiceMiner relies on a categorization of service



6

types and code-level patterns characterizing types of services. We evaluate ServiceMiner on
two case studies: an open-source enterprise-scale legacy ERP system, and an inventory man-
agement system. Then, we compare our results to those of three state-of-the-art approaches.
We show that ServiceMiner identifies architecturally-significant services with, on average,
80.5% precision, 76% recall, and 78.2% F-measure.

1.5 Other Contributions

Beside proposing an approach to identify services, we also studied how services are imple-
mented in practice. We studied and identified microservice antipatterns that developers
should avoid when implementing a microservice-based system. We also conducted a multi-
dimensional study of the state of the practice of service usage by the clients, and more
specifically in mobile apps.

The following contributions are not directly related to our thesis statement, but were realised
in parallel to the research presented in this thesis.

Contribution I: Specification and detection of microservices anti-patterns. The
software industry is currently moving from monolithic architectures into microservice-based
architectures, which involve independent, reusable, and fine-grained services. However, the
lack of understanding of the core concepts of microservice architectures may lead to the in-
troduction of poorly designed solutions, called antipatterns. Microservice antipatterns may
affect the quality of services and hinder the maintenance and evolution of systems. The spec-
ification and detection of microservice antipatterns could help in evaluating and assessing the
design quality of such systems. Several research works studied patterns and antipatterns in
microservice-based systems. However, the automatic identification of such antipatterns is
still in its infancy. We proposed MARS (Microservice Antipatterns Research Software), a
fully-automated approach supported by a framework for specifying and identifying microser-
vice antipatterns. Using MARS, we specified and identified 16 microservice antipatterns in 24
microservice-based systems. Results showed that MARS can detect microservice antipatterns
with an average precision greater than 68% and a recall greater than 78%.

Contribution II: A multi-dimensional study of the state of the practices of REST
APIs usage in Android Apps. REST APIs are gaining a tremendous attraction in
industry and a growing usage in mobile platforms. They are well suited for providing content
to apps running on small devices, like smartphones and tablets. Several research works
studied REST APIs development practices for mobile apps. However, little is known about



7

how Android apps use/consume these APIs in practice. Consequently, we proposed a multi-
dimensional study on the state of the practice of REST APIs usage in Android apps. We
follow three directions: analysing of Android apps, mining Stack Overflow posts on REST
APIs usage in Android apps, and surveying Android developers about their usage of REST
APIs in their mobile apps. We (1) built a catalog of Android REST mobile clients practices,
(2) proposed an automatic approach to detect these practices, (3) analyzed 1595 Android
apps downloaded from the Google Play store, (4) mined 12,478 Stack Overflow posts to
study REST APIs usage in Android apps, and (5) conducted an online survey with 118
Android developers to understand their usage of these practices. We reported that only two
good practices are widely considered by Android developers when implementing their mobile
apps. These practices are network connectivity awareness and JSON versus XML response
parsing. We also reported Android developers’ recommendations for the use of third-party
HTTP libraries and their role in implementing the recommended practices.

1.6 Thesis Organization

This thesis is structured as follows. Chapter 2 presents a systematic literature review about
existing service identification approaches. In chapter 3 we study the state of industrial prac-
tices related to legacy-to-SOA migration in general and service identification in particular.
Chapter 4 presents a comparative analysis of service identification approaches in academia
and industry and outlines several recommendations based on this study. In chapter 5, we
propose ServiceMiner, our type-sensitive service identification approach and discuss its iden-
tification results. Finally, in chapter 6, we conclude with some future works while highlighting
several recommendations for how to conduct service identification to support legacy-to-SOA
migration.



8

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction

The migration of legacy software systems to SOA is difficult because it depends on many
factors, e.g., the choice of the migration process, the service-identification approach, the
desired quality characteristics of the generated services, the implementation and integration
of the services, etc., which we discuss in details later. Also, the modernization of legacy
systems may have some side effects that could affect the expected or claimed benefits of the
migration of legacy systems [19, 20]. Such side effects could be the decrease of the system’s
performance, users resistance to the new technology/system, the unexpected high cost of the
modernization, the increasing time to finish the migration, etc.

An organization may adopt one of three strategies to migrate legacy software systems to
SOA. It can migrate its legacy systems through a top-down, forward-engineering strategy by:
(1) performing a high-level decomposition of its domain artifacts, (2) modelling the needed
services that will take part of the targeted SOA, (3) implementing those services, and (4)
implementing the process that orchestrates all these services.

An organization may also want to use a bottom-up strategy to re-engineer its legacy software
systems to a service-oriented style by: (1) extracting all the dependencies of their legacy
system, (2) mining the existing applications for reusable functionality that could qualify as
services, (3) packaging these functions as services to enable their reuse and to delete their
dependencies to the legacy infrastructures, and (4) rewriting some existing applications to
use the newly-identified services.

An organization may also adopt a hybrid strategy and reuse its legacy artifacts by: (1)
grouping the functions of the applications into coarse functional blocks, (2) mapping those
functional blocks to available services while deleting their dependencies to the legacy infras-
tructure, and (3) implementing the process that orchestrates all these services.

Service identification is central to all aforementioned three migration strategies, and has been
recognized by practitioners as the most challenging step of the overall migration process
[8, 17]. The services identified through a Service Identification Approaches (SIAs) must
meet a range of expectations regarding their capabilities, quality of service, efficiency of use,
etc. [3], which we also discuss in details later. To the best of our knowledge, all bottom-
up and hybrid SIAs focus solely on identifying services in legacy software systems, not in
ensuring that they can be then called “as identified” by different clients immediately. Indeed,



9

once services become available, multiple clients may call them simultaneously, which may and
may not cause problems in the services themselves (because they store some states) or related
databases (because they do not take into account multiple clients/tenants). Challenges of
turning the identified legacy code with side effects (including multitenancy, data consistency,
and statefulness) into autonomous and self-contained services must be considered after their
identification, as part of the whole migration process of legacy software systems [21].

Due to the importance of SIAs and their impact on the success of legacy migrations to SOA,
the literature proposed several approaches for identifying services in legacy systems. The
selection of a SIA that is suitable for some practitioners among all other SIAs is however
difficult and depends on several factors, e.g., the available legacy artifacts, the process of
analyzing these legacy artifacts, the available inputs, the desired outputs and the usability
degree of the approach. As a result, practitioners need a comprehensive view of existing SIAs
to select the identification approach fulfilling their needs.

This chapter is based on these papers [22, 23]. In the following, we propose a systematic
literature review (SLR) of published SIAs, with focusing on bottom-up and hybrid approaches
that use existing software artifacts. We chose to focus on bottom-up and hybrid approaches
because previous studies [17,18] and our own preliminary study showed that companies often
have only source code as most up-to-date source of information about their legacy software
systems.

Based on this SLR, we also present a taxonomy of SIAs, i.e., a multi-layer classification of
SIAs. This classification helps researchers and practitioners in selecting a suitable service
identification approach that corresponds to their migration needs.

2.1.1 Research Questions

Through our SLR, we study the SIAs following four dimensions: the used inputs, the applied
processes, the resulting outputs, and the usability degree of the approaches. We set out to
answer the following research questions:

• RQ1: What are the inputs used by SIAs? We aim to identify the different inputs
used by SIAs that are based on software systems analyses. We aim to classify the
targeted SIAs based on the artifacts used for the identification.

• RQ2: What are the processes followed by SIAs? We aim to describe the pro-
cesses that underlie the service identification approaches reported in the literature.
This entails gathering information about, (1) the techniques used to identify candidate



10

services, (2) the desired quality metrics, (3) the direction of the identification, (4) the
automation level, and (5) the type of analysis used.

• RQ3: What are the outputs of SIAs? We aim to report information about the
generated outputs of service identification approaches in terms of the targeted service
types.

• RQ4: What is the usability of SIAs? We aim to study the usability degree of
service identification approaches in the literature based on the systems used to validate
the results, the accuracy of the identification method (when reported), the tool support,
and the quality of the reported identification results.

We answer these questions and conclude that the state-of-the art SIAs are still at their
infancy. This is due to four main reasons: (1) the lack of validation on real enterprise-
scale systems, (2) the lack of tool support, (3) the lack of automation of SIAs, and (4) the
lack of assessment of the quality of the identified services. The results also show that the
proposed SIAs generally ignore the economic aspects of the identification phase such as the
implementation and maintenance costs, the re-factoring costs, and time-to-market issues.
We believe that more work should be done to automate state-of-the-art SIAs and consider
enterprise-scale systems to validate the proposed approaches. We also believe that regardless
of the sought quality attributes, SIAs should provide means to assess the quality of the
identified services and consider economic aspects in their identification process.

2.1.2 Outline

The remainder of this chapter is structured as follows. Section 2.2 presents background on
services. Section 2.3 describes our SLR methodology. Section 2.4 describes the inputs used
by SIAs. Section 2.5 describes the processes that underlie the studied SIAs. Section 2.6
surveys the outputs of SIAs. Section 2.7 describes the usability level of these SIAs. Section
2.8 synthesizes the comparison between the studied SIAs. Section 2.9 describes related work.
Finally, Section 2.10 concludes our work.

2.2 Background

2.2.1 Reusability = Usefulness + Usability

The idea of building new applications from reusable artifacts is not new [24]. Such artifacts
can be analysis-level artifacts (e.g. software models, analysis patterns), design-level artifacts



11

(e.g. architectural styles, design patterns, reference architectures), source-level artifacts (li-
braries, frameworks), or executables (compiled code, components, services). Reusability has
many advertised advantages, including:

• Enhanced productivity: by reusing existing artifacts of level i, we save on development
tasks up to development stage i. By reusing analysis models (or patterns), we save
on analysis; by reusing executable components/services, we save on analysis, design,
coding, and testing of the functionality implemented by the components/services.

• Enhanced quality: not only do domain engineering methodology suggests that reusable
components be thoroughly tested, but reused artifacts, whether by design or by acci-
dent, will have been tested in many different contexts.

• Enforcement of patterns inherent in the reusable artifacts, be they analysis level pat-
terns, architectural patterns, design patterns, coding styles, etc.

Mili et al. argued in [24] that reusability is a combination of two qualities:

• Usefulness, which represents the extent to which a reusable artifact can be used in
different contexts. A sorting function/procedure or a collection data structure are
examples of very useful utility (domain-independent) artifacts.

• Usability, which represents the extent to which the functionality is packaged in a way
that facilitates its use in those contexts where it is useful. If I am programming in Java,
a C sort routine is of little use to me.

Service identification deal with issues of usefulness. Its aim is to identify those clusters of
functionality that are used/invoked in many places within the same application, or across
many different applications. When the clusters are identified and validated, they should be
repackaged. Service packaging deals with usability, as it attempts to wrap/package that
reusable functionality behind service interfaces, which will facilitate their reuse (remoteness,
technology independence, etc.).

2.2.2 What is a Service?

In the literature, many definitions have been proposed for defining services [25–29]. Each
definition describes a service based on different details (e.g., granularity, communication
mechanism, composition, etc.). Thomas Erl [29], an SOA pioneer, identified eight character-
istics of services :



12

• Standardized service contracts. As software components, services define their capabili-
ties using a standard, implementation-neutral language.

• Loose coupling. The services are loosely coupled, and any dependencies are explicitly
stated in their service contracts.

• Abstraction. Whereas loose coupling refers to dependencies between services, abstrac-
tion refers to dependencies between a service provider and a service consumer. The
consumer should not depend on the implementation details of the service.

• Reusability. Services embody reusable functionality that can service many consumers.
In other work, we defined reusability as usefulness and usability (Reference). Useful-
ness refers to how often the provided functionality is needed while usability refers to
how easy it is to use. Usability embodies many aspects, including the existence of
(standardized) service contracts (see above), as well as discoverability, composability,
and interoperability, discussed below.

• Autonomy. From the perspective of the consumer, services should be perceived as self-
contained components with total control over their resources and environment. The
consumer should be able to assume that the service needs no more than the parameters
specified in its service contract to do its job. Naturally, behind the scenes, a service
may in turn depend on other services. For example, business services can depend on a
layer of shared technical services.

• Statelessness. We can understand statelessness of services in two complementary ways.
To be able to ’service’ many consumers, a service should not have to rely on implicit
state information about its consumers; all of the data needed to service a particular
consumer’s request should be explicitly passed as parameter. The second aspect of
statelessness is related to multiple interactions with the same consumer. This means
that a consumer can invoke the operations of the service as many times as they want,
in any order they wish, and always get the same result. In practice, of course, these
two conditions are seldom attainable-and not necessarily desirable. In fact , Erl argues
that "Applying the principle of service statelessness requires that measures of realistically
attainable statelessness be assessed, based on the adequacy of the surrounding technology
architecture to provide state management delegation and deferral options" [29].

• Discoverability. This refers to the ability of services to document and advertise their
capabilities so that service consumers can find them. The documentation of the capa-



13

bilities of a service needs to be expressed in a domain language that is distinct from
the language used to express the service contract.

• Composability. This refers to dual capability of services to, a) be composed at arbitrary
levels of aggregation to form more complex services, and b) address many needs. This,
in turn, influences two design aspects of services, a) the modalities for interacting with
the service, and b) the way the capabilities of the service are distributed among its
operations.

2.3 Search Methodology

In this section, we describe the design methodology of our systematic literature review as
well as the mechanisms and data that we analyse to answer our research questions. We follow
the procedures proposed by Kitchenham et al. [30] for performing systematic reviews.

Figure 2.1 depicts our methodology. We first collected research papers based on search
queries. We started by identifying relevant query terms based on our research questions and
the context of our work: service identification, SOA, and migration. Then, for each keyword,
we identified a set of related terms and synonyms using an online synonym finder tool1.
Based on these terms, we defined the following search string:

(service identification OR service mining OR service packaging) AND (migra-
tion OR modernization OR transformation OR re-engineering) AND (legacy OR
existing systems OR Object-Oriented)

We executed this search query in different scientific search engines, such as Google Scholar,
ACM Digital Library, and IEEE Xplore Digital Library, Engineering Village, etc.

1https://www.synonym-finder.com/

Execution	of	the	
Search	query

Filtration	process
based	on	exclusion	

Criteria
Snowballing

Collected

Papers
3.246

Filtrated

Papers

Final List

41 Papers

Search 

9 Iterations

Query

Figure 2.1 Paper selection



14

Our search queries returned a total of 3,246 unique references. We then filtered these refer-
ences, first, based on their titles, second, based on their abstracts, and finally, based on their
contents. Two of the authors manually and independently at first analyzed all the papers
and then reconciled any differences through discussions. We excluded from our review the
papers that met one of the following criteria:

• Papers not written in English.

• Papers not related to service identification.

• Papers about top-down SIAs.

• Papers that did not propose a technique or a methodology for service identification.

Based on these exclusion criteria, we reduced the number of references and retain 26 papers
that focus on SIAs that analyze software artifacts. We believe that our search string may
not cover all query terms related to service identification (e.g., microservices, decomposition,
restructuring, etc.) and thus we risk to miss important studies. To minimize these threats, we
(1) included in our search string the most important keywords related to service identification,
and (2) applied forward and backward snowballing [31, 32] to minimize the risk of missing
important papers. Forward snowballing refers to the use of the bibliographies of the papers
to identify new papers that are referenced. Backward snowballing refers to the identification
of new papers citing the papers being considered. We iterated the backward and forward
snowballing and apply for each candidate paper our exclusion criteria. We stopped the
iteration process when we have found no new candidate paper. We performed a total of nine
iterations and added 15 papers. We thus obtained 41 papers that describe different SIAs,
presented in Table 2.1.

2.4 RQ1: What are the inputs used by SIAs?

Using suitable inputs for service identification is crucial to the quality of the identified services
and thus the migration process [33]. When it comes to legacy systems, not all software-
related artifacts (e.g., use cases, business process models, activity diagrams, etc.) are always
available. Consequently, as depicted in Table 2.1, many SIAs in the literature relied on
different types of inputs. When considering bottom-up and hybrid approaches, they all use
source code or related models, as well as other types of input. We classify the inputs into
three main categories: (1) executable models of the systems, (2) non-executable models of
the systems, and (3) domain artifacts. We discuss them in turn, below.



15

Method
Ex. Rep.
of the Soft.

Non Ex. Rep. of the Soft. Domain Artifacts

Runtime Artifacts Model Artifacts
SC DB TEST LogT UAI BPM UC AD DFD SMD Ont Hu.Exp Doc

Service Identification Based on Quality Metrics [14] x
A spanning tree based approach to identifying web services [13] x x x
Generating a REST Service Layer from a Legacy System [12] x
A service identification framework for legacy system migration into SOA [34] x x x
Reusing existing object-oriented code as web services in a SOA [35] x x
Mining candidate web services from legacy code [36] x x
From objects to services: toward a stepwise migration approach for Java applications
[37]

x x x x

Migrating interactive legacy systems to web services [10] x x x
MDCSIM: A method and a tool to identify services [38] x x x x
Reverse engineering relational databases to identify and specify basic Web services
with respect to service oriented computing [39]

x

Identifying services in procedural programs for migrating legacy system to service
oriented architecture [40]

x x x

A service-oriented analysis and design approach based on data flow diagram [41] x x
Service discovery using a semantic algorithm in a SOA modernization process from
legacy web applications [42]

x x x x

Incubating services in legacy systems for architectural migration [43] x x x x
Migrating to Web services: A research framework [44] x x
Service Identification and Packaging in Service Oriented Re-engineering [45] x x
A wrapping approach and tool for migrating legacy components to web services [46] x
Extracting reusable object-oriented legacy code segments with combined formal con-
cept analysis and slicing techniques for service integration [16]

x x

Using dynamic analysis and clustering for implementing services by reusing legacy
code [47]

x x x x

Service Mining from Legacy Database Applications [48] x
An approach for mining services in database oriented applications [49] x x
Using user interface design to enhance service identification [50] x x
A method to identify services using master data and artifact-centric modeling ap-
proach [51]

x x x x

Multifaceted service identification: Process, requirement and data [15] x x x
The service modeling process based on use case refactoring [52] x x x
Extracting reusable services from legacy object-oriented systems [53] x x x x x x
Locating services in legacy software:information retrieval techniques, ontology and
FCA based approach [54]

x x x

Microservices Identification Through Interface Analysis [55] x x
Functionality-Oriented Microservice Extraction Based on Execution Trace Cluster-
ing [56]

x x x x x

Bottom-up and top-down cobol system migration to web services [18] x x x
Extraction of microservices from monolithic software architectures [57] x
Service Cutter: A Systematic Approach to Service Decomposition [11] x x
An approach to align business and IT perspectives during the SOA services identi-
fication [58]

x x x

Discovering Microservices in Enterprise Systems Using a Business Object Contain-
ment Heuristic [59]

x x x x

A heuristic approach to locate candidate web service in legacy software [60] x
Identifying Microservices Using Functional Decomposition [61] x x
Towards the understanding and evolution of monolithic applications as microservices
[62]

x

From Monolithic Systems to Microservices: A Decomposition Framework based on
Process Mining [63]

x x x

Function-Splitting Heuristics for Discovery of Microservices in Enterprise Systems
[64]

x x x x

From a Monolith to a Microservices Architecture: An Approach Based on Transac-
tional Contexts [65]

x

Re-architecting OO Software into Microservices A Quality-centered approach [66] x

Table 2.1 Inputs of Service Identification Approaches (SC for Source Code, DB for Database,
LogT for Log Traces, UAI for User Application Interaction, BPM for Business Process Model,
UC for Use Case, AD for Activity diagram, DFD for Data Flow Diagram, SMD for State Machine
Diagram, Ont for Ontology, Hu.Exp for Human Expertise, Doc for documentation)

2.4.1 Executable Models

Executable models of the systems include source code and database schemas and test cases.



16

Source Code

"If the map and the terrain disagree, trust the terrain".
—Swiss Army Aphorism

With legacy systems, documentation (the map) is often missing or out of date. The source
code (the terrain) becomes the only reliable source of information about the system. Source
code is the most commonly used software artifact by the existing SIAs, due to its availabil-
ity. SIAs that use source code as input identify business capabilities of the existing legacy
systems and expose them as reusable services. Such SIAs rely on reverse and re-engineering
processing to (1) extract dependencies between program elements such as variables, functions,
modules/classes, etc.; (2) recover other kinds of information such as data flow diagrams, use
cases, business process models, state machine diagrams, etc.; (3) map the source code to
other artifacts such as business process models, use cases and database schemas, to complete
the system map; and, usually, (4) apply clustering techniques to extract reusable services.

For legacy object-oriented systems, some SIAs rely on the relationships among classes to
analyze the system structure and identify highly cohesive and loosely coupled reusable parts
that could be exposed as services. For example, Adjoyan et al. [14] relied on the analysis of
dependencies between the classes of legacy object-oriented software systems. They proposed
a fitness function that takes into account the type of relationship between the classes and
assigns a score for each relationship. They then applied an agglomerative clustering technique
to group classes into candidate services. Aversano et al. [36] mined candidate services from
the analysis of legacy source-code. They applied reverse-engineering techniques to extract
UML diagrams of systems and analyse the signatures of related methods to identify candidate
services.

Other SIAs identify services by analysing the source code of non-object-oriented software
systems. For example Rodriguez et al. [18] reported the analysis of a large legacy system
in an Argentinian government agency written in COBOL and running on IBM mainframes.
They analysed the legacy source code to identify the transactions to be migrated to services.
These transactions are then translated into Java code, which is easier to expose as Web
services.

Although the identification of candidate services based on source code analysis leads to
reusable and fine grained services, a combination of this kind of input with other artifacts
(e.g., business processes, documentation, databases, etc.) can be used to identify services
with more business values.



17

Databases

Architecturally, the database layer is important to manage the persistence of data. Database
contents, schemas and transactions are the artifacts used by database-related SIAs [39,48,49].
These approaches identify data/entity services that provide access to, and management of,
the persistent data of the systems(C.f. Section 2.6).

For example, Baghdadi et al. [39] identified entity services by extracting SQL statements from
systems. They then re-factored these statements and added them to the specification of a list
of candidate services using CRUD operations patterns (Create, Read, Update and Delete).
Saha et al. [48] relied on identifying instances of database-access patterns (database related
operations) to identify reusable services. Using specific quality metrics, they refined database-
related operations and wrapped them into data/entity services. Interactions between the
application to migrate and the database have been also used by Del et al. [49] to identify
pieces of functionalities that can be exported as services. They performed the identification
using clustering techniques and formal concept analysis.

Although the identification of candidate services based on the study of database queries or
schema leads to reusable and fine grained services–which can only be entity services (cf.
Section 2.6), a forward-engineering process is needed to build more coarse-grained services,
that combine these finer-grain services, into business services.

Test Cases

A test case can be defined as a specification of the inputs, execution conditions, testing
procedure, and expected output results that must be executed to achieve a testing objective,
such as to verify compliance with a specific requirement.

We found only three SIAs that use test cases, among other inputs, to identify reusable
services [37, 53, 56]. For example, Bao et al. [53] use test cases as an intermediate input
for service identification. They first analysed the legacy system source code and manually
identified candidate use cases that correspond to potential reusable services. Then, they
derived test cases from these use cases and used them to drive the execution of legacy-
software systems. They used dynamic analysis techniques to analyze the execution log traces
and generate coarse-grained code segments for each candidate use case that corresponds to
an identified service. Also, Jin et al. [56] only used test cases to execute different paths of
the system and generate the corresponding log traces. They analysed these log files to get all
classes and method invocations of the system. They then applied a clustering algorithm to
group high cohesive and loosely coupled group of classes that will be mapped into services.



18

As shown by Table 2.1, test cases are rarely used by SIAs. They are only used as an
intermediate artifact to guide the service identification process, probably because test cases
are seldom available, and when they are, they cover only a small portion of the system.

2.4.2 Non-executable Models

We distinguish between two categories of non-executable models: runtime artifacts extracted
during the execution of the systems, and non-executable models that describe the architecture
of the systems. We discuss them in turn below.

Runtime Artifacts

Runtime artifacts are extracted during the executions of the systems. They contain log traces
and user-application interactions (e.g., user interfaces).

Log Traces Execution traces of legacy software systems depict the dynamic behavior of
the systems. Six SIAs rely on log traces to extract sequence calls related to specific execution
scenarios [47, 53, 56, 59, 63, 64]. These approaches identify pieces of legacy code executed
during a set of business processes [47] or use cases [53], which are usually identified manually
by business analysts. Then, they suggest those pieces of code as potential implementations of
services. For example, Fuhr et al. [47] applied mapping techniques of legacy code to business
processes. They used log trace analyses and clustering techniques. They cluster the classes
identified in the log traces according to their usage during the business processes.

We note that SIAs do not rely solely on log traces to identify services; they usually com-
bine them with other types of inputs such as business process models, use cases, or human
expertise.

User Interactions User-interface inputs capture the relationship between users and the
system’s functionalities. User interfaces usually embody data requirements and workflows
[67]. If the workflow model of a system is not available, knowledge extracted from its user
interfaces is useful to recover its underlying business logic [43, 50].

We found five SIAs that analyse users’ interactions with user interfaces to help identify ser-
vices [10,43,50,54–56]. For example, Mani et al. [50] proposed an XML-based representation
called the Unified User Interface Design Specification (UUIDS) to describe user interfaces,
including data bindings and navigation events. They use this representation to automate the
analysis of user interfaces and retrieve useful information for candidate services requirements.



19

The analyses of user interactions help to retrieve navigational information through the op-
erations performed by users. They also help to identify reusable tasks with high business
values, which could become services. However, SIAs based on user interactions are hardly
automated. Further, they require a model of the tasks, as input, which may not be readily
available.

Model Artifacts

Model artifacts abstract the structure and execution behavior of systems. They include
business process models, use cases, activity diagrams, and state machine diagrams, which
are discussed in turn below.

Business Process Model (BPMs) They describe sets of activities and tasks that accom-
plish an organizational goal [68]. BPMs have been used extensively by SIAs because of their
ability to describe the business logic of legacy software systems at a high-level of abstraction.
Business processes can be modeled with the Business Process Model and Notation (BPMN)
and executed through their corresponding Business Process Execution Language (BPEL).
The decomposition of business processes is a common strategy to identify services [15]. Busi-
ness process-driven SIAs usually decompose business processes into tasks. These tasks are
then clustered and exposed as services.

For example, Alahmari et al. [34] identified services based on analyzing business process mod-
els. These business process models are derived from questionnaires, interviews and available
documentations that provide atomic business processes and entities on the one hand, and
activity diagrams that provide primitive functionalities on the other hand. The activity dia-
grams are manually identified from UML class diagrams extracted from the legacy code using
IBM Rational Rose. Different service granularity levels are distinguished, as they pertain to
atomic business processes and entities. Related atomic processes and entities are grouped
together within the same service candidates to maximize cohesion of candidate services and
minimize coupling between them. Fuhr et al. [47] relied on business process models to cor-
relate classes of legacy object oriented systems. Each activity in the business process model
is executed. The classes that are called during the execution of a task are considered to be
related. The identification of services is based on a clustering technique where the similarity
measurement is based on how many classes are used together in the activity executions.

In the context of service identification, BPMs help to understand and capture the broad
functional domains of legacy systems and how they interact with each other. Furthermore,
business process-driven approaches identify high-level candidate services (based on process



20

and tasks activities). However, the major problem with relying on BPMs to identify services
is that such models are not always available especially for legacy software systems.

Use Cases They help to identify, at a high-level of abstraction, the interactions between
users and systems to achieve goals. Use cases depicts functional requirements as well as
sequences of actions that can be used for service identification [69]. We found seven SIAs
that use such artifact [10,11,13,52,53,61,64].

For example, Bao et al. [53] analyze of the relationships between use-case elements to iden-
tify reusable services. They consider independent use cases of object-oriented systems are
candidate services. If a use case A extends a use case B, they consider B as a candidate
service, whereas A is not. Further, if use case A specializes (inherits from) use case B, then
A is considered as a candidate service, whereas B is not.

The main reasons for SIAs to rely on use cases is that they offer systematic and intuitive
means of capturing functional requirements with a focus on value to the users. However, to
the best of our knowledge, SIAs based on use cases are difficult to automate to the extent
that they often rely on human expertise.

Activity Diagram They show interactions in systems as well as the different steps involved
in executing tasks [70]. Only two SIAs use activity diagrams to identify services [13,34]. For
example, Al Ahmari et al. [34] extracted, from activity diagrams, useful information and
transform them to BPMN using mapping rules. They then analysed the business process
models to extract reusable services. They used activity diagrams of legacy systems as input
but concretely relied on analysing the BPMNs to identify reusable services in the system.

None of the identified SIAs relied only on activity diagrams. Other types of inputs are usually
used such as source code, BPMs, and use cases to complement the identification process of
candidate services.

Data Flow Diagram A Data Flow Diagram (DFD) is a graphical representation of func-
tional dependencies, based on the analysis of data flows, between business functions or pro-
cesses [71]. The main entities of a DFD are (1) the data stores storing data for later use,
(2) external entities representing the source or the destination of the data, (3) processes ma-
nipulating the data, and (3) the data flows. Only two SIAs use DFDs to identify reusable
services [40, 41].

For example, Zhao et al. [41] rely on DFDs to identify services. They start by elaborating
DFDs based on the system source code analysis. They recommend to design new DFDs



21

for coarse-grained processes and to delete from the diagrams the fine-grained ones. They
map each process of the elaborated DFDs to a service. They finally recommend to design a
composite service that will capture the operations provided by identified services and allow
these operations to be invoked in a defined workflow structure.

DFDs can describe the business logics of a software system. However, they are not always
available nor straightforward to generate from legacy systems. SIAs based on DFDs of ill-
structured systems do not guarantee as well the identification of relevant services [40, 41].
Further, DFDs cannot represent dynamic dependencies because they are only based on the
source code of software systems.

State Machine Diagram A State Machine Diagram (SMD) shows a dynamic view of a
system and describes the different states that entities can have during their lifetimes [72]. We
found that only two SIAs use state machine diagrams as inputs [10, 38]. Canfora et al. [10]
used these diagrams to model the interactions between users and systems, whereas Huergo et
al. [38] used them to model the life-cycle of master data, which they define as any information
considered to play a key role in the operation of a business.

Although state machine diagrams are ideal for describing the behavior of a limited number
of objects, they are not suitable for SIAs that are dealing with large systems due to the
state-explosion problem. Further, they are seldom available, and are not easy to obtain from
source code or documentation.

2.4.3 Domain Artifacts

Domain artifacts provide knowledge about the application domain of the systems. They
include software documentation, human expertise, and ontologies.

Documentation

Software documentation describes and documents systems at different levels of abstraction
[73]. Software documentation includes textual descriptions as well as diagrams and models,
such as the ones discussed above. Software documentation can guide SIAs by reducing the
search space for candidate services by describing key functionalities of the systems. Some
SIAs rely on software documentation to better understand the system at hand, which helps
to identify reusable services [18,36,40,43,44,53]. For example, Aversano et al. [36] proposed
a SIA that analyses the Javadoc documentation of systems to calculate lexical similarity
between the classes or methods of the systems; they then used that similarity to identify



22

clusters of functionality that can map to services. Rodriguez et al. [18] described an industrial
case study in which the documentation of a COBOL system was used to understand the
system and to identify business rules in the code.

As with many other inputs (e.g., business process models, log traces, use cases, etc.), software
documentation is not always available, and often outdated or out of sync with the source
code of legacy systems.

Human Expertise

Human expertise appears in different ways in SIAs. It has been used to fine tune the pa-
rameters of various service identification algorithms (see e.g. [13]). It has also been used to
define the business logic and translate it into business processes [15,34,74]. It is also needed
to analyse use cases and identify candidate services [53]. Finally, human expertise is needed
to define data flow diagrams of the system to then identify candidate services [40,41,44].

Human expertise in SIAs limits the automation of service identification approaches and it
appears in most of SIAs at different steps of the identification process.

Ontologies

An ontology is a structured set of terms representing the semantics of a domain, whether
through metadata or elements of a knowledge domain [75]. Several SIAs use ontologies to
identify services [15, 49,54,76].

For example, Djeloul et al. [54] proposed a WordNet-based technique to identify services.
They built queries by analysing users interfaces. They then used WordNet to expand the
queries and identify pieces of code participating in services. They also used information-
retrieval techniques, such as vector-space model and latent-semantic analysis, to map queries
to the relevant code.

Chen et al. [76] started by analyzing the source code of systems and used three types of
ontologies: a domain concept ontology, a functionality ontology, and a software-component
ontology. They used formal and relational concept analysis to map source code of legacy
systems to the ontologies they specified to identify candidate services.

The major challenge of ontology-based SIAs lies in defining the proper ontologies for the
system. Also, the high cost of developing ontologies in terms of time, effort and resources
remain a well-known bottleneck in the ontology development process [77]. Finally, ontology-
based SIAs are complex and require a lot of human expertise.



23

2.5 RQ2: What are the processes followed by SIAs?

A service-identification process applies one or more identification techniques (e.g, wrapping,
clustering, formal concept analysis, etc.) that target a set of quality metrics (e.g, coupling,
cohesion, granularity, etc.) based on a predefined identification direction (i.e, bottom-up,
top-down or hybrid). Human expertise defines the automation degree of the process, based
on specific analysis types (e.g, static, dynamic, lexical, etc.).

2.5.1 Techniques of SIAs

We classified techniques of SIAs into six types:

• Wrapping: A black-box identification technique that encapsulates the legacy system
with a service layer without changing its implementation. The wrapper provides ac-
cess to the legacy system through a service encapsulation layer that exposes only the
functionalities desired by the software architect [10,78].

• Genetic Algorithm: A metaheuristic for solving optimization problems that is based on
“natural selection". It relies on the calculation of a fitness function to reach an optimal
(or near-optimal) solution. By definition, an optimal solution is a feasible solution
where the fitness function reaches its maximum (or minimum) value [79].

• Formal concept analysis (FCA): A method for data analysis where we derive implicit
relationships between objects in a formal way. It is also considered as a principled
way of grouping objects that have common properties [80]. To use FCA, we should
first specify the context denoted by a triple C=(E, P, R) where E is a set of finite
elements, P is a set of finite properties and R is a binary relation based on E and P.
Also a formal concept is defined as a grouping of all the elements that share a common
set of properties. A partial order could be defined on the formal concepts through
the use of concept lattices [81] that also offer a structured visualization of the concepts
hierarchy.

• Clustering: It consists of classifying and partitioning data into clusters (also called
groups, categories or partitions) that share common properties. These clusters are
built based on the internal homogeneity of their elements and the external separation
between them. In fact, elements in the same cluster should be similar to each other
while elements in different clusters should not [82].



24

• Custom heuristics: Some authors proposed their own heuristic algorithms, instead of
using predefined algorithms, to decompose legacy software into SOA.

• General guidelines: In our context, it refers to approaches that only propose best
practices, lessons learned or recommendations for service identification.

In the following, we describe and discuss the use of these techniques to identify services from
legacy systems.

Wrapping

Wrapping-based SIAs use this technique for encapsulating a legacy system (or subset thereof)
with a service layer and exporting its functionalities without changing its implementation [10].
Seven SIAs use/propose wrapping techniques [10,12,18,35,44,46,48]. For example, Canfora et
al. [10] proposed a wrapping methodology to expose the interactive functionalities of systems
as services. The wrapper acts as an interpreter of a Finite State Automaton (FSA) that
describes the interaction model between the system interfaces and their users. Also, Sneed
et al. [35] proposed an automatic wrapping technique based on the analysis of the public
method interfaces of object-oriented code. They transform the public method interfaces into
a relational table. Then based on this table, they generate WSDL interfaces that describe the
functionalities of web services. Finally, they generate from the definitions of WSDL service
interfaces the corresponding BPEL scripts to manage the service, as well as the corresponding
test script to test the service. Wrapping techniques do not require to understand fully the
architectures/implementations of the legacy software systems. It avoids the decomposition of
the systems into reusable services.However, the underlying systems still must be maintained
and so still need legacy expertise.

Genetic Algorithms

We found only three SIAs that rely on Genetic Algorithms to identify services from legacy
software systems [13,15,60]. For example, Jain et al. [13] used Genetic Algorithms to identify
services in legacy source code. They proposed an identification technique that is based on
spanning trees. They used these representations to provide developers with a set of possible
solutions for the identification problem. They also used a multi-objective genetic algorithm
to refine the initial set of service decompositions. The multi-objective Genetic Algorithm
relied on a fitness function that takes into consideration a set of managerial goals (i.e., cost
effectiveness, ease of assembly, customization, reusability, and maintainability) to get a near-
optimal solution for the service identification problem. Abdelkader et al. [60] proposed also



25

a Genetic Algorithm-based SIA. However, they only take into consideration the functional
cohesion of a set of legacy system modules.

Although Genetic Algorithm-based SIAs may yield near-optimal solutions of reusable ser-
vices, these SIAs do not guarantee to obtain systematically the optimal services that (1)
maximize (or minimize) the fitness function, and (2) are architectally relevant for the iden-
tification problem. Also, the relevance of the identified services highly depend on the choice
of the objectives/managerial goals of the identification.

Formal Concept Analysis

SIAs based on formal concept analysis basically rely on ontologies and/or concept lattices
[81] to identify services [16, 49, 76]. These SIAs usually rely on concept lattices to order
the identified formal concepts and/or to visualise these concepts as well as the specified
ontologies–when used. For example, Zhang et al. [16] used formal concept analysis and
program slicing to identify services in object-oriented systems. They begin by mapping the
program entities (classes, methods) into elements and properties, using documentation and
human expertise. They then applied the Ganter algorithm [83] to build the concept lattices.
Finally, they visualized, interpreted and analyzed these concepts to get meaningful, useful,
and reusable services. Also, Del et al. [49] identified database-related features to be exported
as services. They started by collecting database queries, using the dynamic execution of the
database oriented systems. They then performed an analysis of the queries fields (i.e., the
SELECT and the FROM clauses) and constraints (i.e., the WHERE clauses). They built a formal
context using the concept lattice technique [84]. They used FCA to group related queries
into concepts and map them to candidate services.

The big challenge of using FCA for service identification consists in well identifying the
concepts related to the entities of legacy systems. A proper setting of the formal context
and their entities is required to ensure proper identification of reusable services. Also, the
lack of automation in setting the formal context of the system may hinder the use of FCA
algorithms to identify services in enterprise-scale systems.

Clustering

SIAs use clustering to group classes or functionalities in legacy systems and consider each
group as a candidate service. In general, they combine clustering techniques and custom
heuristics. SIAs based on clustering belong to either one of two categories: classes cluster-
ing [11, 13–15, 43, 47, 55–57, 59, 61, 62, 64–66] or functionalities clustering techniques [45, 48].



26

The main clustering techniques used in the literature are k-means [47, 85] and hierarchical-
agglomerative clustering [43,86] .

For example, Zhang et al. [43] proposed an agglomerative hierarchical clustering technique to
extract reusable services from object-oriented legacy code. They started by analyzing legacy
source code to calculate the similarity between the source code entities. The similarity metric
consider the relationship between classes (i.e, inheritance, association, etc.) as well as the
semantic similarity between them according to their names. They finally express the results
in a dendrogram, which presents a hierarchic view of several possible decompositions of the
system into services. Also, Fuhr et al. [47] used k-means clustering techniques to identify
services according to their type. The similarity measurement is based on how many classes
are used together in a targeted activity execution.

K-means clustering techniques are indeed straightforward to apply. However, their results
in the context of service identification show below-average performance. On the other hand,
SIAs based on hierarchical clustering techniques do not require to specify in advance the
number of the needed clusters/services. However, a subjective choice of the cutting point
level in the generated dendrogram is needed to get the final set of services. This could be
problematic for enterprise-scale systems where the number of possibilities for cutting points
could be important. The choice between K-means and hierarchical clustering depends on the
application context where K-means could be a good option when practitioners already know
the number of services to be identified. On the other hand, hierarchical clustering is good for
the case of unknowing the number of services to be identified. In this case, the hierarchical
clustering will partition the system into a number of services based on the inter and intra
cluster scaling.

Custom Heuristics

Some SIAs use dedicated heuristics [11, 13, 14, 40, 41, 43, 47, 57] to identify services from
legacy systems. Heuristics techniques are usually used with clustering techniques and genetic
algorithms. They also rely on quality metrics to identify candidate services.

For example, Adjoyan et al. [14] proposed a fitness function based on three characteristics
of services: composability, self-containment, and functionality. They grouped classes from
object-oriented legacy software systems using a hierarchical-agglomerative clustering algo-
rithm, which groups classes using the value of the fitness function. Also, Jain et al. [13]
proposed a set of heuristics based on dynamic and static relationships among classes in
object-oriented systems. Then, they used these heuristics with a multi-objective optimiza-
tion algorithm to get sets of classes representing services.



27

Although the use of heuristics is common in SIAs, their main challenge consists in establishing
reliable heuristics to guide the process of identifying reusable services.

General Guidelines

We found two works in the literature that propose only general guidelines for service identi-
fication [34,44].

For example, Alahmari et al. [34] proposed to extract UML activity diagrams from legacy
systems and perform a model-to-model transformation to obtain BPMN from the diagrams.
They argued that having a well defined SOA migration meta-model is important to make the
migration process effective. They recommended the use of ad-hoc metrics because they assist
in deriving optimal services with suitable granularity. Also Sneed et al. [44] proposed several
guidelines for discovering potential services, evaluating these services and extracting their
code from legacy systems. They recommended the use of a highly customizable rule based
decision making mechanisms to identify which portions of legacy code could be potential
services. They also recommended the use of DFDs to analyse data flow of the identified
portions of code and decide about its business value.

SIAs based on guidelines propose general ideas to extract services from legacy software sys-
tems. They are indeed difficult to validate and automate.

Technique SI Method Total
Wrapping [10,12,18,35,44,46,48] 7
Genetic Algorithm [13,15,60] 3
Formal Concept Analyses [16,49,54,76] 4
Clustering [11,13–15,43,45,47,48,55–57,59,61,62,64–66], 17
Custom heuristics [11–14,36–38,40,41,43,47,50,52,53,56–58,58,59,62–66,76] 25
General Guidelines [34,44] 2

Table 2.2 Targeted techniques of SIAs

2.5.2 Quality of Identified Services

Achieving the desired level of quality is critical for service based architectures. As a result,
some SIAs use/target some quality metrics/requirements to obtain high-quality candidate
services.



28

Quality Requirements

We describe the quality requirements targeted by the studies SIAs as follows:

• Reuse: The ability of a service to participate in multiple service assemblies (compo-
sitions) [87]. Better reusability should provide better return of investment (ROI) and
shorter development times [88].

• Maintainability: Services should ease the effort to modify their implementation, to
identify root causes of failures, to verify changes, etc. [89].

• Interoperability: The ability of a service to communicate and be invoked by other
systems/services implemented in different programming languages [4].

• Self-containment: A service should be completely self-contained to be deployed as a
single unit, without depending on other services [14].

• Composability: Services should be composable with one another to be reused and
integrated as services that control other services or that provide functionalities to other
services [90].

Quality requirement SI Method Total
Reuse [15,18,37,43,44,52] 6
Maintainability [45] 1
Interoperability [44] 1
Self-containment [14,43] 2
Composability [14] 1

Table 2.3 Targeted quality requirements by SIAs

As we can see in Table 2.3, a few SIAs consider quality requirements in their identification
techniques. However, service reuse is the most considered requirement by these approaches.
On the other hand, we notice that few studies consider the study of composability, self-
containment, maintainability, and interoperability of the identified services. This could be
because these quality requirements are (1) difficult to characterize and measure and (2) hardly
provide useful insights to identify services.

Quality Metrics

We describe the quality metrics targeted by the studied SIAs as follows:



29

• Coupling: The dependencies among services should be minimized and the function-
alities should be encapsulated to limit the impact of changes in one service to other
services [89].

• Cohesion: Cohesion is a measure of the strength of relationship between the program-
ming entities (e.g., modules, classes, functions, etc.) implementing a service and the
functionality provided by the service [60].

• Granularity: An adequate granularity is a primary concern of SIAs. It can be adjusted
to the scope of the functionality offered by the service [38].

• Total number of services: SIAs must balance between too many “small” services
and not enough services [11].

Quality Metric SI Method Total
Coupling [13,14,34,38,40,41,43,45,51,55,61–66] 16
Cohesion [13–15,18,34,38,40,41,45,51,55,61,62,64,66] 15
Granularity [18,37,38,40,41,43,45,51,52,55,61,62,65] 13
Number of services [11,14,37,66] 4

Table 2.4 Targeted quality metrics by SIAs

Table 2.4 shows that state-of-the-art SIAs highly rely on the use of some specific quality
metrics such as loose coupling, high cohesion, and granularity. However, these SIAs fail at
providing a comprehensive quality model to assess and evaluate the quality of the identified
services.

2.5.3 Directions of SIAs

SIAs can follow three directions: top-down, bottom-up, and hybrid.

• A top-down process starts with high-level artifacts, e.g., domain analysis or requirement
characterization of systems to define their functionalities. They do not consider low-
level artifacts to identify services. Hence, we do not consider further these SIAs in our
study.

• A bottom-up process starts with low-level artifacts to maximize code reuse and mini-
mize changes. It extracts more abstract artifacts, e.g., architectures, which can be used
to identify candidate services. It can also identify new services that fill implementation
gaps or meet new requirements [91].



30

• A hybrid process combines a top-down and a bottom-up process. It starts from re-
quirements and implementation artifacts to identify the candidate services.

Direction SI Method Total
Bottom-up [11–14,16,18,39–

41, 44, 46, 48, 49,
54–57, 59, 60, 62,
66,76]

22

Hybrid [10, 15, 34–38, 42,
43, 45, 47, 50, 52,
53,58,61,63–65]

19

Table 2.5 Identification process directions of service identification methods

As we focus in this SLR on SIAs that follow the bottom-up and hybrid direction, we report
in Table 2.5 the distribution of SIAs over these two directions. Table 2.5 shows that there are
almost equal numbers of bottom-up and hybrid SIAs in the literature. Finally we notice that
bottom-up SIAs are more successful at delivering services in the short-term but they usually
identify fine-grained services with limited reuse. Moreover, Hybrid SIAs tend to complement
and reduce the limitations of bottom-up approaches by also considering requirements.

Analyses Types

Identification approaches may perform static, dynamic, lexical analyses or a combination
thereof to identify services.

• Static analysis is performed without executing a software system. Dependencies be-
tween classes are potential relationships, like method calls and access attributes. These
dependencies are analyzed to identify strongly connected classes, for example, to iden-
tify services. [12,14,35,36,39,43–46] are examples of identification methods based only
on static analysis. The main advantage of static analysis is that it depends only on the
source code. It does not address polymorphism and dynamic binding.

• Dynamic analysis is performed by examining the software system at run time. Depen-
dencies between software elements (e.g., class instantiations and accesses [53], function
calls [45, 64], relationships between database tables [59], etc.) are collected during the
program execution [92]. The execution is performed based on a set of cases that covers
the system functionalities, called execution scenarios.



31

• Lexical analysis techniques suppose that the similarity between the classes should be
taken into account during service identification process. This analysis plays the main
role in approaches that used features location and textual similarity techniques.

Table 2.6 shows that 76% of SIAs rely on static analysis, 39% on dynamic analysis, and 21%
on lexical analysis. Finally we found that 38% rely on a combination of analyses to reduce
the limitations of each individual analysis.

Analysis Type SI Method Total
Static analysis [11–16,18,35,36,38,39,42–46,48–50,52,54,55,57–62,65,66,76] 31
Dynamic analysis [10,13,34,37,38,40,41,45,47,50,53,56,57,59,63,64] 16
Lexical analysis [16,36,42,43,49,54,55,57] 8

Table 2.6 Analyses types of SIAs

2.5.4 Automation of SIAs

Automation is the degree to which a SIA needs human experts. We distinguish three levels
of automation: manual, semi-automatic, and fully automatic.

• Manual SIAs depend entirely on human experts. They only provide general guidelines
to experts to identify services without automating any step of the service identification
process [12, 37].

• Semi-automatic SIAs need human experts to perform some of their tasks. For exam-
ple, Jain et al. [13] proposed a SIA that require a human expert to provide objective
functions and specify weights for each of them.

• Automatic SIA do not need any human intervention during the identification process.
We did not find any approach in the literature that fully automates the identification
of services in existing systems.

Table 2.7 shows that there is a lack of automation of SIAs, especially 88% of the SIAs are
semi-automatic or manual.

2.6 RQ3: What are the outputs of SIAs?

In the following, we discuss the output of SIAs in terms of the target service architecture
(service-based/microservice-based) and discuss the types of services considered by these ap-
proaches.



32

Analysis Type SI Method Total
Automatic [11,39,48,58,60] 5
Semi-automatic [10,13–16,18,34–36,38,40–47,49,50,53–57,59,62–66,76] 32
Manual [12,37,52,61] 4

Table 2.7 Automation of SIAs

2.6.1 Service Architecture

Service identification approaches aim at identifying services that will be integrated in a SOA.

In the past few years, several SIAs have been interested in identifying microservices—a variant
of the service-oriented architecture style—to migrate legacy systems to microservice-based
systems [11, 55, 57, 61–66]. For example, Escobar et al. [62] proposed a microservice iden-
tification approach to migrate a monolithic Java Enterprise Edition (JEE) application to
microservices. They performed a static analysis to cluster session and entity beans into mi-
croservices. They started by associating a cluster to each session bean. They grouped these
clusters according to a clustering threshold that focus on structural coupling and cohesion.
The distance between clusters is calculated based on the number of shared entity beans.

Mazlami et al. [57] proposed a microservices identification approach that relies on the analysis
of data collected from a version control repository of a monolithic application. They also
applied clustering and custom heuristics to extract loosely-coupled and high-cohesive set of
classes that will be mapped to microservices. Both semantic and logical coupling metrics
were considered by their clustering algorithm. In particular, they combined three metrics
to identify microservices: semantic coupling (to identify groups of classes that belong to
the same domain), single responsibility principle (to analyze classes that change together
in commits), and contributor coupling (to identify classes accessed by the same development
team). All these metrics were combined and used by a clustering algorithm to identify groups
of classes that belong to the same domain and could represent a microservice.

We notice that microservices identification approaches rely on clustering and custom heuris-
tics to decompose the system into small services. Although the granularity is an important
characteristic for qualifying microservices, none of the studied approaches provided a com-
prehensive model to evaluate whether microservices are identified with the right level of
granularity. Also, the granularity difference between services and microservices is still nei-
ther well defined nor clearly discussed by the studied microservices identification approaches.



33

2.6.2 Service Types

In this section, we will describe taxonomies of service types and detail existing type-sensitive
SIAs.

2.6.3 Taxonomy of Service Types

We identified only four SIAs that identify specific types of services in existing systems [34,37,
38, 47] and nine papers proposing service taxonomies [29, 34, 37, 38, 47, 93–96], which classify
services with hierarchical-layered schemas to support the communication among stakeholders
during the implementation of SOAs. These existing taxonomies offer several service types
with different classification criteria (e.g., granularity [29, 34, 93], reuse [47, 93, 95], etc.) and
different names for the same service types. We studied these previous works and identified
the following six service types that are generic and cover most of the existing service types.

1. Business-process services: (Also called business service [34, 47, 93, 95]), they cor-
respond to business processes or use cases. These are services used by users. These
services compose or use the enterprise-task, application-task, and entity services de-
scribed in the following. Examples of business-process services include flight booking
services, hotel booking services and sales order services.

2. Enterprise-task services: (Also called capabilities [93]), they are of finer granularity
than business-process services. They implement generic business functionalities reused
across different applications. Examples of Enterprise-task services include online pay-
ment service and tax calculation.

3. Application-task services: (Also called task, activity or composite service [34, 37,
39, 95]), they provide functionalities specific to one application. They exist to support
reuse within one application or to enable business-process services [93]. Examples of
Application-task services include quoting request and invoicing services that take part
in the sales order business process of a typical ERP system.

4. Entity services: (Also called information or data services [29, 34, 95]), they provide
access to and management of the persistent data of legacy software systems. They
support actions on data (CRUD) and may have side-effects (i.e., they modify shared
data). Examples of entity services include clients, bank accounts, and products.

5. Utility services: They do not support directly the business-process services but pro-
vide some cross-cutting functionalities required by domain-specific services [38, 47,95].
Examples of typical utility services include notification, logging, and authentication.



34

6. Infrastructure services: They allow users deploying and running SOA systems. They
include services for communication routing, protocol conversion, message processing
and transformation [34]. They are sometimes provided by an Enterprise Service Bus
(ESB). They are reused in more services than utility services. Examples include publish-
subscribe services, message queues, and ESB.

Considering the different categories of services identified above, we propose a multidimen-
sional taxonomy that aims at supporting the identification of services from the legacy source
code. The dimensions of this taxonomy are:

• Domain: domain-specific (business) versus domain-neutral (technical).

• Granularity: fine-grained versus coarse-grained. The granularity of a service depends
on the complexity of the capability/function the service provides.

• Scope of reuse: Enterprise versus Application. This dimension is dependent on the
two previous ones: domain and granularity. Fine-grained services are likely to be more
shareable as they may be composed to provide different coarse-grained services that
may not belong to the same application. Likewise domain-neutral services, in particular
infrastructure services, may be reused across different applications.

• Side-effects: computation-only services versus services with side-effects. Services with
side-effects are those that manage the application state; i.e. they modify the persistent
data of the application. These are mainly Entity services. To maintain data consistency,
these services require the implementation of some transactional and/or compensation
mechanisms.

Table 2.8 summarises the properties of the different categories of services according to the
dimensions of our taxonomy. In the context of a legacy to SOA migration process, service
categories and their properties should be taken into consideration while building a service
identification approach.

2.6.4 Type-sensitive SIAs

Most of SIAs identify general services of SOA without specifying different service types,
e.g., [14,26,45]. Only a few approaches [34,37,38,47] considered the identification of specific
types of services in existing systems.

For example, Alahmari et al. [34] identified services based on analyzing business process mod-
els. These business process models are derived from questionnaires, interviews and available



35

Service category Domain Granularity Scope of reuse Side-effect

Business Specific Coarse Application No

Enterprise Specific Variable Enterprise No

Application Specific Variable Application No

Entity Specific Fine Variable Yes

Utility Neutral Variable Variable No

Infrastructure Neutral Variable Enterprise No

Table 2.8 A multidimensional service taxonomy

documentations that provide atomic business processes and entities on the one hand, and
activity diagrams that provide primitive functionalities on the other hand. The activity dia-
grams are manually identified from UML class diagrams extracted from the legacy code using
IBM Rational Rose. Different service granularity are distinguished in relation to atomic busi-
ness processes and entities. Dependent atomic processes as well as the related entities are
grouped together at the same service to maximize the cohesion and minimize the coupling.
There is no details about how to identify the different service types.

Fuhr et al. [47] identified three types of services. These are business, entity and utility
services. The services are identified from legacy codes based on a dynamic analysis technique.
The authors relied on a business process model to identify correlation among classes. Each
activity in the business process model is executed. Classes that have got called during the
execution are considered as related. The identification of services is based on a clustering
technique where the similarity measurement is based on how many classes are used together
in the activity executions. The identified clusters are manually interpreted and mapped into
the different service types. Classes used only for the implementation of one activity are
grouped into a business service corresponding to this activity. Entity services are composed
of clusters of classes that contribute to implement multiple activities but not all of them. A
Cluster of classes that are used by all of the activities represent the implementation of utility
services. A strong assumption regarding this approach is that business process model should
be available to identify execution scenarios.

Marchetto et al. [37] proposed a stepwise type-sensitive SIA that extracts reusable services



36

from legacy systems using dynamic analysis of Java source code. They proposed guidelines
to identify Utility, Entity, and Task services. They executed several test scenarios and ex-
tracted reusable functional groupings qualified as candidate services. They identified Utility
services by manually mining non-business functionalities and cross-cutting functionalities,
which can be grouped and exposed as candidate Utility services. They extracted candidate
Entity services by analyzing persistent objects and the classes using them. Finally, they con-
sidered each main functionality of the target application as a possible candidate Task service.
They validated the SIA on small Java systems, limiting its generalisability to real enterprise
systems. Although the proposed SIA is type-sensitive, identification is manual and based on
test scenarios that may not cover all the functionalities of the system.

Huergo et al. [38] proposed a method to identify services based on their types. They rely
on UML class diagrams of object-oriented systems from which they derive state machines to
identify the states of the objects at runtime in the system. They start by manually identifying
Master Data that they define as classes playing a key role in the operation of a business.
Each Master Data is considered a candidate Entity service. Next, they derive state machines
related to the identified Master Data. They analyze the transitions of the state machines
and identify Task and Process services. This SI method is not fully automated and relies on
the manual identification of Master Data in a system.

We notice that there is a lack of SIAs that are type-centric: only four SIAs focus on the
identification of specific types of services from legacy systems. These approaches focus on
identifying business [34, 38, 47], entity [37, 38] and utility services [34, 37, 38, 47]. Also, none
of the studied SIAs tried to identify enterprise-task or infrastructure services through the
analysis of legacy systems. These type-centric SIAs do not distinguish in their service identi-
fication process between enterprise and application-task services as the scope of reuse of the
identified services is not well studied or specified.

2.7 RQ4: What is the usability of SIAs?

Figure 2.2 shows that we consider four elements to estimate the usability of SIAs: validation,
accuracy, tool support, and result quality. We then introduce a measure of the usability of
the SIAs based on these four elements and their values for each SIA.

2.7.1 Validation

Validation refers to the legacy software systems (if any) on which the SIA was applied. It
can be industrial (e.g., real industrial systems), experimental (small, experimental systems),



37

or none at all. We evaluate the usability of a SIA as follows. If the validation is performed
on (1) industrial systems, it is “high”; (2) experimental systems, it is “medium”, else (3) it
is “low”. We found that only 34% of SIAs were validated on real industrial systems, with
most SIAs validated on experimental systems or not validated at all. This lack of industrial
validation is a major threat to the applicability of SIAs.

2.7.2 Accuracy/Precision

We assign “high”, “medium”, and “low” values to the accuracy/precision of SIAs. We assign
“high” if it is greater than 80%, medium if it is between 50% and 79% in the SIA, and low
if it is less than 50%.

Although the accuracy/precision of SIAs is important, we found that only few SIAs have
reported accuracy/precision (as depicted in Table 2.9).

2.7.3 Tool Support

Tool support refers to the tool(s) implementing a SIA and their maturity, if any.

We consider the tool support of a SIA as “high” if it is open-source or industry ready,
“medium” if it is only a prototype, and “low” if there is little or no tool support.

2.7.4 Result Quality

Result quality is an estimation of the quality of the identified candidate services and whether
or not the authors detailed well their proposed SIA. It can be “high”, “medium”, or “low”.



38

2.7.5 Usability

Method ToolSupport Validation Accuracy
/ Preci-
sion

Result
Quality

Usability

Service Identification Based on Quality Metrics [14] Prototype Experimental Medium Medium Medium
A spanning tree based approach to identifying web services [13] MOGA-WSI Industry NA High High
Generating a REST Service Layer from a Legacy System [12] MIGRARIA Experimental NA High High
A service identification framework for legacy system migration into SOA [34] Prototype Experimental NA Low Low
Reusing existing object-oriented code as web services in a SOA [35] Industry ready Industry NA High High
Mining candidate web services from legacy code [36] NA Experimental NA Low Low
From objects to services: toward a stepwise migration approach for Java appli-
cations [37]

NA Experimental NA Low Low

Migrating interactive legacy systems to web services [10] NA Case Study NA Medium Low
MDCSIM: A method and a tool to identify services [38] MDCSIM Industry NA High High
Reverse engineering relational databases to identify and specify basic Web ser-
vices with respect to service oriented computing [39]

CASE Experimental NA Medium High

Identifying services in procedural programs for migrating legacy system to ser-
vice oriented architecture [40]

NA Experimental NA Low Low

A service-oriented analysis and design approach based on data flow diagram [41] SOAD Experimental NA Low Medium
Service discovery using a semantic algorithm in a SOA modernization process
from legacy web applications [42]

MigraSOA Experimental NA Low Medium

Incubating services in legacy systems for architectural migration [43] Prototype Industry NA Low Medium
Migrating to Web services: A research framework [44] NA No Validation NA Low Low
Service Identification and Packaging in Service Oriented Reengineering [45] Prototype Case Study NA Medium Medium
A wrapping approach and tool for migrating legacy components to web services
[46]

Prototype Case Study NA Low Low

Extracting reusable object-oriented legacy code segments with combined formal
concept analysis and slicing techniques for service integration [16]

Prototype Experimental NA Low Low

Using dynamic analysis and clustering for implementing services by reusing
legacy code [47]

Prototype Case Study Meduim Low Low

Service Mining from Legacy Database Applications [48] Prototype Industry NA High High
An approach for mining services in database oriented applications [49] Prototype Industry High High High
Using user interface design to enhance service identification [50] Prototype Industry NA Medium High
A method to identify services using master data and artifact-centric modeling
approach [51]

NA Experimental NA Low Low

Multifaceted service identification: Process, requirement and data [15] Prototype Experimental High Low Medium
The service modeling process based on use case refactoring [52] Prototype Case Study NA Low Low
Extracting reusable services from legacy object-oriented systems [53] Prototype Industry NA Medium High
Locating services in legacy software:information retrieval techniques, ontology
and FCA based approach [54]

Prototype Case Study NA Low Low

Microservices Identification Through Interface Analysis [55] NA Case Study NA Low Low
Extraction of microservices from monolithic software architectures [57] Prototype Industry NA High High
Service Cutter: A Systematic Approach to Service Decomposition [11] ServiceCutter Experimental NA High High
Bottom-up and top-down cobol system migration to web services [18] Industry ready Industry NA High High
Functionality-Oriented Microservice Extraction Based on Execution Trace Clus-
tering [56]

FOME Experimental NA Low Medium

An approach to align business and IT perspectives during the SOA services
identification [58]

Prototype Experimental NA Low Low

Discovering Microservices in Enterprise Systems Using a Business Object Con-
tainment Heuristic [59]

Prototype Industry NA Medium High

A heuristic approach to locate candidate web service in legacy software [60] Prototype Experimental NA Low Low
Identifying Microservices Using Functional Decomposition [61] Prototype Experimental NA Low Low
Towards the understanding and evolution of monolithic applications as microser-
vices [62]

Prototype Industry NA High High

From Monolithic Systems to Microservices: A Decomposition Framework based
on Process Mining [63]

Prototype Industry NA High High

Function-Splitting Heuristics for Discovery of Microservices in Enterprise Sys-
tems [64]

Prototype Industry NA Medium High

From a Monolith to a Microservices Architecture: An Approach Based on Trans-
actional Contexts [65]

Prototype Experimental Medium Medium Medium

Re-architecting OO Software into Microservices A Quality-centered approach
[66]

Prototype Experimental NA Medium Medium

Table 2.9 Usability of SIAs

We consider these four preceding elements to estimate the usability of SIAs. We assign to
each SIA a usability degree (UD) as follows:

UD =
4∑

i=1
Scorei

Scorei ∈ {high = 1, medium = 0, low = −1},∀i ∈ {1, .., 4} and refers to validation, accuracy,
tool support, and usability, respectively.



39

IfUD ≥ 1, then UD = high.

IfUD = 0, then UD = medium.

IfUD ≤ −1, then UD = low.

We tried our best to consider the most important usability criteria and give a rational esti-
mation of the usability degree of the studied SIAs. For example, as shown in Table 2.9, to
calculate the usability of the SIA of Rodriguez et al. [12], we studied the scores relative to
tool support, validation, identification accuracy, and quality results of the approach. This
study has a high tool support through the tool named MIGRARIA (tool-support score is
1). It is validated on an experimental system (validation score is 0). There was no mention
of the accuracy/precision of the approach and thus we did not consider associated scores
for calculating the usability of the approach. Finally, based on our judgment of the whole
approach, we estimated that this SIA has high quality results (quality result is 1). We added
all these scores and obtain a usability score of two, which we qualified as a high usability
degree.

Table 2.9 shows that 39% of SIAs have a high usability degree while 22% have medium
usability, and 39% have low usability. These results show that the studied SIAs are still in
their infancy, mainly due to (1) the lack of validation on industrial systems, (2) the lack of
estimation of their accuracy/precision, (3) their lack of tool support, and (4) their lack of
automation.

2.8 Discussions

In this section, we will discuss our observations about the studied SIAs in terms of the main
nodes of our taxonomy: inputs, processes, outputs, and usability.

2.8.1 Validation

Figure 2.2 shows the taxonomy resulting from our answers to the research questions. This
taxonomy directly derive from the previous sections.

We believe that the validation of a taxonomy is difficult for several reasons. In fact, it is a tool
for researchers and practitioners and, as such, it should be used to assess its strengths and
limitations. Also, a taxonomy often cannot be compared against other ones, either because
they do not exist or because they have different objectives.



40

Ta
xo
no
m
y	
of
	S
er
vi
ce
	id
en
ti
fi
ca
ti
on
	A
pp
ro
ac
he
s	

O
ut
pu
t

P
ro
ce
ss

In
pu
t

B
us
in
es
s	

pr
oc
es
s	

M
od
el

Q
ua
lit
y	

re
qu
ir
em
en
ts

C
om
po
sa
bi
lit
y

D
ir
ec
ti
on

B
ot
to
m
-u
p

To
p	
do
w
n

A
na
ly
si
s	

Ty
pe

St
at
ic

D
yn
am
ic

V
al
id
at
io
n

To
ol
	

Su
pp
or
t

A
cc
ur
ac
y	

pr
ec
is
io
n

R
es
ul
ts

	q
ua
lit
y

U
se
	C
as
e

A
ct
iv
it
y	

D
ia
gr
am

D
at
a	
Fl
ow
	

D
ia
gr
am

So
ur
ce
	c
od
e

D
at
ab
as
e

D
om
ai
n	
A
rt
if
ac
ts

Ex
pe
ri
m
en
ta
l

In
du
st
ry

N
o	
va
lid
at
io
n

H
ig
h

M
ed
iu
m

R
eu
se

M
ix
ed

Se
rv
ic
e	
Ty
pe
s

Q
ua
lit
y	

m
et
ri
cs

C
oh
es
io
n

C
ou
pl
in
g

N
um
be
r	
of

	s
er
vi
ce
s

Lo
w

C
as
e	
st
ud
y

A
ut
om
at
io
n

A
ut
om
at
ic

Se
m
i-

au
to
m
at
ic

m
an
ua
l

M
od
el
	a
rt
if
ac
ts

M
ai
nt
ai
na
bi
lit
y

In
te
ro
pe
ra
bi
lit
y

Se
lf
co
nt
ai
nm
en
t

U
sa
bi
lit
y

G
ra
nu
la
ri
ty

St
at
e	
M
ac
hi
ne
	

D
ia
gr
am

N
on
	e
xe
cu
ta
bl
e	

M
od
el
	r
ep
re
se
nt
at
io
ns

of
	t
he
	s
of
tw
ar
e	

Le
xi
ca
l

H
is
to
ri
c

In
du
st
ry

	r
ea
dy

P
ro
to
ty
pe

N
o	
to
ol
	

su
pp
or
t

A
rc
hi
te
ct
ur
e

Se
rv
ic
es

M
ic
ro
se
rv
ic
es

M
ix
ed

O
pe
n	

so
ur
ce
	

Ex
ec
ut
ab
le
	s
of
tw
ar
e	

m
od
el
	r
ep
re
se
nt
at
io
ns
	

B
P
EL

O
nt
ol
og
y

D
oc
um
en
ta
ti
on

H
um
an
	

Ex
pe
rt
is
e

U
se
r-
A
pp
lic
at
io
n

	I
nt
er
ac
ti
on
s

R
un
ti
m
e	
ar
ti
fa
ct
s

Lo
g	
tr
ac
es

B
us
in
es
s	
se
rv
ic
es

En
te
rp
ri
se
	s
er
vi
ce
s

A
pp
lic
at
io
n	
se
rv
ic
es

Q
ua
lit
y

En
ti
ty
	s
er
vi
ce
s

U
ti
lit
y	
se
rv
ic
es

In
fr
as
tr
uc
tu
re
	s
er
vi
ce
s

Te
st
	c
as
es

Figure 2.2 Taxonomy of service identification approaches



41

2.8.2 Inputs

SIAs rely on diverse types of inputs to identify services. We found that the most used inputs
are source code and business-process models (BPMs). Combining multiple inputs is also
common. The most used combination of inputs are also source code and BPMs [35,37,45,47].
Only 10 SIAs rely on a single input type [12,14,39,46,48,57,60,62,65,66], either source code
again or databases.

2.8.3 Processes

Most SIAs rely on clustering and custom heuristics to identify services. The main challenge
for these approaches is in using adequate heuristics to identify services.

The success of a SOA depends on the quality of the services. Services with low quality at-
tributes may (1) affect reuse negatively and (2) compromise business agility and reduce return
on investment [6]. Quality attributes are therefore important to identify services. However,
not all service quality requirements are considered by state-of-the-art SIAs. Moreover, re-
gardless of the adopted quality requirements, SIAs should provide means to assess/control
the quality of the candidate services. Also, there are many economic factors that SIAs should
take into account. Such aspects could be the implementation and maintenance cost, the re-
factoring cost of the system, and time-to-market. The economic aspects of the identified
methods are widely ignored in the studied SIAs. We believe that more efforts should be done
in SIAs to consider as well such economic aspects which play an important role to select the
appropriate SIA for an organisation.

2.8.4 Outputs

We noticed that microservices architectures have been gaining a lot of consideration in the
past few years as we found many studies focusing on the identification of microservices in
legacy systems. The applied identification techniques are quite similar to those used for
identifying services. On the other hand, few SIAs focus on the identification of specific types
of services. In particular we observed that these SIAs focus on identifying business, entity,
and utility services but not enterprise/application-task and infrastructure services. Also, we
noticed that these type-sensitive SIAs do not distinguish between enterprise and application
task services as the scope of reuse of the identified services is not well specified/studied. We
believe that the identification of services according to their types is a challenging problem
because (1) we have to build a taxonomy that cover all service types, (2) define detection
rules/signature for each service type, and (3) target the metrics or detection rules that are



42

appropriate for each type. We believe that not all service types have distinct signatures as
two different service types may leave similar or indistinguishable signatures in the code. The
taxonomy of service types may not be representative of all existing service types. To mitigate
this threat, we validated our taxonomy through an industrial survey with 45 practitioners who
were involved in migration projects of legacy systems to SOA [17]. None of them mentioned
the identification of new/other types of services.

2.8.5 Usability

We reported that 51% of the state-of-the-art SIAs have medium or low usability degree due
to (1) their lack of validation on real industrial systems, (2) their lack of tool support, and
(3) their lack of automation. In particular, most SIAs consider only small examples in their
validation, also confirmed by some participants in our survey [17]. The participants reported
that a problem exists in the knowledge transfer between academia and industry because of the
lack of consideration of enterprise-scaled systems to validate the proposed SIAs in academia.

Finally, we believe that measuring the usability of a given SIA is quite difficult. Our proposed
metric may partially measure the usability of a given SIA as we do not cover all possible
usability-related aspects. However, we tried our best to consider the most important usability
criteria such as the tool support, the quality of SIA results, the validation of the process
and the accuracy/precision of the SIA. As future work, we aim to empirically validate our
proposed metric of usability with people from academia and industry to study its feasibility
of quantifying/estimating the usability degree of a SIA.

2.9 Other SLRs

Several systematic literature reviews and surveys on SIAs have been proposed in the litera-
ture. In the period from 2009 to 2021, ten surveys [6, 7, 9, 96–102] on service identification
were identified. Although these surveys had different goals, neither of them fully addressed
all our research questions. Table 2.10 contains a summary and comparison between the most
relevant surveys focusing on service identification in the literature.

For example, Boerner et al. [97], only studied business-driven SIAs techniques and focused
on their strategic and economic aspects. They stressed the consideration of economic aspects
when identifying services based only on top down approaches. Birkmeier et al. [103] proposed
a classification of SIAs between 1984 and 2008. This SLR is indeed old, does not fully
addressed our research questions and does not cover recent SIAs. Cai et al. [104] proposed
another survey where they identified the most frequent activities in the state-of-the-art SIAs



43

between 2004 and 2011. Then, Vale et al. [100] made a comparison of SIAs and a list of
recommendation of the most suitable SI technique according to stakeholders’ needs in the
Service-Oriented Product Line Engineering context. Bani et al. [7, 9] proposed two different
surveys about service identification. In the first one they studied the evaluation frameworks
for 24 state-of-the-art SIAs. Then, in the second survey they only identified the challenges of
14 service identification approaches and discuss their limitations. Both studies do not fully
address our research questions as we do in our SLR.

Finally Fritcsch et al. [102] provided a classification of refactoring approches of monolithic
applications to microservices. They studied ten microservices identification approaches and
provided a decision guide for decomposition approaches based on the microservices identifi-
cation requirements.

Although there are several SLRs on service identification in the literature, none of these
surveys fully addressed our research questions. Their focus differ deeply as we cover more in
details state-of-the-art service identification approaches in terms of (1) the artifacts used by
SIAs, (3) the processes of these approaches,(4) the outputs of these processes, and (5) the
usability degree of these approaches. We also propose a taxonomy of SIAs and validate its
correctness and coverage with industrial experts in legacy-to-SOA migration through surveys
and one-on-one interviews.



44

SIA Goal Year Coverage Papers RQ1 RQ2 RQ3 RQ4
Boerner
et
al. [97]

Business-driven SI techniques
comparison with the study of
their strategic and economic
aspects

2009 2005-
2008

5 NA PA PA A

Birkmeier
et
al. [98]

Classification of service iden-
tification techniques

2009 1984*-
2008

15 PA A PA NA

Gu and
Lago
[96]

Providing the basic elements
of SI to help practitioners se-
lecting the most suitable one
basic on their needs

2010 2004-
2009

30 A A A NA

Cai et al.
[104]

Identify frequent used activi-
ties done in several SI research
works

2011 2004-
2011

41 PA A PA NA

Vale et
al. [100]

Comparison of SI methods
and recommendation of the
most suitable SI technique ac-
cording to stakeholders’ needs
in the Service-Oriented Prod-
uct Line Engineering context

2012 2005-
2012

32 PA PA PA PA

Taei et
al. [101]

Suitable inputs identification
for SI methods in small and
medium enterprise

2012 2002-
2010

48 PA PA PA NA

Huergo
et al. [6]

Classification of SI methods 2014 2002-
2013

105 PA A PA NA

Bani et
al. [7]

Exploring existing evaluation
frameworks for state-of-the-
art SIAs

2018 2007-
2016

23 PA PA NA PA

Bani et
al. [9]

Identifying service identifica-
tion challenges in service ori-
ented architecture

2018 2005-
2016

14 PA NA NA NA

Fritzsch
et
al. [102]

Classification of refactoring
approaches of monolithic ap-
plications to microservices

2018 2015-
2017

10 PA PA PA NA

Our SLR Focusing on bottom-up and
hybrid SIAs based on the used
input, the applied process, the
generated output and the us-
ability of the approach
Reviewing SI from the point
of view of researchers and
practitioners interest

2021 2004-
2021

41 A A A A

Table 2.10 Systematic literature reviews of service identification in the literature (A for
Addressed, PA for Partially Addressed, NA for Not Addressed



45

2.10 Conclusion

We presented in this chapter a systematic literature review (SLR) on service identification
approaches (SIAs) that use the artifacts to build legacy software systems as input. We
studied the SIAs in terms of their inputs, their processes, their outputs, and their usability.
We built our taxonomy on our experience with legacy software modernization, discussions
with industrial partners, and the analysis of existing SIAs.

The results of our SLR show that the state-of-the art SIAs are still at their infancy mainly
due to (1) the lack of validation on real enterprise-scale systems; (2) the lack of tool support,
and (3) the lack of automation of SIAs. They also show that the proposed SIAs generally
ignore the economic aspects of the identification phase as well as the identification by service
type. Indeed despite of their importance in the migration process, only few SIAs consider
the economic aspects of the service identification process such as the implementation and
maintenance cost, the re-factoring cost of the system, and time-to-market. Also, most of the
existing SIAs look for services based on their functional cohesion and low coupling with other
parts of the applications, regardless of service types.

Furthermore, we showed that the current trend of SIAs is the identification of microservices
in existing systems. However, the applied identification techniques were very similar to those
used for identifying services. The granularity border between services and microservices is
still not well defined nor clearly discussed by these approaches.

Finally, we found that most SIAs usually do not try to improve the quality attributes of
the identified candidate services. We believe that regardless of the sought quality attributes,
SIAs should provide means to assess the quality of the identified services. Also, more work
should be done to automate the SIAs and consider enterprise-scaled systems to validate the
proposed approaches.

These conclusions and the generated taxonomy served as a support for our following study
of the state of the practices of service identification in industry, that we detail in the next
chapter.



46

CHAPTER 3 State of the Practice of Service Identification In Industry

3.1 Introduction

Several SI approaches have been proposed in the literature of academic research [10–12].
However, these approaches are based on few evidence and out of touch with industry prac-
tices due to the little knowledge about the state-of-the-practice of SI as part of real migration
projects. Therefore, in this chapter, we study the gap between industry and academia by
understanding industrial practices and identifying best practices of legacy applications mi-
gration to SOA in general and SI in particular. Thus, we answer the following research
questions:

• RQ1. What kind of systems are being migrated to SOA?

• RQ2. Why are such systems being migrated?

• RQ3. What approaches are being used for application migration, in general, and SI in
particular?

We survey 45 SOA migration practitioners using an online survey, and interviewed eight of
them to answer these questions. We identify key findings including: (1) reducing mainte-
nance costs is a key driver in SOA migration, (2) domain knowledge and source code of
legacy applications are most often used respectively in a hybrid top-down and bottom-up
approach for SI, (3) SI focuses on domain services, (4) there is little automation–the process
of migration remains essentially manual, and (5) RESTful services and microservices are the
most frequent target architectures.

This chapter is based on the following paper [17] and is organized as follows. Section 3.2
describes the study design. The results of the online survey are presented in Section 3.3.
Section 3.4 reports the results of the interview sessions, which are discussed in Section 3.5.
We conclude in Section 3.6 with recommendations and best practices for SI.

3.2 Study Design

The survey presented in this chapter was conducted between October 2017 and March 2018
and aimed to investigate the state of the practice in SOA migration, in general, and service
identification in particular. Our study consisted of four main phases:



47

Figure 3.1 Study design

A- Preparation of the online survey. We created a web-based survey 1 using Google
forms. The survey was prepared based on our literature survey of the state-of-the art methods
for SI and informal discussions with some subject matter experts. This helped identify the

1https://goo.gl/forms/EE31KeA7R7pUeTYI2



48

dimensions/aspects of the questionnaire, the individual questions, and the possible answers
for each question. Before publishing the survey, we performed a pilot with six potential
subjects, three from academia and three from industry, to validate the relevance of the
questions, their wording, the coverage of the answers, etc. The six ’testers’ went through
the questions and suggested minor changes. The final survey contained six sections: 1)
participants’ professional and demographic data, 2) type of migrated system, and reasons for
the migration, 3) general information about SI methods (perception of importance, strategy,
inputs, level of automation), 4) detailed technical information about SI (technique/algorithm
used, quality metrics considered), 5) Information on the types of services sought and targeted
technologies, and 6) Information about the tools used, and the suggested best practices.

B- Selection of participants. We targeted developers with an industrial experience in
SOA migration. Identifying and soliciting such developers was challenging. We relied on (1)
information about companies that offer modernization services, (2) online presentations and
webinars made by professionals that had the professional’s contact information, and 3) search
queries on LinkedIn profiles, such as “legacy migration OR legacy modernization OR SOA
architect OR SOA migration OR Cloud migration OR service migration OR service mining”.
Once we identified potential participants, we sent them invitations via e-mail, LinkedIn,
Facebook, and Twitter. We chose not to solicit more than three professionals from any given
company to: 1) have an as wide representation as possible, and 2) to not overburden a single
organization with our request.

C- Online survey. We invited 289 professionals to participate, and kindly asked them
to forward our invitations to other people in their network who have experience in SOA
migration and SI. The survey was completed by 47 people, two of which did not participate
in SOA migration projects and whose responses were discarded, leaving us with 45 complete
responses.

D- Validation. We assessed the reliability of the answers in the online survey by looking
for spurious/facetious answers, contradictions between answers, etc. To be able to validate
improbable answers, one question of the survey asked participants if they agreed to be con-
tacted for a follow-up 30-minute interview, and 24 out of 45 agreed; however only eight
could be interviewed in the end and the results of those interviews are shown in Section 3.4.
A two-pass method [105] was used to analyze our transcripts of the individual interviews2.
The first pass of the analysis consists of thematic coding to identify broad issues related to
legacy-to-SOA migration in general and SI in particular. The second pass of analysis was
performed using axial coding to identify relationships among the identified issues. Major

2https://goo.gl/ZYv2Ut for sample transcripts



49

factors were identified using meta-codes. The meta-codes were then used to identify similar
patterns across the data from the multiple interviewees. Overall, the answers were plausible,
and the eight detailed interviews confirmed the questionnaire answers, although provided us
with more in-depth information.

3.3 Online Survey

In this section, we describe the results of our survey. We allowed multiple answers to most
questions of the survey, therefore the sum of the computed percentage may exceed 100% in
some cases. The given percentages are computed based on the total number of participants
who answered a given question.

A- Participants. We reached a total of 45 participants who were involved in legacy-to-SOA
migration projects in different capacities: 50% were software architects, 23.7% were directors
of technology, and 21% were software engineers. The remaining 5.3% of participants men-
tioned other positions such as migration specialists, project managers and CEOs. They work
in different industries: 64% were in technology and telecommunication, 20% from banking
and insurance, 12.8% from health, and 3.2% from education. In terms of experience, 78% had
more than 10 years of experience, and this was somewhat reflected in their age distribution:
23% were less than 35 years old, 39% were between 36 and 45, 20.5% were between 46 and
55, and 17.5% were over than 55 years old.

B- Types of legacy systems. The results show that the legacy systems included main-
frame applications, transactional applications, ERP systems, monolithic client-server appli-
cations, software-analysis tools, and visualization tools; 13% of these were less than 5 year
old, 18% were between 5-10 year old, and 69% were more than 10 years old. In terms of size,
62% of the systems were deemed large, 36% were medium size, and 2% were deemed small.
Cobol (52.6%) and Java (57%) were the two most prominent languages for legacy systems.
Figure 3.2 shows the many other languages used in the migrated applications.

Finding 1: Practitioners migrate different types of old legacy systems implemented mainly
in Cobol and Java.

C- Motivations for Legacy-to-SOA Migration. We asked about the motivations be-
hind the migration of legacy systems to SOA. We provided a list of reasons for the migration
as shown in Figure 3.3. The most prevalent motivation was to reduce maintenance costs
(82%). Practitioners reported during the interviews that the cost involved in maintaining
legacy systems can be high due to (1) the poor/outdated documentation of these systems;
(2) the obsolete/old programming languages used to implement these systems; (3) the de-



50

Figure 3.2 Languages of the systems migrated to SOA

cay and difficulty to understand the architectures, designs, and implementations of these
legacy systems; and, (4) the lack of developers with the skills necessary to maintain these
systems. The second most significant motivation to migrate legacy systems was to improve
their flexibility (64%). We have been told during the interviews that practitioners have dif-
ficulties with legacy systems because they do not allow companies to have the flexibility
required to carry out day-to-day tasks for evolving systems to meet new business require-
ments. The improvement of the interoperability of the legacy systems with the migration
to SOA was the third most significant motivation (64%). During the interviews, practition-
ers told us that SOA eases the interoperability of heterogeneous systems by exploiting the
pervasive infrastructure of the network. Thus, it offers the possibility to continue using and
reusing the business capabilities provided by legacy systems in new, modern systems [29].
Improving system availability and testability as well as improving performance were other
motivations of industrial legacy-to-SOA migration projects (38% each). Participants also
mentioned other business and technical reasons for migrating legacy systems to SOA, such
as improving business agility, having new user interfaces, and embracing new technologies.

Finding 2: Reducing maintenance costs, improving the flexibility and interoperability of
legacy systems are the main motivations to migrate legacy systems.

D- Importance of Identifying Reusable Services from Legacy Systems. We asked
about the importance of identifying reusable services in the source code of legacy systems



51

Figure 3.3 Reasons of legacy-to-SOA migration

during the migration process: 87% of the participants qualified it as important while only
13% thought that it is not. We explain this agreement by the benefits of software reuse,
which (1) increases software productivity by shortening software-development time, (2) re-
duces software development costs by avoiding the re-implementation of existing services, (3)
reduces maintenance costs because the reused services were functional and have been well-
tested, and (4) reduces the risk of introducing new failures into the process of enhancing or
creating new business services. We explain the 13% of disagreement as some participants
undertook top-down migrations rather than bottom-up or mixed migrations and the former
does not require identifying services in source code.

Finding 3: Identifying services in legacy applications is an important step in legacy-to-SOA
migration.

E- Inputs of SI. Through a literature review, we identified several types of inputs used for
SI. We listed these inputs in our survey and asked participants on which inputs they relied
to identify services. Figure 3.4 shows that the most used inputs were source code, business
process models, databases, and human knowledge. 76% of the participants relied on the
recovery of the business logic of legacy systems through the analyses of the source code to
identify services with high business value. 71% relied on the mapping of business processes
with the legacy source code to extract reusable services through human expertise. These
artifacts may help software engineers to have a better understanding of the legacy systems.
Finally, participants rarely relied on ontologies, activity diagrams, state machine diagrams,
and execution traces to identify services. This observation may be due to their unavailability



52

or complexity to establish especially since our practitioners deal with large systems.

Finding 4: Many software artifacts can be used for SI. Practitioners mostly used source
code, business process models, databases, and human expertise. There is a very low interest
in relying on ontologies, activity diagrams, state machine diagrams, and execution traces to
identify services.

Figure 3.4 Inputs for SI in industry

F- Directions of SI. We asked participants about their choices of direction for identifying
services. We proposed three directions: (1) Top-down: starting from domain-specific concep-
tual models, like business concepts and process models, to identify services, which are then
specified and implemented through a forward engineering process; (2) Bottom-up: starting
by analyzing the existing legacy system artifacts and identifying services from reusable legacy
code; and (3) Mixed: starting both from domain-specific conceptual models and the analyses
of the legacy system to identify services. We found that 53% of the participants use a mixed
direction to identify services. Participants used almost equally top-down and bottom-up di-
rections with 23% and 24% each. We explain these observations as follows: (1) practitioners
relied on source code and business process models as reported in Finding 4, (2) practitioners
also relied on extracting the business logic of legacy systems because documentation was not
always available, (3) practitioners prioritized reuse and avoided development from scratch to
reduce time and costs, and (4) practitioners faced limitations due to the lack of legacy ex-
perts/knowledge, unavailability of up-to-date documentation, program comprehension, and
challenges of reverse-engineering legacy systems.

Finding 5: Practitioners highly rely on a mixed direction to identify services during legacy-
to-SOA migration process.



53

G- Techniques for SI. We asked about the techniques that they used to identify services.
As depicted in Figure 3.5, we found that 60% of the participants relied on clustering function-
alities of the legacy systems and exposing these clusters as services. 47% of them relied on
some black-box techniques, like wrapping, because they either consider the migration as an
integration problem or did not want to modify the core functionalities of the legacy systems
because it provided useful services. We observed a low interest in using machine-learning
techniques, formal-concept analysis, or meta-heuristic algorithms to identify reusable ser-
vices. Using these techniques may be challenging for practitioners because they are dealing
with large systems to migrate and so the knowledge required to establish these techniques
could be time consuming and may not lead to optimal results. Also these techniques are
researched by academics and not mainly by professionals Finally, 9% of the participants
mentioned that they did not use any techniques and performed SI manually.

Finding 6: Functionality clustering and wrapping are the most used techniques of SI in
industry.

Figure 3.5 Techniques for SI in industry

H- Analyses types for SI. We asked about the types of analyses that they performed
for SI (static, dynamic, textual, and–or historical analyses). We observed that 87% of the
participants relied on static analyses of the source code of the legacy systems to identify
services. 43% of them reported that they relied on runtime analyses. Participants also
relied on textual analyses for the identification processes. Textual analyses include elements
such as features identification techniques, natural language processing, legacy documentation
analysis, etc. Only 18% of the participants reported that they relied on historical analyses
(analyses of different versions of the legacy system) to extract candidate services, which may
be due to (1) the unavailability of several versions of the legacy system and (2) the difficulty



54

to study the evolution of a legacy system to gather valuable information to identify reusable
services.

Finding 7: Practitioners mostly relied on static analyses of the source code of their legacy
systems for SI.

I- Services Quality Criteria. We asked the participants about the quality metrics/crite-
ria that they sought during SI. We identified the quality criteria, listed in Figure 3.6. Service
reusability was the most sought quality criteria by the participants (62%), followed by ser-
vice granularity (47%), and loose coupling (44%). Reusability was defined by participants
as both a measure of the amount of source code reused in the services and the amount of
services reused in the systems. Costs and the adaptation effort were also considered by the
participants during the identification process (40% and 42% respectively). However, they
did not consider self-descriptiveness, high cohesion, composability, and the total numbers of
services when identifying services.

Finding 8: Only few service quality criteria are desired by practitioners in the SI process:
reusability, granularity, and loose coupling.

Figure 3.6 Desired services quality criteria for SI in industry

J- Types of the Identified Services. We provided practitioners with a taxonomy classi-
fying service types into domain-specific (business) services versus domain-neutral (technical)
services. The provided domain-specific services are: (1) business services, enterprise services,
application services and entity services. The technical services are utility services and infras-
tructure services. We report the results in Figure 3.7. As domain-specific services represent
the business core functionalities of SOA, they were the most targeted services (i.e., business
and application services) during the SI processes compared to technical services. Utility and



55

infrastructure services were the less targeted services because they are SOA-specific services
and utility services are relatively easy to implement.

Finding 9: SI is a business-driven process that prioritized the identification of domain-
specific services rather than technical services.

Figure 3.7 Types of the migrated services

K- Service Technologies. We asked the participants about the services technologies that
they targeted during migration. We found that 75% of them use REST services, 60% use
SOAP and only 4.5% use Service Component Architecture (SCA). Surprisingly, half of the
participants reported that they focused on identifying microservices in legacy systems. While
there is no precise definition of this architectural style, microservices are gaining interest
among organizations, especially with the growth of the Cloud and DevOps paradigms [106].

Finding 10: Restful services are the most targeted service technology in legacy-to-SOA
migration.

L- Automation of SI. We asked the participants about the degree of automation of their
SI techniques as well as the tools they used to this end3. We found that many different
tools are being used as well as manual analyses and in-house tools put together for the
migration of particular legacy systems. However, not one set of tools supports adequately
the migration of systems to SOA. We also found that the majority of the techniques used
by the participants to identify services are either semi-automatic (51%) or manual (42.3%).
Only three participants (6.7%) mentioned the use of tools to identify automatically reusable
services. We highly believe based the reported tools that these fully-automatic approaches
deal with re-engineering tasks as well as wrapping techniques that automatically expose

3we report the list of tools in https://goo.gl/ZYv2Ut



56

legacy systems functionalities as services.

Finding 11: There is a lack of automation of SI techniques in industry but input from
human experts is essential to annotate/qualify intermediate or final results of SI.

M- Threats to the Validity. Construct validity threats refers to the extent to which
operationalizations of a construct (in our case the survey and interview questions and termi-
nology) do actually measure what the theory claims. To minimize this threat, we used both
open and closed questions in the survey and tried to minimize the ambiguities through our
pilot study as we mentioned in section 3.2.

Internal validity acquiescence bias is a kind of response bias where respondents have a ten-
dency to agree with all the questions in the survey or to indicate a positive connotation. It is
sometimes referred to the tendency of a respondent to agree with a statement when in doubt.
We mitigate this threat by doing interview sessions to validate the survey answers. We also
eliminated responses where participants selected all the possible choices for all the questions.
We also mitigate this threats by checking the responses to questions that are related to each
others (e.g. the used input for SI and the identification direction, etc.). Finally, we decided
not to have incentives for participating in our survey to minimize social desirability bias.

External validity the survey participants might not be representative of the general popula-
tion of software developers migrating legacy systems to SOA. Thus, the generalizability of our
survey might be limited. The mitigation of this threat to validity is very challenging because
(1) we are targeting practitioners with very specific technical skills; and (2) professionals are
in general not eager to communicate the details of their in-house tools and techniques of
modernization approaches. To mitigate this risk, we advertised our survey through various
channels (e.g., LinkedIn, Twitter, Facebook and email) and targeted professionals from dif-
ferent legacy modernization companies. Also, to the best of our knowledge, our sample size
is one of the largest such size among many papers in empirical software engineering in gen-
eral and modernization in particular. Participants could freely decide whether to participate
in the study or not (self-selection). They were informed about the topic of the survey, the
estimated time to complete the survey, the research purpose of the study and the guarantee
of the anonymity of their identity and that of their answers.

3.4 Interview Sessions

Eight participants among the 45 agreed to carry phone interviews. Table 3.1 describes the
profile of these participants. The initial purpose of the interviews was to ask the participants
to elaborate on some of their answers or resolve contradictions among their answers. However,



57

the interviews often ended with discussions on issues not addressed in the survey. The
interviews also allowed participants to rectify some of their answers and for our part to
obtain presentations and white papers about their migrations. We now summarize salient
facts gathered from the interviews in terms of the adopted migration strategies and directions
of SI.

Participant Profession Experience Country
P1 Technical Solution Architect 25 years Germany
P2 Legacy modernization and enterprise IT architect 18 years India
P3 Mainframe Modernization Specialist 33 years USA
P4 Legacy and data Center senior consultant 30 years Italy
P5 Software modernization expert 15 years Canada
P6 IT Architect 20 years Canada
P7 Director of technology 12 years Canada
P8 Software Engineer 7 years France

Table 3.1 Information about the participants in the interview sessions

3.4.1 Migration Strategies

We asked the interviewed participants about their adopted migration strategies to migrate
legacy software systems to SOA. We identified three strategies: rehosting, legacy system
re-architecture, and rehosting followed by re-architecture.

A- Rehosting (adopted by P1, P3, P6) consists of moving a legacy system with minimal
changes from one platform, typically legacy mainframes, to more modern alternatives such
as Linux, Unix, or Windows in two ways: (1) by running emulators or virtual machines of the
source platform on the target platforms (e.g., a VMS or AS400 emulator/virtual machine on
Linux) or (2) by rewriting the parts of the systems that interface with the target platforms.
The business logic and data of the legacy systems remain unchanged on the new platform.
Rehosting is done when the hardware or software platforms become too costly to support –or
are no longer supported –by the manufacturer/vendor. The systems can be wrapped within
services once they are integrated on the new platforms.

B- Legacy systems re-architecture (adopted by P1, P2, P5) is a migration strategy in
three steps applied each on three different layers: the application-code layer, which contains
the legacy code in Cobol, PL1, etc.; the information layer, which gathers data access through
files, databases etc.; and, the business-process layer which describes the business logic of
the system. The three migration steps are: (1) Legacy system discovery and migration
planning, it focuses on cataloging and understanding all the assets in the legacy systems,



58

“we are importing the code in our toolset. We are looking for dependencies and capturing
business processes. We just take a look if everything is complete” said P1; (2) Design, this
phase consists in designing the new system, a “future case analysis repository” that contains
enhancements to the legacy business processes and all the modernized data and future SOA
model are stored in the information layer ; and (3)Target system development and test, this
phase “is a very classic software development phase just to develop and test the new SOA
based system” said P1.

C- Legacy systems re-hosting and re-architecture (adopted by P1, P4, P7, P8) aims
to build new SOAs that yield the business values of the legacy systems while minimizing costs
related to legacy hardware and ensuring a progressive and incremental replacement of the
legacy code. This migration strategy is mainly used to “minimize disruption while ensuring
business continuity” said P8. It avoids the “big-bang” migration strategy by (1) re-hosting
the legacy systems to modern platforms to minimize hardware costs, (2) creating wrappers
to hide the internal legacy functionalities, and (3) replacing progressively the legacy code.

3.4.2 Directions of SI

We detail in this section the adopted directions of SI by our interviewees.

A- Bottom-up strategies (P1, P3, P4, and P5) consist of identifying artifacts of the legacy
code that implement reusable business functions to be repackaged as services: “Through the
bottom-up SI strategy we want to reuse the existing legacy code certainly, but not the archi-
tecture. Most of legacy systems that we deal with have about 25 millions lines of code. If
we want to write them again, it can take years” said P5. The artifacts used by bottom-up
approaches include the source code, data flow analyses, legacy system interfaces, databases,
documentations, and human expertise. Reverse-engineering tools were used to understand
the legacy systems and extract their business logic, especially when there is a lack of docu-
mentation and experts. Several interviewees reported using both in-house and open-source
tools to reverse-engineer systems. For example P5 used an in-house tool based on the Knowl-
edge Discovery Model (KDM) to obtain call and data-flow graphs of COBOL systems. P5
relies on functionality clustering and pattern matching to identify reusable services: “We are
searching for patterns and we are looking for business rules or business logic that match with
these patterns and heuristics. We are doing data flow analysis with slicing to identify reusable
business functions that can be grouped and deployed as services”. Many interviewees (P1, P3,
P4, and P5) also relied on techniques for detecting code clones to identify reusable services.
“What we also do in many cases is looking for duplicate code pattern because in many cases
business rules are duplicated, you need to decide what to take out of this” said P4.



59

B- Top-down strategies (P7) starts from the analysis of domain-specific conceptual models
and requirements to specify the services of the targeted SOA. P7 recommended to use this
strategy when (1) legacy source code is not available, (2) legacy source code is not reusable, (3)
cost of re-engineering and integrating legacy systems is high, and (4) organizations are mature
enough in terms of business processes. P7 reported that they adopted a semi-automatic
top-down strategy for SI to migrate a legacy banking system to SOA. They used BPMN
process models of the banking legacy system as input. They begun by identifying the entity-
services and the application services. They then moved to higher-level services, such as
task-centric services, and finally developed an orchestration layer that represented business
services. This strategy is based on the analysis of “information” used in each activity of the
business processes. P7 explained that “information could be a document, reports, windows,
screens, an entity etc. that is required in the execution of an activity”. To identify entity
services from business processes, key information manipulated in the business process models
was identified. An information is considered as key by P7, if it meets at least one of the
following conditions: (1) its number of occurrences exceeds a given threshold and (2) it is
related to a highly solicited activities.

C- Mixed strategies (P1, P2, P3, P4, P5, P6, and P8) rely on reverse-engineering tech-
niques to document the legacy systems, extract the business logics, and identify reusable
pieces of code that can be exposed as services. They also rely on forward-engineering tech-
niques to define the business processes of the target SOAs and to design and implement the
services. P2 said: “Sometimes if the source code is available and documentation is not, we
use some parser based tools to reverse-engineer these applications. These tools will create
some documentation from the code and then that documentation is used to do the forward
engineering and complete the targeted SOA road map”. He also argued that “through this
documentation we create use cases for forward engineering to complete the identification, the
design and the implementation of the services”. P1 said “we document everything in our
system and then at the very end we identify the business rules mark them in the code and you
can extract them afterwards [...] we have a list of business processes and core code description
and we also document this, and based on this we are creating our service-oriented material”.

D- Final choice of the identified services is a manual process driven by subject-
matter experts. P5 said: “We make proposition about the services that we identify and ask
the customer if it makes sense. Sometimes at technical level we have better knowledge than
the customer but not from business process level”.



60

3.4.3 Threats to Validity

Internal validity. Social desirability is a bias that leads any respondent to deny undesirable
traits and report traits that are socially desirable. To minimize this threat, we did not put
any incentives for the participants to participate in the interviews. We also guaranteed the
interviewees their anonymity and emphasized that all the reported information will be only
for research purposes.

External validity. Information from our interviews is not generalizable as the number of
the interviewees is a bit on the low end for software engineering studies. However, it is
acceptable given that it is unquestionably difficult to find interviewees in legacy-to-SOA
migration domain. We only sought to obtain a better understanding of the results of the
online survey. Also, Table 3.1 shows that our interviewees are experts in legacy-to-SOA
migration and, thus, that our sample is still reliable because we are dealing with subject-
matter experts.

Conclusion validity. The information from our interviews also show some threats to the
validity of our conclusion because some interviewees contradict each other or, for one inter-
viewee, change their answers to the survey. However, this threat is acceptable because we
use these interviews with the purpose to mitigate and discuss the answers to the survey.

3.5 Discussions

After analysing the survey and interview data, we highlight the following facts.

Importance of Service Identification From Legacy Systems. We observed that SI
is an important step in the overall legacy-to-SOA migration process for most practitioners,
especially when it comes to the context of SI from legacy systems. As emphasized by P4
“It is important because we are able to identify the reusable of the code. SI is considered
as the main helmet to measure the impact of the migration[...] you need to understand the
migration cost which is in many cases too expensive, you have to cut the cost by identifying
reusable pieces of the legacy code in a cost-effective way”. Thus, the agreement about the
importance of identifying reusable services in industry can be explained by the benefits of
software reuse. However it should be noted that SI is not always fine-grained as mentioned
by P6 “We basically wrap the legacy system and expose all its functionalities as services”.

Business-value Driven Service Identification. We notice that not all service quality
criteria are equally targeted by practitioners. Unlike academia, efforts in industrial SI strate-
gies are made to deal with business constraints such as the recovering of the business logic
of legacy systems and extracting reusable functionalities with high business value. There are



61

big investments by practitioners to preserve the business logic of legacy systems rather than
to care about service quality constraints. As it is stated by P2, SI is mainly driven by the
customers business needs: “Our customers do not really focus on these features. I am not
saying that these quality criteria are not necessary but because of the business constraints,
considering service quality metrics become a lower priority comparing to timing to finish the
project and return in investment issues”. Also, technical constraints may hinder the consid-
eration of quality metrics : targeting quality metrics while identifying reusable pieces of code
that can be exposed as services may not be suitable for all legacy technologies like mainframe
legacy systems for example: “For banking mainframes systems it is not easy to use that kind
of approach since we are dealing with routines” stated P4.

Automation and Experts Feedbacks. The full automation of SI process is not the
primary focus of practitioners. It is even the case of big modernization companies as it is
stated by P1 “In our SI methodology we are not doing everything automatic, automation
is about 70% of all the migration project”. However, there is automation in wrapping and
reverse engineering techniques to document and extract the business logic of legacy systems
when the documentation is absent. Feedback loop with business analysts and customers is
considered essential by practitioners to decide about the pertinence of a candidate identified
service. Practitioners also do not take the risk to try to fully automate the SI process as it is
a challenging problem with unpredictable results, time consuming and needs a lot of research
investments.

Gap between Academia and Industry. None of the interviewed practitioners mentioned
the use of research papers or academic resources for their migration projects. From the
point of view of practitioners, "academics do not see the larger picture of the real industrial
problems and challenges they are facing” as stated by P2. The lack of cost-effective academic
SI technique and the lack of validation on real enterprise-scale systems is a problem that
hinders knowledge transfer between academia and industry in the context of legacy-to-SOA
migration.

3.6 Conclusion

We presented in this chapter a state of the practice of SI in industry to support the migration
of legacy software systems to SOA. We surveyed 45 industrial practitioners and interviewed
eight of them to collect, analyze, and report their experiences with the migration of legacy
systems. Our results showed that reducing maintenance costs and improving the flexibility
and interoperability of legacy systems are the main motivations to migrate these systems to
SOA. They also showed that SI is perceived by practitioners as an important step for the



62

migration, in particular to identify reusable code in the legacy systems. In addition, they
showed that SI is a process driven by business value rather than quality criteria, even though
some practitioners consider some quality criteria (mainly reusability, granularity, and loose
coupling). Finally, our results showed that SI remains a manual process in which human
experts’ feedback is essential to annotate/qualify intermediate or candidate services.

Based on these observations, in the next chapter we study the gap between academic and in-
dustrial SIAs and derive several recommendations that will be considered in our identification
approach.



63

CHAPTER 4 Gap Analysis between Academia and Industry

4.1 Introduction

In this chapter, we investigate gaps between academia and industry for service identification
based on our SLR (Chapter 2) and survey (Chapter 3). We compare the inputs, processes,
and outputs of SIAs in academia and industry. We derive several recommendations for
identifying services in legacy systems. We rely on these recommendations to propose our
SIA that we detail in chapter 5.

This chapter is based on the following paper [23]. In Section 4.2, we compare the used inputs
for services identification in academia and industry. In Section 4.3, we study the processes
of academic and industrial SIAs in terms of the used techniques and the type of analysis. In
Section 4.4, we compare the outputs of academic and industrial SIAs. In Section 4.4, we list
the recommendations that we derive. Finally Section 4.6 concludes the chapter.

4.2 Inputs of SIAs

We identified several types of inputs used for SI in academia and industry, e.g., source code,
database, business process, user interface etc. Figure 4.1 shows that both academic and
industrial SIAs mostly rely on source code, business process models, and human expertise,
possibly due to the availability of such artifacts with legacy systems. We also noticed that
both academic and industrial SIAs rely on the recovery of the business logic through analyses
of the source code to identify services with high business value. They also map business
processes with the legacy source code to extract reusable services through human expertise.

Both academic and industrial SIAs rarely rely on ontologies, activity diagrams, state ma-
chines, and execution traces to identify services, possibly due to their unavailability or the
complexity to obtain them, especially with large systems. None of the participants men-
tioned test cases. Only a few academic approaches relied on such inputs. We also observed
discrepancies: practitioners rely a lot on use cases, user interfaces, database schemas, and
data-flow diagrams while such artifacts are seldom considered by academia.

Practitioners generally migrate systems with very old technologies (COBOL, CICS, etc.)
[107]. They have/develop tools to generate documentations for these systems. They rely on
these tools to generate, for example, data-flow diagrams and use cases to support (1) the
understanding of the legacy system and (2) the identification of candidate services.



64

Figure 4.1 Inputs of SIAs

Finding 1: Many software artifacts can be used for SI. The most widely used inputs by both
industrial and academic SIAs are source code, business process models, and human expertise.
Ontologies, activity diagrams, state machines, and execution traces are seldom used to identify
services by both academia and industry.

4.3 Processes of SIAs

We now compare the processes used in academic and industrial SIAs in terms of techniques
and types of analyses (e.g, static, dynamic, lexical, etc).

Techniques of SIAs

We identified several techniques used to identify services, shown in Figure 4.2.

We found that clustering software artifacts and exposing the clusters as services is the most
used technique in both academia and industry. We found discrepancies in the other tech-
niques used by academia and industry: 47% of the participants relied on wrapping techniques
because they considered migration an integration problem. They did not want to modify the
legacy system per se because it provided reliable business functionalities. This technique is
rarely considered by researchers who instead focused on custom heuristics, usually combined



65

Figure 4.2 Techniques of SIAs

with clustering techniques.

We observed a low interest by both academia and industry in using machine-learning tech-
niques, formal-concept analysis, and genetic algorithms to identify services. Using these
techniques may be challenging for practitioners because they may be unfamiliar with these
techniques, which may lead to sub-optimal results. More studies should be done by re-
searchers to investigate the efficiency of such techniques in identifying services in legacy
systems.

Finding 2: Clustering is the technique most used by academia and industry to identify
services. In second place, practitioners favour wrapping and researchers custom heuristics.

Types of Analyses

SIAs may perform static, dynamic, lexical, historical analyses, or some combination thereof
to identify services.

Figure 4.3 shows that both researchers and practitioners use the same types of analyses.
They relied on static analyses of the source code of legacy systems. They also used dynamic
analyses. Some practitioners (43%) and academic SIAs (20%) relied on textual analyses.
Only 18% of the participants and 2% of academic SIAs relied on historical analyses, which
may be due to (1) the unavailability of the history the legacy system and (2) the difficulty
to study its evolution to obtain usable data.



66

Figure 4.3 Types of analyses of SIAs

Finding 3: Both researchers and practitioners relied mostly on static and dynamic analyses
of the source code to identify services.

4.4 Outputs of SIAs

We asked participants the types of services that they identify and search for type-sensitive
SIAs in the literature. We report the results in Figure 4.4. We found that identifying
services by types is mostly used in industry. There is a lack of type-sensitive academic SIAs.
During interviews, several practitioners highlighted the importance of identifying the types
of services when migrating to SOA, i.e., the nature and business capabilities of the identified
services [107].

Because domain-specific services represent the core business functionalities of a legacy system,
they were the most targeted services by SIAs, compared to domain-neutral services. Utility
and Infrastructure services are SOA-specific services, with utility services relatively easy to
implement.

Finding 4: Service identification is business driven. Practitioners prioritise the identifica-
tion of domain-specific rather than domain-neutral services. There is a lack of type-sensitive
SIAs in the academic literature.

We now present the results of our comparison between academic and industrial SIAs in terms
of inputs, processes, and outputs.



67

Figure 4.4 Types of services in SIAs

4.5 Recommendations

We drew several lessons from these results, which we summarize as follows.

Service identification is a business-value driven process. When identifying services
we must focus on the functional clusters that implement useful and reusable business func-
tions. We must not focus on technical/architectural properties, as many academic techniques
do (e.g., [13–15,51]). While the research literature identifies many service types, SI must first
and foremost focus on identifying domain services, i.e., entity, business, and process services
that have business values.

A deep understanding of the domain and a great familiarity with the legacy
systems are necessary. Because SI is driven by business values, we must have a deep
understanding of the domain, including its main entities and processes. We must also be
familiar with the legacy systems in which to identify services. While the research literature
assumes that the SI techniques are independent of the legacy experts, they should allow
incorporating seamlessly knowledge from experts who are familiar with the systems.

The input must be source code and production data. A Swiss army aphorism states
that “If the map and the terrain disagree, trust the terrain”. With legacy systems, docu-
mentation (the map) may be absent or awfully out of date. The source code (the terrain)
is the only reliable source of information about what the current system does. Therefore,
SIAs should consider analysing the source code of legacy systems (when available) to iden-
tify reusable services accurately. Source-code analysis could also be complemented by other



68

inputs, such as business processes and human expertise.

The output must be high-value, coarse-grained services. Regardless of the targeted
SOA technology, be it SOAP, RESTful, or microservices, the output of any SI technique
must be high-value, coarse grained domain services. SI should consider the types of services.
This consideration could improve the identification accuracy by narrowing the search space by
types of services and their associated code-patterns. Types could be used to classify candidate
services hierarchically and to prioritize the identification of specific types of services according
to their business values or the requirements of the migration process.

The process must follow a (proven) methodology. Migration projects are complex
endeavors, regardless of the source and target technologies. There is value in adopting or
adapting an existing SOA migration methodology because such methodologies prescribe pro-
cesses, deliverables, and quality metrics to guide the migration. While the research literature
proposes techniques, the participants recommended using existing methodologies including
Oracle’s OUM Methodology, IBM’s Service-Oriented Modelling and Architecture (SOMA)
methodology [108], and devising SI techniques as parts of these methodologies. The process
of a SIA should also rely on a clustering algorithm to group cohesive entities in the sys-
tem that will be repackaged into services. The clustering technique should consider some
heuristics related to the legacy system to tune the identification of functional groupings. The
identification process should also consider quality requirements and metrics to identify high
quality architecturally significant services.

4.6 Conclusion

We presented in this chapter a comparative analysis of the state of the practice of SI in
academia and industry to support the migration of legacy systems to SOA. Our analysis
showed that there is a gap between academia and industry regarding the proposed service-
identification approaches in terms of inputs, processes, and outputs. Based on this analysis,
we drew several recommendations for service identification.

We now build on these recommendations to propose our service-identification approach. Our
approach relies on the static analysis of the source code of legacy systems and consider the
identification of specific types of services during the identification process.



69

CHAPTER 5 Type Sensitive Service Identification Approach

5.1 Introduction

The maintenance and migration of legacy software systems are central IT activities in many
organizations in which these systems are mission-critical. These systems embed hidden knowl-
edge that is of significant values. They cannot be simply removed or replaced because they
execute effectively and accurately critical and complex business logic. However, legacy soft-
ware systems are difficult to maintain and scale because their software and hardware become
obsolete [3]. They must be modernized to ease their maintenance and evolution.

A common strategy for modernizing such systems is their migration to service-oriented ar-
chitecture (SOA), which defines a style where systems are made of services that are reusable,
distributed, relatively independent, and often heterogeneous [29]. Service Identification (SI)
is considered one of the most challenging steps of the migration process [8]. It consists in
identifying reusable groupings—clusters of functionalities in the legacy system that qualify
as candidate services in the target architecture.

Several SI approaches have been proposed in the literature [10–16]. However most of them
have limited identification accuracy and usually require several types of inputs (e.g., business
process models, use cases, activity diagrams, etc.) that may not be always available especially
in the context of legacy systems. We argue that service identification should depend on service
types to improve the identification accuracy by narrowing the search space through the types
and their associated code-patterns.

Service types should be used to classify service candidates according to a hierarchical-layered
schema and offers the possibility to prioritize the identification of specific types of services
according to the business requirements of the migration process. Also, in chapter 3, we
reported that several practitioners highlighted the importance of identifying service types
when migrating legacy systems to SOA. They claimed that type-aware SI provides important
information on the nature and business capabilities of the identified services. Besides, existing
source-code SI approaches use similar functional-clustering criteria—typically cohesion and
coupling, which lead to candidate services that are often architecturally irrelevant for the new
SOA-based system.

Consequently, we propose ServiceMiner, a type-aware SI approach to support the migration
of legacy systems to SOA. We consider a bottom-up approach relying on source code analysis,
as other sources of information (e.g., business process models, use cases, activity diagrams,



70

etc.) may be unavailable or out of sync with the actual code. We use a categorization
of service types based on previous service taxonomies and describe the code-level patterns
characterizing each type of service. We evaluate ServiceMiner on an open-source, enterprise-
scale legacy ERP system and compare its results to those of two state-of-the-art SI approaches
[11,13]. We show that our approach automates the identification of specific types of candidate
services, which are architecturally significant for the new SOA-based system.

This chapter is based on the following papers [22,23] and is structured as follows. Section 5.2
details the service identification approach. Section 5.3 presents the experimental validation
of our approach and details the obtained results. We discuss in Section 5.4 our threats to
validity. Finally, we conclude in Section 5.5 with future work.

5.2 Approach

Figure 5.1 summarizes our SI approach, ServiceMiner, which consists of two phases: (1)
a pre-processing phase in which we build a model of a system using source code analysis,
perform an initial clustering of highly connected classes, and compute code metrics and (2)
a processing phase in which we apply metric-based rules, called SI rules in the following, on
the clusters to filtrate, reorganise, and classify them to identify candidate services and their
types.

5.2.1 Pre-processing Phase

Model Generation Our SI rules in Table 5.1 use code metrics, such as fanin and fanout,
computed on the model of the legacy system. Legacy systems come in different languages and

Source Code

KDM
Call Graph
Generation

Metrics
Calculation Metrics

Initial Clustering

Detection Rule Of Candidate
Utility Services

Detection Rule Of Candidate
Entity Services

Detection Rule Of Candidate
Application Services

Candidate Utility
Services

Candidate
Entity Services

Candidate
Application

Services

Phase 1: Pre-Processing Phase 2: Service Identification According To Their Type

1

3

4

5

6

2 Utility
Services

Entity
Services

Application
Services

Refinement Rule Of Utility
Services

Refinement Rule Of Entity
Services

Refinement Rule Of Application
Services

7

8

9

Figure 5.1 Overview of our SIA



71

may combine several technologies. In this first step, we parse the source code of the legacy
system and build its model based on the OMG Knowledge Discovery Metamodel (KDM) [109],
which was defined to represent (legacy) systems at different levels of abstraction, regardless
of languages and technologies.

We use MoDISCO [110], an Eclipse-based open-source implementation of the KDM that
provides an extensible framework (1) to obtain KDM models from source code in different
languages and (2) to navigate the KDM models, which we use to compute metrics on the
models.

Metrics Calculation Our rules use class-level and method-level metrics. We use the
models obtained in the previous step to compute class-level metrics and, to simplify the
implementation of our SIA, we use Understand1 to compute method-level metrics.

We also analyze the static relationships between the constituents (classes, methods, etc.)
of the model. A relationship may be a generalization, an aggregation, or an association
between classes, for example. We assign a weight to each of them according to their relative
importance. The total relationship weight between a pair of related constituents is:

Weight(Ci, Cj) =
T∑

t=1
Wt ×NRt

where Ci and Cj are the constituents, T is the number of relationships, Wt the weight of a
relationship of type t, and NRt the number of such relationship between Ci and Cj.

Initial Clustering The SI rules in Table 5.1 apply to candidate clusters that group classes
contributing together to some functionalities. We rely on Kruskal’s maximum spanning-tree
algorithm [111] to generate our initial set of clusters because (1) it is an efficient polynomial-
time algorithm for generating clusters, (2) it was used by several state-of-the-art SIAs [13,57],
and (3) a free implementation of the algorithm is provided in the open-source Java library
Jgrapht, which can be integrated into our approach.

5.2.2 Processing Phase

Not every cluster is a candidate service. To identify clusters that could become services, we
first assign them a type. We first discuss service types and their code patterns qualitatively
and then express them as rules, shown in Table 5.1.

1http://www.scitools.com



72

In the following, we consider the identification of only Utility, Entity, and Application services
and explain how to identify these types through the analysis of the source code of legacy
systems.

We exclude Infrastructure services because legacy systems are likely not to contain such
services by their very definition. We do not distinguish between Application and Enterprise
services because they only differ in terms of scope of reuse: within a single system vs. across
systems. Finally, we do not consider Business services because (1) they orchestrate other
services, such as Application services and (2) other sources of information, e.g., business
processes, are required to detect them.

Each type of service is mutually exclusive and their detection is hierarchical: first we de-
tect candidate Utility services. Within the remaining clusters, we detect Entity and then
Application services, as follows:

• Utility services provide highly generic functionalities that are separate from domain-
specific business processes and reusable across a range of business functionalities [29].
We detect Utility services by identifying clusters with high fanin (highly solicited/called
clusters) and low fanout (clusters that do not call many others). They are domain-
neutral so the identified clusters should not persist data or contain database queries.

• Entity services represent and manage domain-specific business entities, such as prod-
ucts, invoices, etc. They are data-centric and reusable by other domain-specific services,
such as Application services. We classify a cluster as an Entity service with (1) high
fanin, (2) low fanout, (3) persistency, (4) access to the infrastructure (e.g., database),
and (5) fine grained.

• Application services are domain- and system-specific. They have low fanin compared
to Entity and Utility services. They also use Entity services. They generally perform
complex computations and handle (user) errors. We classify a cluster as Application
service if it has (1) a call to at least one Entity service, (2) a high McCabe complexity,
and–or (3) error handling capabilities.

The main challenge of a clustering algorithm is to group accordingly related classes in the
same cluster. when we used the clustering algorithm we noticed that some initial clusters are
not architecturally significant because (1) they sometimes group classes that are not in the
same domain, (2) not all the classes of the system are present in the clustering, and (3) there
are initial clusters that are too fine grained (e.g. clusters with only one class). To enhance
the quality of the identified candidate services, we add each missing class in a cluster before



73

Service Type Detection rules
Utility Services Very High Fanin AND Very Low Fanout AND Not persistent
Entity Services Not Utility service AND High Fanin AND Low Fanout AND Persis-

tent AND Access to infrastructure AND Fine grained
Application Services Not Utility AND Not Entity AND Low Fanin

AND ( Call to Entity ≥1 OR High McCabe Complexity OR Error
Handling)

Table 5.1 Detection rules of services according to their types

applying our SI rules to identify candidate services. After that, we apply the refinement rules
on clusters/candidate services with the same type.

Listing 5.1 shows the pseudo code of the used refinement rules. Because service granularity,
cohesion and coupling are essential quality criteria that should be considered in a SOA-
based system, we consider these elements to merge candidate services. For example, to
refine candidate entity services, we select clusters that are labelled “entity” (Line 8). We
randomly select entity candidate service (Line 12) and check if it should be merged with
another candidate service with the same type. The merge is done with the most coupled
service if the total size of the final entity service is less than the maximum allowed size (Lines
14 to 21). We repeat the process several times until we reach a predefined maximum number
of iterations (Line 10).

Listing 5.1 shows the use of several constants to direct the refinement rules. These constants
must be set by the developers using our approach to identify services. They cannot be set in
general because they depend on both the analysed system and the developers’ requirements.
The developers would set some starting values and then would apply our approach. Then,
through trials and errors, they would identify the values most appropriate for the analysed
system and their requirements, e.g., the sizes of services and number of iterations.



74

Listing 5.1 Pseudo Code of the refinement rules

IC : Set o f a l l i n i t i a l c l u s t e r s
TotalTypes : Number o f s e r v i c e types
MaxSize_i : Maximum s i z e o f a c l u s t e r with Type_i
MaxIterat ions : Number o f i t e r a t i o n s

For ( i=1 To TotalTypes )

IC_i = Set o f candidate s e r v i c e s with Type_i in IC

For ( j = 1 To MaxIterat ions )

S e l e c t randomly Serv i ce_j From IC_i

S e l e c t Service_k from IC_i Where
s i z e ( Service_k ) + s i z e ( Serv i ce_j ) <= MaxSize_i
AND Coupling ( Serv ice_j , Service_k ) = MaxCoupling_j

I f NotNull ( Service_k ) Then
Merge ( ( Serv ice_j , Service_k )
Remove( Serv i ce_j ) from IC_i

End i f
End For

End For

5.3 Experimental Validation

We validate our approach via (1) a quantitative validation on two legacy systems, (2) a
qualitative validation of the services related to a particular feature of one system, and (3) a
comparison of the results with those of three state-of-the-art approaches on the two systems
[11,13].

5.3.1 Case Studies

We choose two Java legacy systems for our validation.



75

Compiere is one of the few large, Java, open-source legacy system available on the Inter-
net. It is a legacy system because it is a large ERP system with a long history, first introduced
by Aptean in 20032. It provides businesses, government agencies, and non-profit organizations
with flexible and low-cost ERP features3, such as business partners management, monitoring
and analysis of business performance, control of manufacturing operations, warehouse man-
agement (automating logistics), purchasing (automating procurement to payment), materials
management (inventory receipts, shipments, etc.), and sales order management (quotes, book
orders, etc.). It supports different databases, including Oracle and PostgreSQL. We use Com-
piere v3.3 because (1) it is the first stable release of the system, (2) it was released more
than 15 years ago, (3) it includes 2,716 classes for more than 530 KLOC, and (4) it is not
service-oriented.

FXML-POS is an open-source4 inventory management system in Java. It includes 56
classes for 8 KLOC. It is based on the model-view-controller architecture and provides sev-
eral features related to ERP, such as purchase management, sales management, supplier
management, etc. We use FXML-POS because it offers several features and it is not service-
oriented.

5.3.2 Ground Truths

We must build ground truths for our case studies, i.e., service-oriented versions of Compiere
and FXML-POS against which to compare the results of our approach.

We asked two independent Ph.D. and Master’s students to identify services in the case
studies. They relied on several artifacts to build manually ground truths by (1) analysing
the systems, (2) understanding their core functionalities, and (3) extracting reusable classes
that could become services.

They used Understand to recover their designs and to visualise class dependencies. They
also generated views of the systems (Cf. Figures 5.2, 5.3 and 5.4), which we make available
online5. They also reviewed extensively any documentation as well as their source code to
have the best possible understanding of these systems and accurately identify services.

They found 477 services in Compiere and 22 services in FXML-POS, to which they manually
assigned one of the three types Utility, Entity, or Application. These ground truths are

2http://www.aptean.com
3http://www.compiere.com/products/capabilities/
4https://github.com/sadatrafsanjani/JavaFX-Point-of-Sales
5http://si-serviceminer.com



76

available online6 for study and replication.

Figure 5.2 3D call graph of Compiere

6http://si-serviceminer.com/TSE-Replication



77

Figure 5.3 2D call graph of Compiere

Figure 5.4 Circular representation of dependencies in Compiere



78

5.3.3 Evaluation metrics

We assess our approach with respect to a ground-truth architecture and in comparison to
other tools using measures of clustering and information retrieval: MojoFM, A2A, precision,
and recall.

MojoFM MojoFM measures the similarity between two set of (candidate) services, SA and
SB [112] by counting the numbers of changes to apply to SA to obtain SB. Changes include
moving classes from one cluster to another (Move) and merging clusters (Join), defined as:

MojoFM(SA, SB) =
(

1− mno(SA, SB)
max(mno(∀SA, SB))

)
× 100

with mno(SA, SB) the minimum number of Move and Join operations needed to transform A
into B. mno(∀SA, SB) is the minimum number of Move and Join operations needed to trans-
form an arbitrary decomposition into B. SA is the set of services identified by one approach
while SB is either those provided by another approach or a ground truth. MojoFM(SA, SB)
reflects the amount of effort needed to transform one architecture into another: the greater
the value, the greater the similarity, the less the effort.

Architecture2Architecture Architecture2Architecture (A2A) is also a measure of simi-
larity, considering five operations to transform one set into another [113], which overcomes
some of MojoFM limitations [114], defined as:

A2A(SA, SB) =
(

1− mto(SA, SB)
aco(SA) + aco(SB)

)
× 100

with:

mto(SA, SB) =

remC(SA, SB) + addC(SA, SB)

+ remE(SA, SB) + addE(SA, SB) + movE(SA, SB)

and:



79

aco(SA) =

addC(SA0 , SA) + addE(SA0 , SA) + movE(SA0 , SA)

where mto(SA, SB) is the minimum number of operations needed to transform SA into SB

and aco(SA) is the number of operations needed to construct SA from an “empty” set SA0 .
These two functions, mto and aco, use additions addE, removals remE, and moves movE of
classes from one cluster to another and additions addC and removals remC of clusters.

Precision and Recall Precision and recall are defined as usual as:

Precision = TP

TP + FP

and:

Recall = TP

TP + FN

with TP the number of correctly identified services, FP the number of wrong services, and
FN the number of missing services. We also use the F-measure, which is the harmonic
average of the precision and recall:

F −measure = 2× Precision×Recall

Precision + Recall

5.3.4 Quantitative Validation

We applied ServiceMiner on Compiere to show its accuracy in identifying services in legacy
systems by considering the different possible combinations of the metrics in each rule. This
allows us refine accordingly the detection rules and keep the ones that led to the best detection
results. We measured precision, recall, and F-measure for each rule and report the results in
Figures 5.5, 5.6, and 5.7.

For example, for Utility services, we considered the combinations “very high fanin”, “very low
fanout”, and “Not persistent”. As shown in Figure 5.6, the best F-measure is obtained when
considering the three metrics to identify Utility services: considering clusters with only very
high fanin or very low fanout or clusters that are only not persistent leads to poor precision
values.



80

Figure 5.5 Evaluation of the detection rules of Entity Services on Compiere

Figure 5.6 Evaluation of the detection
rules of Utility Services on Compiere

Figure 5.7 Evaluation of the detection
rules of Application Services on Compiere

We repeated the same analysis for the detection rules of Entity and Application services. As
shown in Figures 5.5, 5.6, and 5.7, we obtained the best F-measure values when using the
detection rules detailed in Section 5.2.2.

After validating the rules on Compiere, we applied them on FXML-POS to identify the
services according to their types. When analyzing the detection results of Utility services
in FXML-POS, we found that the detection rule should be tuned to consider as well non-
persistent clusters that have very low fanin and very low fanout. All the other rules were
applied the same as in Compiere.

We identified in Compiere 445 services: 43 Application services, 299 Entity services, and
103 Utility services. For FXML-POS we identified 21 services: 9 Application services, 8
Entity services, and 4 Utility services. We report in Table 5.3 the overall average accuracy
of ServiceMiner : a precision of 80.5%, a recall of 76%, and a F-measure of 78.2%.

For Utility services we obtained an average precision of services with a precision of 73.9%



81

# Services Precision Recall F-measure

C
o

m
p

ie
re

F
X

M
L

-P
O

S

C
o

m
p

ie
re

F
X

M
L

-P
O

S

A
v

er
ag

e

C
o

m
p

ie
re

F
X

M
L

-P
O

S

A
v

er
ag

e

C
o

m
p

ie
re

F
X

M
L

-P
O

S

A
v

er
ag

e

Utility 103 4 (75/103)
72,80%

(3/4)
75,00% 73,90% (75/85)

88,24%
(3/3)

100,00% 94,12% 79,79% 85,70% 82,75%

Entity 299 8 (237/299)
79,30%

(8/8)
100,00% 89,65% (237/358)

66,20%
(8/9)
88,90% 77,55% 72,15% 94,10% 83,13%

Application 43 9 (23/43)
53,50%

(7/9)
77,80% 65,65% (23/34)

67,65%
(7/8)
87,50% 77,58% 59,74% 82,40% 71,07%

Total 445 21 (335/445)
75,30%

(18/21)
85,70% 80,50% (335/477)

70,23%
(18/22)
81,80% 76,02% 72,67% 83,70% 78,19%

Table 5.3 Overview of Service Identification Accuracy with ServiceMiner

and a recall of 94.12%. The identified Utility services related to logging, Web uploading,
printing, etc. For Entity services, we obtained a precision of 89.65%, a recall of 77.55%,
and a F-measure of 83.13% with services for products, orders, invoices, etc. We missed
some Entity services that have a low fanin/high fanout because of our choice of metrics and
thresholds, which could be refined by developers when applied on their own systems. We
observed a precision of 65.65%, a recall of 77.58%, and a F-measure of 71.07% for Application
services, which relate to payment processing, tax calculation, and inventory management.
The identification of Application services depends on the previous identifications of Entity
and Utility services and, thus, false-positive Application services were mainly due to some
Entity and Utility services being incorrectly labelled as Application services, such as caching-
related services and Web-project deployment services.

Although it missed the identification of some services, ServiceMiner could reduce the devel-
opers’ effort needed to identify services by avoiding the manual analysis and identification of
reusable services. Our recall could be improved by setting different thresholds and iterating
through the identification process.

5.3.5 Qualitative Validation

We take the example of the sales-orders management in Compiere and detail how ServiceM-
iner helps practitioners identify services related to this functionality.

Sales orders management entails quotations, sales orders, and invoices, linked to the shipment
of goods to customers. The initial clustering step of our approach builds a set of candidate
clusters that we filtrated with our detection rules to identify candidate services. First, we
identified Utility services, related to logging and printing. These services provide cross-cutting
functionalities called by other services with very low fanout and no persistence.

Second, we identified Entity services, i.e., clusters representing business entities, which related



82

to products, invoices, business partners, warehouses, and bank statements. These entities
are persistent, have access to the database, and are used by other domain-specific services
(e.g., Application and Business services).

Third, we identified Application services among the remaining clusters. An example of
Application service related to sales-orders processing is the payment service responsible for
generating payments based on the information from an invoice, a business partner, and a
bank statement Entity services. It is also responsible for handling errors, e.g., if the payment
is unsuccessful.

We applied ServiceMiner on FXML-POS and obtained architecturally significant services as
well. We applied our first detection rule on the initial clustering. We correctly identified
three utility services related to login, hibernate utilities, and pdf document generation and
printing. We applied then our second detection rule to identify entity services in the system.
The identified entities are related to products, sales orders, purchases, employees, invoices,
and product categories. Finally, we applied our third detection rule to identify Application
services. These services are related to the different controllers in the system such as products,
invoice, and supplier controllers, etc.

We obtained architecturally significant candidate services thanks to the application of our
type-aware SIA. We believe that it can thus assist practitioners in the identification of can-
didate services because it highly automates the SI process of Utility, Entity, and Application
services with acceptable precision and recall.

5.3.6 Comparison with State of the Art

We chose three existing approaches to compare their results against those of ServiceMiner :
MOGA-WSI [13], Service Cutter [11] and MicroserviceExtraction [57]. These three were the
only approaches available online.

MOGA-WSI uses spanning trees and provides candidate services with different levels of inter-
service coupling. It relies on genetic and multi-objective optimisation algorithms to refine an
initial set of services. It also considers a set of managerial goals, such as cost effectiveness,
ease of assembly, customization, reusability, and maintainability.

Service Cutter is a graph-based approach considering 16 coupling metrics and two kinds of
clustering algorithms, Girvan-Newman (GN) [115] and Epidemic Label Propagation (ELP)
[116], with different (non-)deterministic behaviour.

MicroserviceExtraction is also a graph-based approach that relies on coupling metrics. It also
uses an historical analysis of the system, via GitHub, to identify logically and semantically-



83

related classes. Coupling metrics are used to identify clusters in the system, which are
candidate services.

We assessed our approach with respect to our ground truths and in comparison to the three
approaches, using MojoFM [112], Architecture2Architecture (A2A) [114], precision, and recall.
We relied on these metrics to study the identification results of each approach regardless of
the types of services.

Table 5.4 shows the identification results. Our approach outperforms MOGA-WSI, Service
Cutter, and MicroserviceExtraction for all the reported metrics. We tried several config-
urations for each approaches but all showed lower results in comparison to our SIA. We
observed that these approaches generated very unbalanced services. For example, MOGA-
WSI identified one service with 253 classes and 143 services with only one to six classes.
Similarly, Service Cutter identified two coarse-grain services and 393 fine-grained ones. Al-
though service identification using Service Cutter with Girvan-Newman is deterministic, we
were limited to a maximum number of 30 services, which lead to poor identification results.

Some of the coupling metrics of MicroserviceExtraction rely on the historical analysis of the
system to be migrated. However commits of Compiere and FXML-POS are not reported on
GitHub. This may be also the cause of the poor identification results of the tool.

We argue that our SI approach outperforms the three other approaches because: (1) Ser-
viceMiner follows a stepwise process, which identifies Utility services then Entity services
and finally Application services, (2) it uses simple, straightforward metrics instead of com-
plex goals, like maintainability, which are subjective and difficult to define and measure, and
(3) the studied state-of-the-art approaches are proofs of concept, with limited applicability
on enterprise-scale systems (such as Compiere).



84

S
er

v
ic

es
M

o
jo

F
M

A
2

A
P

re
ci

si
o

n
R

ec
al

l
F

-m
ea

su
re

Compiere

POS

Compiere

POS

Average

Compiere

POS

Average

Compiere

POS

Average

Compiere

POS

Average

Compiere

POS

Average

M
O

G
A

-W
S

I
39
6

30
11
.0
%

18
.3
%

14
.6
5%

42
.0
%

36
.6
%

39
.3
%

14
.0
%

6.
6%

10
.3
%

13
.0
%

9.
1%

11
.1
%

13
.5
%

7.
7%

10
.6
%

S
er

v
ic

e
C

u
tt

er
(E

P
L

)
39
5

38
15
.7
%

20
.5
%

18
.1
%

51
.0
%

65
.3
%

58
.2
%

12
.2
%

18
.9
%

15
.6
%

10
.3
%

31
.8
%

21
.1
%

11
.2
%

23
.7
%

17
.5
%

S
er

v
ic

e
C

u
tt

er
(G

N
)

30
30

21
.6
%

20
.5
%

21
.0
5%

41
.0
%

66
.7
%

53
.9
%

15
.6
%

10
.4
%

13
%

9.
7%

13
.6
%

11
.7
%

14
.1
%

11
.8
%

13
%

M
ic

ro
se

rv
ic

eE
x

ta
ct

io
n

n/
a

11
n/

a
11
.4
%

11
.4
%

n/
a

31
.2
%

31
.2
%

n/
a

63
%

63
%

n/
a

31
.8
%

31
.8
%

n/
a

42
.3
%

42
.3
%

S
er

v
ic

eM
in

er
44
5

21
67
.0
%

70
%

68
.5
%

74
.1
%

91
.7
%

82
.9
%

75
.3
%

85
.7
%

80
.5
%

70
.2
%

81
.8
%

76
%

72
.7
%

83
.7
%

78
.2
%

Table 5.4 Comparison results of service identification approaches



85

5.4 Threats to Validity

Internal Validity. Our SI approach as well as its validation depend on several algorithms
and thresholds. To mitigate any threat, (1) we implementedMOGA-WSI based on its original
papers to the best of our understanding and shared it for investigation and replication7; (2)
we used the best identification results of the approaches; (3) we explored the use of different
metrics and threshold values; and, (4) we chose the spanning-tree algorithm for its ease of
use and availability. Future work should compare with other algorithms to vet further the
reliability of our SIA.

We know that service detection rules must be adapted from one system to another. Our de-
tection rules are easily customised, being flexible and extensible. We recommend to consider
the same processing steps in the same order to identify services according to their types. Also,
legacy systems most likely embed poor design and coding practices, e.g., code smells, that
reduce the separation of concerns within/between classes, which reduces the precision/recall
of static-based SIAs. The used refinement rules only add services that were divided/ignored
by the clustering algorithm. Other rules could be added to enhance the quality of ill-clustered
candidate services.

Construct validity. We should have relied on a real post-migration SOA-based system.
However, we could not find any open-source, enterprise-scale system that was migrated to
SOA. Thus, we relied on ground truths to validate quantitatively the services identified by
our approach. No single “correct” SOA version exists for a given legacy system. We relied
on several artifacts (e.g., official documentations, source code, etc.) and studied in-depth
the systems to identify reusable sets of classes that could be packaged into services. Also,
we shared our ground truths for others to confirm/infirm our claims. We put the original
source code as well as the identified services online8, which also reduces threats to reliability
validity.

External validity. Our case studies may not be representative of all legacy systems, which
limits the generalisability of our results. Compiere is large and complex enough to validate
our approach. We considered another validation system while we continue our search for
other large, open-source, legacy systems. The identified services may not be representative
of all service types. Our approach is extensible to new service types. It can also be extended
to identify microservices [117] by mapping each Utility and Entity service with a microservice
and decomposing each identified Application service into smaller microservices that each have
a single responsibility.

7https://github.com/MPoly2018/MOGA-WSI
8http://si-serviceminer.com/TSE-Replication



86

5.5 Conclusion

In this chapter, we proposed ServiceMiner, a type-sensitive SIA for the migration of legacy
software systems to a service-oriented architecture (SOA). We evaluated ServiceMiner on
a real-world legacy ERP system, Compiere, and an inventory management system, FXML-
POS. We showed that, in general, ServiceMiner identified relevant, architecturally-significant
services with 80.5% of precision, 76% of recall, and 78.2% of F-measure. We also compared
ServiceMiner with three state-of-the-art SIAs. We showed that it outperformed the state-of-
the-art SIAs by providing more architecturally-significant services.



87

CHAPTER 6 CONCLUSION

IT departments strain under the needs to automate business processes within, and across,
organizational boundaries, and to develop and deploy new applications. They also contend
with heterogeneous systems that become legacy and challenging to maintain. These systems
embed hidden knowledge that is of significant values. They cannot be simply removed or
replaced because they execute effectively and accurately critical and complex business logic.
However, legacy systems are difficult to maintain and scale because their software and hard-
ware become obsolete. They must be modernized to ease their maintenance and evolution.

A common strategy for modernizing legacy systems is to migrate them to service-oriented
architecture (SOA). A key step in the migration process is the identification of reusable
functionalities in the system that qualify as candidate services in the target architecture.
There are several approaches related to service identification that have been proposed in the
literature. However, to the best of our knowledge, there is no systematic study of the gap
between academia and industry in terms of service identification approaches. The proposed
approaches have in general limited identification accuracy. They usually require different
types of inputs that may not be always available especially in the context of legacy systems.
Finally, most of the proposed approaches do not consider the identification of specific types
of services in legacy systems.

On solving the above problems, we formulated our thesis statement as below:
There is a gap between academia and industry in their service identification approaches to
migrate legacy systems to SOA. To fill this gap, service identification should use static anal-
yses of the source code and be driven by service types. Service types could be used to classify
service candidates hierarchically and to prioritize the identification of specific types of services
according to the business requirements of the migration process.

6.1 Summary

This thesis supports the migration of legacy systems to SOA by (1) studying the state of the
practices of service identification in academia and industry , and (2) proposing ServiceMiner
a bottom-up service identification approach that relies on source code analysis, because other
sources of information may be unavailable or out of sync with the actual code. Our bottom-
up, code-based approach uses service-type specific functional-clustering criteria. We use a
categorization of service types that builds on published service taxonomies and describes the



88

code-level patterns characterizing types of services.

A systematic literature review on service identification approaches. We did a
systematic literature review (SLR) that covers 41 SIAs based on software-systems analyses.
Based on this SLR, we created a taxonomy of SIAs and build a multi-layer classification of
existing identification approaches. We started from a high-level classification based on the
used inputs, the applied processes, the given outputs, and the usability of the SIAs. We
then divided each category into a fine-grained taxonomy that helps practitioners in selecting
a suitable approach for identifying services in legacy software systems. We build our SLR
based on our experience with legacy software modernization, on discussions and experiences
working with industrial partners, and analyses of existing SIAs. We identified the main
challenges that SIAs need to address, to improve their quality. This classification helps
practitioners in selecting a suitable service identification approach that corresponds to their
migration needs.

Study of the state of the practices of services identification in industry. We con-
ducted an online survey with 45 industrial practitioners and interviewed eight of them to
report their experiences with the migration of legacy systems. Our study showed that prac-
titioners relied on different migration strategies. We also showed that reducing maintenance
costs and improving the flexibility and interoperability of legacy systems were the main mo-
tivations to migrate these systems to SOA. Practitioners consider SI an important step for
the migration of legacy systems to SOA, as it promotes software reuse. Moreover, our results
showed that SI is a process driven by business value rather than quality criteria, even though
some practitioners consider some quality criteria (mainly reusability, granularity, and loose
coupling). We showed that most of industrial SIAs remain a manual process in which human
experts’feedbacks is essential. Finally, we reported that many practitioners considered the
identification of specific types of services from legacy systems and concluded that SI should
be driven by service types to identify more relevant and architecturally significant services.

Gap Analysis of SIAs in academia and industry. We studied academic and industrial
SIAs and derived several recommendations for how to identify services in legacy systems
to support their migration to SOA. These recommendations served as a support for our
service identification approach that relies on static analysis of legacy systems while identifying
specific types of services.



89

A type-sensitive service identification approach to support the migration of legacy
systems to SOA. We proposed ServiceMiner, a type-sensitive SIA that relies on static
analysis of the source-code of legacy systems, because other sources of information may be
unavailable or out of sync with the actual code. ServiceMiner relies on a taxonomy of service
types and identification rules to extract reusable services from legacy systems according
to their types. We evaluate ServiceMiner on two case studies: an open-source enterprise-
scale legacy ERP system, and an inventory management system. Then, we compared our
results to those of three state-of-the-art approaches. We showed that ServiceMiner identifies
architecturally-significant services with, on average, 80.5% precision, 76% recall, and 78.2%
F-measure.

6.2 Discussions and Recommendations

We believe that our approach is beneficial for both researchers and practitioners interested
in migrating legacy systems to SOA because (1) we highly automated the SI process, which
is one of the most labour-intensive step of the migration; (2) our SIA yields architecturally-
significant candidate services that can be packaged and integrated in the targeted SOA
system while identifying their types; (3) it offers the possibility to prioritise the identification
of specific types of services; and, (4) it is extensible to new technologies/languages, thanks
to its use of the KDM metamodel as intermediate representation for C, C++, Python, etc.

Finally, we recommend to consider service types to identify services in legacy systems to
improve accuracy. We also recommend to order the services to be migrated. We suggest to
start first with Utility services because they are highly reusable and invoked by other services;
second, to continue with Entity services because they manage and represent the business
entities of the system and are used by the other services; third, to identify Application services
as they compose functionalities provided by Entity services; finally, to identify Business
services that manage and compose/use the previous types of services.

6.3 Future Research

In future work, we will consider the identification of other types of services, such as Enterprise
and Business services. We will also perform a qualitative validation of the significance and
relevance of the identified services with developers. We will use an optimization algorithm
to improve the clustering process and compare other algorithms to study the reliability of
our approach. We will also apply AI techniques to classify the classes and then apply clus-
tering techniques to identify services according to their types. Finally, we will complete our



90

SOA migration road-map by exploring automatic service packaging techniques to efficiently
package and integrate the identified services into the targeted SOA platform.



91

REFERENCES

[1] C. E. Passaris, “The business of globalization and the globalization of business,” vol. 9,
no. 1, 2006.

[2] V. Rajlich, “Software evolution and maintenance,” in Proceedings of the on Future of
Software Engineering. ACM, 2014, pp. 133–144.

[3] G. Lewis et al., “Smart: The service-oriented migration and reuse technique,” DTIC
Document, Tech. Rep., 2005.

[4] T. Erl, Service-oriented architecture. Pearson Education Incorporated, 2005, vol. 8.

[5] R. Khadka et al., “Migrating a large scale legacy application to soa: Challenges and
lessons learned,” in 2013 20th Working Conference on Reverse Engineering (WCRE).
IEEE, 2013, pp. 425–432.

[6] R. S. Huergo et al., “A systematic survey of service identification methods,” Service
Oriented Computing and Applications, vol. 8, no. 3, pp. 199–219, 2014.

[7] B. Bani-Ismail and Y. Baghdadi, “A survey of existing evaluation frameworks for service
identification methods: towards a comprehensive evaluation framework,” in Interna-
tional Conference on Knowledge Management in Organizations. Springer, 2018, pp.
191–202.

[8] R. Khadka et al., “A structured legacy to soa migration process and its evaluation in
practice,” in Maintenance and Evolution of Service-Oriented and Cloud-Based Systems
(MESOCA), 2013 IEEE 7th International Symposium on the. IEEE, 2013, pp. 2–11.

[9] B. Bani-Ismail and Y. Baghdadi, “A literature review on service identification chal-
lenges in service oriented architecture,” in International Conference on Knowledge
Management in Organizations. Springer, 2018, pp. 203–214.

[10] G. Canfora et al., “Migrating interactive legacy systems to web services,” in Conference
on Software Maintenance and Reengineering (CSMR’06). IEEE, 2006, pp. 10–pp.

[11] M. Gysel et al., “Service cutter: A systematic approach to service decomposition,” in
European Conference on Service-Oriented and Cloud Computing. Springer, 2016, pp.
185–200.



92

[12] R. Rodríguez-Echeverría et al., “Generating a rest service layer from a legacy system,”
in Information System Development. Springer, 2014, pp. 433–444.

[13] H. Jain, H. Zhao, and N. R. Chinta, “A spanning tree based approach to identifying
web services,” International Journal of Web Services Research, vol. 1, no. 1, p. 1, 2004.

[14] S. Adjoyan, A. Seriai, and A. Shatnawi, “Service identification based on quality met-
rics - object-oriented legacy system migration towards SOA,” in The 26th International
Conference on Software Engineering and Knowledge Engineering, Hyatt Regency, Van-
couver, BC, Canada, July 1-3, 2013., 2014, pp. 1–6.

[15] M. J. Amiri, S. Parsa, and A. M. Lajevardi, “Multifaceted service identification: Pro-
cess, requirement and data,” Computer Science and Information Systems, vol. 13, no. 2,
pp. 335–358, 2016.

[16] Z. Zhang, H. Yang, and W. C. Chu, “Extracting reusable object-oriented legacy code
segments with combined formal concept analysis and slicing techniques for service in-
tegration,” in 2006 Sixth International Conference on Quality Software (QSIC’06).
IEEE, 2006, pp. 385–392.

[17] M. Abdellatif et al., “State of the practice in service identification for soa migration
in industry,” in International Conference on Service-Oriented Computing. Springer,
2018, pp. 634–650.

[18] J. M. Rodriguez et al., “Bottom-up and top-down cobol system migration to web
services,” IEEE Internet Computing, vol. 17, no. 2, pp. 44–51, 2013.

[19] R. Khadka et al., “Does software modernization deliver what it aimed for? a post
modernization analysis of five software modernization case studies,” in 2015 IEEE
International Conference on Software Maintenance and Evolution (ICSME). IEEE,
2015, pp. 477–486.

[20] C. Wagner, Model-Driven Software Migration: A Methodology: Reengineering, Recov-
ery and Modernization of Legacy Systems. Springer Science & Business Media, 2014.

[21] A. Furda et al., “Migrating enterprise legacy source code to microservices: on multi-
tenancy, statefulness, and data consistency,” IEEE Software, vol. 35, no. 3, pp. 63–72,
2017.

[22] M. Abdellatif et al., “A taxonomy of service identification approaches for legacy
software systems modernization,” J. Syst. Softw., vol. 173, p. 110868, 2021. [Online].
Available: https://doi.org/10.1016/j.jss.2020.110868

https://doi.org/10.1016/j.jss.2020.110868


93

[23] ——, “Identifying reusable services in legacy object-oriented systems: A type-sensitive
identification approach,” IEEE Transactions on Software Engineering, p. 14, under
review 2021.

[24] H. Mili et al., Reuse-based Software Engineering: Techniques, Organization, and Con-
trols. New York, NY, USA: Wiley-Interscience, 2001.

[25] D. K. Barry, Web Services, Service-oriented Architectures, and Cloud Computing: The
Savvy Manager’s Guide. Morgan Kaufmann, 2003.

[26] M. Nakamura et al., “Extracting service candidates from procedural programs based on
process dependency analysis,” in Services Computing Conference, 2009. APSCC 2009.
IEEE Asia-Pacific. IEEE, 2009, pp. 484–491.

[27] A. Erradi, S. Anand, and N. Kulkarni, “Soaf: An architectural framework for service
definition and realization,” in Services Computing, 2006. SCC’06. IEEE International
Conference on. IEEE, 2006, pp. 151–158.

[28] A. Brown, S. Johnston, and K. Kelly, “Using service-oriented architecture and
component-based development to build web service applications,” Rational Software
Corporation, 2002.

[29] T. Erl, SOA Principles of Service Design. Upper Saddle River, NJ, USA: Prentice
Hall PTR, 2007.

[30] B. Kitchenham, “Procedures for performing systematic reviews,” Keele, UK, Keele
University, vol. 33, no. 2004, pp. 1–26, 2004.

[31] C. Wohlin, “Guidelines for snowballing in systematic literature studies and a replica-
tion in software engineering,” in Proceedings of the 18th international conference on
evaluation and assessment in software engineering. ACM, 2014, p. 38.

[32] K. R. Felizardo et al., “Using forward snowballing to update systematic reviews in
software engineering,” in Proceedings of the 10th ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement. ACM, 2016, p. 53.

[33] A. T. Zadeh et al., “A systematic input selection for service identification in smes,”
Journal of Applied Sciences, vol. 12, no. 12, p. 1232, 2012.

[34] S. Alahmari, E. Zaluska, and D. De Roure, “A service identification framework for
legacy system migration into soa,” in Services Computing (SCC), 2010 IEEE Interna-
tional Conference on. IEEE, 2010, pp. 614–617.



94

[35] H. M. Sneed, C. Verhoef, and S. H. Sneed, “Reusing existing object-oriented code as
web services in a soa,” in Maintenance and Evolution of Service-Oriented and Cloud-
Based Systems (MESOCA), 2013 IEEE 7th International Symposium on the. IEEE,
2013, pp. 31–39.

[36] L. Aversano, L. Cerulo, and C. Palumbo, “Mining candidate web services from legacy
code,” in 10th International Symposium on Web Site Evolution. IEEE, 2008, pp.
37–40.

[37] A. Marchetto and F. Ricca, “From objects to services: toward a stepwise migration
approach for java applications,” International journal on software tools for technology
transfer, vol. 11, no. 6, p. 427, 2009.

[38] R. S. Huergo, P. F. Pires, and F. C. Delicato, “Mdcsim: A method and a tool to identify
services,” IT Convergence Practice, vol. 2, no. 4, pp. 1–27, 2014.

[39] Y. Baghdadi, “Reverse engineering relational databases to identify and specify basic
web services with respect to service oriented computing,” Information systems frontiers,
vol. 8, no. 5, pp. 395–410, 2006.

[40] M. Nakamur et al., “Identifying services in procedural programs for migrating legacy
system to service oriented architecture,” Implementation and Integration of Information
Systems in the Service Sector, p. 237, 2012.

[41] Y. Zhao et al., “A service-oriented analysis and design approach based on data flow
diagram,” in International Conference on Computational Intelligence and Software En-
gineering CiSE 2009. IEEE, 2009, pp. 1–5.

[42] E. Sosa-Sánchez et al., “Service discovery using a semantic algorithm in a soa modern-
ization process from legacy web applications,” in Services (SERVICES), 2014 IEEE
World Congress on. IEEE, 2014, pp. 470–477.

[43] Z. Zhang and H. Yang, “Incubating services in legacy systems for architectural migra-
tion,” in 11th Asia-Pacific Software Engineering Conference, 2004. IEEE, 2004, pp.
196–203.

[44] H. Sneed, “Migrating to web services: A research framework,” in Proceedings of the
International, 2007.

[45] Z. Zhang, R. Liu, and H. Yang, “Service identification and packaging in service oriented
reengineering.” in SEKE, vol. 5, 2005, pp. 620–625.



95

[46] G. Chenghao, W. Min, and Z. Xiaoming, “A wrapping approach and tool for migrating
legacy components to web services,” in First International Conference on Networking
and Distributed Computing (ICNDC),2010. IEEE, 2010, pp. 94–98.

[47] A. Fuhr, T. Horn, and V. Riediger, “Using dynamic analysis and clustering for imple-
menting services by reusing legacy code,” in Reverse Engineering (WCRE), 2011 18th
Working Conference on. IEEE, 2011, pp. 275–279.

[48] D. Saha, “Service mining from legacy database applications,” in Web Services (ICWS),
2015 IEEE International Conference on. IEEE, 2015, pp. 448–455.

[49] C. Del Grosso, M. Di Penta, and I. G.-R. de Guzman, “An approach for mining services
in database oriented applications,” in 11th European Conference on Software Mainte-
nance and Reengineering, 2007. CSMR’07. IEEE, 2007, pp. 287–296.

[50] S. Mani et al., “Using user interface design to enhance service identification,” in Web
Services, 2008. ICWS’08. IEEE International Conference on. IEEE, 2008, pp. 78–87.

[51] R. S. Huergo, P. F. Pires, and F. C. Delicato, “A method to identify services using
master data and artifact-centric modeling approach,” in Proceedings of the 29th Annual
ACM Symposium on Applied Computing. ACM, 2014, pp. 1225–1230.

[52] Y. Kim and K.-G. Doh, “The service modeling process based on use case refactoring,”
in International Conference on Business Information Systems. Springer, 2007, pp.
108–120.

[53] L. Bao et al., “Extracting reusable services from legacy object-oriented systems,” in
software maintenance (ICSM), 2010 IEEE International Conference on. IEEE, 2010,
pp. 1–5.

[54] M. Djeloul, “Locating services in legacy software:information retrieval techniques, on-
tology and fca based approach,” WSEAS Transactions on Computers, vol. 11, no. 1,
pp. 19–26, 2012/01/, legacy software;information retrieval techniques;FCA based ap-
proach;Web services technology;WORDNET ontology;formal concepts analysis;source
code;.

[55] L. Baresi, M. Garriga, and A. De Renzis, “Microservices identification through in-
terface analysis,” in European Conference on Service-Oriented and Cloud Computing.
Springer, 2017, pp. 19–33.



96

[56] W. Jin et al., “Functionality-oriented microservice extraction based on execution trace
clustering,” in 2018 IEEE International Conference on Web Services (ICWS). IEEE,
2018, pp. 211–218.

[57] G. Mazlami, J. Cito, and P. Leitner, “Extraction of microservices from monolithic soft-
ware architectures,” in 2017 IEEE International Conference on Web Services (ICWS).
IEEE, 2017, pp. 524–531.

[58] E. Souza, A. Moreira, and C. De Faveri, “An approach to align business and it per-
spectives during the soa services identification,” in 2017 17th International Conference
on Computational Science and Its Applications (ICCSA). IEEE, 2017, pp. 1–7.

[59] A. A. C. De Alwis et al., “Discovering microservices in enterprise systems using a busi-
ness object containment heuristic,” in OTM Confederated International Conferences"
On the Move to Meaningful Internet Systems". Springer, 2018, pp. 60–79.

[60] M. Abdelkader, M. Malki, and S. M. Benslimane, “A heuristic approach to locate can-
didate web service in legacy software,” International Journal of Computer Applications
in Technology, vol. 47, no. 2-3, pp. 152–161, 2013.

[61] S. Tyszberowicz et al., “Identifying microservices using functional decomposition,” in
International Symposium on Dependable Software Engineering: Theories, Tools, and
Applications. Springer, 2018, pp. 50–65.

[62] D. Escobar et al., “Towards the understanding and evolution of monolithic applications
as microservices,” in 2016 XLII Latin American Computing Conference (CLEI). IEEE,
2016, pp. 1–11.

[63] D. Taibi and K. Systä, “From monolithic systems to microservices: A decomposition
framework based on process mining,” in 8th International Conference on Cloud Com-
puting and Services Science, CLOSER, 2019.

[64] A. A. C. De Alwis et al., “Function-splitting heuristics for discovery of microservices
in enterprise systems,” in International Conference on Service-Oriented Computing.
Springer, 2018, pp. 37–53.

[65] L. Nunes, N. Santos, and A. R. Silva, “From a monolith to a microservices architecture:
An approach based on transactional contexts,” in European Conference on Software
Architecture. Springer, 2019, pp. 37–52.



97

[66] A. Selmadji et al., “Re-architecting oo software into microservices,” in European Con-
ference on Service-Oriented and Cloud Computing. Springer, 2018, pp. 65–73.

[67] D. Hix and H. R. Hartson, Developing user interfaces: ensuring usability through prod-
uct & process. John Wiley & Sons, Inc., 1993.

[68] M. Weske, “Business process management architectures,” in Business Process Manage-
ment. Springer, 2012, pp. 333–371.

[69] A. Vemulapalli and N. Subramanian, “Transforming functional requirements from uml
into bpel to efficiently develop soa-based systems,” in OTM Confederated International
Conferences" On the Move to Meaningful Internet Systems". Springer, 2009, pp. 337–
349.

[70] J. Schmuller, Sams teach yourself UML in 24 hours. Sams publishing, 2004.

[71] S. W. Ambler, The object primer: Agile model-driven development with UML 2.0.
Cambridge University Press, 2004.

[72] M. Aggarwal and S. Sabharwal, “Test case generation from uml state machine dia-
gram: A survey,” in Computer and Communication Technology (ICCCT), 2012 Third
International Conference on. IEEE, 2012, pp. 133–140.

[73] T. C. Lethbridge, J. Singer, and A. Forward, “How software engineers use documenta-
tion: The state of the practice,” IEEE Software, vol. 20, no. 6, pp. 35–39, 2003.

[74] E. Sosa et al., “A model-driven process to modernize legacy web applications based on
service oriented architectures,” in 2013 15th IEEE International Symposium on Web
Systems Evolution (WSE). IEEE, 2013, pp. 61–70.

[75] S. Bechhofer, “Owl: Web ontology language,” in Encyclopedia of Database Systems.
Springer, 2009, pp. 2008–2009.

[76] F. Chen et al., “Service identification via ontology mapping,” in 2009 33rd Annual
IEEE International Computer Software and Applications Conference, vol. 1. IEEE,
2009, pp. 486–491.

[77] S. Zhao, E. Chang, and T. Dillon, “Knowledge extraction from web-based application
source code: An approach to database reverse engineering for ontology development,”
in 2008 IEEE International Conference on Information Reuse and Integration. IEEE,
2008, pp. 153–159.



98

[78] H. M. Sneed, “Integrating legacy software into a service oriented architecture,” in
Software Maintenance and Reengineering, 2006. CSMR 2006. Proceedings of the 10th
European Conference on. IEEE, 2006, pp. 11–pp.

[79] M. Balabanović and Y. Shoham, “Fab: content-based, collaborative recommendation,”
Communications of the ACM, vol. 40, no. 3, pp. 66–72, 1997.

[80] G. Birkhoff, Lattice theory. American Mathematical Soc., 1940, vol. 25.

[81] G. Gratzer, Lattice theory: First concepts and distributive lattices. Courier Corpora-
tion, 2009.

[82] Rui Xu and D. Wunsch, “Survey of clustering algorithms,” IEEE Transactions on
Neural Networks, vol. 16, no. 3, pp. 645–678, May 2005.

[83] B. Ganter, “Two basic algorithms in concept analysis,” Formal Concept Analysis, pp.
312–340, 2010.

[84] R. Wille, “Restructuring lattice theory: an approach based on hierarchies of concepts,”
in Ordered sets. Springer, 1982, pp. 445–470.

[85] A. K. Jain, “Data clustering: 50 years beyond k-means,” Pattern recognition letters,
vol. 31, no. 8, pp. 651–666, 2010.

[86] F. Murtagh and P. Legendre, “Ward’s hierarchical agglomerative clustering method:
which algorithms implement ward’s criterion?” Journal of classification, vol. 31, no. 3,
pp. 274–295, 2014.

[87] G. Feuerlicht et al., “Understanding service reusability,” in International Conference
Systems Integration. Department of Information Technologies and Czech Society for
Systems Integration, 2007.

[88] V. Alkkiomäki and K. Smolander, “Anatomy of one service-oriented architecture im-
plementation and reasons behind low service reuse,” Service Oriented Computing and
Applications, vol. 10, no. 2, pp. 207–220, 2016.

[89] M. Perepletchikov et al., “Coupling metrics for predicting maintainability in service-
oriented designs,” in 2007 Australian Software Engineering Conference (ASWEC’07).
IEEE, 2007, pp. 329–340.

[90] R. Sindhgatta, B. Sengupta, and K. Ponnalagu, “Measuring the quality of service
oriented design,” in Service-Oriented Computing. Springer, 2009, pp. 485–499.



99

[91] M. Bell, SOA modeling patterns for service oriented discovery and analysis. John
Wiley & Sons, 2009.

[92] A. Shatnawi et al., “Identifying software components from object-oriented apis based on
dynamic analysis,” in Proceedings of the 26th Conference on Program Comprehension.
ACM, 2018, pp. 189–199.

[93] S. Cohen, “Ontology and taxonomy of services in a service-oriented architecture,” The
Architecture Journal, vol. 11, no. 11, pp. 30–35, 2007.

[94] D. Krafzig, K. Banke, and D. Slama, Enterprise SOA: service-oriented architecture best
practices. Prentice Hall Professional, 2005.

[95] B. A. Ani and Y. Baghdadi, “A taxonomy-centred process for service engineering,”
International Journal of Computer Applications in Technology, vol. 52, no. 1, pp. 1–17,
2015.

[96] Q. Gu and P. Lago, “Service identification methods: a systematic literature review,”
in Towards a Service-Based Internet. Springer, 2010, pp. 37–50.

[97] R. Boerner and M. Goeken, “Service identification in soa governance literature review
and implications for a new method,” in Digital Ecosystems and Technologies, 2009.
DEST’09. 3rd IEEE International Conference on. IEEE, 2009, pp. 588–593.

[98] D. Birkmeier, S. Klöckner, and S. Overhage, “A survey of service identification
approaches-classification framework, state of the art, and comparison,” Enterprise Mod-
elling and Information Systems Architectures, vol. 4, no. 2, pp. 20–36, 2015.

[99] X. Cai et al., “Component-based software engineering: technologies, development
frameworks, and quality assurance schemes,” in Software Engineering Conference,
2000. APSEC 2000. Proceedings. Seventh Asia-Pacific. IEEE, 2000, pp. 372–379.

[100] T. Vale et al., “A study on service identification methods for software product lines,”
in Proceedings of the 16th International Software Product Line Conference-Volume 2.
ACM, 2012, pp. 156–163.

[101] A. Taei Zadeh et al., “A systematic input selection for service identification in smes,”
Journal of Applied Sciences, vol. 12, no. 12, pp. 1232–1244, 2012.

[102] J. Fritzsch et al., “From monolith to microservices: a classification of refactoring ap-
proaches,” in International Workshop on Software Engineering Aspects of Continuous



100

Development and New Paradigms of Software Production and Deployment. Springer,
2018, pp. 128–141.

[103] D. Birkmeier and S. Overhage, “On component identification approaches–classification,
state of the art, and comparison,” in Component-Based Software Engineering.
Springer, 2009, pp. 1–18.

[104] S. Cai, Y. Liu, and X. Wang, “A survey of service identification strategies,” in Services
Computing Conference (APSCC), 2011 IEEE Asia-Pacific. IEEE, 2011, pp. 464–470.

[105] K. Charmaz and L. Belgrave, “Qualitative interviewing and grounded theory analysis,”
The SAGE handbook of interview research, pp. 347–365, 2012.

[106] P. Di Francesco, I. Malavolta, and P. Lago, “Research on architecting microservices:
Trends, focus, and potential for industrial adoption,” in ICSA, 2017, pp. 21–30.

[107] M. Abdellatif et al., “State of the practice in service identification for soa migration in
industry,” in ICSOC. Springer, 2018, pp. 634–650.

[108] A. Arsanjani et al., “Soma: A method for developing service-oriented solutions,” IBM
systems Journal, vol. 47, no. 3, pp. 377–396, 2008.

[109] G. E. Boussaidi et al., “Reconstructing architectural views from legacy systems,” in
WCRE, 2012.

[110] H. Bruneliere et al., “Modisco: A model driven reverse engineering framework,” IST,
vol. 56, no. 8, pp. 1012–1032, 2014.

[111] J. B. Kruskal, “On the shortest spanning subtree of a graph and the traveling salesman
problem,” Proceedings of the American Mathematical society, vol. 7, no. 1, pp. 48–50,
1956.

[112] Z. Wen and V. Tzerpos, “An effectiveness measure for software clustering algorithms,”
in Proceedings. 12th IEEE International Workshop on Program Comprehension, 2004.
IEEE, 2004, pp. 194–203.

[113] O. Maqbool and H. Babri, “Hierarchical clustering for software architecture recovery,”
IEEE Transactions on Software Engineering, vol. 33, no. 11, pp. 759–780, 2007.

[114] J. Garcia, I. Ivkovic, and N. Medvidovic, “A comparative analysis of software ar-
chitecture recovery techniques,” in Proceedings of the 28th IEEE/ACM International
Conference on Automated Software Engineering. IEEE Press, 2013, pp. 486–496.



101

[115] M. E. Newman and M. Girvan, “Finding and evaluating community structure in net-
works,” Physical review E, vol. 69, no. 2, p. 026113, 2004.

[116] U. N. Raghavan, R. Albert, and S. Kumara, “Near linear time algorithm to detect
community structures in large-scale networks,” Physical review E, vol. 76, no. 3, p.
036106, 2007.

[117] S. Newman, Building microservices: designing fine-grained systems. " O’Reilly Media,
Inc.", 2015.


	DEDICATION
	ACKNOWLEDGEMENTS
	RÉSUMÉ
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS AND ACRONYMS
	1 Introduction
	1.1 Research Context
	1.2 Thesis Statement
	1.3 Research Methodology
	1.4 Thesis Contributions
	1.5 Other Contributions
	1.6 Thesis Organization

	2 LITERATURE REVIEW
	2.1 Introduction
	2.1.1 Research Questions
	2.1.2 Outline

	2.2 Background
	2.2.1 Reusability = Usefulness + Usability
	2.2.2 What is a Service?

	2.3 Search Methodology
	2.4 RQ1: What are the inputs used by SIAs?
	2.4.1 Executable Models
	2.4.2 Non-executable Models
	2.4.3 Domain Artifacts

	2.5 RQ2: What are the processes followed by SIAs?
	2.5.1 Techniques of SIAs
	2.5.2 Quality of Identified Services
	2.5.3 Directions of SIAs
	2.5.4 Automation of SIAs

	2.6 RQ3: What are the outputs of SIAs?
	2.6.1 Service Architecture
	2.6.2 Service Types
	2.6.3 Taxonomy of Service Types
	2.6.4 Type-sensitive SIAs

	2.7 RQ4: What is the usability of SIAs?
	2.7.1 Validation
	2.7.2 Accuracy/Precision
	2.7.3 Tool Support
	2.7.4 Result Quality
	2.7.5 Usability

	2.8 Discussions
	2.8.1 Validation
	2.8.2 Inputs
	2.8.3 Processes
	2.8.4 Outputs
	2.8.5 Usability

	2.9 Other SLRs
	2.10 Conclusion 

	3 State of the Practice of Service Identification In Industry
	3.1 Introduction
	3.2 Study Design
	3.3 Online Survey
	3.4 Interview Sessions
	3.4.1 Migration Strategies
	3.4.2 Directions of SI
	3.4.3 Threats to Validity

	3.5 Discussions
	3.6 Conclusion 

	4 Gap Analysis between Academia and Industry
	4.1 Introduction
	4.2 Inputs of SIAs
	4.3 Processes of SIAs
	4.4 Outputs of SIAs
	4.5 Recommendations
	4.6 Conclusion

	5 Type Sensitive Service Identification Approach
	5.1 Introduction
	5.2 Approach
	5.2.1 Pre-processing Phase
	5.2.2 Processing Phase

	5.3 Experimental Validation
	5.3.1 Case Studies
	5.3.2 Ground Truths
	5.3.3 Evaluation metrics
	5.3.4 Quantitative Validation
	5.3.5 Qualitative Validation
	5.3.6 Comparison with State of the Art

	5.4 Threats to Validity
	5.5 Conclusion

	6 CONCLUSION
	6.1 Summary
	6.2 Discussions and Recommendations
	6.3 Future Research

	REFERENCES

