UNIVERSITE DE MONTREAL

THE IMPACT OF OPERATING SYSTEMS AND ENVIRONMENTS ON BUILD
RESULTS

MAHDIS ZOLFAGHARINIA
DEPARTEMENT DE GENIE INFORMATIQUE ET GENIE LOGICIEL
ECOLE POLYTECHNIQUE DE MONTREAL

MEMOIRE PRESENTE EN VUE DE L’OBTENTION
DU DIPLOME DE MAITRISE ES SCIENCES APPLIQUEES
(GENIE INFORMATIQUE)

DECEMBRE 2017

(© Mahdis Zolfagharinia, 2017.

UNIVERSITE DE MONTREAL

ECOLE POLYTECHNIQUE DE MONTREAL

Ce mémoire intitulé :

THE IMPACT OF OPERATING SYSTEMS AND ENVIRONMENTS ON BUILD
RESULTS

présenté par : ZOLFAGHARINIA Mahdis

en vue de I'obtention du diplome de : Maitrise s sciences appliquées

a été diment accepté par le jury d’examen constitué de :

M. QUINTERO Alejandro, Doctorat, président

M. ADAMS Bram, Doctorat, membre et directeur de recherche

M. GUEHENEUC Yann-Gaél, Doctorat, membre et codirecteur de recherche
M. KHOMH Foutse, Ph. D., membre

1ii

DEDICATION

To my grandma,

Who always inspired me to achieve my goals

And to my parents,

Who always support and encourage me

iv

ACKNOWLEDGEMENTS

I believe changing my program to a research based master was one of the best decisions for my
academic life. It gave me the opportunity to meet new people and attend amazing conferences,
which all are now part of this thesis. A especial thanks to my supervisor, Dr.Bram Adams
for his kind guidance, great support and boundless patience all along the way. I learned a lot

from working with a humble, talented and hard working supervisor like you.

I would also like to thank my co-supervisor Dr.Yann-Gaél Guéhéneuc for his kindness, mo-
tivation and immense knowledge. Thank you Yann for always being by my side, not just as

a co-supervisor but as a mentor and a friend.

My sincere thanks to Dr.Foutse Khomh for accepting my invitation to be jury member and

to Dr.Alejandro Quintero for accepting to be president of my defense.

I am grateful to my parents, and my siblings for their unconditional love. Without your

support, this thesis would not have been possible.

I would like to thank all my colleagues in our lab and my friends : Amir, Parastou, Yujuan,
Rodrigo, Bani, Alexandre, Ruben, Sepideh, Asana, and Antoine for all the moment we spent

together, and all the memories we made.

I am grateful to the following university staff : Louise Longtin, Nathalie Audelin, Chantal

Balthazard, and Brigitte Hayeur for their unfailing assistance.

Thanks for all your encouragement !

RESUME

L’intégration continue (IC) est une pratique d’ingénierie logicielle permettant d’identifier et
de corriger les fautes logicielles le plus rapidement possible apres 'intégration d'un change-
ment de code dans systeme de controle de versions. L’objectif principal de I'IC est d’informer
les développeurs des conséquences des changements effectués dans le code. L'IC s’appuie sur
différents systemes d’exploitation et environnements d’exécution pour vérifier si un systeme
fonctionne toujours apres l'intégration des changements. Ainsi, de nombreux "builds" sont
créés, alors que seulement quelques-uns révelent de nouvelles fautes. En d’autres termes, un
phénomene d’inflation des builds se produit, ot le nombre croissant de builds a un rendement
décroissant. Cette inflation rend l'interprétation des résultats des builds difficile, car I'infla-
tion augmente I'importance de certaines fautes, alors qu’elle cache I'importance d’autres.
Cette these fait progresser notre compréhension de I'impact des systemes d’exploitation et
des environnements d’exécution sur les fautes des builds et le biais potentiel encouru a cause
de 'inflation des builds par une étude a grande échelle de 30 millions de builds de ’écosys-
teme CPAN. Nous choisissons CPAN parce que CPAN fournit un riche ensemble de données
pour l'analyse automatisée des builds sur des douzaines d’environnements (versions de Perl)
et systémes d’exploitation. Cette these rapporte une analyse quantitative et qualitative sur
les fautes dans les builds pour classer ces fautes et trouver la raison de leur apparition. Nous
observons : (1) I’évolution des fautes des builds au fil du temps et rapportons que plus de
builds sont effectués, plus le pourcentage de fautes de builds diminue, (2) différents environ-
nements et systemes d’exploitation mettent en avant différentes fautes, (3) les résultats des
builds doivent étre filtrés pour identifier des fautes fiables, et (4) la plupart des fautes des
builds sont dus a leur dépendance a I’API. Les chercheurs et les praticiens devraient tenir

compte de I'impact de 'inflation des builds lorsqu’ils analysent ou exécutent des builds.

vi

ABSTRACT

Continuous Integration (CI) is a software engineering practice to identify and correct a defect
as soon as possible after a code change has been integrated into the version control system.
The main purpose of CI is to give developers a quick feedback of code changes. These changes
build on different OSes and runtime environments to check backward compatibility as well
as to check if the product still works with the new changes. So, many builds are performed,
while only a few of them can identify new failures. In other words, a phenomenon of build
inflation can be observed, where the increasing number of builds has diminishing returns in
terms of identified failures vs. costs of running the builds. This inflation makes interpreting
build results challenging as it increases the importance of some failures, while it hides the
importance of others. This thesis advances our understanding of the impact of OSes and
runtime environments on build failures and build inflation through a large-scale study of 30
million builds of the CPAN ecosystem. We choose CPAN because CPAN provides a rich
data set for the analysis of automated builds on dozens of environments (Perl versions) and
operating systems.

This thesis performs quantitative and qualitative analysis on build failures to classify these
failures and find out the reason of their occurrence. We observe: (1) the evolution of build
failures over time and report that while more builds are being performed, the percentage of
them identifying a failure drops, (2) different OSes and environments are not equally reliable,
(3) the build results of CI must be filtered to identify reliable failing data, (4) and most build
failures are due to API dependency. Researchers and practitioners should consider the impact

of build inflation when they are analyzing and-or performing builds.

vii

TABLE OF CONTENTS

DEDICATION e iii
ACKNOWLEDGEMENTS e iv
RESUME v
ABSTRACT e vi
TABLE OF CONTENTS e vii
LIST OF TABLES e ix
LIST OF FIGURES e X
LIST OF SYMBOLS AND ABBREVIATIONS xii
CHAPTER 1 INTRODUCTION 1
1.1 Research Hypothesis: Build Inflation Consequences 3
1.2 Thesis Contributions: The Impact of OSes/Environments on Build Inflation 3
1.3 Organization of Thesis 5
CHAPTER 2 LITERATURE REVIEW, 6
2.1 State-of-the-practice 6
2.1.1 BuildBot 6

2.1.2 Jenkinso 6

2.1.3 Travis CI o0 8

2.1.4 Treeherder 8

2.1.5 CPAN . . . 8

2.2 State-of-the-art 10
2.3 Build Systemso 11
2.4 Build Failures 12

CHAPTER 3 RESEARCH PROCESS AND ORGANIZATION OF THE THESIS . 15

CHAPTER 4 ARTICLE 1: DO NOT TRUST BUILD RESULTS AT FACE VALUE
~AN EMPIRICAL STUDY OF 30 MILLION CPAN BUILDS 16

4.1 Introduction 16
4.2 Background 18
4.2.1 CPAN . . e 18

4.2.2 Related Work 20

4.3 Observational Study Design 0L 22
4.3.1 Study Object 22

4.3.2 Study Subject 22

4.3.3 Quantitative Study Sample oL 22

4.3.4 Qualitative Study Sample 25

4.4 Observational Study Results L. 26
4.5 Discussion 46
4.5.1 Explanatory Classification Model 46

4.5.2 Comparison to Prior Build Failure Research 47

4.6 Threats To Validity 49
4.7 Conclusion 49
CHAPTER 5 GENERAL DISCUSSION 51
CHAPTER 6 CONCLUSION e 53
6.1 Summary 53
6.2 Limitations and Future Work 54

REFERENCES o e 95

Table 1.1

Table 4.1

Table 4.2

Table 4.3

Table 4.4

LIST OF TABLES

Target expression in a makefile
Number of builds, distversions, and average numbers of builds per
distversion in each period of six months between January 2011 and
June 2016.
Total percentage of occurrences of the four different build failure evo-
lution patterns, across all OSes. “Pure” refers to occurrences of the
patterns without fluctuation (e.g., [1, 1,1]), while “Noisy” refers to oc-
currences with fluctuation (e.g., [1,0,1]).
Percentages of vectors in C; that fails inconsistently, as well as percent-
ages of those vectors for which a minority of OSes is failing (C]"). The
latter percentages are then broken down across all studied OSes (i.e.,
they sum up to the percentages in the third column).
Failure types and their percentages in Perl versions with minority fail-

ures vs. majority failures

X

27

34

38

40

Figure 2.1
Figure 2.2
Figure 2.3
Figure 4.1

Figure 4.2

Figure 4.3
Figure 4.4

Figure 4.5

Figure 4.6

Figure 4.7

Figure 4.8

Figure 4.9

Figure 4.10

Figure 4.11

LIST OF FIGURES

BuildBot, 7
Jenkins CI tool 7
TreeHerder CI tool dashboard 9

Example of CPAN build report summary. A vertical ellipse represents
an “environment build vector” (RQ3), while a horizontal ellipse repre-
sents an “OS build vector” (RQ4). 20
Distribution of the number of builds and versions across CPAN dists.
This Hexbin plot summarizes where the majority of the data can be
found (darker cells), where a cell represents the number of CPAN dists
with a given median number of builds (x-axis) and the number of ver-
sions (y-axis). The black lines correspond to the thresholds used to
filter the data, dividing the data into 9 quadrants. For each quadrant,
the number of CPAN dists within it is mentioned on the plot. The
central quadrant contains the final data set. 24
Hierarchy of fault types across all operating systems and environments. 27
Distribution of failure ratios in six-month periods. The linear regression
line shows the corresponding trend of the ratios over the six studied
VEATS. v v v v e e e e e e e e e e e e 28
Distribution of the numbers of builds per CPAN dist, as well as of the
numbers of OSes and environments on which these dists’ builds took
place. . . . 30
Distribution of the ratio of all builds performed on a given environment
(black y-axis), and the proportion of those builds failing (blue y-axis). 31
Distribution of the ratio of all builds performed on a given OS (black
y-axis), and the proportion of those builds failing (blue y-axis). . .. 31
For a given OS, the distribution across CPAN distversions of the per-
centages of environments for which no builds have been performed. . 32
Percentages of the four build failure evolution patterns for the Linux
OS. The blue bars represent occurrences of the pure patterns (no fluc-
tuation) while gray bars are noisy occurrences (including fluctuations). 35
Distribution of fault categories in OS vectors with minority failures vs.
majority failures o 42

Distribution of fault categories across all OSes in the minority dataset. 42

Figure 4.12

Figure 4.13

Figure 4.14

Distribution of failures due to dependency vs. non-dependency faults

in different build patterns when majority (6-10) of builds fail. Y-axis

shows the failure ratio and x-axis shows fault types and build patterns.

Distribution of failures due to dependency vs. non-dependency faults

in different build patterns when minority (1-3) of builds fail. Y-axis

shows the failure ratio and x-axis shows fault types and build patterns.

Bean-plot showing the distributions of AUC, true negative recall and
true positive recall across all dists. The horizontal lines show median

values, while the black shape shows the density of the distributions. .

xi

45

45

47

OS

CI

VCS
DevOps
POSIX
API
MSR
POM
PBP
AWS

QA

LIST OF SYMBOLS AND ABBREVIATIONS

Operating System

Continuous Integration

Version Control System
Development and Operations
Portable Operating System Interface
Application Programming Interface
Mining Software Repository

Project Object Model

Perl Best Practice

Amazon Web Services

Quality Assurance

xii

CHAPTER 1 INTRODUCTION

Continuous integration (CI) automates the compilation, building, and testing of software.
A CI build server automates the build process of a software project so that it is built as soon
as developers make any changes, making sure to compile, test and analyze the impact of
those changes on the system. Each new commit entered into the VCS trigger the CI tool
(e.g., Jenkins), which compiles and tests the project partially or fully. The main purpose of
CI is to help developers to detect build failures as soon as possible [1] to reduce the risk of
defective releases. In the last decade, CI has become popular in both industrial and open-
source software (OSS) community [2, 3]. Automation of CI can help increase the speed of
project development and expose potential failures as soon as possible. Many well known

companies practice CI such as Google, Facebook, Linkedin and Netflix [4].

Build systems automate the process of compiling a software project into executable arti-
facts rapidly across a variety of operating systems and programming languages [5] by using
compilers, scripts and other tools. They play a crucial role in the software development pro-
cess. Developers rely on the build systems to test their modifications to the source code, while
testers use the build systems for executing automated tests to check if the expected output

is still be provided after changes. Many researchers have studied build systems [6, 7, 8].

Initially, developers wrote ad hoc programs to do the whole compilation and test, until the
build language -Make- was designed at Bell labs in 1979 by Feldman as a build automation
tool [9]. It became the initial build system for Unix-like systems. Whenever a part of the
program is changed, Make performs just the necessary commands to recompile the related
files to create an up-to-date executable. Make does this by finding the name of a required
target in the expression, assuring all of the dependent files exist, and then creating the target.
Table 1.1 shows an example of a Make target expression. Make represents dependencies
among files in a directed acyclic graph (DAG) The DAG can vary among build executions,
different tools, and configurable features. When a change happens, the DAG informs Make
about what has to be rebuilt.

As different programming languages gained popularity, different build automation systems

Table 1.1 Target expression in a makefile

Makefile Expression ‘ Example
target: dependencies | main.o: main.c text.h
command(s) cc -c main.c

were developed. Unix-like systems mainly use make-based tools such as GNU make and
BSD make. Ruby based (Rake), LISP-based (ASDF), C#-based (Cake), and Java-based
(Ant, Maven, and Jenkins) systems use Non-Make-Based tools. Finally, Facebook’s Buck

and Google’s Blaze are other recent build system.

As other example, Maven uses build-by-convention rather than a complicated build lan-
guage, While other build systems like Ant needs developers to write all the commands.
Maven is based on the core concept of a build lifecycle, which refers to an explicit, standard-
ized process for building each code or other artifact. The developer building a project must
use a small set of commands to compile a Maven project, then the instructions mentioned in
the pom.xml file will assure the proper outputs. Furthermore, dependency management is a
mechanism to centralize API dependencies using an online repository to hold build artifacts
and to specify constraints to control the versions of API libraries to be used for building the

software project.

Testing is a critical phase of the build process to guarantee software quality. The build
system runs the compiled software project through a series of automated tests [10]. After
compiling the new code changes, the CI system will execute the compiled system using a
variety of test types such as unit test, component tests, and regression testings to assure
that the product works properly [11]. Developers often run other types of tests, such as

performance testing to check if all performance requirements have been met [8].

Build Inflation is a phenomenon, which is produced due to the massive builds at the CI
practice. In theory, all additional builds/tests add more information, because a failed run
clearly identifies a problem with the new code changes, while a successful run allows to elimi-
nate a certain build from the list of suspicious builds. However, in practice, some builds/tests
add more information than others. Fach code change typically is built on multiple OSes,
runtime environments and hardware architectures to check if a software product works on
that particular OS or environment. Therefore, for every new commit/release, we have large
numbers of builds. Figure 2.3 shows how one commit in Treeherder was built on 54 different
OSes, and just for the first OS, there are 74 different test suites. While every new build
provides new information, the number of builds across environments and OSes is not homo-
geneously distributed, which gives more weight to some failures than others. Therefore, even
though, each additional build brings new information, these builds have different values and

are not equally informative.

It is essential to reduce build inflation for several reasons. First, each build by itself needs
noticeable time and effort for executing. As such, scheduling additional builds only increases
this time and effort, but without corresponding gains in QA. Apart from time lost, there are
also monetary losses associated with redundant builds. Although cloud services, e.g., AWS
or Microsoft Azure, etc., provide a faster and cheaper build infrastructure, they do have a
non-negligible cost. O’Duinn, the former release manager of Amazon, discussed about the
financial cost of a checkin in his blog [12]. The Amazon prices for the two cheapest AWS
regions (US-west-2 and US-east-1) for daily load on an OnDemand builder cost $0.45, and
OnDemand tester costs $0.12 per hour. He mentioned that a checkin costs at least USD$30.60
to answer “how much did that checkin actually cost Mozilla”. The cost included the following
usage: USD$11.93 for Firefox builds/tests, USD$5.31 for Fennec builds/tests and USD$13.36
for B2G builds/tests. Thus, we can define the approximate cost that we can save by deleting
extra/unnecessary builds. We can decide using this information if developer time is worth
spending on scheduling for the valuable builds to avoid all these costs. Moreover, as O’Duinn
has mentioned, “network traffic is still a valid concern, both for reliability and for cost*.
Hence, even in the presence of large-scale cloud infrastructure, awareness and reduction of

build inflation is a must.

1.1 Research Hypothesis: Build Inflation Consequences

This thesis aims to study the impact of build inflation with the following hypothesis:

Build inflation is an actual phenomenon in open-source projects that impacts the in-

terpretation of build results.

To explore this hypothesis we analyse the impact of “build inflation” to study the returns
of each additional build. Bias in build outcomes can be introduced due to large number of
builds on diverse combinations of OSes and environments. This bias makes it complicated to
interpret build outcomes. Practitioners and researchers should consider it while investigating
build outcomes. The following section describes my contribution and its connections with

the research hypothesis.

1.2 Thesis Contributions: The Impact of OSes/Environments on Build Inflation

Just as Maven for the Java programming language, CPAN (Comprehensive Perl Archive Net-
work) [13] is an ecosystem of modules (APIs/libraries) for Perl. CPAN has its own CI system

that builds and tests any new release of a module on a divers range of operating systems
and run-time environments (Perl versions). Similar to Maven and npm, but different from

TravisCI and Jenkins, CPAN’s CI works at release-level not at commit-level.

We selected CPAN in this study as it provides a rich data set for the analysis of builds and
build inflation across different OSes and run-time environments. We performed quantitative
and qualitative analysis on build failures to understand the impact of OS and run-time en-
vironment on 30 million builds of the CPAN ecosystem. We also studied the evolution of
build failures over time, which allowed us to study build inflation. We mined the log files and
meta-data of all CPAN modules to categorize build failures and the cause of their occurrences
(faults). We studied 30 million builds in 5.5 years for 12,584 module versions, 27 OSes, and

103 (Perl) environments.

Our first contribution is the finding that the build failure ratio across all modules decreases
over time, while the number of builds per module increases about 10 times. Moreover, the
build results on different OSes/environments are not equally reliable, not only due to the fewer
number of builds in some OSes, e.g., 40% of builds in Linux vs. less than 5% in Windows, but
also due to the lower popularity of some OSes among Perl developers. Our findings show that
86.5% of build results consistently succeed or fail across all OSes/environments, which is an
evidence of build inflation. Indeed, if a certain build failure, which consistently succeeds/fails
everywhere, has (not) been found for one OS or environment build, remaining builds are no
longer necessary from the perspective of that build failure. Our findings also show that
failures occurring only on a minority of operating systems usually occur on the operating
systems that are the least supported by the developers (Windows in the case of CPAN). As
Linux and Freebsd are the main OSes for CPAN, so we should treat the build failures on
these two OSes as high priority. These findings showed different builds have different values
and must be prioritized to avoid the consequence of build inflation that can increase the
importance of some failures while it hides the importance of others. We categorized build
failures into six main categories and nine subcategories. We showed that API dependency is
the highest reason of build failures either in minority or in majority failing builds. We also
showed that programming issues are the 2nd highest reason of failure when majority of OSes

fail, while configuration issues are the 2nd highest reason when minority of OSes fail.

1.3 Organization of Thesis

This thesis is structured as follows: Chapter 2 discusses prior research related to our work.
Chapter 3 presents the research process and the organization of the thesis. Chapter 4 intro-
duces the comprehensive structure and details of our empirical studies, which is my accepted
paper at MSR 2017, followed by general discussion in chapter 5, and then conclusion and
future work in Chapter 6.

CHAPTER 2 LITERATURE REVIEW

In this chapter, we introduce prior research on CI and discuss the studies most relevant to
this thesis.

2.1 State-of-the-practice

CI is vital for modern software development. A CI tools like Jenkins executes builds several
times a day for patches under review, and for each new commit entering into the VCS, to
send an early notification to developers about any build failure [14, 15].

Continuous integration is done both at release-level (consider official releases of a project)
and at commit-level (consider each new changes in the source code). Some of popular CI
tools are Travis CI [16], Strider [17], Jenkins [18], TeamCity [19], Hudson, and Go. We
briefly present some of these CI tools. Companies use the most appropriate tools based on
the features they need. For example, the Eclipse community adopted Jenkins, while Mozilla
and Google Chromium use Buildbot [20], which has server-slave-based structure, and can be

customized based on demands.

2.1.1 BuildBot

Buildbot is adopted by Mozilla, Chromium, and WebKit. Buildbot is a Python-based tool,
and can be deployed on POSIX-compliant operating systems [21]. Buildbot is a job scheduling
system, and it executes the jobs whenever resources are available. Buildbot consists of one
or more build masters and many workers, as soon as the masters monitor changes, workers
run builds on a variety of operating systems. Figure 2.1 presents build results in Buildbot

dashboard across different operating systems.

2.1.2 Jenkins

Jenkins is an open-source CI tool that is popular among DevOps for being free, open-source
and modular (with over 1K plugins) [21]. Figure 2.2 shows the Jenkins dashboard, which

illustrates the build history of new commits.

Chromium
last build build successful exception interrupted build successful build successful build successful

building building

tivit ETAin ETAin

cu t ~ 13 mins ~ 9 mins
it 11:30 at 11:26

mmplllng
11:15:10 stdio
uplnld L]
11:14:57 perl expectations.json
archived build
L 1
update
r0aifa429b10
webkit r194033
build.chromium.org/p/chromium/ v8

Figure 2.1 BuildBot

My Views » Sectioned Security ENABLE AUTO REFRESH

: "“'IJ“" % Build History of Sectioned Security
People

"> Build History
i non " " nom LU L L
J Edit View |sep 6 \sepj |sep 8 Sep 9
O, Proieet Relationshio quick #1010 @ security-junit-w #245 @ security-quick-w #439 @ Security-quick #1013
| Check File Fingerprint @ Security-install-crd38 #340 @ security-quick-w #439 @ Security-quick #1013
quick #1010 @ Security-quick #1012
& Manage Jenkins v 2438 i
‘ My Views v #a38
pcadmin-w #242
{Iluild Queue ‘ dmin-w #242 tl]unrt-secadmln w #2473 Its "IBI'GI times
‘ ‘security-quici-w 7] ‘ iconn-w #249 drnin-w #243] I
giwnn-w #249 curity-junit-uddiconn-w #250
Build Executor Status 3 : -uddi H t
" srenlcrdos .Ez"" @ securipgju Lo |16hr 17hr |18hr
1 1de
2 ‘ 1dle Export as plain XML
srv-nl-crd100 Build Time Since | Status
1/1dle , ’
Secunty-quick
srv-nl-crd101 . Security-quick #1013 8 min 1 sec broken since this build .
1 1dle
2 ‘ 1dle o rit: ick # 8 min 1 sec broken since this build .
srv-nl-crd102 (offline))) -
srv-nl-crd103 0 security-guick-w #439 1 hr4 min ? .
1/ 1dle
srv-nl-crd104) scouite-uickow 2438 1 hr 4 min ? a
1/1dle
srv-nl-crd105§ o Security-quick #1012 1 hr 16 min back to normal =
1 Idle
Building ¢ z:tuunk - cup: o o Security-guick #1012 1 hr 16 min back to normal a
srv-nl-crd26 @ secuiequozion 1 hr 36 min broken since build #1010 =
1 1dle
Srv-nl-crd3g . Security-guick #1011 1 hr 36 min broken since build #1010 .
1 1dle
2 Buildin it guick-w #4395 security-iunit-secadmin-w #243) 1 hr 44 min 7 more tests are failing (total 13) =
==7| It's here two fimes
sru-nl-crd61 — -
1 Idle security-junit-secadmin-w #243 1 hr 44 min 7 more tests are failing (total 13) .
2 Idle .
3 ldle o ‘security-junit-uddiconn-w #250 1 hr 44 min stable a
4 1dle
s 1dle o security-junit-uddiconn-w #250 1 hr 44 min stable a
6 Idle
srv-nl-spt6 ° security-junit-w #245 1 hr 51 min stable .
1 Idle
e e
2 Q Security-RunSoapUl-crd38 #264 1 hr 51 min 2 less tests are failing (total 11) i
3 -wip >
= () sccuntv-Runsospur-crdss #264 1 hr 51 min 2 less tests are failing (total 11) =

Figure 2.2 Jenkins CI tool

2.1.3 Travis CI

Travis CI is a hosted CI service, which is integrated with GitHub. Travis CI’s build envi-
ronment provides several run-time environments for multiple programming languages, e.g.,
Ruby, PHP, Node.js. While Travis CI repository is hosted on GitHub and can be setup
quickly, Jenkins needs to be hosted, configured and installed.

2.1.4 Treeherder

Mozilla uses Treeherder as a reporting dashboard for commit-level CI results of its projects [22].
Treeherder also has a rich set of APIs that can be adapted in other projects to provide the
required information. Figure 2.3 shows the results of automated builds and the related tests
for only one commit on Treeherder [23], that were performed on November 3, 2017. It shows
build results on 54(!) combinations of build configurations and operating systems (multiple
versions of Linux, OS X, Windows, Android). A build configuration is a specific selection
of features (e.g., QuantumRender or Stylo) and build tool parameters (e.g., opt and debug).
Figure 2.3 also reports the results of test suites for each of the 54 builds. With different tests
being run on different operating systems, build results are not straightforward to interpret

for outsiders.

It seems that an explosion in builds is happening, and that there is an inflation in builds, i.e.,
many builds are happening, most of them succeeding, and very few number of builds fail,
which lead to diminishing returns. It means that too many builds are happening for each
new commit/release, while only few of them fail, i.e., for the first OS among 74 builds, only

one failure happened.

2.1.5 CPAN

CPAN presents a rich data set of the results of automated builds for the Perl programming
language on a variety of operating systems and run time environments. Figure 4.1 shows
the build dashboard for one particular Perl package, providing a summary of build results
across different operating systems and run-time environments. CPAN’s CI works at package
release-level like Maven, not at commit-level like Travis CI and Jenkins. Release-level CI is the
process of scheduling and controlling a software build via a variety of OSes and environments,
which consists of testing and deploying software releases, and consider official releases of a
project to get this the level of granularity instead of considering each new change on the

code.

Linux opt

Linux pgo
Linux debug

Linux Stylo Disabled opt
Linux Stylo Disabled debug
Linux x64 opt

Linux x64 pgo

Linux x64 asan

Linux x64 debug

Linux x64 QuantumRender opt

Linux x64 QuantumRender
debug
Linux x64 Stylo Disabled opt

Linux x64 Stylo Disabled
debug

Linux x64 Stylo-Seq opt
Linux x64 NoOpt debug

0OS X 10.10 opt

0OS X 10.10 debug

OS X Cross Compiled opt
OS X Cross Compiled debug

OS X Cross Compiled NoOpt
debug
0S X 10.10 Stylo Disabled opt

0OS X 10.10 Stylo Disabled
debug
Windows 7 pgo

Windows 7 debug

Windows 7 Stylo Disabled
debug
Windows 10 x64 opt

Windows 10 x64 pgo

Windows 10 x64 debug

Windows 10 x64 Stylo
Disabled opt

Windows 10 x64 Stylo
Disabled debug
Windows 2012 opt
Windows 2012 pgo
Windows 2012 debug
Windows 2012 NoOpt debug
Windows 2012 x64 opt
Windows 2012 x64 pgo
Windows 2012 x64 debug

Windows 2012 x64 NoOpt
debug
Android 4.0 API16+ opt

Android 4.0 API16+ debug
Android 4.2 x86 opt
Android 4.3 API16+ opt

Android 4.3 API16+ debug

Android 5.0 AArch64 opt
Android API116+ Gradle opt
Gecko Decision Task opt
Linting opt
windows2012-32-rusttests opt
linux64-rusttests debug
windows2012-64-rusttests opt
linux32-rusttests opt
windows-mingw32-32 debug
linux32-rusttests debug
linux64-rusttests opt

tc(B Cpp GTest Jit1 Jit2 Jit3 Jitd Jit5 Jit6) tc-Fxfn-l-e10s(en-US) tc-Fxfn-r-e10stier 2](en-US) tc-M(atly c1 ¢2 ¢3) tc-M-e10s(+28) tc-R-e10s
(+20) tc-W-e105(wpt12* +17) tc-X(+8) tc-e10s(Mn)

tc(B)

SM-tc(arm) tc(B Cpp GTest Jit1 Jit2 Jit3 Jit4 Jit5 Jit6) tc-Fxfn-l-e10s (en-Us) tc-Fxfn-r-e10sftier 2] (en-US) tc-M(+4) tc-M-e10s(1 +40) tc-R-e10s
(+20) tc-W-e10s(+18) tc-X (X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 +18) tc-e10s(Mn)

tc(Cpp) tc-M(+4) tc-M-e10s(+20) tc-R-e10s(C R1 R2 R3 R4 R5 R6 R7 R8 +20) tc-SYsd-e10s(sy) tc-W-e10s(+18)

tc(Cpp) tc-M(atly ci c2 ¢3) tc-M-e10s(+40) tc-R-e10s(C R1 R2 R3 R4 R5 R6 R7 R8 +40) tc-W-e10s(+18)

S SM-tc(+5) SM-tctier 2] (rust) T-e10s(+16) Tss-e10s(ip6) tc(+11) tc-Fxfn-I-e10s(en-US) tc-Fxfn-r-e10s[tier 2] (en-US) tc-M(+4) tc-M-e10s
(+833) tc-R-e10s(+28) tc-SY-e10s(sy) tc-W-e10s(+19) tc-X(X1 X2 X3 X4 X5 X6 X7 X8 +19) tc-e10s(+2) tc-e10sftier 2](TV) [tier 2](AB)
T-e10s(+16) Tss-e10s(p6) tc(+9) tc-Fxfn-I-e10s(en-US) tc-Fxfn-r-e10sitier 2] (en-US) tc-M(+4) tc-M-e10s(bcd* bea® +26) tc-R-e10s(+20)
tc-W-e10s(Wd Wr1 Wr2 Wr3 Wr4 Wr5 Wré wpt1 wpt2 wpt3 wpt4 wpt5 wpté wpt7 wpt8 wpt9 wpt10 wpt11 wpt12 +20) tc-X(+8) tc-e10s(+2)
tc-e10sftier 2] (TV)

tc(Bd Bo BoR Bof Cpp GTest Jit1 Jit2 Jit3 Jit4 Jit5 Jit6) tc-Fxfn-l-e10s(en-Us) tc-Fxfn-r-e10sltier 2] (en-US) tc-M(c1* +3) tc-M-e105(mdaZ“r +43)
tc-R-e10s(C J1 J2 J3 R1 R2 R3 R4 R5 R6 R7 R8 Rul Ru2 Ru3 Ru4 Ru5 Ru6 Ru7 Ru8 +43) tc-X(+8) tc-e10s(MnH* Mn) tc-e10sitier 2](TV)

S SM-tc(+7) tc(+11) tc-Fxfn-l-e10s (en-US) tc-Fxfn-r-e10s[tier 2] (en-US) tc-M(+4) tc-M-e10s(16* +63) tc-R-e10s(+28) tc-W-e10s(+19) tc-X(
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 +19) tc-e10s(Mn MnH +19) tc-e10stier 2](TV)

tc-M-e10s(gl1 gi2 gI3 gpu mdal mda2 mda3) tc-R-e10s(C J1 J2 J3 J4 R1 R2 R3 R4 R5 R6 R7 R8)

tc-M-e10s(gl1 gi2 gI3 gpu mda1 mda2 muaa*) tc-R-e10s(C J1 J2 J3 J4 R1 R2 R3 R4 R5 R6 R7 R8)

tc(Cpp) tc-M(+4) tc-M-e10s(+28) tc-R-e10s(C R1 R2 R3 R4 R5 R6 R7 R8 +28) tc-SYsd-e10s(sy) tc-W-e10s(+18)

tc(Cpp) tc-M(+4) tc-M-e10s(+48) tc-R-e10s(C R1 R2 R3* R4 R5 R6 R7 R8) tc-W-e10s(+18)

tc-SYss-e10sftier 2] (sy)

tctier 2](B)

tc(+7) tc-Fxfn-l-e10s (en-US) tc-Fxfn-r-e10stier 2](en-US) tc-M(+4) tc-M-e10s(bc2* +25) tc-R-e10s(+4) tc-SY-e10s(sy) tc-T-el Os(gz* at
+15) tc-W-e10s(+6) tc-X(x) tc-e10s(+2) tc-e10sftier 2](TV)

tc(+3) tc-Fxfn-l-e10s(en-US) tc-Fxfn-r-e10sftier 2] (en-US) tc-M(+4) tc-M-e10s (1% +25) tc-R-e10s(+5) tc-W-e10s(+11) tc-X(X) tc-e10sftier 2](
tc(B)

tc(B)

tcitier 2](B)

tc(Cpp) tc-M(+4) tc-M-e10s(1 2 3 4 5 bel be2 be3 bed bes beé be7 cl gl gl2 gI3 gpu mda +4) tc-R-e10s(+2) tc-SYsd-e10s(sy) tc-W-e10s(Wr
wpt1 wpt2 wpt3 wpt4 wpt5 wpté wpt7 wpt8 wpt9 wpt10 wpt11 wpti2)

tc(Cpp) tc-M(+4) tc-M-e10s(mda* +17) tc-R-e10s(+3) tc-W-e10s (Wr wpt1 wpt2 wpt3 wptd wpt5 wpté wpt7? wpt8 wptd wpti0 wpt11 wpti2 +3)
M-e10s(cl) T-e10s(+16) Tss-e10s(tp6) tc(+2) tc-Fxfn-l-e10s (en-US) tc-Fxfn-r-e10sftier 2] (en-US) tc-M(aty ¢i c2 c3) tc-M-e10s(2* +31)
tc-R-e10s(+99) tc-SY-e10s(sy) tc-W-e10s(+13) tc-X(x*) tc-e10s(+2) tc-e10sitier 2] (TV)

M(cl) M-e10s(cl) tc(+3) tc-Fxfn-l-e10s (en-US) tc-Fxfn-r-e10stier 2] (en-US) tc-M(c3* +32) tc-M-e10s(+32) tc-R-e10s (+27) tc-W (+13)
tc-W-e10s(+13) tc-X(X) tc-e10s(+2) tc-e10sftier 2](TV)

M-e10s(cl) tc(Cpp) tc-M(a11y c1 2 c3) tc-M-e10s(+24) tc-R-e10s(C R1 R2 R3 R4 R5 R6 R7 R8 +24) tc-W-e10s(+13)

M-e10s(cl) R-e10s(+2) T-e10s(+15) Tss-e10s(tp6) tc(Cpp GTest Jit) tc-Fxfn-I-e10s (en-US) tc-Fxfn-r-e10sftier 2] (en-US) tc-M(a1ly c1 c2 c3)
tc-M-e10s(be2™ be2* bez* +34) tc-R-e10s(C J1 J2 +34) tc-SY-e10s(sy) tc-W-e10s(+13) te-X(X*) tc-e10s(+2) tc-e10slier 2] (TV)
M-e10s(cl) R-e10s(R-e10s Ru) T-e10s(+15) Tss-e10s(tp6) tc(+2) tc-Fxfn-I-e10s(en-US) tc-Fxfn-r-e10sltier 2](en-US) tc-M(c1* fchel +2)
tc-M-e10s (bc2* be2® be2* +29) tc-R-e10s(C J1 J2 +29) tc-SY-e10s(sy) tc-W-e10s(+13) tc-X(X) tc-e10s(+2) tc-e10s[tier 2](TV)

M-e10s(cl) R(+4) R-e10s(+4) tc(+3) tc-Fxfn-l-e10s(en-US) tc-Fxfn-r-e10sltier 2] (en-US) tc-M(+4) tc-M-e10s (bcs™ dt7* +33) tc-R(+3)
tc-R-e10s(+3) tc-W-e10s (Wr wpt1 wpt2 wpt3 wpt4 wpt5 wpté wpt7 wpt8 wpt9 wpt10 wpt11 wpt12 +3) tc-X(X) tc-e10s(Mn* MnH) tc-e10sftier 2] (
)

M-e10s(cl) R-e10s(R-e10s) tc(Cpp) tc-M(c1* +3) tc-M-e10s(bc2* be2* be2* +21) tc-R-e10s(C) tc-SYsd-e10s(sy*) tc-W-e10s(+13)
M-e10s(cl) R-e10s(R-e10s1 R-e10s2) tc(Cpp) tc-M(aty c1 c2 c3) tc-M-e10s(gl8* +22) tc-R-e10s(C) tc-W-e10s(+13)

SM-tc(p) tc(B* BX B S)

tc(B Bs)

SM-tc(+2) tc(+3)

tcitier 2] (B)

tc(B Bs S)

tc(B Bs)

tc(B Bs S)

tcitier 2](B)

tc(B)

tc(B)

tc(B gv) tc-M(c1 c2) to-X(X1 X2 X3 X4 X5 X6)

tc(+2) tc-M(123456789 10 11 12 13 14 15 16 17 18 19 20 c1 c2 cl gpu mdal mda2 mda3 rc1 rc2 re3 rc4) tc-R(C1 C2 €3 C4 J1 J2 J3 J4 J5 J6
J7 J8 J9 J10 J11 J12 J13 J14 J15 J16 J17 J18 J19 J20 J21 J22 J23 J24 J25 J26 J27 J28 J29 J30 J31 J32 J33 J34 J35 J36 J37 J38 J39 J40 R1 R2 R3 R4
R5 R6 R7 R8 R9 R10 R11 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R23 R24) tc-X (X1 X2 X3 X4 X5 X6 X7 X8)

tcftier 2(Mn1 Mn2 Mn3 Mn4 Mn5 Mn6 Mn7 Mn8 Mn9 Mn10) tc(Cpp gv) tc-M(12% 3456 7 89 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
27 28 29 30 31 32 33 34 35 36 36 37 38 39 40 41 42 43 44 45 46 47 48 c1 c2 c3 c4 cl gpu mdal mda2 mda3) tc-R(+158) tc-X(X1 X2 X3 X4 X5 X6 X7
X8 +158)

tc(B)

tc(Bng) tc-Mitier 2](c1 ¢2 rel re2 re3 rc4)

D

Bugzilla

teftier 2] (BR¥)

tcltier 2] BR)

tcltier 2] (BR)

tcltier 2] (BR)

tcitier 2](B)

tcitier 2](BR)

tcitier 2](BR)

Figure 2.3 TreeHerder CI tool dashboard

10

2.2 State-of-the-art

Continuous Integration focuses on integrating code changes by several developers constantly,
avoiding unpredictable integration close to release. Developers get a quicker feedback on the
changes with this automation process in CI [15]. A CI server monitors the version control
system (VCS), builds the latest code snapshot, then runs tests. Therefore, if a new com-

mit or release is available in the VCS, build and test systems are provoked to compile and test.

Seo et al. [5] concentrated on the compiler errors that occur in Google’s build process for Java
and C++ environments. They assessed 26.6 million builds -and found that- the proportion
of failures for C++ and Java builds is 37.4% and 29.7%. They presented multiple patterns
of build failures and concluded that API dependencies are the major reason of compilation
errors. They mentioned that the time to fix the failures varies greatly and different tools are
required to support developers’ needs. We complement this study with a larger-scale study of
68.9 million builds of CPAN that shows that build failures due to programming issues occur
with a ratio of 36.1% that happen across most of the operating systems, while it reduces to
15.5% when a failure impacts only a few operating systems. Also, we analyzed build failures
for Perl, which is an interpreted language, while Seo et al. studied compiled languages (Java
and C++).

Vasilescu et al. [24] conducted a preliminary study on 246 GitHub projects to investigate
the impact of adopting CI systems (such as Travis CI) on productivity and software quality.
They declared that Continuous Integration usage can increase productivity but it does not
necessarily increase software quality. Also, they introduced evidence on the advantages of
CI, they did not discuss the consequences of performing many builds in CI. This thesis is
analyzing the impact of adopting CI on build results considering factors such as operating
systems and environments within the CPAN CI system. Armed with this understanding and
increasing demand for CI usage, researchers and developers must be careful about using CI

to avoid build inflation and its consequences.

Researchers studied TRAVIS CI as a data source [3]. They showed that CI services (CIS)
like Travis CI [16], which is a globally accessible CIS, were widely used and increased the
developers’ productivity. They analyzed 34,544 open-source projects from GitHub and found
that over 40% of these projects use CI. They analyzed almost 1.5 million builds of Travis CI
to understand the reason of its usage and popularity. The survey showed that CI is widely

adopted in popular projects and helped to decrease the time between releases.

11

Leppanen et al. [25] presented more frequent releases as a perceived advantage of CI, by
studying the state-of-the-art CI practice in 15 Finnish software companies. They showed
that projects using CI release twice as fast as projects that do not. Other researchers [26]
also studied CI adoption by interviewing 27 developers at Ericsson’s R&D to understand
their perception of CI. These two works study CI usage and perception in industry, showing

how CI gains popularity and is growing.

2.3 Build Systems

Build systems are the infrastructures converting a set of artifacts into an executable format.
A build system has a critical role in software development. A poorly implemented build

system frustrate developers and waste time [27].

Developers run the build process to compile and test the changes they made in the code.
Then, they must wait for the build process while it is executing. Build tools like make, ANT,
and Maven examine the last modification time of output and input files to perform only the
commands required to update an executable. The waiting period frustrates developers and
impacts on their productivity [5]. Substantial research has been performed to accelerate the
build process. Adams et al. [28] proposed to recompile by semantically analyzing the changes
performed in a file to check if it and any of its dependencies must be recompiled. Yu et al. [29]
improve build speed by removing unneeded dependencies among files and unnecessary code
from header files. These two approaches accelerate incremental compilation, which is not

performed for CI, it always builds from scratch.

Suvorov et al. [30] examined successfully and failed migration to a different build system in
two open-source projects, Linux and KDE, and outline four major challenges faced by the
migration from one build system to another due to missing features of the build system. If
the maintenance effort associated with the build system grows, developers choose to migrate
to another build system. They stated that failed migrations usually do not collect enough

build requirements prior to prototyping the migration.

Adams et al. [6, 31] analyzed the evolution of the Linux kernel build system. They studied
the modifications in the size of the kernel’s makefiles (SLOC), and dependencies in different
releases. They found that build system expanded and must regularly be maintained [32].
They found primary evidence of improving complexity in the Linux kernel build dependency

graphs. They showed that the build complexity co-evolves with the program source code at

12

the release level.

MclIntosh et al. [7] empirically studied ten open-source projects and observed that between
4% to 27% of tasks involving source code modifications need a modification in the associated
build code as well. They also mentioned that build code frequently evolves and is expected
to include bugs due to high churn rate. Mcintosh et al. [33] studied the evolution of ANT
build systems in four open-source Java projects, and stated that the build maintenance is
mainly due to the code changes creation. They observed that the complexity of the build

code and also the behaviour of the build system both increase and evolve.

2.4 Build Failures

While Schermann et al. [34] presented architectural issues as one of the major obstacles to CI
adoption and build failures, we show configuration problems and platform dependent failures

as one of the problems.

Kerzazi et al. [35] analysed 3,214 builds in a company during 6 months to study build
failures. They found that the 17.9% of build that fail cost about 2,035 man-hours, if it takes
one hour for each build to succeed. We studied 30 million builds and analyzed build results

to avoid unnecessary builds and decrease these failure costs.

Rausch et al. [36] reported build failures in 14 open-source Java projects and categorized
failures into 14 different groups. They performed their analysis in commit-level, and showed
that more than 80% of failures are due to failed test cases, while we performed our analysis
in release-level, and showed more than 80% of failures are due to programming, dependency,
OS, and configuration issues. We investigated build failures in two groups, i.e., failures only
affecting a few (minority) of the operating systems versus most (majority) of the operating
systems, we reported 4.2% of majority failing builds categorized as test failures, in compari-

son with 10% failing tests in minority failures.

Kerzazi et al. [37] conducted a study of releases showing unexpected system behavior after
deployment. Their findings show that source code is not the major reason of build failure,
but defective configurations or database scripts are the main issues. Although our results
verify that source code is not always the main reason of failure, we also concentrate on the

importance of other factors (OS/environment) causing builds to fail.

13

Denny et al. [38] studied compile errors of Java code and observed that syntax is a crucial
barrier for novice developers, and students submitted non-compiling code even in simple
assignments. They claimed that 48% of build failures occur because of compilation errors.
Another research on predicting performance in a programming course, Dyke [39] assessed
the frequency of compile errors by tracking Eclipse IDE usage with novice developers, and
checked for correlation with productivity. They showed that completed runs and successful
compilation are related to productivity. We also study build failures and the reason of their

occurrence, and categorize them into different groups.

Miller et al. [40] studied 66 build failures of Microsoft projects in 2007 and used CI as a
quality control mechanism in one distributed, collaborative team across 100 days. They
categorized these failures into compilation, unit testing, static analysis, and server failures.
We investigated 791 build failures across 6 months, and describe a classification of build

failures in a different domain, i.e., Perl and release level CI vs. Java and commit-level CI.

Vassallo et al. [41] classified CI build errors in 418 Java-based projects at ING, and 349 Java-
based open-source projects hosted on GitHub that use Travis CI. The open-source and ING
projects reported different build failure. This classification does not provide any information
regarding the role of OSes and environment and how OS and environment can break the
builds. In contrary, our classification explicitly considers OS and environment to understand
what type of errors is the reason of build failure, we study build failures considering these

two factors. We also determine to what degree OS and environment can lead to build inflation.

Mcintosh et al. [42] gathered the information of build source/test co-change in four open-
source projects: Eclipse-core, Jazz, Lucene, and Mozilla. They derived some metrics like the
numbers of files added/removed /modified, and provided a re-sampling approach to predict

the build co-changes. We integrate these research results with our explanatory model of build

failures of CPAN.

Finally, our study finds that API dependencies, such as missing libraries or the wrong API
version cause, over 41% of builds to break. CPAN is an ecosystem of modules (APIs/libraries)

and if build commands do not find any of the dependent modules, then the build will fail.

The API of an ecosystem is indeed a major element of development costs [43]. Zibran et al.
analyzed 1,513 bug reports of Eclipse, GNOME, MySQL, Python, and Android projects, and
among them, 562 bug-reports were about API issues. They found that about 175 of those

issues were about API correctness.

14

Many researchers studied API for different objectives such as recommending appropriate
APIs to developers when upgrading the dependencies of one module to a newer version [44].
McDonnel et al. [45] studied the API migration in the context of services. A previous work

summarized this work [46], and here we summarize two works related to API.

Wu et al. [46] analysed 22 releases of the Apache and Eclipse frameworks and their client
systems. They showed that the different API modifications in the frameworks affect the
clients, then they categorized them into API modifications and API usages. To determine
API usages and reduce the impact of API modifications, it is recommended to apply analyses

and tools on frameworks and their client programs.

Tufano et al. [47] show that it is not feasible to revise most of the projects due to the missing
dependencies for the older version of projects. Kula et al. [48] empirically studied library
migration on 4,600 GitHub software projects and 2,700 library dependencies. They showed
that although most of these projects rely on dependencies, 81.5% of the studied projects keep
using their outdated dependencies. Our findings show more distribution of failures including

dependency despite of accurate technical details.

Dig et al. [49] also conducted an analysis on five open-source systems (Eclipse, Log4J, Struts,
Mortgage, and JHotDraw) to understand the API changes. They showed that 80% of changes
are due to refactoring. However, as our study is in a higher level of granularity, we observed
build failures related to programming issues where the majority of builds fail were 36.1% and

15.5% where minority of builds fail.

15

CHAPTER 3 RESEARCH PROCESS AND ORGANIZATION OF THE
THESIS

This chapter presents the methodology and the structure of my thesis. This thesis wants
to help practitioners understand the impact of operating system and environment on build
results, and help researchers to consciously analyze build results. In Chapter 4, we analyze
build failures in the CPAN build environment to find out whether prior findings on build
failures and error types in Java [5, 41] also hold for Perl programming language and for

release-level CI.

An earlier version of this work was published at the 14th International Conference on Mining
Software Repositories [50]. Chapter 4 extends this work by adding three additional research
questions involving a qualitative analysis of build failures. This extension has been submitted

to the Springer journal on Empirical Software Engineering.

We aim to understand what factors play a role in the build process and in CI. This can help
developers how to better contribute while integrating their code, as well as help researchers to
identify the valuable OSes/environments to build on per day. Optimizing build execution will

decrease the cost and effort required for performing builds, especially in large scale industries.

16

CHAPTER 4 ARTICLE 1: DO NOT TRUST BUILD RESULTS AT FACE
VALUE -AN EMPIRICAL STUDY OF 30 MILLION CPAN BUILDS

Submitted at: Springer journal on Empirical Software Engineering (Extension of published
paper at: the 14th International Conference on Mining Software Repositories)

Mahdis Zolfagharinia, Bram Adams, Yann-Gaél Guéhéneuc
Abstract

Continuous Integration (CI) is a cornerstone of modern quality assurance. It provides on-
demand builds (compilation and tests) of code changes or software releases. Despite the
myriad of CI tools and frameworks, the basic activity of interpreting build results is not
straightforward, due to the phenomenon of build inflation: one code change typically is
built on dozens of different runtime environments, operating systems (OSes), and hardware
architectures. While build failures due to configuration faults might require checking all
possible combinations of environments, operating systems, and architectures, failures due
to programming faults will be flagged on every such combination, artificially inflating the
number of build failures (e.g., 20 failures reported due to the same, unique fault). As previous
work ignored this inflation, this paper reports on a large-scale empirical study of the impact of
OSes and runtime environments on build failures on 30 million builds of the CPAN ecosystem.
We observe the evolution of build failures over time and investigate the impact of OSes and
environments on build failures. We show that Perl distributions may fail differently on
different OSes and environments and, thus, that the results of CI require careful filtering
and selection to identify reliable failure data. Manual analysis of 791 build failures shows
that dependency faults (missing modules) and programming faults (undefined values) are the
main reasons of build failures, with dependency faults typically being responsible for build
failures on only few of the build servers. With this understanding, developers and researchers
should take care in interpreting build results, while dashboard builders should improve the

reporting of build failures.

Keywords: Continuous Integration, Build Failure, Perl, and CPAN

4.1 Introduction

Continuous integration (CI) is an important tool in the quality-assurance tool-box of software
companies and organizations. It enables the swift detection of faults and other software-

quality issues. A CI system, such as Jenkins, performs builds multiple times a day, for either

17

each patch currently under review, each new commit entering the version control system, or
at given times of the day (e.g., nightly builds). It combines build and test scripts to run
compilers and other tools in the right order, then test the compiled system [31, 5]. It notifies
developers as soon as possible of build failures [14, 15]. A more coarse-grained form of CI is
used by package repositories of open-source Linux distributions (e.g., Debian or Ubuntu) and
of library repositories, like Maven or CPAN. Their CI systems only receive official releases
(instead of every commit), yet those must be built and tested before publishing the new

releases. Thus, a CI system may perform dozens or hundreds of builds a day.

Contrary to popular belief, a single commit or release is not built just once, but separate
builds are performed for different environments and operating systems (OSes), such as dif-
ferent Java versions or different versions of Windows. These multiple builds, for multiple
environments and OSes, lead to the problem of build inflation: there are many build results
across OSes/environments, which are not necessarily uniform, i.e., they do not fail or succeed
for the same reasons for all environments and—or OSes. Thus, additional builds may bring
diminishing returns. Testing in some environment/OS, like Darwin in Figure 4.1, would be
more valuable than testing on other OSes, like FreeBSD, because Darwin builds have targeted
fewer Perl versions—half of which succeeded—while the vast majority of FreeBSD has been
failing. Future FreeBSD builds are hence expected to fail, while the Darwin builds could

either fail or succeed.

The software-engineering research community, although interested in CI, e.g., the MSR’17
mining challenge was about CI!, lacks knowledge on the breadth and depth of the adoption of
CI by software companies and organizations. We need answers to questions such as does CI’s
advantages surpass its disadvantages? Do developers use CI, and what are its limitations?
How does CI help developers? Consequently, we study the impact of build inflation, in
particular its resulting bias, on build failures and CI. We empirically study 30 million builds
of the Comprehensive Perl Archive Network (CPAN) [13] performed between 2011 and 2016
and extracted from its CI environment. We cover more than 12,000 CPAN packages—called
distributions in the context of CPAN and in the following, 27 OSes, and 103 environments.

We answer the following seven questions:

— RQ1: How do build failures evolve across time?

— RQ2: How do build failures spread across OSes/environments?
— RQ3: To what extent do environments impact build failures?
— RQ4: To what extent do OSes impact build failures?

— RQ5: What are the different types of build failures?

1. http://2017 .msrconf .org/#/challenge

http://2017.msrconf.org/#/challenge

18

— RQ6: To what extent do OSes impact build failure types?

— RQT7: To what extent do environments impact build failure types?

We show an inflation in the numbers of builds and build failures, which hide the reality of
builds in noise, e.g., comparing the results of millions of builds on Linux with thousands of
builds on Cygwin can lead to wrong conclusions about the quality of Perl releases on Cygwin
in comparison to Linux. We also show that unnecessary builds, e.g., on OSes/environments,
for which we already have many builds, could be avoided by investigating the impact of
environments and OSes on build failures. Our observations provide empirical evidence of the
bias introduced by build inflation and provide insights on how to deal with this inflation.
We provide the largest quantitative observational study to date on build failures and build
inflation. The results of our study form the basis of future qualitative and quantitative studies
on builds and CI. They can help researchers to better understand build results. They can
also help practitioners to prioritize the environments/OSes with which to perform continuous

integration, in terms of expected returns, i.e., numbers of builds vs. chance of failures.

We extend our previous work [50] by analyzing the types of build failures and the impacts
of different environments and operating systems on failures and their types. We thus can
distinguish between OS dependent and independent build failures. We then categorize these
build failures into 13 groups based on the reasons of the failures. We added RQ5, RQ6, and
RQ7 to describe each of these categories and impacts. Finally, Section 4.5 also provides a

detailed comparison of the obtained build failure types with those reported in the literature.

We organize our paper as follows: Section 4.2 presents background information on the CPAN
CI environment and major related work. Section 4.3 describes our observational study design
while Section 4.4 presents our observations, followed by their discussions in Section 4.5.
Section 4.6 describes threats to the validity of our observations and discussions. Finally,

Section 4.7 concludes with insights and future work.

4.2 Background

4.2.1 CPAN

Overview: This section provides an overview of the software ecosystem whose build results
we are studying in this paper, i.e., the Comprehensive Perl Archive Network (CPAN). Similar
to Maven and npm for Java and Node.js, CPAN is a ecosystem of modules (APIs/libraries)
for the Perl programming language. It contains more than 255,000 Perl modules packaged
into 39,000 distributions, i.e., packages that combine one or more modules with their doc-

umentation, tests, build and installation scripts. Each distribution can have one or more

19

versions. To simplify terminology, in the following, we refer to a distribution of a set of

modules as a “dist” and to a distribution version as a “distversion”.

Build Reports: CPAN implements its own continuous integration system, which builds
and tests any new beta or official version of a dist on a variety of operating systems (e.g.,
Windows vs. Linux) and runtime environments (e.g., Perl version 5.8 vs. 5.19). If successful,
the new distversion can be made available to CPAN users. Unlike Travis CI and Jenkins, but
similar to Maven and npm, CPAN CI does not work at commit-level, but at release-level.
CPAN depends on its own build servers and build servers owned and hosted by volunteering
CPAN members. Thus, distversions are not guaranteed to be built and tested on every OS

and environment version (cf. white cells in Figure 4.1).

As Perl is an interpreted language , build scripts typically process or transform code and
data instead of mere compilation. The test scripts then allow to verify that the modules
in the dist are working correctly on a given OS and environment. For each build (we will
refer to the execution of build and test scripts for a given OS and environment as a “build”),
CPAN generates a build report and all reports for a given version of a dist are summarized
into an overview report, as shown in Figure 4.1. This Figure shows the summary of build
results for version 0.004002 of the “List-Objects-Types” dist for environments 5.8.8 to 5.19.3
(left column) and OSes CygWin to Solaris (top row). Red cells indicate that all builds
for a combination of OS and environment failed, green cells show that all were successful,
red/green cells indicate that some builds failed, and orange cells represent unknown results

(e.g., build or tests were interrupted).

Rest API: CPAN provides a RESTful API [51] and a Web interface [13] to allow complex
queries on all publicly-available modules and dists. Furthermore, the whole history of CPAN
and all of its modules and dists are accessible via the GitPAN project 2. These data sources
allow to conveniently access CPAN for analysis, providing access to build results and module
meta-data, such as modules names, versions, dependencies, and other helpful information:

— GUID: a unique global identifier that identifies each dist.

— CSSPATCH: a value (pat) or (unp) indicating if this module was tested with a patched

version of Perl.
— CSSPERL: a value (rel or dev) indicating if this module was tested with a release or

development version of Perl.

2. https://github.com/gitpan

20

CPAN Testers Matrix: List-Objects-Types 0.004002

Distribution (e.g. DBI, GPAN-Reporter, YAML-Syck): Submit
CPAN User ID (e.g. TIMB, JHI, ANDK): Submit
You can click on the malrix cells or row/column headers 1o get the list of corresponding reports.
ALL cygwin darwin dragonfly freebsd [gnukfreebsd linux mswin3d2 netbsd openbsd solaris

5.19.

(X

o
=
©
o

ok | | [| [
& || 0o (100

=
o

A
>l
ANENEN

=
el

‘f

=
=]

=
=]

e
oo

e
oo

Figure 4.1 Example of CPAN build report summary. A vertical ellipse represents an “en-
vironment build vector” (RQ3), while a horizontal ellipse represents an “OS build vector”

(RQ4).

4.2.2 Related Work

There exists previous work related to build, build failures, and CPAN or other ecosystems.

We summarize now the studies most relevant to our own study.

Denny et al. [38] investigated compile errors in short pieces of Java code and how students
fixed these errors. They showed that 48% of the builds failed due to compilation errors.
Similarly, Dyke [39] assessed the frequency of compile errors by tracking Eclipse IDE usage

with novice programmers.

Suvorov et al. [30] studied two popular open-source projects, Linux and KDE, and found that
the migration from one build system to another might fail due to missing features. Adams
et al. [6, 31] analyzed the changes to the Linux kernel build system and reported that the
build system grew and had to frequently be maintained. McIntosh et al. [33] replicated the
same study on the ANT build system. We complement these studies with our explanatory
model of build failures for the build system of CPAN.

Other CI systems, similar to CPAN, but at the granularity of commits instead of releases, are
Jenkins, Hudson, Bamboo, and TeamCity [19]. Stahle and Bosch [2] surveyed CI practices
and build failures in such CI systems. They observed that test failures during builds are
sometimes accepted by developers because developers know that these particular failures

will be fixed later [52]. We complement this study by showing the impact of OSes and

21

environments on build failures within CPAN particular CI system.

Seo et al. [5] reported on a case study performed at Google, in which they assessed 26.6
million builds in C and Java. They showed that there exist multiple patterns of build failures
and focused on compilation problems to conclude that dependencies are the main source of
compilation errors, that the time to fix these errors varies widely, and that developers need
dedicated tool support. We also showed that there exist multiple patterns of build failures.

We also took into account the impact of OSes and environments on failures.

Vasilescu et al. [24] conducted an empirical study about CI usage on 246 projects from
GitHub. They showed that CI significantly improves the productivity of GitHub teams.
However, despite providing evidence on the benefits of CI, they do not provide any detailed
information about CI usage, such as the consequences of continuously integrating many
builds. Our findings provide evidence on the occurrence of inflation in builds, as CI has

become more popular over time.

Hilton et al. [3] assessed 34,544 open-source projects from GitHub, 40% of which use CI. They
analyzed approximately 1.5 million builds from Travis CI to understand how and why devel-
opers use CI. They found evidence that CI can help projects to release regularly. Leppanen
et al. [25] also reported more frequent releases as a perceived benefit of CI by interviewing
developers from 15 companies. Two other works [40, 26] have performed case studies on the
use of CI and found a positive impact of CI. This growing usage of CI makes it important to

perform a larger study of CI and builds.
Our study shows that 39.4% of the builds failing on only a few of the OSes are due to API

dependencies (missing modules and libraries) compared to 27.8% of the builds failing on the
majority of OSes. APIs are indeed an important factor of development costs [43]. Previous
work studied APIs for various purposes: (1) to recommend relevant APIs to developers
during development and—or during changes, typically when upgrading the dependencies of
one module to newer versions of other modules [44], and (2) to migrate APIs, in particular in
the context of services [45]. We refer the interested reader to a previous article summarizing

this work [46]. We summarize here only two relevant works related to APIs and builds.

Wu et al. [46] analyzed changes in 22 releases of the Apache and Eclipse frameworks and
their client programs. They observed the kind of API changes in the frameworks impacting
the clients and classified API changes and API usages. They suggested analyses and tools
apply to frameworks and their client programs to identify different kinds of API usage and
reduce the impact of API changes. We provide evidence that such API changes are the
most important cause of build failures, with a different impact depending on the OSes and

environments on which the builds are performed.

22

4.3 Observational Study Design

We now describe the design of our observational study. For the sake of locality, we present

the research questions, their motivations, and their results in the next section.

4.3.1 Study Object

The object of our study is the impact of OSes and environments on build results to analyze
the phenomenon of “build inflation”, where an excessive number of builds on heterogeneous
combinations of OSes and environments can introduce bias in build results. Such bias makes
it difficult to interpret build results (and hence detect bugs), and should be taken into consid-
eration by practitioners and researchers analyzing build results. In certain cases, one might
even consider to elide (combinations of) OSes and environments from the CI server if those

do not contribute useful information.

4.3.2 Study Subject

We choose CPAN to study the impact of OSes and environments on build failures because
CPAN [13] provides the results of the automated builds of all Perl dists and distversions on
dozens of OSes and environments. Hence, it provides a large and rich data set. Moreover,

CPAN has a long history, even though it provides build data only at the release level.

Using the data sources mentioned in Section 4.2.1, we mined the build logs and meta-data
of all distversions. Build logs contain the results of all CPAN builds, including the com-
mands executed, build results (failed or succeeded), and the error messages generated by
the build and-or test scripts. The META.yml meta-data files contain a dist name, version,
dependencies, author and other dist-related information (e.g., supported OS/Perl version).
Using the dist build logs and meta-data as the main data source for our observational study,
we obtained a data set of 16 years of build results for 39,000 dists, 27 OSes and 103 (Perl)

environments.

4.3.3 Quantitative Study Sample

First, we fetched the complete CPANtesters build repository, yielding 68.9 million builds over
a period of 16 years, between January 2000 and August 2016. We found that most builds
were performed between 2011 and 2016. Although for each OS, builds were performed on
different OS versions and architectures, 10 OSes and 13 Perl environments stood out. In

particular, each of these 10 OSes had more than one million builds, while each of these 13

23

environments had more than 800,000 builds. To reduce time and (to some degree) simplify
our analysis, we filtered out the other OSes and Perl environments, reducing the initial data
set to 62.8 million builds on 10 OSes and 13 environments (Perl 5.8 to 5.21, excluding 5.09)
for a period of about 5.5 years between January 2011 to June 2016.

As mentioned in Section 4.2, every cell in Figure 4.1 shows all the builds for a combination
of OS and Perl environment. Red cells show that all builds failed, green cells represent
that all were successful, and red/green cells indicate that some builds failed (due to different
architectures and OS versions). Following the different directions of the research questions,
in RQ1 and RQ2, we count all builds of every cell, in RQ3 and RQ4, we summarize the build
output of each cell by considering only the most common build outcome, while in RQ5 to

RQ7, we summarize each cell build outcome by considering only the most recent failure.

Although we investigate 13 Perl major versions, e.g., 5.8, the dataset includes 103 Perl minor
versions, e.g., 5.8.8. Results of a major version include results of all minor versions. This
data set included dists with only one build as well as dists with thousands of builds. For
example, 13,522 dists have more than 1,000 builds while 967 dists have less than 3 builds.
Unfortunately, not all builds have build results and we cannot draw any reliable conclusion
for dists with too few builds or too few versions, while modules with too many builds or
versions might not be representative either. Consequently, we filtered out builds without
corresponding data, we determined lower and upper thresholds for the number of builds and
number of versions, and filtered out modules below or above those thresholds, respectively,

as explained in the following.

Figure 4.2 illustrates the distribution of the median number of builds and the number of
versions across all CPAN dists in our full data set (the number of dists within each quadrant
is shown as well). Black lines show the lower and upper thresholds that we determined
for the median number of builds and number of versions for each dist. By looking at the
data distribution, we filtered out CPAN dists with less than 10 build results and less than 5
versions. Then, to determine the upper thresholds for filtering outliers, we used the following
formula [53] based on the inter-quartile range: ut = (uq — lq) * 1.5 + uq where lq and uq are
the 25" and 75" percentiles and ut is the upper threshold.

Of the nine quadrants shown in Figure 4.2, only the central one is used in our study. After
removing 849,638 builds without data and filtering out the other quadrant data, we obtained a
final data set of 12,584 CPAN dists with about 30 million builds. Including other quadrants
would increase our data set size, but might introduce noise in the form of outliers. The

resulting quantitative study sample is used in RQ1 to RQ7.

24

100~
c
S
5
% Number of
f@ 131 1,216 2 Dists
©
© 500
c
= . 1000
g 2,240 12,584 179 W s
w
5 10-
£
®
N
3,398 17,415 1,835
1- q
10° 10 10° 10° 10*

Median # Builds in a distribution

Figure 4.2 Distribution of the number of builds and versions across CPAN dists. This Hexbin
plot summarizes where the majority of the data can be found (darker cells), where a cell
represents the number of CPAN dists with a given median number of builds (x-axis) and
the number of versions (y-axis). The black lines correspond to the thresholds used to filter
the data, dividing the data into 9 quadrants. For each quadrant, the number of CPAN dists
within it is mentioned on the plot. The central quadrant contains the final data set.

25

4.3.4 Qualitative Study Sample

We performed a qualitative study on build failures to categorize different types of failures
that occur during the build process and to understand the impact of environment and OS on
the types of failures that occur. We manually analyze CPAN build logs to identify the types

of failures occurring in builds, then compare the frequencies of their occurrences.

First, we created a dataset of OS build vectors as it is shown in Figure 4.1 with at least
one build failure among at least 10 OSes to compare build failures happening in only a
minority of OSes (inconsistent failure) to those happening in most of the OSes (consistent
failure), for a given Perl version (see RQ4, RQ6 and RQ7). Since for each combination of an
OS/environment, multiple builds (and failures) can exist, with a maximum number of 1,362
failures and a median number of 64 failures per OS/env, we had to pick one build per vector
element (OS/environment). In contrast to RQ3/4, we picked the most recent failure for each
vector element, because we want to find out the most up-to-date reason of failures across all
OSes/environments. This reduced the number of build failures from 76,748 to 1,421 across
804 OS vectors (note that most of the vectors did not contain any build failure, which is

expected).

Furthermore, we observed that 4% of the selected build results are marked as unknown,while
such unknown results were considered as failure in RQ3/4, we cannot do this for RQ5, RQ6
and RQT7 because we need to understand why a failure happened from its build log, so we
ignored these unknown results. Note that although we removed 4% of the selected build

results, none of the 804 OS vectors was removed entirely.

We distinguish the remaining OS vectors with 1 to 3 failing OSes into the group of “minority
vectors” and those with 6 to 10 into the group of “majority vectors”. We ignore vectors with
4 or 5 out of 10 failing OSes because those could have the characteristics of both minority
and majority vectors. Thus, we obtained 752 vectors (963 failures) of minority failures and

52 vectors (458 failures) of majority failures.

Because 1,421 failures across 804 vectors is a large number, we randomly sampled 791 failures
(confidence level of 95% and confidence interval of 5%) across 306 vectors, yielding a set of
52 majority vectors with 458 failures and 254 minority vectors with 333 failures, which we
analyzed manually.

274 author explored the build log of each

To categorize the different failure types, the 15 and
analyzed failure and organized and labeled failures according to the fault responsible for the
failure, using the “card sorting” technique [54]. Card sorting allows classifying the failures

and the causes of these failures in 791 randomly-chosen build failures and label errors. This

26

technique is used in empirical-software engineering whenever qualitative investigations and
classifications are required. Bacchelli et al. [55] used this technique to investigate code-review

comments. Hemmati et al. [56] used it to examine survey analysis [57].

Card sorting involved multiple reviewing iterations. Initially, the first author investigated
error messages in logs to analyze the reported symptoms of failures, then explored on-line
reports and feedback for each error message to find evidence of and extract the real faults.
Then, she added the error messages and their reasons (faults) into a card in Google Keep.
Eventually, after analyzing the main rationale for each build failure and recording it onto a
card, she grouped these cards into different categories based on a common rationale of build
failures (faults). In the second and third iterations, the first and second author discussed
differences among error types to categorize them. Major reasons for disagreement involved
unclear error messages and too broad/narrow categories. Eventually, both authors agreed on

six main categories of failures, containing nine subcategories. Figure 4.3 shows the categories

that we studied in RQ5, RQ6, and RQ7.

4.4 Observational Study Results

We now present the motivations, approaches, and results of the seven observational research

questions, RQ1 to RQT.

RQ1: How do build failures evolve across time?

Motivation. This initial research question aims at understanding how often builds fail and
whether the ratio of failing builds is a constant value or fluctuates across time. We investigate
build inflation in terms of number of builds. Beller et al. [14] found a median of 2.9% of Java
builds and a 12.7% of Ruby builds in Travis CI to be failing, while Seo et al. recorded failure
ratios of 37.4% and 29.7% for C++ and Java builds at Google [5]. Unfortunately, apart from
these lump numbers, not much more is known about the build failure ratios, in particular
about the evolution of this ratio in time. Furthermore, all existing CI studies have targeted
commit-level builds and tests, while CPAN is a package release-level build infrastructure,

typical of software ecosystems.

Approach. To study the ratio of build failures in our data set, we consider all failing
builds (red cells in Figure 4.1) and unknown build results (orange cells in Figure 4.1). When
a particular OS/environment combination (one cell in Figure 4.1) saw multiple builds, we
considered all of them in this RQ. For each CPAN dist in the data set of 30 million builds,
we computed the ratios of build failures as #buildfailures/#builds. From 2010 to 2014,

27

Failure

Category
I
[| | I I 1
Dependency Programming Environment oS Test Unclear

Milssing Library — Un\t/i;i::r;ed - Configuration

Missing | | q

Module Data Format Security
_ Undefined ~ Typoes and I/o

Dependency etc.

Figure 4.3 Hierarchy of fault types across all operating systems and environments.

each year, two Perl versions were released (release cycle of 6 months), so we investigated the
evolution of failures per period of six months. We did not distinguish between OSes and

environments in this RQ.

Findings. The median build failure ratio decreases across time from 17.7% in the
first six months of 2011 to 6.3% in the first six months of 2016.

Figure 4.4 shows the distribution of failure ratios across all builds of all CPAN dists in the
studied period of six years. From 2011 to 2013, the median failure ratio in the first half
of a year is higher than that of the second half of the year, yet from 2014 on this trend
is reversed. As the regression line in Figure 4.4 shows, the overall build failure ratio has
a strong decreasing trend between 2011 and 2016, especially when taking into account the
logarithmic scale used in the figure. This decreasing ratio might be due to several reasons,
for example less builds being performed across time or less releases being made for dists. In

the following, we explore these two hypotheses.

Until the first half of 2015, each year, more builds were being made, from one

Table 4.1 Number of builds, distversions, and average numbers of builds per distversion in
each period of six months between January 2011 and June 2016.

2011-A 2011-B 2012-A 2012-B 2013-A 2013-B 2014-A 2014-B 2015-A 2015-B 2016-A

Number of Builds 626 946K 1,860K 2,404K 3,021K 3,482K 3,625K 4,082K 4,827K 3,394K 2,891K

Number of Distversions 14 7,185 8,085 8,338 10,443 9,387 9,549 11,682 9,621 7,829 7003

#builds / #releases 44.7 131.7 230 288 289.2 371 379.6 349.5 501.7 433.5 412.9

28

39.81-

25.12-

Y%Failure
o
[
%
[

10-

6.31-

Figure 4.4 Distribution of failure ratios in six-month periods. The linear regression line shows
the corresponding trend of the ratios over the six studied years.

(2011) to several million (2016). Table 4.1 shows the number of builds per period of
six months. We observe that, even though ever more builds are executed, they seem more
successful over time, i.e., there is an inverse correlation between numbers of builds and build
failures. It is not clear why the second half of 2015 and first half of 2016 show a decreasing
number of builds, however these observations might explain the plateau (instead of decrease)

of median values for the rightmost box-plots in Figure 4.4.

The average numbers of builds per distversion shows a ten-fold increase from
44.7 to 412.9 across time, although there are some fluctuations from the second
half of 2014 on (2014-B). To understand if the decreasing build failure ratio is due to a
drop in the number of releases being made over time, we counted the number of releases of
dists in each six month period. The average number of builds per release in Table 4.1 shows
an increasing trend, growing from 44.7 in the first six months of 2011 to 501.7 in the first half
of 2015 (with a slight dip at the end of 2014), after which the average ratio drops, but still
remains higher than in 2014. We explain this observation as follows: although the numbers
of builds dropped from the second half of 2015 on, the number of releases did not drop at

the same rate.

Overall, the steady drop in build failure ratio can (at least partially) be explained by a strong
increase in numbers of builds per release, i.e., strong increases in the numbers of builds and
the numbers of releases per CPAN dist. While an increasing number of releases is typical

for today’s release engineering strategies [58], the increasing numbers of builds cannot be

29

explained intuitively. The next research question helps understand this build inflation by

considering the impact of different OSes and environments on builds.

KRQJ: The median build failure ratio de-\
creases super-linearly across time, while
the number of builds per distversion sees

\a 10-fold inflation.

J

RQ2: How do build failures spread across OSes/environments?

Motivation. Build inflation seems to occur due to the needs for building and testing a
release on different versions of the OS and Perl environment. Our hypothesis to explain
the decrease of the build failure ratio observed in RQ1 is that a given new distversion is
built multiple times in such a way that most of these builds succeed, while only a few fail.
Although each OS and Perl environment, of course, can show deviating behavior (which is
why multiple builds are performed in the first place), they are essentially building and testing
the same features. Hence, feature-related faults are expected to trigger failures across all OSes
and environments, inflating the numbers of build failures. Indeed, observing a feature-related
build failure on one environment or OS theoretically suffices, additional builds are expected to
fail as well. In contrast, OS- or environment-specific problems occur only for the problematic
OS or environment, which is not trivial to predict. This deviation between different types
of failures might not only explain our findings for RQ1, but also lead to bias in build results

that must be addressed to avoid incorrect conclusions by build engineers and researchers.

Approach. For each build, we extracted build log data about the OSes and environments
used during the build, then calculated build failure ratios per OS and environment. For the
same reasons outlined in RQ1, we removed builds with unspecified status. Furthermore, as
any CPAN community member can volunteer a machine for CPAN builds, a wide variety of
hardware architectures and OS/environment versions are used. To make our analysis feasible,
we again considered all build results recorded for a given operating system and environment.

The analysis of the impact of hardware architecture is left for future work.

Findings. The analyzed CPAN distversions have a median of 179 builds, which
took place on a median of 22 environments and 7 OSes. Figure 4.5 shows the
distribution of the numbers of builds, OSes, and environments across all dists. While the
numbers of OSes are more or less stable around 7, the number of Perl environments to test is

much higher, while the total numbers of builds for a dist correlate with the product of both.

Through a manual analysis of the CPAN data, we observed that, when a new version of a dist

30

10000
|

1000
1

#Builds

o
= A
o | '
— ' E‘ﬁ
3 .
- — % o
T T T
Build Environment Platform

Figure 4.5 Distribution of the numbers of builds per CPAN dist, as well as of the numbers
of OSes and environments on which these dists’ builds took place.

is released, it should be built and tested on most of the supported OSes and environments
to check if the new distversion is backward compatible with its application programming
interface (API) [59]. Conversely, when a new OS or environment becomes available, most of
the existing distversions that are not yet deprecated are rebuilt, which explains the inflation
of the numbers of builds over time found in RQ1, but not yet the decrease of the build failure

ratio.

Not every environment yields equally reliable build results. Figure 4.6 illustrates
the evolution of build failures from Perl version 5.8 (released in 2002) until 5.21 (2015).
Environments are shown on the x-axis, ordered by release date[60], while the y-axis shows
the build failure ratios (blue; right axis) and the percentages out of all builds performed on a
given Perl version (black; left axis). The jagged trend of the black line (percentages of builds)

is surprising, suggesting that odd releases see substantially fewer builds than even ones.

Closer analysis showed that Perl uses a specific semantic versioning approach [60] where even
release numbers, like 5.8 and 5.10, are official production releases (with maintenance releases,
such as 5.12.1 and 5.12.2 mainly for bug fixes) and odd release numbers, like 5.11 and 5.13,
are development releases. Hence, development releases are used less for builds and have
less reliable build results. Although versions 5.19 and 5.21 were less failure-prone than their
stable successors, other odd versions were more failure-prone. Furthermore, some builds have
been performed in older environments, yet there was not enough build data to study these

in details.

31

Build Ratio Failure Ratio
0.20 0.20
0.15 A 0.15
0.10 0.10
0.05 V v \/ \ 0.05
0.00 T T T T T T T T T T T T T 0.00

I VR VI, V. " TS S WX S Y, A

S T TG Y oY oY oY oY oY 07 GV

Figure 4.6 Distribution of the ratio of all builds performed on a given environment (black
y-axis), and the proportion of those builds failing (blue y-axis).

Build Ratio Failure Ratio
0.4 0.4
0.3 0.3
0.2 0.2
. /\\ .
0.0 T T T T T T T T T T 0.0
e S S > S & R v R >
& F & T &
& & & S S B
S Q\ge & =
S <

Figure 4.7 Distribution of the ratio of all builds performed on a given OS (black y-axis), and
the proportion of those builds failing (blue y-axis).

32

%Unsupported OS
a
3]

Figure 4.8 For a given OS, the distribution across CPAN distversions of the percentages of
environments for which no builds have been performed.

The most failure-prone build OSes are Windows (%18), Cygwin (%14), and
Solaris (%12). Figure 4.7 shows the percentages of builds and failing builds for differ-
ent OSes. It shows a clear difference between BSDs/Linux on the one hand and Win-
dows/Cygwin/Solaris on the other hand. The former cluster of OSes has a substantially
larger numbers of builds than the latter cluster, while the percentage of failures is lower.
Hence, similar to environments, the build results on some OSes are less reliable than others,
because they might just indicate a lower popularity of those OSes in terms of builds and
development. For some OSes like MidnightBSD or Cygwin, we have very few numbers of
builds. Therefore, build results are based on small amount of data, which might not be as
reliable as the results for Linux with huge numbers of builds. Finally, the average and median
numbers of OSes on which each CPAN dist is built is 7. This number excludes OSes that

were filtered out in Section 4.3.3 due to very low numbers of builds.

The fact that some OSes are more failure-prone and less popular amongst developers than
others can also be observed when counting the numbers of times when no build is performed
for a distversion on a given combination of Perl version and OS. These cases correspond to
the empty cells in Figure 4.1. The resulting distribution of the percentages of missing builds
across CPAN distversions for each OS is shown in Figure 4.8. We observe how the most

incomplete OSes correspond to those with the most build failures in Figure 4.7. Therefore,

33

anyone interested in studying build results for CPAN should not blindly trust the build
results for the least supported OSes, such as MidnightBSD, Cygwin, and Windows, because

there are too few builds to be reliable and meaningful.

Due to lack of build resources, not all combinations of environments and OSes are built,
hence the less important OSes have less build/test results, which lead to build inflation and
makes interpreting build results harder. Spending more time and effort to run the valuable

builds would help reducing inflation in builds.

KRQQ: The OSes with the least builds have\
the most failures. Build engineers should
not trust the build results blindly, especially
for the least supported OSes, as their build

failures are impacted by build inflation.

RQ3: To what extent do environments impact build failures?

Motivation. In RQ2, we analyzed the impact of OSes and environments on the numbers
of builds and the build failure ratio to better understand the increase in the number of
builds. Although we found empirical evidence of build inflation due to repeated builds on
different combinations of OSes and environments, we could not yet explain why the ratio of
build failures has been decreasing over time. We suspect that build failures specific to one
environment version will only register once, while builds of an abandoned distversion will
fail on all environments and count multiple times. Similarly, OS-specific faults will register
less build failures than faults in OS-independent code. Not all such failures are equally
valuable to analyze. Therefore, this research questions and the next study the impact of the
environment- (RQ3) and OS-specific (RQ4) build failures.

Lehman’s 7% law of software evolution states that “the quality of an E-type system will appear
to be declining unless it is rigorously maintained and adapted to operational environment
changes” [61]. As each CPAN distversion is immutable (any changes will generate a new
distversion rather than updating an older one), once a distversion starts to fail on a given
Perl version for a given OS, it is expected to keep on failing on future Perl versions on that
OS, unless the Perl developers fix the Perl APIs. Hence, this RQ aims to understand how
often environments break the builds and to what degree a failing build can recover again or

is doomed to keep on failing.

Approach. For each distversion and OS, we consider the chronological sequence of build

results across environments as binary vectors (“environment build vectors”), where a 0 marks

34

a failed build and a 1 a successful build. We ignored environment versions with missing builds:
e.g., the environment build vector for Cygwin in Figure 4.1 is [1, 1, 1] because we ignore white
cells (missing builds). For a given OS and environment, some builds could be successful while
others may fail (cells colored partially red and partially green in Figure 4.1), so we used the
majority vote to summarize these build results into 0 or 1 values for use in the environment
build vectors. If 50% or more of the builds for a given OS environment failed, the environment

is said to be failure-prone (0 in the vector).

We then analyze the four possible patterns of build failure evolution and study these patterns
across our environment build vectors to identify environments that are more failure-prone
and tend to keep on failing. These four patterns are summarized in Table 4.2. For example,
in Figure 4.1 OpenBSD’s failure pattern is 0-0, because version 0.004002 of the List-Objects-
Types dist started out and ended up failing on multiple environments, with some successful
builds in the middle (Perl versions 5.14.4, 5.16.0, and 5.16.2). Similarly, the pattern for
Cygwin is 1-1 (missing builds are ignored), while that for Linux is 0-1, with some fluctuations
in the middle.

Findings. For 77% of the environment build vectors, builds succeed across all Perl
versions. For 12%, the builds eventually succeed towards the most recent Perl
versions. For the remaining 11%, the builds eventually fail or never succeeded at
all across Perl versions. Figure 4.9 shows the percentages of environment build vectors
matching each pattern in Linux. Blue bars show the percentage of “pure” matches, i.e.,
matches that do not include the optional part (between parentheses) of the patterns in
Table 4.2. The blue bar for pattern 1-1 represents environments in which builds always
succeed. Gray bars match the full patterns, including the optional fluctuations from 0 to 1

or 1 to 0, where the APIs of the Perl versions temporarily behaved differently than before.

Our observation provides evidence for Lehman’s 7" law of software evolution because, for

Table 4.2 Total percentage of occurrences of the four different build failure evolution pat-
terns, across all OSes. “Pure” refers to occurrences of the patterns without fluctuation (e.g.,
[1,1,1]), while “Noisy” refers to occurrences with fluctuation (e.g., [1,0,1]).

Description Pattern Name Pure Noisy

Mostly Succeed 1+ (0+ 14+)* -1 7% 3%
Mostly Fail 0+ (14 0+)* 0-0 6% 1%
Eventually Fail 1+ (0+ 14)* 0+ 1-0 3% 1%
Eventually Succeed 0+ (1+ 0+)* 1+ 0-1 8% 1%

35

1.00
)

0.50
|

0.10 0.20
.

Patterns Ratio

0.05

0.02

0.01

Co11 0-0 1-0 0-1

Figure 4.9 Percentages of the four build failure evolution patterns for the Linux OS. The blue
bars represent occurrences of the pure patterns (no fluctuation) while gray bars are noisy
occurrences (including fluctuations).

12% of the analyzed tuples (3% noisy for 1-1, 8% pure for 0-1, and 1% noisy for 0-1), changes
to newer environments fixed previous build failures. These changes are changes in which an
APT is removed from a Perl version before being added again or where the implementation
of an API changed behavior. For example, in dist version “Any-Template-ProcessDir 0.05”,
Linux follows the 1-1 pattern: although it breaks in Perl version 5.13, it succeeds again from

Perl version 5.14 onward.

However, 11% of the environment build vectors ended up failing in the most recent Perl
versions and were unable to recover or never succeeded at all (0-0 and 1-0 patterns). To better
understand these occurrences, we counted the numbers of trailing zeroes in the corresponding
vectors as a measure of the time (in terms of the number of Perl versions) during which builds
have been broken for a given OS. After normalizing by the total number of Perl versions on
which builds were made, we found that 0-0 and 1-0 environment build vectors for Linux,
Freebsd, and Openbsd have been broken for the shortest amount of time (trailing build
failures account for 20% of the builds), while Cygwin environment build vectors have been
broken the longest (50% of all builds). Windows, Darwin, Solaris, and Gnukfreebsd are in
between those extremes (33% of builds).

As many builds are performed daily just to check backward compatibility and to verify
code changes, we expect to have more and more consistent successes/failures. While each

additional build could identify a failure (and hence contribute value), many builds on certain

36

OSes have a predictable outcome and could be avoided.

/RQB: For 77% and 6% of the envimnment\

vectors, builds consistently succeed or fail,
respectively, across all environments. In
other words, only for 17% of the vectors,

build results can provide surprising infor-

\mation.)

RQ4: To what extent do OSes impact build failures?

Motivation. Although every new build on a new OS can bring new information, the amount
of test results across environments and OSes is not homogeneously distributed, which gives
some failures more weight than others. Except for a brief mention of different build envi-
ronments in Travis CI [14], related work has not yet studied the impact of OSes on build
results. Similar to the idea of build failures being specific to certain environments, this RQ
analyzes the degree to which build failures are specific to certain OSes. If one OS is less
popular than others, it might have seen less testing or some features might not have been
ported over, causing test scripts to fail. Such failures would receive less weight in the build
results than builds failing consistently across all OSes. Hence, we are interested in measuring
whether certain OSes are indeed more failure-prone than others. Moreover, if build results
of specific OSes are similar (BSDs), then we have the choice of testing only one of them for

each distversion and environment.

Approach. To determine the consistency with which a build fails across all OSes, we build
OS build vectors. Instead of summarizing build results across all environments for a given
OS (environment build vectors), an OS build vector summarizes build results of a distversion
across all OSes for a given Perl version. Again, a 0 value indicates build failure, while a 1

indicates build success.

In contrast to RQ3, in RQ4, we do not study chronological differences in build results, but
rather how consistent builds fail across OSes. It is easier to have consistent build failures
when a build is only done on three or four OSes rather than on ten, so we split our analysis
across OS build vectors of different lengths, from three up to ten. Hence, we cluster the

vectors into separate sets C;, as follows:

B = {OS build vectors across all distversions}
Ci={beB||b=i},Vi:3<i<10

37

Ci={beCi| Tl b=ior0}

CM={beCi|0<Ti b <1}

c
Cr={beCi|}<xib<i}

)

For a given vector length ¢ from three to ten, the set C; is the union of the set of vectors that
consistently failed or succeeded (C), the set of vectors where a majority of OSes had failing
builds (CM), and the set of vectors where a minority of OSes had failing builds (C™). The
former two sets give a high weight to build failures, because most—if not all-—of the OSes
fail to build, while the latter set consists of build failure anomalies because few OSes have a
different build outcome than the majority of the OSes. (We do not distinguish between sets
of OSes (e.g., {CygWin, Windows, Linux} vs. {Darwin, Solaris, NetBSD}), only between

lengths of vectors.)

Table 4.3 shows the percentages of vectors with inconsistent builds as well as how often those
are caused by a minority of failing builds. If for a given vector, a minority of m OSes has a
failing build, this counts as % for each of the OSes. The more OSes fail together, the lower

the weight we assign, because such build failures are less tied to one specific OS.

Findings. A median of 13.5% of OS build vectors fails inconsistently. Table 4.3
shows how the percentages of inconsistently-failing build vectors varies from nine (N = 10)
to 16 (N = 6 or N = 7). Such build failures are specific to certain OSes. A median of
86.5% of build vectors either had no failed build or consistently failed on all OSes. The latter
build failures are purely feature- or logic-related. This 86.5% of consistent build results

(success/fail) show how numerous are builds, which leads to build inflation.

Out of the 13.5% inconsistent build vectors, a median of 71% have only a minority
of failing OSes. Windows (30%), Linux (7%), and Solaris (7%) are amongst the OS minority
that is failing. Windows is the source of most of the minority inconsistencies, which is
likely due to its low popularity amongst CPAN developers as shown in RQ2. Linux causes
more inconsistencies when being built with a small number of other OSes (small N), but
is surpassed by Windows (and Cygwin) in larger sets of OSes (large N). Midnightbsd and
Gnukfreebsd are the least inconsistent OSes, because they typically fail together with the
other BSD OSes and Linux: they no longer belong to a minority but make up the majority
of OSes.

38

Table 4.3 Percentages of vectors in C; that fails inconsistently, as well as percentages of those
vectors for which a minority of OSes is failing (C!"). The latter percentages are then broken
down across all studied OSes (i.e., they sum up to the percentages in the third column).

N %Cl SCT™ Windows Linux Darwin Solaris Freebsd Openbsd Netbsd Cygwin Gnukfreebsd Midnightbsd
(out of C;) (out of C') % % % % % % % % % %
3 10 61 13 15 3 4 11 6 5 2 2 0
4 12 50 13 11 3 5 7 4 4 1 2 0
5 14 67 22 11 6 6 7 5 5 2 2 1
6 16 65 27 8 6 6 5 4 4 3 1 1
7 16 75 33 6 8 8 4 4 4 5 2 1
8 14 81 38 4 9 8 2 4 4 7 3 2
9 13 90 44 3 10 8 1 3 3 13 3 2
10 9 94 50 2 6 8 0 1 2 21 2 2
Median 13.5 71 30 7 6 7 4.5 4 4 4 2 1

The fact that a median of 71% of the inconsistently failing build vectors has a minority of
failing OSes, also indicates the presence of build inflation. Indeed, if one would know that a
certain build failure is OS-specific (rather than feature-related), then having 1 or 2 successful

builds on other OSes technically could suffice instead of having to run the build on all OSes.

Failure types that are known to occur consistently on most of the OSes, once identified on
one OS for a particular distversion and environment, would not need further builds to be run
on other OSes. Failure types with unclear occurrences across OSes need additional builds to

circumscribe their scopes.

/RQ4: Only a median of 13.5% of OS build\
vectors fails inconsistently, with a median
of 71% of those having only a minority of
OSes failing. This, and the fact that a me-
dian of 86.5% of build results fail/succeed
consistently, again provides evidence of

build inflation that complicates interpreta-

tion of the build results.
o of Y,

RQ5: What are the different types of build failures?

Motivation. Comprehending different build failures and their relationships with environ-
ments and—or OSes can help developers to solve future failures and help managers to prepare

for future build failures. In particular, developers could use these insights to understand

39

better some of the build failures that they face and to have indications of the faults possibly

causing these failures.

Approach. We used the qualitative analysis of section 4.3.3 to identify the different types
of build failures. We manually analyzed the build logs and extracted the build failure infor-

mation. Then, we categorized the failures according to the faults causing them.

Finding. We obtained six main categories of build failures, consisting of nine
subcategories. We give a brief definition of each fault type and a sample of the resulting

failures in each category. Table 4.4 summarizes the different categories obtained.

— The “Dependency” category is the first category of build failures, in which we have
unfulfilled API dependencies, e.g., not installed module(s), missing libraries, and other
missing files and dependencies. The reason for these failures is that some files do not
exist on the CI server, while they do on the developers’ machines. For example:

— The fault: “Can’t locate *.pm in QINC” occurs when there is a problem with
installing modules in the runtime path (QINC) because a Perl module (i.e., a li-
brary implemented in Perl) cannot be found during the build: this fault belongs
to the “missing module” subcategory. Failing tests because of a missing module:
“Test::Perl::Critic required for testing PBP compliance” shows a test that requires
the PBP module to check the presence of Perl Best Practices. Although the symp-
tom of the build failure is a failing test, the reason for the failure here is a “missing
module”.

— The fault: “Error while loading shared libraries: 7: cannot open shared object file”
belongs to the “missing library” subcategory. This subcategory refers to OS-level
library dependencies, such as unavailable C/C++ libraries, DLL conflicts in OSes,
etc.

— The “undefined dependency" subcategory represents failures like:“Makefile: recipe
for target 'test_ dynamic’ failed.", which relates to the use of uninitialized depen-
dencies.

— The “Programming” category relates to faults such as uninitialized values, implicit
declaration of functions, typos, incorrect data types, and syntax errors. These faults
imply that the code cannot be compiled or executed correctly, usually without any
warning. For example:

— A concrete example of undefined value is: “Use of uninitialized value $class_ip in
concatenation(.) or string'

— For typos: “prototype mismatch: 2 args passed, 3 expected"

— For data type errors: “Non-ASCII character seen before =encoding. Assuming

40

Table 4.4 Failure types and their percentages in Perl versions with minority failures vs.
majority failures

Fault Type Subcategory Description Minority Failure Majority Failure
% %
Missing module dist(s) not installed 35.8 27.8
Dependency Missing library Library not installed 3.6 0
Unfulfilled dependencies Other dependency issues 2 0
Undefined value uninitialized value 7.9 26.4
Programming
Typos, etc. Source code issues 4 8.3
Data format Improper data type 3.6 1.4
OS OS specific failures 12.9 12.5
Configuration Configuration errors, e.g, wrong directories 12.6 6.9
Environment 1/0 1/0 errors,e.g. serial port issues 3.3 6.9
Security Configuration errors, e.g, permission denied 2 0
Test An automated test fail 6 2.8
Test
Test related to dependency Failed test regarding to missing test module(s) 4 1.4
Unclear Improper error message 2.6 5.6

UTF-8”. These failures are related to faults in features or logic.

The “OS” category covers faults that occur on specific operating systems, e.g., “your

vendor has not defined POSIX macro VEOF" and “It seems localtime() does not

honor$ENVTZ when set in the test script”, which both happen on Windows. We
observed that OS-related faults only occur in Windows, Cygwin, and Solaris, when
the minority of builds fail. As we saw in RQ4, many build failures occur because of

OS specific faults. Qualitative analysis of failures confirms that the lack of required

implementation/configuration on different OSes can cause a build to fail, i.e., missing

functionalities or different functionalities in certain OSes.

The “Environment” category includes faults that occur when trying to access folders,

resources, permissions, etc. For example:

— If a build starts to run but fails during its process due to some configuration errors,
then we categorize this failure as configuration, e.g., “MAKE failed: No such file
or directory”, display or serial port issues.

— Permission issues, e.g., “Can’t exec “vim”: Permission denied” that we categorize
it in security subcategory.

— When a build cannot get I/O at the right time, it fails and we categorize this failure

41

as due to its environment: “Could not execute: open3d: Resource temporarily
unavailable”

— The “Test” category occurs when an automated test fails like: “release-pod-syntax.t
these tests are for release candidate testing”. The test category refers to failures during
execution with a warning message, but results are semantically incorrect.

— The “Unclear” category represent faults for which an improper message appears in

error logs.

4 I
RQ5: Build failures belong to siz main

groups and nine subgroups: dependency,

programming, environment, OS, test, and

unclear failures are the main categories.
N\ J

RQ6: To what extent do OSes impact build failure types?

Motivation: This question aims to identify the most common faults resulting into majority
failures (i.e., across many different OSes), then compare those with the most common faults

resulting into minority failures to identify the reasons for builds to fail on only a few of the

OSes.

Approach: We used the minority and majority datasets that we obtained manually from
RQ5 to determine the prevalence of each fault (sub)category. Since for majority failures
most of the OSes fail for the same reason (fault), we then focused on the minority failures
to understand for each OS the different fault types due to which it fails across the minority
builds it participates in. We then compared the results across the different OSes, yielding

information about OS-specific fault types.

Findings: The most common reason of build failures overall are dependency
faults, followed by programming faults for majority failures and environment
faults for minority failures. Table 4.4 (last columns) shows the breakdown of the per-
centage of occurrences of each (sub)category of faults within the minority and majority build
failures, while Figure 4.10 gives a visual overview of these numbers. The dependency faults,
especially “missing module”, dominate both majority and minority failures followed closely
(for majority builds) by the “undefined value” subcategory of programming faults. The pop-
ularity of programming faults among majority faults is to be expected, since an “undefined

value” or “typo” is unlikely to be fixed just by changing the underlying operating system.

Windows, CygWin, and (to some extent) NetBSD are minority failing OSes

experiencing a wide variety of faults. Figure 4.11 represents the distributions of build

42

Dependency (missing module)
os

Environment (configuration)
Programming (undefined value)
test

Dependency (missing library)
Programming (typos)
Environment (10)

unclear

Programming (data format)

Dependency (unfulfiled dependency)

Environment (security)

T T T T
0.4 0.2 o 0.2
%% Fault

Minority B Majority BN

Figure 4.10 Distribution of fault categories in OS vectors with minority failures vs. majority
failures

oepensoncy assna ooy [[RN

os-
Environment (configuration) 1

Programming (undefined value) -

test - percentage

0.6

Dependency (missing library) -
0.4
Programming (typos) - 02
Environment (1/0) - 0.0

Unclear -

Programming (data Format) - -

Dependency (unfulfield dependency) -

Environment (security) -

Sy, Yy Tee, 975, Y, P, 725, e, W, SO,

. - Cg, s, (2 . Sy, (S S 2,
Oy, Oser »(7;.@@2; 0/9/7&;:/73 Sy N 7
lod

Figure 4.11 Distribution of fault categories across all OSes in the minority dataset.

43

fault types across all OSes. It shows that Windows and Cygwin were the most minority
fault-prone OSes, confirming the results of RQ4. In addition, we now can see that this is
because they experience a wide range of fault types when they have a minority failure. If
we compare this to Linux, we can see how in 66.7% of the times when Linux is responsible
for a minority failure, this is due to the “data format” subcategory of programming faults,
while the remaining 33.3% this is due to the “configuration” subcategory of the environment

faults.

~

/RQG: Missing modules (dependency fault)
is the main reason of failures overall, with
majority failures also commonly caused by
programming faults and minority failures
by environment faults. The OSes exrperi-

encing many minority failures do so be-

cause of a wide variety of faults categories.

o /

RQ7: To what extent do environments impact build failure types?

Motivation. To better understand the role of environments in build failures, we studied
failures in different environments to find out which failures are temporary and which ones are
permanent. The term “temporary” refers to the fact that, for a given OS, a failure only shows
up for some of the environments, but is fixed in the more recent environments. The term
“permanent” refers to a failure that shows up in all environments. By comparing tempo-
rary /permanent fault types between minority and majority failures, we might find additional
evidence of build inflation, since permanent failures again would be highly predictable and

lead to redundant builds on newer environments.

Approach. To determine whether a fault type is temporary vs. permanent, we leverage the
four patterns of RQ3. Starting from the 791 manually analyzed build failures of RQ5 (333
minority failures and 458 majority failures), we then used regular expressions to automatically
match each failure’s corresponding error message across all Perl versions for the OS and
distversion for which the failure occurred. Basically, for each failure, we tried to find all its

occurrences within one column of Figure 4.1.

For example, we searched the failure “Can’t locate *.pm in QINC” of distversion “Acme-
CPANAuthors-0.23” on Windows for Perl version 5.14.4 across all other Perl versions for
which a Windows build was made. We then analyzed the obtained environment vectors to

understand how the manually observed build failures evolved according to the patterns of

44

RQ3. As failures due to API dependencies are significantly more numerous than others (see
RQ6), we aggregated all non-dependency failures into one group and compared this group to

build failures due to dependency faults.

Findings. Dependency faults for majority failures are more difficult to resolve
than for minority failures. Figures 4.12 and 4.13 compare the distributions of build fail-
ures for the four patterns of RQ3 between dependency and non-dependency fault categories,
in majority and minority builds respectively. We noticed that while 72% of the dependency
faults of majority failures follow the 0-0 pattern, only 51% follow this pattern for minority
failures. In contrast, the number of 1-1 matches double from 14% to 28%. This means that
the dependency faults responsible for majority failures are more permanent, and hence harder
to resolve, than those responsible for minority failures. For example, by fixing a dependency
on the environment or underlying OS, a minority failure on Windows may be resolved, while

doing this for majority failures on Windows seems much harder.

Non-dependency faults do not experience different behaviour between minority
and majority failures. While Figures 4.12 and 4.13 show a slight increase in 0-1 and
1-0 pattern occurrences of non-dependency faults between majority and minority failures,
the order of magnitudes of 0-0 and 1-1 pattern occurrences are comparable to each other.
This is not surprising, since we found in RQ6 that the programming category dominates
the non-dependency faults and such faults are hard to fix without touching the source code.
Since all our results in this RQ consider, for each failure, only the distversion in which the
analyzed failure occurred, the source code of the dist did not change (only the environment

and/or OS might have).

The proportions of 0-0 and 1-1 patterns across all dependency and non-dependency faults are
more numerous than the other patterns. This shows how consistently failing or succeeding
builds produce repetitive information, i.e., build inflation. On the other hand, the patterns

0-1 and 1-0 (i.e., inconsistent build results) comprise a smaller proportion of builds.

/RQ’Z' Dependency faults are more tempo—\
rary in nature across environments for mi-
nority failures, and hence are more likely to
be fixed in builds on future environments,
than non-dependency failures. However,
non-dependency faults did not exhibit such

a difference between minority and majority

@ilur@s.)

45

0.6
pattern
@ 04~ [oo
= o1
e 1o
0.29 =
0.2
0.04 0.03
0.0-
Depen'dency Non—Dep'endency

FaultType

Figure 4.12 Distribution of failures due to dependency vs. non-dependency faults in different
build patterns when majority (6-10) of builds fail. Y-axis shows the failure ratio and x-axis
shows fault types and build patterns.

0.6
0.4-
pattern
0-0
® ||
= o
i [R
[
0.2
0.0-
Depen'dency Non—Dep'endency
FaultType

Figure 4.13 Distribution of failures due to dependency vs. non-dependency faults in different
build patterns when minority (1-3) of builds fail. Y-axis shows the failure ratio and x-axis
shows fault types and build patterns.

46

4.5 Discussion

After answering RQ1 to RQ7, we have a better understanding of the frequency of builds
and build failures and the distributions of these failures across OSes and environments. We
also have a better understanding of the faults leading to these failures. In particular, we
understand better why, despite an inflation of builds across time, the percentage of build
failures keeps on decreasing. We now validate our observations, in particular those about
build OSes and environments and their impacts on build inflation, to explain the presence of

build failures.

4.5.1 Explanatory Classification Model

We build an explanatory classification model with build failure as dependent variable and
with OSes and environments as independent variables. We use random forest classifier for
our models, which build an ensemble of decision trees that are used together to classify a
given build [62]. We use 10-fold cross validation to evaluate the stability of the explanatory
models, then calculate the area under the ROC curve (AUC) to understand how much better
the models are than random guess (AUC>>0.5). We calculate what is the percentage of build
failures classified correctly as build failures (true positive recall) and what is the percentage
of successful builds classified as such (true negative recall). The higher these percentages,

the better OSes and environments explain build failures.

We build explanatory models for different dists. Initially, we chose dists with more than 200
builds, having failure percentages between 20% and 80%. Thus, from 39,000 dists, we kept
12,584, out of which we kept 3,949 dists, so that we have enough builds to get a rational
result from a random forest and to apply cross validation. To have enough data and avoid
having thousands of small models, we then grouped related dists into groups based on the
first part of their names, e.g., Acme, Net, Yahoo, etc. We thus built 677 explanatory models
for 677 groups of dists.

The explanatory models are not useful in practice to predict build failures, because they
only include OSes and environments, while ignoring other factors, notably factors related to
source code and overall code quality. However, prediction is not the purpose of these models.
We use these models to validate the extent to which knowledge of OSes and environments

alone can explain build failures.

A median of 88% of successful builds and 80% of failing builds are correctly
classified as such based only on information about OSes and environments. Fur-

thermore, as shown in the bean-plots of Figure 4.14, most of the models have an AUC value

47

1.0

0.8

0.6

0.4

0.2

0.0

AUC Recall_TN Recall_TP

Figure 4.14 Bean-plot showing the distributions of AUC, true negative recall and true positive
recall across all dists. The horizontal lines show median values, while the black shape shows
the density of the distributions.

higher than 80%, which shows that the models clearly contain more knowledge than a ran-
dom guess. By using the AUCRF algorithm [63]|, which implements a backward-removal
process according to the primary ranking of the variables, we found that OSes have a higher

explanatory power than environments for build failures, confirming our findings in RQ4.

4.5.2 Comparison to Prior Build Failure Research

This section compares prior research results with the build fault types identified in RQ5.
While Schermann et al. [34] found architectural problems as one of the main obstacles for
CI adoption and build failures, we found configuration issues and OS-specific faults as the

major problems in general.

Rausch et al. [36], analyzed build failures in 14 open-source Java projects, found that more
than 80% of the failures are due to failed test cases. Our study shows that more than 80%

of the failures are related to programming, dependency, OSes, and configurations.

Beller et al. [14] conducted an extensive analysis of 1,359 projects in both Java and Ruby and
observed that commit-level CI results are dependent on the programming language, i.e., Ruby
projects tend to have ten times more tests and hence have a higher build failure ratio due
to tests than Java. Compared to this commit-level study, our study focuses on release-level

build results for one programming language.

48

Seo et al. [5] focused on compiler faults that happen in build processes in Java and C++,
which are compiled languages while we studied Perl that is an interpreted language. However,
similar to our findings, they observed that dependencies between components is the most

common fault type.

Kerzazi et al. [35] conducted a study on 3,214 builds in a software company for six months
to analyze build failures. They found that 17.9% of the build failures have a potential cost of
about 2,035 man-hours, considering that each failure requires one hour of work to be fixed to
succeed. They also studied [37] releases of a large e-commerce web app to show unexpected
system behavior after deployment. They reported that source code is not the main cause of
problems; but defective configurations or database scripts often lead to build failures. While
our findings confirm their observations, we also showed the importance of other fault types

related to OSes and environments.

Vassallo et al. [41] studied the distributions of CI build failures in 418 Java- based projects
at a company and 349 Java-based open-source projects hosted on GitHub utilizing Travis
CI. They observed how open-source and industrial projects present different distributions of
build failures and categorized these failures into 15 categories. They did not consider OSes
and environments, which can provide more information about how OSes and environments
may lead to build failures. We tried to understand what type of faults cause build failures,
considering the impact of OSes and environments on failures. We also tried to identify to

what degree build inflation may be caused by OSes and environments.

Miller et al. [40] studied 66 build failures in Microsoft projects and categorized them into
compilation (26%), unit testing (28%), static analysis (40%), and server (6%) failures. We
studied 791 build failures and proposed another categorization of faults. We performed our

analysis at release-level instead of commit-level.

Dig et al. [49] analyzed five popular open-source systems (Eclipse, Log4J, Struts, Mortgage
and JHotDraw) to analyze API changes. They observed that 80% of the changes are related

to refactorings.

Tufano et al. [47] showed that making changes is not feasible for many projects because of
missing dependencies for earlier versions. Kula et al. [48] found that identifying transitive
dependencies needs fixing many dependencies of a project. They showed many factors that
should be considered when updating a library, including API migration consequences that
should be addressed. We analyzed the CPAN ecosystem and found that API dependency is

a major reason of build failures.

49

4.6 Threats To Validity

We performed this study on build data of CPAN (which is centered on the Perl language).
We applied a methodology to categorized failures only in CPAN. Thus, we cannot generalize
our observations and answers to other ecosystems and programming languages. Yet, the
numbers of builds, OSes, and environments provide an interesting basis on which to perform

future studies and against which to compare their results.

Regarding construct validity, we fetched the build information from the centralized CPAN
build archive, which does not provide the full detailed reports on all errors occurring during
builds. We filtered out some builds. Hence, even through we studied 68.9 millions builds and

their results, it is possible that other failures/successes exist.

Furthermore, we observed that multiple builds may occur for a single combination of OSes
and environments. These builds would typically exercise a distversion on different variants
of an OS/environment and even on different hardware architectures. We aggregated all
builds into one and ignored the architectures. We chose to describe a combination of OSes
and environments as failing if at least 50% of its builds failed or had unknown results.
This choice could impact our results, although they follow common sense. Future work
includes analyzing in more details these operating systems and environments with multiple

versions/architectures.

Regarding internal validity, while we studied the impact of OSes and environments on build
failures, we did not perform in-depth analyses of the reasons for failures/successes of a given
OS version, Perl version, or combination thereof, as well as other factors, like architectures,

minor/major releases, developer experience, module complexity, etc.

From 39,000 distributions in CPAN, we chose those that were best fit for the analysis, simi-
larly to recent work on Travis CI [14]. Results could be different with a different dataset.

4.7 Conclusion

Build results are a valuable data source for both researchers and practitioners. However, in
this paper, we showed that we cannot trust these results at face value due to the phenomenon
of build inflation, where the number of builds for individual code changes or package releases
artificially is inflated to dozens of builds across different environments and OSes. The term
"inflation" implies that not all those additional builds are equally useful, since it increases
the importance of certain build failures, while it hides others. Whereas builds are supposed

to give an indication of the quality of a product, we conclude that, taken at face value, build

20

results reflect more on portability across and problems with OSes and environments.

In particular, based on our study of 30 million CPAN builds between 2011 and 2016, and
qualitative analysis of log files, we conclude that researchers and practitioners should be

aware that:

— the number of builds for a given product can see up to 10-fold increases, while the
build failure ratio seemingly decreases substantially (RQ1)

— a given product, like a CPAN distversion, is built on dozens of environments and OSes,
many of which are not stable, popular or usually supported, and hence many repetitive
builds are performed with predictable results, leading to build inflation (RQ2)

— the builds of a working product may fail due to changes in the environment, with only
a small chance for recovery (RQ3)

— some OSes are notorious for failing the builds (RQ4)

— the most common build fault categories are dependency, programming, environment,
OS and test faults (RQ5)

— dependency issues are temporary in environments with minority of failures, while in
majority failures, non-dependency issues are temporary and are more likely to be
resolved than dependency failures (RQ6)

— while missing modules is the main reason of failures in both minority and majority
failures, majority ones are likely to occur due to programming faults (OS-independent),

and minority failures due to configuration faults (OS-specific) (RQT)

This work provides motivation for the software community to develop approaches to improve
the developers’ perception of CI, in the wake of build inflation, and its accompanying costs.
Thus, we conclude that researchers interested in studying build results should analyze and
select the results for the main environments and OSes, while ignoring other build results.
Although this observational study is focusing only on CPANtesters, it is the larger to date
observing build failures and build inflation across dozens of environments and OSes, and

hence we hope it will serve as the basis of future qualitative and quantitative studies on
builds and CI.

Acknowledgment

Part of this work was funded by the NSERC Discovery Grant program and the Canada

Research Chair program.

51

CHAPTER 5 GENERAL DISCUSSION

In this thesis, we conducted an empirical study to identify the presence of build inflation. To
analyze the impact of OSes and environments on build results, we looked at the frequency
of build failures, the distributions of these failures across OSes and environments, and the
faults leading to these failures. Therefore, we understand better why the build failure ratio

keeps on decreasing.
In particular, we observed that inflation is present in:

— the needs for building/testing a release on variety of OSes/Perl environments, that ba-
sically build/test the same features. So, feature-related faults are supposed to trigger
failures for all OSes/environments, therefore observing a feature-related build failure
on one environment/OS theoretically is enough. In contrast, OS-/environment-specific
issues happen just for the problematic OS/environment, which is not critical to pre-
dict. This deviation between different failure types leads to bias in the results that
must be solved to avoid wrong interpretation by build engineers.

— build failures that specific to one environment version and should just register once,
while builds of an abandoned distversion fail across all environments, so will count
several times. likewise, OS-specific faults register fewer build failures than faults in
OS-independent code.

— failure types that are expected to happen consistently on most of the OSes, so when
they identified on one OS for a specific distversion and environment, would not re-
quired further builds to be run on other OSes.

— temporary/permanent fault types for minority /majority failures to find more evidence
of build inflation, as permanent failures would be highly predictable and lead to repet-

itive builds on the most recent environments.

My thesis focused on the total number of builds that happened in release-level CI, not whether
at least one build is triggered for a given release/commit. Therefore, every release/commit
should have at least one build triggered for quality assurance activities to be performed. Yet,
the main question of my work is “how many builds should be run per build trigger”? The
various indications of build inflation in terms of repetitive/redundant builds across environ-
ments and OSes that we found mean that too many similar build failures for a given build
trigger could over-emphasize a build problem or success, while at some point an additional

build for a given trigger does not add much value anymore for developers.

Similarly, we found that certain faults are more temporary vs. permanent, which means

52

that many failures on the older environments will be resolved in the most recent ones. For
example, dependency faults responsible for a minority of OSes failing are easier to resolve

(i.e., are more temporary) than when they are responsible for most of the OSes failing.

Despite these two findings, which seem to suggest that (due to repetition) one could predict
build failure and hence avoid to run certain builds, there is always a risk that an additional
build might suddenly find a new fault. Therefore, although we can define some metrics to
predict build failures, relying 100% on prediction is not necessarily safe. Hence, future work
should consider both the costs (time until build failure is fixed again), risks (failure might

slip through to the end user) and benefits (finding additional failures) of additional builds.

Finally, in our empirical study, we do not imply that certain OSes are more buggy than
others. For example, the observations that the Windows build failures might be harder to
interpret than the Linux ones, or seem more failure-prone, are mainly due to the inflation of
Linux build results compared to non-Linux/BSD OSes. In other words, this thesis precisely

warns for this kind of generalization of build failure results.

93

CHAPTER 6 CONCLUSION

We conclude this thesis with a summary of its contributions, some of its limitation, and

possible directions for future work.

6.1 Summary

Build systems automate the conversion of the source code into executables, and are crucial
for supporting changes. Build systems are beneficial for both researchers and practitioners,
however due to the phenomenon of build inflation, according to which each code changes or
new release produces several builds across different OSes and environments, we must take care
when interpreting build results. This build inflation exaggerates the importance of particular
failures, while it underestimates the importance of the others. To better understand the
overhead enforced by building on different operating systems and runtime environments, we
studied build results over time. We perform a large-scale empirical study in 30 million CPAN

builds between 2011 and 2016 to validate our research hypothesis.

In Chapter 4, we analysed the evolution of build failure during 5.5 years, finding that build
inflation happens at the release level due to an enormous number of builds on a variety of

operating systems and environments that has diminishing returns. Our findings show:

While the build failure ratio shows a sharp downward trend, the number of builds sees

a 10-fold increase.

Software projects are built on different environments and OSes, which are not equally
reliable as they are not popular and-or commonly supported as build platform. A
software project can fail due to changes in the environment, with a minor chance to

succeed again.

Similar to Seo et al. [5], we performed a manual analysis of build failures and observed

that API dependency and programming issues are the major reasons of build failures.

“Missing module" has the highest percentage in breaking the builds either in minority
or in majority failures, while issues regarding the configuration of the machine are the

2nd highest reason of failure in minority failures.

o4

6.2 Limitations and Future Work

I studied the impact of OSes and environments on build failures. I studied build failures
quantitatively and qualitatively on ten operating systems and 103 runtime environments.
My findings can be used for future studies on builds and CI. Future work should replicate
my study at the commit level on other repositories like Travis CI. I could also analyse build
results for different OS versions/architectures in more detail. In-depth analyses of the reason
of failure of a given OS version/architecture, and developer experience also remain as future
work.

The work presented in this thesis has some constraints:

e [only performed this study on the Perl programming language and on the CPAN
ecosystem. Therefore, I cannot generalize our findings to other ecosystems and pro-
gramming languages. However, I performed a large scale study on build results, on
different OSes, and environments, which can provide an interesting basis for future

studies.

e Although I studied 68.9 million builds, I filtered out builds without corresponding

failure, so having a different dataset with different failures may lead to another results.

e Moreover, multiple builds may happen on every combination of OS and environment.
Those builds would typically exercise a module even on different OS versions and hard-
ware architectures. However, we ignored the OS version and architecture dimension in
this study. We defined a rule to consider multiple builds on one OS and environment
as failing if at least 50% of its builds failed or had unknown build results, which could
impact our results. Future work can analyse in more details all these builds with

multiple OS versions/architectures.

e Similar to recent work on Travis CI [14], we only chose those modules which were best

fit for the study, so our findings may differ with a different dataset.

1]

[12]

95

REFERENCES

P. M. Duvall, S. Matyas, and A. Glover, Continuous integration: improving software

quality and reducing risk. Pearson Education, 2007.

D. Stahl and J. Bosch, “Modeling continuous integration practice differences in industry
software development,” Journal of Systems and Software, vol. 87, pp. 48-59, 2014.
M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig, “Usage, costs, and benefits

7

of continuous integration in open-source projects,” in Automated Software Engineering

(ASE), 2016 31st IEEE/ACM International Conference on. 1EEE, 2016, pp. 426-437.

“Companiesusingci,” https://www.quora.com/What-are-the-best-examples-of-\

companies-using-continuous-deployment, accessed: 2017-09-20.

H. Seo, C. Sadowski, S. Elbaum, E. Aftandilian, and R. Bowdidge, “Programmers’ build
errors: a case study (at google),” in Proceedings of the 36th International Conference on
Software Engineering. ACM, 2014, pp. 724-734.

B. Adams, K. De Schutter, H. Tromp, and W. De Meuter, “The evolution of the linux
build system,” Electronic Communications of the FASST, vol. 8, 2008.

S. McIntosh, B. Adams, T. H. Nguyen, Y. Kamei, and A. E. Hassan, “An empirical
study of build maintenance effort,” in Proceedings of the 33rd international conference
on software engineering. ACM, 2011, pp. 141-150.

9

R. Hardt and E. V. Munson, “Ant build maintenance with formiga,” in Proceedings of

the 1st International Workshop on Release Engineering. IEEE Press, 2013, pp. 13-16.

S. I. Feldman, “Make—a program for maintaining computer programs,” Software: Prac-

tice and experience, vol. 9, no. 4, pp. 255265, 1979.

A. E. Hassan and K. Zhang, “Using decision trees to predict the certification result of
a build,” in Automated Software Engineering, 2006. ASE’06. 21st IEEE/ACM Interna-
tional Conference on. 1EEE, 2006, pp. 189-198.

S. Elbaum, G. Rothermel, and J. Penix, “Techniques for improving regression testing
in continuous integration development environments,” in Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering. ACM,
2014, pp. 235-245.

“John oduinn,” https://oduinn.com/2016/06/26/distributed-er8-now-available, ac-
cessed: 2016-12-07.

https://www.quora.com/What-are-the- best-examples-of-\ companies-using-continuous-deployment
https://www.quora.com/What-are-the- best-examples-of-\ companies-using-continuous-deployment
https://oduinn.com/2016/06/26/distributed-er8-now-available

[13]

[14]

o6

“CPAN comprehensive perl archive network,” http://www.cpan.org, accessed: 2015-12-
22.

M. Beller, G. Gousios, and A. Zaidman, “Oops, my tests broke the build: An explorative
analysis of travis ci with github,” in Proceedings of the 14th International Conference
on Mining Software Repositories. 1EEE Press, 2017, pp. 356-367.

M. Fowler and M. Foemmel, “Continuous integration,” Thought-Works) http://www.
thoughtworks. com/Continuous Integration. pdf, p. 122, 2006.

“Travisci,” https://travis-ci.org, accessed: 2017-09-20.
“Stride,” https://github.com/Strider-CD /strider, accessed: 2017-09-20.
“Jenkin,” https://jenkins.io, accessed: 2017-09-20.

C. Watters and P. Johnson, “Version numbering in single development and test environ-
ment,” Dec. 29 2011, uS Patent App. 13/339,906.

“Buildbot,” http://buildbot.net, accessed: 2017-09-20.

blazemeter, “jenkins-vs-other-open-source-continuous-integration-servers.” IEEE Press,
2017.

“trecherde,” https://trecherder.mozilla.org/# /jobs?repo=mozilla-inbound, accessed:
2017-09-20.

“trecherder,” https://trecherder.mozilla.org/#/jobs?repo=mozilla-inbound&revision=
4f06cc3d4£39b4ff431792e2e14909a2b7655442, accessed: 2016-12-07.

B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, and V. Filkov, “Quality and productivity
outcomes relating to continuous integration in github,” in Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering. ACM, 2015, pp. 805-816.

M. Leppénen, S. Makinen, M. Pagels, V.-P. Eloranta, J. Itkonen, M. V. Méntyla, and
T. Méannisto, “The highways and country roads to continuous deployment,” IEEE Soft-
ware, vol. 32, no. 2, pp. 64-72, 2015.

E. Laukkanen, M. Paasivaara, and T. Arvonen, “Stakeholder perceptions of the adoption
of continuous integration—a case study,” in Agile Conference (AGILE), 2015. 1EEE,
2015, pp. 11-20.

G. V. Neville-Neil, “Kode vicious system changes and side effects,” Communications of

the ACM, vol. 52, no. 4, pp. 25-26, 2009.
R. Adams, W. Tichy, and A. Weinert, “The cost of selective recompilation and en-

vironment processing,” ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 3, no. 1, pp. 3-28, 1994.

http://www.cpan.org
https://travis-ci.org
https://github.com/Strider-CD/strider
https://jenkins.io
http://buildbot.net
https://treeherder.mozilla.org/#/jobs?repo=mozilla-inbound
https://treeherder.mozilla.org/#/jobs?repo=mozilla-inbound&revision=4f06cc3d4f39b4ff431792e2e14909a2b7655442
https://treeherder.mozilla.org/#/jobs?repo=mozilla-inbound&revision=4f06cc3d4f39b4ff431792e2e14909a2b7655442

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[38]

o7

Y. Yu, H. Dayani-Fard, J. Mylopoulos, and P. Andritsos, “Reducing build time through
precompilations for evolving large software,” in Software Maintenance, 2005. ICSM’05.
Proceedings of the 21st IEEE International Conference on. 1EEE, 2005, pp. 59-68.

R. Suvorov, M. Nagappan, A. E. Hassan, Y. Zou, and B. Adams, “An empirical study
of build system migrations in practice: Case studies on kde and the linux kernel,” in
Software Maintenance (ICSM), 2012 28th IEEE International Conference on. IEEE,
2012, pp. 160-169.

B. Adams, H. Tromp, K. De Schutter, and W. De Meuter, “Design recovery and main-
tenance of build systems,” in 2007 IEEFE International Conference on Software Mainte-
nance. IEEE, 2007, pp. 114-123.

B. Adams and S. McIntosh, “Modern release engineering in a nutshell-why researchers
should care,” in Software Analysis, Evolution, and Reengineering (SANER), 2016 IEEE
23rd International Conference on, vol. 5. TEEE, 2016, pp. 78-90.

S. McIntosh, B. Adams, and A. E. Hassan, “The evolution of ant build systems,” in 2010
Tth IEEE Working Conference on Mining Software Repositories (MSR 2010). 1EEE,
2010, pp. 42-51.

G. Schermann, J. Cito, P. Leitner, U. Zdun, and H. Gall, “An empirical study on
principles and practices of continuous delivery and deployment,” PeerJ Preprints, Tech.

Rep., 2016.

N. Kerzazi, F. Khomh, and B. Adams, “Why do automated builds break? an empiri-
cal study,” in Software Maintenance and Evolution (ICSME), 2014 IEEE International
Conference on. 1EEE, 2014, pp. 41-50.

T. Rausch, W. Hummer, P. Leitner, and S. Schulte, “An empirical analysis of build
failures in the continuous integration workflows of java-based open-source software,”
in Proceedings of the 14th International Conference on Mining Software Repositories.
[EEE Press, 2017, pp. 345-355.

N. Kerzazi and B. Adams, “Botched releases: Do we need to roll back? empirical

" in Software Analysis, Evolution, and Reengineering
(SANER), 2016 IEEE 23rd International Conference on, vol. 1. TEEE, 2016, pp. 574—

583.

study on a commercial web app,’

P. Denny, A. Luxton-Reilly, and E. Tempero, “All syntax errors are not equal,” in Pro-
ceedings of the 17th ACM annual conference on Innovation and technology in computer
science education. ACM, 2012, pp. 75-80.

[39]

[40]

[41]

o8

G. Dyke, “Which aspects of novice programmers’ usage of an ide predict learning out-
comes,” in Proceedings of the 42nd ACM technical symposium on Computer science

education. ACM, 2011, pp. 505-510.

A. Miller, “A hundred days of continuous integration,” in Agile, 2008. AGILE’08. Con-
ference. TEEE, 2008, pp. 289-293.

C. Vassallo, G. Schermann, F. Zampetti, D. Romano, P. Leitner, A. Zaidman,
M. Di Penta, and S. Panichella, “A tale of ci build failures: an open source and a

financial organization perspective.”

S. McIntosh, B. Adams, M. Nagappan, and A. E. Hassan, “Mining co-change infor-
mation to understand when build changes are necessary,” in Software Maintenance and
FEvolution (ICSME), 2014 IEEE International Conference on. 1EEE, 2014, pp. 241-250.

M. F. Zibran, F. Z. Eishita, and C. K. Roy, “Useful, but usable? factors affecting the
usability of apis,” in Reverse Engineering (WCRE), 2011 18th Working Conference on.
IEEE, 2011, pp. 151-155.

J. Dietrich, K. Jezek, and P. Brada, “Broken promises: An empirical study into evo-
lution problems in java programs caused by library upgrades,” in Software Mainte-
nance, Reengineering and Reverse Engineering (CSMR-WCRE), 2014 Software Evolu-
tion Week-IEEE Conference on. IEEE, 2014, pp. 64-73.

T. McDonnell, B. Ray, and M. Kim, “An empirical study of api stability and adoption in
the android ecosystem,” in Software Maintenance (ICSM), 2013 29th IEEE International
Conference on. 1EEE, 2013, pp. 70-79.

W. Wu, F. Khomh, B. Adams, Y.-G. Guéhéneuc, and G. Antoniol, “An exploratory
study of api changes and usages based on apache and eclipse ecosystems,” Empirical

Software Engineering, pp. 1-47, 2015.
M. Tufano, F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia, and D. Poshy-

vanyk, “There and back again: Can you compile that snapshot?” Journal of Software:
FEvolution and Process, vol. 29, no. 4, 2017.

R. G. Kula, D. M. German, A. Ouni, T. Ishio, and K. Inoue, “Do developers update
their library dependencies?” Empirical Software Engineering, pp. 1-34, 2017.

D. Dig and R. Johnson, “How do apis evolve? a story of refactoring,” Journal of software

maintenance and evolution: Research and Practice, vol. 18, no. 2, pp. 83-107, 2006.

M. Zolfagharinia, B. Adams, and Y.-G. Guéhéneuc, “Do not trust build results at face
value: an empirical study of 30 million cpan builds,” in Proceedings of the 14th Interna-
tional Conference on Mining Software Repositories. IEEE Press, 2017, pp. 312-322.

29

[51] “metacpan-api,” https://github.com/metacpan/metacpan-api, accessed: 2016-12-07.

[52] R. O. Rogers, “Scaling continuous integration,” in International Conference on Extreme

Programming and Agile Processes in Software Engineering. Springer, 2004, pp. 68-76.
[53] Y. Jiang, B. Adams, F. Khomh, and D. M. German, “Tracing back the history of commits

in low-tech reviewing environments: a case study of the linux kernel,” in Proceedings of
the 8th ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement. ACM, 2014, p. 51.

[54] M. B. Miles and A. M. Huberman, Qualitative data analysis: An expanded sourcebook.
sage, 1994.

[55] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges of modern code

review,” in Proceedings of the 2013 international conference on software engineering.

IEEE Press, 2013, pp. 712-721.
[56] H. Hemmati, S. Nadi, O. Baysal, O. Kononenko, W. Wang, R. Holmes, and M. W. God-

frey, “The msr cookbook: Mining a decade of research,” in Mining Software Repositories
(MSR), 2013 10th IEEE Working Conference on. I1EEE, 2013, pp. 343-352.

[57] M. Shridhar, B. Adams, and F. Khomh, “A qualitative analysis of software build system
changes and build ownership styles,” in Proceedings of the 8th ACM/IEEFE International
Symposium on Empirical Software Engineering and Measurement. ACM, 2014, p. 29.

[58] B. Adams and S. McIntosh, “Modern release engineering in a nutshell — why researchers
should care,” in Leaders of Tomorrow: Future of Software Engineering, Proceedings of
the 23rd IEEE International Conference on Software Analysis, FEvolution, and Reengi-
neering (SANER), Osaka, Japan, March 2016.

[59] S. Raemaekers, A. van Deursen, and J. Visser, “Measuring software library stability
through historical version analysis,” in Software Maintenance (ICSM), 2012 28th IEEE
International Conference on. 1EEE, 2012, pp. 378-387.

[60] cpan@perl.org, “PerlSource versions and release date,” accessed: 2016-11-01. [Online].
Available: http://www.cpan.org/src/

[61] M. M. Lehman, “Laws of software evolution revisited,” in European Workshop on Soft-

ware Process Technology. Springer, 1996, pp. 108-124.

[62] R. R. Bouckaert, E. Frank, M. Hall, R. Kirkby, P. Reutemann, A. Seewald, and D. Scuse,
“Weka manual for version 3-7-3,” The university of WAIKATO, 2010.
[63] M. L. Calle, V. Urrea, A.-L. Boulesteix, and N. Malats, “Auc-rf: a new strategy for

genomic profiling with random forest,” Human heredity, vol. 72, no. 2, pp. 121-132,
2011.

https://github.com/metacpan/metacpan-api
http://www.cpan.org/src/

	DEDICATION
	ACKNOWLEDGEMENTS
	RÉSUMÉ
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS AND ABBREVIATIONS
	1 INTRODUCTION
	1.1 Research Hypothesis: Build Inflation Consequences
	1.2 Thesis Contributions: The Impact of OSes/Environments on Build Inflation
	1.3 Organization of Thesis

	2 LITERATURE REVIEW
	2.1 State-of-the-practice
	2.1.1 BuildBot
	2.1.2 Jenkins
	2.1.3 Travis CI
	2.1.4 Treeherder
	2.1.5 CPAN

	2.2 State-of-the-art
	2.3 Build Systems
	2.4 Build Failures

	3 RESEARCH PROCESS AND ORGANIZATION OF THE THESIS
	4 ARTICLE 1: DO NOT TRUST BUILD RESULTS AT FACE VALUE –AN EMPIRICAL STUDY OF 30 MILLION CPAN BUILDS
	4.1 Introduction
	4.2 Background
	4.2.1 CPAN
	4.2.2 Related Work

	4.3 Observational Study Design
	4.3.1 Study Object
	4.3.2 Study Subject
	4.3.3 Quantitative Study Sample
	4.3.4 Qualitative Study Sample

	4.4 Observational Study Results
	4.5 Discussion
	4.5.1 Explanatory Classification Model
	4.5.2 Comparison to Prior Build Failure Research

	4.6 Threats To Validity
	4.7 Conclusion

	5 GENERAL DISCUSSION
	6 CONCLUSION
	6.1 Summary
	6.2 Limitations and Future Work

	REFERENCES

