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Thesis Context

Software 
Development

Design

Implementation

TestIntegration

Maintenance 
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Source-Code 

Interaction Traces

Commit Logs

Documents
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Thesis Context

Find specific information that can solve a specific 
issue, implement a feature, make a decision, etc. 

Problem
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Information 
Retrieval

Information 
Filtering

Data Growth 



Application

Mobile

Software

Game 
Engine

Recommendation System

Perform Task

Search

Input Data

Recommendations

Solution

Develop a recommendation system that can reduce 
data overload, deliver the most pertinent data, ease 

the performance of activities, and improving 
decision making process
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1990s

Thesis Context



Existing
Recommendation 

Techniques

Data Mining 
[10]

Association 
Rules [11]

Machine 
Learning [11]

Similarity 
Measure [10] 

Probabilistic 
Technique [10]

Apriori 
Model [10]

Limitations
Interactive User Input
Requirement of interactive users’ 
input to the recommender, which 
may suggest unrelated items if 
the users interact with the 
“wrong” item

Large Dataset
Requirement of large 
datasets
≅ 1M [9]

Generalization
Applicability to all data 
types and software 
applications 

Sufficient Knowledge 
Requirement of knowledge 
about the features of the items 
in the dataset
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Thesis Statement
We propose a recommendation technique for software 

engineering based on the consensus algorithm and that applies 
to various data types and resolves various software 

engineering issues in a variety of applications

[[A,B],[C],[P],[Z]]

Various Applications

Various Dataset 
Types

Consensus-Based 
Recommendation 

Technique

Recommendations in 
the Form of Ranking
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Research Methodology
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Applying the proposed technique to build recommendation approaches that solve issues in…

Mobile Applications

Software Systems Game Engines

Recommend mobile app 
reviews to help 

developers plan their 
apps’ next release

Recommend files-to-edit 
to help developers 

complete similar change 
tasks

Recommend common 
subsystems to help 

developers design their 
game engine 
architecture
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Research Methodology
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Applying the proposed technique to build recommendation approaches that solve issues in…

Mobile Applications

Software Systems Game Engines

But why these applications? 

-     Need to help developers prioritize their reviews

-     Need to build recommendations for forked software systems

-     Need to provide a model of game engine architecture of subsystems
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Research Methodology

Mobile ApplicationsSoftware Systems Game Engines

Framing the Problem

Selecting the Systems

Collecting the Data

Preprocessing the Data

Applying the Consensus Algorithm

Evaluation
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Consensus Ranking    20th Century

Applications

Election Social Science Bioinformatics

John Kemeny & Peyton Young 
Kemeny-Young Method - 1959

Consensus Ranking 



Consensus Ranking 
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Finding a consensus ranking is aggregating a set of N different 
rankings of m items into one ranking that orders the m items 

closest to all of the N rankings within a specified distance 
N Ranking

m Items

Example

Input Rankings of 5 Items Applying Consensus Ranking Output - Consensus Ranking

Indian

Indian

Indian

Indian

Arabic

Arabic

Arabic

Arabic

Korean

Korean

Korean

Korean

Italian

Italian

Italian

Italian

French

French

French

French

R
1

R
2

R
3



Finding a Consensus Ranking
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1 Generalised Kendall-𝜏 Distance

2 Generalised Kemeny Score

3 Consensus Ranking

Measures the distance between every two rankings in the set of rankings

Finds the sum of the generalised Kendall-𝜏 distance between a ranking and 
every ranking in the set

Finds the ranking R* with the smallest generalised Kemeny Score 
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Selected 
Consensus 
Algorithms

Consensus Algorithms

ExactAlgorithm

BioConcert KwikSort

Provides exact consensus 

Works best with small dataset

Expensive with large dataset

Local search approach

Heuristic

Divide & Conquer approach

High quality consensus with large dataset

Heuristic

Best alternative for BioConcert
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Mobile Applications

Software Systems Game Engines

Test and validate the applicability of the consensus algorithm on 
mobile app data type to address mobile application issues

Objective



Context
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Solution

Review Prioritiser

Mobile 
Applications

Mobile Developer User Reviews

Uses To update

Mobile Applications

Challenge 1

High volume of reviews

Low quality reviews

Noisy reviews

Using tools, such as AR-Miner [12], 
URR [13], to clean, categorise and 

cluster reviews

Challenge 2
Review prioritisation 
limited to high/ low 

priority

Rating
Number
Category

Date



Review Prioritiser (RP)
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An approach that uses the consensus algorithm to 
recommend a prioritised list of user reviews that could help 
app developers planning the next releases of their apps 

Extracting Reviews Processing Defining Attributes Ranking Reviews
Generating 

Recommendation

Reviews

Reviews

Reviews

Preprocessing

Categorization

Clustering

Analysing 
Review 

Ranking Clusters 
of Reviews

Applying the 
Consensus 
Algorithm

Mobile 
Applications



The approach- Extracting Reviews
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Extracting Reviews

Reviews

Reviews

Reviews Publicly Available Dataset [3]
725 Reviews & 14 apps

App Name Category

BOINC Education

Lightning Web Browser Communication

Harvest Moon Game

Timeriffic Tools

iFixit Lifestyle

DuckDuckGo Tools

eBay Shopping

Barcode Scanner Shopping

Ringdroid Music

2048 Puzzle

Viber Communication

Dolphin Emulator Arcade

LinePhone Communication

WordPress Productivity

1

Mobile 
Applications



Cluster related
 Reviews

Categorize into 

Remove noise

The approach- Processing
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Preprocessing

Categorization

Clustering

Processing

2

Bug
Feature 
Request

PerformanceSecurity

Energy Usability

Other

Review Category Cluster

Stats broken in last update Bug C10

It is slow and buggy Performance C17

I need the justify post feature Feature C1

CLAP [3]

Mobile 
Applications

Compared ARdoc [14], URR [13], 
SUR-Miner [15], AR-Miner [12], and 
CLAP 

- Automated? 
- NLP Techniques?
- Filters out non-informative? 
- Categorization?
- Clustering? 
- Accuracy? 



The approach- Defining Attributes
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Defining Attributes 

Analysing 
Review 

    Low average rating to high

    Oldest date of review to newest

Number of reviews in each cluster, 
decreasingly

    Important to less important

Cardinality

Oldest 
Date

Average 
Rating

Category

3

Mobile 
Applications

Attributes are references that developers use to 
order their clusters of reviews



The approach- Ranking Reviews
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Attribute Ranked Clustered

Cardinality [[9],[8,12],[1,4,14,18],[2,5,6,7,10,11,17,3,13,15,16]]

Date [[2],[9,1,4,14,18,5],[6,10],[12],[8,15],[11,3,13,16],[7,17]]

Average Rating [[16],[12],[9],[18,15,3,13],[14,11,17],[4],[5,6,10,8,7],[2,1]]

Category [[16,12,9,15,13,14,11,10,8],[17],[18],[3,4,5,6,7,2,1]]

Ranking Reviews

Ranking Clusters 
of Reviews

4

Ranked Clusters of WordPress reviews

Mobile 
Applications

Image upload error Navigation difficulty



The approach- Applying the Consensus
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Generating 
Recommendation

Applying the 
Consensus 
Algorithm

5

R1 [[9],[8,12],[1,4,14,18],[2,5,6,7,10,11,17,3,13,15,16]]
R2 [[2],[9,1,4,14,18,5],[6,10],[12],[8,15],[11,3,13,16],[7,17]]
R3 [[16],[12],[9],[18,15,3,13],[14,11,17],[4],[5,6,10,8,7],[2,1]]
R4 [[16,12,9,15,13,14,11,10,8],[17],[18],[3,4,5,6,7,2,1]]

Consensus Algorithms

BioConcert ExactAlgorithm KwikSort

Consensus Ranking = 
[[9],[12],[14,18],[8],[1,4],[10,11,3,13,15,16],[17],[2,5,6,7]]

[[Upload error], [App login issue], [HTML tags shown, Navigation difficulty], [Web login 
issue], [Add justify feature, Add text formatting], [Broken stats, Posts hidden, Multiple post 

edit, Update removes website, Posts not published, Installation issue], [slow], [Add featured 
image, Allow profile edit, Allow uploading image to posts, Black background theme]]

Ranked Clusters of WordPress reviews

Mobile 
Applications



Evaluation & Results
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Evaluation
RQ1: (Performance) How effective is the consensus algorithm in prioritising user reviews?

Quantitatively Qualitatively  

Mobile 
Applications



Quantitative Evaluation
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Kendall Rank Correlation Coefficient   Consensus Ranking & Gold Ranking

Gold Ranking  a prioritized ranking of clustered of reviews, defined manually by the apps’ 

developers.  

Gold Ranking for WordPress Application
GR = [[12],[16],[13],[8],[14],[15],[11],[10],[9],[18],[17],[6],[4],[1],[2],[3],[5],[7]]

[[App login issue], [Installation issue], [Update removes website], [Web login issue], [HTML 
tags shown], [Posts not published], [Posts hidden], [Broken stats], [Upload error], [Navigation 
difficulty], [slow], [Allow uploading image to posts], [Add text formatting], [Add justify feature], 

[Add featured image], [Multiple post edit], [Allow profile edit], [Black background theme]]

Mobile 
Applications



Quantitative Evaluation
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≥ 0.5 High Correlation 
＜ 0.5 or ≥ 0.3 Medium Corrleation
＜ 0.3 Small Corrleation

The strong and positive correlation demonstrates that the proposed 
consensus-based technique is effective at prioritising user reviews

RQ1: (Performance) How effective is the consensus algorithm in prioritising user reviews?

Mobile 
Applications



Qualitative Evaluation
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The majority of developers agreed that the consensus-based algorithm 
generates a meaningful consensus ranking and they would use to plan 
their next releases

“if your app reviews were prioritised in such a 
consensus ranking, do you believe this ranking 
would help you plan a successful release and 
would you plan your next release according to 
this ranking?'”

Mobile 
Applications



Majority of developers agreed with the 
recommended prioritization High Correlation 

To Conclude

27

Mobile 
Applications

≥ 0.5 High Correlation 
＜ 0.5 or ≥ 0.3 Medium Corrleation
＜ 0.3 Small Corrleation

The consensus-based recommendation technique is effective at 
prioritising mobile app user reviews and can assist developers in 
improving their applications. 
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Mobile Applications

Software Systems Game Engines

Evaluate the ability of the consensus algorithm to deal with 
software data type to address software system-related issues

Objective



Context

29

Software Providers Client-Specific Instances DevelopersSame or Similar Tasks

Perform

Tasks that can be implemented on some client's instance and require developers 
to interact with the same or similar source-code file(s)

More Customization Complex Software Difficult to comprehend 
and maintain 

Solution

Consensus Task Interaction Trace 
Recommender

Software 
Systems

Challenge



Consensus Task Interaction Trace Recommender 
(CITR) 

30

A task-based recommendation approach that uses the 
consensus algorithm to recommend file(s)-to-edit based on 
an aggregated set of developers' interaction traces. It helps 
developers complete development tasks successfully in less 
time, and hence increases their productivity. 

Consensus Algorithm
Developers’ Interaction 

Traces

Contains files-to-edit

Consensus Task 
Interaction Trace

Software 
Systems



31

Consensus Task Interaction Trace Recommender (CITR) 

Customized 
Software

Multiple Clients’ Instances

Change Tasks 
Definition

Bugzilla Tickets

Events 
Extraction

Change Tasks

Developers 
Complete Tasks

Events Collection via Mylyn

Events 
Preprocessing

Extracted Events

Task Related 
Interaction Trace 

Formation

Task Related 
Interaction Trace

D1

D2

D3

D4

IT1

IT2

IT3

IT4

e1→e2→e3→e4→e5→e6

e1→e4→e7→e8→e5→e6

e1→e8→e5→e4→e3→e6

e1→e2→e6→e7→e9→e8

Ev
en

ts
 C

ol
le

ct
io

n

Task Related Set of ITs Formation

R
ec

om
m

en
da

tio
n 

G
en

er
at

io
n

Applying Consensus 
Algorithm

Consensus Task 
Interaction Trace

CITR

Recommendation

Developers Complete 
Similar Tasks

Software 
Systems

User-Involved Experiment 



The Approach - System Selection
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Customized 
Software

Multiple Clients’ Instances

Change Tasks 
Definition

Bugzilla Tickets

Events 
Extraction

Change Tasks

Developers 
Complete Tasks

Events Collection via Mylyn

Events 
Preprocessing

Extracted Events

Ev
en

ts
 C

ol
le

ct
io

nEclipse-based 
plugin, PDE 
(Plug-in 
Development 
Environment)

Software 
Systems

But why this one? 
- Open source
- Large base code
- Used in many research studies
- It has a bug tracking system
- Provides Mylyn solution ITs



The Approach - Change Tasks Definition
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Customized 
Software

Multiple Clients’ Instances

Change Tasks 
Definition

Bugzilla Tickets

Events 
Extraction

Change Tasks

Developers 
Complete Tasks

Events Collection via Mylyn

Events 
Preprocessing

Extracted Events

Ev
en

ts
 C

ol
le

ct
io

n

Bugzilla Ticket Task

304028 Feature properties dialog window has no title

229024 A tab on the overview page shows "?" Instead of API Information

265931 Autostart values are not persisted correctly on the plug-in

Change Tasks Used in the Experiment

Software 
Systems



The Approach - Tasks Completion
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Customized 
Software

Multiple Clients’ Instances

Change Tasks 
Definition

Bugzilla Tickets

Events 
Extraction

Change Tasks

Developers 
Complete Tasks

Events Collection via Mylyn

Events 
Preprocessing

Extracted Events

Ev
en

ts
 C

ol
le

ct
io

n

Participants perform Tasks using Eclipse IDE

- 3+ Java experience
- 1+ IDE experience
- 2 female, 5 male
- 1 Post Doc, 3 Ph.D., 3 M.Sc.
- 1-5 years professional 

experience 

Participants Characteristics

Software 
Systems



The Approach - Events Extraction
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Customized 
Software

Multiple Clients’ Instances

Change Tasks 
Definition

Bugzilla Tickets

Events 
Extraction

Change Tasks

Developers 
Complete Tasks

Events Collection via Mylyn

Events 
Preprocessing

Extracted Events

Ev
en

ts
 C

ol
le

ct
io

n

Total of 2390 events
Events are participants’ activities on source-code 
elements (i.e., opening, searching, editing, etc.)

StartDate EndDate StructureHandle Kind

2018-08-08 
11:43:44.97 

2018-08-08 
11:46:09.716

FeatureSection.java Selection

2018-08-08 
11:46:46.918

2018-08-08 
11:53:39.320

FeatureSection.handleProperties(); Edit

Example of Extracted Events

Software 
Systems



The Approach - Events Preprocessing
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Customized 
Software

Multiple Clients’ Instances

Change Tasks 
Definition

Bugzilla Tickets

Events 
Extraction

Change Tasks

Developers 
Complete Tasks

Events Collection via Mylyn

Events 
Preprocessing

Extracted Events

Ev
en

ts
 C

ol
le

ct
io

n

A regular expression based tool to remove 
noise, unrelated JAR files, duplicate events 

and events with 0-duration

StructureHandle:
=org.eclipse.pde.ui/src&lt;org.eclipse.pde.internal.ui.editor.product{VersionDialog.java[VersionDialog~configureShell~QShell;

CompleteName:
org.eclipse.pde.ui.src.org.eclipse.pde.internal.ui.editor.product.VersionDialog.java.VersionDialog.configureShell.QShell

An Event Before & After Noise Removal

Software 
Systems
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The Approach - Task Interaction Trace Formation

Task Related 
Interaction Trace 

Formation

Task Related 
Interaction Trace

D1

D2

D3

D4

e1→e2→e3→e4→e5→e6

e1→e4→e7→e8→e5→e6

e1→e8→e5→e4→e3→e6

e1→e2→e6→e7→e9→e8

E.g. Change Task 1
Participant’s set of events from Change Task 1

Software 
Systems
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R
ec

om
m

en
da

ti
on

 G
en

er
at

io
n Applying Consensus 

Algorithm
Consensus Task 
Interaction Trace

CITR

Recommendation

Developers Complete 
Similar Tasks

The Approach - Applying the Consensus

D1 [[1],[2],[3],[4],[5],[6],[7]]
D2 [[8],[4],[5],[6],[9],[10]]
D3 [[11],[12],[13],[14],[15],[16],[17],[18],[19],[20],[21],[4],[22],[23],[5],[6]]
D4 [[24],[25],[26],[27],[28],[29],[30],[31],[32],[12],[33],[34],[5],[6],[9],[10]]

Consensus Algorithms - BioConcert

CITR = 
[[4], [5], [6], [9, 10], [12]]

Task-Related Interaction Trace

[4] org.eclipse.pde.ui
[5] Plugin-ConfigurationSection.java
[6] Plugin-ConfigurationSection.java
[9] Plug-inConfiguration.java
[10] Plug-inConfiguration.java
[12] PluginsTab.java 

Translation of the results

Software 
Systems

Files-to-edit that can help developers complete the same or 
similar change tasks on other software instances  



Evaluation & Results
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RQ1: To what degree does CITR recommend relevant files to given 
change tasks?

Quantitatively 

Qualitatively - Between- Subject Experiment   

Comparison  

RQ2: Given a change task, can CITR help guide developers’ 
navigation paths to relevant file(s)-to-edit and increase their 
productivity?

RQ3: How does CITR compare to MI (Mining Programmer 
Interaction Histories) in recommending relevant file(s)-to-edit for 
specific change tasks?

Software 
Systems
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Quantitative
Precision, Recall & F-Measure           Consensus Interaction Trace &   Gold Ranking

Gold Ranking  a set of files that the PDE developers interacted with to solve the selected 

Bugzilla tickets

Gold Ranking for the change task 3- Ticket 265931
GR = [[PluginConfigurationSection.java],

[IPluginConfiguration.java ],
[Product.java],

[PluginConfiguration.java ]]

Software 
Systems
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Quantitative
RQ1: To what degree does CITR recommend relevant files to given change tasks?

Software 
Systems
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Quantitative
RQ1: To what degree does CITR recommend relevant files to given change tasks?

CITR achieves high precision, recall, and F-measure and is able to 
recommend accurate and relevant file(s)-to-edit

Gold Ranking Consensus Interaction Trace

 DocSection.java ConfigurationTab.java
 SchemaFormOutlinePage.java MainTab.java
 DocumentSection.java PluginsTab.java

TracingTab.java
PDEUIMessages.java
DocSection.java

Gold Ranking VS CITC for Task 2

Software 
Systems
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Qualitative - Between-Subject Experiment

Goal understand to what extent these recommendations can help developers navigate 
and increase their productivity

Defining Evaluation Change Tasks = Tasks are similar in context to the change tasks

Bugzilla Ticket Task

269618 Automatic wildcard on plug-ins

144533 Unnecessary white space on configuration tab

88003 Select all property

261878 Prompt to save changes on Plug-ins

171767 Large font on main tab

101516 Sort alphabetically property

Software 
Systems
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Qualitative - Between-Subject Experiment
Inviting Developers = 30

Software 
Systems



45

Qualitative - Between-Subject Experiment
30

 D
ev

el
op

er
s

Control Group

Treatment 
Group

Without 
Recommendation

With 
Recommendation

Set A
3 Tasks

7 Developers

Set B
3 Tasks

8 Developers

Set A
3 Tasks

7 Developers

Set B
3 Tasks

8 Developers

Independent Variable 

Software 
Systems
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Qualitative - Between-Subject Experiment
Software 
Systems

Measuring Three Factors

TimeTask Completion 
Rate

Navigation 
Behaviour
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Qualitative - Between-Subject Experiment
Software 
Systems

     Time = Total time needed to complete each evaluation task

              CITR recommendations help developers complete tasks in a shorter time
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Qualitative - Between-Subject Experiment
Software 
Systems

     Task Completion = Number of completed tasks.

              CITR recommendations help developers complete tasks successfully
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RQ2: Given a change task, can CITR help guide developers’ navigation paths to relevant 
file(s)-to-edit and increase their productivity?

CITR recommendations increases developer’s productivity by reducing 
navigation effort and time, and guiding them into structured navigation

Software 
Systems

Qualitative - Between-Subject Experiment

Navigation Behaviour = Developers following a pattern of 
structured navigation through source-code and files 
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Comparison

The comparison with MI showed that CITR yield better accuracy and 
relevant recommendations than MI

RQ3: How does CITR compare to MI (Mining Programmer Interaction Histories) in 
recommending relevant file(s)-to-edit for specific change tasks?

Goal: Compare CITR against MI (Mining Programmer Interaction Histories) [4]

Software 
Systems



Increased Developers Productivity

To Conclude

51

Software 
Systems

The consensus-based recommendation technique is effective at 
providing relevant files to edit, which can boost developer productivity 
and outperform other approaches

High Accuracy Results 

Outperformed MI
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Mobile Applications

Software Systems Game Engines

Evaluate the effectiveness of the consensus algorithm at 
recommending a consensus game engine subsystems to 
address game engine-related issues

Objective



Context
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Solution

COnsensus Software Architecture

Game Engines facilitate the 
development of games by providing 
generic, reliable and reusable software 
subsystems such as a rendering engine, 
physics engine, audio system, etc. 

Game 
Engines

Game Developer Game Engine

Uses To Develop

Games

Developers never design 
architecture models

Problem
No studies about engine 

architecture

Challenge
No available architecture 
designs to guide through 

subsystems choice



COnsensus Software Architecture (COSA)
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An approach that applies the consensus algorithm to a set of game 
engine architectures to recommend a ranking of fundamental 
subsystems. It helps  developers to decide what subsystems to include 
when designing a game engine architecture, and support reusability and 
maintenance by identifying the most coupled subsystems. 

Consensus Algorithm Game Engine 
Architectures

Consensus 
Architecture of 

Subsystems

Game 
Engines
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COnsensus Software Architecture (COSA)

Game Engine 
Selection

GitHub Repositories

Architecture 
Recovery

Documentations & ForumsStudies

Subsystems 
Identification

Coupling Measure 
- Include Graphs

Clusters of Files

Subsystems 
Ranking

Coupling Measures

Developers 
Building Engines

Ranking of Subsystems

Consensus Algorithm 
Application

Recommendation

Consensus 
Architecture of 
Subsystems

Game 
Engines
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The Approach - Engine Selection 

Characteristics Game Engine

Open Source
C++
General-Purpose
Highest Forks & Stars
Unarchived

UnrealEngine
godot
cocos2d-x
o3de
Urho3D
gameplay
panda3d 
olcPixelGameEngine
Piccolo
FlaxEngine

Game 
Engines

Game Engine 
Selection

GitHub Repositories

Architecture 
Recovery

Documentations & ForumsStudies

Subsystems 
Identification
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The Approach - Subsystems Identification
Game 

Engines

Game Engine 
Selection

GitHub Repositories

Architecture 
Recovery

Documentations & ForumsStudies

Subsystems 
Identification

High-Level Game Engine Architecture [16]

We use the runtime engine architecture defined by 
Gregory [16] as a guidance for architecture recovery 
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The Approach - Architecture Recovery

Extracting 
Source-Code Files Analysing Files Clustering Files into 

Subsystems

Game 
Engines

Game Engine 
Selection

GitHub Repositories

Architecture 
Recovery

Documentations & ForumsStudies

Subsystems 
Identification
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The Approach - Subsystems Coupling Measure

Coupling Measure - 
Include Graphs

Clusters of Files

Subsystems Ranking

Coupling Measures

Degree of Coupling? 
highly coupled software systems are difficult to maintain, understand, test, or 
even reuse

Coupling Between Objects (CBO) 
A count of the number of classes that are coupled to a particular class

Example of Include Graph for Godot

Game 
Engines



60

The Approach - Subsystems Ranking 

Coupling Measure - 
Include Graphs

Clusters of Files

Subsystems Ranking

Coupling Measures

Game 
Engines

Tightly Coupled Loosely Coupled

gameplay = [Gameplay Foundation], [Resources], [Core Systems], [Skeletal 
Animation], [Human Interface Devices], [Low-Level Renderer], [Platform Independence 
Layer], [Collision & Physics], [Front End], [Scene Graph/ Culling], [Audio], [Visual 
Effects], [Profiling & Debugging]

Piccolo = [Third-Party SDKs], [Core Systems], [Low-Level Renderer], [Resources], 
[World Editor], [Collision & Physics], [Gameplay Foundation], [Skeletal Animation], 
[Human Interface Devices], [Platform Independence Layer], [Front End], [Visual Effects]
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Developers 
Building Engines

Ranking of Subsystems

Consensus Algorithm 
Application

Recommendation

Consensus 
Architecture of 
Subsystems

The Approach - Applying the Consensus

61

Consensus Algorithms - KwikSort

COSA= [[Core Systems], [Low-Level Renderer], [Third-Party SDKs], [World Editor], [Gameplay Foundation], 
[Resources], [Collision & Physics], [Skeletal Animation], [Platform Independence Layer], [Front End], [Visual 
Effects], [Audio], [Online Multiplayer], [Profiling & Debugging], [Human Interface Devices], [Scene Graph/ Culling]]

Rankings of Engine Subsystems

Game 
Engines

UnrealEngine [COR],[SDK],[EDI],[FES],[LLR],[SKA],[VFX],[RES],[OMP],[AUD],[DEB],[PLA],[GMP],[PHY],[HI
D],[SGC]

godot [SDK],[COR],[EDI],[RES],[FES],[PLA],[PHY],[LLR],[SGC],[VFX],[AUD],[GMP],[OMP],[SKA],[D
EB],[HID]

cocos2d-x [VFX],[COR],[EDI],[LLR],[GMP],[PLA],[FES],[AUD],[PHY],[OMP],[RES],[SKA]

o3de [EDI],[SKA],[FES],[GMP],[LLR],[COR],[RES],[AUD],[DEB],[OMP],[PHY],[HID],[PLA],[SGC],[S
DK]

Urho3D [SDK],[LLR],[COR],[GMP],[FES],[PHY],[SGC],[AUD],[OMP],[HID],[SKA],[RES]

gameplay [GMP],[RES],[COR],[SKA],[HID],[LLR],[PLA],[PHY],[FES],[SGC],[AUD],[VFX],[DE
B]

panda3d [COR],[RES],[LLR],[PHY],[EDI],[SGC],[VFX],[OMP],[SKA],[HID],[PLA],[FES],[GMP
],[AUD],[DEB]

olcPixelGameEngine [LLR],[OMP],[AUD],[PHY],[FES]
Piccolo [SDK],[COR],[LLR],[RES],[EDI],[PHY],[GMP],[SKA],[HID],[PLA],[FES],[VFX]
FlaxEngine [COR],[LLR],[PLA],[SDK],[GMP],[EDI],[RES],[PHY],[VFX],[DEB],[SKA],[AUD],[HID

],[OMP],[FES]



Findings - Commonalities
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Game engine architectures are similar in terms of subsystems they 
include

Game 
Engines
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Findings - Fundamental Subsystems

COSA recommends all subsystems as fundamental, and developers 
should consider them in their architecture when developing a game 
engine

Consensus Architecture of Subsystems

Game 
Engines

COSA= [[Core Systems], [Low-Level Renderer], [Third-Party SDKs], [World Editor], [Gameplay Foundation], 
[Resources], [Collision & Physics], [Skeletal Animation], [Platform Independence Layer], [Front End], [Visual 
Effects], [Audio], [Online Multiplayer], [Profiling & Debugging], [Human Interface Devices], [Scene Graph/ Culling]]



COSA= [[Core Systems], [Low-Level Renderer], [Third-Party SDKs], [World Editor], [Gameplay Foundation], 
[Resources], [Collision & Physics], [Skeletal Animation], [Platform Independence Layer], [Front End], [Visual 
Effects], [Audio], [Online Multiplayer], [Profiling & Debugging], [Human Interface Devices], [Scene Graph/ Culling]]
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Findings - Most Coupled Subsystems

The most coupled subsystems are Core Systems, Low-Level Renderer,  
3rd-Party SDKs, and  World Editor

COR and SDK are responsible for low-level operations such as memory allocation and file I/O. 
They serve as support for high-level subsystems such as audio and visual effects 

LLR responsible for producing 2D or 3D animated graphics we see on screen in all games

EDI provides a visual interface to many other subsystems

Game 
Engines
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Findings - Discovered Subsystems
Game 

Engines

We discovered subsystems that were never 
defined in the runtime engine architecture by 
Gregory [16]

Discovered Subsystem Game Engine

Code Editor, Multi-User Synchronization, Project Creation, CLI UnrealEngine, o3de, panda3d
Cache, Source Control UnrealEngine
Cvars, Graphs (Data Structure), Video Subtitling and 
Timecoding, Analytics, Media Streaming

FlaxEngine, godot, o3de, panda3d, 
UnrealEngine

Code Hot Reloading, Visual Scripting, Assembler/Compiler FlaxEngine, godot, UnrealEngine
Virtual production UnrealEngine
Screenshot Capture FlaxEngine
Foliage simulation UnrealEngine, FlaxEngine
VR, AR, XR UnrealEngine, godot
Advertisement  UnrealEngine
Cryptography UnrealEngine, FlaxEngine
Database UnrealEngine, o3de, Urho3d
Virtualization UnrealEngine
Cloud Services Integration o3de



To Conclude

66

Game 
Engines

COnsensus Software Architecture (COSA) is successful at recommending the 
most common subsystems which can help developers decide which subsystems 
to include when designing a game engine architecture, and support reusability 
and maintenance by identifying the most coupled subsystems

COSA= [[Core Systems], [Low-Level Renderer], [Third-Party SDKs], [World Editor], [Gameplay Foundation], 
[Resources], [Collision & Physics], [Skeletal Animation], [Platform Independence Layer], [Front End], [Visual 
Effects], [Audio], [Online Multiplayer], [Profiling & Debugging], [Human Interface Devices], [Scene Graph/ Culling]]

Tightly Coupled Loosely Coupled



Summary of the Studies
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Review Prioritiser (AR) recommends a prioritised list of user reviews to 
help app developers planning the next releases of their apps

Events Collection via 
Mylyn

Consensus Task Interaction Trace Recommender (CITR) recommends 
file(s)-to-edit to helps developers complete development tasks successfully in 
less time, and hence increases their productivity

COnsensus Software Architecture (COSA) recommends a ranking of 
fundamental subsystems to help  developers decide which subsystems to 
include when designing a game engine architecture

GitHub Repositories Documentations & 
Forums

Studies Clusters of Files
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Research Methodology
Mobile ApplicationsSoftware Systems Game Engines

Framing the Problem

Selecting the Systems

Collecting the Data

Preprocessing the Data

Applying the Consensus Algorithm

Evaluation

Defining Attributes

Ranking Data

Forming Interaction TracesRecovering Architecture

Measuring Metric

Ranking Data



Thesis Conclusion
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Thesis Statement. We proposed a recommendation technique for 
software engineering based on the consensus algorithm and 

that applies to various data types and resolves various software 
engineering issues in a variety of applications

Review Prioritizer 
(RP) 

Consensus Task 
Interaction Trace 

Recommender (CITR)

COnsensus Software 
Architecture (COSA)

Interactive User Input Large Dataset GeneralisationSufficient Knowledge 
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Content-based techniques 
require history information or 
metadata

Association rules can only 
recommend items similar to 
interactive user input 

Machine learning based 
studies required close to 7K 
reviews to produce 
recommendations [8,17]



Threats
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Construct 
Validity

Internal 
Validity

External 
Validity

Evaluators or developers could 
be biased or subjective in their 

judgements

Quality results of external tools 
(CLAP & Mylyn) could affect the 
accuracy of recommendations

No validation done on large size 
of datasets

Mitigation Mitigation Mitigation

Increase the number of 
evaluators

1- Compared to other existing 
tools

2- Build high quality tools

Perform the studies on diverse 
sizes of datasets



Future Work
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Short 
Term

Med 
Term

Long 
Term

Med 
Term

Med 
Term

Research in Other 
Directions

- Industry applications
- Involving real developers with 
varying experience
- Larger dataset size

All-In-One Approach
Building a complete tool that can 
preprocess, categorize, cluster, 
and prioritize mobile app reviews

Recommendation System
Providing a ready-to-use 
complete consensus-based 
recommendation system

Improving Categorization
Using deep learning techniques 
(LSTM, CNN, RNN, etc.) for 
mobile app review categorization

Fundamentals of Building 
RSSE

Conducting a literature review to 
provide an in-depth view of 
recommendation systems
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