
Consensus-Based Recommendation Technique
for Software Engineering Applications

Layan Etaiwi
Polytechnique Montréal

Canada

Supervised by: Yann-Gaël Guéhéneuc Sylvie Hamel Foutse Khomh
 Concordia University University of Montréal Polytechnique Montréal

Thesis Context

Software
Development

Design

Implementation

TestIntegration

Maintenance

2 of 73

Source-Code

Interaction Traces

Commit Logs

Documents

3 of 73

Thesis Context

Thesis Context

Find specific information that can solve a specific
issue, implement a feature, make a decision, etc.

Problem

4 of 73

Information
Retrieval

Information
Filtering

Data Growth

Application

Mobile

Software

Game
Engine

Recommendation System

Perform Task

Search

Input Data

Recommendations

Solution

Develop a recommendation system that can reduce
data overload, deliver the most pertinent data, ease

the performance of activities, and improving
decision making process

5 of 73

1990s

Thesis Context

Existing
Recommendation

Techniques

Data Mining
[10]

Association
Rules [11]

Machine
Learning [11]

Similarity
Measure [10]

Probabilistic
Technique [10]

Apriori
Model [10]

Limitations
Interactive User Input
Requirement of interactive users’
input to the recommender, which
may suggest unrelated items if
the users interact with the
“wrong” item

Large Dataset
Requirement of large
datasets
≅ 1M [9]

Generalization
Applicability to all data
types and software
applications

Sufficient Knowledge
Requirement of knowledge
about the features of the items
in the dataset

6 of 73

Thesis Context

Thesis Statement
We propose a recommendation technique for software

engineering based on the consensus algorithm and that applies
to various data types and resolves various software

engineering issues in a variety of applications

[[A,B],[C],[P],[Z]]

Various Applications

Various Dataset
Types

Consensus-Based
Recommendation

Technique

Recommendations in
the Form of Ranking

7 of 73

Research Methodology

8 of 73

Applying the proposed technique to build recommendation approaches that solve issues in…

Mobile Applications

Software Systems Game Engines

Recommend mobile app
reviews to help

developers plan their
apps’ next release

Recommend files-to-edit
to help developers

complete similar change
tasks

Recommend common
subsystems to help

developers design their
game engine
architecture

9

Research Methodology

9 of 73

Applying the proposed technique to build recommendation approaches that solve issues in…

Mobile Applications

Software Systems Game Engines

But why these applications?

- Need to help developers prioritize their reviews

- Need to build recommendations for forked software systems

- Need to provide a model of game engine architecture of subsystems

10 of 73

Research Methodology

Mobile ApplicationsSoftware Systems Game Engines

Framing the Problem

Selecting the Systems

Collecting the Data

Preprocessing the Data

Applying the Consensus Algorithm

Evaluation

11 of 73

Consensus Ranking 20th Century

Applications

Election Social Science Bioinformatics

John Kemeny & Peyton Young
Kemeny-Young Method - 1959

Consensus Ranking

Consensus Ranking

12 of 73

Finding a consensus ranking is aggregating a set of N different
rankings of m items into one ranking that orders the m items

closest to all of the N rankings within a specified distance
N Ranking

m Items

Example

Input Rankings of 5 Items Applying Consensus Ranking Output - Consensus Ranking

Indian

Indian

Indian

Indian

Arabic

Arabic

Arabic

Arabic

Korean

Korean

Korean

Korean

Italian

Italian

Italian

Italian

French

French

French

French

R
1

R
2

R
3

Finding a Consensus Ranking

13 of 73

1 Generalised Kendall-𝜏 Distance

2 Generalised Kemeny Score

3 Consensus Ranking

Measures the distance between every two rankings in the set of rankings

Finds the sum of the generalised Kendall-𝜏 distance between a ranking and
every ranking in the set

Finds the ranking R* with the smallest generalised Kemeny Score

14 of 73

Selected
Consensus
Algorithms

Consensus Algorithms

ExactAlgorithm

BioConcert KwikSort

Provides exact consensus

Works best with small dataset

Expensive with large dataset

Local search approach

Heuristic

Divide & Conquer approach

High quality consensus with large dataset

Heuristic

Best alternative for BioConcert

15 of 73

Mobile Applications

Software Systems Game Engines

Test and validate the applicability of the consensus algorithm on
mobile app data type to address mobile application issues

Objective

Context

16 of 73

Solution

Review Prioritiser

Mobile
Applications

Mobile Developer User Reviews

Uses To update

Mobile Applications

Challenge 1

High volume of reviews

Low quality reviews

Noisy reviews

Using tools, such as AR-Miner [12],
URR [13], to clean, categorise and

cluster reviews

Challenge 2
Review prioritisation
limited to high/ low

priority

Rating
Number
Category

Date

Review Prioritiser (RP)

17 of 73

An approach that uses the consensus algorithm to
recommend a prioritised list of user reviews that could help
app developers planning the next releases of their apps

Extracting Reviews Processing Defining Attributes Ranking Reviews
Generating

Recommendation

Reviews

Reviews

Reviews

Preprocessing

Categorization

Clustering

Analysing
Review

Ranking Clusters
of Reviews

Applying the
Consensus
Algorithm

Mobile
Applications

The approach- Extracting Reviews

18 of 73

Extracting Reviews

Reviews

Reviews

Reviews Publicly Available Dataset [3]
725 Reviews & 14 apps

App Name Category

BOINC Education

Lightning Web Browser Communication

Harvest Moon Game

Timeriffic Tools

iFixit Lifestyle

DuckDuckGo Tools

eBay Shopping

Barcode Scanner Shopping

Ringdroid Music

2048 Puzzle

Viber Communication

Dolphin Emulator Arcade

LinePhone Communication

WordPress Productivity

1

Mobile
Applications

Cluster related
 Reviews

Categorize into

Remove noise

The approach- Processing

19 of 73

Preprocessing

Categorization

Clustering

Processing

2

Bug
Feature
Request

PerformanceSecurity

Energy Usability

Other

Review Category Cluster

Stats broken in last update Bug C10

It is slow and buggy Performance C17

I need the justify post feature Feature C1

CLAP [3]

Mobile
Applications

Compared ARdoc [14], URR [13],
SUR-Miner [15], AR-Miner [12], and
CLAP

- Automated?
- NLP Techniques?
- Filters out non-informative?
- Categorization?
- Clustering?
- Accuracy?

The approach- Defining Attributes

20 of 73

Defining Attributes

Analysing
Review

 Low average rating to high

 Oldest date of review to newest

Number of reviews in each cluster,
decreasingly

 Important to less important

Cardinality

Oldest
Date

Average
Rating

Category

3

Mobile
Applications

Attributes are references that developers use to
order their clusters of reviews

The approach- Ranking Reviews

21

Attribute Ranked Clustered

Cardinality [[9],[8,12],[1,4,14,18],[2,5,6,7,10,11,17,3,13,15,16]]

Date [[2],[9,1,4,14,18,5],[6,10],[12],[8,15],[11,3,13,16],[7,17]]

Average Rating [[16],[12],[9],[18,15,3,13],[14,11,17],[4],[5,6,10,8,7],[2,1]]

Category [[16,12,9,15,13,14,11,10,8],[17],[18],[3,4,5,6,7,2,1]]

Ranking Reviews

Ranking Clusters
of Reviews

4

Ranked Clusters of WordPress reviews

Mobile
Applications

Image upload error Navigation difficulty

The approach- Applying the Consensus

22

Generating
Recommendation

Applying the
Consensus
Algorithm

5

R1 [[9],[8,12],[1,4,14,18],[2,5,6,7,10,11,17,3,13,15,16]]
R2 [[2],[9,1,4,14,18,5],[6,10],[12],[8,15],[11,3,13,16],[7,17]]
R3 [[16],[12],[9],[18,15,3,13],[14,11,17],[4],[5,6,10,8,7],[2,1]]
R4 [[16,12,9,15,13,14,11,10,8],[17],[18],[3,4,5,6,7,2,1]]

Consensus Algorithms

BioConcert ExactAlgorithm KwikSort

Consensus Ranking =
[[9],[12],[14,18],[8],[1,4],[10,11,3,13,15,16],[17],[2,5,6,7]]

[[Upload error], [App login issue], [HTML tags shown, Navigation difficulty], [Web login
issue], [Add justify feature, Add text formatting], [Broken stats, Posts hidden, Multiple post

edit, Update removes website, Posts not published, Installation issue], [slow], [Add featured
image, Allow profile edit, Allow uploading image to posts, Black background theme]]

Ranked Clusters of WordPress reviews

Mobile
Applications

Evaluation & Results

23

Evaluation
RQ1: (Performance) How effective is the consensus algorithm in prioritising user reviews?

Quantitatively Qualitatively

Mobile
Applications

Quantitative Evaluation

24

Kendall Rank Correlation Coefficient Consensus Ranking & Gold Ranking

Gold Ranking a prioritized ranking of clustered of reviews, defined manually by the apps’

developers.

Gold Ranking for WordPress Application
GR = [[12],[16],[13],[8],[14],[15],[11],[10],[9],[18],[17],[6],[4],[1],[2],[3],[5],[7]]

[[App login issue], [Installation issue], [Update removes website], [Web login issue], [HTML
tags shown], [Posts not published], [Posts hidden], [Broken stats], [Upload error], [Navigation
difficulty], [slow], [Allow uploading image to posts], [Add text formatting], [Add justify feature],

[Add featured image], [Multiple post edit], [Allow profile edit], [Black background theme]]

Mobile
Applications

Quantitative Evaluation

25

≥ 0.5 High Correlation
＜ 0.5 or ≥ 0.3 Medium Corrleation
＜ 0.3 Small Corrleation

The strong and positive correlation demonstrates that the proposed
consensus-based technique is effective at prioritising user reviews

RQ1: (Performance) How effective is the consensus algorithm in prioritising user reviews?

Mobile
Applications

Qualitative Evaluation

26

The majority of developers agreed that the consensus-based algorithm
generates a meaningful consensus ranking and they would use to plan
their next releases

“if your app reviews were prioritised in such a
consensus ranking, do you believe this ranking
would help you plan a successful release and
would you plan your next release according to
this ranking?'”

Mobile
Applications

Majority of developers agreed with the
recommended prioritization High Correlation

To Conclude

27

Mobile
Applications

≥ 0.5 High Correlation
＜ 0.5 or ≥ 0.3 Medium Corrleation
＜ 0.3 Small Corrleation

The consensus-based recommendation technique is effective at
prioritising mobile app user reviews and can assist developers in
improving their applications.

2828

Mobile Applications

Software Systems Game Engines

Evaluate the ability of the consensus algorithm to deal with
software data type to address software system-related issues

Objective

Context

29

Software Providers Client-Specific Instances DevelopersSame or Similar Tasks

Perform

Tasks that can be implemented on some client's instance and require developers
to interact with the same or similar source-code file(s)

More Customization Complex Software Difficult to comprehend
and maintain

Solution

Consensus Task Interaction Trace
Recommender

Software
Systems

Challenge

Consensus Task Interaction Trace Recommender
(CITR)

30

A task-based recommendation approach that uses the
consensus algorithm to recommend file(s)-to-edit based on
an aggregated set of developers' interaction traces. It helps
developers complete development tasks successfully in less
time, and hence increases their productivity.

Consensus Algorithm
Developers’ Interaction

Traces

Contains files-to-edit

Consensus Task
Interaction Trace

Software
Systems

31

Consensus Task Interaction Trace Recommender (CITR)

Customized
Software

Multiple Clients’ Instances

Change Tasks
Definition

Bugzilla Tickets

Events
Extraction

Change Tasks

Developers
Complete Tasks

Events Collection via Mylyn

Events
Preprocessing

Extracted Events

Task Related
Interaction Trace

Formation

Task Related
Interaction Trace

D1

D2

D3

D4

IT1

IT2

IT3

IT4

e1→e2→e3→e4→e5→e6

e1→e4→e7→e8→e5→e6

e1→e8→e5→e4→e3→e6

e1→e2→e6→e7→e9→e8

Ev
en

ts
 C

ol
le

ct
io

n

Task Related Set of ITs Formation

R
ec

om
m

en
da

tio
n

G
en

er
at

io
n

Applying Consensus
Algorithm

Consensus Task
Interaction Trace

CITR

Recommendation

Developers Complete
Similar Tasks

Software
Systems

User-Involved Experiment

The Approach - System Selection

32

Customized
Software

Multiple Clients’ Instances

Change Tasks
Definition

Bugzilla Tickets

Events
Extraction

Change Tasks

Developers
Complete Tasks

Events Collection via Mylyn

Events
Preprocessing

Extracted Events

Ev
en

ts
 C

ol
le

ct
io

nEclipse-based
plugin, PDE
(Plug-in
Development
Environment)

Software
Systems

But why this one?
- Open source
- Large base code
- Used in many research studies
- It has a bug tracking system
- Provides Mylyn solution ITs

The Approach - Change Tasks Definition

33

Customized
Software

Multiple Clients’ Instances

Change Tasks
Definition

Bugzilla Tickets

Events
Extraction

Change Tasks

Developers
Complete Tasks

Events Collection via Mylyn

Events
Preprocessing

Extracted Events

Ev
en

ts
 C

ol
le

ct
io

n

Bugzilla Ticket Task

304028 Feature properties dialog window has no title

229024 A tab on the overview page shows "?" Instead of API Information

265931 Autostart values are not persisted correctly on the plug-in

Change Tasks Used in the Experiment

Software
Systems

The Approach - Tasks Completion

34

Customized
Software

Multiple Clients’ Instances

Change Tasks
Definition

Bugzilla Tickets

Events
Extraction

Change Tasks

Developers
Complete Tasks

Events Collection via Mylyn

Events
Preprocessing

Extracted Events

Ev
en

ts
 C

ol
le

ct
io

n

Participants perform Tasks using Eclipse IDE

- 3+ Java experience
- 1+ IDE experience
- 2 female, 5 male
- 1 Post Doc, 3 Ph.D., 3 M.Sc.
- 1-5 years professional

experience

Participants Characteristics

Software
Systems

The Approach - Events Extraction

35

Customized
Software

Multiple Clients’ Instances

Change Tasks
Definition

Bugzilla Tickets

Events
Extraction

Change Tasks

Developers
Complete Tasks

Events Collection via Mylyn

Events
Preprocessing

Extracted Events

Ev
en

ts
 C

ol
le

ct
io

n

Total of 2390 events
Events are participants’ activities on source-code
elements (i.e., opening, searching, editing, etc.)

StartDate EndDate StructureHandle Kind

2018-08-08
11:43:44.97

2018-08-08
11:46:09.716

FeatureSection.java Selection

2018-08-08
11:46:46.918

2018-08-08
11:53:39.320

FeatureSection.handleProperties(); Edit

Example of Extracted Events

Software
Systems

The Approach - Events Preprocessing

36

Customized
Software

Multiple Clients’ Instances

Change Tasks
Definition

Bugzilla Tickets

Events
Extraction

Change Tasks

Developers
Complete Tasks

Events Collection via Mylyn

Events
Preprocessing

Extracted Events

Ev
en

ts
 C

ol
le

ct
io

n

A regular expression based tool to remove
noise, unrelated JAR files, duplicate events

and events with 0-duration

StructureHandle:
=org.eclipse.pde.ui/src<org.eclipse.pde.internal.ui.editor.product{VersionDialog.java[VersionDialog~configureShell~QShell;

CompleteName:
org.eclipse.pde.ui.src.org.eclipse.pde.internal.ui.editor.product.VersionDialog.java.VersionDialog.configureShell.QShell

An Event Before & After Noise Removal

Software
Systems

37

The Approach - Task Interaction Trace Formation

Task Related
Interaction Trace

Formation

Task Related
Interaction Trace

D1

D2

D3

D4

e1→e2→e3→e4→e5→e6

e1→e4→e7→e8→e5→e6

e1→e8→e5→e4→e3→e6

e1→e2→e6→e7→e9→e8

E.g. Change Task 1
Participant’s set of events from Change Task 1

Software
Systems

38

R
ec

om
m

en
da

ti
on

 G
en

er
at

io
n Applying Consensus

Algorithm
Consensus Task
Interaction Trace

CITR

Recommendation

Developers Complete
Similar Tasks

The Approach - Applying the Consensus

D1 [[1],[2],[3],[4],[5],[6],[7]]
D2 [[8],[4],[5],[6],[9],[10]]
D3 [[11],[12],[13],[14],[15],[16],[17],[18],[19],[20],[21],[4],[22],[23],[5],[6]]
D4 [[24],[25],[26],[27],[28],[29],[30],[31],[32],[12],[33],[34],[5],[6],[9],[10]]

Consensus Algorithms - BioConcert

CITR =
[[4], [5], [6], [9, 10], [12]]

Task-Related Interaction Trace

[4] org.eclipse.pde.ui
[5] Plugin-ConfigurationSection.java
[6] Plugin-ConfigurationSection.java
[9] Plug-inConfiguration.java
[10] Plug-inConfiguration.java
[12] PluginsTab.java

Translation of the results

Software
Systems

Files-to-edit that can help developers complete the same or
similar change tasks on other software instances

Evaluation & Results

39

RQ1: To what degree does CITR recommend relevant files to given
change tasks?

Quantitatively

Qualitatively - Between- Subject Experiment

Comparison

RQ2: Given a change task, can CITR help guide developers’
navigation paths to relevant file(s)-to-edit and increase their
productivity?

RQ3: How does CITR compare to MI (Mining Programmer
Interaction Histories) in recommending relevant file(s)-to-edit for
specific change tasks?

Software
Systems

40

Quantitative
Precision, Recall & F-Measure Consensus Interaction Trace & Gold Ranking

Gold Ranking a set of files that the PDE developers interacted with to solve the selected

Bugzilla tickets

Gold Ranking for the change task 3- Ticket 265931
GR = [[PluginConfigurationSection.java],

[IPluginConfiguration.java],
[Product.java],

[PluginConfiguration.java]]

Software
Systems

41

Quantitative
RQ1: To what degree does CITR recommend relevant files to given change tasks?

Software
Systems

42

Quantitative
RQ1: To what degree does CITR recommend relevant files to given change tasks?

CITR achieves high precision, recall, and F-measure and is able to
recommend accurate and relevant file(s)-to-edit

Gold Ranking Consensus Interaction Trace

 DocSection.java ConfigurationTab.java
 SchemaFormOutlinePage.java MainTab.java
 DocumentSection.java PluginsTab.java

TracingTab.java
PDEUIMessages.java
DocSection.java

Gold Ranking VS CITC for Task 2

Software
Systems

43

Qualitative - Between-Subject Experiment

Goal understand to what extent these recommendations can help developers navigate
and increase their productivity

Defining Evaluation Change Tasks = Tasks are similar in context to the change tasks

Bugzilla Ticket Task

269618 Automatic wildcard on plug-ins

144533 Unnecessary white space on configuration tab

88003 Select all property

261878 Prompt to save changes on Plug-ins

171767 Large font on main tab

101516 Sort alphabetically property

Software
Systems

44

Qualitative - Between-Subject Experiment
Inviting Developers = 30

Software
Systems

45

Qualitative - Between-Subject Experiment
30

 D
ev

el
op

er
s

Control Group

Treatment
Group

Without
Recommendation

With
Recommendation

Set A
3 Tasks

7 Developers

Set B
3 Tasks

8 Developers

Set A
3 Tasks

7 Developers

Set B
3 Tasks

8 Developers

Independent Variable

Software
Systems

46

Qualitative - Between-Subject Experiment
Software
Systems

Measuring Three Factors

TimeTask Completion
Rate

Navigation
Behaviour

47

Qualitative - Between-Subject Experiment
Software
Systems

 Time = Total time needed to complete each evaluation task

 CITR recommendations help developers complete tasks in a shorter time

48

Qualitative - Between-Subject Experiment
Software
Systems

 Task Completion = Number of completed tasks.

 CITR recommendations help developers complete tasks successfully

49

RQ2: Given a change task, can CITR help guide developers’ navigation paths to relevant
file(s)-to-edit and increase their productivity?

CITR recommendations increases developer’s productivity by reducing
navigation effort and time, and guiding them into structured navigation

Software
Systems

Qualitative - Between-Subject Experiment

Navigation Behaviour = Developers following a pattern of
structured navigation through source-code and files

50

Comparison

The comparison with MI showed that CITR yield better accuracy and
relevant recommendations than MI

RQ3: How does CITR compare to MI (Mining Programmer Interaction Histories) in
recommending relevant file(s)-to-edit for specific change tasks?

Goal: Compare CITR against MI (Mining Programmer Interaction Histories) [4]

Software
Systems

Increased Developers Productivity

To Conclude

51

Software
Systems

The consensus-based recommendation technique is effective at
providing relevant files to edit, which can boost developer productivity
and outperform other approaches

High Accuracy Results

Outperformed MI

5252

Mobile Applications

Software Systems Game Engines

Evaluate the effectiveness of the consensus algorithm at
recommending a consensus game engine subsystems to
address game engine-related issues

Objective

Context

53

Solution

COnsensus Software Architecture

Game Engines facilitate the
development of games by providing
generic, reliable and reusable software
subsystems such as a rendering engine,
physics engine, audio system, etc.

Game
Engines

Game Developer Game Engine

Uses To Develop

Games

Developers never design
architecture models

Problem
No studies about engine

architecture

Challenge
No available architecture
designs to guide through

subsystems choice

COnsensus Software Architecture (COSA)

54

An approach that applies the consensus algorithm to a set of game
engine architectures to recommend a ranking of fundamental
subsystems. It helps developers to decide what subsystems to include
when designing a game engine architecture, and support reusability and
maintenance by identifying the most coupled subsystems.

Consensus Algorithm Game Engine
Architectures

Consensus
Architecture of

Subsystems

Game
Engines

55

COnsensus Software Architecture (COSA)

Game Engine
Selection

GitHub Repositories

Architecture
Recovery

Documentations & ForumsStudies

Subsystems
Identification

Coupling Measure
- Include Graphs

Clusters of Files

Subsystems
Ranking

Coupling Measures

Developers
Building Engines

Ranking of Subsystems

Consensus Algorithm
Application

Recommendation

Consensus
Architecture of
Subsystems

Game
Engines

56

The Approach - Engine Selection

Characteristics Game Engine

Open Source
C++
General-Purpose
Highest Forks & Stars
Unarchived

UnrealEngine
godot
cocos2d-x
o3de
Urho3D
gameplay
panda3d
olcPixelGameEngine
Piccolo
FlaxEngine

Game
Engines

Game Engine
Selection

GitHub Repositories

Architecture
Recovery

Documentations & ForumsStudies

Subsystems
Identification

57

The Approach - Subsystems Identification
Game

Engines

Game Engine
Selection

GitHub Repositories

Architecture
Recovery

Documentations & ForumsStudies

Subsystems
Identification

High-Level Game Engine Architecture [16]

We use the runtime engine architecture defined by
Gregory [16] as a guidance for architecture recovery

58

The Approach - Architecture Recovery

Extracting
Source-Code Files Analysing Files Clustering Files into

Subsystems

Game
Engines

Game Engine
Selection

GitHub Repositories

Architecture
Recovery

Documentations & ForumsStudies

Subsystems
Identification

59

The Approach - Subsystems Coupling Measure

Coupling Measure -
Include Graphs

Clusters of Files

Subsystems Ranking

Coupling Measures

Degree of Coupling?
highly coupled software systems are difficult to maintain, understand, test, or
even reuse

Coupling Between Objects (CBO)
A count of the number of classes that are coupled to a particular class

Example of Include Graph for Godot

Game
Engines

60

The Approach - Subsystems Ranking

Coupling Measure -
Include Graphs

Clusters of Files

Subsystems Ranking

Coupling Measures

Game
Engines

Tightly Coupled Loosely Coupled

gameplay = [Gameplay Foundation], [Resources], [Core Systems], [Skeletal
Animation], [Human Interface Devices], [Low-Level Renderer], [Platform Independence
Layer], [Collision & Physics], [Front End], [Scene Graph/ Culling], [Audio], [Visual
Effects], [Profiling & Debugging]

Piccolo = [Third-Party SDKs], [Core Systems], [Low-Level Renderer], [Resources],
[World Editor], [Collision & Physics], [Gameplay Foundation], [Skeletal Animation],
[Human Interface Devices], [Platform Independence Layer], [Front End], [Visual Effects]

61

Developers
Building Engines

Ranking of Subsystems

Consensus Algorithm
Application

Recommendation

Consensus
Architecture of
Subsystems

The Approach - Applying the Consensus

61

Consensus Algorithms - KwikSort

COSA= [[Core Systems], [Low-Level Renderer], [Third-Party SDKs], [World Editor], [Gameplay Foundation],
[Resources], [Collision & Physics], [Skeletal Animation], [Platform Independence Layer], [Front End], [Visual
Effects], [Audio], [Online Multiplayer], [Profiling & Debugging], [Human Interface Devices], [Scene Graph/ Culling]]

Rankings of Engine Subsystems

Game
Engines

UnrealEngine [COR],[SDK],[EDI],[FES],[LLR],[SKA],[VFX],[RES],[OMP],[AUD],[DEB],[PLA],[GMP],[PHY],[HI
D],[SGC]

godot [SDK],[COR],[EDI],[RES],[FES],[PLA],[PHY],[LLR],[SGC],[VFX],[AUD],[GMP],[OMP],[SKA],[D
EB],[HID]

cocos2d-x [VFX],[COR],[EDI],[LLR],[GMP],[PLA],[FES],[AUD],[PHY],[OMP],[RES],[SKA]

o3de [EDI],[SKA],[FES],[GMP],[LLR],[COR],[RES],[AUD],[DEB],[OMP],[PHY],[HID],[PLA],[SGC],[S
DK]

Urho3D [SDK],[LLR],[COR],[GMP],[FES],[PHY],[SGC],[AUD],[OMP],[HID],[SKA],[RES]

gameplay [GMP],[RES],[COR],[SKA],[HID],[LLR],[PLA],[PHY],[FES],[SGC],[AUD],[VFX],[DE
B]

panda3d [COR],[RES],[LLR],[PHY],[EDI],[SGC],[VFX],[OMP],[SKA],[HID],[PLA],[FES],[GMP
],[AUD],[DEB]

olcPixelGameEngine [LLR],[OMP],[AUD],[PHY],[FES]
Piccolo [SDK],[COR],[LLR],[RES],[EDI],[PHY],[GMP],[SKA],[HID],[PLA],[FES],[VFX]
FlaxEngine [COR],[LLR],[PLA],[SDK],[GMP],[EDI],[RES],[PHY],[VFX],[DEB],[SKA],[AUD],[HID

],[OMP],[FES]

Findings - Commonalities

62

Game engine architectures are similar in terms of subsystems they
include

Game
Engines

63

Findings - Fundamental Subsystems

COSA recommends all subsystems as fundamental, and developers
should consider them in their architecture when developing a game
engine

Consensus Architecture of Subsystems

Game
Engines

COSA= [[Core Systems], [Low-Level Renderer], [Third-Party SDKs], [World Editor], [Gameplay Foundation],
[Resources], [Collision & Physics], [Skeletal Animation], [Platform Independence Layer], [Front End], [Visual
Effects], [Audio], [Online Multiplayer], [Profiling & Debugging], [Human Interface Devices], [Scene Graph/ Culling]]

COSA= [[Core Systems], [Low-Level Renderer], [Third-Party SDKs], [World Editor], [Gameplay Foundation],
[Resources], [Collision & Physics], [Skeletal Animation], [Platform Independence Layer], [Front End], [Visual
Effects], [Audio], [Online Multiplayer], [Profiling & Debugging], [Human Interface Devices], [Scene Graph/ Culling]]

64

Findings - Most Coupled Subsystems

The most coupled subsystems are Core Systems, Low-Level Renderer,
3rd-Party SDKs, and World Editor

COR and SDK are responsible for low-level operations such as memory allocation and file I/O.
They serve as support for high-level subsystems such as audio and visual effects

LLR responsible for producing 2D or 3D animated graphics we see on screen in all games

EDI provides a visual interface to many other subsystems

Game
Engines

65

Findings - Discovered Subsystems
Game

Engines

We discovered subsystems that were never
defined in the runtime engine architecture by
Gregory [16]

Discovered Subsystem Game Engine

Code Editor, Multi-User Synchronization, Project Creation, CLI UnrealEngine, o3de, panda3d
Cache, Source Control UnrealEngine
Cvars, Graphs (Data Structure), Video Subtitling and
Timecoding, Analytics, Media Streaming

FlaxEngine, godot, o3de, panda3d,
UnrealEngine

Code Hot Reloading, Visual Scripting, Assembler/Compiler FlaxEngine, godot, UnrealEngine
Virtual production UnrealEngine
Screenshot Capture FlaxEngine
Foliage simulation UnrealEngine, FlaxEngine
VR, AR, XR UnrealEngine, godot
Advertisement UnrealEngine
Cryptography UnrealEngine, FlaxEngine
Database UnrealEngine, o3de, Urho3d
Virtualization UnrealEngine
Cloud Services Integration o3de

To Conclude

66

Game
Engines

COnsensus Software Architecture (COSA) is successful at recommending the
most common subsystems which can help developers decide which subsystems
to include when designing a game engine architecture, and support reusability
and maintenance by identifying the most coupled subsystems

COSA= [[Core Systems], [Low-Level Renderer], [Third-Party SDKs], [World Editor], [Gameplay Foundation],
[Resources], [Collision & Physics], [Skeletal Animation], [Platform Independence Layer], [Front End], [Visual
Effects], [Audio], [Online Multiplayer], [Profiling & Debugging], [Human Interface Devices], [Scene Graph/ Culling]]

Tightly Coupled Loosely Coupled

Summary of the Studies

67

Review Prioritiser (AR) recommends a prioritised list of user reviews to
help app developers planning the next releases of their apps

Events Collection via
Mylyn

Consensus Task Interaction Trace Recommender (CITR) recommends
file(s)-to-edit to helps developers complete development tasks successfully in
less time, and hence increases their productivity

COnsensus Software Architecture (COSA) recommends a ranking of
fundamental subsystems to help developers decide which subsystems to
include when designing a game engine architecture

GitHub Repositories Documentations &
Forums

Studies Clusters of Files

68

Research Methodology
Mobile ApplicationsSoftware Systems Game Engines

Framing the Problem

Selecting the Systems

Collecting the Data

Preprocessing the Data

Applying the Consensus Algorithm

Evaluation

Defining Attributes

Ranking Data

Forming Interaction TracesRecovering Architecture

Measuring Metric

Ranking Data

Thesis Conclusion

69

Thesis Statement. We proposed a recommendation technique for
software engineering based on the consensus algorithm and

that applies to various data types and resolves various software
engineering issues in a variety of applications

Review Prioritizer
(RP)

Consensus Task
Interaction Trace

Recommender (CITR)

COnsensus Software
Architecture (COSA)

Interactive User Input Large Dataset GeneralisationSufficient Knowledge

69

Content-based techniques
require history information or
metadata

Association rules can only
recommend items similar to
interactive user input

Machine learning based
studies required close to 7K
reviews to produce
recommendations [8,17]

Threats

70

Construct
Validity

Internal
Validity

External
Validity

Evaluators or developers could
be biased or subjective in their

judgements

Quality results of external tools
(CLAP & Mylyn) could affect the
accuracy of recommendations

No validation done on large size
of datasets

Mitigation Mitigation Mitigation

Increase the number of
evaluators

1- Compared to other existing
tools

2- Build high quality tools

Perform the studies on diverse
sizes of datasets

Future Work

71

Short
Term

Med
Term

Long
Term

Med
Term

Med
Term

Research in Other
Directions

- Industry applications
- Involving real developers with
varying experience
- Larger dataset size

All-In-One Approach
Building a complete tool that can
preprocess, categorize, cluster,
and prioritize mobile app reviews

Recommendation System
Providing a ready-to-use
complete consensus-based
recommendation system

Improving Categorization
Using deep learning techniques
(LSTM, CNN, RNN, etc.) for
mobile app review categorization

Fundamentals of Building
RSSE

Conducting a literature review to
provide an in-depth view of
recommendation systems

The Research Squad

Yann-Gaël Guéhéneuc

Ph.D & eng.
Full Professor
Research Chair
Concordia University

Pascal Sager

M.Sc. Student
Research Assistant
Zürich University of Applied
Science (ZHAW)

Gabriel Ullmann

M.Sc. Student
Concordia University

Sylvie Hamel

Ph.D.
Full Professor

Department Chair
University of Montréal

Layan Etaiwi
Polytechnique Montréal

72

Thank you!

73

References
- [1] A. Ali and M. Meilă, “Experiments with kemeny ranking: What works when?” Mathematical Social Sciences, vol. 64, no. 1,

pp. 28–40, 2012.
- [2] B. Brancotte et al., “Rank aggregation with ties: Experiments and analysis,” Proc.VLDB Endow., vol. 8, no. 11, p. 1202–1213,

jul 2015.
- [3] S. Scalabrino et al., “Listening to the crowd for the release planning of mobile apps,” IEEE Transactions on Software

Engineering, vol. 45, no. 1, pp. 68–86, 2017.
- [4] S. Lee et al., “The impact of view histories on edit recommendations,” IEEE Transactions on Software Engineering, vol. 41,

no. 3, pp. 314–330, 2015.
- [5] L. C. Briand, J. W. Daly, and J. K. Wust, “A unified framework for coupling measurement in object-oriented systems,” IEEE

Transactions on software Engineering, vol. 25, no. 1, pp. 91–121, 1999.
- [6] S. R. Chidamber and C. F. Kemerer, “Towards a metrics suite for object oriented design,” in Conference proceedings on

Object-oriented programming systems, languages, and applications, 1991, pp. 197–211.
- [7] J. Gregory, Game engine architecture, 3rd ed. Press, 2018.
- [8] E. Guzman and M. Walid, "How do users like this feature? a fine grained sentiment analysis of app reviews." In 2014 IEEE

22nd international requirements engineering conference (RE), pp. 153-162. Ieee, 2014.
- [9]https://graphite-note.com/how-much-data-is-needed-for-machine-learning#:~:text=Generally%20speaking%2C%20the%20rul

e%20of,100%20rows%20for%20optimal%20results.

74

https://graphite-note.com/how-much-data-is-needed-for-machine-learning#:~:text=Generally%20speaking%2C%20the%20rule%20of,100%20rows%20for%20optimal%20results
https://graphite-note.com/how-much-data-is-needed-for-machine-learning#:~:text=Generally%20speaking%2C%20the%20rule%20of,100%20rows%20for%20optimal%20results

References
- [10] B. Ashok et al., “Debugadvisor: A recommender system for debugging,” in Proceedings of the 7th joint meeting of the

European software engineering conference and the ACM SIGSOFT symposium on The foundations of software engineering,
2009, pp. 373–382.

- [11] F. O. Isinkaye, Y. O. Folajimi, and B. A. Ojokoh, “Recommendation systems: Principles, methods and evaluation,” Egyptian
informatics journal, vol. 16, no. 3, pp. 261–273, 2015.

- [12] N. Chen et al., “Ar-miner: mining informative reviews for developers from mobile app marketplace,” in Proceedings of the
36th international conference on software engineering, 2014, pp. 767–778.

- [13] A. Ciurumelea et al., “Analyzing reviews and code of mobile apps for better release planning,” in 2017 IEEE 24th
International Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE, 2017, pp. 91–102.

- [14] S. Panichella et al., “Ardoc: App reviews development oriented classifier,” in Proceedings of the 2016 24th ACM SIGSOFT
international symposium on foundations of software engineering, 2016, pp. 1023–1027.

- [15] A. Al-Subaihin et al., “App store mining and analysis,” in Proceedings of the 3rd International Workshop on Software
Development Lifecycle for Mobile, 2015, pp. 1–2.

- [16] J. Gregory, Game engine architecture, 3rd ed. Press, 2018.
- [17] S. Panichella et al., “How can i improve my app? classifying user reviews for software maintenance and evolution,” in 2015

IEEE international conference on software maintenance and evolution (ICSME). IEEE, 2015, pp. 281–290.

75

Academic & Community Involvement

76

AÉCSP- Interface Tournament
Coordinator - 2020

Student Volunteer - 2018

Student Volunteer - 2019

Scholarship

77

Swiss Government
Excellence Scholarship

2020/21

