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RÉSUMÉ

L’ingénierie logicielle est un domaine intensif en connaissances. Les activités quotidiennes
des développeurs produisent une grande quantité de données, telles que du code source, des
historiques de modifications, des traces d’interactions, etc. Cela crée une richesse de données
logicielles, mais rend difficile l’analyse et l’extraction de données bénéfiques pour répondre
aux besoins des développeurs dans le but d’accomplir des tâches spécifiques. Afin de faciliter
l’analyse des données logicielles et l’identification d’informations pertinentes pour une tâche
donnée, les chercheurs en génie logiciel développent des systèmes de recommandation, ou
RSSE (Recommender Systems for Software Engineering), qui soutiennent le développement
et la maintenance logicielle, ainsi que l’amélioration de la qualité des processus de prise
de décision. Un système de recommandation pour le génie logiciel est une application qui
fournit des éléments jugés précieux pour une tâche en génie logiciel donnée dans un contexte
spécifique.

Depuis le début des années 1990, différentes techniques de recommandation ont été proposées.
Plus précisément, le premier système de recommandation a été introduit en 1992. Goldberg
et al. ont créé Tapestry [1], un système de recommandation par courrier électronique qui
recommande une liste de diffusion aux utilisateurs en fonction de leurs centres d’intérêt.
Dans le domaine de l’ingénierie logicielle, une large gamme de RSSEs ont été développés
sur la base de différentes techniques de recommandation pour soutenir les activités en génie
logiciel. Bien que ces techniques puissent être efficaces, des études ont montré qu’elles peu-
vent présenter certaines limites. En effet, certaines de ces techniques ne sont pas en mesure
de générer des recommandations sans une connaissance suffisante et des métadonnées sur les
éléments. De plus, d’autres techniques, telles que les règles d’association, nécessitent une con-
tribution de l’utilisateur avant de faire des recommandations. Bien que des techniques telles
que l’extraction de données puissent être efficaces, elles sont coûteuses en termes de calcul,
car elles nécessitent des ensembles de données énormes pour fournir des recommandations
hautement précises. De plus, à notre connaissance, aucun de ces systèmes de recommanda-
tion pour l’ingénierie logicielle n’a été appliqué, testé et évalué sur une variété de types de
données et d’applications logicielles pour démontrer leur généralisabilité. Il est donc impor-
tant de fournir une technique de recommandation capable de produire des recommandations
sans nécessiter de vastes ensembles de données, et ayant été prouvée comme suffisamment
généralisable pour traiter différents types de données pour différentes applications logicielles.

Dans cette thèse, nous utilisons la technique de classement consensus qui trouve un classement
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consensus en agrégeant un ensemble de classements différents pour générer un classement qui
est le plus proche de tous les classements d’entrée. Par conséquent, nous proposons une
technique de recommandation basée sur le consensus qui construit des recommandations en
appliquant un algorithme de consensus. La technique de consensus recommande des éléments
sous la forme d’un classement consensus et peut produire des recommandations pertinentes
sans avoir besoin d’un grand volume de données. Contrairement aux techniques de recom-
mandation existantes, la technique proposée devrait démontrer sa capacité à générer des
recommandations en utilisant différents types de données d’entrée pour résoudre différents
problèmes liés au génie logiciel. Nous pensons que la technique de recommandation basée
sur le consensus proposée dans cette thèse permettra aux développeurs de trouver des infor-
mations pertinentes, d’accomplir leurs tâches et d’améliorer leur productivité.

Pour valider l’efficacité et l’applicabilité de la technique, nous étudions et évaluons la recom-
mandation basée sur le consensus dans trois domaines du génie logiciel. Dans le premier
domaine d’étude, nous visons à guider les développeurs d’applications mobiles dans la plan-
ification de la prochaine version de leurs applications. Pour ce faire, nous extrayons, pré-
traitons, catégorisons et regroupons les avis des utilisateurs de quatre applications mobiles.
Nous priorisons et recommandons ensuite l’ensemble regroupé d’avis d’utilisateurs en appli-
quant notre RSSE proposé. Dans le deuxième domaine d’étude, nous examinons la technique
de consensus dans le contexte de la navigation des développeurs de logiciels. L’objectif de
cette étude est de guider les développeurs dans l’exécution de tâches de maintenance et de
développement sur des systèmes logiciels personnalisés. Avec cette technique, nous mettons
en place un système de recommandation qui propose aux développeurs une trace d’interaction
de tâche consensue composée de fichier(s) à modifier lié(s) à la tâche. Dans le dernier do-
maine, l’accent est mis sur la prise en charge de la conception d’architecture d’un moteur
de jeu. Nous utilisons la recommandation basée sur le consensus pour étudier son applica-
bilité aux données d’architecture du moteur de jeu, et son succès à fournir un classement
consensus des sous-systèmes fondamentaux de l’architecture de moteur qui peuvent aider les
développeurs tout au long du processus de conception de l’architecture. L’objectif final de
toutes ces études est de nous aider à évaluer l’applicabilité de la technique de recommanda-
tion basée sur le consensus proposée à plusieurs types d’ensembles de données et à la prise
en charge de diverses tâches de génie logiciel.

Nos recherches futures prennent trois directions distinctes. Tout d’abord, nous prévoyons
de mener une étude de revue de littérature qui fournit une connaissance complète sur les
étapes de construction d’un système de recommandation pour l’ingénierie logicielle et qui
peut être considérée comme une bible pour les développeurs novices lorsqu’ils développent
des SR. Ensuite, nous proposons une technique de regroupement des avis d’utilisateurs basée
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sur l’apprentissage en profondeur. Cette technique fera partie d’une approche tout-en-un qui
peut automatiquement nettoyer et prétraiter les avis, catégoriser, regrouper et recommander
un classement prioritaire des avis d’utilisateurs. Enfin, nous avons l’intention d’étendre nos
études de recherche de manière générale en impliquant l’industrie et de vrais développeurs, en
utilisant de vraies données de l’industrie, en augmentant la taille de l’ensemble de données,
en automatisant le prétraitement des données et en mettant à disposition un système de
recommandation basé sur un consensus complet pour tout type d’applications logicielles.
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ABSTRACT

Software engineering is a knowledge-intensive domain. Daily developers’ engineering activi-
ties produce a large volume of data, such as source-code, change history, interaction traces,
etc. This creates software data richness, but it makes it difficult to analyse and extract benefi-
cial data to support developers’ needs to accomplish specific tasks. As a means of facilitating
the analysis of software data and the identification of relevant information for a given task,
software engineering researchers develop recommendation systems for software engineering
RSSEs that support software development and maintenance, as well as improve the quality
of decision-making processes. A Recommendation system for software engineering (RSSE) is
a software application that recommends items that are deemed valuable for a given software
engineering task within a specific context.

Various recommendation techniques have been proposed since the early 1990s. Specifically,
the first recommendation system was introduced in 1992. Goldberg et al. built Tapestry [1],
a mailing recommendation system that recommends a mailing list to users based on their
interests. In the software engineering domain, a wide range of recommendation systems
for software engineering (RSSEs) have been developed based on various recommendation
techniques to support software engineering activities. While these techniques can be effec-
tive, studies demonstrated that they can present some limitations. Some of these techniques
are unable to generate recommendations without sufficient knowledge and metadata about
the items. Furthermore, others, such as association rules, require user input before mak-
ing recommendations. Although techniques such as data mining can be efficient, they are
computationally expensive due to the fact that they require enormous datasets in order to
provide highly accurate recommendations. In addition, to the best of our knowledge, none
of these software engineering recommendation systems were applied, tested and evaluated
across a variety of data types and applications to demonstrate their generalisability. Thus,
it is important to provide a recommendation technique that can generate recommendations
without requiring large datasets and can run on different types of data for different software
applications, demonstrating generalisability.

In this thesis, we make use of the consensus ranking technique which finds a consensus rank-
ing by aggregating a set of different rankings to generate one ranking that is the closest to all
of the input rankings. Hence, we propose a consensus-based recommendation technique that
builds recommendations by applying a consensus algorithm. The consensus technique recom-
mends items in the form of a consensus ranking and can produce relevant recommendations
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without the need for a large volume of data. Unlike existing recommendation techniques,
the proposed technique is expected to demonstrate its capacity to generate recommenda-
tions using different input data types to address different software engineering-related issues.
We believe that the proposed consensus-based recommendation technique in this study will
support developers finding relevant information, carry out their tasks, and enhance their
productivity.

To validate the effectiveness and applicability of the technique, we investigate and assess the
consensus-based recommendation in three software engineering areas. In the first area of the
study, we aim to guide mobile app developers through the planning of their apps’ next release.
To accomplish this, we extract, preprocess, categorise and cluster user reviews of four mobile
applications. We then prioritise and recommend the clustered set of user reviews by applying
our proposed technique. We also examine the consensus-based technique in the context of
software developer navigation. The purpose in this study is to guide developers through
performing maintenance and development tasks on instances of customised software systems.
Using the technique, we implement a recommendation system that recommends to developers
a consensus task interaction trace consisting of task-related file(s)-to-edit. In the last area,
the focus is placed on supporting game engine architecture design. We employ the consensus-
based recommendation to investigate its applicability to game engine architecture data, and
its success at providing a consensus ranking of fundamental engine architecture subsystems
that can assist developers through the architecture design process. The end objective of
these studies should be to help us assess the applicability of the proposed consensus-based
recommendation technique to several types of dataset and to supporting various software
engineering tasks.

Our future research takes three distinct directions. First, we plan to conduct a literature
review study that provides a comprehensive knowledge about the steps of building a recom-
mendation system for software engineering and that can be regarded as a Bible for novice
developers when developing RSs. Next, we propose a user review clustering technique that
is based on deep learning. This technique will be part of an all-in-one approach that can
automatically clean and preprocess reviews, categorise, cluster, and recommend a priori-
tised ranking of user reviews. Lastly, we intend to expand our research studies in general
by involving the industry and real developers, using industry data, increasing the size of
datasets, automating data preprocessing and making available a complete consensus-based
recommendation system for any type of software applications.
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CHAPTER 1 INTRODUCTION

1.1 Research Context

Software development requires software developers to engage in a wide range of tasks, includ-
ing designing, implementing, testing, debugging, and many others. These tasks create a large
amount of data with which developers interact, such as source-code, design decisions, com-
mit logs, interaction traces, etc. The immense growth in software engineering data creates
a challenge for software developers to find specific information that meet their needs, solve
engineering related issues, and support ongoing development tasks. For example, if devel-
opers need to discover information that helps them implement features or decide what new
features they should implement next. Using information retrieval techniques help developers
in navigating the vast data spaces. However, there is still a pressing need for recommendation
systems that reduce data overload, deliver the most pertinent data and ease the performance
of activities.

Recommendation system for software engineering (RSSE) is defined as a software application
that provides information items estimated to be valuable for a software engineering task in
a given context [3]. Recommendation systems play a significant role in software develop-
ment by reducing information overload, recommending the most relevant information, and
improving decision making process and quality. A typical recommendation system consists of
three main components [4]: (1) a data collection method, (2) a recommendation technique,
and (3) an interface to present recommendations. Three basic recommendation approaches
have emerged; collaborative filtering, content-based filtering and knowledge-based recom-
mendation [5]. Recommendation systems in software engineering can produce a variety of
recommendations for different purposes. For example, Rose [6] recommends source-code el-
ements to be changed based on mining program’s version history, DPR [7] suggests design
patterns based on Goal-Question-Metric (GQM) to help designers with software design prob-
lems, A LA [8] helps software developers find documents and metadata that related to their
tasks, and AR-Miner [9] prioritises mobile apps reviews based on a ranking model to help
developers plan their apps’ next release.

Research in the area of recommendation systems development began to emerge in the early
1990’s. Particularly, in 1992, Goldberg et al. built Tapestry [1], the first collaborative filter-
ing based mailing recommendation system. Later in 1994, Resnick et al. [10] introduced the
GroupLens system, a collaborative filtering based system, it uses readers’ ratings on some
articles to then recommend them to other readers with similar interests. In 1995, a video
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recommender that relies exclusively on ratings information was presented by Hill et al. [11] to
recommend videos to watch. Similarly, the Ringo system [12] provided personalised recom-
mendations from any type of dataset based on social information filtering technique. Since
then, this topic has been explored extensively in the context of a wide variety of modes, such
as Amazon’s item recommendation in the commercial field, and cancer drug prioritisation [13]
in bioinformatics. Particularly in the software engineering domain, recommendation systems
have attracted a great deal of research attention. Pakdeetrakulwong et al. [4] reviewed twenty
six recommendation systems for diverse software development life cycle phases and identified
benefits and usefulness of these systems. Similarly, Mohebzada et al. [14] performed a sys-
tematic mapping review that included twenty three studies of recommendation systems for
software engineering RSSEs for requirements engineering. These studies and numerous others
demonstrate how the field of research on recommendation systems for software engineering
RSSEs has grown significantly and is still growing.

Designing and developing RSs is a multi-step process that involves defining a problem that
needs to be solved and task to be achieved, determining the input data, preprocessing the
data and building the recommender. The type of input data and source depend on the
context of the task. Recommendation techniques rely on noise-free datasets. However, in the
real-world, collected data is likely to be incomplete, inconsistent and redundant and hence
must go through steps of preprocessing. Data preprocessing can include steps like cleaning,
transformation, and reduction. In terms of building the core function of the recommender,
there is a set of recommendation techniques that can be implemented. The choice of a
technique that takes the input data and transforms them into a set of recommendations
depends on the concrete recommendation problem.

1.2 Research Statement

The extensive research studies on the three basic recommendation approaches have led to the
development and implementation of various algorithms and techniques under each approach.
Several recommendation systems for software engineering activities [7, 15–17] have been de-
veloped and evaluated under the collaborative filtering approach. It is divided into two cat-
egories, memory-based approach and model-based approach [18]. The idea of memory-based
approach works by building a dataset of users and their preferences for items and recom-
mends to given users items that other users from the dataset with similar interest prefer.
Similarity measures like correlation-based and cosine-based are used to compute the similar-
ity between items/users. A model-based approach builds recommendations using machine
learning and data mining algorithms such as Singular Value Decomposition (SVD), Matrix
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Completion Technique, Association Rule, or Clustering. Content-based recommendation sys-
tems [8, 19–21] base their recommendations on feature extraction from items’ content [18].
The approach uses Vector Space techniques such as Term Frequency Inverse Document Fre-
quency (TF/IDF) or Probabilistic Techniques to compute the feature similarity between
items, and recommends items that are similar to the ones a user preferred in the past. Un-
like the two aforementioned approaches, knowledge-based recommendation systems [22–24]
recommends items based on knowledge about the users/ items and their relationships [5].

Despite the success of these techniques, research studies of a wide scope have identified some
potential limitations. Sufficient Knowledge These techniques require sufficient informa-
tion about the items/users for the algorithms to generate relevant recommendations. For
example, if a new time is added to the dataset, the system will be unable to recommend it
unless it is accompanied by significant metadata, such as users ratings. Thus, not having
adequate information is one of the major problems that reduces the quality of recommenda-
tions. Content-based techniques, for instance, need to have an in-depth knowledge about the
features of the items in the dataset before recommendations can be made. Accordingly, the
effectiveness of content-based techniques depends on the availability of item knowledge [25].
Irrelevant Interaction Techniques, such as association rules, require users’ input to the
recommender before making recommendations, and may suggest unrelated items if the users
interact with the “wrong” item. Scalability The majority of recommendation systems, on
the other hand, rely on machine learning techniques. Machine learning requires large datasets
to train and create models. Maintaining and preprocessing datasets can become challenging,
and computation can become costly as a result [5]. Generalisability To the best of our
knowledge, all available software engineering recommendation systems have been developed,
studied, and evaluated on one specific problem, in one specific application, dealing with a
single data type. For example, Holmes et al. [15] proposed a recommendation system that
can provide recommendations about the relevancy and cost of source-code elements that a
developer intends to reuse. The authors, however, never evaluated the generalisability of their
approach by applying it to a different data type, or employing it to resolve other domain
issues, such as recommending design patterns.

To address these limitations, we propose a consensus-based recommendation technique, a
collaborative filtering based recommendation, that generates recommendations by applying a
consensus algorithm. The proposed technique recommends items in the form of a consensus
ranking and is able to provide recommendations to resolve different software engineering-
related issues, using different types of datasets. We hypothesise that the proposed technique
will assist software developers in finding relevant information, resolving engineering issues,
and completing ongoing development and maintenance tasks.
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We formulate our thesis statement as follows:
We propose a software engineering recommendation technique based on the consensus algo-
rithm that applies to various data types and resolves various software engineering-related
issues in a variety of applications.

1.3 Research Methodology

A recommendation technique must be scalable and is able to generate satisfactory recom-
mendations without the need for a large dataset, constant knowledge about the items, and
instant input from the user. We propose a consensus algorithm-based recommendation tech-
nique that can handle different types of input data and generate recommendations that can
solve any software engineering application problem. The core function of the technique in-
volves taking as input a set of items, measuring the distance between two items using a
predefined distance measure, and producing a consensus ranking consisting of a set of rec-
ommended items. We briefly describe employing the proposed technique to address software
engineering issues in three different applications; mobile applications, software systems, and
game engine architecture. Figure 1.1 presents an overview of our research methodology.

Recommending Mobile App Reviews: Studies [9, 26, 27] showed that information in
users’ mobile app. reviews help developers maintain and develop their apps. As a result,
it is crucial for app developers to take user reviews into account when updating their apps.
However, the volume of user reviews received for some apps is large and surpasses developers’
ability to analyse, process them and extract useful information manually. We solve these
challenges by proposing a RSSE that preprocesses, categorises, and clusters user reviews,
followed by implementing the consensus algorithm to recommend a consensus ranking of
prioritised reviews that developers should consider when planning their apps.’ next release.

Recommending Interaction Traces for Software Navigation: Forking a software
system into multiple instances is a good practice to accommodate different clients’ needs.
Customising and maintaining each client’s instance is time consuming and challenging for
developers, especially newcomers. Some of the change tasks that developers perform on these
instances can be the same for each client or very similar. While completing a change task, each
developer generates a task interaction trace consisting of source-code elements interacted with
for completing the task. To validate the applicability of the proposed technique, we apply
the consensus algorithm to a set of collected developers’ interaction traces from previously
completed tasks to recommend a consensus task interaction trace consisting of file(s)-to-edit
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Mobile Applications Software Systems Game Engines

Framing the Problem
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Preprocessing Data
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Building Recommendations - Applying the Consensus Algorithm

Selecting Systems

Figure 1.1 Overview of Research Methodology

that can guide developers’ navigation towards completing similar tasks on other software
instances.

Recommending Game Engine Architecture Subsystems: Growing users’ expecta-
tions from video games made the process of developing video games much more complex.
Due to this complexity, developers have come to rely on frameworks (game engines) to help
them with the development process by providing generic, reliable and reusable software sub-
systems such as a rendering engine, physics engine, audio system, etc. Each game engine has
a unique architecture, and there is currently no standardised architectural model that can
be used when designing engine architecture. We investigate the effectiveness of the proposed
recommendation technique in addressing the problem of identifying architecture subsystems
when building game engines. We aim to guide developers towards designing a game engine
architecture by recommending a model that presents a consensus fundamental engine archi-
tecture subsystems ranked by their degree of coupling. The model is based on the application
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of the consensus algorithm to a collection of recovered existing game engine architectures.

1.4 Research Contributions

Based on the proposed research methodologies, we make the following contributions.

1.4.1 Chapter 3: Fundamentals in a Nutshell

We divide this chapter into two sections. In the first Section, we discuss the emergence of
the consensus rankings from optimal permutations, define key concepts and formulas and
explain in-depth how the algorithm produces a consensus ranking. We also go over calcu-
lating a Kemeny score and distance measures used to determine the distance between items.
Lastly, we discuss methods of handling incomplete rankings and compare some of the con-
sensus algorithms. In the second Section, we provide an overview of the fundamental steps
of building a recommendation system for software engineering. This overview can be used
as a starting point for recommendation builders with limited knowledge when building RSs.
We start by discussing the importance of clearly defining the problems and tasks that the
recommendation system is intended to solve, and the possibility of generating valuable rec-
ommendations. Furthermore, we present possible input data types and sources, and outline
basic data preprocessing techniques and methods. Lastly, we consider some evaluation mea-
sures for evaluating the effectiveness of the recommendation system. We constructed this
Section based on observations made from the research studies presented in Chapters 4, 5 and
6 as well as abstract review of a few RSSEs studies [28–30]

1.4.2 Chapter 4: Prioritising Mobile App Reviews for Mobile Application Evo-
lution

In this chapter, we build Review Prioritiser (RP); a consensus-based prioritisation technique
that prioritises and recommends mobile app. user reviews to assist app developers in de-
ciding what improvements to implement in the next releases of their apps. We implement
three validation methods to evaluate the success of the technique and the meaningfulness of
the prioritised ranking of reviews on four Android apps. First, we compare the results with
manually-prioritised rankings of user reviews by the apps’ developers, and then compute the
kendall rank correlation coefficient to statistically measure the correlation between them. In
the second method, we ask developers to qualitatively evaluate the relevance of the recom-
mendations. In the last method, we send a questionnaire to app developers asking for their
thoughts on how likely it is that our recommendations will help them plan the next release.
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We find that the consensus rankings and the manually-prioritised rankings have a strong
correlation. Using the consensus algorithm to prioritise and recommend user reviews can
produce useful rankings, and successfully help developers planning their apps’ new release.
As a result, our findings are consistent with our research statement, which states that the
proposed software engineering recommendation technique based on the consensus algorithm
works on mobile app user reviews and can resolve mobile application-related issues. This
chapter is based on a published conference paper [31].

1.4.3 Chapter 5: Recommending Task Interaction Trace to Guide Developers’
Software Navigation

We propose Consensus Task Interaction Trace Recommender (CITR); a task-based recom-
mendation technique that recommends files-to-edit to guide developers towards completing
similar change tasks on other clients’ instances. We demonstrate the effectiveness of the
technique by conducting a series of evaluations. To assess the results accuracy, we compare
them to predefined ground truth data and compute measures such as precision and recall.
Additionally, to determine the qualitative success of the technique in supporting developers,
we conduct an observational comparative experiment with 30 developers performing change
tasks with and without the recommendations. Lastly, we compare CITR against MI (Min-
ing programmer Interaction histories), an existing file-level recommendation approach. We
conclude that CITR can generate accurate recommendations, boost developers productivity
by allowing them to complete tasks in less than half the time and effort required, and out-
perform a comparable recommendation technique, MI. The results confirm that our RSSE
is applicable to developers’ interaction traces data type and has demonstrated success for
software navigation. This chapter is based on a submitted journal paper [32].

1.4.4 Chapter 6: Finding Common Game Engine Architecture subsystems and
their Coupling Degree

To support the process of creating and maintaining game engines, we propose COnsensus
Software Architecture (COSA), an approach based on applying the consensus algorithm to
a set of game engine architectures. Our approach generates a model that suggests the most
commonly used subsystems in game engine architectures, ranked by their degree of coupling.
Based on studying and extracting subsystems of 10 game engine architectures, We show
that all recovered subsystems are essential and should be considered when designing a game
engine architecture. In addition, we discover that core systems, low-level rendering, third-
party SDKs and world editor are the most coupled subsystems. We conclude that the software
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engineering recommendation technique we propose is general enough to process game engine
subsystem data type and make recommendations in the domain of game engine architecture.
This chapter is based on a to be submitted conference paper [33].

1.5 Thesis Organisation

The rest of this thesis is organised as follows. In Chapter 2, we discusses related work in the
areas of recommendation systems and consensus algorithms usage. In Chapter 3, we provide
an overview of the consensus algorithms and discuss their implementation techniques. In
addition, we outline basics steps for building recommendation systems. In Chapter 4, we
proposes an approach for prioritising mobile app user reviews. In Chapter 5, we study
using the consensus algorithm to recommend file(s)-to-edit that can help developers perform
similar change tasks on software systems. In Chapter 6, we presents our study for creating
a model for fundamental game engine architecture subsystems. Finally, in Chapter 7, we
conclude with some future works while highlighting the success of the consensus algorithm
in processing various data types and resolving various software engineering-related issues in
a variety of applications.
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CHAPTER 2 RELATED WORK

2.1 Recommendation Systems

A story from history: As the internet usage grew rapidly in the early 1990s, recommen-
dation systems were introduced to assist users in filtering out useful information. In 1992,
Goldberg et al. built Tapestry [1], a collaborative filtering based mailing recommendation
system. The system collects users’ reactions to documents they read, and filters mails be-
longing to these documents into lists of interests. Later, the GroupLens system [10] was
built in 1994 to help readers find articles of interest from a huge pool of available articles.
The system captures readers’ ratings on news articles they read, and recommends articles
to readers who are like-minded and have similar interests. Similarly, the Ringo system [12]
generates personalised music recommendations by applying four different social information
filtering algorithms. Ratings assigned by other people with similar tastes are used to recom-
mend music to a user. Based on standard formulas for computing statistical correlations, the
system determines which users have similar tastes.

Research on Recommendation Systems: The pressing need for efficient recommenda-
tion systems has driven researchers to conduct in-depth studies that explore different RSs
characteristics, techniques, evaluation methods and compare RSs approaches. Such stud-
ies promise to provide a comprehensive guide to follow when developing a recommendation
system. Ricci et al. and Robillard et al. provided handbooks [30, 34] that are dedicated
entirely to recommendations systems. The books study in detail approaches and techniques
for building recommender systems, ways of interacting with recommender systems, systems
design, implementation and evaluation. To further support research in the development of
recommendation systems, [35] conducted a survey of recommendation systems in software
engineering in order to identify limitations and discuss possible improvements.

Non-Software Engineering Domains: Recommendation systems have been the subject
of numerous research studies and commercial development in a variety of fields since their
discovery. In agriculture, for instance, RSs make a significant contribution to the efficient
management and use of resources. In [36], the authors used the Apriori model and hy-
brid filtering approach to build a web-based recommendation system. The system analyses
customer purchasing behaviour for vegetables using Apriori, and it recommends to farmers
which vegetables to cultivate for the next season based on historical purchases and best-
selling vegetables. In the field of e-Commerce, RSs play a major role. Several of the largest
commerce websites, such as Amazon and eBay, use recommendation systems to help their
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customers find products to purchase. The Wasabi Personal Shopper (WPS) [37], is a do-
main independent database browsing tool designed for on-line access to electronic products.
The system applies a knowledge-based similarity retrieval approach to suggest new items to
users. E-learning is another area that has attracted a lot of recommendation system research
attention. A personalised e-learning material recommender system (PLRS) was proposed in
the work of Lu [38]. The framework utilises a multi-attribute evaluation method and a fuzzy
matching method to recommend learning materials to students that meet their needs.

Software Engineering Recommendation Systems: Over the past several years, recom-
mendation systems for software engineering (RSSEs) have become an active area of research.
They have proven to help software engineers with data overload and software development
activities. To recommend to developers artefacts that are relevant to change tasks, [39] pro-
posed Hipikat. The tool forms a group memory using source-code versions, bugs, electronic
communication, and web documents. It then recommends relevant artefacts based on in-
ferring links between the archived artefacts in the group memory. DebugAdvisor [19] on
the other hand is a recommendation system that helps improve productivity of debugging
by automating the search for similar issues from the past. The recommender uses a fat
query interface to store and allow developers to search through all software repositories, and
link-analysis algorithms to compute similarity and retrieve relevant debug issues. Another
example of a recommender for software engineering activities is DPR [7]. DPR (Design Pat-
tern Reocmmender), an automated system for recommending design patterns for developers
to use for a particular design problem. The recommender produces recommendations based
on a simple Goal-Question-Metric (GQM) and weight functions.

2.2 Consensus Ranking Applications

In the early twentieth century, researchers began to investigate the problem of aggregating
multiple rankings into one consensus ranking, and it has been studied in numerous applica-
tions. We present here several applications that employ rank aggregation.

Elections The problem of designing voting rules for an assembly was a long-standing prob-
lem in the theory of elections during the second half of the eighteenth century. To deal with
the problem, [40] proposed the Kemeny-Young method that is able to provide a consensus
order of a list of candidates and combine the qualities of two previously proposed methods;
Borda and Condorcet. Similarly, [41] investigated two similar schemes (the Dodgson and
Kemeny schemes) to find a winner in an election. For both schemes, the study showed that
the problem of finding a winner in an election is NP-hard.
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Bioinformatics An important application of the consensus ranking in bioinformatics in-
volves the classification of disease-related proteins/genes and the construction of genetic
maps. In [42], the authors study gene expression patterns (calculating the probability of
occurrences of each gene in given tissues). Several techniques have been developed to mea-
sure gene expression, such as microarrays, SAGE, BodyMap and MPSS. However, not every
technique was able to completely cover all the expression levels of human genes. They pre-
sented a ranking system, mRNAs, that aggregates the results from all existing techniques
into one consensus ranking. The consensus ranking has also been studied to address issues
in biological data queries. [43] addressed the issue of scientists not receiving ranked sets of
answers to their biological queries by proposing a consensus algorithm based on the concept
of the median. Moreover, [44] investigated the use of rank aggregation to find genes related
to prostate cancer. Many microarray studies provided different ranked lists of genes asso-
ciated with particular diseases. To solve the significant variations, the authors proposed a
rank-aggregation approach for combining results from several microarray studies.

Social Sciences [45] tested and evaluated several rank aggregation methods. The authors
conducted an empirical study where participants are asked to rank the occurrence of events
in populations, geography, or history. A consensus ranking was then generated from applying
the rank aggregation methods. [46] is a similar study in the area of social sciences. The study
performed a systematic comparison of Kemeny rank algorithms to generate rankings from a
batch of social choice datasets.

Other Applications In environmental sciences, traffic noise was studied in [47] to identify
road stretch priority variables that contribute to the noise and their degree of importance.
Identified variables were then ranked by degree of relevance by high-level experts. Several
rank aggregation methods were applied to prioritise road stretch variables and generate a
single decision. Likewise, [48] presented a preference aggregation algorithm; it aggregates
users’ preferences in order to suggest the best items for the group as a whole. The algorithm
is based on a novel local-search algorithm for aggregating users’ preferences into a single
consensus ordering. The idea of formulating a consensus ranking has been also investigated
in the context of the Web. [49] studied several heuristic rank aggregation algorithms to obtain
a consensus ranking of the result from various search engines. In spite of the fact that rank
aggregation methods are not used in the practice of sports, researchers applied them to sport
data for decision-making purposes. [50] uses the Kemeny ranking method for ranking couples
of dancers in competitions. The paper also suggests modifying the Kemeny method to adapt
ranking with possible ties.
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CHAPTER 3 FUNDAMENTALS IN A NUTSHELL

3.1 Background on the Consensus Rankings

Finding a consensus ranking is defined as aggregating a set of N different rankings of n items
into one ranking that orders the n items closest to all of the N rankings within a specified
distance [46]

Example 3.1 A group of three friends plan to have dinner and each individual ranks five
cuisines, [Arabic (1), French (2), Indian (3), Korean (4), Vietnamese (5)], options based on
their own personal preferences. They suggest using the concept of rank aggregation to find an
optimal order:

R1 = [3, 1, 5, 4, 2]]

R2 = [5, 1, 2, 3, 4]

R3 = [1, 4, 2, 3, 5]

R∗ = [1, 3, 5, 4, 2]

3.1.1 Definitions and Measure on Permutations

In its original formulation, the rank aggregation problem was introduced first for a set of
permutations.

Definition 3.1.1 A permutation π is a bijection of [n] items onto itself [51]. It represents
a strict total order of the items of [n].

A permutation π of {1,2, . . . , n} is denoted as π = π1π2...πn , where πj denotes the item
at position j and π−1

i denotes the position of item i.

Example 3.1.1 The permutation π = [1, 3, 5, 4, 2] is of size n = 5. Position 5 represents
item “2” and denoted as π5 = 2. In permutation π, we say item “4” precedes item “2”, and
symbolised as 4 ≺π 2 (or 4 ≺ 2).

Kendall-τ Distance, Kemeny Score, and Optimal Permutation

As a means of finding a consensus across a set S of permutations, a classical Kendall-τ
distance is used to measure the distance between two permutations, and a Kemeny score is
calculated to define an optimal permutation [51].
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Definition 3.1.2 The Kendall-τ distance takes two permutations (π, σ) from a set S, and
counts the number of pairs of items whose order differs between the two permutations. Arith-
metically, Kendall-τ distance D between two permutations π and σ ∈ Sn is defined as:

D(π, σ) = |{(i, j) : i < j ∧

(π[i] < π[j] ∧ σ[i] > σ[j] ∨ π[i] > π[j] ∧ σ[i] < σ[j])}|

Example 3.1.2 The Kendall-τ distance between R1 and R2 from Example 3.1. The under-
lined pairs represent the difference in order between the two permutations, which equates to
a distance of 6.

R1 = [3, 1, 5, 4, 2]
R2 = [5, 1, 2, 3, 4]

(1,2) (2,3) (3,4) (4,5)
(1,3) (2,4) (3,5)
(1,4) (2,5)
(1,5)

The Kemeny score is used to evaluate how far a permutation is from a set of permutations. It
measures the sum of the Kendall-τ distances between a permutation π and every permutation
in the set S. Finally, the optimal Kemeny score is used to define one or more optimal
permutation(s) that with a minimal distance [51].

Definition 3.1.3 The Kemeny score K between a permutation π and a set of permutations
P ⊆ Sn, all on the same set of items, is denoted as follows:

K(π,P) =
∑
σ∈P

D(π, σ).

Definition 3.1.4 An optimal permutation π∗ of a set of permutations P ⊆ Sn that minimises
the kemeny score is given as follows:

∀π ∈ Sn : K(π∗,P) ≤ K(π,P)

Example 3.1.3 From the permutations and optimal permutation in Example 3.1, where
R1 = [3, 1, 5, 4, 2], R2 = [5, 1, 2, 3, 4], R3 = [1, 4, 2, 3, 5] and R∗ = [1, 3, 5, 4, 2]. The Kemeny
score of R∗ is the result of the pairwise disagreements between R∗ and the set of permuta-
tions: (1, 3) in R1, (1, 5), (2, 3), (2, 4), (3, 5) in R2, and (2, 3), (2, 5), (3, 4), (4, 5) in R3. Thus
K(π∗,P) is 1 + 4 + 4 = 9.
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3.1.2 Definitions and Measure on Rankings

In real life applications, rankings can be incomplete. This happens when not all the n items
are ordered in every ranking. For example, in elections, a voter could have chosen not to take
into account some of the candidates in her ranking. Rankings can also be not strictly-ordered,
when some items are ranked at the same position, i.e., items are tied (with equal rank). For
example, in elections, a voter could have chosen to put more than one candidate in the first
position. To deal with incomplete rankings and rankings with ties, a generalisation of rank
aggregation problem has been introduced.

Definition 3.1.5 Let U be a universe of items. A Ranking R is an ordered set of items [n].
It is presumed that the ranking is complete if n = U , otherwise it is considered incomplete.
A ranking can also be a bucket order on [n], in which case it is referred to as ranking with
ties. A ranking with ties is defined as R = [B1, ...Bk], where Bi is a bucket at position i. We
denote R[x] = i if x ∈ Bi [51].

Example 3.1.4 Let U = {1, 2, 3, 4, 5, 6, 7, 8, 9}, and R = [[5, 6, 8], [9], [1, 3], [2]]. Since item
7 is missing from the ranking, it is considered incomplete. At position 1 is bucket B1 which
contains items 5, 6 and 8. The position of item 2 is R[2] = 4. In the ranking, item 1 is equal
to item 3, i.e., 1 ≡ 3, since both items are positioned in the same bucket.

Generalised Kendall-τ Distance, Generalised Kemeny Score, and Consensus Rank-
ing

To measure the distance between two incomplete rankings with ties, a generalised version of
the Kendall-τ distance has been introduced [43,52].

Definition 3.1.6 The generalised Kendall-τ distance, G, between two rankings R and C, is:

G(R,C) = #{(i, j) : i < j ∧

((R[i] < R[j] ∧ C[i] > C[j]) ∨ (R[i] > R[j] ∧ C[i] < C[j]) ∨ (1)
(R[i] 6= R[j] ∧ C[i] = C[j]) ∨ (R[i] = R[j] ∧ C[i] 6= C[j]))} (2)

Which is the sum of (1) the number of times item i and j disagree in their order in the two
rankings, or (2) the number of times the two item are tied (in one bucket) in one ranking,
and not tied in the other one.
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Example 3.1.5 The generalised Kendall-τ distance between R and C. The underlined pairs
represent the difference in order between the two rankings, which equates to a distance of 7.

R = [[3, 1], [5], [4], [2]
C = [[5, 1, 2], [3], [4]]

(1,2) (2,3) (3,4) (4,5)
(1,3) (2,4) (3,5)
(1,4) (2,5)
(1,5)

In the same manner as the Kemeny score, given a ranking with ties R, the generalised Kemeny
score measures the sum of the generalised Kendall-τ distances between the ranking and every
ranking in the set S. Finally, generating a consensus ranking from a set of rankings requires
finding the ranking that has the smallest generalised Kemeny score [51].

Definition 3.1.7 Let Sn be the set of all possible rankings with ties over [n] items. Given
any subset of rankings R ⊆ Sn, and a ranking R, the generalised Kemeny score K is defined
as:

K(R,R) =
∑
C∈R

G(R,C).

Definition 3.1.8 A consensus ranking R∗ of a set of rankings with ties R ⊆ Sn, under the
generalised Kemeny score is mathematically defined as:

K(R∗,R) ≤ K(R,R),

Example 3.1.6 Consider the set of rankings with ties R = {R1, R2, R3}, where R1 =
[[3, 1], [5], [4], [2]], R2 = [[5, 1, 2], [3], [4]], R3 = [[1, 4], [2, 3], [5]]. The consensus ranking R∗ =
[[1], [3, 2], [5], [4]]. The generalised Kemeny score of R∗ is the result of order reversing (1, 3),
(2, 4), (2, 5) in R1, (1, 5), (3, 3), (2, 5), (3, 5) in R2, (3, 2), (2, 4), (3, 4), (5, 4) in R3, tying (3, 2)
in R1, (3, 2) in R2, and untying (3, 1) in R1, (5, 1, 2) in R2, (1, 4) in R3. Thus K(R∗,R) = 16.

3.1.3 Incomplete Rankings

We discussed in the last section the generalisation of Kendall-τ distance and Kemeny score
to handle rankings with ties. Nevertheless, real-life databases may contain missing data, i.e.,
incomplete data. In rank aggregation problem, there are two proposed methods to deal with
incomplete rankings by converting them into rankings over the same items; projection and
unification [53]
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Projection The objective of the projection method is to remove from all rankings any
items that do not appear in at least one ranking. The major drawback of this method is that
it could result in the removal of items that may be pertinent to the problem we are trying
to resolve.

Example 3.1.7 Consider the set of rankings R = {R1, R2, R3} with

R1 = [[1, 3], [4]]
R2 = [[4], [1], [3, 5]]
R3 = [[2], [1, 4], [3]]

Undoubtedly, the set of three rankings are incomplete since item 2 is not present in R1 and R2

and item 5 is missing from R1 and R3. Applying the projection method results in removing
these items.

R1 = [[1, 3], [4]]
R2 = [[4], [1], [3]]
R3 = [[1, 4], [3]]

Unification The unification method adds a unification bucket at the end of each incomplete
ranking. The buckets consist of items that are present in other rankings but not in the current
ranking. There are two considerations to be taken into account when applying the unification
method. First, it must be noted that the missing items from a ranking are less important
than the present items in that ranking. Second, even though missing items from a ranking
are grouped together in one unification bucket, they do not possess an equal rank.

Example 3.1.8 Consider the same set of rankings R = {R1, R2, R3} from Example 3.1.7.
Applying the unification adds a bucket with missing items at the end of each of the rankings.

R1 = [[1, 3], [4], [2, 5]]
R2 = [[4], [1], [3, 5], [2]]
R3 = [[2], [1, 4], [3], [5]]

In the remainder of this thesis, the unification method is applied to incomplete rankings
before applying any consensus algorithm.
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3.1.4 Consensus Algorithms

Many algorithms exist to address the problem of finding a consensus ranking. Brancotte et
al. [52] studied 14 different consensus algorithms using the generalised Kendall-τ distance and
classified them into score-based algorithms and positional-based algorithms. The foremost
searches for a consensus by focusing on the disagreement between the order of the items,
while the positional-based algorithms focus on the position of the items in each ranking.

[52] extensively compared and studied ranking algorithms with experiments on real, syn-
thetic, and differently-sized datasets from different fields. The outcomes of the experiments
showed that the BioConsert algorithm [43] and ExactAlgorithm [52] outperform the other
algorithms providing highest quality results on both real and synthetic datasets. Kwik-
Sort [54] comes second after BioConcert, especially when the dataset is extremely large
(n > 30, 000). If execution time is a concern and the rankings do not contain many ties, then
BordaCount [55] and MEDRank [56] are usable. In our research, the number of items and
rankings are < 100, therefore execution time is not a concern. Hence, we intend to generate
recommendations using BioConcert, ExactAlgorithm, and KwikSort algorithms.

The ExcatAlgorithm [52], non-heuristic approach, is based on a linear programming (LP)
approach that finds an exact consensus solution (i.e., ranking) by maximising or minimising
an objective function such that all predefined constraints are satisfied. However, the intrinsic
complexity of linear programming limits the ability to compute optimal solutions to large
datasets. While BioConcert and KwikSort algorithms are heuristic score-based algorithms,
they differ in the way they construct a consensus ranking. BioConcert uses a local search.
Given a set of rankings, it randomly selects one of them as a starting ranking and then
continuously applies two operations until the generalised Kemeny score is stabilised. The
two operations are (1) changeBucket: moves an item from one bucket and adds it into an
existing bucket and (2) addBucket: moves an item from a bucket to put it in a new bucket [43].
KwikSort, on the other hand, employs a divide-and-conquer approach. It randomly assigns
one of the items as a pivot and then recursively places the rest of the items in two buckets
after and before the pivot until a consensus ranking is reached with a minimised generalised
Kemeny score.

3.2 Fundamentals for Building Recommendation Systems for Software Engi-
neering Applications

Collected input data is likely imperfect, inconsistent and cannot be directly used to generate
recommendations. Further, the process of evaluating and choosing a perfect technique is
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one of the hardest steps in building recommendation systems. A successful recommendation
system should be based on a consistent and well-defined methodology for preprocessing the
input data, building and evaluating the system. In this section, we discuss fundamental
phases for building recommendation systems for software engineering. This overview can be
used as a starting point for recommendation builders with limited knowledge when building
RSs. The Section is based on observations made from our research studies, Chapters 4-5-6,
and a review of the few major works that have been done for construction RSSEs. Figure
3.1 illustrates an overview of the phases involved in building a recommendation system. We
break the process down into a series of phases: Problem Identification (Section 3.2.1), Data
Collection (Section 3.2.2), Data Preprocessing (Section 3.2.3), Recommendations Generation
(Section 3.2.4), and Recommendation System Evaluation (Section 3.2.5).

3.2.1 Problem Identification

A recommendation system is designed to assist software developers in solving particular en-
gineering problems by recommending tools, source-code, documents, navigation patterns,
among others. For more fine-grained and precise recommendations, it is necessary for recom-
mender builders to first identify the problem that the recommender intends to resolve and
whether the recommender will be able to provide valuable recommendations to a developer
facing a certain challenge. In particular, the recommender’s objective and the task that the
recommender aims to accomplish should be clearly outlined [28]. A thorough understanding
of the objective and task is crucial to the production of valuable recommendations.

By clearly defining the problem, objective, and task, recommender builders can accurately
determine what type of input data and tools are required and the target developers. The
type of input data can impact the analysis and preprocessing of the collected data as well as
the development effort needed for that particular recommender. For example, source-code
takes less effort to parse and analyse than developers’ interaction traces. Additionally, know-
ing the target developers can help determine the kind and level of recommendations that a
recommender may provide. A novice developer, for instance, requires more detailed recom-
mendations than an expert developer [28]. Examples of software engineering problems that
have been solved with the help of recommending systems include helping software developers
complete a particular task by recommending relevant source-code, plan software development
by recommending code to reuse, design the software through suggesting design patterns, and
many others.
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Figure 3.1 Overview of the Fundamental Phases of Building RSs.

3.2.2 Data Collection

Recommendation systems are data processing systems that actively collect different types
of data to be able to generate recommendations. Until sufficient constructed data is avail-
able, a recommender cannot effectively provide accurate recommendations. Input data is
primarily about the items to recommend. Software engineering researchers have used various
data types and collection tools for building recommendation systems. Some of the commonly
used input data are [28]: • Developers’ Interaction History Data Studies employed de-
velopers’ interaction history data to recommend relevant artefacts, reusable pieces of code,
predict defects, or warn against code violation. Tools, such as Mylyn, Switch, and OCom-
pletion, can be used to track, collect and extract developers’ interactions with the system.
• Source-Code Source-code related data is another input type that has been used actively
for building RSSEs. This type of data can be generated by a source-code static analysis
of the software under study. • Bug Reports Data of this type can reveal a great deal of
information concerning the history of software development issues. Recommender builders
can extract bug data from issue tracking systems, which are platforms for software users, de-
velopers and testers to track and report bugs. • User Reviews Online user reviews behave
like word-of-mouth, which can significantly impact a software system’s success or failure.



20

Review scrapping is the process for extracting online user reviews from web sources, such as
Google Play, using web scraping tools. • Commits Expertise recommendation systems rely
on commit logs from version control systems, such as SVN, CVS, and Git, to recommend
developers with expertise in a specific part of the software system. • Explicit Data The
explicit data collection strategy involves explicitly asking developers to provide data about
the issue being investigated through tracking developers’ interactions, feedback collection,
survives, or observational experiments.

3.2.3 Data Preprocessing

Accuracy, completeness, consistency and currentness are four dimensions that define data
quality [57]. However, collected input data is far from reflecting these dimensions and often
noisy, unreliable, redundant, inconsistent, and incomplete. Low-quality data does not di-
rectly apply to recommendation systems, as they affect the performance and accuracy of the
generated recommendations. Therefore, preprocessing of the collected data is mandatory.

Data preprocessing is a multi-step process that transforms raw data into a form that is
sufficiently comprehensible and of high quality [30]. From the entire recommendation system
building process, preprocessing data takes the most effort and time (> 50% of total effort) [58].
For instance, preprocessing can include aggregating commits, parsing source-code, tokenizing
text, and abstracting software. The product of a successful data preprocessing is a reliable
dataset that can be fed directly to the recommendation technique.

In the remainder of this section, we describe the most common data preprocessing techniques
that are used to prepare and clean datasets. This phase includes: Data Cleaning, Data
Integration, Data Transformation, and Data Reduction [29, 59]. The diagram (3.2) below
depicts the basic techniques involved in data preprocessing.

• Data Cleaning Data cleaning or data cleansing is the process of fulfilling missing
data, removing duplicates, correcting or filtering out incorrect data, and deducting
inconsistencies by applying cleaning techniques.

• Data Integration In some studies, input data can be coming from different sources.
In such a situation, data integration must be applied in order to combine the data into
a single unified representation. It is important that this process is carefully performed
in order to avoid redundancies and inconsistencies, which may result in inaccurate data.

• Data Transformation It is about transforming raw data into consistent format. It
consists of two operations, data normalisation and data generalisation. Data normal-
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Figure 3.2 Overview of Data Preprocessing Techniques

isation is a technical process of transforming data to be on the same scale without
changing the content of the data. This process reduces processing time and complex-
ity. For example, it can be applied if some values in the dataset are measured in inches
while others are measured in centimetres. In contrast, data generalisation involves
converting low-level data features into high-level features. It helps provide a clear and
general picture of the input data. For example, low-level features such as postal code
can be generalised to high-level features such as city or state.

• Data Reduction The size of the dataset can be very enormous, making the process-
ing of the data very expensive. Such cases make the data reduction process necessary.
Data reduction consists of a set of techniques that can be used to eliminate redundant
and noisy features or instances, or simplify features using discretization techniques. It
archives a reduced presentation of the data while maintaining the integrity of the origi-
nal data. In this process, four techniques can be used to resolve basic data issues: data
dimensionality (Feature Selection (FS)), data redundancy (Instance Selection (IS)),
features simplification (Discretization), and missing data (Feature Extraction).

– Feature Selection (FS) Feature selection achieves reducing the dimensionality
of data by selecting a subset of data features and removing as much irrelevant
data as possible. The main objective is to identify a subset of data features that
can generally represent the main issue and be used as input to train an algorithm.
As feature selection reduces the dimensionality of data, it enables algorithms to
run faster, reduce costs, and produce highly accurate results.
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– Instance Selection (IS) This technique involves selecting a subset of data that
can represent the entire dataset while producing the same results as if the entire
dataset was used. While IS is a separate process from FS, both processes may be
applied in conjunction with one another. As a complementary process of FS, IS
promotes data reduction in order to scale down the data. Instance selections have
the advantage of allowing algorithms to run on large datasets while focusing only
on relevant parts of the dataset.

– Discretization In general, data is presented in a variety of formats, such as dis-
crete, numerical data, continuous data, categorical data, etc. Numerical data,
whether it is discrete or continuous, is assumed to be ordinal, i.e., the values have
an order. In categorical data, however, there is no order amongst them. Depend-
ing on the algorithm being used, some algorithms can only run on nominal values.
As a result, a discretization technique is required to convert the continuous data
into a nominal format that the algorithm can understand. The discretization pro-
cess converts quantitative data into qualitative data by splitting the numerical
values into a number of non-overlapped intervals. The values become discrete by
associating each numerical value to a specific interval. The outcome of the dis-
cretization process is a set of nominal data. In practice, the discretization process
simplifies the reading of data and makes algorithms more efficient at generating
accurate results.

– Feature Extraction Feature Extraction extends feature selection by allowing
the modification of the selected subside of features. It generates new artificial
features from the subset of features. The goal of this process is to further reduce
the dimensionality of the dataset by generating artificial features that are smaller
in size than the original subset.

3.2.4 Recommendations Generation

Once the problem is defined, tasks are created, input data is determined, collected and
cleaned, the recommender builder must select one or more recommendation techniques to im-
plement the core function of the recommendation system. The recommendation technique(s)
take the input data and transform them into recommendations. Based on the selected rec-
ommendation technique and how it operates, the set of generated recommendations may
contain one or multiple recommendations.

Over a long time, extensive research has been conducted to study and develop recommen-
dation algorithms and techniques. Various techniques have emerged to choose from to re-
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solve problems in different domains. These techniques are constructed under three basic
recommendation approaches; collaborative filtering (CF), content-based filtering (CBF) and
knowledge-based recommendation (KBR) [5]. No one technique is designed to solve a par-
ticular problem.

All three approaches have strengths and weaknesses, and each is derived from different sources
of recommendation knowledge. There is no set rule for determining which approach or
technique to apply. The technique employed is determined by the type of input data and the
nature of the problem being studied.

The idea of collaborative filtering approach originated from an information filtering technique
that uses the opinion of a group of people to recommend items to individuals. The implemen-
tation of the approach works by building a user-item matrix of items that users like. It then
recommends to users items that other users with similar interests and preferences liked in the
past. Similarity measures are used to calculate the interest similarity between users. This
approach is the most widely used for building recommendation systems. In a content-based
filtering approach, the emphasis is more on the analysis of item features in order to generate
recommendations. The system extracts features from the content of the items in the dataset,
uses similarity metrics to measure the similarity between features and recommends items
that are with similar features. Therefore, it is essential to provide an in-depth description
and content about the items in order to extract features. For example, if a user likes a mobile
application that belongs to the food category, then the system will recommend another app
from the same category. Unlike the other two approaches, the knowledge-based approach is
based on collecting and extracting explicit knowledge about both the user, the item and their
relationships. The approach tries to construct a functional knowledge from this relationship
that provides information about how a particular item can benefit a particular user’s needs.
Under this approach, two methods are used to produce recommendations: content-based and
constraint-based. The case-based method bases recommendations on knowledge of specific
cases, where items are presented as cases and recommended in a way that solves the user’s
specific problem. The constraint-based method, in contrast, specifies a set of constraints that
relate user’s needs with items.

3.2.5 Recommendation System Evaluation

Providing accurate and valuable recommendations is crucial to achieve the objective of build-
ing the recommendation systems. Therefore, RSs must undergo some evaluation processes.
The quality of the recommendation technique can be assessed through different evaluation
methods. There is no golden evaluation method that should be used for a perfect evaluation.
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In this section, we review the two most common evaluation strategies that help evaluate the
effectiveness of the recommendation systems and compare them: Evaluation Experiments
and Evaluation Metrics. Depending on the characteristics of the recommendation system,
an evaluator may employ both strategies or only one.

Evaluation Experiments There are three way to conduct evaluation experiments:

• Offline Experiments This type of experiment is considered the easiest to perform as
it involves no real interactions with users. It consists of using existing datasets. The
dataset is split into “training” subset and “test” subset. The former is used as input to
evaluate the recommendation technique, while the latter serves as ground truth data
for measure computation. The experiment is performed by simulating interactions of
users using the recommendation system and predicting that these interactions will be
the same or similar to the interactions of real users using the recommendation system
when it is deployed. This simulation should help estimate the performance of the
technique [34].

• User Study This type of experiment can be time-consuming as it involves interacting
with a small set of real users, however it can provide a good insight into the impact of
recommendation systems on users behaviour. User study experiment is best suited for
evaluating recommendation techniques that depend on real user input, such as associ-
ation rules. It consists of defining a set of evaluation tasks for users to complete while
using the recommendation system in a controlled environment; experiment in which
external variables are controlled or their influence on experimental results is elimi-
nated. While users conduct the experiment, quantitative and qualitative data about
the system performance can be collected, such as recording user behaviour, number
of completed tasks, total time needed for each task, or percentage of accurate results.
In most cases, the user study is followed by a survey question to collect qualitative
data regarding the user’s experience with the system. User study experiment can be
Between Subject design or Within Subject design. In the Between Subject, users are
divided into groups, and each group performs and experiences a different set of tasks
than the other group. On the contrary, in the Within Subject design, all users perform
and experience all tasks in the set [34].

• Field Study Field studies are designed to experiment with real scenarios and con-
ducted in collaboration with industrial companies that provide access to a natural
work environments of the users. The recommendation system is used by the users
while performing their day-to-day work tasks. Users are observed to assess the impact
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of the system on their behaviour as well as the performance of the system. Qualitative
interviews can be conducted after the experiment to obtain constructive feedback about
the experiment in general and the recommendation system in particular [28].

Evaluation Metrics Regardless of the experiments’ ability to provide an informative assess-
ment of the performance of the recommendation technique and its impact on user behaviour,
it is necessary to assess the accuracy of the technique in the form of numbers that can be
compared to other techniques. There are several accepted evaluation metrics that can be
used for this purpose; however, the metric chosen depends on the specific recommendation
under investigation. Metrics can be grouped into two categories: Error Metrics and Accuracy
Metrics.

• Error Metrics These types of metrics tell us how accurate the recommendations are
and what is the amount of error (i.e., how far the recommendations are from the actual
values). Two metrics are introduced, Root Mean Squared Error (RMSE), and Mean
Absolute Error (MAE). The difference between the two metrics is that the error values
are equally weighted in MAE, while large error values are highly penalised in RMSE.
RMSE is therefore a more appropriate metric if large errors are undesirable. In both
metrics, lower error values indicate higher accuracy [30].

Root Mean Squared Error (RMSE) RMSE is calculated by finding the difference
between the actual value and the recommended value, which is called the residual.
Residual can be positive or negative. If ŷ is the recommended value and y is the actual
value, and N is the number of values, RMSE is calculated by squaring the residuals,
averaging the squares, and taking the square root as follows:

RMSE =
√∑(ŷ − y)2

N

Mean Absolute Error (MAE) MAE is calculated by finding the average absolute
deviation between the recommended value and the actual value:

MAE =
∑ | ŷ − y |

N

• Accuracy Metrics Accuracy provides a measure of how close the produced recom-
mendations are to a set of expected predefined recommendations that is referred to as
ground truth or gold standard. The accuracy of a recommendation indicates how well
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it delivers the defined objective of the recommendation system. The most commonly
used accuracy metrics are Precision, Recall, and F-measure [60].

Precision P represents the proportion of correctly recommended items. The greater
the precision, the more accurate the recommended items made by the recommendation
system.

P = TP

TP + FP

Recall R represents the proportion of recommended items that are actually met. The
greater the recall, the more items that are actually recommended by the recommenda-
tion system.

R = TP

TP + FN

F-measure (F ) is computed to help simplify Precision and Recall into one metric. It
represents the accuracy of the recommendation. The greater the F-measure, the more
accurate the results of the recommendation system.

F = 2× P ×R
P +R

Where TP (true positives) the recommended items that are relevant, FP (false posi-
tives) the recommended items that are not relevant, and FN (false negatives) the rele-
vant items that are not recommended. An optimal value is 1, which means the recom-
mendation technique is capable of generating accurate recommendations. These metrics
make comparing between recommendation techniques and across the same dataset very
straightforward.
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CHAPTER 4 PRIORITISING MOBILE APP USER REVIEWS FOR
MOBILE APPLICATION EVOLUTION

4.1 Introduction

In this chapter, we test and validate the consensus algorithm to prioritise and recommend
mobile apps user reviews. The mobile apps industry grew tremendously in the past few years.
Apple App Store and Google Play, the two largest marketplaces for mobile apps, launched
in 2008 and host more than 5 millions apps. As of September 2019, Google Play and Apple
App Store reached a total of 5.5 million apps [61].

In addition to the download service, these marketplaces allow users to rate and review the
apps using a five-point Likert scale and unstructured text. These ratings and reviews are
important. Beside guiding prospective users in the choice of apps to download, they provide
a valuable source of information for app maintenance and development. Harman et al. [62]
showed that there is a high correlation between user ratings and reviews and numbers of
downloads. Other studies [9,26,27] showed that up to one third of the information in the user
reviews could help developers maintain and develop their apps. Therefore, app developers
must consider user reviews when updating their apps.

However, processing and analysing these reviews present three challenges. First, the volume
of user reviews received for some apps is extremely large and surpasses developers’ ability to
read them manually. For example, while the WordPress app receives about 100 reviews every
month [63], the Facebook app gets more than 4, 000 reviews per day [64]. Second, reviews
contain unstructured text that is difficult to parse and analyse [65]. Third, the portion of high-
quality reviews is relatively small, only about one third is useful for app improvement [9].
To solve these challenges, many approaches exist to process, analyse, classify, and cluster
user reviews [27,62,65–69]. For example, AR-Miner [9] tags reviews as informative and non-
informative, extracts, groups, and ranks topics from reviews. CLAP [70] categorises user
reviews into categories and clusters related reviews. URR [71] classifies reviews based on
topics and sub-topics taxonomy and links reviews to source-code. These approaches could
help developers identify important reviews, however their prioritisation techniques are limited
to either labelling them as high/normal, or ranking them based on a fixed formula. They
are not flexible enough to consider every possible review attribute (i.e., attributes to rank
reviews) into the prioritisation process.

We claim that developers would benefit from a prioritisation technique that (1) takes into
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account multiple review attributes and (2) finds a consensus among all reviews and their
attributes to help developers plan the next releases of their apps. To validate our claim,
we propose Review Prioritiser (RP), an approach that uses the consensus algorithm to rec-
ommend a prioritised list of user reviews that could help app developers in deciding what
improvements to implement in the next releases of their apps.

Figure 4.1 summarises the steps involved in developing Review Prioritiser. First, we obtain
the publicly-available user reviews and used in a previous work [70]. Second, we preprocess,
categorise, and cluster the reviews using CLAP [70]. Third, we analyse reviews to define a
set of review attributes that are commonly used by developers to rank reviews (cardinality,
oldest date, average rating, category). Fourth, we rank the clusters of reviews based on these
four attributes. For example, the ranking by the oldest date is an ordered list of clusters in
which the first cluster contains the review with the oldest date among all reviews. Fifth, we
apply the consensus algorithm to the rankings to generate one consensus ranking of prioritised
clusters of reviews for developers to address in the next release.

We validate Review Prioritiser by prioritising user reviews of four Android apps released on
Google Play. First, in quantitative evaluation, we compare the consensus rankings generated
by RP with rankings manually-prioritised by four app developers by computing the Kendall
rank correlation coefficient. Second, we perform a qualitative evaluation by inviting app
developers to evaluate the consensus rankings of RP. Finally, we conduct a questionnaire
user study to gain an understanding of whether app developers would consider our approach
to plan their next release. Results show that our approach can produce quantitatively and
qualitatively useful rankings and, thus, help app developers prioritise users reviews when
working on a new release.

The rest of this chapter is as follows. Section 4.2 presents related works. Section 4.3 describes
a motivating example. Section 4.4 presents Review Priortiser. Section 4.5 presents evaluation
methods and results. Section 4.6 discusses the results. Finally, Section 4.7 discusses threats
to validity and Section 4.8 concludes the chapter.

4.2 Related Work

Many studies pertain to user feedback to extract features for different purposes. Harman
et al. [62] extracted features from user feedback via data mining and reported a strong
correlation between user rating and number of app downloads. Machine learning approaches
were used [27, 65] to process user reviews and extract features to classify these reviews into
maintenance and evolution categories. Iacob et al. [66] analysed hundreds of reviews to define
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Figure 4.1 Overview of Review Prioritiser Approach

a set of the most common topics discussed in reviews. In addition to extracting features for
classifying reviews, Ciurumelea et al. [71] linked classified reviews with source-code to help
developers find code to modify.

Studying user feedback for information retrieval has gained much attention, e.g., automated
information retrieval systems to query specific features or keywords in reviews [69]. Pagano
and Maalej [26] performed an exploratory study and concluded that (1) numbers of reviews
decrease in time, (2) most reviews focus on three main topics, and (3) positive reviews lead
to high download. Fu et al. [67] identified reasons for users to like/dislike apps at three levels
of granularity. Gebauer et al. [72] used structural equations to identify factors impacting
user reviews.

Our approach is different from the previous ones. We focus on studying user reviews to
prioritise them in a consensus way to help developers plan their apps’ future releases.

Laurent et al. [73] proposed a semi-automated technique to prioritise software requirements
using a probabilistic traceability model. Avesani et al. [74] introduced a case-based ranking
framework for software requirements prioritisation, which uses a pairwise comparison tech-
nique to identify/explain preferred requirements. Beg et al. [75] used B-trees to prioritise
software requirements. These approaches do not apply to mobile app reviews because they
(1) do not work well on a large number of reviews, (2) assume that clients participate in
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the prioritisation process, and (3) do not perform preprocessing, categorising, and clustering
reviews activities.

Keertipati et al. [76] defined three user review prioritisation approaches on four review at-
tributes (frequency, rating, negative emotions, and deontics). Another approach proposed
by Gao et al. [77] is PAID to find issues in reviews at phrase level rather than sentence level.
These approaches do not take into account all possible review attributes in the prioritisation
process, and do not perform any review preprocessing.

AR-Miner by Chen et al. [9] was the first automated approach to preprocess, classify, and
rank user reviews. CLAP by Scalabrino et al. [70] performs better than AR-Miner when
categorising and clustering reviews. In addition, CLAP prioritises the clusters of reviews by
labelling them as high/normal. Our approach differs from these two. It aggregates the results
of many rankings and provides developers with one consensus ranking of ordered reviews.

4.3 Motivation

To motivate our work, we use this running example: Matthew is an app developer for Word-
Press [63]: an Android app on Google Play, with an average rating of 4.5, over 135,435
submitted reviews, and over 10 million downloads. Matthew must regularly update his app
with new features and bug fixes to maintain its high rating and user satisfaction. He needs
to know what is the general opinion of users about his app, expected features, and reported
issues. Therefore, he frequently reads the many user-submitted reviews on Google Play.
However, he finds himself spending too much time analysing, and extracting information
from the reviews due to the unstructured nature of these reviews. Table 4.1 shows some
reviews for his app on Google Play on different dates. Clearly, the first and second reviews
are somewhat useful and can help Matthew improve his app; the other two contain no useful
development information.

ID Date Rating Review
0 4/4/2014 5 I need the justify post feature
2 4/5/2014 4 Stats broken in last update
5 4/6/2014 2 It does not work
6 4/8/2014 3 It does not go through my self hosted blog

Table 4.1 A Few User Reviews from WordPress App. v2.7.1

To reduce effort, Matthew looks for an automated mobile app review analysis tool that can
do the job for him. He chooses and applies CLAP on reviews of his app, which preprocesses,
categorises, and clusters reviews for him as illustrated in Table 4.2.
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ID Review Category Cluster
0 I need the justify post feature Feature C1
1 More options, like text coloring Feature C1
2 Stats broken in last update Bug C10
3 Facebook shared posts show other photos Bug C11
4 Cannot log in Bug C12
7 slow and buggy Perf. C17
8 Unacceptably poor UI Usability C18
9 Wish it is easier to format text and images Usability C18

Table 4.2 CLAP Categories and Clusters for Some Reviews

Matthew successfully produced preprocessed, categorised, and clustered reviews but now he
needs an approach to prioritise the clusters of reviews for an effective release planning. When
it comes to ranking reviews, there are different attributes to consider. For example, Matthew
could rank the clusters based on the average rating, oldest review’s date, or categories as
illustrated in Table 4.3.

Attribute Ranking
Average Rating: order by average rating of each
cluster ascendingly

[[C18],[C11,C17],[C10],[12],[C1]]

Oldest Date: order by the oldest submission date
of the reviews in each cluster

[[C18,C1],[C10],[C12],[C11],[C17]]

Category: order by cluster categories: first bug,
then performance, usability, and finally feature

[[C10,C11,C12],[C17],[C18],[C1]]

Table 4.3 Rankings of the Clusters Presented in Table 4.2

Applying different attributes, prioritises the clusters differently, making it problematic for
Matthew to identify the most pressing reviews as none of the rankings might optimally provide
the best order. Thus, we propose to apply a consensus-based recommendation technique to
the set of these rankings to aggregate them into one consensus ranking that prioritises the
review in a consensus fashion and will help Matthew identify the most important reviews to
address in his next releases.

4.4 Review Priortiser

Review Prioritiser (RP) is an consensus-based recommendation approach that takes as input
a set of rankings of clustered user reviews, uses a consensus algorithm to recommend a
consensus ranking consisting of a prioritised list of user reviews. Review Prioritiser should
support mobile app developers with app maintenance and evolution activities. We now
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discuss (1) app selection and data collection, (2) data preprocessing, (3) review attributes
definition and review ranking, (4) consensus ranking of user reviews generation.

4.4.1 App Selection and Data Collection

User Reviews usually come with the following information: (1) title, (2) free unstructured
text, (3) star rating (between 1 and 5), (4) reviewer’s username, (5) date of the review, and
(6) version of the reviewed app. The approach can be applied to any size of dataset, reviews
from any year, and from any mobile app store (such as Apple App Store , Google Play, or
BlackBerry World).

In this study, we use the publicly-available dataset of user reviews by Scalabrino et al. [70],
which contains 725 user reviews from Google Play for 14 Android apps. The reviews roughly
cover the period from October 2010 to May 2014 and cover different app categories. The
diversity of the categories ensures the variety of the reviews that are submitted by different
users with different interests, which helps achieve a higher level of generalizability when
evaluating our approach in the following section. Table 4.4 provides information about each
app’s name, category, and number of collected reviews. We decided to eliminate the data of
Harvest Moon BTN app from the dataset because the app does not exist anymore.

App Name Category Number of Reviews
BOINC Eduaction 30

Lightning Web Browser Communication 27
Harvest moon BTN Game 34

Timeriffic Tools 25
iFixit: Repair Manual Lifestyle 5

DuckDuckGo Tools 17
eBay Shopping 260

Barcode Scanner Shopping 21
Ringdroid Music 23

2048 Puzzle 11
Viber Communication 108

Dolphin Emulator Arcade 107
LinePhone Communication 28
WordPress Productivity 29

Table 4.4 List of Android Apps Contained in the Dataset

4.4.2 Data Preprocessing

User reviews contain useful information for app developers to maintain and evolve their apps.
Yet, they come with challenges: (1) some apps receive high volume of reviews daily, (2) a
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single review can report more than one issue, (3) reviews include unstructured text [65], and
(4) low quality, non-informative reviews are numerous [9]. As a result, preprocessing the
reviews before prioritisation becomes mandatory.

We performed a comparison study of five automated review analysis tools: (1) ARdoc (App
Reviews Development Oriented Classier) [64], (2) URR (User Request Referencer) [71], (3)
SUR-Miner (Software User Review Miner) [62], (4) AR-Miner (App Review Mining) [9],
and (5) CLAP (Crowd Listener for releAse Planning) [70]. To help decide which tool we can
employ to preprocess the dataset, we defined a set of questions: (1) is the tool automated? (2)
does the tool apply NLP techniques (e.g., tokenizing and stemming)?, (3) are non-informative
reviews filtered out?, (4) does the tool categorise reviews? (5) does the tool cluster related
reviews? and, (6) how accurate are the results of the tool?

We applied each of the tools to the extracted dataset. Two of the authors compared the
results of the tools and concluded that CLAP is the only tool that answers positively all
the questions. CLAP preprocesses, categorises the reviews into eight categories (bug, fea-
ture request, performance, security, energy, usability, and other), and clusters related ones
together with high accuracy. Table 4.5 presents a sample of the results of applying CLAP to
the WordPress app reviews. Full results are available in our replication package [78].

Review Category Cluster
I need the justify post feature Feature C1
Stats broken in last update Bug C10
It is slow and buggy. Performance C17
Wish it is easier to format text and images. Usability C18
Some error is coming and it does not install. Bug C15

Table 4.5 Results of Applying CLAP to WordPress Reviews

4.4.3 Attributes Definition and Reviews Ranking

In this step, we rank the clusters of reviews that are produced by CLAP according to a set
of defined review attributes independently. We performed an iterative reviews analysis to
identify attributes that app developers could use for ranking reviews when deciding what
change requests to address in the next release. We identified four attributes: cardinality,
oldest date, average rating, and category.

• Cardinality: clusters of reviews are ranked according to the number of reviews in each
cluster decreasingly. Clusters with higher numbers of reviews indicate that the same
issue has been reported by many users.
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• Oldest Date: clusters of reviews are ordered chronologically (from oldest to most
recent) based on the oldest date of review included in the cluster.

• Average Rating: we compute the average rating of all reviews in a cluster and rank
clusters with lower average rating first.

• Category: we sent a survey to some app developers and Ph.D. students with app
development experience to understand how they would rank categories. 17 developers
answered as follows: bug, security, performance, energy, usability, and feature. We
rank the clusters according to their ordering of the categories.

We order the clusters of reviews from CLAP based on the four chosen attributes to generate
a set of rankings. Table 4.6 shows the results of ranking WordPress clusters of reviews and
Table 4.7 summarises the reviews in each cluster. Ties in rankings indicate that tied clusters
have the same value, hence, they have an equal rank.

Attribute Ranked Clusters
Cardinality [[9],[8,12],[1,4,14,18],[2,5,6,7,10,11,17,3,13,15,16]]

Date [[2],[9,1,4,14,18,5],[6,10],[12],[8,15],[11,3,13,16],[7,17]]
Average Rating, [[16],[12],[9],[18,15,3,13],[14,11,17],[4],[5,6,10,8,7],[2,1]]

Category [[16,12,9,15,13,14,11,10,8],[17],[18],[3,4,5,6,7,2,1]]

Table 4.6 Ranked Clusters of WordPress reviews

Cluster Summary Cluster Summary
C1 Text justify feature C10 Stats is broken
C2 Ability to add featured image C11 Posts tab not showing posts
C3 Ability to modify multiple posts C12 App log in issue
C4 Ability to format text C13 Update are removing websites
C5 Ability to edit profile C14 html tags appear when editing post
C6 Unable to upload media to posts C15 Posts getting published
C7 Black background theme option C16 Installing app issue
C8 Website log in issue C17 Slow and buggy
C9 Image upload error C18 Poor UI and navigation difficulty

Table 4.7 Summary of Reviews in Each Cluster of WordPress

4.4.4 Consensus Ranking Generation

In this final step, we apply a consensus algorithm to the four formed rankings of reviews from
the last step to produce one consensus ranking that best agrees with all the input rankings.
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This consensus ranking should assist developers in identifying issues to resolve and features
to include in the next release of their apps.

As discussed in section 3.1.4, we apply the top three performing consensus algorithms (Ex-
actAlgorithm, BioConcert, and Kwiksort) to generate the consensus ranking of user reviews.
Table 4.8 presents the consensus rankings produced by each algorithm when applying them
to the four rankings from Table 4.6 for WordPress app along with the generalised Kemeny
score of the results from each algorithm. Comparing the results generated from applying each
consensus algorithm for all apps reviews, we notice that they are quite similar to one another
with similar generalised Kemeny score as well. This is partly due to the small number of clus-
ters in each ranking. Consequently, we decided to adapt the results of the ExactAlgorithm in
this study since it guarantees an exact solution. We would consider BioConsert or Kwiksort
when the dataset of reviews is much larger. The consensus rankings of the remaining apps
are available in the replication package [78].

Consensus Algorithm Consensus Ranking
ExactAlgorithm Distance = 240

[[9],[12],[14,18],[8],[1,4],[10,11,3,13,15,16],[17],[2,5,6,7]]
BioConcert Distance = 240

[[9],[12],[14,18],[8],[1,4],[10,11,3,13,15,16],[17],[2,5,6,7]]
Kwiksort Distance = 241

[[9],[12,8],[1,4,14,18],[16,10,11,3,13,15],[17],[5,2,6,7]]

Table 4.8 The Consensus Rankings for WordPress from Applying the Three Selected Con-
sensus Algorithm

4.5 Evaluation & Results

In this section, we evaluate the efficiency of the consensus-based technique in prioritising the
user reviews and the usefulness of the results of Review Prioritiser (RP) for app developers.
Three forms of evaluation are performed, quantitative, qualitative and questionnaire user
study. The evaluation should provide answers for the following study questions:

RQ1: (Performance) How effective is the consensus algorithm in prioritising user
reviews? We evaluate the performance of the consensus algorithm in prioritising review
clusters (1) quantitatively by computing the correlation between the consensus ranking and
a gold ranking (GR) i.e., a set of review clusters manually-ranked by real app developers
and (2) qualitatively by asking app developers to evaluate the results of Review Prioritiser.

RQ2: (Interest) Do mobile app developers prioritise user reviews and would
they consider our approach when planning new releases? We address this question
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by conducting an online questionnaire user studies of apps developers to understand how
developers perform prioritisation activity and how interested they are in our approach.

4.5.1 Quantitative Evaluation

To quantitatively evaluate the efficiency of the consensus algorithm in prioritising user re-
views, we compare every consensus ranking from the results with a gold ranking (GR), i.e.,
a manually defined ranking by real app developers, by computing the generalised Kendall-τ
distance and the Kendall rank correlation coefficient.

To create a gold ranking for every app in the dataset, we communicated with developers of
the 13 apps We manually extracted the developers’ email addresses from the app’s Google
Play Web pages. We sent each developer a description of our research, a link to a Web site
presenting the clusters of reviews of their apps, and a guide on how to rank the clusters
as they see fit. We did not provide them with the consensus ranking to avoid any bias.
Developers of only four apps responded to our invitation (BOINC, DuckDuckGo, Viber, and
WordPress), and provided us with gold rankings. We show the GR of WordPress app, while
the gold rankings of the other three apps are available in the replication package [78].

GRWP = [[12], [16], [13], [8], [14], [15], [11], [10],
[9], [18], [19], [6], [4], [1], [2], [3], [5], [7]].

We answer RQ1 by computing the similarity between every consensus ranking and its relevant
gold ranking using two similarity measures: the generalised Kendall-τ distance (see Definition
3.1.6), and the Kendall rank correlation coefficient [79].

Generalised Kendall-τ Distance First, we compute the worst possible distance between
any consensus ranking and the gold ranking by computing the generalised Kendall-τ distance
between the GR and its reversed ranking. Then, we compute the actual distance between
every consensus ranking and its relevant gold ranking using the same measure. Finally, we
compare those two distances.

Table 4.9 reports the worst possible distances and the generalised Kendall-τ distances between
the consensus rankings and the gold rankings for each app. The results suggest that the
distances between the consensus rankings and the gold rankings are fairly small and far from
reaching the worst distance. Despite that WordPress reports a relatively large distance, it is
still 61.4% away from the worst distance.

Kendall Rank Correlation Coefficient is a correlation that statistically measures the
association between two rankings. We measure the Kendall rank correlation coefficient for
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App Worst Distance Actual Distance Correlation Coefficient
WordPress 153 59 0.411
Viber 28 8 0.557
DuckDuckGo 21 7 0.514
BOINC 55 14 0.585

Table 4.9 Worst vs Actual generalised Kendall-τ Distance and Correlation Coefficient between
the Consensus Rankings and Gold Rankins.

tied ranks between the two rankings of each app to measure if there is a statistically significant
association between the consensus ranking and gold ranking. The correlation is defined
arithmetically as [79]:

C −D√
(1

2n(n− 1)− U)(1
2n(n− 1)− V )

where C = number of concordant pairs, D = number of discordant pairs, n = number of
items, U = number of tied pairs in the first ranking, and V = number of tied pairs in the
other ranking. The correlation coefficient is in the interval [−1,+1] in which, according to
Cohen et al. [80], values of 0.5 or greater indicate a large correlation, values between 0.5 and
0.3 a medium one, values between 0.3 and 0.1 a small one, and values below 0.1 indicate no
correlation. Table 4.9 reports a positively strong coefficient for BOINC, DuckDuckGo, and
Viber (0.557, 0, 514, 0.585, respectively). WordPress achieves a medium correlation coefficient
(0.411).

The strong and positive correlation between the consensus rankings gen-
erated by our approach and the gold rankings formed by app developers
demonstrates that the proposed consensus-based approach is effective in
prioritising user reviews.

4.5.2 Qualitative Evaluation

To answer RQ1 qualitatively, and evaluate the performance of the consensus algorithm at
providing a prioritised list of user reviews in terms that is meaningful and can aid developers
with app maintenance and evolution, we consulted the same developers of the four apps to
assess the performance of the generated consensus rankings. We shared with each developer
the consensus rankings of the clusters of reviews of their apps and asked them “if your app
reviews were prioritised in such a consensus ranking, do you believe this ranking would help
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you plan a successful release and would you plan your next release according to this ranking?”
We provided developers with five options from which to choose (strongly agree, agree, neutral,
disagree, and strongly disagree).

Except for WordPress, developers reported that they “strongly agree” that the consensus
rankings of user reviews are meaningful and they would follow the same recommended order
when planning a next release. The WordPress developer, on the other hand, responded "nei-
ther" and stated that he has his own approach of prioritising new update requests. However,
he fully agreed to follow the consensus ranking with minor changes to adapt to his approach.
Thus, the qualitative answer to RQ1 is that applying the consensus algorithm can generate
meaningful user reviews prioritisation.

The four app developers agree that the proposed consensus approach gen-
erates meaningful consensus rankings that they would use to plan their
next releases.

4.5.3 Questionnaire User Study

The objective of this study is to gain a better understanding of how developers prioritise
issues to consider for the next release and how interested they would be in our approach. To
answer RQ2, we perform an online questionnaire user study to collect and analyse developers’
answers and opinions.

We started by mining data from 300 apps from Google Play to collect developers’ contact
information. The mined apps varied between open source, free, and paid apps. Apps that
do not provide an email address in the developer information section or provide a generic
email address, e.g., support@..., help@... are removed from the dataset. At the end of
the filtering process, we obtained 248 email addresses.

We used Google Form to design and administer the questionnaire. We sent an invitation email
to the 248 email addresses explaining our project, the purpose of the questionnaire, instruc-
tions to the developers, and a link to the Google Form. Developers were given two months
to answer the questionnaire. We received a few bounce-back emails from very popular apps,
e.g., Facebook and Google. After two months, we received seven answered questionnaires.

The questionnaire consists of four main parts. In the first part, we gather developers’ back-
ground information (i.e., app name, role, years of experience, education, gender, and age).
The second part investigates the importance of user reviews. In the next part, we ask de-
velopers if they categorise and cluster their app reviews, as well as what techniques they
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employ. The fourth part focuses on any review prioritisation approaches as well as important
attributes (e.g., frequency, average rating, number of devices, severity, category, date). At
the end of the questionnaire, we explain our approach in greater detail and ask developers
explicitly if they are interested in using it to improve their apps. It should be noted that
developers’ responses regarding the most important review attributes were used in Section
refAttributes1 to help us with the attributes definition process.

After analysing the responses, we discovered that developers have 2 to 8 years of mobile de-
velopment experience, are between the ages of 20 and 39, and come from various geographical
locations (Europe, Mexico, and USA). 85% (6 out of 7) confirmed that they strongly rely
on user-submitted reviews for their app’s next release. 57% (4/7) reported doing review
categorization, clustering, and prioritisation before planning the next release. While 42%
(3/7) reported that they only considered urgent and most frequent reviews based on a man-
ual analysis. 57% (4/7) of the developers confirmed using the attributes: cardinality, oldest
date, average rating, and category for ranking their apps’ reviews. Lastly, 86% (6/7) of the
developers showed a great interest in using our approach.

The questionnaire user study demonstrated that some developers priori-
tise user reviews solely on the basis of urgency. Furthermore, developers
expressed strong interest in using the proposed method to prioritise user
reviews for their apps.

4.6 Discussion

The quantitative results reported by the two similarity measures are promising. When us-
ing the Kendall-τ distance to measure how close or far is the consensus rankings of user
reviews from the gold rankings, there is no fixed threshold that the distance between the
two rankings should reach. However, we could compute the worst possible distance between
two rankings. The further and smaller the distance between the consensus ranking and GR
from the worst possible distance, the closer and similar are the rankings. As demonstrated in
our results, the distance between every consensus ranking and GR are far from reaching the
worst distance, which indicates that the approach is able to produce reliable results close to
the manual prioritisation. It is also worth noting that it is expected not to have a very small
generalised Kendall-τ distance between the consensus rankings and GRs. That is due to the
fact that we are measuring the distance between two different rankings, where the consensus
ranking contains ties, while the GRs contain no ties. Besides, we assume that the greater the
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statistical correlation coefficient between the rankings, the better the result of the consensus
algorithm. Our results showed a very strong correlation coefficient between the consensus
rankings and GRs for three of the apps.

To further explain the medium correlation achieved by WordPress, we compared the con-
sensus ranking of the ExactAlgorithm in Table 4.8 and the GR. We can notice a medium
variation in the order of the clusters. To further analyse this variation, we contacted the app
developer who generated the GR asking him if he believes that his approach of prioritising
the clusters of reviews is the best approach. He stated in his email that whenever there
is a new update planning, there is a continuous discussion between the app developers on
what should be included in the new update. Each developer has a different opinion and in
some situations they never reach a consensual decision. As a result, the medium coefficient
between the consensus ranking and GR does not doubt the performance of our approach but
rather the personal judgement of the developer.

When addressing the qualitative evaluation, we tried in our study to contact more than a
developer for each app to obtain a larger evaluation from different software experience per-
spectives. For the WordPress app, we reached out to many developers, however, we received
responses from only two. One of the developers had less than a year of development expe-
rience, and he was not fully knowledgeable about the prioritisation process, therefore, his
answer was eliminated. We received responses from only one developer for each BOINC and
Viber. DuckDuckGo on the other hand, is an app owned by only one developer. The con-
sensus agreement of all developers on the quality of the consensus rankings establishes good
evidence that our approach is useful for prioritising user reviews, and could help developers
achieve app maintenance and evolution tasks.

Responses from the questionnaire support the importance of considering user reviews during
day to day app’s improvement activities. More interestingly, most developers confirmed the
necessity of analysing, categorising, clustering and prioritising for a more efficient release
planning. In addition, they expressed how having an automated tool that can perform these
tasks would reduce the amount of manual work. The high interest shown in our approach
through the questionnaire responses, highlights the potential of the success of the approach
in a real-world environment.

4.7 Threats To Validity

Threats to Construct Validity Building gold rankings to be compared with the consensus
rankings requires a high level of accuracy and app development knowledge. To mitigate this
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threat, we involved app developers in the creation of the gold rankings. These app developers
certainly provided the most accurate gold rankings, however, there is a level of subjectivity
in deciding what cluster to address first. More developers for each app are to be involved in
building the GR in future work.

The authors are not mobile app developers and thus the defined ranking attributes might not
cover all attributes used during review prioritisation. To alleviate this threat, we involved
app developers in the selection of attributes through an online questionnaire. Although these
attributes are inclusive, other attributes would provide other rankings that could increase the
quality of our results. We will systematically study all possible attributes and their impact
on our results in future work.

We favoured the use of ExactAlgorithm over BioConcert and Kwiksort algorithms since it
is the only exact algorithm that provides the most optimal ranking on a smaller dataset.
In future work, we plan to use BioConcert and Kwiksort on larger datasets since they were
proven to provide high quality results in such cases [52].

Threats to Internal Validity: This could involve the tool selection to preprocess, cat-
egorise and cluster the reviews as there could be a risk of producing low accuracy results.
To mitigate this threat, we compared the results of the most outperforming review analysis
tools, and adapted CLAP as it was proven to provide the most accurate results. Despite
that, CLAP could have its own threat in the employed machine learning and clustering tech-
niques. Therefore, we plan to implement a complete review analysis tool that merges the use
of machine learning along with deep learning for higher accuracy.

Threats to External Validity: We are confident that our approach can be generalised and
applied to user reviews of any app store and different size of dataset. However, the approach
could provide different results when the dataset is extremely large. In addition, we mitigate
external validity of our work by providing a replication package [78] that provides all the
data used in our approach and its study. From the original user reviews to the consensus
rankings as well as the clustered reviews, attribute rankings, and gold rankings. Thus, others
can confirm and reproduce our results.

4.8 Conclusion

Mobile apps have become an essential part of everyone’s daily lives. Developers must tailor
their mobile apps to the needs of their users. Hence, taking user feedback into account during
app evolution and planning the next release is critical. However, prioritising user reviews to
decide what to address in the next release is a complex task.
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In this chapter, we presented a consensus-based approach (Review Prioritiser) to provide
apps developers with a prioritised ranking of user reviews. We based the approach on the use
of the consensus algorithm (ExactAlgorithm). Developing the approach involved multiple
steps. We first preprocessed, categorised, and clustered together related reviews using the
user review analysis tool, CLAP. Then, we ranked these clusters of reviews according to a
predefined set of review attributes: cardinality, date, average rating, and category. Finally,
we applied the consensus algorithm to the set of rankings to generate a consensus ranking of
user reviews that can be used by developers when planning their next release.

We used three evaluation methods to evaluate our approach on four Android apps. In the
quantitative evaluation, we employed the Kendall rank correlation coefficient to measure the
similarity between the consensus rankings and gold rankings. Results showed that there
is a strong correlation (average Kendall rank correlation coefficient of 0.516) between the
consensus rankings and the manually-prioritised rankings. In the qualitative evaluation, we
invited app developers to validate the meaningfulness of the consensus rankings generated
by our RP. The developers agreed that the proposed consensus approach generates mean-
ingful consensus rankings that would help plan their next releases. In the questionnaire user
study, responses reported that most developers prioritise user reviews solely on the basis of
urgency and developers agreed that they would use Review Prioritiser. We thus showed that
the consensus-based recommendation technique can be used to recommend mobile app user
reviews.



43

CHAPTER 5 RECOMMENDING TASK INTERACTION TRACE TO
GUIDE DEVELOPERS’ SOFTWARE NAVIGATION

5.1 Introduction

In this chapter, we apply the consensus-based recommendation technique to developer in-
teraction traces to recommend files(s)-to-edit that could help developers in the development
and maintenance of customised systems.

Software companies understand the importance of tailor-made systems that provide client-
specific features. Accordingly, these companies develop customised systems that meet their
particular clients’ needs better than off-the-shelf systems, and are more reliable than com-
pletely original systems. Examples of customised systems are Web and mobile applications,
e-commerce solutions, CRM (with a global market to reach $50 billion by 2025 [81]) and
ERP (with a global market to reach $78.4 billion by 2026 [82]) systems.

To build customised systems, developers fork an original software system into instances, and
customise each instance with the desired features and requirements. Traditionally, forking is
the practice of copying a shared codebase, under a new name, to create a logically independent
software system that may never be merged into the root codebase [83]. Through forking,
a software company can create independent instances from the original software system,
customise the functionalities of each instance, and add new features in response to client
requests.

As clients’ requests grow in size, customised systems can expand in size and complexity.
Indeed, software complexity increases the mental effort needed by developers, specifically
newcomers, to comprehend, maintain, and evolve the software. In fact, program comprehen-
sion has been reported as one of the developers’ main challenges [84]. It involves reading
large volumes of documentation, navigating through large codebases, running complex sys-
tems, debugging tangled use cases, etc. It may take up to 35% of the developers’ time to
navigate and understand source-code files for particular change tasks [85]. Thus, it requires
developers to spend a valuable fraction of their time and effort exploring scattered pieces of
code rather than completing their change tasks. For example, Eclipse bug report #2616131

required code change in only two files but it took the developer three days of navigating and
understanding the code before making these changes [86].

Some of the change tasks that developers perform on customised software instances, whether
1https://bugs.eclipse.org/bugs/show_bug.cgi?id=261613

https://bugs.eclipse.org/bugs/show_bug.cgi?id=261613
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they are development, maintenance, or evolution tasks, are the same for each client or very
similar by virtue of clients having similar needs and using customised versions of the same
software systems. An example of exact tasks can be a bug found in the codebase of a
client’s instance, which must be fixed in all instances. An example of similar tasks can be
features that were implemented for some clients and then later requested by other clients.
Consequently, completing these types of tasks for each client requires developers to interact
with the same or source-code file(s) [87]. Hence, we define a (exact and similar) change task
as follows:

Definition 5.1.1 A change task refers to either fixing bugs, improving performance, or im-
plementing new features.

Definition 5.1.2 Exact or similar change tasks are tasks that can be implemented on each
client’s software instance and hence require developers to interact with the same or similar
source-code file(s) to successfully perform them.

As a software developer performs a change task, she spends time understanding the soft-
ware system, interacting and navigating through its source-code elements (i.e., packages,
files, classes, fields, methods, functions, etc. ), and making modifications. The process of
completing the change task generates events for every activity that the developer performs.
After completing the change task, the developer obtains a task interaction trace consisting of
source-code elements and their relationships in the form of events. In this chapter, we only
consider collecting file-level events, i.e., activities performed on system files. When the same
or similar change tasks are performed by multiple developers on different instances, each
developer obtains a task interaction trace from completing each task. Eventually, for each
particular change task, developers form a Task-related Set of Interaction Traces (TSITs).

Definition 5.1.3 Developers’ events are generated by developers’ activities on source-code
elements (i.e., opening, searching, editing, etc. ) while completing a change task.

Definition 5.1.4 A developer’s interaction trace (IT) is a set of events obtained by devel-
opers after the completion of a change task.

Definition 5.1.5 Task-related Set of Interaction Traces (TSITs) is a set of developers’ in-
teraction traces after the completion of similar change tasks.
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Existing works mined interaction traces to recommend files-to-edit based on association
rules [86,88,89], or to create exploration strategies and investigate how developers understand
programs [90–92]. While these works help developers complete their tasks, none considered
studying the development and maintenance of instances of a software system, or providing
task-specific recommendations. They only considered software in a isolation and provided
recommendations for the entire software system. Moreover, some of previous works do not
provide developers with accurate recommendations [93,94]. For example, Lee et al. [94] eval-
uated their approach against Team Tracks [95], Team Tracks recommended three methods,
none of which were required for completing the change task. In addition, some of these
approaches built their recommendations using association rules between elements frequently
edited or viewed together, which lead to recommending unrelated elements if developers in-
teract with the “wrong” elements. Further, most of the proposed approaches rely on data
mining techniques which require large datasets for training and evaluation. Finally, previous
works overlooked newly-hired developers. They assumed that developers have some under-
standing of the software systems and required them to start interacting with task-related
elements to use these elements as input to the approaches before making recommendations.

To address these limitations, we propose Consensus Task Interaction Trace Recommender
(CITR); a task-based recommendation approach that uses the consensus algorithm to rec-
ommend file(s)-to-edit based on an aggregated set of developers’ interaction traces. We only
consider selection and edit types of events for a broad context of input interactions and higher
recommendation accuracy [86]. Our approach uses task-related set of interaction traces to
recommend files that are relevant to a given set of similar change tasks. Thus, our approach
targets developers’ interaction traces from previously completed same or similar tasks on
custom software’s instances as input data rather than interaction traces from the software as
whole. By applying the consensus algorithm to developers’ interaction traces, our approach
creates a consensus task interaction trace as a recommendation. Each recommendation is a
set of relevant file(s)-to-edit and help developers, particularly newly-hired developers, per-
form new change tasks that are similar to the input task-related interaction traces.

To investigate the success of the recommendation approach, we conduct a series of evalua-
tions. Quantitatively, we determine the accuracy of the recommendation results by defining
ground truth data as a basis of comparison and using precision and recall metrics as perfor-
mance measurements. Qualitatively, we evaluate to what extent gathered tasks interaction
traces from previous developers can help developers navigate through software systems and
analyse success rate. We also conduct an observational comparative experiment of 30 develop-
ers undertaking identical evaluation change tasks with and without CITR recommendations.
Lastly, we compare CITR against MI [86], an existing file-level recommendation approach.
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The rest of the chapter is structured as follows: Section 5.2, reviews related work. The next
section, supports our work with a motivating example. Section 5.4, describes the approach,
implements a study to collect developers’ ITs and applies the consensus algorithm to generate
recommendations. Section 5.5, applies three evaluation methods to investigate the success of
the approach. Section 5.6 reports and discusses the results. Section 5.7 discusses limitations.
Finally, Section 5.8 concludes the chapter and discusses plans for future works in this area
of study.

5.2 Related Work

Previous research related to this area of work can be divided into four areas: research using
developers’ interaction traces to support software engineering activities; studies using dif-
ferent sources of data for building software engineering recommendation systems; building
recommendation systems using interaction traces; and, research studying developers’ navi-
gation behaviour.

Use of Interaction Traces for Software Engineering Activities Researchers studied
and analysed developers’ ITs to ease software engineering daily activities. [91] mined de-
velopers’ ITs to understand how their exploration strategies when performing maintenance
tasks can affect time and effort spent. They classified developers’ exploration strategies
into referenced exploration (i.e., revisitation of entities) and unreferenced exploration (i.e.,
equal frequency of visiting entities). Similarly, [96] analysed developers’ interaction histories
and characterised their editing styles into edit-first, edit-last, and edit-throughout. Their
observation revealed that enhancement tasks are likely to be associated with edit-last or
edit-throughout. [97] studied ITs to investigate the correlation between work fragmentation
(i.e., interruption) and developers’ productivity. Results showed that interruption can lead
to a lower productivity level. To reveal latent facts about the development process, [98] in-
vestigated interaction coupling in interaction histories and found that restructuring is more
costly than other maintenance activities. Lastly, [99] used interaction histories to discuss
coping mechanisms that developers can follow to resume their work after having been inter-
rupted. All these works focused on the use of interaction traces to help developers enhance
the quality of software activities. Although our work shares the same purpose of enhancing
software activities quality, we focus on the use of ITs for building a recommendation system.

Recommendation Systems for Software Engineering Activities To find system el-
ements relevant to a task that developers are trying to perform, developers have used a
variety of tools, ranging from grep to program databases [100]. Recent research studies used
different sources of data to help build recommendation systems to improve program compre-
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hension, navigation and eventually productivity. HeatMaps [101] is a recommendation tool
that computes a Degree-of-Interest (DOI) value based on navigation history, change logs, and
execution data. The tool presents artefacts in the IDE in colours ranging from red (“hot”)
to blue (“cold”) according to the DOI value. Hipikat [39] on the other hand forms a group
memory using source code versions, bugs, electronic communication, and web documents. It
then recommends artefacts relevant to tasks based on inferring links between the archived
artefacts in a group memory. [102] could retrieve source code relevant to tasks from clusters
of change sets that contain common system elements based on defined filtering heuristics.
Both [6] and [88] applied association rules to CVS data to recommend newcomers with system
entities to edit. While these approaches use system related data to generate recommenda-
tions, we focus on using developers’ interaction histories data as a base for recommending
file(s)-to-edit.

Interaction Traces Based Recommendation Systems Several works used developers’
interaction traces to recommend or predict relevant system elements. Team Track [95] helps
new developers better understand and navigate code by providing them with pieces of code
to visit. It mines consecutive visits between methods in developers’ interaction histories to
find the next method to visit. Likewise, by mining developers’ interaction histories, Nav-
Tracks [89] forms a relationship between system files as a developer browses them, and then
recommends files that are relevant to the currently browsed ones. Meanwhile, [90] used
interaction histories to build task contexts. Their approach recommends system elements
according to the frequency and recency of elements in the context. NavClus [103] clusters
sequences of navigation from interaction histories. It uses association rules to recommend
system elements that are relevant to the developer’s current navigation. [104] used change
history data to propose a code completion tool that helps developers complete their change
tasks. Switch! [92] was proposed to recommend system artefacts. It bases its recommenda-
tion on association between the context of the current task and interaction histories. Code
context prediction was proposed by [105]. Based on learned abstract topological patterns
from Mylyn interaction histories, the approach predicts code context as developers perform a
development task. Similarly, [106] proposed a similar approach called Suade. The approach
predicts elements based on the topology of a graph of structural dependencies for the software
system. It takes as input a fuzzy set of elements that a developer interacted with and predicts
a fuzzy set of elements that are of potential interest by calculating specificity and reinforce-
ment Although these studies use developers’ interaction traces to build recommendations or
prediction, they assume that developers come with some knowledge of the systems. Hence,
they require developers to start interacting with the systems, use these interactions as seeds
for the approach before providing any recommendation. In addition, recommendations are
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based on association rules, which might lead to recommending unrelated elements if the devel-
opers interacted with the wrong elements. In contrast, our approach builds recommendations
without any prior interaction from the developers and does not base the recommendation on
association rules. Rather than considering the entire software system, our proposed approach
generates task-specific recommendations. Thus, when we compare our approach to MI, CITR
can recommend file(s)-to-edit that are more relevant to the given change tasks than what MI
recommended.

Studies of Developer Activities and Behaviour There are many works on developers’
navigation behaviours and programming activities, factors that impact them, and strategies
to understand source code. [85] conducted an exploratory study to understand how devel-
opers decide what is relevant information to their tasks and how they keep track of this
information. Their study involved 10 developers performing maintenance tasks on an unfa-
miliar software system. They found that developers spend a significant time searching for
relevant information which often ends in failed searches. [107] performed a study of five devel-
opers performing a change task to investigate factors that contribute to effective navigation
behaviour. To determine what specific questions developers ask when performing program-
ming tasks, [108] conducted a laboratory study with 25 developers. They identified 44 types
of questions developers ask during change tasks. Similarly, to understand how developers
perform feature location tasks, [109] invited 38 students to perform six feature location tasks
on unfamiliar systems. The study results enabled them to build a conceptual framework that
consists of a collection of phases, patterns and actions. Meanwhile, [110] focused their ex-
ploratory study on investigating how developers search through source code and skim through
results. They observed that developers do not inspect results closely if they believe that the
results are irrelevant and prefer to perform another search. On the other hand, [111] observed
and recorded 10 developers programming activities while performing development tasks to
study how developers structure their development effort and whether context impacts the
structure. They observed that developers organise their development work into a series of
episodes with different patterns while trying to maintain context between episodes. While
our qualitative results support some of the observations reported in these works, our obser-
vational experiment was based on real change tasks and focused on observing the behaviours
of the experimental group of developers against the controlled group.

5.3 Motivation

To illustrate the motivation and potential benefit of our approach, we consider the scenario of
a new software developer, Alice, who has been recently hired as a software support engineer
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at our company. She has been assigned to the Environmental Analysis Software, which is one
of the many large software systems that the company offers. Her role consists of enhancing
the software, troubleshooting, and identifying solutions for technical issues.

As a large software company, we build customised software systems to help small and large
businesses deal with rapid technology advances, and resolve their very specific needs. We
encourage our developers to collect their interactions in the form of events with the system
when performing any type of programming tasks.

Through our defect management tool, client Bob reported a launch bug on the configuration
page. He reported that when he adds a new plug-in to the system, the plug-in configuration
page does not launch automatically. The bug is caused by an error in the default value of
the auto start function.

As part of correcting this defect, Alice started investigating the source code prior to making
any modifications. Using an IDE, she tried to find all the software elements that are related to
implementing the configuration page, and then to inspect the functions that could be related
to specifying the auto start value. The package explorer displays hundreds of files. She faces
the daunting task of navigating through them and identifying related files. Eventually, after
spending a significant amount of her time investigating the very large code base, exploring
few related and many unrelated files, and reaching a dead-end failing to locate the file and the
function related to the error, Alice decided to seek help from her colleagues. Her colleagues
shared with Alice collected events generated from fixing a related bug for another client.
However, the number of events in their ITs is large and overwhelming for Alice to navigate
and identify related files. Alice needs an approach that can help her understand the relevant
part of the system better by providing the most relevant files to her task. She would benefit
from a task-based approach that aggregates her colleagues’ ITs, collected while completing the
same or similar change tasks, and recommends her with one consensus task interaction trace
that contains the file(s)-to-edit most relevant to the particular task that she is completing.

Developers working on subsequent tasks could query through the recommended consensus
tasks interaction traces to identify which files could be related to resolving the task at hand,
therefore enhancing program comprehension, reducing the time and effort required, and
helping them be more productive.
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5.4 Consensus Interaction Trace Recommend

5.4.1 Overview of the Approach

We present in this section a brief overview of the concept and steps of our approach, Consensus
Interaction Trace Recommender (CITR). Figure 5.1 illustrates how the recommendation
approach can be incorporated into the motivating use case (Section 5.3). Having a customised
software system forked into different clients’ instances, developers regularly perform the same
or similar change tasks on each client’s instance. These developers use an event collection tool
e.g., Mylyn to collect their events with the software elements while completing these tasks.
In this study we consider both types of events; selection and edit. Including selection and edit
events provides more context about related files to the task, allowing for a recommendation
that can help completing a broader range of similar tasks. In comparison to using only
edit events, using selection and edit events consistently increases the accuracy of file-level
recommendations. [86].

Collected events from performing each task are extracted and go through multiple prepro-
cessing steps for noise removal. Preprocessing includes steps like eliminating Mylyn trigger
events, JAR files and noise events. Once these events are preprocessed, they are formed into
an interaction trace (IT) for each developer from every completed task. The set of developers’
interaction traces (ITs) from each completed task creates a Task-related Set of Interaction
Traces (TSITs). Specifically TSITs contains a set of interaction traces of all developers who
completed the particular change task on the same software instance or multiple different
instances. Lastly, a consensus algorithm is then applied to the task-related set of interac-
tion traces to generate a Consensus Task Interaction Trace. CITR contains a set of relevant
file(s)-to-edit and that can be recommended to other developers to help them complete tasks
that are the same or similar to the input tasks on other clients’ instances.

To better illustrate the task-related set of interaction traces formation phase, we exemplify
the motivating use case in Figure 5.1. A set of developers {D1, D2, D3, D4} complete the
launch bug, task T , on the configuration page on different clients’ software instances using
Eclipse. The developers perform a sequence of events {e1, e2, ..., en} on the system files
for the completion of the task. Mylyn collects the sequence of events from each developer.
Events are then extracted to form an interaction trace for each developer {IT1, IT2, IT3,
IT4}. The set of developers’ formed interaction traces forms a task-related set of interaction
traces (TSITs) for change task T . This aggregation of developers’ ITs into task-related sets of
interaction traces enables us to generate a recommendation based on developers’ interaction
histories with a system by employing a consensus algorithm that is able to produce a set of



51

Customized Software
System

Developers' Events
Extraction

Developers' Events
Preprocessing 

Applying Consensus
Algorithm 

Multiple Clients’
Software Instances

Same or Similiar
Change Tasks

 Events Collection
via Tools, e.g. Mylyn

   Task Related
Interaction Traces

Formation

Extracted Events 

 Preprocessed 
Events

Task Related Interaction
Traces

Consensus Task  
Interaction Trace 

CITR 

Events Colletcion

Developers Complete Change
Tasks on Instances

Task Related Set of Interaction Traces Formation

Recommendations Generation

Recommendation

Task Related
Interaction Traces

Developers Complete Similar 
Tasks on Instances

Figure 5.1 Overview of the Approach Concept



52

the most relevant files.

Applying the Consensus Algorithm step is the core of our recommendation approach. The
algorithm takes as an input a task-related set of developers’ interaction traces. It measures
the distance between every two input interaction traces using a predefined measure. Finally,
it generates a consensus task interaction trace that is closest to the input interaction traces
and consists of files that are most relevant to the task at hand.

5.4.2 Study Setup

We carry out in the next Section three evaluation methods to assess the accuracy of the
results of the recommendation approach and the extent to which CITR can improve devel-
opers’ productivity maintaining and developing a software system. These evaluations are
quantitative, qualitative, and a comparison to answer the following research questions:

RQ1 : To what degree does CITR recommend relevant files to given change tasks? We
answer this question by building ground truth data and quantitatively comparing them
with the results of CITR using precision and recall measures (in Section 5.5.1).

RQ2 : Given a change task, can CITR help guide developers’ navigation paths to
relevant file(s)-to-edit and increase their productivity? To evaluate productivity and
navigation behaviour, we conduct an observational comparative experiment of 30 de-
velopers performing evaluation change tasks with and without the recommendations of
the CITR, and compare their behaviours (in Section 5.5.2).

RQ3 : How does CITR compare to MI (Mining Programmer Interaction Histories) in
recommending relevant file(s)-to-edit for specific change tasks? We answer this question
by comparing the results of our approach with MI recommendation results under the
same set of conditions (Section 5.5.3).

To generate the recommendations, carry out the evaluations and answer these RQs, we
conduct an experiment of participants performing input change tasks to collect their events.
Collected events from the experiment are then extracted, preprocessed and used as input
data to generate recommendations.

Unlike previous studies, such as [6] and [86], that extracted and used archived developers’
events as input data to build recommendations, we collect our data through a participant-
involved experiment. As previously stated, these approaches generate recommendations for
the entire system. Therefore, the input data must be large and include all existing developers’
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events with the system. On the contrary, because we build recommendations at the task level
in this study, the input data should be limited and come only from tasks that are similar to
the tasks for which we are building recommendations.

To set up the experiment, we first choose a subject system which is the same system that
will be used for the evaluation (in Section 5.5). Then, we choose change tasks, recruit
participants, and select tools for collecting the events. Next, we invite the participants to
conduct the experiment by performing the change tasks and collect their events with the
software elements. After collecting and extracting the events, we preprocess them. Finally,
we form task-related set of interaction traces (TSITs) and apply the consensus algorithms on
these TSITs to obtain recommendations.

1. Subject System
Among a population of Java systems, we chose an Eclipse-based plugin, PDE (Plug-in De-
velopment Environment), as the subject system. PDE2 offers tools to create, develop, test,
debug, build, and deploy Eclipse plug-ins, fragments, features, and update sites. It comprises
approximately 2M LOC, and 4,000 classes scattered across 64 sub-projects. We use PDE be-
cause (1) it is open source, which we can use its source code freely, (2) its base code is big
enough to exemplify real systems, (3) it has been used in many software engineering research
studies, and (4) Mylyn ITs are attached to most of its fixed bug and completed feature re-
quest tickets, which we will use later for creating the study change tasks. PDE consists of
many sub-projects and we chose to consider only the PDE-UI sub-projects. Participants will
interact with PDE-UI files to complete change tasks.

2. Change Tasks
To define a set of change tasks for participants to perform, we explored completed tickets
related to the PDE-UI in the Eclipse Bugzilla3; Web based bugs, and request tracking system.
We queried for tickets that were marked as resolved and have a solution patch attached to
them. Following that, we looked through these tickets at random, reading their descriptions,
replicating the issues they described when it was possible, and putting the suggested fixes
into action.

Some of the tickets were impossible to replicate because their descriptions were insufficiently
detailed; some were lengthy, requiring a few hours to complete; while some required minutes
to an hour. For a ticket to be selected as a candidate change task, it had to be marked
as completed or fixed, contain a detailed description and a complete solution patch, be
reasonably difficult, and complemented by Mylyn ITs.

2https://www.eclipse.org/pde/
3https://bugs.eclipse.org/bugs/

https://www.eclipse.org/pde/
https://bugs.eclipse.org/bugs/
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To measure the complexity and time needed to complete each of the candidate tickets, we
hired a Ph.D. student with approximately five years of industry experience as evaluator. The
evaluator performed the candidate tickets, noted the duration needed to complete each ticket
and measured the complexity. Tickets that required minimal navigation and comprehension
effort and a few minutes to complete were marked as easy. The evaluator, on the other hand,
rated moderately difficult tickets as those that required more cognitive effort to understand,
navigation through several files, and 20 minutes to an hour to complete. Lastly, he classified
any ticket that took him longer than an hour to complete or that he was unable to perform
as highly difficult.

To the best of our knowledge, there is no theory that suggests the optimal length of the
experiment task. However, in order to prevent participant fatigue, which might lead to
interruptions or abandoning the experiment, we chose to set the maximum required task
completion time to 1 hour. We achieved this by randomly selecting two moderately difficult
tickets as our change tasks that should not take longer than 45 minutes to complete, with
an additional 15 minutes if necessary.

Authors of [112] performed a similar study on Eclipse PDE-UI, invited four participants to
perform a change task on the system while video recording their screens, and collected their
Mylyn events. We take advantage of the change task used in [112], adapt it as our third
change task and use the collected events as part of our dataset. Table 5.1 presents detailed
descriptions of the chosen change tasks.

Bugzilla
Ticket

Task Description

304028 Task 1: Feature properties
dialog window has no title

Click on the contents tab of a product configura-
tion page, select one of the features, and then click
on the properties button. The properties dialog
window has no title.

229024 Task 2: A tab on the
overview page shows "?" In-
stead of API Information

On the overview page of an extension point schema,
one of the tabs’ names is a question mark. The
name instead should be "API Information". PDE
here is not recognizing APIINFO as an attribute.

265931 Task 3: Autostart values
are not persisted correctly
on the plug-in

Add a plug-in and set autostart to “true". Save the
file. Open the file in a text editor, and see how the
value of the “autostart" attribute is still set to false.

Table 5.1 Change Tasks Used in the Study and their Descriptions

3. Participants
Considering the size and complexity of PDE-UI, we recruited only participants with experi-
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ence with Java and the Eclipse IDE to guarantee the reasonable successful completion of the
assigned tasks and to collect participants’ events.

We began the recruitment process by sending out emails to the contact list of some research
groups in the department of Computer and Software Engineering at Concordia University and
Polytechnique Montréal. The emails contain a link4 to an online form collecting information
about their gender, level of education, and their years of Java and Eclipse IDE experience.

15 participants filled out the form, seven of them have over three years of Java experience,
while the remaining eight participants have less than three years. All participants have
at least one year experience with the Eclipse IDE. We selected the seven Java experienced
developers to participate and complete the two change tasks. Among these seven participants
(referred to as P1,..,P7), two are female, one is a postdoctoral researcher, three are doctoral
candidates in software engineering, three are enrolled in a Master program in computer
engineering, and all have 1 to 5 years of professional development experience. All of our
participants were newcomers to the system, they never had worked with/on Eclipse PDE.

We sent an invitation email to each individual participant containing a brief description about
the experiment and schedules for performing the tasks. To avoid time conflicts, we scheduled
each participant on a different date.

4. Events Collection Tools
Integrated development environments (IDEs) support developers’ activities on software sys-
tems. Numerous IDEs exist for various programming languages. However, the most used
Java IDEs are Eclipse, IntelliJ IDEA, and NetBeans. In this work, we use Eclipse IDE5.

Developers’ events with software systems are collected by task management and monitoring
tools, such as Mylyn6, Blaze [113], FeebBaG [114], or DFlow [115]. Blaze and FeedBag are
Visual Studio extensions, while DFlow is a Pharo extension. Therefore, we chose to use events
generated by Mylyn because (1) Mylyn is an Eclipse extension and (2) it is the monitoring
tool that is commonly used in research studies [112].

Mylyn is an Eclipse plugin that monitors and collects developers’ interaction events with
system elements while performing a change task. It starts collecting events after developers
create and activate a Mylyn task for the change task on which they are working. It stops
gathering events once the developers deactivate the Mylyn task. Then, it aggregates the
collection of events, compresses, encodes, and exports them in XML format.

4Online Form
5https://www.eclipse.org/
6http://eclipse.org/mylyn/

https://docs.google.com/forms/d/e/1FAIpQLSep_AN46h8AYBKHDUelcyfm7P-Zi-v7_IVAuEq_6T8i-jPdgg/viewform?usp=sf_link
https://www.eclipse.org/
http://eclipse.org/mylyn/
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Mylyn events consist of consecutively-performed events with system elements to accomplish
a task. There are eight different kinds of events: Selection, Edit, Command, Attention,
Manipulation, Prediction, Preference, and Propagation7. Selection, Edit, and Command are
directly triggered by the developers, while the others are indirect events, triggered by Mylyn.
We only consider direct events.

Mylyn captures nine attributes for each event, out of which we use the four following:
(1) StructureHandle: a unique identifier of the project elements being worked on; (2) Kind:
type of event; (3) StartDate: when the event started; (4) EndDate: when the event ended;
An example of two consecutive events is shown in Table 5.2.

StartDate EndDate StructureHandle Kind
2018-08-08 11:43:44.97 EST 2018-08-08 11:46:09.716 EST FeatureSection.java Selection
2018-08-08 11:46:46.918 EST 2018-08-08 11:53:39.320 EST FeatureSection.handleProperties(); Edit

Table 5.2 an Example of Mylyn Events

5. Events Collection
We collected participants’ events with the system by asking each participant to perform the
change tasks on PDE-UI in a laboratory at a specific time, on the same computer, under the
same settings and using the same procedure. We thus could control the events collection and
ensure that participants were not distracted or interrupted.

The participants performed their change tasks on a desktop computer running Windows 10
with dual 28” flat monitors. The source code of the PDE system along with the change tasks
are imported into an Eclipse IDE v4.10.0 workspace with the Mylyn plugin installed.

Before they began performing their change tasks, we created, in the IDE, for each participant,
a Mylyn task for each change task. As shown in Figure 5.2, on the left side, the PDE system
is imported to the IDE and Mylyn tasks are created and ready to be activated under Task
List on the right side.

Then, we explained to each participant the purpose of the work, directed them to the desktop
station, and informed them that they would perform two change tasks. Each task was
given up to 45 minutes to complete with up to 15 extra minutes if needed. We instructed
participants that there was no right or wrong solution to each task and advised them to
try to complete the change tasks successfully. Participants had the choice to stop their
participation at any time for any reason. We stayed in the laboratory to assist in case of
a technical problem. However, we told participants that they could not ask programming
questions related to the completion of the change tasks.

7https://wiki.eclipse.org/Mylyn/Integrator_Reference

https://wiki.eclipse.org/Mylyn/Integrator_Reference
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Figure 5.2 A Screen Capture of the IDE Before the Start of a Change Task

We gave participants a sheet of paper describing each task, and providing detailed instructions
on how to replicate the bug to detect the current behaviour before they start making changes
to the source code; a copy of the distributed sheet is available online in the study repository
[116]. To provide the participants with a hint of what they had to do and type of tasks,
we created a demo change task. We gave the participants 20 minutes to replicate the bug
described in the demo task, and they were not required to provide a solution for the task.

Once participants were ready to start the first task, we asked them to activate the related
Mylyn task and start navigating their ways through the source code. When the Mylyn
task was activated, Mylyn started collecting events. After the successful completion of the
change task, participants deactivated the related Mylyn task to stop the collection of events.
Successfully, all participants could complete the change tasks. On average, they spent 37
minutes on the first task, while they carried out the second task in 33 minutes.

We then exported all Mylyn events from Eclipse IDE in XML format. Obtained events from
the completion of Change Task 1 and 2 by seven participants, together with events related
to Change Task 3 from [112] by four participants sum a total of 2,390 events. Figure 5.3
represents a sample of an extracted Mylyn event.

6. Events Preprocessing
We preprocessed each exported Mylyn event to extract participants’ selection and edit ac-
tivities and system elements on which the activities occur. This phase goes through multiple
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Figure 5.3 Sample of Mylyn Event in XML Format

steps and starts by converting the extracted Mylyn XML files into CSV files.

As described in Step 4, there are eight types of events. Edit events are released when
developers either select or edit text in a file in Eclipse IDE, while selection events are triggered
when developers open a file. Any Mylyn triggered events are therefore removed from all CSV
files.

Mylyn specifies the system elements on which events were performed in the StructureHandle
attribute. System elements are divided in the StructureHandle into: project name, package,
file, class, attribute or method, and the others [117]. Figure 5.4 shows the parts of the
StructureHandle against a real StructureHandle taken from one of the participants’ Mylyn
events, while Table 5.3 identifies the parts of the StructureHandle.

Parts of StructureHandle:
[=] project [;] [package] [ { | ( ] [file] [ “ [ “ ] [class] [ [^ [attribute] ] | [ ~ [method] ] ] [ ~ [rest] ]

StructureHandle from Mylyn interactions:
=org.eclipse.pde.ui/src&lt;org.eclipse.pde.internal.ui.editor.product{VersionDialog.java[VersionDialog~c
onfigureShell~QShell;

Figure 5.4 Parts of Mylyn StructureHandle.

The paths to elements in the StructureHandle contain special characters that created noise
and made it difficult to obtain the actual full paths. We implemented a tool that uses regular
expressions to identify the parts of StructureHandle and either remove or replace these special
characters with dots. The tool outputs a readable CompleteName for each StructureHandle
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Part Name Matching part form StructureHandle
Project org.eclipse.pde.ui.src
Package org.eclipse.pde.internal.ui.editor.product
File VersionDialog.java
Class VersionDialog
Method configureShell
Rest QShell

Table 5.3 Identification of the Parts of the StructureHandle in Figure 5.4.

that contains no special characters. Figure 5.5 compares a path to a system element as
exported in the StructureHandle versus the path CompleteName after the removal of special
characters.

StructureHandle:
=org.eclipse.pde.ui/src&lt;org.eclipse.pde.internal.ui.editor.product{VersionDialog.java[VersionDialog~c
onfigureShell~QShell;

CompleteName:
org.eclipse.pde.ui.src.org.eclipse.pde.internal.ui.editor.product.VersionDialog.java.VersionDialog.config
ureShell.QShell

Figure 5.5 StructureHandle vs CompleteName after Special Characters Removal.

The studied system contains some JAR files that were not related to the completion of any
change tasks. Given that JAR files are irrelevant and rather could add noise to the tasks
contexts, all participants’ events related to JAR files were therefore removed from all Mylyn
events.

According to [86] and [97], any selection and edit events with 0-duration should be considered
noise, related to developers mouse-clicking in a file. Considering that the purpose of this work
is to recommend to developers a consensus task context that encompasses the most relative
file(s)-to-edit, we removed all 0-duration events.

In the next step of preprocessing, we compared each event StructureHandle along with its
type (i.e., selection or edit) among all participants’ events for each change task individually.
Any event containing the same StructureHandle path and type was given the same unique
ID. For example, if participant P2 made an edit on a method in a particular Java file with
a specific StructureHandle, and participant P4 performed the same edit, then both of these
events were given the same ID number. Figure 5.6 compares two screenshots taken from
the interaction files of participant P2 and P4 for Change Task 1. Events 26 and 27 were
performed by the two participants on exactly the same StructureHandle, hold the same type,
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and accordingly are assigned the same ID number.

ID StructureHandle Kind
26 =org.eclipse.pde.ui/src&lt;org.eclipse.pde.internal.ui.editor.product{VersionDialog.java[VersionDialog~

VersionDialog~QShell;~Z~QString;
Selection

27 =org.eclipse.pde.ui/src&lt;org.eclipse.pde.internal.ui.editor.product{VersionDialog.java[VersionDialog~
VersionDialog~QShell;~Z~QString; 

Edit

141 =org.eclipse.pde.ui/src&lt;org.eclipse.pde.internal.ui{PDEPlugin.java Selection

ID StructureHandle Kind
86 =org.eclipse.pde.ui/src&lt;org.eclipse.pde.internal.ui{PDEUIMessages.java[PDEUIMessages^

VersionDialog_title
Selection

26 =org.eclipse.pde.ui/src&lt;org.eclipse.pde.internal.ui.editor.product{VersionDialog.java[VersionDialog~
VersionDialog~QShell;~Z~QString; 

Selection

27 =org.eclipse.pde.ui/src&lt;org.eclipse.pde.internal.ui.editor.product{VersionDialog.java[VersionDialog~
VersionDialog~QShell;~Z~QString; 

Edit

Participant P2

Participant P4

Figure 5.6 Illustration of Common Events between Participants Hold the Same ID Number.

Mylyn events relate to two levels: method-level events and file-level events. Method-level
events occur in/on classes, fields, and methods. File-level events occur on Java files, such as
opening or editing a file. Considering that our approach aims to recommend file(s)-to-edit,
we therefore keep only file level events and remove those on method level. All collected
and preprocessed participants’ events that are used to generate CITR recommendations are
available online [116].

7. Task-Related Interaction Traces Formation and Generating Recommendations
Each participants’ set of events from completing one of the change tasks is grouped to form
a participant’s interaction trace (IT), and we labeled them as (IT1, ITs, ...IT7). Each set of
participants’ ITs from performing a change task forms a task related set of interaction traces
(TSITs). Given that the study experiment involved three change tasks, thus we were able to
generate three TSITs.

Considering that the BioConcert and KwikSort algorithms provide best quality results (see
Section 3.1.4 and the number of rankings (interaction traces) are less than 100 in our dataset,
we choose to apply the two algorithms to generate consensus tasks interaction traces. We
later compare the results from both algorithms to determine if one of the algorithms can
possibly provide higher quality results in the case of our dataset.

The rankings, i.e., participants’ interaction traces in each TSITs in our dataset are incomplete
rankings, thus we apply the unification normalisation technique to complete the rankings
(discussed in Section 3.1.3). We do not use the projection technique as it leads to the
removal of events that could be relevant. The unification technique adds a bucket at the
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end of each participant’s IT that contains events that appear in other ITs but not in this
particular IT. To illustrate, assume we have interaction traces of participants P1 and P2:

IT1 = [[16],[8],[5],[6],[7],[22]]
IT2 = [[18],[16],[19],[20],[5],[22]]

The application of the unification process produces the following ITs:

IT1 = [[16],[8],[5],[6],[7],[22],[18,19,20]]
IT2 = [[18],[16],[19],[20],[5],[22],[8,6,7]]

Table 5.4 shows consensus task interaction trace after applying both algorithms on a task
related set of interaction traces for a change task T . The way both algorithms process inputs
and construct the consensus is relatively similar. Specifically, they order the significant
relevant files in a way that minimises the disagreement between the set of input ITs and
groups the less relevant files in a single bucket at the end of the consensus.

After examining the files in the last buckets of all the results, we observed that these files are
definitely irrelevant to the successful completion of the task because all are selection events
performed by one or two participants as part of code comprehension. Therefore, we chose to
always ignore the last bucket in our approach.

BioConcert [[4], [5], [6], [9, 10], [12], [1, 2, 3, 7, 8, 11, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34]]

Kwiksort [[4], [5], [6], [29, 1, 2, 3, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34]]

Table 5.4 CITR after Applying BioConcert and Kwiksort to TSITs of Task T .

Comparing the consensus results of applying BioConcert and Kwiksort shows that they are
almost identical with minor differences. BioConcert outperforms all the other consensus
algorithms in quality, therefore we chose to adopt BioConcert results as our approach rec-
ommendations.

Table 5.5 translates the results of CITR from the BioConcert algorithm of Task T into
real participants’ events. The rest of the results of the BioConcert algorithm along with
translations are available in project repository [116].

5.5 Evaluation

We now explain how we perform the three evaluations to answer our RQs.
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ID Action
4 Selection org.eclipse.pde.ui
5 Selection org.eclipse.pde.ui.src.org.eclipse.pde.internal.ui.editor.product.Plugin-

ConfigurationSection.java
6 Edit org.eclipse.pde.ui.src.org.eclipse.pde.internal.ui.editor.product.Plugin-

ConfigurationSection.java
9 Selection org.eclipse.pde.core.src.org.eclipse.pde.internal.core.product.Plug-

inConfiguration.java
10 Edit org.eclipse.pde.core.src.org.eclipse.pde.internal.core.product.Plug-

inConfiguration.java
12 Selection org.eclipse.pde.ui.src.org.eclipse.pde.ui.launcher.PluginsTab.java

Table 5.5 Translation of Recommended Consensus Interaction Trace from Applying BioCon-
cert into Real Participants’ Events.

5.5.1 RQ1 : To what degree does CITR recommend relevant files to given
change tasks?

We evaluate the quality of the results of CITR to determine whether or not the consensus
algorithm can recommend accurate results by comparing the recommendations obtained in
the last Step of Section 5.4.2 against ground truth data.

A ground truth data in this study is the ideal set of files with which a developer should
interact with some, if not all, in order to complete a specific change task. We derived ground
truth data for the three change tasks (Section 5.4.2 - Step 2) by using the Mylyn events that
are attached to the Bugzilla tickets we used to create the tasks. The PDE developers use
Mylyn to collect, extract and attach their interactions with the software while resolving the
tickets. We extract these attached Mylyn events, we preprocess these events to remove any
possible noise by following the same preprocessing steps that we adopted in Section 5.4.2 -
Step 6. Following that, we extract a set of files from the set of preprocessed events that the
PDE developer interacted with to resolve the ticket, whether it is a selection type of event
or an edit type. These sets of files represent the ground truth data for each of the change
tasks, which we use to compare to the results of the approach recommendations. Table 5.6
presents the ground truth data created for Change Task 3. The remaining ground truth data
for the other two tasks are available online in the project repository [116].

To measure the accuracy of the recommendation approach results and answer RQ1, we com-
pute the quantitative Accuracy Metrics discussed in Section 3.2.5; Precision, Recall, and
F-measure.
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File Name
PluginConfigurationSection.java

IPluginConfiguration.java
Product.java

PluginConfiguration.java

Table 5.6 Ground Truth Data Created for Change Task 3.

5.5.2 RQ2 : Given a change task, can CITR help guide developers’ navigation
paths to relevant file(s)-to-edit and increase their productivity?

We answer this RQ qualitatively by conducting a User Study - Between-Subjects experiment
(discussed in Section 3.2.5) with 30 developers performing a set of evaluation change tasks.
The following details the experiment’s procedures.

Setup. We use the same system, PDE-UI, as in (Section 5.4.2 - Step 1) to perform this
evaluation experiment as it is the subject system for this study.

Due to the COVID-19 pandemic, this evaluation changed from a laboratory setting experi-
ment to a remote observational experiment. We installed the PDE system on a laboratory
computer. After comparing the image quality of a few remote desktop services under different
internet speed and bandwidth, we chose Microsoft Remote Desktop service as it was the only
service that did not require a fast internet connection to maintain a high quality image and
data transfer. Thus, we requested developers to install Microsoft Remote Desktop service on
their computers and we granted them a full remote access control to the laboratory computer
to perform the evaluation change tasks. Furthermore, we captured video recordings of the
developers’ screen during the experiment using VLC Media Player.

Evaluation Change Tasks. We choose evaluation change tasks that developers in this
experiment perform to evaluate whether CITR results can help them complete the tasks and
increase their productivity. Specifically, we choose evaluation change tasks that are similar in
context to the change tasks that were used to generate the recommendations (Section 5.4.2
- Step 2).

To obtain evaluation change tasks, we examined tickets on the Eclipse Bugzilla tracking
system in three phases. In the first phase, we created a search query to return tickets that
meet the following criteria: (1) PDE product tickets, (2) UI component tickets, (3) status
is set to resolved, (4) resolution is set to fixed, and (5) attachments contain a patch file.
The patch file is needed to help us examine the proposed fix for each ticket and evaluate the
tickets’ complexity in the last phases.
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In the second phase, we extracted the ticket description from the search query results. We
read through the descriptions to identify tickets that share the same context as the three
change tasks. To illustrate, Change Task 1 is about issues related to the plug-in contents,
Change Task 2 is related to issues on the tabs of the launch configuration window, while
Change Task 3 is concerned with plug-in configuration errors. We therefore find tickets that
are concerned with these three issues.

In the third phase, two authors randomly chose tickets from the second phase, performed
them, assessed their complexity, and divided them into three categories: easy, moderate,
and difficult. For equitable evaluation, we targeted moderate complexity tickets that require
moderate file navigation effort, call for one to three files of source-code modification and
a maximum of 30 minutes to complete. We also requested two Ph.D. students with prior
professional experience but no background in the subject system to perform the tickets to
confirm their complexity and if they could finish them in 30 minutes.

Finally, with the assistance of the Ph.D. students, we considered six evaluation change tasks
that are similar in context to the change tasks. We describe them in Table 5.7.

Bugzilla
Ticket

Task Description

269618 Automatic wildcard on plug-
ins

When searching for a plug-in via a string, you will
have to input ** around the string. Fix the be-
haviour to accept wildcard strings without the **.

144533 Unnecessary white space on
configuration tab

Remove the unnecessary white space on the config-
uration tab.

88003 Select all property Add “All” property to the plug-ins view.
261878 Prompt to save changes on

Plug-ins
When on the plug-ins page, it prompts you to save
changes while you have not done any changes.

171767 Large font on main tab When increasing the dialog font size, part of the
main tab disappears.

101516 Sort alphabetically property It would be helpful to be able to sort the extensions
listed in the extensions section of the plug-in XML
editor alphabetically.

Table 5.7 Evaluation Tasks Description.

Developers. We contacted developers to perform the evaluation change tasks and measure
their productivity. To invite developers to participate in the experiment, we followed the
same recruitment process as in (Section 5.4.2 - Step 3).

We sent out invitation emails to software engineering research groups from four universities
(Concordia University, Polytechnique Montréal, Zürich University, and Zürich University of
Applied Sciences). The email provided them with a registration form to gather relevant ed-
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ucational and programming information. We used this information to select developers with
different educational levels and programming experience to guarantee the generalisability of
our approach and obtain results with a variety of problem-solving methods.

We selected 34 developers (referred to as D1,..,D34), out of whom four abandoned the ex-
periment. Of these 30 developers, five were senior undergraduate students, 15 were M.Sc.
students, and ten were Ph.D. students. 53% of the developers had programming experience
of over 5 years, with an average of 3 years of Java programming experience. All develop-
ers had industrial programming experience (six of them with more than 5 years, while the
remaining 24 had between 1 to 5 years). All developers reported using different IDEs and
being unfamiliar with the subject system. We provide detailed participant demographics in
Table 5.8.

Education
Bachelor 5
Masters 15
Doctorate 10
Programming Experience
5 Years or More 17
3-5 Years 6
1-3 Years 7
0-1 year 0
Java Experience
5 Years or More 2
3-5 Years 4
1-3 Years 10
0-1 year 14
IDE Experience
5 Years or More 5
3-5 Years 5
1-3 Years 8
0-1 year 12
Professional Experience
5 Years or More 6
3-5 Years 7
1-3 Years 8
0-1 year 9

Table 5.8 Demographics of Selected Developers

Procedure. We applied the Between-Subjects experiment design in which there is a control
group and an experimental group, and each participant experiences only one level of a single
independent variable. Our independent variable is the recommendations with two levels: with
and without. We split the 30 developers into a control group and an experimental group (15
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developers in each group). For each group we made sure that developers’ education and
professional experience varied. In the control group, we requested developers to perform the
evaluation tasks without the recommendations of CITR, while we provided developers in the
experimental group with the recommendations.

To ensure that the set of evaluation tasks are performed by developers with different experi-
ence levels, we split the six tasks into two sets (A and B with three evaluation change tasks
in each set). Therefore, each control and experimental group was further divided into two
sections, with each section performing a different set of evaluation tasks. Figure 5.7 illus-
trates this division. Furthermore, we chose to have the two groups of developers conduct the
experiment on the same primary instance of the PDE-UI rather than on different customised
instances. Carrying out the experiment on the same instance should eliminate the risk of
significant result variation between developers and allow us to compare the outcomes of the
defined measures between the two groups on an equal footing.

Controlled Group

Experimental Group

Without
Recommendations

With
Recommendations

Set A 
3 Tasks 

7 Developers

Set B 
3 Tasks 

8 Developers

Set A 
3 Tasks 

7 Developers

Set B 
3 Tasks 

8 Developers

Figure 5.7 Divisions of the Developers into Groups and Sections.

The evaluation experiment took about four months to be completed due to COVID-19 re-
strictions. We scheduled each developer on a particular day of their choice. Before the start
of the experiment, we emailed the tasks description file and audio-called the developers via
the Zoom conferencing software. The purpose of the call was to give a short presentation
about the experiment and allow the developers to ask any questions that might arise during
the experiment. However we remained on mute through the entire time of the experiment to
avoid any distraction and unmuted only for answering questions.

In the short presentation, we explained the concept of the study, the purpose of the experi-
ment, gave instructions on how to complete the experiment, and informed the developers that
during the experiment they were only permitted to ask clarifying questions about the tasks.
Further, the task description document explained the bug in each task, listed steps on how
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to replicate the issue, and gave instructions to remotely access the laboratory desktop where
the subject system was installed. For developers in the second group of the experiment, their
task description documents recommended the consensus tasks interaction traces along with
each task.

Once a developer was remotely connected, we gave each of them up to 10 minutes to explore
the system, get familiar with Eclipse and the system structure. In addition, we provided them
with a practice task to familiarise them with the nature of the evaluation tasks. Before the
start of the experiment, we asked the developers to perform the tasks in the same sequential
order, and try their best locating relevant file(s)-to-edit to fix the bug. We did not ask them
to make any code modification.

According to the task complexity assessment that was performed by some of the authors and
two Ph.D. students, each task required a maximum of 30 minutes to complete. Therefore, we
allocated 30 minutes of time for each task in the first group of developers. As time is one of
the evaluation factors when evaluating the success of our approach, we decided to limit the
time allotted to the second group to 20 minutes to eliminate the possibility that developers
performing unnecessary navigation knowing that they have a set of recommended files with
more than enough time. However, we allowed developers in both groups to ask for five to
ten extra minutes if needed, and told them not to be concerned if they did not accomplish a
task and move to the following one.

When developers completed locating file(s)-to-edit for each evaluation task, we requested
them to fill their answers in an answer sheet. We then stopped the video recording, and
disconnected the remote access. Afterwards, we interviewed the developers and sent them a
post-experiment questionnaire to gain their insight about the approach and the experiment
in general, which will be discussed in the following section.

Measures. To study whether the CITR affects developers’ productivity when performing
change tasks, we evaluated the success level of each developer by measuring time and comple-
tion. Time is meant to capture the total time each developer took to complete each evaluation
change task, while completion confirms whether the task was completed successfully or not.
To capture time, one of the authors collected the total time spent on each task by watching
the video recordings of all developers. Task completion was inspected by the same author
reading through developers’ answer sheets, which were used to identify the file(s)-to-edit for
the successful completion of the tasks. Blank answer sheets indicated that the developer
could not define the set of file(s)-to-edit and therefore the task was not completed. Finally,
we compared the results between the two groups for the same evaluation task.

In addition to measuring the ability to complete the evaluation tasks, we investigated the
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effect of the recommendations on developers’ behaviour and navigation paths. We carefully
watched and analysed the video recordings of the 30 developers to study their navigation
patterns and compared the patterns between the two groups. During the observation, we
paused the videos whenever necessary to take notes and followed the mouse pointer’s route
on the screen to determine what files the developers interacted with. In particular, we
observed the navigation steps each developer took to get a good understanding of their
general navigation behaviour.

We assembled all the patterns of behaviour that were observed and summarised the most
interesting observations from each group separately. The analysis helps us define the kind
of actions developers do in completing the assigned tasks and whether providing a set of
recommendations helps improve their navigation behaviour and limit the number of consulted
irrelevant system elements.

After the experimental group completed the experiment, we interviewed the developers to
get their opinion about the experiment and CITR approach in general. We also sent them an
online post-experiment questionnaire with a series of exploratory questions. The question-
naire helped assess the importance of the recommendations, get developers’ opinion about
the perceived improvement in their performance, and gather any feedback that could help
improve our approach.

The questionnaire consisted of nine questions: from assessing the difficulty of dealing with
unfamiliar systems, to difficulty locating related files using the help from the approach, to
the relevance of the recommended files, and to whether or not the approach helped improve
their performance completing the evaluation tasks. Six of the nine questions were rating scale
questions, two were yes/no questions, while the remaining two were open-ended questions.
The questionnaire is presented in Table 5.9.

5.5.3 RQ3 : How does CITR compare to MI (Mining Programmer Interac-
tion Histories) in recommending relevant file(s)-to-edit for specific change
tasks?

We extensively searched for existing file-level recommendation tools. Results of our search
identified the following tools: NavTracks [89], MI [86], Mining Change History [88], and
NaCIN [118]. After carefully inspecting the four tools, we decided to base our comparison
on MI because it is conceptually closest to CITR. MI is a state-of-art approach that mines
developers’ interaction traces (edits and views), generates association rules using a provided
context, and recommends file(s)-to-edit. A context is then a query formed from the current
developer’s interaction with a given task at the time of recommendation [86].
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Questions Type of Answer
Q1: When working on unfamiliar software systems, do you have difficulty
knowing where to start?

(1-5)

Q2: Was the given time enough to perform each task? (1-5)
Q3: How difficult was locating files related to the tasks at hand using the
list of recommended files?

(1-5)

Q4: Having to deal with unfamiliar software system, do you think recom-
mending files related to the tasks at hand eased program comprehension?

(1-5)

Q5: How would you rate the overall relevance of the recommended files to
the actual files that needed code change to complete the tasks?

(1-5)

Q6: How would you rate the impact of the recommendation approach on
the time needed to locate files/ source code? Do you think that saved you
some time?

(1-5)

Q7: Do you think you could rely on the recommended files to help you
complete the tasks?

Yes/No

Q8: Is there anything you dislike about the proposed recommendation
approach?

Open-Ended

Q9: Is there anything would you like to suggest to improve the recommen-
dation approach?

Open-Ended

1 = strongly agree; 2 = agree; 3 = neutral; 4 = disagree; 5 = strongly disagree

Table 5.9 Post-Experiment Questionnaire.

Context in MI is a core component that triggers recommendation. Given a developer’s events
from a change task, multiple contexts are formed from the last events (edit and selection
types). MI defines a v-e sized sliding window that holds a set number of selection (v) and
edit (e) events. The sized sliding window moves from the first to the last event. As the
sliding window gets updated, the context is updated with the last events. MI introduces
several methods for creating a context:

• MI-EA merges selection and edit events using AND operation and generates recom-
mendations at edit events.

• MI-EO merges selection and edit events using OR operation and generates recommen-
dations at edit events.

• MI-VA merges selection and edit events using AND operation and generates recom-
mendations at selection and edit events.

• MI-VO merges selection and edit events using OR operation and generates recommen-
dations at selection and edit events.

• MI-VOA a combination of MI-VA and MI-VO, merges selection and edit events using
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both AND and OR operations, and generates recommendation at selection and edit
events.

Procedure. We simulated file(s)-to-edit recommendations in MI using the interactions
generated from the three change tasks in (Section 5.4.2 - Step 2). According to [86], applying
different context creating methods, generates different recommendation results. Further,
their results showed that methods with the AND operation yield higher recommendation
accuracy. Therefore, we used methods with the AND operation: MI-EA, MI-VA, and MI-
VOA.

Regarding the size of the sliding window, the authors of MI spread the v-e sized sliding
window between 1 and 10. Considering that the size of our dataset was smaller than the
dataset used in the MI evaluation experiment, applying MI to our dataset with a sliding
window size greater than 4 did not generate any recommendations. Hence, we varied the v-e
sliding window size from 1 to 4. In general, developers viewed 79 files for every one they
edited [86]. Therefore, we set the number of (v) to 4 and the number of (e) to be less than
4. For each v-e value, we ran the simulation repeatedly over all the participants’ interaction
traces.

Measures. We evaluated MI recommendation results against CITR recommendations and
assessed which approach recommended more relevant file(s)-to-edit using precision, recall,
and F-measure. We used the sets of ground truth data created in Section 5.5.1 as a baseline
for the comparison.

5.6 Results & Discussions

We now present the results from the evaluations, analyse observations, and discuss their
implications.

5.6.1 RQ1 : To what degree does CITR recommend relevant files to given
change tasks?

Table 5.10 presents the precision, recall, and F-measure values that result from comparing the
accuracy of the recommendations of CITR to the ground truth data from the three change
tasks.

The precision and recall values of CITR recommendations generated from developers’ inter-
action traces of Change Task 1 and 3 are encouraging. Results from both tasks generate a
precision value of 1, meaning 100% of the time CITR produces recommendations that are
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Precision Recall F-measure
Task 1 1 1 1
Task 2 .17 .33 .15
Task 3 1 .5 .66

Table 5.10 Precision, Recall and F-measure Values of the Recommendations Accuracy.

accurate and specifically correspond to the files needed to complete these change tasks by
the participants. Furthermore, the recall rates show that 100% and 50% of the recommended
files were in the ground truth data. High precision and recall rates lead to high F-measure
rates, which result in accurate CITR recommended file(s)-to-edit. The precision, recall, and
F-measure values of the CITR recommendations for Change Task 2 are least satisfactory,
however still 33% of the recommended files are relevant and overlap with the files in the
ground truth (with a recall of 33%).

To investigate the reasons behind the resulting lower values from recommendations generated
from Change Task 2, which stem from false negatives, we examine thoroughly the set of files
in the ground truth data and compare them to the result of CITR. The ground truth data in-
cludes three files (DocSection.java, SchemaFormOutlinePage.java, and DocumentSection.
java), while CITR recommended six files. Resolving the bug in Change Task 2 required a
code modification in only a single file (DocSection.java), and the other two classes are
irrelevant.

We investigate the other two files further to determine if there are methods that are called
among the three files all together, and we identify no shared methods. Therefore, we assume
that the ticket owner navigated and edited these unrelated files for other purposes e.g., fixing
another bug, without switching off Mylyn. Thus these two files were collected by Mylyn.

Considering that these two files are irrelevant to the change task, none of the participants
made any kind of interactions on them while performing the task. Consequently, CITR
did not recommend these files and instead recommended other files based on the navigation
of all the participants who completed the task. Thus, we argue that CITR provides more
relevant files than the ones in the ground truth data, files that are necessary for participants
to understand the change tasks and perform the correct changes. To assess the relevancy
of recommended files to change tasks, we plan in future work to perform an experiment in
which we ask participants to rate the relevancy of recommended files.

Results from our approach statistically answered the first research question that considers the
quality performance of CITR. Overall, CITR results achieved high average precision (72%),
recall (61%), and F-measure (60%).
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RQ1: CITR achieves high precision, recall, and F-measure and is able
to recommend accurate and relevant file(s)-to-edit.

5.6.2 RQ2 : Given a change task, can CITR help guide developers’ navigation
paths to relevant file(s)-to-edit and increase their productivity?

Developers Success Level Figures 5.8a and 5.8b compare the average time (in minutes)
spent on each evaluation task from set A and B by the control group (1) (developers who
completed the task without CITR recommendations) to the experimental group (2) (devel-
opers given CITR recommendations), while Figures 5.8c and 5.8d present the numbers of
developers from each group who completed each evaluation task in the two sets.
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Figure 5.8 Average Spent Time and Number of Completed Tasks in Both Sets by the Two
Groups.
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Looking at the average completion time of each evaluation task, we observe that the control
group spent on average about twice as much time as needed by the experimental group.
In task set A, developers with recommended file(s)-to-edit needed 46%, 68%, and 47% less
time to perform each task, respectively, in comparison to developers in the control group.
Similarly, those developers in the experimental group could complete the tasks in set B in
52%, 47%, and 30% less time than those in the control group. Detailed tasks completion
time by developers from both groups is available in the project repository [116].

Developers from both groups spent higher average time performing Evolution Task 1 in the
two sets. Notwithstanding that the developers were given a practice task before the start of
the experiment to familiarise themselves with the experiment, navigation through random
classes was a significant component of Evolution Task 1.

For Evolution Task 2, we observe that developers from the experimental group needed much
lower average time in both sets because developers learned through the practice task and
Evolution Task 1. Evolution Task 3 required higher average time than Evolution Task 2 in
both sets because, while Evolution Tasks 1 and 2 are related to bugs and require developers
to identify a single file-to-edit, Evolution Task 3 is a feature request that involves identifying
three files-to-edit, hence demands more navigation time.

Regarding completion factor, Figures 5.8c and 5.8d show that, in both task sets, results from
the experimental group present a higher task completion rate than the first group. Examining
completion rate of tasks in Set A reveals that among the seven developers in the experimen-
tal group, the completion rate was 100% for the three evolution tasks. Conservatively, only
one out of the seven developers in the control group completed Evolution Task 1 and four
completed Evolution Tasks 2 and 3. For Set B, the overall completion rate of the experi-
mental group is higher in comparison to the control group. Particularly, files related to the
completion of Evolution Tasks 1 and 2 were identified successfully by all the eight developers
in the experimental group, while six of them identified the files related to Evolution Task 3.

None of the developers in the control group had any success with Evolution Tasks 1 and 3,
while five of them completed Evolution Task 2. We expected this very low completion rate
considering that developers had no prior system related knowledge. We noticed that only
two developers from the experimental group could not identify the files related to Evolution
Task 3. We hypothesise the lack of completion by the two developers was due to the type of
Evolution Task 3 and navigation effort it required. To get more insight about the reason for
not completing the task, we discuss it further with the two developers in the post-experiment
interview later in this section in “User-experience and Feedback”.

Although CITR helped diminish the average time and navigation effort for the experimental
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group, there is still a disparity between the actual total time spent by each developer in
the experimental group. To illustrate Table 5.11 shows the demographics of developers in
the group and the time in minutes took some of the developers to complete tasks in Set
A. Evidently, developer’s efficiency and experience impact the amount of time and effort
when dealing with an unfamiliar software system. Developers without CITR however spent
a substantial amount of time understanding and exploring unrelated files to find relevant files
to their current tasks, which affected their productivity negatively.

CITR recommendations increase developers’ productivity by recommend-
ing relevant files and reducing navigation effort and time.

CITR Effect on Developers Navigational Behaviour Developers typically explore sys-
tems using a variety of approaches. However, two distinct navigation behaviours were primar-
ily used by developers in the control group. In the first observed behaviour, after following
the steps of replicating the bug, some developers made use of the built-in Eclipse search dialog
to search for keywords related to the task at hand. Then, they spent a considerable amount
of time continually navigating through the returned results, visiting each result, switching
between files, and glancing over the source code trying to find any relevant methods. For
example, one of the tasks reports the appearance of white lines between fields on the config-
uration tab. Some developers were searching for the names of the fields rather than the term
"configuration tab" using the search functionality. The incorrect search keywords resulted in
the return of unrelated classes and developers spending all of their time skimming through
unrelated methods.

In the second observed behaviour, developers did not follow any search strategies. They
explored the system via unstructured exploration that included scrolling up/down the pack-
age explorer. They skimmed through the names of files to judge their relevance. If they
believed a name seemed relevant, they accessed the file and scrolled over the file elements
to identify any relevant source code. One of the developers, for instance, who was working
on the configuration tab task, began by expanding every package in the package explorer
window, reading through the names of files, and randomly opening and closing files. When
we questioned him about it during the after-experiment interview, he explained that he was
searching for a class with the name "configuration tab" while looking through the files in the
package explorer.

The experimental group, on the contrary, followed the same navigation approach. All devel-
opers started performing the tasks by navigating to every recommended file, reading through
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Experimental Group
Education
Bachelor 3
Masters 7
Doctorate 5
Programming Experience
5 Years or More 10
3-5 Years 2
1-3 Years 3
0-1 year 0
Java Experience
5 Years or More 1
3-5 Years 2
1-3 Years 6
0-1 year 6
IDE Experience
5 Years or More 4
3-5 Years 1
1-3 Years 5
0-1 year 5
Professional Experience
5 Years or More 4
3-5 Years 3
1-3 Years 4
0-1 year 4

(a) Demographics of Experimental Group

Experimental Group
Tasks - Set A

Task 1 Task 2 Task 3
P1 20 6 15
P2 6 4 5
P3 10 10 13
P4 7 5 11
P5 15 8 16
P6 15 8 9
P7 10 4 5

(b) Tasks (Set A) Completion Time by the Exper-
imental Group

Table 5.11 Developers’ Experiences Result in Different Tasks Completion Time.

the source code, and identifying related methods or functions to be edited to resolve the bug.
Despite that we only asked the developers to point out the files that should be edited to
complete the tasks, some developers went even one step further and specified the source code
that needed to be changed or even made the change.

To further highlight the impact of the different navigation behaviours, we analysed the obser-
vations and identified that the two navigation behaviours by the control group were inefficient.
The main goal by all developers was to define a set of entry points, i.e., a basic set of files
with which they might begin their investigation. In the first navigation behaviour, we noticed
that developers wrongly chose search keywords that led the search engine to return irrelevant
results. Even when they chose more search keywords, the search returned a large number
of files due to the size of the project. Consequently, developers had to spend time sifting
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through irrelevant search results.

In the second behaviour, developers began a broad search to filter out irrelevant files by
arbitrarily browsing through the files in the package explorer. This behaviour resulted in a
frequent switch between multiple files. Due to the size of the search space and unfamiliarity of
the system, most developers in the control group found themselves engaged in an increasing
effort and time exploring significantly unrelated files, rounds of searches that yielded no
relevant results, and hence inability to locate file(s)-to-edit.

With the experimental group, our observation reveals that developers depended heavily on
using the search dialog function to search for keywords related to fixing the bug at hand
in the recommended files only to determine the needed file(s) to complete the tasks. Con-
sidering that the CITR recommends relevant files and the searched keywords could possibly
appear in most of the files, developers used their own judgement and programming experi-
ence and spent limited effort comprehending methods that they believed to be relevant to the
tasks. When developers were required to locate file(s)-to-edit that were not part of the set of
recommendations, in the case of Evolution Task 3, they followed the relevant methods’ cross-
reference to locate these files. From these observations, we found that the experimental group
could apply a more structured navigation, guide their attention and effort to understanding
relevant system elements, avoid investigating irrelevant files, and efficiently determine more
related files.

CITR recommendations can guide new developers to exhibit a structured
navigation behaviour that can increase their productivity.

Studies suggest that companies should collect and store their developers’ daily interac-
tions [119]. The findings of our observational experiment demonstrated that using devel-
opers’ interactions with the system can enhance navigation by resulting in a more structured
behaviour, as well as boost developers’ productivity by reducing navigation effort and time.
Consequently, we encourage software companies to incorporate interaction collection through
their daily operations in order to increase productivity, advance software development, and,
ultimately, satisfy client demands.

User-experience and Feedback We collected developers’ answers to the interview/ques-
tionnaire questions, compared, and summarised them. Questionnaire results are reported in
Table 5.12.

When asked about the difficulties in finding an entry point, 67% of the developers stated
that it is very difficult while 33% found it fairly easy to locate an entry point.
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1 2 3 4 5

Q1
Not at all
1 - 6.7% 2 - 13.3% 2 - 13.3% 4 - 26.7%

Very Difficult
6 - 40%

Q2
Not Enough

0 - 0% 1 - 6.7% 2 - 13.3% 5 - 33.3%
Very Enough
7 - 46.7%

Q3
Not at all
3 - 20% 6 - 40% 2 - 13.3% 4 - 26.7%

Very Difficult
0 - 0%

Q4
Not at all
0 - 0% 0 - 0% 0 - 0% 4 - 26.7%

Absolutely
11 - 73.3%

Q5
Not Related

0 - 0% 0 - 0% 3 - 20% 3 - 20%
Very Related

9 - 60%

Q6
No Time Saved

0 - 0% 0 - 0% 0 - 0% 4 - 26.7%
Saved Time
11 - 73.3%

Q7
Yes

14 - 93.3%
No

1 - 6.7%

Table 5.12 Post-Experiment Questionnaire Answers.

Most developers (12) considered that the time given to conduct each task was appropriate.
We asked the developers to rate the difficulty of completing the given tasks using CITR
recommendations. Several developers (11) strongly agreed that completing the tasks using
CITR recommendations was not at all difficult, while the remaining four seemed to have
difficulty. These answers confirm that a few developers could not successfully complete the
tasks.

All developers strongly agreed that CITR helped them understand the parts of the system
that are related to the given tasks. Beside system comprehension, developers appeared to be
extremely satisfied when asked about the relevancy of the CITR recommended files to the
given tasks: 80% stated the recommendations were very relevant. All developers expressed
a positive impression of how CITR helped them spend less time navigating through system
elements because CITR provided them a few entry points to start with.

93% of the developers confirmed that they could completely rely on CITR
recommendations to help them perform similar change tasks.

During the interview, we asked each developer to share their thoughts on the experiment in
general, any obstacles they encountered, how CITR promoted their productivity, and any
general feedback. One developer stated that, when dealing with a change task, he needs to
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employ a set of steps, such as comprehending the structure of the system, identifying entry
points, locating related source code, applying the change, and testing. Providing him with
recommendations from other similar change tasks helped speed the process of locating the
part of the system that is related to his task and exploring other files that he would not have
considered. Similarly to this developer, other developers said that they treated the set of
recommendations as entry points to the system which saved them from randomly hunting
through the package explorer.

However, the two developers who did not complete one of their assigned evaluation tasks still
found completing the tasks and navigating through the files challenging even with having
CITR recommendations. They reported that even though CITR limited their search space
and directed their navigation, being a newcomer to the system made it daunting to skim
through the files and identify the ones to edit. Specifically, dealing with the system became
overwhelming due to the growing number of files in the package explorer. We asked these
developers if they believe that is potentially due to the lack of practical Java programming
experience. Even though these developers indicated in the pre-experiment survey that they
have some years of Java programming experience, during the interview they confirmed that
the experience is more of educational experience rather than hands-on experience and they
are more Python developers.

Nearly all developers were satisfied with the CITR recommendations and
the navigation guidance that they provide.

RQ2: CITR can help minimise developers’ time and effort completing
change tasks and guide their navigation into a more structured naviga-
tion behaviour.

5.6.3 RQ3 : How does CITR compare to MI (Mining Programmer Interac-
tion Histories) in recommending relevant file(s)-to-edit for specific change
tasks?

We now assess how our approach compares to the state-of-the-art approach. We report and
compare results of applying MI to our dataset using MI-EA, MI-VA, and MI-VOA context
formation methods with different values of v-e sliding window. To answer the research
question statistically, we compute precision, recall, and F-measures for MI over the set of
ground truth data. The values from the results of the three methods of MI are then analysed.
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Based on the results, we measure the effectiveness of CITR by comparing the statistical values
of CITR to MI.

We observe that simulated file(s)-to-edit recommendations on MI vary using the three recom-
mended context formation methods and various v and e values. Running MI on our dataset
with v-e values greater than 4 returns no recommendations. The three selected context for-
mation methods make recommendations at either edit only events or select and edit events
together. Given the average complexity of our change tasks and the moderate effort required
by the participants to complete the tasks, the number of generated edit events from com-
pleting each task are not significant enough for the methods to provide recommendations
when the sliding window is greater than 4. Therefore, we ran MI on interaction traces from
Change Task 1 and 2 using three sets of v-e sliding window (4-2, 4-1, and 3-1). In contrast,
MI on interaction traces from Change Task 3 produced results with only one set of v-e sliding
window (2-1).

The MI-EA and MI-VA methods produced the exact recommendations from the three change
tasks even with varied v-e sliding windows. A combination of two factors led to this result:
both methods use the AND operation to merge events, while one recommends only at edit
events and the other at selection and edit, however the difference in trigger point does not
make an impact when the total number of edit events is relatively small.

Table 5.13 presents the recommendation results of applying MI-EA to interaction traces of
Change Task 1 under the three sets of sliding window along with CITR recommendation
of the same task. Unsurprisingly, as the value of the sliding window decreases, MI makes
recommendations on more edit events and hence recommends a higher number of files-to-
edit. We notice that when (v=4, e=2), MI-EA recommendations do not intersect with CITR
recommendations nor ground truths, while the opposite is true in the case of (v=4, e=1)
and (v=3, e=1). This observation suggests that the quality of the recommendations by MI
depends greatly on the value of the sliding window and there is no a specific set of values
that will guarantee high quality results as the number of events is always changing. CITR
provides quality results without the need of defining a sliding window.

MI-EA (v=4, e=2) MI-EA (v=4, e=1) MI-EA (v=3, e=1) CTC

FeatureSection.java
PluginVersionPart.java
PDELabelProvider.java

Pderesources.properties
PDEUIMessages.java
PluginVersionPart.java
FeatureSection.java
PDELabelProvider.java
VersionDialog.java

Pderesources.properties
PDEUIMessages.java
FeatureSection.java
VersionDialog.java

Pderesources.properties
PDEUIMessages.java
VersionDialog.java

Table 5.13 Simulation Results of MI-EA and CITR Recommendations from Change Task 1.
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Table 5.14 compares the recommendation results of MI-EA with MI-VOA methods under the
same set of sliding windows. MI-VOA with different sliding-window values produced nearly
the same recommendations of files-to-edit. We also found that none of the recommended
files intersect with CITR recommendations, except with (v=3, e=1). In addition to the
previous observations, the use of the OR operation cannot provide high quality results with
our dataset due to the small number of edit events, which we will assess further statistically.
The rest of the results are available online [116].

MI-EA (v=4, e=2) MI-VOA (v=4, e=2)
FeatureSection.java
PluginVersionPart.java
PDELabelProvider.java

FeatureSection.java
PluginVersionPart.java
PDELabelProvider.java
Utilities.java

MI-EA (v=4, e=1) MI-VOA (v=4, e=1)
Pderesources.properties
PDEUIMessages.java
PluginVersionPart.java
FeatureSection.java
PDELabelProvider.java
VersionDialog.java

FeatureSection.java
PluginVersionPart.java
PDELabelProvider.java
Utilities.java

MI-EA (v=3, e=1) MI-VOA (v=3, e=1)
Pderesources.properties
PDEUIMessages.java
PluginVersionPart.java
FeatureSection.java
VersionDialog.java

FeatureSection.java
PluginVersionPart.java
PDELabelProvider.java
Utilities.java
Pderesources.properties

Table 5.14 Results of MI-EA Against MI-VOA from Change Task 1.

Given that MI-EA provided better quality recommendations over MI-VOA in the case of our
dataset, we further investigate the accuracy statistically by comparing precision, recall, and
F-measures values of the results of both methods. We computed the measure values using
the set of results from both methods and the set of ground truth. Figure 5.9 presents the
resulting precision and recall curves of the recommendation results from MI-EA and MI-VOA
under different (v-e) sliding windows. The figure shows recommendations from Change Task
1 using MI-EA consistently achieved higher precision and recall than using MI-VOA when
(v=4, e=1) and (v=3, e=1). Analogously, MI-EA showed higher precision and exact recall
values under the same sliding windows for Change Task 2. Comparing results of MI-EA
to MI-VOA from Change Task 3, the former also showed higher precision and same recall
values. In terms of F-measure, we took the average values from the three sets of (v-e) sliding
windows for each change task. MI-EA performed an average F-measure of 0.47, 0.1, and
0.13 for each task respectively. Whereas MI-VOA performed lower F-measure from Change
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Task 1 and 2 (0.04 and 0.08) and a slightly higher value from Change Task 3 (.19). All
in all, the average accuracy of MI-EA recommendations across all the three (v-e) sliding
windows is consistently higher than the recommendations resulting from MI-VOA method.
The lower accuracy is the result of the use of the combination of AND and OR operations in
the process of generating context which triggers recommendations when both operations are
met. MI-VOA was proven to provide high accuracy recommendations when the size of the
dataset is large enough, however same performance can not be accomplished when the size
of the dataset and number of edit events are relatively small.

(a) MI-EA Precision and Recall (b) MI-VOA Precision and Recall

Figure 5.9 Precision and Recall of Recommendations from MI-EA and MI-VOA.

To evaluate CITR recommendations accuracy and relevancy, we use MI results as a compar-
ison baseline. Comparing precision, recall, and F-measure values of the recommendations of
MI-EA at each (v-e) sliding window for each change task, we observe that the values are very
similar. Thus we take the average value of the three (v-e) sets of each measure to compare
with CITR recommendation results.

Figure 5.10 presents the precision and recall curves of the recommendation results of MI
against CITR. As shown, examining the results of all the three change tasks, CITR recom-
mends files-to-edit with precision values of 1, 0.17, and 1 and recall values of 1, 0.33, and 0.5,
respectively. On average, MI yielded lower accuracy results with 0.36, 0.07, and 0.33 precision
and 0.66, 0.22, and 0.25 recall, respectively. Consequently, CITR significantly outperforms
MI in terms of F-measure values. As shown in Figure 5.11, our approach shows F-measures
values of 1, 0.15, and 0.66 for each change task respectively. Whereas MI performed average



82

accuracy at 0.47, 0.1, and 0.13 of F-measure values.

Figure 5.10 MI-EA and CITR Precision and Recall Curves

Figure 5.11 CITR and MI F-Measure Values

To better understand how CITR provided higher recommendation accuracy than MI, we
analyse how the approaches work along with the recommendation results. To illustrate,
in Table 5.13, CITR recommends pderesources. properties, PDEUIMessages.java and
VersionDialog.java out of the interaction traces of Change Task 1, which precisely match
the suggested files in the ground truth data. MI recommended three other files that are
irrelevant to the context of this task. CITR can recommend more relevant file(s)-to-edit with
less noise than MI. The technique used requires MI to specify the size of the context that will
trigger the recommendation. As the v-e value changes and the sliding window moves, the
context gets constantly updated, which affects what files to consider and eventually yields
irrelevant files. With CITR, there is no need to specify a particular set of context to trigger
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recommendation as the approach treats the whole set of interaction traces as one context
and extracts the most relevant files based on the idea of the consensus.

Many recommendation tools [88, 89], including MI, require developers to start interacting
with system elements before they start recommending file(s)-to-edit. Some of these tools
base their recommendations on association rules. When a set of files are viewed and edited
together, the method associates them together and recommends them if a future developer
interacts with at least one of the files in the set. Yet, not all navigated together files are
necessarily relevant to a given task. Thus, tools based on association rules recommend files
that are not particularly related to the completion of the task at hand. These tools that
require developers’ interactions prior to recommendation are ideal when the developers are
to some degree familiar with the software system and can navigate to a few entry points.

In comparison, CITR does not build recommendations based on a small set of interactions
that are associated together as one context. In essence, it combines and treats all developers’
interaction histories as one task context, finds a set of consensus files among all the files,
and recommends them to help completing other similar tasks. Ability to treat all interac-
tion traces as one context for recommendations explain why CITR suggests more relevant
files than association-rule based approaches. To our knowledge, our approach is the first
recommendation approach that recommends file(s)-to-edit based on the consensus algorithm
and does not require developers to provide navigation hints prior to recommendation. CITR
guides the navigation of newcomers with no prior knowledge of the current system. Hence,
it helps newcomers understand and complete the tasks using the recommended files, and not
relying on random navigation to get the tool to start making recommendations.

RQ3: the comparison with MI showed that CITR yields higher accuracy
and relevance recommendations than MI.

5.7 Threats To Validity

Change Tasks To avoid the authors’ bias of judgement, we hired an external experienced
evaluator to classify the difficulty of the candidate change tasks and determine the required
completion time of each change task. We chose moderate complexity tasks that require a
maximum of 45 minutes to complete. We avoided selecting complex tasks because they
require more time from participants and may result in interruptions or participants dropping
out of the study.

Time The chosen change tasks require less than an hour to complete. Thus, these tasks
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might not reflect the full spectrum of tasks performed by developers. To limit the effect
of this choice, we used three different change tasks from a large open source system in
the design of the ITs collection (in Section 5.4.2 - Step 2), completed by participants with
various educational and industrial backgrounds, and using a common IDE and programming
language, Eclipse and Java.

Mylyn Noise This threat is related to the tool used to collect participants’ events, Mylyn
Eclipse plugin. Mylyn introduces some noise, such as time-related noise, edit-related noise,
duplicated events, or missing events. We implemented a preprocessing approach to reduce
the impact of noise on the results of our evaluations. Despite the presence of remaining noise,
our approach could deliver high quality results.

Generalisability External threats pertain to the possibility to generalise our results. In the
study, we generated three recommendations (consensus task interaction trace) from three
input change tasks by applying the consensus algorithm to an input of four to seven partic-
ipants’ interaction traces for each task. We had a challenging time recruiting participants
to perform the change tasks and thus collect their ITs due to the COVID-19 pandemic. Al-
though there is no recommended number of input developers’ ITs from each task in order
to generate a recommendation, we intend to expand the study to generate recommendations
from a larger number of input ITs to evaluate whether the number of input ITs could po-
tentially affect the outcome of the recommendations. Additionally, due to the small number
of participants, ITs were collected from participants performing the same task rather than
similar tasks on various software instances. That is to help eliminate the threat of generating
heterogeneous ITs. Having a high number of participants in the future study should allow
us to consider incorporating similar change tasks performed on different software instances.

Remote Experiment Due to the COVID-19 pandemic, we had to change the observa-
tional comparative experiment (in Section 5.5.2) from a laboratory experiment to a remote
experiment. We could not control interruptions, which could impair developers’ navigation
behaviour and productivity. We could only ask developers to perform the experiment in a
quiet environment, record their screens, and audio-call them using Zoom conferencing soft-
ware.

Reliability We make all data used in this study available online in a public repository for
replication purposes [116]. To increase the reliability of our results, we employed multi-
ple measures: precision, recall, and F-measure for quantitative evaluation; an observational
comparative experiment with video observation analysis, post-experiment interviews, and
questionnaire for the qualitative evaluation; and, a comparison with an existing approach.

Measures Considering that our approach produces a set of consensus file(s)-to-edit with
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which developers must interact to complete a particular task, precision and recall measures
could underestimate the accuracy of our results. Indeed, we computed precision and recall
based on ground truths that contain files with which Bugzilla ticket owners interacted while
fixing the bug. Some of these files may be actually unrelated to the ticket. However, we kept
these files in the ground truths to be conservative and not risk tainting the ground truths
with our own biases.

Observation Bias We based the qualitative findings of developers’ behaviour in the ob-
servational comparative experiment (in Section 5.5.2) on observation and interpretation of
video recordings of developers performing some evaluation change tasks. We could have been
biassed and provided wrong interpretations. To ensure correct findings, one author watched
the videos and noted the different behaviours, followed by another author who cross-validated
the findings. The findings from the two authors were very identical.

5.8 Conclusion

In large, customised software systems, the successful completion of change tasks requires
developers to understand elements that are scattered across the system. Customized systems
increase in size and complexity as client demands increase. The growing complexity makes
finding and understanding the subset of elements part of a change task challenging and
require more time and effort, especially when the developers are newly-hired.

In this chapter, we proposed an approach, Consensus Task Interaction Trace Recommender
(CITR), to recommend file(s)-to-edit. CITR builds recommendations by applying the consen-
sus algorithm (BioConcert) to the set of developers’ interaction traces. CITR can recommend
relevant file(s)-to-edit that help developers, particularly newcomers, complete change tasks
that are similar to the input tasks with minimal effort and time.

We evaluated our approach using a series of evaluations: quantitative, qualitative, and com-
parison. In the quantitative evaluation, we measured quantitatively the accuracy of the
recommendations against ground truth data. In the qualitative evaluation, we carried out
an observational comparative experiment to measure the extent to which recommendations
could increase developers’ productivity. Lastly, we compared our approach to a state-of-the-
art approach, MI [86]. Results showed the followings:

• Quantitative results indicate that our approach can recommend relevant file(s)-to-edit
with average precision of 72%, recall of 61%, and F-measure of 60%.

• A detailed qualitative analysis of the experiment supported by video recordings reveals
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that developers with CITR recommendations can complete their tasks in/with less than
half of the time and effort needed by the control group, and with higher completion
rate of 95%.

• The experiment shows that developers with CITR recommendations have an increased
performance at comprehending and navigating through system elements. In contrast,
the control group spends a considerable amount of time following unstructured navi-
gation relying on guessing and glancing.

• The comparison demonstrates that CITR returns higher recommendation accuracy
than MI with average F-measure value of 60% and 20% respectively.

We concluded that CITR can guide developers’ navigation path towards resolving tasks and
increasing their productivity. We also proved that the consensus algorithm is an efficient
recommendation technique to recommend relevant file(s)-to-edit.
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CHAPTER 6 FINDING COMMON GAME ENGINE ARCHITECTURE
SUBSYSTEMS AND THEIR COUPLING DEGREE

6.1 Introduction

In this chapter, we evaluate the effectiveness of using the consensus algorithm at recommend-
ing a consensus game engine architecture subsystems.

The history of video games began around six decades ago with computer scientists developing
Spacewar in 1961 [120]. Since then, the video game industry grew and has become one of
the most profitable markets. By the end of 2022, the global gaming industry will reach over
3 billion people and generate over $196.8 billion in revenue [121].

Video game development was originally done by a small development team writing code from
scratch and rarely reusing core or subsystems. However, as the industry grew and its environ-
ment became highly competitive, users’ expectations have grown, calling for advancements
in game development techniques. These changes have created the need for a framework that
can facilitate and shorten the development time by providing generic, reliable and reusable
software subsystems such as a rendering engine, physics engine, audio system, etc., so the
developers could focus their effort on developing the game mechanics, which are the game’s
logic. Such frameworks are known as game engines. Examples of popular game engines
are Unity engine1, Unreal engine2, and CryENGINE3. Most game engines are written in
C++ [122].

The problem in game engines development is that developers do not always design and create
an architectural model before coding. Hence, architectural decisions are only represented in
the code and there are no available architecture designs that are readily available for analysis
and comparison by game engine developers we designing an new engine. Such comparisons
could be useful for identifying commonalities and suggesting ways to improve existing and
future game engines [122].

In this chapter, we fulfill three objectives: determine architectural commonalities between
game engines, create a model that presents a consensus of fundamental subsystems, and
identify the degree of coupling of these subsystems. To achieve these objectives, we propose
COnsensus Software Architecture (COSA), an approach based on applying the consensus

1www.unity.com
2www.unrealengine.com
3www.cryengine.com
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algorithm to a set of game engine architectures. COSA can recommend a ranking that
suggests the most commonly used subsystems in game engine architectures, ranked by their
degree of coupling. The recommended ranking can be used by developers to decide which
subsystems to include when designing a game engine architecture, as well as to support game
engine reusability and maintenance by identifying the most coupled subsystems, allowing
developers to focus their programming efforts on minimising coupling.

To investigate the meaningfulness of the generated recommendation, we evaluate the consen-
sus ranking by comparing it to predefined ground truth data. Results show that all identified
subsystems are fundamental and should be taken into account when designing an engine
architecture. Moreover, results show that engine architectures contain similar subsystems.
Lastly, they show that the most coupled subsystems are core systems, low-level rendering,
third-party SDKs, and world editor.

The remainder of the chapter is organised as follows: next Section discusses related studies.
Section 6.3, presents an overview of architecture in game engines. Section 6.4 explains the
proposed approach. Section 6.5 discusses results. Section 6.6 presents possible threats to
validity. Finally, last Section draws the conclusions of the chapter.

6.2 Related Work

Game Engine Architecture Gregory in his book [2] covers the huge field of game engine
architecture succinctly. It discusses in depth the possible components and subsystems that
make up a game engine and the architectural layers. Furthermore, it provides developers
with the fundamentals of designing a game engine architecture. Rollings et al. [123], on the
other hand, discuss the overall design of game engine architecture without delving into the
individual subsystems. The book outlines characteristics that make a perfect architecture:
Modularity, Reusability, Robustness, Trackability. In a similar sense, Marin al [124] propose
a multi-agent system (MAS) for game engines that can prototype the engine architecture in a
fast way. MAS archives that by specifying the subsystems that define the game engine. The
proposed architecture increases engine performance and eases the process of comprehending
the mechanisms of the game engine. Besides, SMASH (Stackless Microkernel Architecture
for SHared environments) [125], another proposed methodology for designing game engine
architecture. The proposed methodology decomposes the architecture in dynamic software
modules interacting via a microkernel-like message bus. The design allows inserting, debug-
ging and removing the modules right after defining the internal messaging protocol of the
engine. The approach has been proven to increase the scalability and flexibility of game
engines. Furthermore, [126] addresses the lack of research studies regarding game engine
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architecture by engaging the academic community and game industry in answering survey
questions and sharing their knowledge about the topic. They determined that constant tech-
nology changes affect the evolution of low-level components of an architecture, and identified
best practices for game engine development.

Software Architecture Recovery The lack of assessed and validated architecture recov-
ery techniques, led the authors of [127] to perform a comparative study of six architecture
recovery techniques to determine their abilities at identifying architectures’ subsystems and
structure. The study results revealed that a significant amount of improvement can be made
in all of the techniques examined. Additionally, [128] performed components and dependen-
cies identification and structures extraction through the architecture recovery process using
the Rigi system for the purpose of creating higher-level abstract representations of a subject
system. Similarly, Wang et al. [129] proposed an improved hierarchical clustering algorithm
called LIMBO Based Fuzzy Hierarchical Clustering (LBFHC) for conducting architecture
recovery. The improved version of the algorithm includes features that can extract more
information about the system components and assigns different weights for each feature to
increase the accuracy of the results. The technique was evaluated on two open source legacy
systems and results revealed that the technique is able to provide results with high accuracy
and cohesion. A more challenging study was conducted in [130], which performed a case
study to investigate Linux operating system. Although there is no architectural documenta-
tion that describes Linux structure at a high level, the study examined the system to recover
and build a conceptual architecture. The investigation was based on examining existing doc-
umentations, grouping source-code files into subsystems, defining relations between files, and
applying clustering techniques to form a system architecture. The investigation disclosed
that there is a high level of dependencies between Linux files at all levels of abstractions.
Moreover, [131] applies evolutionary coupling techniques for software architecture recovery.
The study extracted inter-modules dependencies between files in three open source projects
based on various levels of evolutionary coupling. Using MoJoFM metric to evaluate the ac-
curacy of the results, they concluded that involving evolutionary coupling in the architecture
recovery acn increase the results accuracy by up to 40%.

6.3 A Glimpse of Architecture in Game Engine

In this section, we provide background information on architecture, architecture recovery,
and game engine architecture.
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6.3.1 Software Architecture Recovery

Software architecture is the foundation of a project. Its significance is based on its ability
to predict software quality and reduce maintenance costs for evolution. Architecture in
software systems consists of the structure of components in a program or system, their
interrelationships, and the principles and guides that control the design and evolution in
time [132]. One of the areas in software architecture is architecture recovery, which is the
extraction of high-level software architecture information from source code entities such as
files and classes [133].

Researchers and developers use architecture recovery techniques to retrieve lost architectural
knowledge that guided the development of a software system in the past [134]. They can
then use this knowledge to plan the system’s evolution and ease its program maintainability,
understanding and knowledge transfer [135,136].

In the process of architecture recovery, we group implementation-level entities (e.g., files,
classes, or functions) into clusters, where each cluster represents a component [127]. Some
authors refer to these components as subsystems [130], which is the naming we chose for this
work.

Hierarchical, density-based and distribution-based clustering are popular approaches [133]
applied in automatic or semiautomatic fashion. Entities can be clustered based on similarity
regarding different attributes, such as number of references to variables, types or other entities
[137], textual content [138], naming conventions or number of dependencies [139].

While architecture recovery is usually mentioned in the context of understanding legacy en-
terprise systems, researchers have also applied it to a range of popular open-source codebases
such as the Linux kernel [130], the Chromium browser [140], the Bash Unix Shell and the
CVS version control system [137]. In this work, we do architecture recovery on open-source
game engines.

6.3.2 Game Engine Architecture

The game engine architecture is the implementation and organisational structure of subsys-
tems. Game engine architectures differ from other software systems architectures because
their subsystems are structured as a software stack of multi-layers of abstractions increasing
layer by layer until the game mechanics are described [125]. The importance of such an archi-
tecture lies behind the necessity to manage the constantly changing requirements of games,
recurrent releases, complexity of game engines and their libraries and APIs [141].

The architecture varies from engine to engine, and there is currently no widely used stan-
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dardised game engine architecture. However, we show in Figure 6.1 a high-level architecture
created by Gregory [2]. It lays out the runtime subsystems that make up a typical game
engine into multiple layers of abstraction. The bottom layer interacts directly with the hard-
ware and operating system. Starting in the resources subsystem and going up, all generic
and re-usable game logic is represented, such as physics simulation, graphical rendering and
audio playback. Finally, on top, the game-specific layer represents a specific game logic with
limited reusability beyond the scope of the game being developed, such as in-game camera
systems, artificial intelligence, weapon systems, etc.

Game-Specific Subsystems

Hardware, Drivers, Operating System

Third-Party SDKs

Platform Independence Layer

Core Systems

Resources

Low-Level Renderer Profiling & Debugging Collision & Physics HID

Scene Graph/ Culling Optimization

Visual Effects
Skeletal Animation AudioOnline

Multiplayer

Front End Gameplay Foundations

Figure 6.1 Summary of a High-Level Game Engine Architecture Adapted from Gregory [2].

There are few studies on game engine architecture. While there are books on this sub-
ject [2, 142, 143], often these publications tend to only briefly describe the high-level archi-
tecture before plunging straight down to the lowest level and describing how the individual
components of the engine are implemented [144]. Furthermore, while such literature is an
excellent source of information for writing an engine, it is of little help when the requirements
differ from the solution described. Similarly, according to [124]: The current literature deals
with the engine components, such as the behaviour specification, the scene render or the
networking. Nevertheless, the game engine architecture connecting all these is a subject that
has been barely covered. Seeking to cover this gap, we aim to provide more insight into the
importance of high-level game engine subsystems through our study.
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6.4 COnsensus Software Architecture

Figure 6.2 shows an overview of the approach, COSA (COnsensus Software Architecture). We
break down the approach into several steps: game engine selection, subsystem identification
and detection (architecture recovery), subsystem coupling calculation and ranking, and finally
consensus algorithm application to obtain a model of a consensus of architecture subsystems
ranked based on their degree of coupling.

The outcome of COSA should help us identify game engines’ architectural commonalities
and differences. Thus, it demonstrates which subsystems are present in all game engine
architectures, which are only present in some architectures, how tightly the subsystems are
coupled, and provides a consensus architecture of fundamental subsystems. We hence can
help game engine developers in designing their engine architecture and focusing their efforts
on developing loosely coupled subsystems.

Select game
engines to

analyse

Generate
include graph

Order subsystems
by sum of includes/

includedBy

Run consensus
algorithm

Select
subsystems to

analyse

Identify
subsystems in
game engines

GitHub
Repositories Official docs Support forums

Game engines
files clustered
by subsystem

stores

uses

uses

stores

Ordered vectors
of subsystems

Game Engine
Architecture

(Gregory, 2018)

uses uses uses

Figure 6.2 A Summary of the Steps Involved in COSA
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6.4.1 System Selection

In the first step of our approach, we search and select systems that can be studied. To be able
to find systems that serve the purpose of the study and help apply the approach successfully,
we establish a set of adequate selection criteria. We define the following criteria for selecting
game engines: • open source engines, • engines written in C++, • general-purpose engines,
• engine repositories with the highest sum of forks, and stars and • unarchived repositories.

We decided to limit our search to engines with C++ as their primary programming lan-
guage since C++ is the most widely used language for game engine development due to
its performance and ability to reach low-level hardware [122]. In addition, we focused on
general-purpose game engines as they target a broad range of game genres and therefore
provide an overview of the features needed to make any game.

Considering that most open-source game engine repositories are stored and shared on GitHub,
we chose it as our repository database. We used GitHub’s search function to search and filter
game engines that meet our predefined selection criteria. From the result of our search query,
we selected the top 10 engines with the highest sum of forks and stars. Names of the selected
engines are listed in Table 6.1.

Engine Name Forks + Stars First Commit Year
UnrealEngine 64100 2014
godot 59200 2013
cocos2d-x 23300 2010
o3de 6400 2021
Urho3D 4956 2011
gameplay 4900 2011
panda3d 4100 2000
olcPixelGameEngine 3963 2018
Piccolo 3892 2022
FlaxEngine 3613 2020

Table 6.1 Selected Game Engines along with the Sum of their GitHub Repositories Forks and
Stars.

6.4.2 Subsystem Identification and Detection

We begin this step of the approach by defining ground truth data, which consists of a col-
lection of basic subsystems that exist in any engine architecture. The ground truth data
will be used later to validate the result of applying the consensus algorithm (Section 6.4.4).
Then, we perform system architecture recovery by determining what subsystems compose the
architecture of the selected system. We achieve that by analysing each system repository’s
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directories and files manually and clustering them according to the subsystems identified in
the ground truth data.

In particular, we use the “Runtime Engine Architecture” proposed by Gregory [2] for defining
the ground truth data. We chose Gregory’s book since it is well-known among industry
professionals and it aims to provide an in-depth discussion of the major subsystems that
make up a standard game engine [2]. Besides reviewing game development and game engine
foundational concepts, the author drills down into each game engine subsystem and discusses
implementation details, performance issues and how the structure of these subsystems in the
code impact the player and developer experiences.

Gregory [2] structures the engine architecture into 15 layered subsystems. While he divides
each subsystem into a set of tools and smaller components, we choose to consider only the
subsystems in the ground truth data. Although Gregory does not include the world editor
(EDI) in the architecture, he emphasises the importance of including EDI when building
a game engine, thus we add EDI to the ground truth data. Table 6.2 lists the 16 defined
subsystems.

Abbrev. Name
AUD Audio
COR Core Systems
DEB Profiling and Debugging
EDI World Editor
FES Front End
GMP Gameplay Foundations
HID Human Interface Devices
LLR Low-Level Renderer
OMP Online Multiplayer
PHY Collision and Physics
PLA Platform Independence Layer
RES Resources (Game Assets)
SDK Third-party SDKs
SGC Scene graph/culling optimizations
SKA Skeletal Animation
VFX Visual Effects

Table 6.2 Ground Truth Data of Subsystems

During the analysis process of directories and files contained in each engine repository for
subsystem detection, we eliminated files that are not written in C++ or do not contain
functionalities related to any subsystems. On the other hand, files containing subsystems-
related functionalities are clustered to their corresponding subsystems. To determine whether
a file contains functionalities related to a specific subsystem, we examined the followings:
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• Directories, files, classes and methods naming. For instance, if a directory is named
Audio, this indicates that the contents included therein are a part of the AUD subsys-
tem.

• Source code comments that describe the semantics of a file, class or method.

• Official engine’s documentation, wiki and/or support forums. Documentation can pro-
vide information on how an engine is structured, what subsystems are included, de-
scription of directories, etc.

When a file contains functionalities that are related to more than one subsystem, it is clustered
into just one of those subsystems. We choose the most corresponding subsystem based on
the engine documentation and authors’ professional experiences.

We also identified several files that belong to subsystems that do not exist in the ground truth
data. In these cases, we clustered the files with the most corresponding subsystems, even
when a direct relationship could not always be found. If none of the subsystems specified in
the ground truth data corresponds to the functions provided in the file, we exclude the file.

Lastly, we clustered together any 3rd-party libraries under the “ 3rd-party SDKs” subsys-
tem. Even while these libraries might contain some functionalities that serve a less generic
subsystems, they are libraries that are not developed and maintained by the game engine
developers. For example, the Piccolo engine contains no audio subsystem, but it includes
stb libraries, which contain audio decoding and synthesising functionalities. These func-
tionalities, however, are not used by Piccolo, even though they can be found on Piccolo’s
codebase. Therefore, the stb file in Piccolo was clustered into the SDK subsystem, and not
the AUD subsystem. The clustering of engines’s files into subsystems is available in the
project repository [145].

6.4.3 Subsystem Coupling Degree Measurement

There are several metrics that can be used to measure the quality of a software system, and
hence taken into consideration when developing the software, such as cohesion, inheritance,
lines of codes, complexity, etc. However, in this work, besides finding the most fundamental
subsystems to include in any system architecture, we opt for finding the degree of coupling
of each subsystem. The underlying reason for prioritising coupling over other metrics is
that highly coupled software systems are difficult to maintain, understand, test, or even
reuse. Making a change to such a system requires more effort and time due to the increased
dependency between its classes, especially when new releases are frequently expected, as they
are in the video game industry.
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Coupling was first introduced by Stevens et al. [146] and defined it as “the measure of the
strength of association established by a connection from one module to another”. In object-
oriented programming, coupling is described as the dependency of one class on other classes.
There are different measures that measure the degree of coupling between classes. Among
these measures, coupling Between Objects (CBO) is the only measure that is a class-level
measure, considers both import and export coupling, and determines the strength of coupling
by the frequency of connections between classes [147]. CBO is a count of the number of classes
that are coupled to a particular class [148]. Class A is coupled to class B if it references B
and–or is being referenced by B.

To measure the degree of coupling of each subsystem in the recovered system architectures,
we generate an include graph that shows the include relationships between files within each
subsystem. We then calculate the degree of coupling by summing the number of include
statements in each file and the number of times each file is included in other files (includ-
edBy). Finally, we rank each architecture subsystem for each system based on their degree
of coupling.

From all extracted subsystems, we generated an include graph for each subsystem in all
engine architectures by using a script created by Francis Irving4, which generates a Graphviz
graph from the set of clustered files from the previous step. We then created a script whose
pseudo-code is depicted in Listing 6.1. The idea is, for each engine, to select files related
to each subsystem, compute coupling between objects (CBO) for the subsystem, add the
subsystems to a hashmap with the name of the subsystem as the key and CBO as the value,
and order the hashmap by value. The result is a set of game engine architecture of subsystems
ordered by their degree of coupling, presented in Figure 6.3

# each engine will do a call to this

def get_vector ( engine_files , subsystems ):

hashmap = {}

for subsystem in subsystems :

files_filtered = filter_files ( engine_files , subsystem )

calculated_metric = calculate_metric ( files_filtered )

hashmap [ subsystem ] = calculated_metric

return sort_hashmap_by_value (hashmap , " descending ")

Listing 6.1 Pseudo-code of Computing Coupling Between Objects (CBO)

4www.flourish.org/cinclude2dot/
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Tightly Coupled Loosly Coupled

[COR],[SDK],[EDI],[FES],[LLR],[SKA],[VFX],[RES],[OMP],[AUD],[DEB],[PLA],[GMP],[PHY],[HID],[SGC]UnrealEngine

[SDK],[COR],[EDI],[RES],[FES],[PLA],[PHY],[LLR],[SGC],[VFX],[AUD],[GMP],[OMP],[SKA],[DEB],[HID]godot

       [COR],[LLR],[PLA],[SDK],[GMP],[EDI],[RES],[PHY],[VFX],[DEB],[SKA],[AUD],[HID],[OMP],[FES]FlaxEngine

       [COR],[RES],[LLR],[PHY],[EDI],[SGC],[VFX],[OMP],[SKA],[HID],[PLA],[FES],[GMP],[AUD],[DEB]panda3d

       [LLR],[OMP],[AUD],[PHY],[FES]olcPixelGameEngine

       [VFX],[COR],[EDI],[LLR],[GMP],[PLA],[FES],[AUD],[PHY],[OMP],[RES],[SKA]cocos2d-x

       [EDI],[SKA],[FES],[GMP],[LLR],[COR],[RES],[AUD],[DEB],[OMP],[PHY],[HID],[PLA],[SGC],[SDK]o3de

       [SDK],[LLR],[COR],[GMP],[FES],[PHY],[SGC],[AUD],[OMP],[HID],[SKA],[RES]Urho3D

       [GMP],[RES],[COR],[SKA],[HID],[LLR],[PLA],[PHY],[FES],[SGC],[AUD],[VFX],[DEB]gameplay

       [SDK],[COR],[LLR],[RES],[EDI],[PHY],[GMP],[SKA],[HID],[PLA],[FES],[VFX]Piccolo

Figure 6.3 Game Engine Architectures of Subsystems Ordered by Coupling Degree

6.4.4 Consensus Model Generation

The final step of the approach is applying the selected consensus algorithms. We choose to
apply the BioConcert and Kwiksort algorithms. The algorithms take as input the output
from the previous step, which is a set of architectures of subsystems ranked by their degree
of coupling. The algorithms should output one consensus architecture of subsystems.

We observe that not every engine includes all 16 identified subsystems, which in turn resulted
in generating incomplete rankings; not all the elements exist in every ranking. To deal with
incomplete rankings when applying consensus algorithms, we apply the unification technique
to complete the rankings, which adds a bucket to the end of the rankings with missing



98

elements. For example, completing the ranking of Piccolo engine, adds a bucket with the
missing subsystems as follows:

Piccolo = [[SDK], [COR], [LLR], [RES], [EDI],
[PHY ], [GMP ], [SKA], [HID], [PLA],
[FES], [V FX], [SGC,AUD,OMP,DEB]]

After completing the rankings, we apply the BioConcert and Kwiksort algorithms to the set
of complete rankings. While results from both algorithms were very similar, the Kwiksort
algorithm generated a result with a smaller generalised Kemeny score. Given that an optimal
consensus ranking is the one with the smallest possible generalised Kemeny score, we adopt
the result of the Kwiksort algorithm as our COSA for game engines.

6.5 Results & Discussions

In this Section, we present and discuss the result of applying the consensus algorithm (Kwik-
Sort) to a set of subsystems of 10 game engine architectures that are ranked according to
their coupling degree (tight to loose). The discussion revolves around two axes; first, we
discuss commonalities between architectures and the most essential subsystems; second, we
explore the most coupled subsystems and the underlying cause for their tight coupling.

6.5.1 Commonalities and Consensus Architecture of Subsystems

When comparing how similar game engine architectures are in terms of subsystems (refer to
Figure 6.3), evidently most engine architectures, excluding olcPixelGameEngine, are com-
posed of nearly the same subsystems. All subsystems exist in two engines, fifteen appeared
in three engines, while twelve of the subsystems are part of the remaining four engine archi-
tectures. This confirms the success of our architecture recovery method and that we were
able to identify 80% of the subsystems in all architectures.

According to Gregory, while details of architectures and implementation differ from engine to
engine, all game engines must eventually include a set of main subsystems, such as rendering
engine, physics engine, audio system, etc. [2]. Thus, this is an evident explanation for the
commonality in engine architectures.

OlcPixelGameEngine, on the other hand, contains only five subsystems. The absence of more
major subsystems occurs because olcPixelGameEngine is not a complete engine since it was
developed by the YouTube channel OneLoneCoder for the purpose of teaching game engine
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programming. From the top 10 selected open-source game engines, this is the only project
that will not be developed further into a complete engine.

Figure 6.4 presents the result of applying the Kwiksort algorithm; a fundamental set of
game engine subsystems ordered in a consensus fashion in accordance with their degree
of coupling. Comparing the result of applying the consensus algorithm to the ground truth
data, the consensus result identified all 16 subsystems as essential subsystems, and developers
should therefore consider them in the architecture design when developing a modern game
engine. In light of the fact that the majority of the subsystems were shared by the majority
of the engine architectures, this not only confirms the validity of the consensus architecture
of subsystems, but also ensures the importance of each subsystem as it plays a distinct role in
the architecture. Hence, the proposed approach, COSA, fulfils our objectives of determining
architectural commonalities between game engines and providing engine developers with a
consensus architecture of a set of subsystems.

Tightly Coupled Loosly Coupled

  [COR], [LLR], [SDK], [EDI], [GMP], [RES], [PHY], [SKA], [PLA], [FES], [VFX], [AUD], [OMP], [DEB], [HID], [SGC]

Figure 6.4 The Consensus Result of Applying the Kwiksort Algorithm

As mentioned in Subsection 6.4.2, we detected files that belong to unidentified subsystems in
the ground truth data. A list of the discovered subsystems, their locations (game engines),
and a relevant subsystem from the ground truth data are described in Table 6.3. We conclude
that Gregory’s engine architecture is not inclusive, and it can be expanded to comprise more
subsystems provided by modern game engines. In spite of the discovery of new subsystems,
these subsystems can not be regarded as essential since they are found in relatively few
engines.

6.5.2 Degree of Coupling

The result of applying the consensus algorithm presents a consensus of the most coupled sub-
systems across all game engine architectures (Figure 6.4). The four most coupled subsystems
are core systems, low-level renderer, 3rd-party SDKs, and world editor. We now discuss the
underlying reasons behind the tight coupling and draw examples from the engines’ files.

Core Systems and 3rd-Party SDKs As described by Gregory, these subsystems are
responsible for low-level operations such as memory allocation, file I/O, system calls, as
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Discovered Subsystems Game Engines Relevant Subsys-
tem from Ground
Truth

Code editor, Multi-user synchronization,
Project creation and “cooking”, CLI

UnrealEngine, o3de,
panda3d

EDI

Cache, source control UnrealEngine RES
Cvars, graphs (data structure), Video subti-
tling and timecoding, Analytics, Media stream-
ing

FlaxEngine, godot,
o3de, panda3d, Un-
realEngine

COR

Code hot reloading, visual scripting, assem-
bler/compiler

FlaxEngine, godot,
UnrealEngine

GMP

Virtual production (video post-production) UnrealEngine VFX
Screenshot capture FlaxEngine LLR
Foliage simulation FlaxEngine, Un-

realEngine
PHY

VR, AR, XR godot, UnrealEngine
Advertisement UnrealEngine
Cryptography UnrealEngine, Flax-

Engine
Database UnrealEngine,

Urho3d, o3de
Virtualization UnrealEngine
Cloud services integration o3de

Table 6.3 Newly Discovered Subsystems

well as communication with graphic and audio APIs. Therefore, they serve as support for
all other high-level subsystems such as audio, low-level renderer and visual effects. This,
in turn, means that files belonging to this subsystem are included by many other files. In
Unreal Engine, for example, the most coupled core system file is CoreMinimal.h, and it is
included by 14051 files while including only 151 files.

Low-Level Renderer It came as no surprise to us that the renderer subsystem is identified
as one of the most coupled. It is responsible for producing 2D or 3D animated graphics we
see on screen in all games. From the game objects to the UI of the world editor to everything
needs to be drawn and continuously updated.

World Editor We observed that the editor has a high degree of coupling because it provides
a visual interface to many other subsystems. Therefore, its files include many files from other
subsystems, and they are included by these subsystems as well. Observing the files names in
the Godot editor subsystem, we certainly notice that this subsystem serves many other sub-
systems within the engine. Examples of these files are: animation_tree_editor_plugin.cpp,
audio_stream_editor_plugin.cpp, particles_2d_editor_plugin.h, visual_script.cpp.
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In terms of most coupled game engines, we observe that UnrealEngine, panda3d and Urho3d
are the three most coupled game engines. We noticed a correlation between the game engine
coupling and metrics such as the number of files and forks+stars on GitHub. While this does
not imply causation, this may be evidence that as engines and teams working on them grow
in size, so does coupling.

6.6 Threats To Validity

Construct Validity
Subsystem Identification: Our subsystem identification in the ground truth data was based
on Gregory’s definition of “Runtime Engine Architecture”. The list of 16 subsystems is not
exhaustive. However, other than Gregory’s book, there is no academic or technical research
on game engine architecture. In the future, we intend to thoroughly examine, in collaboration
with game engine developers, the source code of game engines to verify the accuracy of this
list and possibly include more essential subsystems.

Clustering Bias: One of the authors manually clustered the game engine repository files
and directories into subsystems. Despite the fact that the author’s judgement was based on
documentation attached to the repository, the author’s judgement could be biassed.

Multi-Subsystems: During the file clustering process, we encountered files that could belong
to more than one subsystem. The author relied on professional experience and engine docu-
mentation to cluster these files into the most corresponding subsystem. There is also a risk
that the author’s judgement could be biassed.

Unidentified Subsystems: During the file clustering process, we discovered a few files that
might belong to subsystems that are not part of Gregory’s engine architecture. We either
discarded these files or clustered them into subsystems with comparable functionalities. As
discussed in “Subsystem Identification”, we intend in the future to extensively study game
engines to detect undiscovered or newly created subsystems.

External Validity
Generalisation: We are confident that our approach can be generalised and applied to any
other systems, as well as a wider range of game engines. In this work, we investigated 10
open-source game engines. Our selection of game engines might not represent all segments of
the market. Popular engines like Unity and Source were left out of our investigation because
they are not open-source and therefore analysing their source code is impossible. We reduced
this threat by selecting general-purpose engines that serve all genres of games. Additionally,
we recognise that most game engine development is closed-source. Therefore, the results may
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not apply to all game engines, but ought to be valid for open-source game engines.

Reliability: To increase the reliability of our findings, we made all collected data and scripts
available online in a public repository [145]. This allows other researchers to replicate and
enhance our findings.

6.7 Conclusion

Video games are a prevalent form of entertainment and must provide gamers with new
experiences that they have never had before. As a result, game development became more
technically complex. Game engines are a key tool for building high-quality games. However,
when building a game engine, developers struggle with the lack of knowledge about engine
architecture in general, which engine subsystems to incorporate into the architecture, and
managing architecture complexity to meet quality standards.

This chapter provided an overview of the commonalities and differences between game engine
architectures in terms of their subsystems. Additionally, it defined a consensus of architecture
and the degree of coupling among its subsystems to serve as a foundation for fair compar-
isons and discussions among game engine developers. Accordingly, the main objective of
the approach was to provide developers with a high-level comparison between game engine
architectures, help developers decide what subsystems to include in the architecture when
building an engine, and present them with the most coupled subsystem so they can focus
their development work on these subsystems to improve maintainability and reusability.

We presented an approach, COnsensus Software Architecture (COSA), that provides a rank-
ing of game engine architecture subsystems based on their degree of coupling. We described
COSA and applied it to 10 game engines. To identify what subsystems compose an engine,
we performed an architecture recovery on the selected open-source game engines by manu-
ally analysing their repositories and clustering files into predefined subsystems. We built an
included graph from the extracted subsystems to calculate their coupling degree and ranked
each engine subsystem by its degree of coupling. To generate the ranking, we applied the
consensus algorithm (KwikSort) to the ranked lists of architectures. We finally investigated
the recovered architectures and compared their commonalities.

Our results showed that game engine architectures share many common subsystems. In
fact, nearly all investigated game engines include the same subsystems in their architec-
tures (COR, RES, FES, PHY, LLR, AUD, GMP, SKA). Additionally, our ranking concluded
that all 16 predefined subsystems are essential and should be taken into consideration when
building an advanced game engine. Besides, we showed that the most coupled subsystems
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are core systems, 3rd-party libraries, world editors, and low-level renderers. As a result,
we demonstrated that the consensus-based recommendation technique is capable of process-
ing architecture data and generating recommendations for game engine architecture design
issues.
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CHAPTER 7 CONCLUSION AND FUTURE WORK

The development of any kind of software involves a variety of tasks that generate large
amounts of data. Developers must constantly analyse and extract relevant information for
solving software issues, making decisions, or performing their tasks. However, the growing
volume of data makes it difficult to navigate and extract relevant information from software
data. The reason for this is that software data is heterogeneous, evolves rapidly, and is con-
stantly modified. Consequently, recommendation systems for software engineering (RSSEs)
are needed to ease data searching and exploration as well as deliver valuable information to
help developers perform specific tasks and increase productivity.

Recommendation systems for software engineering attracted considerable research attention
to address a wide range of application-specific tasks. These recommendation systems rely
on many techniques, from machine learning to data mining. However, these techniques
can be subject to certain limitations. For example, requiring large datasets as input data
or requiring developers’ interaction with the application before making recommendations.
Besides, available RSs have never been investigated and evaluated for their generalisability
in producing recommendations from various types of data for various software applications.

In this thesis, we claim that the consensus algorithm can make recommendations that support
resolving different software development tasks without the need for large input datasets. We
proposed a consensus-based recommendation technique that generates recommendations by
applying a consensus algorithm. The proposed technique recommends items in the form of
a consensus ranking.

Hence, we restate the thesis statement as follows:
We proposed a software engineering recommendation technique based on the consensus al-
gorithm that we applied and validated on various data types and resolved various software
engineering-related issues in a variety of applications.

7.1 Contributions

We evaluated the applicability and usefulness of the consensus algorithms in supporting
software developers by employing the consensus-based recommendation technique to address
software engineering issues in three different applications.
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Recommending Mobile App Reviews: We developed Review Prioritiser (RP) to pro-
vide developers with a consensus ranking of prioritised clusters of mobile app user reviews.
We evaluated the usefulness and meaningfulness of the generated consensus rankings on four
Android apps. We compared the rankings against reviews ranked by app developers manually.
The comparison showed that there is a strong correlation between the two (average Kendall
rank correlation coefficient = 0.516). We also invited app developers to evaluate the results
qualitatively, and we surveyed their opinion on the technique. The survey responses demon-
strated a high level of interest in the consensus-based prioritisation and recommendation for
mobile app reviews.

Recommending Interaction Traces for Software Navigation: We proposed Consen-
sus Task Interaction Trace Recommender (CITR) that recommends relevant file(s)-to-edit to
assist developers carrying out the same or similar tasks on multiple software instances. We
demonstrated the accuracy of the recommendations with average precision of 72%, recall of
61%, and F-measure of 60%. We conducted an observational comparative experiment with
30 developers to validate how well the proposed technique can affect developers’ navigation
behaviour. A qualitative analysis of the experiment revealed that CITR recommendations
can guide new developers to exhibit a structured navigation behaviour that can increase their
productivity. Finally, we compared CITR against MI and found that CITR yields higher ac-
curacy and relevance recommendations than MI with average F-measure value of 60% and
20% respectively.

Recommending Game Engine Architecture Subsystems: We built COnsensus Soft-
ware Architecture (COSA), that recommends a ranking of consensus fundamental game en-
gine architecture subsystems that can support developer when designing an engine archi-
tecture. The ranking was determined by calculating the coupling between objects (CBO)
metric for each subsystem. We evaluated the model by comparing it with predefined ground
truth data. The results of the evaluation indicate that all identified subsystems from the
architecture recovery are fundamental and should be considered when designing an engine
architecture. Moreover, the ranking revealed that the most coupled subsystems are core
systems, low-level rendering, third-party SDKs, and world editor.

7.2 Discussion

We presented in Section 3.1.4 a number of consensus algorithms. Brancotte et al. [52] inves-
tigated and compared the performance of these algorithms, and concluded that ExactAlgo-
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rithm, BioConsert, and KwikSort are the most outperforming consensus algorithms. There-
fore, we applied these algorithms in our research studies. Factors such as size of datasets,
types of data, numbers of items in each ranking, and natures of ties, all affect the generalised
Kemeny score’s outcome and are likely to generate different results. To produce the high-
est quality recommendations possible, we ran each algorithm on the dataset in each study,
compared the results, and chose the one with the lowest generalised Kemeny score. When
we compared the recommendation results generated by each algorithm in all of our research
studies, we observed that the results were very similar, with slightly different Kemeny scores.
Hence, in each study, we decided to use the algorithm that generates results with the low-
est generalised Kemeny score; ExactAlgorithm in Chapter 4, BioConsert in Chapter 5, and
KwikSort in Chapter 6.

One of the limitations of some of the recommendation techniques, such as content-based tech-
niques, is their inability to make recommendations without sufficient knowledge about the
features of each item included in the dataset. In contrast to these techniques, the consensus
algorithm does not require any metadata that describes the input items to generate recom-
mendations. Furthermore, unlike machine learning techniques that rely on large datasets to
train models and generate accurate recommendations, the consensus algorithm can scale with
the amount of available data. We showed throughout our studies that the three approaches
are able to provide high-quality recommendations without requiring massive input data. For
example, in the study of AR-Miner [9], the authors relayed on exporting user reviews from
popular mobile applications to ensure the availability of a large dataset. They exported close
to 200K user reviews from four applications to partition the data into training and test sets.
In our approach of prioritising mobile app user reviews (Chapter 4), we demonstrated the
success of the consensus algorithm at producing an accurate (strong Kendall rank correlation
coefficient) prioritised set of user reviews with database size of nearly 700 reviews.

Some recommendation approaches are based on interactive input techniques, which rely on
input data from the users to create association between the input and existing data before
making recommendations. We showed through our studies that all the proposed consensus-
based approaches do not require any input form the user to generate recommendations and
instead rely solely on input dataset. For example, our approach Consensus Interaction Trace
Recommender (CITR) (Chapter 5) does not wait for developers to start interacting with the
source-code before recommending relevant elements that are similar to those with which the
developers have interacted. Throughout our research, we proposed approaches that are based
on the consensus-based recommendation technique. We applied and tested the approaches
on three different types of data to help software developers with completing various software
engineering tasks on different software applications. Consequently, our research studies vali-
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date and prove the generalisability of the proposed technique and its capability at providing
recommendations that are close to the developers’ needs for many applications.

7.3 Future Research

In Section 3.2, we presented the fundamental steps of building a software engineering rec-
ommendation system based on observations made from our research as well as a review of
existing RSSEs studies. There is a lack of a research study that provides comprehensive
knowledge about each step. To fill this gap, we plan to conduct an extensive literature
review to obtain an in-depth explanation of how to detect and frame a software problem
from various perspectives; a description of all types of data, their sources and methods of
data extraction; an overview of all data cleaning and preprocessing techniques, specific to
each type of data; a definition of all recommendation approaches, their techniques, and the
factors that make a specific technique suitable for a particular situation; lastly, a customised
evaluation design that can suite any recommendation technique. Our goal is to provide an
in-depth view of recommendation systems.

In Chapter 4, we used an existing tool, CLAP [70], to categorise and cluster the mobile
app reviews. Following a manual analysis of the tool categorisation and clustering results,
we observed that the tool mis-categorises and mis-clusters some of the reviews. To ensure
that we recommend accurate prioritisation from applying the consensus algorithm, we plan to
propose an approach that bases the categorization and clustering on deep learning techniques,
which have shown great success in both supervised and unsupervised data clustering, but
were not investigated for clustering user reviews. We intend to apply and compare the results
of the most promising deep learning techniques, such as Long Short Term Memory (LSTM),
Convolutional Neural Network (CNN), or Recurrent Neural Networks (RNN). We also want to
design an all-in-one approach that can automatically clean and preprocess reviews, categorise,
cluster, and recommend a prioritised ranking of user reviews.

We intend to also expand our research in other directions: boarden the research by carrying
out studies on industry-tailored software applications and real industry data, involving larger
numbers of developers, with varying experience levels, in experimenting and evaluating the
approaches, investigating and comparing the quality of recommendations of the consensus
algorithms on a variety of dataset sizes, ranging from medium to large, including more
systems with different programming languages in the evaluation process, automating data
preprocessing for better quality results, and finally, building a complete consensus-based
recommendation system that can be available and used by developers to support their tasks
in any type of software applications.
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