
Context-Aware Source Code Vocabulary Normalization
forfor

Software Maintenance

Presentation of the Presentation of the Ph.D.Ph.D. DefenseDefense
August 19, 2013August 19, 2013

DGIGL DGIGL -- SOCCER SOCCER LabLab, , PtidejPtidej TeamTeam
École Polytechnique de Montréal, Québec, CanadaÉcole Polytechnique de Montréal, Québec, Canada

Latifa GUERROUJLatifa GUERROUJ
latifa.guerrouj@polymtl.calatifa.guerrouj@polymtl.ca

Outline

� Research Context & Problem Statement

� Thesis

� Context-Awareness for Source Code Vocabulary Normalization

� Conext-Aware Approaches for Vocabulary Normalization

2/61

� Conext-Aware Approaches for Vocabulary Normalization

� Impact of Advanced Identifier Splitting on Traceability recovery

� Impact of Advanced Identifier Splitting on Feature Location

� Conclusion and Future Work

Textual information embeds domain

knowledge

3/61

* Deissenboeck, F. and Pizka , M., "Concise and Consistent Naming",

Software Quality Journal, vol. 14, no. 3, 2006, pp. 261-282

About 70% of source code consists of

identifiers*

Textual information embeds domain

knowledge

4/61

Identifiers are important source of

information for maintenance tasks such as:

- Traceability link recovery

- Feature location

* Deissenboeck, F. and Pizka , M., "Concise and Consistent Naming",

Software Quality Journal, vol. 14, no. 3, 2006, pp. 261-282

Enslen et al. (MSR’09):

Samurai: splits identifiers by mining terms frequencies in
a large corpus of programs.

Lawrie et al. (WCRE’10, ICSM’11):

GenTest : generates all splittings and evaluates a scoring
function against each one.

Nomalize: a refinement of GenTest towards expansion
based on a machine-translation technique.

Example of Java code using

meaningful identifiers - ibatis

Example of Feature Location results - ibatis

Research Context & Problem Statement

6/61

Normalization:

- Splitting: bfd abs section ptr

- Expansion: binary file descriptor absolute section pointer

Requirements

Normalizing Source

Code Vocabulary !?

Example of C code

identifiers - (gcl-2.6.7)

Thesis

Can we automatically resolve the vocabulary
mismatch between source code and other

Overarching Research Question of the ThesisOverarching Research Question of the Thesis

7/61

mismatch between source code and other
software artifacts, using context, to support
software maintenance tasks such as feature
location and traceability recovery?

Thesis Phases

Thesis

Impact of Advanced

Identifier

Context-Awareness

for Source Code

Impact of Advanced

Identifier

Context-Aware

Normalization

TIDIER: Inspired by

Speech Recognition

(CSMR10, JSEP’13)

TRIS: Fast Solution Dealing

with normalization as an

Optimization Problem

(WCRE’12)

Identifier

Splitting on

Feature Location

for Source Code

Vocabulary

Normalization

Identifier

Splitting on

Traceability Recovery

Advanced

Identifier Splitting

Can Help Traceability

Recovery

Context is relevant

(EMSE’13)
Advanced

Identifier Splitting

Can Help Feature

Location

(ICPC’11)

Normalization

Approaches

(TIDIER & TRIS)

Contribution 1:

Context-Awareness for Source

Code Vocabulary Normalization

Experiments’ Definition and PlanningExperiments’ Definition and Planning

Two experiments (Exp I and II) with 63 participants asked to split/expand

identifiers from C programs with different contexts to investigate:

Context-Awareness for Normalization

10/61

� Effect of contextual information;

� Accuracy in dealing with identifiers’ terms consisting of plain English

words, abbreviations, and acronyms;

� Effect of factors: participants’ background, programming expertise,

domain knowledge, and English proficiency.

Context-Awareness for Normalization

Exp I & II Subjects

Characteristic Level # of participants

Exp I (42)

of participants

Exp II (21)

Program of

studies

Bachelor 5 3

Master 9 6

Ph.D. 28 10

Post-doc 1 2

C Programming

Experience

Basic 11 6

Medium 23 5

11/61

Experience
Medium 23 5

Expert 9 10

English

Proficiency

Bad 8 1

Good 8 9

Very good 18 6

Excellent 8 (7) 11(6)

Linux Knowledge Occasional 12 10

Basic usage 13 6

Knowledgeable but

not expert

17 5

Expert 0 0

Participants’ characteristics and background (63 participants in total).

Objects: identifiers from # open-source C applications &…

Context-Awareness for Normalization

GNU Projects (337 Projects)

C C++ .h

Files 57, 268 13,445 39,257

Size
(KLOCs)

25,442 2,846 6,062

Identifiers 1,154,280 - 619,652

FreeBSD

C C++ .h

Files 13,726 128 7,846

Size
(KLOCs)

1,800 128 8,016

Identifiers 634,902 - 278,659

12/61

Apache Web Server

C C++ .h

Files 559 - 254

Size
(KLOCs)

293 - 44

Identifiers 33,062 - 11,549

Oracle 11 - 0

Oracle 927 - 26

Linux Kernel

C C++ .h

Files 12,581 - 11,166

Size
(KLOCs)

8,474 - 1,994

Identifiers 845,335 - 352,850

Oracle 73 - 4

Oracle 20 - 0

Main characteristics of the 340 projects for the sampled identifiers.

Context-Awareness for Normalization

Context Levels Exp I Exp II

no context (control group) � �

function �

file � �

Context (Internal & External) made available to participants.

13/61

file � �

file plus AF � �

application �

application plus AF �

Context levels provided during Exp I and Exp II (AF = Acronym Finder).

Experimental Design: Randomized Block ProcedureExperimental Design: Randomized Block Procedure

Research Questions Research Questions

� RQ1: To what extent does context impact splitting/expansion of

identifiers?

Context-Awareness for Normalization

14/61

� RQ2: To what extent do the characteristics of identifiers’ terms

affect the normalization performances?

� RQ3: To what extent do level of experience, programming language

(C), domain knowledge, and English proficiency impact the

normalization.

Experiments’ Results Experiments’ Results –– RQ1 (Context Relevance)RQ1 (Context Relevance)

Context-Awareness for Normalization

15/61

Boxplots of F-measure: Exp I and II context levels.

app app+AF file file+AF noContextfile file+AF function noContext

F
-m

ea
su

re

Exp I Exp II

Context-Awareness for Normalization

- Context significantly increases

participants’ performances.

Experiments’ Results Experiments’ Results –– RQ1 (Context Relevance)RQ1 (Context Relevance)

Exp I

16/61

- Application-level context does not

improve further.

- File level exhibits better performances

than the function-level context.

Exp II

Context-Awareness for Normalization

Experiments’ Results Experiments’ Results –– RQ2 (Effect of Kind of Terms)RQ2 (Effect of Kind of Terms)

Exp I

Context Kind of Terms #Matched #Unmatched Accuracy (%)

file plus AF abbreviation

acronyms

plain

523

112

336

169

31

50

75.58

78.32

87.05

file abbreviation 542 164 76.77

17/61

file abbreviation

acronyms

plain

542

94

346

164

32

50

76.77

74.60

87.37

function abbreviation

acronyms

plain

582

97

374

161

36

52

78.33

72.93

87.79

no context abbreviation

acronyms

plain

467

82

326

248

47

75

65.31

63.57

81.30

OVERALL abbreviation

acronym

plain

2114

385

1382

742

146

227

74.02

72.50

85.89

Exp I: Proportions of kind of identifiers’ terms correctly expanded per context level.

Context-Awareness for Normalization

Exp II

Context Kind of Terms #Matched #Unmatched Accuracy

(%)

application plus

AF

abbreviation

acronyms

plain

274

57

181

69

13

17

79.88

81.43

91.41

application abbreviation

acronyms

plain

542

94

346

164

32

50

75.35

82.61

90.45

Experiments’ Results Experiments’ Results –– RQ2 (Effect of Kind of Terms)RQ2 (Effect of Kind of Terms)

18/61

plain 346 50 90.45

file plus AF abbreviation

acronyms

plain

582

97

374

161

36

52

82.87

86.30

91.67

file abbreviation

acronyms

plain

467

82

326

248

47

75

76.60

85.07

92.57

no context abbreviation

acronym

plain

2114

385

1382

742

146

227

67.98

76.12

83.94

OVERALL abbreviation

acronym

plain

1349

285

861

415

61

96

76.47

82.37

89.97

Exp II: Proportions of kind of identifiers’ terms correctly expanded per context level.

Context-Awareness for Normalization

Experiments’ Results Experiments’ Results –– RQ3 (Effect of Part. Charact eristics)RQ3 (Effect of Part. Characteristics)

Exp II

p-value

Context <0.001

Linux 0.037

Context:Linux 0.988

19/61

Context:Linux 0.988

F-measure: two-way permutation test by context &
knowledge of Linux.

Exp I Exp II

p-value p-value

Context <0.001 <0.001

English 0.032 0.044

Context:English 0.054 0.698

F-measure: two-way permutation test by context & English
Proficiency.

Exp II

Context-Awareness for Normalization

ConclusionConclusion

� Context is relevant for vocabulary normalization;

� No significant difference in the accuracy of splitting/expanding

abbreviations and acronyms;

20/61

Context is useful for
source code vocabulary normalization

� Participants exploit better context when having a good level of English;

� English is used beside the domain knowledge (Exp II) to normalize

identifiers.

Contribution 2:

Context-Aware Source Code Context-Aware Source Code

Vocabulary Normalization

Approaches: TIDIER & TRIS

Developers generate identifiers and contractions us ing: Developers generate identifiers and contractions us ing:

� Terms and words reflecting domain concepts, developers’ experience

or knowledge;

� A finite set of transformation rules:

TIDIER Overview

22/61

- Dropping all vowels

- Dropping a random vowel

- Dropping a random character

- Dropping suffix (ing, tion, ment...)

- Dropping the last m characters

pointer → pntr

pntr → ptr

rectangle → rect

user → usr

available → avail

TIDIER Overview

TIDIER is novel and TIDIER is novel and uses context uses context in the form of:in the form of:

Context-aware dictionaries enriched by the use of domain
knowledge.

23/61

� It relies on a distance using Dynamic Time Warping (DTW)
for continuous speech recognition (Ney, IEE TSE’84);

� Hill Climbing.

TIDIER relies on a searchTIDIER relies on a search--based technique to norma lizebased technique to normalize
identifiers:identifiers:

TIDIER Normalization Strategy

DTW Match

No

Success!

Select randomly a

word with a minimal

distance <> 0

Best Matching

Zero Dist?

Identifier

24/61

distance <> 0

Apply a random

transformation to the

chosen word

DTW

Match
red Dist ?

yes
Best Matching

If other transf to apply
No

Current dictionary

Add transf word to
temporary dictionary

Discard word
from temporary

dictionary

TIDIER Case Study

Research QuestionsResearch Questions

�� RQRQ11: How does TIDIER compare with alternatives when C

identifiers must be split?

�� RQRQ22: How sensitive are the performances of TIDIER to the use of

25/61

�� RQRQ22: How sensitive are the performances of TIDIER to the use of

context and specialized knowledge?

�� RQRQ33:: What percentage of identifiers with abbreviations is TIDIER

able to map dictionary words?

Analyzed Systems (Benchmark used in Context study)Analyzed Systems (Benchmark used in Context study)

Original Identifier Camel Case

userId user Id

setGID set GID

print_file2device print file 2 device

Identifier Splitting for Traceability Recovery

Camel Case & Samurai TechniquesCamel Case & Samurai Techniques

26/61

SSLCertificate SSL Certificate

MINstring MI Nstring

USERID USERID

currentsize currentsize

readadapterobject readadapterobject

tolocale tolocale

imitating imitating

DEFMASKBit DEFMASK Bit

Original Identifier Camel Case Samurai

userId user Id user Id

setGID set GID set GID

print_file2device print file 2 device print file 2 device

Identifier Splitting for Traceability Recovery

Camel Case & Samurai TechniquesCamel Case & Samurai Techniques

27/61

SSLCertificate SSL Certificate SSL Certificate

MINstring MI Nstring MIN string

USERID USERID USER ID

currentsize currentsize current size

readadapterobject readadapterobject read adapter object

tolocale tolocale tol ocal e

imitating imitating imi ta ting

DEFMASKBit DEFMASK Bit DEF MASK Bit

Original Identifier Camel Case Samurai

userId user Id user Id

setGID set GID set GID

print_file2device print file 2 device print file 2 device

SSLCertificate SSL Certificate SSL Certificate

Splits some cases

where CamelCase

cannot

Identifier Splitting for Traceability Recovery

Camel Case & Samurai TechniquesCamel Case & Samurai Techniques

28/61

SSLCertificate SSL Certificate SSL Certificate

MINstring MI Nstring MIN string

USERID USERID USER ID

currentsize currentsize current size

readadapterobject readadapterobject read adapter object

tolocale tolocale tol ocal e

imitating imitating imi ta ting

DEFMASKBit DEFMASK Bit DEF MASK Bit

Oversplits

ResultsResults

TIDIER Results

29/61

Performances of Camel Case, Samurai, and TIDIER when using different dictionaries.

TIDIER outperforms previous ones on C and it is the first to

produce a correct mapping of 48% (35/73) for abbreviations.

Contribution 2:

Context-Aware Source Code Context-Aware Source Code

Vocabulary Normalization

Approaches: TIDIER & TRIS

TRIS Overview

TRIS is a novel approach dealing with normalization as an
optimization (minimization) problem:

The aim is to minimize the following cost function:

31/61

- Freq(wOrig): frequency of wOrig in the source code

- C(type(wOrig� w): cost of the transformation type

C(wOrig�w) = α*Freq(wOrig) + C(type(wOrig�w))

TRIS Normalization Strategy

Computation of dictionary words frequenceis

Building the set of possible transformations

1. Source Code

2. Dictionaries

Phase 1:

Building Transformation

32/61

Construction of arborescence of

transformations

Identifier auxiliary graph creation

Optimal split/expansion search

1. Identifier

2. Arborescence

Phase 2:

Identifier Processing

TRIS Case Study

RQ: What is the accuracy of the TRIS compared with alternative state-

of-the art approaches?

Research QuestionResearch Question

Analyzed SystemsAnalyzed Systems
JHotDraw – Java

Files Size (KLOC) Identifiers Oracle

33/61

Lawrie et al. Data Set

Programs C
(MLOC)

C++
(MLOC)

Java
(MLOC)

186 26 15 7

155 16 2,348 957

Lynx - C

Files Size (KLOC) Identifiers Oracle

247 174 12,194 3,085

489 C/C++ Sampled the Projects used in TIDIER

Main characteristics of the systems analyzed using TRIS.

TRIS Results

ResultsResults

34/61

Results of Wilcoxon paired test & Cliff ’s Delta effect size on Lynx.

Mean of F-measure on Lynx (C system).

Cliff ’s delta Interpretation:

- small: 0.148 <= d <0.33, medium: 0.33 <= d < 0.474 and large: d >= 0.474

Approach 1 Approach 2 Adj p-value Cliff's d

TRIS Camel Case <0.001 0.743

TRIS Samurai <0.001 0.684

TRIS TIDIER <0.001 0.204

TRIS Results

ResultsResults

35/61

Identifier splitting correctness on the data set from Lawrie et al.

- TRIS performs better than others with medium to large effect

size on C;

- TRIS is better than Samurai of 16% and GenTest of 4%.

TRIS Results

ResultsResults

36/61

Mean of F-measure on the 489 C sampled identifiers.

Statistically significant difference using Wilcoxon:

- p-value < 0.001;

- Cliff ’s d effect size is medium (d = 0.456).

Contribution 3:

Impact of Advanced Identifier Splitting onImpact of Advanced Identifier Splitting on

Traceability Recovery

Research QuestionResearch Question

RQ: How do different identifiers splitting strategies (CamelCase,
Samurai and Oracle) impact Traceability Recovery?

Identifier Splitting for Traceability Recovery

38/61

Splitting strategy LSI VSM

CamelCase LSICamelCase VSMCamelCase

Samurai LSISamurai VSMSamurai

Oracle LSIOracle VSMOracle

Configurations of the studied Traceability Recovery techniques.

Traceability Recovery Techniques ConfigurationsTraceability Recovery Techniques Configurations

Identifier Splitting for Traceability Recovery

Systems

(Java)

Version # Requirements # Classes

iTrust 10 35 218

Analyzed SystemsAnalyzed Systems

39/61

Pooka 2.0 90 298

System (C) Version # Files Size

(KLOCs)

Methods

Lynx 2.8.5 247 174 2,067

Main characteristics of the studied systems.

Identifier Splitting for Traceability Recovery

Results (%)Results (%)

Systems Precision Recall

LSICamelCase LSISamurai LSIOracle LSICamelCase LSISamurai LSIOracle

iTrust 36.49 36.49 28.39 36.61 36.61 34.23

Pooka 14.06 14.14 15.64 22.81 22.37 22.36

40/61

Lynx 45.43 39.08 39.40 41.99 40.82 41.55

Systems Precision Recall

VSMCamelCase VSMSamurai VSMOracle VSMCamelCase VSMSamurai VSM
Oracle

iTrust 48.99 48.99 25.81 23.77 23.77 23.07

Pooka 40.54 40.54 42.07 11.59 11.63 12.19

Lynx 64.26 57.84 49.91 37.66 37.05 40.16

Precision and Recall of the Traceability Recovery techniques configurations

for iTrust, Pooka, and Lynx.

Identifier Splitting for Traceability Recovery

Results and DiscussionResults and Discussion

� Potential benefits of developing advanced vocabulary normalization

approaches.

� Mismatch resulting from the requirements (presence of acronyms in

requirements).

� Case of Lynx (noise in data) : requirement 534 is “the browser should be able to

41/61

� Case of Lynx (noise in data) : requirement 534 is “the browser should be able to

manage store erase session I information”. Whereas a C method

LYMain.c.i__nobrowse_fun is related to browse directories functionality.

� Baseline splitting: “nobrowse” and thus no link between requirement 534 and

LYMain.c.i_nobrowse_fun.txt.

� Samurai and manual oracle split the identifier “nobrowse” into “no browse” and link

the file LYMain.c.i__nobrowse_fun.txt.

Potential benefits of developing advanced
normalization approaches

Contribution 4:

Impact of Advanced Identifier Splitting onImpact of Advanced Identifier Splitting on

Feature Location

Identifier Splitting for Feature Location

Research QuestionResearch Question

Feature Location Techniques (FLTs) ConfigurationsFeature Location Techniques (FLTs) Configurations

RQ: How do different identifiers splitting strategies (CamelCase,

Samurai and Oracle) impact Feature Location?

43/61

Splitting strategy IR FLT IRDyn FLT

CamelCase IRCamelCase IRCamelCaseDyn

Samurai IRSamurai IRSamuraiDyn

Oracle IROracle IROracleDyn

Feature Location Techniques (FLTs) ConfigurationsFeature Location Techniques (FLTs) Configurations

Feature Location techniques configurations studied.

Identifier Splitting for Feature Location

System

Version

Size

(KLOC)

Classes Methods # Data Sets

Rhino 1.6R5 32 138 1,870 Eaddy et al.’s data* (2)

jEdit 4.3 109 483 6.4 2

Dataset Size Queries Gold Sets Execution Information

Analyzed SystemsAnalyzed Systems

44/61 * http://www.cs.columbia.edu/~eaddy/concerntagger/

RhinoFeatures 241 Sections of
ECMAScript

Eaddy et al.* Full Execution Traces
(from unit tests)

RhinoBugs 143 Bug title and
description

Eaddy et al.*
(CVS)

N/A

jEditFeatures 64 Feature (or Patch)
title and
description

SVN Marked Execution Traces

jEditBugs 86 Bug title and
description

SVN Marked Execution Traces

Characteristics of the main analyzed systems.

Similar median &

average of

effectiveness

measure

IR FLTsIR FLTs

Identifier Splitting for Feature Location

ResultsResults

45/61

RhinoFeatures
RhinoBugs

jEditFeatures jEditBugs

Datasets with

features have better

results than

datasets with bugs

Identifier Splitting for Feature Location

ResultsResults

46/61

RhinoFeatures RhinoBugs

jEditFeatures jEditBugs

Identifier Splitting for Feature Location

ResultsResults

47/61

RhinoFeatures RhinoBugs

jEditFeatures jEditBugs

Statistical

significant result

(p=0.05)

Identifier Splitting for Feature Location

Results and DiscussionResults and Discussion

� Samurai and CamelCase produced similar results;

� IROracle outperforms IRCamelCase in terms of the effectiveness measure,

on the Rhino dataset;

48/61

on the RhinoFeatures dataset;

� When only textual information is available, an improved splitting technique

can help improve effectiveness of feature location.

� Samurai ovesplits identifiers into many meaningless terms. In Rhino:

debugAccelerators to debug Ac ce le r at o rs (CamelCase better in such cases).

� Inconsistencies between the identifiers used in the queries, and the

identifiers used in the code.

� The mismatch is less noticeable for features and more severe for bugs.

Identifier Splitting for Feature Location

Vocabulary mismatch between queries and codeVocabulary mismatch between queries and code

49/61

� jEdit’s feature #16084869 (“Support “thick” caret”) contained in its

description identifiers found in the name of the methods (e.g., thick,

caret, text, area, etc.).

� Name of developers (e.g., Slava,Carlos- Identifiers specific to

communication (e.g., thanks, greetings, annoying).

� Appeared only in the query vocabulary, and did not appear in the source

code vocabulary.

Features are more “descriptive” than bugsFeatures are more “descriptive” than bugs

Words “join” Words “join”

and “line” are

not mentioned

Identifier Splitting for Feature Location

50/61

not mentionednot mentioned

Potential benefits of developing advanced
normalization approaches

Example of query (bugs)

Binkley et al. (ICSM’12): Normalization improves Feature Location

TIDIER is novel and performs better

than its previous approaches (CamelCase &

Samurai):

54.29% of splitting correctness vs. 31.14%

for (Samurai) & 30.08% (Camel Case)

with an application level dictionary

augmented with domain knowledge

TIDIER was the first to produce a correct

mapping for 48% of abbreviations.

.

Context is relevant for source code vocabulary

normalization.

Source code files are the most helpful

A limited context such as functions does not

help

A wider context such as applications does

not improve further.

Domain knowledge improves normalization.

Conclusion

51/61

mapping for 48% of abbreviations.

Advanced identifier splitting strategies

improves the average of precision and recall

of some systems: Pooka & Lynx.

Advanced splitting improves feature

location using LSI: Rhino (features).

The quality of the requirements and

expressiveness of the queries impact too.

TRIS is novel and brings improvements

on state-of-the-art approaches on C:

92.06% vs. 85.25% for TIDIER (Lynx- C)

vs. 46.34% for Samurai

vs. 38.51% for CamelCase

86% vs. 82% for GenTest on Lawrie et al. data

vs. 70% for Samurai.

87.90% vs. 64.09% for TIDIER on the

identifiers from the 340 projects.

Domain knowledge improves normalization.

Future Work

Impact of Vocabulary Normalization on Maintenance T asksImpact of Vocabulary Normalization on Maintenance T asks

� Evaluate our work on other systems such as C, C++ or COBOL;

� Compare it to other works such as Normalize (Lawrie et al, ICSM’11);

� Study the impact of IR queries quality (Haiduc et al. (ICSE’13)).

52/61

ContextContext--Aware Vocabulary Normalization ApproachesAware Vocabulary Normalization Approaches

� Extend the evaluation of TIDIER and TRIS on larger systems;

� Compare the results to more recent approaches such as Normalize (Lawrie et al.,

ICSM’11) and LINSEN (Corazza et al., ICSM’12).

� Study the impact of IR queries quality (Haiduc et al. (ICSE’13)).

ContextContext--Awareness for Vocabulary NormalizationAwareness for Vocabulary Normalization

� Replicate our studies using eye-tracking tools;

� Implement a context model that within an IDE support program

understanding;

� Involve participants from industry.

Future Work

53/61

Mining Software Repositories to Study the Impact ofMining Software Repositories to Study the Impact of
Identifier Style on Software QualityIdentifier Style on Software Quality

� Infer the identifier styles in open-source projects using HMM;

� Analyze whether open-source developers adapt/bring their style;

� Analyze whether identifier style can introduce bugs and--or impacts internal

quality metrics such as semantic coupling & cohesion.

� Involve participants from industry.

Articles in journalsArticles in journals

1. Latifa Guerrouj, Massimilano Di Penta, Yann-Gaël Guéhéneuc, and Giuliano Antoniol. An

Experimental Investigation on the Effects of Contexts on Source Code Identifiers Splitting

and Expansion. Empirical Software Engineering Journal (EMSE’13).

2. Latifa Guerrouj, Massimilano Di Penta, Giuliano Antoniol, and Yann-Gaël Guéhéneuc.

TIDIER: An Identifier Splitting Approach Using Speech Recognition Techniques. Journal of

Software Evolution and Process (JSEP’13). 25(6): 569-661.

Publications

54/61

Software Evolution and Process (JSEP’13). 25(6): 569-661.

Conference ArticlesConference Articles

3. 3. Latifa Guerrouj, Philippe Galinier, Yann-Gaël Guéhéneuc, Giuliano Antoniol, and

Massimiliano Di Penta. TRIS: a Fast and Accurate Identifiers Splitting and Expansion

Algorithm. Proceedings of the 19th IEEE Working Conference on Reverse Engineering

(WCRE), October 2012.

4. Bogdan Dit, Latifa Guerrouj, Denys Poshyvanyk, Giuliano Antoniol. Can Better Identifier

Splitting Techniques Help Feature Location? Proceedings of the 19 IEEE International

Conference on Program Comprehension (ICPC), June 2011.

Conference ArticlesConference Articles

5. Nioosha Madani, Latifa Guerrouj, Massimiliano Di Penta, Yann-Gaël Guéhéneuc,

Giuliano Antoniol. Recognizing Words from Source Code Identifiers Using Speech

Recognition Techniques. Proceedings of the 14th IEEE European Conference on

Software Maintenance and Reengineering (CSMR), Mars 2010. Best Paper award

of CSMR’10.

Publications

55/61

6. Latifa Guerrouj. Normalizing Source Code Vocabulary to Enhance Program

Comprehension and Software Quality. Proceedings of the 35th ACM International

Conference on Software Engineering (ICSE), May 2013.

7. Latifa Guerrouj. Automatic Derivation of Concepts Based on the Analysis of Source

Code Identifiers. Proceedings of the 17th Working Conference on Reverse Engineering

(WCRE), October 2012.

8. Alberto Bacchelli, Nicolas Bettenburg, Latifa Guerrouj. Mining Unstructured Data

because “Mining Unstructured Data is Like Fishing in Muddy Waters!”. Proceedings of

the 19th Working Conference on Reverse Engineering (WCRE), October 2012.

TIDIER is novel and performs better

than its previous approaches (CamelCase &

Samurai):

54.29% of splitting correctness vs. 31.14%

for (Samurai) & 30.08% (Camel Case)

with an application level dictionary

augmented with domain knowledge

TIDIER was the first to produce a correct

mapping for 48% of abbreviations.

.

Context is relevant for source code vocabulary

normalization.

Source code files are the most helpful

A limited context such as functions does not

help

A wider context such as applications does

not improve further.

Domain knowledge improves normalization.

Conclusion

56/61

mapping for 48% of abbreviations.

Advanced identifier splitting strategies

improves the average of precision and recall

of some systems: Pooka & Lynx.

Advanced splitting improves feature

location using LSI: Rhino (features).

The quality of the requirements and

expressiveness of the queries impact too.

TRIS is novel and brings improvements

on state-of-the-art approaches on C:

92.06% vs. 85.25% for TIDIER (Lynx- C)

vs. 46.34% for Samurai

vs. 38.51% for CamelCase

86% vs. 82% for GenTest on Lawrie et al. data

vs. 70% for Samurai.

87.90% vs. 64.09% for TIDIER on the

identifiers from the 340 projects.

Domain knowledge improves normalization.

LAWRIE, D., FEILD, H. et BINKLEY, D. (2006). Syntactic Identifier Conciseness and Consistency. Proceedings of the 6th

International Workshop on Source Code Analysis and Manipulation. pp. 139–148.

MAYRHAUSER, A. V. et VANS, A. M. (1995). Program Comprehension During Software Maintenance and Evolution. Computer, vol.

28, pp. 44–55

M-A.D. STOREY, F.D. FRACCHIA, H. M. (1999). Cognitive Design Elements to Support the Construction of a Mental Model During

Software Exploration. Journal of Systems and Software, vol. 44, pp. 171–185.

ROBILLARD, M. P., COELHO, W. et MURPHY, G. C. (2004). How Effective Developers Investigate Source Code: An Exploratory

Study. IEEE Transactions on Software Engineering, vol. 30, pp. 889–903.

References

57/61

Study. IEEE Transactions on Software Engineering, vol. 30, pp. 889–903.

KERSTEN, M. et MURPHY, G. C. (2006). Using Task Context to Improve Programmer Productivity. Proceedings of the 14th

International Symposium on Foundations of Software Engineering. pp. 1–11.

SILLITO, J., MURPHY, G. C. et VOLDER, K. D. (2008). Asking and Answering Questions during a Programming Change Task. IEEE

Transactions on Software Engineering, vol. 34,pp. 434–451.

BINKLEY, D., DAVIS, M., LAWRIE, D. et MORRELL, C. (2009). To Camelcase or Under score. Proceedings of the 17th International

Conference on Program Comprehension. pp. 158–167.

ENSLEN, E., HILL, E., POLLOCK, L. et SHANKER, K. V. (2009). Mining Source Code to Automatically Split Identifiers for

Software Analysis. Proceedings of the 6th International Working Conference on Mining Software Repositories. pp. 16–17.

LAWRIE, D. J., BINKLEY, D. et MORRELL, C. (2010). Normalizing Source Code Vocabulary. Proceedings of the 17th Working

Conference on Reverse Engineering. pp. 112–122.

LAWRIE, D. et BINKLEY, D. (2011). Expanding Identifiers to Normalize Source Code Vocabulary. Proceedings of the 27th

International Conference on Software Maintenance. pp. 113–122.

CORAZZA, A., MARTINO, S. D. et MAGGIO, V. (2012). LINSEN: An Efficient Approach to Split Identifiers and Expand

Abbreviations. Proceedings of the 28th International Conference of Software Maintenance. pp. 233–242.

EISENBARTH, T., KOSCHKE, R. et SIMON, D. (2003). Locating Features in Source Code. IEEE Transactions on Software

Engineering, vol. 29, pp. 210–224.

POSHYVANYK, D., GU´EH´ENEUC, Y.-G., MARCUS, A., ANTONIOL, G. et RAJLICH, V. (2007). Feature Location Using
Probabilistic Ranking of Methods Based on Execution Scenarios and Information Retrieval. IEEE Transactions on Software Engineering,

References

58/61

Probabilistic Ranking of Methods Based on Execution Scenarios and Information Retrieval. IEEE Transactions on Software Engineering,

vol. 33, pp. 420–432.

EADDY, M., AHO, A., ANTONIOL, G. et GU´EH´ENEUC, Y.-G. (2008a). CERBERUS: Tracing Requirements to Source Code Using
Information Retrieval, Dynamic Analysis, and Program Analysis. Proceedings of 16th International Conference on Program

Comprehension. pp. 53–62.

BINKLEY, D., DAWN, D. L. et UEHLINGER, C. (2012). Vocabulary Normalization Improves

IR-Based Concept Location. Proceedings of the 28th International Conference on Software Maintenance, vol. 41, pp. 588–591.

ANTONIOL, G., CANFORA, G., CASAZZA, G., LUCIA, A. D., et MERLO, E. (2002). Recovering Traceability Links Between Code

and Documentation. IEEE Transactions on Software Engineering, vol. 28, pp. 970–983.

MALETIC, J. I. et COLLARD, M. L. (2009). Tql: A Query Language to Support Traceability. Proceedings of the 2009 ICSE Workshop

on Traceability in Emerging Forms of Software Engineering. pp. 16–20

DE LUCIA, A., DI PENTA, M. et OLIVETO, R. (2010). Improving Source Code Lexicon via Traceability and Information
Retrieval. IEEE Transactions on Software Engineering, vol. 37, pp. 205–226.

GUERROUJ, L., DI PENTA, M., GU´EH´ENEUC, Y.-G. et ANTONIOL, G. (2013b). An Experimental Investigation on
the Effects of Context on Source Code Identifiers Splitting and Expansion. Empirical Software Engineering. Doi:

10.1016/S0164-1212(00)00029-7.

GUERROUJ, L., DI PENTA, M., ANTONIOL, G. et GU´EH´ENEUC, Y.-G. (2013a). TIDIER: An Identifier Splitting
Approach using Speech Recognition Techniques. Journal of Software Evolution and Process, vol. 25, pp. 569–661.

DIT, B., GUERROUJ, L., POSHYVANYK, D. et ANTONIOL, G. (2011). Can Better Identifier Splitting Techniques Help

References

59/61

DIT, B., GUERROUJ, L., POSHYVANYK, D. et ANTONIOL, G. (2011). Can Better Identifier Splitting Techniques Help

Feature Location? Proceedings of the 19th International Conference on Program Comprehension. pp. 11–20.

GUERROUJ, L., GALINIER, P., GU´EH´ENEUC, Y.-G., ANTONIOL, G. et DI PENTA, M. (2012). TRIS: A Fast and
Accurate Identifiers Splitting and Expansion Algorithm. Proceedings of the 19th Working Conference on Reverse Engineering.

pp. 103–112.

MADANI, N., GUERROUJ, L., DI PENTA, M., GU´EH´ENEUC, Y.-G. et ANTONIOL, G. (2010). Recognizing Words
from Source Code Identifiers using Speech Recognition Techniques. Proceedings of the 14th European Conference on

Software Maintenance and Reengineering. pp. 68–77.

NEY, H. (1984). The Use of a One-stage Dynamic Programming Algorithm for Connected Word Recognition. IEEE

Transactions on Acoustics Speech and Signal Processing, vol. 32, pp. 263–271.

