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Textual information embeds domain 

knowledge
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* Deissenboeck, F. and Pizka , M., "Concise and Consistent Naming", 

Software Quality Journal, vol. 14, no. 3, 2006, pp. 261-282



About 70% of  source code consists of  

identifiers*

Textual information embeds domain 

knowledge
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Identifiers are important source of  

information for maintenance tasks such as:   

- Traceability link recovery

- Feature location

* Deissenboeck, F. and Pizka , M., "Concise and Consistent Naming", 

Software Quality Journal, vol. 14, no. 3, 2006, pp. 261-282



Enslen et al. (MSR’09): 

Samurai: splits identifiers by mining terms frequencies in 
a large corpus of  programs.

Lawrie et al. (WCRE’10, ICSM’11):

GenTest : generates all splittings and evaluates a scoring 
function against each one.

Nomalize: a refinement of  GenTest towards expansion 
based on a machine-translation technique.

Example of  Java code using   

meaningful identifiers - ibatis 

Example of  Feature Location results  - ibatis



Research Context & Problem Statement
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Normalization:

- Splitting: bfd abs section ptr

- Expansion: binary file descriptor absolute section  pointer

Requirements

Normalizing Source 

Code Vocabulary !?

Example of  C code

identifiers - (gcl-2.6.7) 



Thesis 

Can we automatically resolve the vocabulary
mismatch between source code and other

Overarching Research Question of the ThesisOverarching Research Question of the Thesis
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mismatch between source code and other
software artifacts, using context, to support
software maintenance tasks such as feature
location and traceability recovery?
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Contribution 1:

Context-Awareness for Source

Code Vocabulary Normalization



Experiments’ Definition and PlanningExperiments’ Definition and Planning

Two experiments (Exp I and II) with 63 participants asked to split/expand 

identifiers from C programs with different contexts to investigate:

Context-Awareness for Normalization
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� Effect of  contextual information;

� Accuracy in dealing with identifiers’ terms consisting of  plain English

words, abbreviations, and acronyms;

� Effect of  factors: participants’ background, programming expertise,

domain knowledge, and English proficiency.



Context-Awareness for Normalization

Exp I & II Subjects

Characteristic Level # of  participants

Exp I (42)

# of  participants

Exp II (21)

Program of    

studies

Bachelor 5 3

Master 9 6

Ph.D. 28 10

Post-doc 1 2

C Programming  

Experience

Basic 11 6

Medium 23 5
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Experience
Medium 23 5

Expert 9 10

English 

Proficiency

Bad 8 1

Good 8 9

Very good 18 6

Excellent 8 (7) 11(6)

Linux Knowledge Occasional 12 10

Basic usage 13 6

Knowledgeable but 

not expert

17 5

Expert 0 0

Participants’ characteristics and background (63 participants in total).



Objects: identifiers from # open-source C applications &…

Context-Awareness for Normalization

GNU Projects (337 Projects)

C C++ .h

Files 57, 268 13,445 39,257

Size
(KLOCs)

25,442 2,846 6,062

Identifiers 1,154,280 - 619,652

FreeBSD

C C++ .h

Files 13,726 128 7,846

Size
(KLOCs)

1,800 128 8,016

Identifiers 634,902 - 278,659
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Apache Web Server

C C++ .h

Files 559 - 254

Size 
(KLOCs)

293 - 44

Identifiers 33,062 - 11,549

Oracle 11 - 0

Oracle 927 - 26

Linux Kernel

C C++ .h

Files 12,581 - 11,166

Size
(KLOCs)

8,474 - 1,994

Identifiers 845,335 - 352,850

Oracle 73 - 4

Oracle 20 - 0

Main characteristics of  the 340 projects for the sampled identifiers. 



Context-Awareness for Normalization

Context Levels Exp I Exp II

no context (control group) � �

function �

file � �

Context (Internal & External) made available to participants.
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file � �

file plus AF � �

application �

application plus AF �

Context levels provided during Exp I and Exp II  (AF = Acronym Finder).

Experimental Design: Randomized Block ProcedureExperimental Design: Randomized Block Procedure



Research Questions Research Questions 

� RQ1: To what extent does context impact splitting/expansion of   

identifiers?

Context-Awareness for Normalization

14/61

� RQ2: To what extent do the characteristics of  identifiers’ terms  

affect the normalization performances?

� RQ3: To what extent do level of  experience,  programming language 

(C), domain knowledge, and English proficiency impact the 

normalization.



Experiments’ Results Experiments’ Results –– RQ1 (Context Relevance)RQ1 (Context Relevance)

Context-Awareness for Normalization
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Boxplots of  F-measure: Exp I and II context levels.  

app      app+AF    file     file+AF   noContextfile       file+AF    function     noContext

F
-m

ea
su

re

Exp I Exp II



Context-Awareness for Normalization

- Context significantly increases 

participants’ performances.

Experiments’ Results Experiments’ Results –– RQ1 (Context Relevance)RQ1 (Context Relevance)

Exp I
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- Application-level context does not  

improve further.

- File level exhibits better performances

than the function-level  context. 

Exp II



Context-Awareness for Normalization

Experiments’ Results Experiments’ Results –– RQ2 (Effect of Kind of Terms )RQ2 (Effect of Kind of Terms)

Exp I

Context Kind of  Terms #Matched #Unmatched Accuracy (%)

file plus AF abbreviation

acronyms

plain

523

112

336

169

31

50

75.58

78.32

87.05

file abbreviation 542 164 76.77
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file abbreviation

acronyms

plain

542

94

346

164

32

50

76.77

74.60

87.37

function abbreviation

acronyms

plain

582

97

374

161

36

52

78.33

72.93

87.79

no context abbreviation

acronyms

plain

467

82

326

248

47

75

65.31

63.57

81.30

OVERALL abbreviation

acronym

plain

2114

385

1382

742

146

227

74.02

72.50

85.89

Exp I: Proportions of  kind of  identifiers’ terms correctly expanded per context level.



Context-Awareness for Normalization

Exp II

Context Kind of  Terms #Matched #Unmatched Accuracy 

(%)

application plus 

AF

abbreviation

acronyms

plain

274

57

181

69

13

17

79.88

81.43

91.41

application abbreviation

acronyms

plain

542

94

346

164

32

50

75.35

82.61

90.45

Experiments’ Results Experiments’ Results –– RQ2 (Effect of Kind of Terms )RQ2 (Effect of Kind of Terms)
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plain 346 50 90.45

file plus AF abbreviation

acronyms

plain

582

97

374

161

36

52

82.87

86.30

91.67

file abbreviation

acronyms

plain

467

82

326

248

47

75

76.60

85.07

92.57

no context abbreviation

acronym

plain

2114

385

1382

742

146

227

67.98

76.12

83.94

OVERALL abbreviation

acronym

plain

1349

285

861

415

61

96

76.47

82.37

89.97

Exp II: Proportions of  kind of  identifiers’ terms correctly expanded per context level.



Context-Awareness for Normalization

Experiments’ Results Experiments’ Results –– RQ3 (Effect of Part. Charact eristics)RQ3 (Effect of Part. Characteristics)

Exp II

p-value

Context <0.001

Linux 0.037

Context:Linux 0.988
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Context:Linux 0.988

F-measure: two-way permutation test by context & 
knowledge of  Linux.

Exp I Exp II

p-value p-value

Context <0.001 <0.001

English 0.032 0.044

Context:English 0.054 0.698

F-measure: two-way permutation test by context & English
Proficiency.

Exp II



Context-Awareness for Normalization

ConclusionConclusion

� Context is relevant for vocabulary normalization;

� No significant difference in the accuracy of  splitting/expanding 

abbreviations and acronyms;
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Context is useful for 
source code vocabulary normalization

� Participants exploit better context when having a good level of  English;

� English is used beside the domain knowledge (Exp II) to normalize  

identifiers.



Contribution 2:

Context-Aware Source Code Context-Aware Source Code 

Vocabulary Normalization 

Approaches: TIDIER & TRIS



Developers generate identifiers and contractions us ing: Developers generate identifiers and contractions us ing: 

� Terms and words reflecting domain concepts, developers’ experience 

or knowledge;

� A finite set of transformation rules:

TIDIER Overview
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- Dropping all vowels

- Dropping a random vowel

- Dropping a random character

- Dropping suffix (ing, tion, ment...)

- Dropping the last m characters

pointer → pntr

pntr → ptr

rectangle → rect

user → usr

available → avail



TIDIER  Overview

TIDIER is novel and TIDIER is novel and uses context uses context in the form of:in the form of:

Context-aware dictionaries enriched by the use of  domain 
knowledge.
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� It relies on a distance using Dynamic Time Warping  (DTW) 
for continuous speech recognition (Ney, IEE TSE’84);

� Hill Climbing.

TIDIER relies on a searchTIDIER relies on a search--based technique to norma lizebased technique to normalize
identifiers:identifiers:



TIDIER Normalization Strategy

DTW Match

No

Success!

Select randomly a 

word with a minimal 

distance <> 0

Best Matching

Zero Dist?

Identifier

24/61

distance <> 0

Apply a random

transformation to the

chosen word

DTW 

Match
red Dist ?

yes
Best Matching

If  other transf  to apply
No

Current dictionary

Add transf word to
temporary dictionary

Discard word
from temporary 

dictionary



TIDIER Case Study

Research QuestionsResearch Questions

�� RQRQ11: How does TIDIER compare with alternatives when C

identifiers must be split?

�� RQRQ22: How sensitive are the performances of TIDIER to the use of

25/61

�� RQRQ22: How sensitive are the performances of TIDIER to the use of

context and specialized knowledge?

�� RQRQ33:: What percentage of identifiers with abbreviations is TIDIER

able to map dictionary words?

Analyzed Systems (Benchmark used in Context study)Analyzed Systems (Benchmark used in Context study)



Original Identifier Camel Case

userId user Id

setGID set GID

print_file2device print file 2 device

Identifier Splitting for Traceability Recovery

Camel Case & Samurai TechniquesCamel Case & Samurai Techniques
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SSLCertificate SSL Certificate

MINstring MI Nstring

USERID USERID

currentsize currentsize

readadapterobject readadapterobject

tolocale tolocale

imitating imitating

DEFMASKBit DEFMASK Bit



Original Identifier Camel Case Samurai

userId user Id user Id

setGID set GID set GID

print_file2device print file 2 device print file 2 device

Identifier Splitting for Traceability Recovery

Camel Case & Samurai TechniquesCamel Case & Samurai Techniques
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SSLCertificate SSL Certificate SSL Certificate

MINstring MI Nstring MIN string

USERID USERID USER ID

currentsize currentsize current size

readadapterobject readadapterobject read adapter object

tolocale tolocale tol ocal e

imitating imitating imi ta ting

DEFMASKBit DEFMASK Bit DEF MASK Bit



Original Identifier Camel Case Samurai

userId user Id user Id

setGID set GID set GID

print_file2device print file 2 device print file 2 device

SSLCertificate SSL Certificate SSL Certificate

Splits some cases 

where CamelCase 

cannot

Identifier Splitting for Traceability Recovery

Camel Case & Samurai TechniquesCamel Case & Samurai Techniques

28/61

SSLCertificate SSL Certificate SSL Certificate

MINstring MI Nstring MIN string

USERID USERID USER ID

currentsize currentsize current size

readadapterobject readadapterobject read adapter object

tolocale tolocale tol ocal e

imitating imitating imi ta ting

DEFMASKBit DEFMASK Bit DEF MASK Bit

Oversplits



ResultsResults

TIDIER Results
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Performances of  Camel Case, Samurai, and TIDIER when using different dictionaries.

TIDIER outperforms previous ones on C and it is the first to 

produce a correct mapping of 48% (35/73) for abbreviations. 



Contribution 2:

Context-Aware Source Code Context-Aware Source Code 

Vocabulary Normalization 

Approaches: TIDIER & TRIS



TRIS Overview

TRIS  is  a novel approach dealing with normalization as an 
optimization  (minimization) problem:

The aim is to minimize the following cost function:
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- Freq(wOrig): frequency of  wOrig in the source code

- C(type(wOrig� w): cost of  the transformation type

C(wOrig�w) = α*Freq(wOrig) + C(type(wOrig�w))



TRIS Normalization Strategy

Computation of  dictionary words frequenceis

Building the set of  possible transformations

1. Source Code

2. Dictionaries

Phase 1:

Building Transformation
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Construction of  arborescence of

transformations

Identifier auxiliary graph creation

Optimal split/expansion search

1. Identifier

2. Arborescence

Phase 2:

Identifier Processing 



TRIS Case Study

RQ: What is the accuracy of the TRIS compared with alternative state-

of-the art approaches?

Research QuestionResearch Question

Analyzed SystemsAnalyzed Systems
JHotDraw – Java

Files Size (KLOC) Identifiers Oracle
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Lawrie et al. Data Set

Programs C
(MLOC)

C++
(MLOC)

Java
(MLOC)

186 26 15 7

155 16 2,348 957

Lynx - C

Files Size (KLOC) Identifiers Oracle

247 174 12,194 3,085

489 C/C++ Sampled the Projects used in TIDIER

Main characteristics of  the systems analyzed using TRIS. 



TRIS Results

ResultsResults
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Results of  Wilcoxon paired test  & Cliff ’s Delta effect size on Lynx.

Mean of  F-measure on Lynx (C system).

Cliff ’s delta Interpretation:

- small: 0.148 <= d <0.33, medium: 0.33 <= d < 0.474 and large: d >= 0.474

Approach 1 Approach 2 Adj p-value Cliff's d

TRIS Camel Case <0.001 0.743

TRIS Samurai <0.001 0.684

TRIS TIDIER <0.001 0.204



TRIS Results

ResultsResults
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Identifier splitting correctness on the data set from Lawrie et al. 

- TRIS performs better than others with medium to large effect 

size on C;

- TRIS is better than Samurai of  16% and GenTest of  4%.



TRIS Results

ResultsResults
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Mean of  F-measure on the 489 C sampled identifiers.

Statistically significant  difference using Wilcoxon:

- p-value < 0.001;

- Cliff ’s d effect size is medium (d = 0.456).



Contribution 3:

Impact of Advanced Identifier Splitting onImpact of Advanced Identifier Splitting on

Traceability Recovery



Research QuestionResearch Question

RQ: How do different identifiers splitting strategies (CamelCase,   
Samurai and Oracle) impact Traceability Recovery?

Identifier Splitting for Traceability Recovery

38/61

Splitting strategy LSI VSM

CamelCase LSICamelCase VSMCamelCase

Samurai LSISamurai VSMSamurai

Oracle LSIOracle VSMOracle

Configurations of  the studied Traceability Recovery techniques.

Traceability Recovery Techniques ConfigurationsTraceability Recovery Techniques Configurations



Identifier Splitting for Traceability Recovery

Systems

(Java)

Version # Requirements # Classes

iTrust 10 35 218

Analyzed SystemsAnalyzed Systems
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Pooka 2.0 90 298

System (C) Version # Files Size 

(KLOCs)

# Methods

Lynx 2.8.5 247 174 2,067

Main characteristics of  the studied systems.



Identifier Splitting for Traceability Recovery

Results (%)Results (%)

Systems Precision Recall

LSICamelCase LSISamurai LSIOracle LSICamelCase LSISamurai LSIOracle

iTrust 36.49 36.49 28.39 36.61 36.61 34.23

Pooka 14.06 14.14 15.64 22.81 22.37 22.36
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Lynx 45.43 39.08 39.40 41.99 40.82 41.55

Systems Precision Recall

VSMCamelCase VSMSamurai VSMOracle VSMCamelCase VSMSamurai VSM
Oracle

iTrust 48.99 48.99 25.81 23.77 23.77 23.07

Pooka 40.54 40.54 42.07 11.59 11.63 12.19

Lynx 64.26 57.84 49.91 37.66 37.05 40.16

Precision and Recall of  the Traceability Recovery techniques configurations

for iTrust, Pooka, and Lynx.



Identifier Splitting for Traceability Recovery

Results and DiscussionResults and Discussion

� Potential benefits of developing advanced vocabulary normalization

approaches.

� Mismatch resulting from the requirements (presence of acronyms in

requirements).

� Case of Lynx (noise in data) : requirement 534 is “the browser should be able to

41/61

� Case of Lynx (noise in data) : requirement 534 is “the browser should be able to

manage store erase session I information”. Whereas a C method

LYMain.c.i__nobrowse_fun is related to browse directories functionality.

� Baseline splitting: “nobrowse” and thus no link between requirement 534 and

LYMain.c.i_nobrowse_fun.txt.

� Samurai and manual oracle split the identifier “nobrowse” into “no browse” and link

the file LYMain.c.i__nobrowse_fun.txt.

Potential benefits of developing advanced
normalization approaches 



Contribution 4:

Impact of Advanced Identifier Splitting onImpact of Advanced Identifier Splitting on

Feature Location



Identifier Splitting for Feature Location

Research QuestionResearch Question

Feature Location Techniques (FLTs) ConfigurationsFeature Location Techniques (FLTs) Configurations

RQ: How do different identifiers splitting strategies (CamelCase,   

Samurai and Oracle) impact Feature Location?

43/61

Splitting strategy IR FLT IRDyn FLT

CamelCase IRCamelCase IRCamelCaseDyn

Samurai IRSamurai IRSamuraiDyn

Oracle IROracle IROracleDyn

Feature Location Techniques (FLTs) ConfigurationsFeature Location Techniques (FLTs) Configurations

Feature Location techniques configurations studied. 



Identifier Splitting for Feature Location

System

Version

Size

(KLOC)

Classes Methods # Data Sets

Rhino 1.6R5 32 138 1,870 Eaddy et al.’s data* (2)

jEdit 4.3 109 483 6.4 2

Dataset Size Queries Gold Sets Execution Information

Analyzed SystemsAnalyzed Systems

44/61 * http://www.cs.columbia.edu/~eaddy/concerntagger/

RhinoFeatures 241 Sections of  
ECMAScript

Eaddy et al.* Full Execution Traces 
(from unit tests)

RhinoBugs 143 Bug title and 
description

Eaddy et al.*
(CVS)

N/A

jEditFeatures 64 Feature (or Patch) 
title and 
description

SVN Marked Execution Traces

jEditBugs 86 Bug title and 
description

SVN Marked Execution Traces

Characteristics of  the main analyzed systems.



Similar median & 

average of  

effectiveness 

measure

IR FLTsIR FLTs

Identifier Splitting for Feature Location

ResultsResults
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RhinoFeatures
RhinoBugs

jEditFeatures jEditBugs

Datasets with 

features have better 

results than 

datasets with bugs



Identifier Splitting for Feature Location

ResultsResults
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RhinoFeatures RhinoBugs

jEditFeatures jEditBugs



Identifier Splitting for Feature Location

ResultsResults
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RhinoFeatures RhinoBugs

jEditFeatures jEditBugs

Statistical 

significant result

(p=0.05)



Identifier Splitting for Feature Location

Results and DiscussionResults and Discussion

� Samurai and CamelCase produced similar results;

� IROracle outperforms IRCamelCase in terms of  the effectiveness measure,

on the Rhino dataset;
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on the RhinoFeatures dataset;

� When only textual information is available, an improved splitting technique

can help improve effectiveness of  feature location.

� Samurai ovesplits identifiers into many meaningless terms. In Rhino:

debugAccelerators to  debug Ac ce le r  at o rs (CamelCase better in such cases).



� Inconsistencies between the identifiers used in the queries, and the 

identifiers used in the code.

� The mismatch is less noticeable for features and more severe for bugs.

Identifier Splitting for Feature Location

Vocabulary mismatch between queries and codeVocabulary mismatch between queries and code
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� jEdit’s feature #16084869 (“Support “thick” caret”) contained in its  

description identifiers found in the name of  the  methods (e.g., thick,  

caret,  text, area, etc.).

� Name of  developers (e.g., Slava,Carlos- Identifiers specific to 

communication (e.g., thanks, greetings, annoying).

� Appeared only in the query vocabulary, and did not appear in the source  

code vocabulary.



Features are more “descriptive” than bugsFeatures are more “descriptive” than bugs

Words “join” Words “join” 

and “line” are 

not mentioned

Identifier Splitting for Feature Location
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not mentionednot mentioned

Potential benefits of developing advanced
normalization approaches 

Example of  query (bugs)

Binkley et al. (ICSM’12): Normalization improves Feature Location 



TIDIER is novel and performs better 

than its previous approaches (CamelCase & 

Samurai):  

54.29% of  splitting correctness vs. 31.14% 

for (Samurai) & 30.08% (Camel Case) 

with an application level dictionary 

augmented with domain knowledge

TIDIER was the first to produce a correct 

mapping for 48% of  abbreviations.

.

Context is relevant for source code vocabulary 

normalization.

Source code files are the most helpful

A limited context such as functions does not 

help

A wider context such as applications does 

not improve further.

Domain knowledge improves normalization.

Conclusion
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mapping for 48% of  abbreviations.

Advanced identifier splitting strategies 

improves the average of  precision and recall 

of  some systems: Pooka & Lynx.

Advanced splitting improves feature 

location using LSI: Rhino (features).

The quality of  the requirements and 

expressiveness of  the queries impact too.

TRIS is novel and brings improvements 

on state-of-the-art approaches on C:

92.06% vs. 85.25% for TIDIER (Lynx- C)

vs. 46.34% for Samurai

vs. 38.51% for CamelCase

86% vs. 82% for GenTest on Lawrie et al. data  

vs. 70% for Samurai.

87.90% vs. 64.09% for TIDIER on the 

identifiers from the 340 projects.

Domain knowledge improves normalization.



Future Work

Impact of Vocabulary Normalization on Maintenance T asksImpact of Vocabulary Normalization on Maintenance T asks

� Evaluate our work on other systems such as C, C++ or COBOL;

� Compare it to other works such as Normalize (Lawrie et al, ICSM’11);

� Study the impact of  IR queries quality (Haiduc et al. (ICSE’13)).

52/61

ContextContext--Aware Vocabulary Normalization ApproachesAware Vocabulary Normalization Approaches

� Extend the evaluation of  TIDIER and TRIS on larger systems;

� Compare the results to more recent approaches such as Normalize (Lawrie et al., 

ICSM’11) and LINSEN (Corazza et al., ICSM’12).

� Study the impact of  IR queries quality (Haiduc et al. (ICSE’13)).



ContextContext--Awareness for Vocabulary NormalizationAwareness for Vocabulary Normalization

� Replicate our studies using eye-tracking tools;

� Implement a context model that within an IDE support program 

understanding;

� Involve  participants from industry. 

Future Work
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Mining Software Repositories to Study the Impact ofMining Software Repositories to Study the Impact of
Identifier Style on Software QualityIdentifier Style on Software Quality

� Infer the identifier styles in open-source projects using HMM;

� Analyze whether open-source developers adapt/bring their style;

� Analyze whether  identifier style  can introduce bugs and--or impacts internal               

quality metrics such as semantic coupling  & cohesion.

� Involve  participants from industry. 
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TIDIER is novel and performs better 

than its previous approaches (CamelCase & 

Samurai):  

54.29% of  splitting correctness vs. 31.14% 

for (Samurai) & 30.08% (Camel Case) 

with an application level dictionary 

augmented with domain knowledge

TIDIER was the first to produce a correct 

mapping for 48% of  abbreviations.

.

Context is relevant for source code vocabulary 

normalization.

Source code files are the most helpful

A limited context such as functions does not 

help

A wider context such as applications does 

not improve further.

Domain knowledge improves normalization.

Conclusion
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mapping for 48% of  abbreviations.

Advanced identifier splitting strategies 

improves the average of  precision and recall 

of  some systems: Pooka & Lynx.

Advanced splitting improves feature 

location using LSI: Rhino (features).

The quality of  the requirements and 

expressiveness of  the queries impact too.

TRIS is novel and brings improvements 

on state-of-the-art approaches on C:

92.06% vs. 85.25% for TIDIER (Lynx- C)

vs. 46.34% for Samurai

vs. 38.51% for CamelCase

86% vs. 82% for GenTest on Lawrie et al. data  

vs. 70% for Samurai.

87.90% vs. 64.09% for TIDIER on the 

identifiers from the 340 projects.

Domain knowledge improves normalization.
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