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Mme BOUCHENEB Hanifa, Doctorat, présidente

M. ANTONIOL Giuliano, Ph.D., membre et directeur de recherche
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RÉSUMÉ

La compréhension du code source des programmes logiciels est une étape nécessaire pour

plusieurs tâches de compréhension de programmes, rétro-ingénierie, ou re-documentation.

Dans le code source, les informations textuelles telles que les identifiants et les commentaires

représentent une source d’information importante.

Le problème d’extraction et d’analyse des informations textuelles utilisées dans les arte-

facts logiciels n’a été reconnu par la communauté du génie logiciel que récemment. Des

méthodes de recherche d’information ont été proposées pour aider les tâches de compréhen-

sion de programmes telles que la localisation des concepts et la traçabilité des exigences au

code source. Afin de mieux tirer bénéfice des approches basées sur la recherche d’information,

le langage utilisé au niveau de tous les artefacts logiciels doit être le même. Ceci est dû au

fait que les requêtes de la recherche d’information ne peuvent pas retourner des documents

pertinents si le vocabulaire utilisé dans les requêtes contient des mots qui ne figurent pas

au niveau du vocabulaire du code source. Malheureusement, le code source contient une

proportion élevée de mots qui ne sont pas significatifs, e.g., abréviations, acronymes, ou con-

caténation de ces types. En effet, le code source utilise un langage différent de celui des

autres artefacts logiciels. Cette discordance de vocabulaire provient de l’hypothèse implicite

faite par les techniques de recherche de l’information et du traitement de langage naturel qui

supposent l’utilisation du même vocabulaire. Ainsi, la normalisation du vocabulaire du code

source est un grand défi.

La normalisation aligne le vocabulaire utilisé dans le code source des systèmes logiciels

avec celui des autres artefacts logiciels. La normalisation consiste à décomposer les identifi-

ants (i.e., noms de classes, méthodes, variables, attributs, paramètres, etc.) en termes et à

étendre ces termes aux concepts (i.e., mots d’un dictionnaire spécifique) correspondants.

Dans cette thèse, nous proposons deux contributions à la normalisation avec deux nou-

velles approches contextuelles : TIDIER et TRIS. Nous prenons en compte le contexte car

nos études expérimentales ont montré l’importance des informations contextuelles pour la

normalisation du vocabulaire du code source. En effet, nous avons effectué deux études ex-

périmentales avec des étudiants de baccalauréat, mâıtrise et doctorat ainsi que des stagiaires

post-doctoraux. Nous avons choisi aléatoirement un ensemble d’identifiants à partir d’un

corpus de systèmes écrits en C et nous avons demandé aux participants de les normaliser

en utilisant différents niveaux de contexte. En particulier, nous avons considéré un contexte

interne qui consiste en le contenu des fonctions, fichiers et systèmes contenant les identifiants

ainsi qu’un niveau externe sous forme de documentation externe. Les résultats montrent
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l’importance des informations contextuelles pour la normalisation. Ils révèlent également

que les fichiers de code source sont plus utiles que les fonctions et que le contexte construit

au niveau des systèmes logiciels n’apporte pas plus d’amélioration que celle obtenue avec le

contexte construit au niveau des fichiers. La documentation externe, par contre, aide parfois.

En résumé, les résultats confirment notre hypothèse sur l’importance du contexte pour la

compréhension de programmes logiciels en général et la normalisation du vocabulaire utilisé

dans le code source systèmes logiciels en particulier.

Ainsi, nous proposons une approche contextuelle TIDIER, inspirée par les techniques de la

reconnaissance de la parole et utilisant le contexte sous forme de dictionnaires spécialisés (i.e.,

contenant des acronymes, abréviations et termes spécifiques au domaine des système logiciels).

TIDIER est plus préformante que les approches qui la précédent (i.e., CamelCase et samurai).

Spécifiquement, TIDIER atteint 54% de précision en termes de décomposition des identifiants

lors de l’utilisation un dictionnaire construit au niveau du système logiciel en question et

enrichi par la connaissance du domaine. CamelCase et Samurai atteint seulement 30% et

31% en termes de précision, respectivement. En outre, TIDIER est la première approche qui

met en correspondance les termes abrégés avec les concepts qui leurs correspondent avec une

précision de 48% pour un ensemble de 73 abréviations.

La limitation principale de TIDIER est sa complexité cubique qui nous a motivé à pro-

poser une solution plus rapide mais tout aussi performante, nommée TRIS. TRIS est inspirée

par TIDIER, certes elle traite le problème de la normalisation différemment. En effet, elle

le considère comme un problème d’optimisation (minimisation) dont le but est de trouver le

chemin le plus court (i.e., décomposition et extension optimales) dans un graphe acyclique.

En outre, elle utilise la fréquence des termes comme contexte local afin de déterminer la nor-

malisation la plus probable. TRIS est plus performante que CamelCase, Samurai et TIDIER,

en termes de précision et de rappel, pour des systèmes logiciels écrits en C et C++. Aussi,

elle fait mieux que GenTest de 4% en termes d’exactitude de décomposition d’identifiants.

L’amélioration apportée par rapport à GenTest n’est cependant pas statistiquement significa-

tive. TRIS utilise une représentation basée sur une arborescence qui réduit considérablement

sa complexité et la rend plus efficace en terme de temps de calcul. Ainsi, TRIS produit rapide-

ment une normalisation optimale en utilisant un algorithme ayant une complexité quadratique

en la longueur de l’identifiant à normaliser.

Ayant développé des approches contextuelles pour la normalisation, nous analysons alors

son impact sur deux tâches de maintenance logicielle basées sur la recherche d’information,

à savoir, la traçabilité des exigences au code source et la localisation des concepts. Nous

étudions l’effet de trois stratégies de normalisation : CamelCase, Samurai et l’oracle sur deux

techniques de localisation des concepts. La première est basée sur les informations textuelles
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seulement, quant à la deuxième, elle combine les informations textuelles et dynamiques (traces

d’exécution). Les résultats obtenus confirment que la normalisation améliore les techniques de

localisation des concepts basées sur les informations textuelles seulement. Quand l’analyse

dynamique est prise en compte, n’importe qu’elle technique de normalisation suffit. Ceci

est du au fait que l’analyse dynamique réduit considérablement l’espace de recherche et donc

l’apport de la normalisation n’est pas comparable à celui des informations dynamiques. En ré-

sumé, les résultats montrent l’intérêt de développer des techniques de normalisation avancées

car elles sont utiles dans des situations où les traces d’exécution ne sont pas disponibles.

Nous avons aussi effectué une étude empirique sur l’effet de la normalisation sur la traça-

bilité des exigences au code source. Dans cette étude, nous avons analysé l’impact des trois

approaches de normalisation précitées sur deux techniques de traçabilité. La première utilise

une technique d’indexation sémantique latente (LSI) alors que la seconde repose sur un mod-

èle d’espace vectoriel (VSM). Les résultats indiquent que les techniques de normalisation

améliorent la précision et le rappel dans quelques cas. Notre analyse qualitative montre aussi

que l’impact de la normalisation sur ces deux techniques de traçabilité dépend de la qualité

des données étudiées.

Finalement, nous pouvons conclure que cette thèse contribue à l’état de l’art sur la nor-

malisation du vocabulaire de code source et l’importance du contexte pour la compréhension

de programmes logiciels. En plus, cette thèse contribue à deux domaines de la maintenance

logicielle et spécifiquement à la localisation des concepts et à la traçabilité des exigences au

code source. Les résultats théoriques et pratiques de cette thèse sont utiles pour les praticiens

ainsi que les chercheurs.

Nos travaux de recherche futures relatifs à la compréhension de programmes logiciels et la

maintenance logicielle consistent en l’évaluation de nos approches sur d’autres systèmes logi-

ciels écrits en d’autres langages de programmation ainsi que l’application de nos approches

de normalisation sur d’autres tâches de compréhension de programmes logiciels (e.g., réca-

pitulation de code source).

Nous sommes aussi en cours de la préparation d’une deuxième étude sur l’effet du contexte

sur la normalisation du vocabulaire de code source en utilisant l’oculométrie afin de mieux

analyser les stratégies adoptées par les développeurs lors de l’utilisation des informations

contextuelles.

Le deuxième volet que nous avons entamé actuellement concerne l’impact des styles des

identifiants sur la qualité des systèmes logiciels. En effet, nous sommes entrain d’inférer,

en utilisant un modèle statistique (i.e., modèle de Markov caché), les styles des identifiants

adoptés par les développeurs dans les systèmes logiciels. Nous sommes également entrain

d’étudier l’impact de ces styles sur la qualité des systèmes logiciels. L’idée est de montrer,
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d’abord, si les développeurs utilisent leur propre style de nommage issu de leur propre ex-

périence ou s’ils s’adaptent au projet, i.e., aux conventions de nommage suivies (s’il y en a)

et d’analyser, ensuite, les styles d’identifiants (e.g., abréviations ou acronymes) qui mènent

à l’introduction de bogues et à la dégradation des attributs de qualité internes, notamment,

le couplage et cohésion sémantiques.
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ABSTRACT

Understanding source code is a necessary step for many program comprehension, reverse

engineering, or redocumentation tasks. In source code, textual information such as identifiers

and comments represent an important source of information.

The problem of extracting and analyzing the textual information in software artifacts

was recognized by the software engineering research community only recently. Information

Retrieval (IR) methods were proposed to support program comprehension tasks, such as

feature (or concept) location and traceability link recovery. However, to reap the full benefit

of IR-based approaches, the language used across all software artifacts must be the same,

because IR queries cannot return relevant documents if the query vocabulary contains words

that are not in the source code vocabulary. Unfortunately, source code contains a significant

proportion of vocabulary that is not made up of full (meaningful) words, e.g., abbreviations,

acronyms, or concatenation of these. In effect, source code uses a different language than

other software artifacts. This vocabulary mismatch stems from the implicit assumption of

IR and Natural Language Processing (NLP) techniques which assume the use of a single

natural-language vocabulary. Therefore, vocabulary normalization is a challenging problem.

Vocabulary normalization aligns the vocabulary found in the source code with that found

in other software artifacts. Normalization must both split an identifier into its constituent

parts and expand each part into a full dictionary word to match vocabulary in other ar-

tifacts. In this thesis, we deal with the challenge of normalizing source code vocabulary

by developing two novel context-aware approaches. We use the context because the results

of our experimental studies have shown that context is relevant for source code vocabulary

normalization. In fact, we conducted two user studies with 63 participants who were asked

to split and expand a set of 50 identifiers from a corpus of open-source C programs with

the availability of different context levels. In particular, we considered an internal context

consisting of the content of functions, source code files, and applications where the identifiers

appear and an external context involving external documentation. We reported evidence

on the usefulness of contextual information for source code vocabulary normalization. We

observed that the source code files are more helpful than just looking at function source code,

and that the application-level contextual information does not help any further. The avail-

ability of external sources of information (e.g., thesaurus of abbreviations and acronyms) only

helps in some circumstances. The obtained results confirm the conjecture that contextual

information is useful in program comprehension, including when developers split and expand

identifiers to understand them. Thus, we suggest a novel contextual approach for vocabulary
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normalization, TIDIER. TIDIER is inspired by speech recognition techniques and exploits

contextual information in the form of specialized dictionaries (e.g., acronyms, contractions

and domain specific terms). TIDIER significantly outperforms its previous approaches (i.e.,

CamelCase and Samurai which are the approaches that exist before TIDIER). Specifically,

TIDIER achieves with a program-level dictionary complemented with domain knowledge,

54% of correct splits, compared to 30% obtained with CamelCase and 31% of correct splits

attained using Samurai. Moreover, TIDIER was able to correctly map identifiers’ terms to

dictionary words with a precision of 48% for a set of 73 abbreviations. The main limitations

of TIDIER is its cubic complexity that leads us to propose a fast solution, namely, TRIS.

TRIS is inspired by TIDIER, but it deals with the vocabulary normalization problem

differently. It maps it to a graph optimization (minimization) problem to find the optimal

path (i.e., optimal splitting-expansion) in an acyclic weighted graph. In addition, it uses the

relative frequency of source code terms as a local context to determine the most likely identi-

fier splitting-expansion. TRIS significantly outperforms CamelCase and Samurai in terms of

precision and recalls of splitting, and TIDIER, in terms of identifier expansion precision and

recall, with a medium to large effect size, for C and C++ systems. In addition, TRIS shows

an improvement of 4%, in terms of identifier splitting correctness, over GenTest (a more re-

cent splitter suggested after TIDIER). The latter improvement is not statistically significant.

TRIS uses a tree-based representation that makes it—in addition to being more accurate

than other approaches—efficient in terms of computation time. Thus, TRIS produces one

optimal split and expansion fast using an identifier processing algorithm having a quadratic

complexity in the length of the identifier to split/expand.

We also investigate the impact of identifier splitting on two IR-based software maintenance

tasks, namely, feature location and traceability recovery. Our study on feature location

analyzes the effect of three identifier splitting strategies: CamelCase, Samurai, and an Oracle

on two feature location techniques (FLTs). The first is based on IR while the second relies

on the combination of IR and dynamic analysis (i.e., execution traces). The obtained results

support our conjecture that when only textual information is available, an improved splitting

technique can help improve effectiveness of feature location. The results also show that

when both textual and execution information are used, any splitting algorithm will suffice,

as FLTs produced equivalent results. In other words, because dynamic information helps

pruning the search space considerably, the benefit of an advanced splitting algorithm is

comparably smaller than that of the dynamic information; hence the splitting algorithm

will have little impact on the final results. Overall, our findings outline potential benefits

of creating advanced preprocessing techniques as they can be useful in situations where

execution information cannot be easily collected.
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In addition, we study the impact of identifier splitting on two traceability recovery tech-

niques utilizing the same three identifier splitting strategies that we used in our study on

feature location. The first traceability recovery technique uses Latent Semantic Indexing

(LSI) while the second is based on Vector Space Model (VSM). The results indicate that

advanced splitting techniques help increase the precision and recall of the studied traceabil-

ity techniques but only in some cases. In addition, our qualitative analysis shows that the

impact or improvement brought by such techniques depends on the quality of the studied

data.

Overall, this thesis contributes to the state-of-the-art on identifier splitting and expansion,

context, and their importance for program comprehension. In addition, it contributes to the

fields of feature location and traceability recovery. Theoretical and practical findings of this

thesis are useful for both practitioners and researchers.

Our future research directions in the areas of program comprehension and software main-

tenance will extend our empirical evaluations to other software systems belonging to other

programming languages. In addition, we will apply our source code vocabulary normalization

approaches on other program comprehension tasks (e.g., code summarization).

We are also preparing a replication of our study on the effect of context on vocabulary

normalization using Eye-Tracking to analyze the different strategies adopted by developers

when exploring contextual information to perform identifier splitting and expansion.

A second research direction that we are currently tackling concerns the impact of iden-

tifier style on software quality using mining software repositories. In fact, we are currently

inferring the identifier styles used by developers in open-source projects using a statistical

model, namely, the Hidden Markov Model (HMM). The aim is to show whether open-source

developers adhere to the style of the projects they join and their naming conventions (if any)

or they bring their own style. In addition, we want to analyze whether a specific identifier

style (e.g., short abbreviations or acronyms) introduces bugs in the systems and whether it

impacts internal software quality metrics, in particular, the semantic coupling and cohesion.
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CHAPTER 1

INTRODUCTION

Source code vocabulary normalization consists of two tasks: splitting and expansion.

Splitting divides identifiers into parts, and expansion expands parts that are abbreviations or

acronyms into full words. For example, compStats is split into comp-stats and then expanded

to compute-statistics. Most often, identifiers are not made up of full (natural-language)

words and–or recognizable abbreviations. In fact, identifiers can be abbreviations such as

cntr or acronyms like cwdfn and, thus, the context, e.g., neighbor source code (including

other identifiers), source code comments or external documentation can help expand them.

To the best of our knowledge, no previous work has shown the relevance of context for source

code vocabulary normalization. Thus, we conducted two user studies to show the extent

to which different levels of context can help improve vocabulary normalization. The results

bring empirical evidence on the usefulness of contextual information for identifier splitting and

acronym/abbreviation expansion, they indicate that source code files are more helpful than

functions, and that the application-level contextual information does not help any further

(Guerrouj et al., 2013b).

CamelCase, the widely adopted identifier splitting technique does not take into account

context and it relies on the use of naming conventions (e.g., CamelCase and–or separators).

Samurai (Enslen et al., 2009) is built on CamelCase and splits identifiers by mining term

frequencies. It builds two term-frequency tables: a program-specific and a global-frequency

table. The first table is built by mining terms in the program under analysis. The second

table is made by mining the set of terms in a large corpus of programs. The main weakness

of Samurai is its reliance on frequency tables. These tables could lead to different splits for

the same identifier depending on the tables. Tables built from different programs may lead to

different splits. Also, if an identifier contains terms with frequencies higher than the frequency

of the identifier itself, Samurai may over-split it, thus providing several terms not necessarily

reflecting the most obvious split (Enslen et al., 2009). To overcome these shortcomings,

we suggest two novel contextual approaches, TIDIER and TRIS. Our approaches perform

both the splitting and expansion of identifiers even in the absence of naming conventions

and the presence of abbreviations. More recently, other context-aware approaches have been

suggested to normalize source code vocabulary, e.g., Normalize (Lawrie et Binkley, 2011), a

refinement of an identifier splitter, GenTest (Lawrie et al., 2010), towards the expansion of

identifiers using a machine translation technique, namely the maximum coherence model (Gao
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et al., 2002) and LINSEN, a novel approach based on a graph model using an approximate

string matching technique (Corazza et al., 2012).

In this thesis, we also investigate the impact of identifier splitting on two software mainte-

nance tasks, i.e., feature location and traceability recovery. Specifically, our studies analyze

the effect of three identifier splitting strategies: CamelCase, Samurai, and an Oracle (built

using TIDIER). Our study on feature location used two FLTs. The first FLT is based on IR

while the second combines IR and dynamic information, for locating bugs and features. The

FLTs that use the simple CamelCase splitter were baselines in our studies (Dit et al., 2011).

The study on traceability recovery uses two IR techniques, i.e., LSI (Liu et al., 2007)

and VSM (Eaddy et al., 2008a) while investigating the impact of the same identifier splitting

strategies used in our study on feature location.

1.1 Challenges

Overall, the main challenges related to our thesis are:

• Very little empirical evidence on the extent to which context helps source code vocab-

ulary normalization;

• Lack of context-aware source code vocabulary normalization approaches;

• Lack of studies on the impact of identifier splitting and expansion on IR-based software

maintenance tasks.

The overarching research question addressed is:

How to automatically resolve the vocabulary mismatch that exists between source

code and other software artifacts, using context, to support software maintenance

tasks such as feature location and traceability recovery?

1.2 Contributions

The main contribution of this thesis are an awareness of the context relevance for source

code vocabulary normalization, context-aware approaches for vocabulary normalization, i.e.,

TIDIER and TRIS, plus empirical evidence on the impact of identifier splitting on feature

location and traceability recovery.
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1.2.1 Context-Awareness for Source Code Vocabulary Normalization

To study the extent to which context helps when normalizing source code identifiers, i.e.,

when splitting and expanding them, we performed two user studies with 63 participants,

including Bachelor, Master, Ph.D. students, and post-docs. We randomly sampled a set of

50 identifiers from a corpus of open-source C programs, and we asked participants to split

and expand them with the availability (or not) of internal and external contexts. In partic-

ular, we considered (i) an internal context consisting of the content of functions and source

code files in which the identifiers are located, and (ii) an external context involving external

documentation. The results of our studies show the usefulness of contextual information for

identifier splitting and acronym/abbreviation expansion. We found that the source code files

are more helpful than the functions and that the application-level contextual information

does not help any further. The availability of external sources of information only helps in

some circumstances. Overall, the obtained results confirm the conjecture that contextual

information is useful in program comprehension, including when developers normalize source

code identifiers to understand them (Guerrouj et al., 2013b).

1.2.2 TIDIER

We propose TIDIER, an approach inspired by speech recognition techniques. It uses a

thesaurus of words and abbreviations, plus a string-edit distance between terms and words

computed via Dynamic Time Warping algorithm proposed by Herman Ney for connected

speech recognition (i.e., for recognizing sequences of words in a speech signal) (Ney, 1984).

TIDIER exploits contextual information in the form of contextual dictionaries enriched by

the use domain knowledge (e.g., acronyms and domain specific terms). Its main assumption

is that it is possible to mimic developers when creating an identifier relying on a set of word

transformations.For example, to create an identifier for a variable that counts the number

of software, a developer may drop vowels and (or) characters to shorten one or both words

of the identifier, thus creating bugsnbr, nbrofbugs, or numberBugs. TIDIER significantly

outperforms its prior approaches (i.e., CamelCase and Samurai) on C systems. In addition, it

reaches its best performances when using contextual-aware dictionaries enriched with domain

knowledge (Guerrouj et al., 2013a). However, TIDIER computation time increases with the

dictionary size due to its cubic distance evaluation cost plus the search time.

1.2.3 TRIS

TRIS is a fast and accurate solution for vocabulary normalization. It uses the relative

frequency of source code terms as a local context to determine the most likely identifier
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splitting-expansion. TRIS takes as input a dictionary of words and the source code of the

program to analyze. It represents transformations as a rooted tree where every node is a

letter and every path in the tree represents a transformation having a given cost. Based on

such transformations, possible splittings and expansions of an identifier are represented as an

acyclic direct graph. Once such a graph is built, solving the optimal splitting and expansion

problem means determining the shortest path, i.e., the optimal split and expansion in the

identifier graph (Guerrouj et al., 2012).

1.2.4 Impact of Identifier Splitting on Feature Location

To analyze the impact of identifier splitting on feature location, we investigate three iden-

tifier splitting strategies, i.e., CamelCase, Samurai, and an Oracle (“perfect split/expansion”)

built using TIDIER, on two feature location techniques for locating bugs and features. The

first is based on LSI (Marcus et Maletic, 2003) while the second uses the combination of

LSI and dynamic analysis (Poshyvanyk et al., 2007). The results indicate that feature lo-

cation techniques using IR can benefit from better preprocessing algorithms in some cases

and that their improvement in effectiveness while using manual splitting over state-of-the-art

approaches is statistically significant in those cases. However, the results for feature location

technique using the combination of IR and dynamic analysis do not show any improvement

while using manual splitting, indicating that any preprocessing technique will suffice if exe-

cution data is available (Dit et al., 2011).

1.2.5 Impact of Identifier Splitting on Traceability Recovery

We also investigate the impact of splitting on two traceability recovery techniques. The

first uses LSI (Liu et al., 2007) while the second relies on VSM (Eaddy et al., 2008a). We apply

the three strategies we used in our study on feature location, i.e., CamelCase, Samurai, and

manual splitting of identifiers (built using TIDIER). The results demonstrate that advanced

splitting techniques help increase the precision and recall of the studied traceability recovery

techniques but only in a few cases. Our qualitative analysis shows that the impact of source

code identifier splitting approaches or the improvement they brought depends also on the

quality of the studied data.

1.3 Outline of the Thesis

Chapter 2 - Background: This chapter first defines the techniques and concepts used

in this thesis. Then, it presents the source code vocabulary normalization approaches that
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exist in the literature. Finally, the chapter explains the performance measures, statistical

tests, and effect size measures used in our empirical and user studies.

Chapter 3 - Related Work: This chapter states the existing works in our research

areas, it first presents the state-of-the-art on the role of textual information on program

comprehension and software quality. Then, it shows the most relevant research contributions

to context and program comprehension. The chapter also enumerates the existing source

code vocabulary normalization approaches. Finally, this chapter presents related works on

feature location and traceability.

Chapter 4 - Context-Awareness for Source Code Vocabulary Normalization:

This chapter describes, in detail, our user studies on the effect of contexts on source code

vocabulary normalization. It also shows the obtained quantitative and qualitative results

plus the threats to validity related to our user studies.

Chapter 5 - Context-Aware Source Code Vocabulary Normalization: This chap-

ter describes our context-aware source code vocabulary normalization approaches, i.e., TI-

DIER and TRIS.

Chapter 6 - TIDIER and TRIS: Evaluation, Results, and Discussion: This

chapter first presents the empirical studies performed to evaluate our vocabulary normaliza-

tion approaches, i.e., TIDIER and TRIS, the obtained results and their discussion. Then, it

explains the threats to validity related to our studies.

Chapter 7 - Impact of Identifier Splitting on Feature Location: This chapter

presents the empirical study we conducted to analyze the impact of source code identifier

splitting on feature location. It also shows the obtained quantitative findings and the qual-

itative analysis performed in support of our quantitative analysis. The chapter enumerates

some of the threats to validity related to this study.

Chapter 8 - Impact of Identifier Splitting on Traceability Recovery: This chap-

ter describes the empirical study performed to analyze the impact of source code identifier

splitting on traceability recovery. It shows both our quantitative and qualitative analyses.

Then, the chapter explains some of the threats to validity related to this study. Finally, it

concludes the work.

Chapter 9 - Conclusion and Future Work: Finally, this chapter revisits the main

contributions of this thesis, explains our on-going work, and continues to describe potential

opportunities for future research.

Appendix A: This appendix provides descriptive statistics of precision and recall ob-

tained with TIDIER and its prior approaches.

Appendix B: This appendix provides details about the characteristics of the applications

from which we sampled the identifiers used in our study on the effect of contexts on vocabulary



6

normalization. In addition, it shows the oracle of the used identifiers. Finally, this appendix

shows the boxplots of precision and recall obtained with the different levels of context studied.
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CHAPTER 2

Background

This chapter presents the main source code identifier splitting and expansion approaches

suggested in the literature. It also provides details about the IR techniques used in our

works. In addition, the chapter overviews some of the existing works in the fields of feature

location and traceability. Furthermore, it explains the measures computed to evaluate the

performance of our approaches and the statistical tests, plus effect-size measures used to

compare our approaches with alternative ones.

2.1 Source Code Vocabulary Normalization

Vocabulary normalization consists of two tasks. The first task splits compound identifiers

into their constituent terms. In the following, the strings of characters between division

markers (e.g., underscores and camel-casing) and the endpoints of an identifier are referred

to as “hard-words” (Lawrie et al., 2006). For example, fix bug and fixBug include the hard-

words fix and bug. Sometimes splitting into hard-words is sufficient (e.g., when all hard-

words are dictionary words); however, other times hard-word splitting is not sufficient, as

with identifiers composed of juxtaposed lowercase words (e.g., fixbug). In this case further

division is required. The resulting strings of characters are referred to as “soft-words” (Lawrie

et al., 2006). Thus, a soft-word is either the entire hard-word or a sub-string of a hard-word.

Let us consider, for example, the identifier hashmap entry. This identifier consists of one

division marker (an underscore) and, thus, two hard-words, hashmap and entry. The hard-

word hashmap is composed of two soft-words, hash and map, while the hard-word entry is

composed of a single soft-word.

The second task maps soft-words to their corresponding dictionary words and is helpful

for programming languages (e.g., C, C++) that favor the use of short identifiers. In such

languages, the use of abbreviations and acronyms is likely a heritage of the past, when

certain operating systems and compilers limited the maximum length of identifiers. In fact,

a C developer may use dir instead of the hard-word directory, pntr instead of pointer, or net

instead of network.

In the following, we will refer to any substring in a compound identifier as a term while an

entry in a dictionary (e.g., the English dictionary) will be referred to as a word. A term may

or may not be a dictionary word. A term carries a single meaning in the context where it
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is used while a word may have multiple meanings (upper ontologies like WordNet1 associate

multiple meanings to words).

In the following, we present the main approaches proposed to split and–or expand source

code identifiers.

2.1.1 CamelCase

CamelCase is the de-facto splitting algorithm. This simple, fast, and widely used prepro-

cessing algorithm has been previously applied in multiple approaches to feature location and

traceability link recovery (Antoniol et al., 2002; Marcus et al., 2004, 2005; Liu et al., 2007;

Poshyvanyk et al., 2007; Revelle et Poshyvanyk, 2009; Revelle et al., 2010).

CamelCase splits compound identifiers according to the following rules:

RuleA: Identifiers are split by replacing underscore (i.e., “ ”), structure and pointer access

(i.e., “.” and “->”), and special symbols (e.g., $) with the space character. A space is

inserted before and after each sequence of digits. For example, counter pointer4users

is split into counter, pointer, 4, and users while rmd128 update is split into rmd, 128,

and update.

RuleB: Identifiers are split where terms are separated using the CamelCase convention,

i.e., the algorithm splits sequences of characters when there is a sequence of lower-case

characters followed by one or more upper-case characters. For example, counterPointer

is split into counter and Pointer while getID is split into get and ID.

RuleC: When two or more upper case characters are followed by one or more lower case

characters, the identifier is split at the last-but-one upper-case character. For example,

USRPntr is split into USR and Pntr.

Default: Identifiers composed of multiple terms that are not separated by any of the above

separators are left unaltered. For example, counterpointer remains as it is.

Based on these rules, identifiers such as FFEINFO kindtypereal3, apzArgs, or TxRingPtr

are split into FFEINFO kindtypereal, apz Args, and Tx Ring Ptr, respectively. The CamelCase

splitter cannot split same-case words, i.e., FFEINFO or kindtypereal into terms, i.e., the

acronym FFE followed by INFO and the terms kind, type, and real.

The main shortcoming of CamelCase is its reliance on naming conventions.

1http://wordnet.princeton.edu
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2.1.2 Samurai

Samurai (Enslen et al., 2009) is an automatic approach to split identifiers into sequences

of terms by mining terms frequencies in a large source code base. It relies on two assumptions:

1. A substring composing an identifier is also likely to be used in other parts of the program

or in other programs alone or as a part of other identifiers.

2. Given two possible splits of a given identifier, the split that most likely represents the

developer’s intent partitions the identifier into terms occurring more often in the pro-

gram. Thus, term frequency is used to determine the most-likely splitting of identifiers.

Samurai also exploits identifier context. It mines term frequency in the source code and

builds two term-frequency tables: a program-specific and a global-frequency table. The first

table is built by mining terms in the program under analysis. The second table is made by

mining the set of terms in a large corpus of programs.

Samurai ranks alternative splits of a source code identifier using a scoring function based

on the program-specific and global frequency tables. This scoring function is at the heart of

Samurai. It returns a score for any term based on the two frequency tables representative of

the program-specific and global term frequencies. Given a term t appearing in the program

p, its score is computed as follows:

Score(t, p) = Freq(t, p) +
globalFreq(t)

log10(AllStrsFreq(p))
(2.1)

where:

• p is the program under analysis;

• Freq(t, p) is the frequency of term t in the program p;

• globalFreq(t) is the frequency of term t in a given set of programs; and

• AllStrsFreq(p) is the cumulative frequency of all terms contained in the program p.

Using this scoring function, Samurai applies two algorithms, the mixedCaseSplit and the

sameCaseSplit algorithm. It starts by executing the mixedCaseSplit algorithm, which acts

in a way similar to the CamelCase splitter but also uses the frequency tables. Given an

identifier, first, Samurai applies RuleA and RuleB from the CamelCase splitter: all special

characters are replaced with the space character. Samurai also inserts a space character

before and after each digit sequence. Then, Samurai applies an extension of RuleC to deal

with multiple possible splits.
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Let us consider the identifier USRpntr. RuleC would wrongly split it into US and Rpntr.

Therefore, Samurai creates two possible splits: US Rpntr and USR pntr. Each possible term

on the right side of the splitting point is then assigned a score based on Equation 2.1 and the

highest score is preferred. The frequency of Rpntr would be much lower than that of pntr,

consequently the most-likely split is obtained by splitting USRpntr into USR and pntr.

Following this first algorithm, Samurai applies the sameCaseSplit algorithm to find the

split(s) that maximize(s) the score when splitting a same-case identifier, such as kindtypereal

or FFEINFO. The terms in which the identifier is split can only contain lower-case characters,

upper-case characters, or a single upper-case character followed by same-case characters.

The starting point of this algorithm is the first position in the identifier. The algorithm

considers each possible split point in the identifier. Each split point would divide the identifier

into a left-side and a right-side term. Then, the algorithm assigns a score for each possible left

and right term and the split is performed where the split achieves the highest score. (Samurai

uses a predefined lists2 of common prefixes (e.g., demi, ex, or maxi) and suffixes (e.g., al, ar,

centric, ly, oic) and the split point is discarded if a term is classified as a common prefix or

suffix.)

Let us consider for example the identifier kindtypereal and assume that the first split is kind

and typereal. Because neither kind nor typereal are common prefix/suffix, this split is kept.

Now, let us further assume that the frequency of kind is higher than that of kindtypereal (i.e.,

of the original identifier) and that the frequency of typereal is lower than that of kindtypereal.

Then, the algorithm keeps kind and attempts to split typereal as its frequency is lower than

that of the original identifier. When it will split typereal into type and real, the score of type

and real will be higher than the score of the original identifier kindtypereal and of typereal

and, thus, typereal will be split into type and real. Because the terms kind, type, and real have

frequencies higher than that of kindtypereal, the obtained split corresponds to the expected

result.

The main weakness of Samurai is the fact that it may oversplit identifiers in some cases.

In fact, if an identifier contains terms with frequencies higher than the frequency of the

identifier itself, Samurai may split it into several terms not necessarily reflecting the most

obvious split.

In this work, we used the local and global frequency lists provided by the authors when

dealing with the same Java systems used in their previous work (Enslen et al., 2009). In all the

other cases, we generated the local frequency table of the applications that we dealt with by

mining terms frequencies in the application under analysis and we used as a global frequency

list, a table generated by mining terms frequencies in a large corpus of GNU projects.

2http://www.cis.udel.edu/~enslen/Site/Samurai_files/
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2.1.3 GenTest and Normalize

GenTest (Lawrie et al., 2010) is an identifier splitter, which builds on ideas presented

in two prior algorithms: Greedy and Samurai. The Greedy algorithm (Feild et al., 2006)

relies on a dictionary to determine where to insert a split in a hard-word. Samurai scores

potential splits using the frequencies of the occurrence of strings from two sources: those

appearing in the program being analyzed and those appearing in a large corpus of programs.

GenTest is therefore used to accomplish the splitting task. The generation part of the al-

gorithm generates all possible splittings. The test evaluates a scoring function against each

proposed splitting. GenTest uses a set of metrics to characterize a high quality splitting of a

hard-word. These metrics belongs to three categories: soft-word characteristics, metrics in-

corporating external information, and metrics incorporating internal information. Soft-word

characteristics are characteristics of the strings produced by the splitting. External informa-

tion includes dictionaries and other information that is either human engineered or extracted

from non-source code sources. Internal information is derived from the source code, either

the program itself or a collection of programs. Normalize (Lawrie et Binkley, 2011) is a re-

finement of GenTest to include source code identifier expansion. Thus, Normalize aligns the

vocabulary found in source code with that found in other software artifacts. It is based on

a machine translation technique, namely, the maximum coherence model (Gao et al., 2002).

The heart of normalization is a similarity metric computed from co-occurrence data. In other

words, Normalize relies on the fact that expanded soft-words should be found co-located in

general text. In the algorithm, the similarity between two expansions is the probability that

the two expansions co-occur in a five word window in the Google data set (Brants et Franz,

2006). Co-occurrence data with contextual information has been exploited to select the best

candidate among several possible expansions. Normalize has been recently applied to an

IR-based tool with the aim of analyzing the impact of vocabulary normalization on feature

location. Normalize was able to improve the ranks of relevant documents in the considered

IR environment. This improvement was most pronounced for shorter, more natural, queries,

where there is a 182% improvement (Binkley et al., 2012).

2.1.4 LINSEN

LINSEN (Corazza et al., 2012) is a novel technique that splits and expands source code

identifiers; it is based on a graph model and performs the identifier splitting and expansion

in linear time with respect to the size of the dictionary, taking advantage of an approximate

string matching technique, the Baeza-Yates and Perleberg (Baeza-yates et Perleberg, 1992).

The main advantage provided by such efficiency regards the possibility of exploiting a larger
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number of dictionaries for the matching. In fact, LINSEN uses several dictionaries containing

terms gathered from the source code comments, a dictionary of IT and programming terms,

an English dictionary, and a list of well-known abbreviations. These sources are prioritized

from the most specific to the most general one, with the idea that in presence of ambiguities,

the most specific, domain dependent context should be preferred.

We share with these works the assumption that identifier splitting and expansion is es-

sential for program comprehension as well as software maintenance and evolution tasks.

2.2 IR Techniques

IR is the activity of finding information resources (usually documents) of an unstructured

nature (usually text) that satisfies an information need from large collections of information

resources.

In this thesis, we use two IR techniques, in particular VSM (Antoniol et al., 2002) and

LSI (Marcus et al., 2003). Both techniques essentially use term-by-document matrices. Con-

sequently, we choose the well-known Term Frequency Inverse Document Frequency (TF-IDF)

weighting scheme (Antoniol et al., 2002). The latter measure and IR techniques are state-of-

the-art for traceability recovery and feature location. In the following, we explain, in detail,

these two techniques and the weighting scheme used.

2.2.1 Vector Space Model

VSM has been adopted in IR as a means of coping with inexact representation of docu-

ments and queries, and the resulting difficulties in determining the relevance of a document

relative to a given query. In VSM (Baeza-Yates et Ribeiro-Neto, 1999; Antoniol et al., 2002;

De Lucia et al., 2007), documents are represented as vector in the space of all the terms.

Various term weighting schemes can be used to create these vectors. In our case, we use

TF-IDF (Salton et Buckley, 1988) that we explain in Section 2.2.3. If a term belongs to a

document, then it gets a non-zero value in the VSM along the dimension corresponding to

the term. A document collection in VSM is represented by a term by document matrix, i.e.,

m × n matrix, where m is the number of terms and n is the number of documents in the

corpus.

Once documents are represented as vectors of terms in a VSM, traceability links are

created between every pair of documents, e.g., a requirement and a source code class, with

different similarity values depending on each pair of documents. The similarity value between

two documents is measured by the cosine of the angle between their corresponding vectors.

Cosine values are in [0, 1]. Finally, the ranked list of recovered links and a similarity threshold
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are used to select a set of candidate links to be manually verified (Antoniol et al., 2002).

Let us consider R a requirement vector and C a source code vector. The similarity of the

requirement R to source code C can be computed as follows (Baeza-Yates et Ribeiro-Neto,

1999).

sim(R,C) =
R · C

∥R∥ · ∥C∥
=

∑
ti∈R

wtiR ·
∑

ti∈C
wtiC√∑

ti∈R
w2

tiR
·
√∑

ti∈C
w2

tiC

(2.2)

where wtiR is the weight of the ith term in the query vector R, and wtiC is the weight of the

ith term in the query vector C. Smaller the vector angle is, higher the similarity between two

documents.

2.2.2 Latent Semantic Indexing

LSI overcomes the shortcoming of VSM, which does not address the synonymy and poly-

semy problems and relations between terms (Deerwester et al., 1990). It assumes that there

is an underlying latent structure in word usage for every document set (Deerwester et al.,

1990) and works as follows:

The processed corpus is transformed into a term-by-document (m ∈ x) matrix A, where

each document is represented as a vector of terms. The values of the matrix cells are the

weights of the terms, which are computed using the traditional TF-IDF weighting schemes

(cf. Section 2.2.3 of this chapter) in our studies.

The matrix is then decomposed, using Singular Value Decomposition (SVD) (Deerwester

et al., 1990), into the product of three other matrices:

A = U × S × V (2.3)

where U is the m × r matrix of the terms (orthogonal columns) containing the left singular

vectors, V is the r × n matrix of the documents (orthogonal columns) containing the right

singular vectors, S is an r × r diagonal matrix of singular values, and r is the rank of A. To

reduce the matrix size, all the singular values in S are ordered by size. All the values after

the largest k value could be set to zero. Thus, deleting the zero rows and columns of S and

corresponding columns of U and rows of V would produce the following reduced matrix:

Ak = Uk × Sk × Vk (2.4)

where the matrix Ak is approximately equal to A and is of rank k < r. The choice of k value,

i.e., the SVD reduction of the latent structure, is still an open issue in the natural language

processing literature.
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2.2.3 Term Frequency Inverse Document Frequency weighting scheme

TF-IDF (Salton et Buckley, 1988) is the standard weighting scheme adopted in IR and

also software engineering research. TF-IDF emphasizes terms that appear frequently in a

document but decreases the contribution of terms that are common across all documents. In

this scheme, documents in the matrix are normalized by setting the most common term to 1

and dividing all of the other terms in the document by its former value (Equation 2.5). This

results in a document consisting of term frequencies (tf). In fact, the term frequency tf(f, d)

uses the raw frequency of a term in a document, i.e., the number of times that term t occurs in

document d. If we denote the raw frequency of t by f(t, d), then tf(f, d) is the raw frequency

f(t, d) divided by the maximum raw frequency of any term in the document (Equation 2.5).

The document frequencies (df) are computed by recording the number of documents a term

occurs in (Equation 2.6). The df are used to calculate the inverse document frequencies (idf)

(Equation 2.7). The inverse document frequency is a measure of whether a term is common

or rare across all documents. It is obtained by dividing the total number of documents by

the number of documents containing a term (i.e., df), and then taking the logarithm of that

quotient. Finally, each tf weighted term in the document is multiplied by its idf , resulting

in a TF-IDF weight for each term in the document (Equation 2.8).

tf(t, d) =
f(t, d)

max{f(w, d) | w ∈ d}
(2.5)

df(t) = |{t ∈ d, d ∈ {D} | tf(t, d) ̸= 0}| (2.6)

idf(t, {D}) = log2
|D|
df(t)

(2.7)

TF − IDF (t, d, {D}) = tf(t, d)× idf(t, {D}) (2.8)

2.3 Feature Location

In software systems, a feature represents a functionality that is defined by software re-

quirements and accessible to end users. Software maintenance and evolution involves adding

new features to programs, improving existing features, and removing unwanted features (e.g.,

bugs). The practice that consists of identifying code elements that implement a specific fea-

ture is known as feature location (Biggerstaff et al., 1994; Rajlich et Wilde, 2002). In our

study described in Chapter 7, we rely on two feature location approaches. The first uses IR

while the second combines IR and dynamic analysis. While there are several IR techniques
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that have been successfully applied in the context of feature location, such as VSM (Eaddy

et al., 2008a), LSI (Liu et al., 2007; Poshyvanyk et al., 2007; Revelle et Poshyvanyk, 2009;

Revelle et al., 2010), and LDA (Lukins et al., 2010), in this thesis, we focus on evaluating

LSI for feature location. LSI-based feature location follows five main steps: generating a

corpus, preprocessing the corpus, indexing the corpus using LSI, formulating a search query

and generating similarities and finally, examining the results.

Step one - generating the corpus. The source code of a software system is parsed,

and all the information associated with a method (i.e., comments, method declaration, sig-

nature and body) will become a document in the system corpus. In other words, we are

using a method-level granularity for the corpus, so each method from the source code has a

corresponding document in the corpus.

Step two - preprocessing the corpus. The generated corpus is then preprocessed

in order to normalize the text contained in the documents. This step includes removing

operators, programming language keywords, or special characters. Additionally, compound

identifiers could be split using different identifier splitting techniques. The split identifiers

are then stemmed (i.e., reduced to their root form) using the Porter stemmer (Porter, 1980),

and finally the words that appear commonly in English (e.g., “a”, “the”, etc.) are eliminated.

Step three - indexing the corpus using LSI. The preprocessed corpus is transformed

into a term-by-document matrix, where each document (i.e., method) from the corpus is

represented as a vector of terms (e.g., identifiers). The values of the matrix cells represent

the weights of the terms from the documents, which are computed using the term frequency-

inverse document frequency TF-IDF weight. The matrix is then decomposed using Singular

Value Decomposition (Deerwester et al., 1990) which decreases the dimensionality of the

matrix by exploiting statistical co-occurrences of related words across the documents.

Step four - formulating a search query and generating similarities. The software

developer chooses a query that describe the feature or bug being sought (e.g., “print page”).

The query is converted into a vector-based representation, and the cosine similarity between

the query and every document in the reduced space is computed. In other words, the tex-

tual similarity between the bug description and every method from the software system is

computed in the LSI subspace.

Step five - examining the results. The list of methods is ranked based on their cosine

similarities with the user query. The developer starts investigating the methods in order,

from the top of the list (i.e., most relevant methods first). After examining each method

the developer decides if that method belongs to the feature of interest or not. If it does, the

feature location process terminates. Otherwise, the developer can continue examining other

methods, or refine the query based on new information gathered from examining the methods
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and starting from Step 4 again.

Feature location via LSI and dynamic information has one additional step, which can take

place before the Step 4 described earlier.

Step for collecting execution information. The software developer triggers the bug,

or exercises the feature by running the software system and executing the steps to repro-

duce from the description of the feature or bug. This process invokes the methods that are

responsible for the bug or feature and, these methods are collected in an execution trace.

The developer can take advantage of this information by formulating a query (Step 4) and

examining the results (Step 5) produced by ranking only the methods found in the execution

trace (as opposed to ranking all the methods of the software system). The advantage of using

execution information is that it reduces the search space, thus increasing the performance of

feature location.

We consider both FLT based on IR only and FLT based on the combination of IR and

execution information. While previous studies have shown that the FLT based on execution

information outperforms its basic version (i.e., FLT based on IR only) (Liu et al., 2007;

Poshyvanyk et al., 2007; Revelle et Poshyvanyk, 2009; Revelle et al., 2010), the goal of the

study described in this thesis (cf. Chapter 7) was to analyze the impact of the identifier

splitting techniques from Step 2 on the accuracy of feature location.

2.4 Traceability Recovery

Requirement traceability is defined as “the ability to describe and follow the life of a

requirement”, in both forwards and backwards directions (i.e., from its origins, through its

development and specification, to its subsequent deployment and use, and through all periods

of on-going refinement and iteration in any of these phases) (Gotel et Finkelstein, 1994).

Promising results have been achieved using IR methods (e.g., (Antoniol et al., 2002)), be-

cause pairs of source-target artifacts having higher textual similarities have a high probability

to be linked. A premise of the latter work is that programmers use meaningful names for

program items, such as functions, variables, types, classes, and methods. In fact, Antoniol et

al. believe that the application-domain knowledge that programmers process when writing

the code is often captured by the mnemonics for identifiers; therefore, the analysis of these

mnemonics can help to associate high-level concepts with program concepts and vice-versa

(Antoniol et al., 2002).

Recently, researchers (De Lucia et al., 2011) have used smoothing filters to improve the

precision of IR-based traceability. In addition to these technical improvements, other works

have focused on human factors in traceability, such as how to help programmers understand
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how to use the links for a specific task (Hayes et al., 2004; Mader et al., 2009; Panis, 2010;

De Lucia et al., 2011).

In the fields of feature location, we are the first to analyze the impact of identifier splitting

on such a task (Dit et al., 2011). We investigate the impact of three different identifier

splitting strategies, namely, CamelCase, Samurai, and manual splitting of identifiers on two

LSI-based FLTs. One based on IR only while the second uses IR and dynamic analysis.

Recently, Binkley et al. (Binkley et al., 2012) replicated an experiment with an LSI-based

feature locator performed by Marcus et al. (Marcus et al., 2004). They applied their identifier

splitting and expansion technique, i.e., Normalize (Lawrie et Binkley, 2011) on this IR-based

tool. The results of their study show that normalization is able to recover key domain

terms that were shrouded in invented vocabulary, thus, it was able to improve the ranks of

relevant documents in the IR environment considered. However, this improvement was most

pronounced for shorter, more natural queries where there was a 182% improvement (Binkley

et al., 2012).

2.5 Building Dictionaries

Our source code vocabulary normalization, i.e., TIDIER (Guerrouj et al., 2013a) and

TRIS (Guerrouj et al., 2012) aim at expanding identifiers by trying to match their terms with

words contained in a dictionary. To perform the expansion task, we use dictionaries built for

the analyzed software systems. Dictionaries are built by tokenizing source code, extracting

identifiers and comment terms, and saving them into specialized dictionaries (Guerrouj et al.,

2013a, 2012). In TIDIER, we also built context-aware dictionaries at the level of functions,

files, or C programs since one of our objectives was to analyze the sensitiveness of TIDIER to

contextual information. The context-aware dictionaries construction phase will be explained

in details in the chapter dedicated to TIDIER (cf. Chapter 5).

2.6 Building Oracles

To validate the obtained identifier splitting results, we need an oracle. This means that

for each identifier, we will have a list of terms obtained after splitting it and, wherever needed,

expanding contracted words. We produce the oracle following a consensus approach: (i) a

splitting of each sampled identifier, and expanded abbreviations is produced independently

(ii) In a few cases, disagreements are discussed among all the authors.

We adopted this approach in order to minimize the bias and the risk of producing erro-

neous results. This decision was motivated by the complexity of identifiers, which capture

developers domain and solution knowledge, experience, and personal preference (Dit et al.,
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2011; Guerrouj et al., 2012, 2013a,b).

2.7 Generating Traceability Links’ Sets

To investigate the impact of identifier splitting on traceability recovery, we need to evalu-

ate the performance of the studied traceability recovery techniques (e.g., one using CamelCase

and the other Samurai or the Oracle). To do so, we generate various traceability links’ sets

at different thresholds. We then use these sets to compute precision, recall, and F-measure

values. These sets help us to evaluate, which approach is better than the other at all the

threshold values or some specific thresholds values. To perform statistical tests, we conduct

several experiments with different threshold values on links recovered by two traceability

recovery techniques. In the software engineering literature, three main threshold strategies

have been suggested by researchers:

Scale threshold: It is computed as the percentage of the maximum similarity value

between two software artefacts, where threshold t is 0 ≤ t ≤ 1 (Antoniol et al., 2002). In this

case, the higher the value of the threshold t, the smaller the set of recovered links returned

by an IR query.

Constant threshold: It has values between [0, 1] (Marcus et Maletic, 2003); a widely

used threshold is t = 0.7. However, the latter value is not convenient when the maximum

similarity between two software artefacts is less than 0.7.

Variable threshold: It is an extension of the constant threshold approach (De Lucia

et al., 2004). When using a variable threshold, the constant threshold is projected onto

particular interval, where the lower bound is the minimum similarity and upper bound is

the maximum similarity between two software artefacts. Hence, the variable threshold has

values between 0% to 100% and on the basis of this value this method determines a cosine

threshold.

In Chapter 8 of this thesis, we use the scale threshold. We considered a threshold t to

prune the set of traceability links, keeping only links whose similarities values are greater

than or equal to t ∈ [0, 1]. We used different values of t from 0.01 to 1 per step of 0.01

to obtain different sets of traceability links with varying precision, recall, and–or F-measure

values, for our approaches.
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2.8 Performance Measures

2.8.1 Correctness of Identifier Splitting/Expansion

In some of our empirical evaluations, we compute the correctness of the splitting/mapping

to dictionary words produced by the identifier splitting/expansion approach with respect to

the oracle. To do so, we use a Boolean variable meaning that the split/expansion is correct

(true) or not (false).

Let us define the correct expansion of the identifier cntrPtr as counter and pointer ; if the

studied approach produces exactly the expected expansions and, thus, the correct splits, then

the correctness is true, else it is false, e.g., counter and ptr. The weakness of this correctness

measure is that it only provides a Boolean evaluation of the splitting/expansion. If the split

is almost correct, i.e., most of the terms are correctly identified, then correctness would still

be false.

2.8.2 Precision, Recall, and F-measure of Identifier Splitting/Expansion

To overcome the limitation of the correctness measure and provide a more insightful

evaluation, we use the precision and recall measures.

Given an identifier si to be split, oi = {oraclei,1, . . . oraclei,m} the splitting in the manually-

produced oracle, and ti = {termi,1, . . . termi,n} the set of terms obtained by an approach, we

define the precision and recall as follows:

precisioni =
|ti ∩ oi|
|ti|

, recalli =
|ti ∩ oi|
|oi|

To provide an aggregated, overall measure of precision and recall, we use the F-measure,

which is the harmonic mean of precision and recall:

F −measurei =
2 · precisioni · recalli
precisioni + recalli

2.8.3 Effectiveness Measure of Feature Location

In our empirical study on feature location and identifier splitting, we use the effectiveness

measures (Liu et al., 2007) to compare which configuration of the considered FLTs is more

accurate than another. The effectiveness measure is the best rank (i.e., lowest rank) among

all the methods from the gold set for a specific feature. Intuitively, the effectiveness measure

shows how many methods must be investigated before the first method relevant to the feature

is located (Eisenbarth et al., 2003; Antoniol et Guéhéneuc, 2005). Obviously, a technique that

consistently places relevant methods towards the top of the ranked list (i.e., lower ranks) is
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more effective than a technique that contains relevant methods towards the middle or the

bottom of the ranked list (i.e., higher ranks).

Formally, we define the effectiveness of a technique j, Ej, as the rank r(mi) of the method

mi where mi is the top ranked method among the methods that must be considered for a

specific feature.

We consider the effectiveness measure of FLTs because, first, we are focusing on concept

location, rather than impact analysis. Second, once a relevant method has been identified,

it is much easier to find other related methods by following program dependencies from the

relevant method, or by using other heuristics.

2.8.4 Precision and Recall of Traceability Recovery

In our empirical study on traceability recovery and identifier splitting, we use two well-

known IR metrics, namely, precision and recall, to evaluate the accuracy of our experiment

results. Both measures produce values in the interval [0, 1]. Precision and recall values are

computed for all the traceability links retrieved above a threshold. The threshold value could

be determined based on the project scope and–or retrieved documents.

precision =
|{relevant documents} ∩ {retrieved documents}|

|{retrieved documents}|
(2.9)

Precision is defined as the total number of relevant documents retrieved divided by the

total number of retrieved documents by an approach. Precision considers all retrieved docu-

ments above the threshold value. This measure is called precision at n or P@n. A precision

value equal to 1 means that all the recovered documents are correct.

recall =
|{relevant documents} ∩ {retrieved documents}|

|{relevant documents}|
(2.10)

Recall is defined as the relevant documents retrieved divided by the total number of

relevant documents. It is, in fact, the ratio between the number of documents that are

successfully retrieved and the number of documents that should be retrieved. A recall of

a value equal to 1 means that all relevant documents have been retrieved. The obtained

documents are, in general, the result of an IR query execution.

2.9 Statistical Hypothesis Testing

In this thesis, to compare the performance of an approach to another, we use statistical

hypothesis testing. To perform statistical tests, we first formulate a null hypothesis, e.g.,

there is no difference between Samurai and GenTest in terms of their identifier splitting
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correctness. To reject a null hypothesis, we define a significance level of a test, i.e., alpha.

It is an upper bound of the probability for rejecting the null hypothesis. Second, we analyze

whether the the data is normally distributed or not to select an appropriate statistical test.

Finally, we perform a convenient statistical test to get a probability value, i.e., p-value, to

verify our hypothesis; p-value is compared against the significance level. We reject the null

hypothesis if the p-value is less than the significance level, e.g., 0.05. Otherwise, we accept

the alternate hypothesis or provide an explanation if we do not reject the null hypothesis.

In this thesis, we perform a set of statistical tests depending on the addressed problem.

These tests allow us to assess whether the obtained results are statistically significant or not.

In addition, we measure the effect size (i.e., the magnitude) of the difference between two

approaches.

2.9.1 Statistical Tests

We perform appropriate statistical tests to analyze whether the improvement in accuracy

brought by a proposed approach is indeed an improvement or it is obtained by chance. In

the following, we discuss the statistical tests used in this thesis.

Fisher Exact Test

Fisher’s exact test is a non-parametric test, which evaluates the hypothesis of indepen-

dence between two categorical random variables. We use it in our thesis to test the dif-

ferences among different identifier splitting and expansion approaches, in terms of identifier

splitting/expansion correctness since correctness is a categorical measure. Specifically, we

use Fisher’s exact test to test the following null hypothesis H0: the proportion of correct

splits/expansions between two approaches do not significantly change.

Wilcoxon Paired Test

The Wilcoxon paired test is a non-parametric test for pair-wise median comparison, it

reports whether the median difference between two approaches is significantly different from

zero: H0 : µd = 0, where µd is the median of the differences (Wohlin et al., 2000).

Wilcoxon Signed-rank Test

The Wilcoxon signed-rank test is a non-parametric statistical hypothesis test used when

comparing two related samples, matched samples, or repeated measurements on a single

sample to assess whether their population mean ranks differ (i.e., it is a paired difference

test) (Wohlin et al., 2000).
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Two-way Analysis of Variance Test

The two-way analysis of variance (ANOVA) is a parametric test, which is an extension

of the one-way ANOVA test that examines the influence of different categorical independent

variables on one dependent variable. While the one-way ANOVA measures the significant

effect of one independent variable, the two-way ANOVA is used when there are more than

one independent variable and multiple observations for each independent variable. The two-

way ANOVA does not only determine the main effect of contributions of each independent

variable but also analyzes if there is a significant interaction effect between the independent

variables (Wohlin et al., 2000).

Permutation Test

The permutation test is a non-parametric alternative to ANOVA; differently from ANOVA,

it does not require data to be normally distributed. The general idea behind such a test is

that the data distributions are built and compared by computing all possible values of the sta-

tistical test while re-arranging the labels (representing the various factors being considered)

of the data points (Baker, 1995).

Tukey’s Honest Significant Differences Test

Tukey’s Honest Significant Differences (HSD) is a post-hoc testing process which allows

the comparison of all pairs of groups while preserving the total importance degree of the

set of analyses at a prescribed degree. It is a single-step multiple comparison procedure

and statistical test used in conjunction with an ANOVA to find means that are significantly

different from each other. In fact, Tukey’s test compares the means of every treatment

to the means of every other treatment; that is, it applies simultaneously to the set of all

pairwise comparisons, and identifies any difference between two means that is greater than

the expected standard error. The confidence coefficient for the set, when all sample sizes are

equal, is exactly 1-alpha. For unequal sample sizes, the confidence coefficient is greater than

1-alpha (Sheskin, 2007).

Mann-Whitney test

The Mann-Whitney is a non-parametric test, which assesses how many times a set Y

precedes a set X in two samples. It is a robust statistical test and could also be used for

small sample sizes, 5 to 20 samples. Mann-Whitney could also be used when the sample

values are captured using an arbitrary scale that cannot be measured accurately (Wohlin

et al., 2000).
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2.9.2 Effect Size Measures

Other than showing the presence of significant differences between studied approaches, we

also analyze the magnitude of the detected differences using appropriate effect-size measures.

Cohen’s d

Cohen’s d is parametric effect size measure for dependent variables, defined as the dif-

ference between two means (M1 and M2), divided by the standard deviation of the (paired)

differences between samples (σD):

d =
M1 −M2

σD

The Cohen’s d effect size is considered small for 0.2 ≤ d < 0.5, medium for 0.5 ≤ d < 0.8,

and large for d ≥ 0.8 (Cohen, 1988).

Cliff’s delta

Cliff’s delta (d) is a non-parametric effect size measure (Grissom et Kim, 2005), defined

as the probability that a randomly-selected member of one sample has a higher response

than a randomly-selected member of a second sample, minus the reverse probability. Cliff’s

d ranges in the interval [−1, 1] and is considered small for 0.148 ≤ d < 0.33, medium for

0.33 ≤ d < 0.474, and large for d ≥ 0.474.

Odds Ratio

Odds ratio (OR) is defined as the ratio of the odds p of an event occurring in one group

to the odds q to it occurring in another group:

OR =
p/(1− p)

q/(1− q)

OR = 1 indicates that the event is equally likely in both samples. OR > 1 indicates

that the event is more likely with the first approach while an OR < 1 indicates the opposite

Sheskin (2007).
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2.9.3 Multiple Testing p-value Corrections

Whenever multiple tests are performed, we adjust p-values using the appropriate correc-

tions.

Bonferroni correction

Bonferroni correction is an adjustment made to p-values when several dependent or inde-

pendent statistical tests are being performed simultaneously on a single data set. To perform

a Bonferroni correction, the critical p-value should be divided by the number of performed

comparisons (i.e., tests) (Bland, 2000).

Holm correction

Holm correction is similar to the Bonferroni correction, but less stringent. It works as

follows: (i) the p-values obtained from multiple tests are ranked from the smallest to the

largest, (ii) the first p-value is multiplied by the number of tests performed (n), and is

deemed to be significant if it is less than 0.05, and (iii) the second p-value is multiplied by

n− 1, and so on (Holm, 1979).

Our statistics have been applied using the R (version 2.15.0) statistical environment (Team,

2012).
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CHAPTER 3

Related Work

This chapter describes the most relevant contributions to the role of textual information

on program comprehension and software quality, source code vocabulary normalization ap-

proaches, relevance of context for program comprehension, as well as feature location and

traceability recovery.

3.1 Role of Textual Information on Program Comprehension and Software Qual-

ity

Early work (Soloway et al., 1983; Mayrhauser et Vans, 1995) on program comprehension

and mental models, which are programmers’ mental representation of the program being

maintained, highlighted the significance of textual information to capture and encode pro-

grammers’ intent and knowledge in software. The role of identifier naming was also investi-

gated by Anquetil et al. (Anquetil et Lethbridge, 1998), who suggested the existence—in the

source code lexicon—of “hard-terms” that encode core concepts.

Takang et al. (Takang et al., 1996) empirically studied the role of identifiers and com-

ments on source code understanding. They compared abbreviated identifiers to full-word

identifiers and uncommented code to commented code. The results of their study showed

that commented programs are more understandable than non-commented programs, and that

programs containing full-word identifiers are more understandable than those with abbrevi-

ated identifiers.

Caprile and Tonella (Caprile et Tonella, 1999) performed an in-depth analysis of the

internal structure of identifiers. They showed that identifiers are an important source of

information about system concepts and that the information they convey is often the starting

point of program comprehension. Other researchers (Caprile et Tonella, 2000; Merlo et al.,

2003) assessed the quality of identifiers, their syntactic structure, plus the information carried

by the terms that compose them.

Deißenböck et al. (Deißenböck et Pizka, 2005) provided a set of guidelines to produce

high-quality identifiers. With such guidelines, identifiers should contain enough information

for a software engineer to understand the program concepts.

Lawrie et al. (Lawrie et al., 2007b) attempted to assess the quality of source code iden-

tifiers. They suggested an approach, named QALP (Quality Assessment using Language
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Processing), relying on the textual similarity between related software artifacts. The QALP

tool leverages identifiers and related comments to characterize the quality of a program. The

results of their empirical study indicated that full words as well as recognizable abbreviations

contribute to better program understanding. Their work suggested that the recognition of

words composing identifiers, and, thus, of the domain concepts associated with them could

contribute to a better comprehension.

Methods related to source code identifier refactoring were proposed by Caprile and Tonella

(Caprile et Tonella, 1999) and Demeyer et al. (Demeyer et al., 2000).

De Lucia et al. (De Lucia et al., 2006, 2010) proposed COCONUT, a tool highlighting to

developers the similarity between source code identifiers and comments and words in high-

level artifacts. They empirically showed that this tool is helpful to improve the overall quality

of identifiers and comments.

Textual similarity between methods within a class, or among methods belonging to dif-

ferent classes, has been used to define new measures of cohesion and coupling, i.e., the

Conceptual Cohesion of Classes proposed by Marcus et al. (Marcus et al., 2008) and the

Conceptual Coupling of Classes proposed by Poshyvanyk et al. (Poshyvanyk et Marcus,

2006), which bring information complementary to structural cohesion and coupling measure.

De Lucia et al. (De Lucia et al., 2007) used LSI to identify cases of low similarity between

artifacts previously traced by software engineers. Their technique relies on the use of textual

similarity to perform an off-line quality assessment of both source code and documentation,

with the objective of guiding a software quality review process because the lack of textual

similarity may be an indicator of low quality of traceability links. In fact, poor textual

description in high-level artifacts or meaningless identifiers or poor comments in source code

may point to a poor development process and unreliable traceability links.

Abebe et al. (Abebe et al., 2008) analyzed how the source code vocabulary changes during

evolution. They performed an exploratory study of the evolution of two large open-source

programs. The authors observed that the vocabulary and the size of a program tend to evolve

the same way and that the evolution of the source code vocabulary does not follow a trivial

pattern. Their work was motivated by the importance of having meaningful identifiers and

comments, consistent with high-level artifacts and with the domain vocabulary during the

life of a program.

Abebe et al. (Abebe et al., 2012) measured the quality of identifiers using the number of

Lexicon Bad Smells (LBS) they contain. They investigated whether using LBS in addition

to structural metrics improves fault prediction. To conduct their investigation, the authors

assessed the prediction capability of a model while using only structural metrics, and struc-

tural metrics and LBS. The results of their study indicated that there is an improvement in
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the majority of the cases.

Binkley et al. (Binkley et al., 2009) investigated the use of the identifier separators,

namely the CamelCase convention and underscores in program comprehension. They found

that the CamelCase convention led to better understanding than underscores, and when

participants are properly trained, that participants performed faster with identifiers built

using the CamelCase convention rather than those with underscores.

Sharif and Maletic (Sharif et Maletic, 2010) replicated the pervious study using an eye-

tracking system. The results of their study showed that participants recognized identifiers

that used the underscore notation more quickly. They also reported that there is no difference

in terms of accuracy between the CamelCase and underscore style.

A recent work by Binkley et al. (Binkley et al., 2013) studied the impact of identifier

style on program comprehension. In this work, the authors conducted five studies with 150

participants and examined two styles, namely the usage of CamelCase and underscore as

separators. Their hypothesis was that the style of identifiers affects the speed and accuracy

of comprehending source code. Their first study, which investigated how well humans read

identifiers in the two different styles, focused on low-level readability issues. The remaining

four studies built on the first to focus on the semantic implications of identifier style. The

results of their studies showed that the tasks of reading and comprehending source code

is fundamentally different from those of reading and comprehending natural language. In

addition, the authors highlighted that as the task becomes similar to reading prose, the

results become similar to work on reading natural-language text. Furthermore, the authors

showed that, for more “source focused” tasks, identifier style affects only non-experienced

software developers, who benefitted from the use of Camel casing, however, experienced ones

appear to be less affected.

Overall, prior works agree on the fact that identifiers represent an important source of

domain information, and that meaningful identifiers improve software quality and reduce the

time and effort to acquire a basic comprehension level for any maintenance task.

3.2 Context Relevance for Program Comprehension

Many cognitive models have been recently proposed in the literature, and they all rely

on the programmers’ own knowledge, the source code and available software documentation

(Mayrhauser et Vans, 1995). Disparities between various comprehension models can be ex-

plained in terms of differences in experimental factors such as programmer characteristics,

program characteristics and task characteristics that influence the comprehension process

(M-A.D. Storey, 1999).
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Robillard et al. (Robillard et al., 2004) performed an exploratory study to assess how de-

velopers investigate context, more precisely, source code when performing a software change

task. Their study involved five developers performing a change task on a medium-size open

source system. In their study, they isolated the factors related to effective program inves-

tigation behavior by performing a detailed qualitative analysis of the program investigation

behavior of successful and unsuccessful developers. Their results support the intuitive notion

that a methodical and structured approach to program investigation is the most effective.

Their main findings related to our work is the fact that prior to performing a task, develop-

ers must discover and understand the subset of the system relevant to the task. Thus, task

context is important to understand the task at hand and avoid information overload.

Kersten et al. (Kersten et Murphy, 2006) presented a mechanism that captures, models,

and persists the elements and relations relevant to a task. They showed how their task

context model reduces information overload and focuses a programmers’ work by filtering

and ranking the information presented by the development environment. They implemented

their task context model as a tool, Maylar, for the Eclipse development environment. In

their study, a task context represents the program elements and relationships relevant to

completing a particular task.

Sillito et al. (Sillito et al., 2008) provided an empirical foundation for tool design based

on an exploration of what programmers need to understand and of how they use tools to

discover that information while performing a change task. They collected and analyzed data

from two observational studies. Their first study was carried out in a laboratory setting.

However, the second study was carried out in an industrial work setting. The participants in

the first study were observed as they worked on assigned change tasks to a code base that

was new to them. The results of their study provide a more complete understanding of the

information needed by programmers performing change tasks, and of how programmers use

tools to discover that information. These results have several implications for tool design. In

fact, they point to the need to move tools closer to programmers’ questions and the process

of answering those questions and also suggest ways that tools can do this, for example, by

maintaining and using more types of context and by providing support for working with

larger and more diverse groups of entities and relationships.

We share with the above-mentioned works the idea that task context is important when

performing a software evolution task. However, our focus was not on building task context

models for programming tasks but rather on discovering the contexts relevant for source code

vocabulary normalization to help improve the accuracy of source code vocabulary normal-

ization approaches and tools.
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3.3 Source Code Vocabulary Normalization Approaches

Stemming from Deißenböck and Pizka’s observation on the relevance of identifiers’ terms

for program comprehension, several approaches have been proposed to normalize source code

vocabulary. These approaches are CamelCase, Samurai, GenTest, Normalize, and LINSEN.

The simplest and widely adopted CamelCase technique is often sufficient to accomplish soft-

ware evolution tasks (e.g., (Dit et al., 2011)). CamelCase relies on the use of naming con-

ventions such as the CamelCase and underscore. In addition, CamelCase strategies do not

use contextual information such as the case for Samurai which uses term frequencies as its

local context (Enslen et al., 2009). In a sense, Samurai can be thought as a clever CamelCase

guided by global and local knowledge encoded into frequency tables. Indeed, Samurai local

table is built by mining terms in the program under analysis while the global table is made

by mining the set of terms in a large corpus of programs.

Recently, a machine-translation algorithm based on n-gram language models has been

proposed to accurately split and expand identifiers (Lawrie et Binkley, 2011). The latter

approach is called Normalize, it is a refinement of GenTest, an identifier splitting algorithm

described in (Lawrie et al., 2010). GenTest consists of two parts: the generation part gener-

ates all possible splittings and the test part evaluates a scoring function against each proposed

splitting. The core part of Normalize is based on a machine translation technique, namely,

the maximum coherence model (Gao et al., 2002), which is based on co-occurrence data that

captures local context information. The heart of normalization is a similarity metric com-

puted from co-occurrence data, exploited to select the best candidate among several possible

expansions.

LINSEN (Corazza et al., 2012) is a novel technique that maps a given identifier to the set

of corresponding dictionary words. The technique is based on a graph model and performs

in linear time with respect to the size of the dictionary, taking advantage of an approximate

string matching algorithm, the Baeza-Yates and Perleberg (Baeza-yates et Perleberg, 1992).

LINSEN exploits a number of different dictionaries, referring to increasingly broader contexts,

in order to achieve a disambiguation strategy based on the knowledge gathered from the most

appropriate domain.

We share with the above-mentioned works the idea that source code vocabulary normal-

ization is a challenging problem and that context is relevant for such a task.
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3.4 Feature Location

Feature location is the activity of finding the source code elements (i.e., methods or

classes) that implement a specific feature (e.g., “print page in a text editor”or“add bookmark

in a web-browser”) (Marcus et al., 2004; Poshyvanyk et al., 2007). In large software systems,

there may be hundreds of classes and thousands of methods. Finding even one method that

implements a feature can be extremely challenging and time consuming. Fortunately, for

software engineers facing this situation, there are feature location techniques that automate,

to a certain extent, the search for a feature’s implementation. Existing feature location

techniques rely on different tactics to find a feature’s source code. IR-based approaches

leverage identifiers and comments to locate source code that is textually similar to a query

describing a feature (Marcus et al., 2004).

Grant et al. (Grant et al., 2008) used Independent Component Analysis for feature

location, by separating the features (modeled as input signals) into independent components

and estimating the relevance to each source code method.

Shepherd et al. (Shepherd et al., 2007) proposed an approach to feature location that is

based on the program model that captures action-oriented relations between identifiers in a

program.

There are several feature location techniques that use more than one type of information

(or underlying analysis). For example, SITIR (Liu et al., 2007) and PROMESIR (Poshyvanyk

et al., 2007) both utilize textual and execution information. Execution information is gathered

via dynamic analysis, which is commonly used in program comprehension (Cornelissen et al.,

2009) and involves executing a software system under specific conditions. For feature location,

these conditions involve running a test case or scenario that invokes a feature in order to

collect an execution trace. For example, if the feature of interest in a text editor is “printing”,

the test case or scenario would involve “printing a file”. Invoking the desired feature during

runtime generates a feature-specific execution trace.

Eisenbarth et al. (Eisenbarth et al., 2003) proposed a technique that applies formal

concept analysis to traces to generate a mapping between features and methods.

Cerberus (Eaddy et al., 2008a) is another hybrid technique which combines static, dy-

namic and textual analysis. A comprehensive summary of feature location approaches can

be found in (Revelle et al., 2010).

A more recent work by Binkley et al. (Binkley et al., 2012) investigated the used of

vocabulary normalization on IR-based tools. The authors conducted an experiment where

they applied the Normalize technique (Lawrie et Binkley, 2011), to an LSI-based feature

locator. The replication of the study done by Marcus et al. (Marcus et al., 2004) provides a
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baseline for measuring the impact of normalization. Results of this replicated study show that

normalization improves the ranks of relevant documents in the considered IR environment

because it is able to recover key domain terms that were shrouded in non-aligned vocabulary.

This improvement is most pronounced for shorter, more natural, queries.

We share with these works the idea that feature location is an important software engi-

neering task and that identifier splitting/expansion is one of its essential ingredients.

3.5 Traceability

Traceability recovery has long been recognized as a major maintenance task in software

engineering (Gotel et Finkelstein, 1993).

Several approaches (Antoniol et al., 2000, 2001; Eaddy et al., 2008a) have been suggested

to recover traceability links between high-level documents, e.g., requirements, and low-level

documents, e.g., source code.

Antoniol et al. (Antoniol et al., 2001, 2002) proposed an approach, using class attributes

as traceability anchors, to automatically recover traceability links between object-oriented

design models and code.

Sherba and Anderson (Sherba et Anderson, 2003) proposed an approach, TraceM, to man-

age traceability links between requirements and architecture. TraceM is based on techniques

from open hypermedia and information integration. Open hypermedia system enables the

creation and viewing of relationships in heterogeneous systems. TraceM allows the creation,

maintenance, and viewing of traceability relationships in tools that software professionals use

on a daily basis.

Maider et al. (Mader et al., 2009) encouraged a wider adoption of traceability and,

thus, they refocused their attention on practical ways to apply traceability information mod-

els in practice. The authors highlighted the typical decisions involved in creating a basic

traceability-information model, suggested a simple UML-based representation for its defini-

tion, and illustrated its central role in the context of a modeling tool.

Maletic et al. (Maletic et Collard, 2009) proposed, TQL, an XML-based traceability

query language that supports queries across multiple artefacts and multiple traceability link

types. TQL has primitives to allow complex queries construction and execution support.

Eddy et et al. (Eaddy et al., 2008a) proposed a new technique, prune-dependency analysis

that can be combined with existing techniques to dramatically improve the accuracy of con-

cern location. The authors developed CERBERUS, a hybrid technique for concern location

that combines information retrieval, execution tracing, and prune dependency analysis.

Andrea et al. (De Lucia et al., 2010) proposed an approach to help developers maintain
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source code identifiers and comments consistent with high-level artifacts. The approach uses

textual similarity between source code and related high-level artifacts.

Zou et al. (Zou et al., 2010) performed empirical studies to investigate Query Term Cov-

erage, Phrasing, and Project Glossary term-based enhancement methods that are designed

to enhance the performance of a probabilistic automated tracing tool. The authors suggested

a procedure to automatically extract cryptic keywords and phrases from a set of traceable

artifacts to improve the automated trace retrieval.

Ali al. (Ali et al., 2013) proposed, Trustrace, an approach that is based on mining software

repositories and combines mined results with IR techniques to improve the accuracy (i.e.,

precision and recall) of requirements traceability links.

In this thesis, we do not suggest new traceability recovery approaches. However, we

investigate the impact of source code vocabulary normalization on two traceability recovery

techniques: one based on LSI while the second uses VSM.
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CHAPTER 4

Context-Awareness for Source Code Vocabulary Normalization

Several research works such as Samurai (Enslen et al., 2009), Normalize (Lawrie et Bink-

ley, 2011), and LINSEN (Corazza et al., 2012) have exploited contextual information in

the splitting and expansion process to support program understanding and software main-

tenance. Despite the availability of identifier splitting/expansion tools that exploit context,

there is very little empirical evidence on the extent to which context is relevant to lexicon

normalization and, thus, ultimately to program understanding and software maintenance.

In this chapter, we describe the two user studies we performed to show the effect of context

on source code vocabulary normalization.

4.1 Experiments’ Definition and Planning

We conducted a family of two experiments with 63 participants, including graduate stu-

dents and post-docs at École Polytechnique de Montréal. Each participant split and expanded

a set of identifiers extracted from various C programs when working with different kinds of

available contextual information.

Specifically, the two user studies aim at investigating:

1. The effect of contextual information. Contextual information is any information that

developers can access when splitting and expanding identifiers, and, in general, infor-

mation developers can have available during a program comprehension task. Normally,

during such a task, a developer looks at neighboring source code, i.e., the function

where the identifier occurs, its file or even the entire project, by reading comments,

other identifiers, etc. In the first experiment, we considered the internal context, i.e.,

source code functions and files, and the internal plus external contexts, i.e., source

code files, plus the availability of an acronym dictionary, in the following referred to as

“Acronym Finder”. In the second experiment, we investigated two additional context

levels, one consisting of all source code files from the application, and another consisting

of such files plus the external context.

2. The accuracy in dealing with terms—composing identifiers—consisting of plain English

words, abbreviations, and acronyms.
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3. The effect of factors that might influence the participants’ performances (Wohlin et al.,

2000): participants’ background, programming expertise, domain knowledge, and En-

glish proficiency.

This section describes our experiment following the templates provided by Basili et al.

(Basili et al., 1994) and Wohlin et al. (Wohlin et al., 2000).

4.1.1 Experiments’ Definition

The goal of these two user studies is to investigate how developers split and expand source

code identifiers, with the purpose of evaluating the impact of contextual information as well

as of other factors, such as identifier characteristics and developers’ background.

The quality focus is program understanding, which could be improved by adopting mean-

ingful identifiers, or by designing tools that take into account contextual information to

improve their accuracy.

The perspective is of researchers and practitioners interested in (i) investigating the extent

to which contextual information helps developers properly understand and map identifiers to

dictionary (or domain) words, and (ii) determining the developers’ characteristics that are

relevant for the identifier splitting and expansion task.

The participants involved in the study are Bachelor, Master, Ph.D. students, and post-

docs. The objects, i.e., identifiers to be split and expanded, and their related context (e.g.,

source code files or functions in which they appear) have been extracted from C open source

utilities.

Experiments’ subjects and objects

We conducted two user studies—in the following referred to as Exp I and Exp II—which

will vary the levels of context.

In both experiments, the participants are students and post-docs of the Computer and

Software Engineering department of École Polytechnique de Montréal. Exp I had 42 partici-

pants: 28 Ph.D., eight Master, and Five bachelor students, plus one post-doctoral fellow. Exp

II had 21 participants: 10 Ph.D., six Master, three Bachelor students, and two post-doctoral

fellows. In total, we had 63 participants.

We collected information about all experiment participants, using a pre-experiment ques-

tionnaire in which we asked participants to self-evaluate themselves about their level of C

programming knowledge, Linux knowledge, and English proficiency. All participants have

at least a basic knowledge in the C programming language and have performed at least one

maintenance task in previous years (i.e., it was not the first time they had to deal with source
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Table 4.1 Participants’ characteristics and background.

Exp I (42 participants)
Characteristic Level # of Participants

Program of
Studies

Bachelor 5
Master 9
Ph.D. 28
Post-doc 1

C
Programming
Experience

Basic 11
Medium 23
Expert 9

English
Proficiency

Bad 8
Good 8
Very good 18
Excellent 8 (7)

Linux
Knowledge

Occasional 12
Basic usage 13
Knowledgeable but not expert 17
Expert 0

Exp II (21 participants)
Characteristic Level # of Participants

Program of
Studies

Bachelor 3
Master 6
Ph.D. 10
Post-doc 2

C
Programming
Experience

Basic 6
Medium 5
Expert 10

English
Proficiency

Bad 1
Good 9
Very good 6
Excellent 11 (6)

Linux
Knowledge

Occasional 10
Basic usage 6
Knowledgeable but not expert 5
Expert 0

code). In summary, the participants’ population includes a variety of training levels (from

Bachelor to post-doctoral) and, hence, it can be considered representative of young developers

hired by companies in the Montréal area. Also, participants have different levels of English

proficiency. The main characteristics of experiment participants and their background gained

from the pre-experiment questionnaire are summarized in Table 4.1. In parenthesis, we re-

port the total number of English native speakers, that are a subset of those who indicated

an excellent English proficiency.

The participants split and expanded 50 identifiers extracted from 34 open-source C ap-

plications. Identifiers were selected as follows: we first extracted all identifiers, then we

discarded English words since the purpose of our study is to study how developers expand

identifiers with abbreviations and acronyms. Finally, after removing identifiers shorter than

three characters, we randomly sampled identifiers from the obtained set. These applications
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are some GNU Unix Utilities1 (e.g., binutils, emacs, gcal, gcc, gcl, gmp, gnuradio, gnuspool,

gprolog, gs, g77, lynx, sendmail, or sed), and two operating system kernels (the Linux Kernel2

2.6.31.6 and FreeBSD3). The GNU utilities belong to various domains. For example, gcal is

a calendar, gcc is a C compiler, g77 is a Fortran to C translator, lynx is a textual browser,

sendmail is a mail server, sed is a regular expression interpreter, and binutils are various

command line utilities (e.g., cat, wc, sort, etc.). The main characteristics of the applications

from which we randomly sampled the 50 identifiers are summarized in Table B.1. We focused

on C applications only because, as found in our previous work (Madani et al., 2010), Java

identifiers (almost) strictly adhere to the CamelCase convention and identifier construction

rules as opposite to C and C++ where developers tend to use short identifiers.

It can be noticed that the number of identifiers sampled from each application is not

perfectly uniform, i.e., there are applications that one identifier and others contributed more

than one. This is because our purpose was not to have a set of identifiers fully representative of

these applications, but rather to represent different characteristics of C identifiers (separators

and terms composing such identifiers). The random sample of identifiers chosen for this

study is presented in Table B.1. There were not identifiers that were more useful than others

because all of them fit with the purpose of our study, i.e., they are/contain abbreviated

words, acronyms, or concatenation of these types and English words.

4.1.2 Research Questions and Hypothesis Formulation

In the following, we present and motivate the research questions addressed in our work,

and formulate the related null hypotheses.

1. RQ1: To what extent does contextual information impact the splitting and expansion of

source code identifiers? This research question analyzes the developers’ performances

when splitting and expanding identifiers in absence and presence of contextual infor-

mation. When developers split identifiers and expand abbreviations, it is possible that

they do so relying on information (e.g., comments or other identifiers) in the neighbor-

hoods of the identifiers, or on other external sources of information (e.g., an acronym

dictionary). In this experimental investigation, we considered two types of contextual

information (i) internal, i.e., information a developer can get from source code or com-

ments of the system itself, and (ii) external, i.e., information a developer can retrieve

from other sources, such as dictionaries, acronym lists, etc. The contexts considered in

the two experiments are summarized in Table 4.2. In Exp I, we considered four different

1http://www.gnu.org
2http://www.linux.org
3http://www.freebsd.org
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levels of context, i.e., (i) the absence of contextual information (identifier in isolation

with no context), which constitutes for us a control group; (ii) a context concerning

the function where the identifier is located; (iii) a context concerning the file where the

identifier is located; and (iv), file-level context augmented with the Acronym Finder

to help the participant dealing with acronyms. It is important to note that we only

provided the Acronym Finder with the file-level context to limit the number of possi-

ble treatments, and also because we were interested in observing the effect of such an

additional context level beyond the widest (file-level) context of Exp I. For Exp II, in

addition to (i) no context, (ii) file-level context, and (iii) file plus Acronym Finder-level

context, we also considered (iv) application-level context and (v) application-level plus

Acronym Finder.

In Exp II, we did not consider the function-level context because: i) we already con-

cluded from the results of Exp I which are reported in Section 4.2 that the function-level

context does not improve the participants performances when splitting and expanding

source code identifiers in comparison with the other levels of context (i.e., file and file

plus external information levels); and ii) in Exp II we had only 21 participants instead

of 42 for Exp I, and therefore we had to limit the number of possible treatments.

The null hypothesis being tested to address this research question is:

H01: There is no significant effect of the context on the participants’ performances when

splitting and expanding source code identifiers.

Table 4.2 Context levels provided during Exp I and Exp II.

Context Levels Exp I Exp II
No context (control group)

√ √

Function
√

File
√ √

File plus Acronym Finder
√ √

Application
√

Application plus Acronym Finder
√

2. RQ2: To what extent do the characteristics of terms composing identifiers affect split-

ting and expansion performances?

This research question investigates whether particular characteristics of terms compos-

ing identifiers may favor or hinder the developer’s capability of splitting and expanding

such identifiers. Our conjecture is that, in general, identifiers composed of English
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words would be easier to split, although this is not 100% guaranteed because one can

be tempted to expand an English word, e.g., add a plural, conjugate a verb. Also,

sometimes multiple splits are possible, e.g., callableinterface can be split into (callable,

interface) or (call, able, interface). However, generally acronyms and abbreviations

are the major cause of imprecision. In summary, this research question analyzes what

percentage of English words, acronyms, and abbreviations composing identifiers are

correctly split/expanded by the participants. Characteristics of the studied identifiers

in terms of style (e.g., separators such as underscore and–or CamelCase) and kind of

terms they contain are summarized in Table B.2 (cf. Appendix B). In this work, we

focused on the relevant contexts for the identifier splitting/expansion rather than the

impact of identifier styles on such a task. However, recent research works have inves-

tigated the use of different identifier styles for program comprehension (Binkley et al.,

2013; Sharif et Maletic, 2010).

In summary, for what concerns RQ2, we test the following null hypothesis:

H02: there’s no significant difference in the accuracy of splitting/expanding full English

words, acronyms, and abbreviations.

3. RQ3: To what extent do participants’ background and characteristics impact the per-

formance of identifier splitting and expansion? This research question investigates how

variables—related to characteristics of the developers performing the tasks—impact

the splitting and expansion performances and the extent to which such factors interact

with the use of contextual information. In the following, we will refer such factors

as “population variables”. Specifically, the factors that we considered are: (i) level of

experience, (ii) programming language (C) knowledge, (iii) domain knowledge (which

concerns the knowledge of Unix/Linux utilities for the programs we considered in our

experiments), and (iv) English proficiency.

Given factori, one of these factors, we tested two null hypotheses:

• H03a: there is no significant effect of factori on identifier splitting and expansion

accuracy.

• H03b: there is no significant interaction between factori and the studied levels of

context on identifier splitting and expansion accuracy.
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4.2 Variable Selection and Experiment Design

4.2.1 Variable Selection

Dependent Variables

Our first dependent variable is the participants’ performances when performing identifier

splitting and expansion. Such a performance is measured using precision and recall defined in

Chapter 2, with respect to a manually built oracle. F-measure is often used in various studies,

e.g., related to program comprehension (Ricca et al., 2010) and, in general, in information

retrieval (Baeza-Yates et Ribeiro-Neto, 1999) to aggregate precision and recall (cf. Chapter

2). We introduced F-measure to provide an aggregate measure of precision and recall, where

precision and recall show consistent trends with respect to our independent variable. However,

wherever appropriate, we also reported results of precision and recall separately, which for

all cases are available in Appendix B.

For RQ2, we considered the accuracy of splitting/expanding identifiers terms of a par-

ticular kind (English words, acronyms, and abbreviations):

Accuracyj =
CETERMSj

TERMSj

where j = 1, 2, 3; TERMS1, TERMS2, and TERMS3 are the sets of all plain English words,

acronyms, and abbreviations contained in the identifiers considered in our study respec-

tively; CETERMS1, CETERMS2, and CETERMS3 are the sets of correctly split/expanded

English words, acronyms, and abbreviations. The identifier split/expansion correctness was

determined in a binary way and the accuracy of splitting/expanding identifiers terms of a

particular kind was computed over all identifiers considered in our study.

To measure our dependent variables, we manually built our oracle by associating each

identifier with a list of terms obtained after splitting it and expanding them. We only created

one oracle for both the splitting and expansion because we considered them as one task; we

justified this assumption by the fact that identifier expansion involves identifier splitting. In

fact, one has first to identify terms composing an identifier and then expand them to their

corresponding domain concepts. For example, the oracle entry for drawRec would be draw

rectangle, obtained by splitting the identifier after the seventh character and after expanding

the abbreviation Rect into rectangle.

Independent Variables

The independent variables of our study are all the factors that we considered when testing

the null hypotheses formulated in Section 4.1.2 and summarized in Table 4.3. Specifically, for
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RQ1 we considered the different levels of context; for RQ2 we considered the different kinds

of terms composing identifiers; for RQ3 we considerded population variables, i.e., experience

level, C knowledge, Linux knowledge, and English proficiency.

4.2.2 Experiment Procedure and Design

Exp I

In Exp I, each participant split and expanded 40 different identifiers from the original set

of the 50 identifiers. On the one hand, the reason behind asking each subject to split/expand

only 40 identifiers was to limit the fatigue effect. On the other hand, we made sure that each

identifier were assigned to (roughly) the same number of subjects, with the same proportion

of different contexts as shown in the experimental design.

Different participants operated having different levels of context available:

• without context i.e., just an identifier in an empty page as shown in Fig. 4.1(a);

• within a source code function, i.e., participants could browse the source code of the

function containing the identifier;

• within a source code file, i.e., participants could browse the source code of the file

containing the identifier as shown in Fig. 4.1(b);

• with a source code file plus external context, i.e., participants have access to an identifier

source code file plus a list of widely used (cross-domain) acronyms and abbreviations,

named Acronym Finder4.

Participants had access to computers with two screens. On one screen, they had access

to the Web application where all questions and tasks appear. When dealing with function,

file, and file plus Acronym Finder context levels, we provided to participants pretty-printed

source code in HTML format through a Web browser. On the second screen, they had access

to the response form. We informed the participants before the experiment that the time

available for the tasks was 120 minutes in total, and that they were free to leave at any time

without incurring any penalty. Collected information was anonymous. We validated the

response forms to make sure that participants correctly followed the experiment procedure.

Participants were aware of the general goal of the study—i.e., to investigate how developers

split and expand identifiers—but did not know the exact hypotheses being tested.

We randomly gave to each group of participants different sets of 40 identifiers to make

sure that, in our design, all the 50 identifiers of our samples were split/expanded by multiple

4http://www.acronymfinder.com
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Table 4.3 Null hypotheses and independent variables.

RQs Hyps. Descriptions Independent Variables Independent Variable Levels
RQ1 H01 Effect of context. Context levels. Exp I: No context, function, file, file

plus Acronym Finder.
Exp II: No context, file, file plus
Acronym Finder, application, and ap-
plication plus Acronym Finder.

RQ2 H02 Effect of the kinds of
terms composing iden-
tifiers.

Kind of terms. Plain English words, acronyms, abbre-
viations.

RQ3 H03a Effect of partici-
pant characteris-
tics/background
(population vari-
ables).

Experience, C knowledge, domain
(Linux) knowledge, English profi-
ciency.

Experience levels: Bachelor, Master,
Ph.D., post-doc.
C knowledge levels: basic, medium, ex-
pert.
Domain (Linux) knowledge levels: oc-
casional, basic, knowledgeable, expert.
English proficiency levels: bad, good,
very good, excellent.

H03b Interaction of popula-
tion variables with use
of context.

participants. Also, the task was organized in a way giving the participants different ordering

of treatments to avoid fatigue and learning effects i.e., we avoid giving participants identifiers

to split/expand without context, then with function level and so on. To achieve such a goal,

we created five sets of ten identifiers (ids1 . . . ids5) and assigned to each participant four of

these five groups. To allow each subject splitting/expanding 40 identifiers, and to make sure

that each identifier were split by roughly the same number of people, we needed to group

participants in a way that each group received four sets of identifiers. That is, we needed five

groups of subjects i.e., the combinations of five items by groups of four:(
5

4

)
=

5!

4! · (5− 4)!
= 5

Table 4.4 shows a summary of our experimental design. Given Groupi the i-th group

of participants, idsj a set j of ten identifiers to be split and expanded by participants with

j ∈ {1, 2, 3, 4, 5}, and cxk effect of context k on the participants’ performances with k ∈
{1, 2, 3, 4}. In our case, the different levels of context are cx1: no contextual information; cx2:

contextual information related to the function where the identifier appears; cx3: contextual

information related to the file where the identifier appears; and cx4: as cx3, plus Acronym

Finder. As described in Table 4.4, each group of participants dealt with the four context

levels, we gave each group a set of ten identifiers per context, i.e., a total of 40 different

identifiers to split and expand. We randomized the ordering of treatments to mitigate such

a threat; however, it is impossible to have all possible orderings (which would be 40!). In
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(a) no context

(b) file

Figure 4.1 Example of treatments received by the participants: no-context and file-level
context.

principle, we could have given to each participant all identifiers of a given set with a given

context, then another set with a different context, and so on. For instance, we could have
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Table 4.4 Exp I: Experimental design.

Sequence Group1 Group2 Group3 Group4 Group5

1 rnd(ids1)-cx1 rnd(ids2)-cx1 rnd(ids1)-cx1 rnd(ids1)-cx1 rnd(ids1)-cx1

2 rnd(ids2)-cx2 rnd(ids3)-cx2 rnd(ids3)-cx2 rnd(ids2)-cx2 rnd(ids2)-cx2

3 rnd(ids3)-cx3 rnd(ids4)-cx3 rnd(ids4)-cx3 rnd(ids4)-cx3 rnd(ids3)-cx3

4 rnd(ids4)-cx4 rnd(ids5)-cx4 rnd(ids5)-cx4 rnd(ids5)-cx4 rnd(ids5)-cx4

5 rnd(ids1)-cx1 rnd(ids2)-cx1 rnd(ids1)-cx1 rnd(ids1)-cx1 rnd(ids1)-cx1

6 rnd(ids2)-cx2 rnd(ids3)-cx2 rnd(ids3)-cx2 rnd(ids2)-cx2 rnd(ids2)-cx2

7 rnd(ids3)-cx3 rnd(ids4)-cx3 rnd(ids4)-cx3 rnd(ids4)-cx3 rnd(ids3)-cx3

8 rnd(ids4)-cx4 rnd(ids5)-cx4 rnd(ids5)-cx4 rnd(ids5)-cx4 rnd(ids5)-cx4

. . . . . . . . . . . . . . . . . .
37 rnd(ids1)-cx1 rnd(ids2)-cx1 rnd(ids1)-cx1 rnd(ids1)-cx1 rnd(ids1)-cx1

38 rnd(ids2)-cx2 rnd(ids3)-cx2 rnd(ids3)-cx2 rnd(ids2)-cx2 rnd(ids2)-cx2

39 rnd(ids3)-cx3 rnd(ids4)-cx3 rnd(ids4)-cx3 rnd(ids4)-cx3 rnd(ids3)-cx3

40 rnd(ids4)-cx4 rnd(ids5)-cx4 rnd(ids5)-cx4 rnd(ids5)-cx4 rnd(ids5)-cx4

given to participants of Group1 all identifiers of ids1 with context cx1, then identifiers of ids2

with cx2, and so on. However, this could have caused learning and boredom effects, because

participants of Group1 would have worked with context cx1 first, then with cx2, etc. To

avoid such effect, we used a slightly different design. Specifically, for Group1 an identifier was

randomly extracted from ids1—as denoted in Table 4.4 by the function rnd()—and provided

to participants with context cx1, then one identifier from ids2 with cx2, one from ids3 with

cx3, and one identifier from ids4 with cx4. After that, the sequence restarted using again

(without resampling) an identifier from ids1, and so on. We believe that randomizing the

ordering of treatments mitigates the threat related to the order of the application since it is

impossible to have all possible orderings for each group of subjects (which would be 40! in

Exp I). In our studies, randomization means that not all identifiers were seen in the same

order. We followed the same procedure for the other groups, however not in the same order

so that the idsj-cxj association is not always the same instance.

To create the five groups, we considered blocks of participants with a basic, medium, and

expert knowledge of C. Participants were also blocked according to their level of English,

and their background. Then, we created five groups by randomly assigning participants

from blocks in nearly identical proportions. Each of the five groups is of approximately the

same size (either eight or nine participants). Then, when assigning identifiers to groups,

since each group worked on a subset of 40 out of the 50 identifiers, we made sure that each

group worked on a roughly equal proportions of plain English words, abbreviations, and

acronyms. Table 4.5 shows the distribution of abbreviations, acronyms and plain English

words per group of participants. The total number of plain English words, abbreviations and

acronyms in all the 50 identifiers is reported on the legend of Table 4.5. The latter number

is different for each category because in this work, we did not explicitly design our studies
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to analyze whether the splitting/expansion difficulty is related to the kinds of terms that

compose identifiers. We studied the accuracy of splitting/expanding different kinds of terms

(i.e., abbreviations, acronyms, English words) and how this accuracy varies with different

levels of context. In addition, our design reflects the “real” proportions of each category of

terms (abbreviations, acronyms, and English words) that belong to realistic identifiers that

we used in our experiments. Hence, our design tries to mimic “reality”, when developers must

understand real identifiers.

In summary, it is important to point out that the experimental design fully reflects the

need for controlling the Context factor investigated in RQ1. The effect of the independent

variable of RQ2 (terms contained in identifiers) is controlled by means of blocking, i.e.,

assigning to different groups roughly equal proportions of identifiers containing full English

words, abbreviations and acronyms as indicated in Table 4.5, and by means of randomization

as explained above. Clearly, the randomization is only partial as it is not possible to have

all possible combinations of identifiers and/or of applications to which the identifiers belong.

Finally, population variables related to RQ3 are dealt by means of blocking as explained

above.

Table 4.5 Distribution of kinds of identifier terms for Exp I, out of a total of 86 abbreviations,
19 acronyms, and 48 plain English words.

Exp I
Groups of Participants Abbreviations Acronyms Plain English

Group 1 60 14 42
Group 2 69 15 40
Group 3 67 16 34
Group 4 65 16 37
Group 5 70 14 40

The rationale for making participants deal with identifiers belonging to different domain

applications was to (1) maximize the number of data points (observations) so as to increase

statistical power, (2) avoid bias from the differences in programs’ complexity, and (3) make

general conclusions from the obtained results. Detailed information about the specific iden-

tifiers and contexts provided to participants is available in our replication package. The

number of soft-words and hard-words contained in the identifiers provided to each group of

participants is indicated in Table 4.6.
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Table 4.6 Distribution of soft-words and hard-words for Exp I, out of a total of 119 soft-words
and 79 hard-words (provided in Exp II).

Exp I
Groups of Participants Soft-words Hard-words

Group 1 91 71
Group 2 101 61
Group 3 94 73
Group 4 101 67
Group 5 89 74

Exp II

Exp II was a replication of Exp I, having two main purposes:

1. Exploring the usefulness of additional level of context, namely the availability of the

whole source code of an application, with and without the additional support of the

Acronym Finder.

2. Corroborating the conclusions of Exp I, by employing more experienced participants,

and in particular participants having a better level of English, which plays an important

role in splitting/expansion as we observed in Exp I.

3. Allowing each participant to work—in different ordering and with different context

levels—on all the 50 identifiers, whereas in Exp I each participant received only a

subset of 40 identifiers. This decision helped avoid any blocking issue on RQ2, since

all participants had to deal with all the 50 identifiers i.e., 48 plain English words, 86

abbreviations, and 19 acronyms.

The experimental design of Exp II is similar to that of Exp I, except that (i) there are five

context levels instead of four, and (ii) each participant received all the 50 identifiers instead

of 40 of them. Similarly to Exp I, we had five groups of participants, we considered blocks of

participants with a basic, medium, and expert knowledge of C. Participants were also blocked

according to their level of English and their background. Then, we created five groups by

randomly assigning participants from blocks in nearly identical proportions. Each of the five

groups is of approximately the same size (either four or five participants). Then, each group

worked on the 50 identifiers, i.e., on the total number of plain English words, abbreviations,

and acronyms, i.e., 48, 86, and 19 respectively.
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The way identifiers were presented to participants is the same as for Exp I. However, for

the application-level context, it was not convenient to show the whole application source code

in a Web page. Instead, when participants had to work with application or application plus

Acronym Finder context levels, they had access to the identifier applications in the Eclipse-

JDT IDE, while the Web application only indicated the identifier to be split/expanded and

the name of the application where the identifier appears. Since we increased the number of

identifiers in Exp II, we also increased the time allocated to the experimental tasks. In fact,

we informed the participants before the experiment that the time available for the tasks was

180 minutes in total, and that they were free to leave at any time without incurring any

penalty. We also explained to them that the collected data was anonymous and made them

aware of the general goal of the study without revealing the exact hypotheses being tested.

Post-experiment Questionnaire

In both Exp I and Exp II, after having completed their task, we gave to participants

a post-experiment questionnaire, aimed at gaining insights about the collected data. We

asked each participant whether the context was helpful for him/her. A summary of the post-

experiment questionnaire is shown in Table 4.7; answers were collected on a five-point Likert

scale, plus a free text form where the participants were asked to provide further comments,

if any.

Table 4.7 Post-experiment survey questionnaire.

Summary of post-experiment questionnaire.
ID Questions
Question 1 How did you find the information provided in the experiment procedure?
Question 2 Was the context helpful when splitting and expanding identifiers? If yes,

what was the most helpful type of context (Function, File, File plus Acronym
Finder, Application, or Application plus Acronym Finder) for you among the
investigated ones?

Question 3 To what extent was your knowledge in Linux helpful when splitting and ex-
panding source code identifiers?

Question 4 Were the comments provided with the source code helpful for you when split-
ting and expanding the identifiers in question?

4.3 Analysis Method

In the following we describe the statistical procedures used to analyze our results. All of

them have been applied using the R statistical environment (Team, 2012).

RQ1 concerns the comparison of the precision, recall, and F-measure of identifier split-

ting/expansion provided by the participants for the studied levels of context. Other than
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showing boxplots and descriptive statistics, we tested the null hypothesis H01 using the

Wilcoxon paired test. We used the latter test to perform a pairwise comparison of the results

obtained for each identifier (on which the test is paired) with the different levels of context.

Since we applied the Wilcoxon test multiple times, we had to adjust p-values. We used

the Holm’s correction procedure (Holm, 1979). In addition to the statistical comparison,

we computed the effect-size of the difference using Cliff’s delta (d) non-parametric effect size

measure (Grissom et Kim, 2005). Wilcoxon, Cliff’s delta (d), and Holm correction are defined

in Chapter 2.

RQ2 concerns the accuracy in splitting/expanding terms composing identifiers and con-

sisting of plain English words, acronyms and abbreviations. We performed the analysis

of RQ2 by pairwise comparing the proportions of correctly split/expanded identifiers be-

longing to different categories, and using different contexts. Such a comparison is done

using the Fisher’s exact test (Sheskin, 2007). In addition, we used the Odds Ratio (OR)

(Sheskin, 2007) as an effect size measure. The definitions of Fisher’s exact test and OR

are provided in Chapter 2. For contingency matrices, like our case, the OR is defined as:

OR = (Wrong1/Corr1) / (Wrong2/Corr2), where Wrong1 and Corr1 are the number of

wrongly and correctly split/expanded terms for the first context, respectively, while Wrong2

and Corr2 the number of wrongly and correctly split terms for the second context.

RQ3 analyzes the interaction between the effect of context levels on participants’ perfor-

mances when splitting/expanding identifiers and a set of investigated population variables

(experience, Linux expertise, C knowledge, and English proficiency). The analysis of popu-

lation variables is performed using permutation tests (Baker, 1995) (cf. Chapter 2).

We used an implementation available in the lmPerm R package. We have set the number

of iterations of the permutation test procedure to 500,000. Since the permutation test samples

permutations of combination of factor levels, multiple runs of the test may produce different

results. We made sure to choose a high number of iterations such that results did not vary

over multiple executions of the procedure.

Wherever the permutation test indicated the presence of significant differences, we iden-

tified which pair(s) of factor levels exhibit the difference by using the Tukey’s HSD (Honest

Significant Differences) test (Sheskin, 2007) (cf. Chapter 2).

4.4 Experiments’ Results

In this section, we report the quantitative results of our experiments, with the aim of

addressing the research questions formulated in Section 4.1.2.
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4.4.1 RQ1: Context Relevance

In Fig. 4.2, we show, for both experiments, the boxplots of F-measure computed for the

studied context levels. Boxplots related to precision and recall can be found in Appendix B.

Table 4.8 reports descriptive statistics, of precision, recall and F-measure i.e., 1st quartile,

median, 3rd quartile, mean and standard deviation.

For Exp I, the boxplots and the table show that the participants achieve the best per-

formances in terms of precision, recall and F-measure when using file plus Acronym Finder

and file contexts. The recall (and consequently the F-measure) results are slightly higher

for the File plus Acronym Finder context, while the precision is similar for the two contexts.

Function-level context yields lower performances (precision, recall, F-measure) than the other

context levels, and performances are even lower when no contextual information is provided.

These results were expected. In fact, when no context was available, participants were guess-

ing possible split/expansion of identifiers and, thus, the chances of providing correct answers

were low, which reflects the low precision, recall, and consequently the F-measure. The

function-level context was, in general, not sufficient to know the exact semantics of the code

and its identifiers especially when the function is not sufficiently commented. Providing par-

ticipants with a wider context such as the file (with or without) Acronym Finder is helpful

to understand the program. The availability of the Acronym Finder favors the increase of

recall because, in general, it helps participants to correctly split/expand some acronyms by

selecting the correct expansion among all the possible ones available in the Acronym Finder.

Data also shows that, as the available context increases (i.e., from no context to function-

level context, file, and file plus Acronym Finder), the performance variation (in terms of

interquartile range and of variance) also increases, especially for what concerns the precision.

For Exp II, and consistently with what we found in Exp I, results indicate that the file-

level context help obtain better performances than no context and that there is a slight

improvement when the Acronym Finder is added. If using a larger—i.e., application-level—

context, performances do not further improve. These results were expected since participants,

to avoid being overwhelmed by a large context such as the application-level, focused, in

general, on source code files where identifiers appear.

Tables 4.9 and 4.10 report results of the statistical comparison among the different levels of

context for Exp I and Exp II respectively. Specifically, it shows the difference in participants’

performances when using a context level Context 1 versus another one Context 2 (adjusted

p-values5 and Cliff’s d effect size are positive when the effect is in favor of Context 1).

For Exp I, as indicated by Table 4.9, there is a significant difference in participants’

performances, in terms of precision, between file plus Acronym Finder and no context with a

5Significant p-values are highlighted in bold face here and in all other tables.
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Figure 4.2 Boxplots of F-measure for the different context levels (AF= Acronym Finder).

medium effect size; file and no context with a small effect size; function and no context with

a small effect size. These differences are significant because participants perform significantly

better when they are provided, in general, with some context. However, their performance

decreases when no context, i.e., no information about the semantics of the identifiers is
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Table 4.8 Precision, recall, and F-measure of identifier splitting and expansion with different
contexts.

Exp I
Metrics Contexts 1q Median 3q Mean σ
Precision no context 0.33 0.50 0.67 0.50 0.27

function 0.50 0.67 1.00 0.63 0.29
file 0.50 0.67 1.00 0.65 0.30
file plus Acronym Finder 0.50 0.67 1.00 0.69 0.30

Recall no context 0.33 0.50 0.67 0.47 0.27
function 0.33 0.50 1.00 0.59 0.30
file 0.40 0.67 1.00 0.64 0.31
file plus Acronym Finder 0.48 0.67 1.00 0.68 0.31

F-measure no context 0.33 0.50 0.67 0.48 0.27
function 0.40 0.57 1.00 0.60 0.20
file 0.44 0.67 1.00 0.64 0.30
file plus Acronym Finder 0.49 0.67 1.00 0.68 0.30

Exp II
Metrics Contexts 1q Median 3q Mean σ
Precision no context 0.33 0.50 0.67 0.51 0.28

file 0.50 0.67 1.00 0.68 0.30
file plus Acronym Finder 0.50 0.67 1.00 0.69 0.29
application 0.50 0.67 1.00 0.68 0.30
application plus Acronym Finder 0.50 0.67 1.00 0.69 0.29

Recall no context 0.33 0.50 0.67 0.48 0.28
file 0.33 0.67 1.00 0.65 0.32
file plus Acronym Finder 0.50 0.67 1.00 0.69 0.30
application 0.40 0.67 1.00 0.66 0.32
application plus Acronym Finder 0.50 0.67 1.00 0.69 0.30

F-measure no context 0.33 0.50 0.67 0.49 0.27
file 0.40 0.67 1.00 0.66 0.31
file plus Acronym Finder 0.50 0.67 1.00 0.70 0.29
application 0.44 0.67 1.00 0.67 0.31
application plus Acronym Finder 0.50 0.67 1.00 0.68 0.30

provided. There is also a significant difference between file plus Acronym Finder and function

with a small effect size. The latter result can be explained by the fact that the source code

file contains more information about the application than the function. Also, adding the

Acronym Finder to the file makes the context even more useful than the function level. In

all other cases, there is no significant difference. Similar results were obtained for recall. In

fact, there is a significant difference in participants’ performances between file plus Acronym

Finder and no context with a medium effect size; file and no context with a small effect

size; function and no context with a small effect size; file plus Acronym Finder and function

with a small effect size. In addition, there is a difference, in terms of recall, between file and

function with a small effect size. This difference is explained by the fact that a limited context

such as the source code function does not provide helpful information to participants when

splitting/expanding identifiers. In all other cases, there is no significant difference. Finally,

for the F-measure, differences are significant, as expected, between file and no context with

a small effect size, between file plus Acronym Finder and no context with a medium effect
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size, between function and no context with a small effect size, and between file plus Acronym

Finder and function with a small effect size. The latter result is justified by the relevance

of information provided by the source code file context and also by the help of the Acronym

Finder, compared to the information provided by the function-level context.

Table 4.9 Exp I: precision, recall, and F-measure for different context levels: results of
Wilcoxon paired test and Cliff’s delta.

Precision
Context 1 Context 2 Cliff’s d Adj p
file plus Acronym Finder file 0.0747 0.120
file function 0.0571 0.140
file no context 0.2947 <0.001
file plus Acronym Finder function 0.1296 <0.001
file plus Acronym Finder no context 0.3624 <0.001
function no context 0.2446 <0.001

Recall
Context 1 Context 2 Cliff’s d Adj p
file plus Acronym Finder file 0.0699 0.080
file function 0.1058 0.01
file no context 0.3293 <0.001
file plus Acronym Finder function 0.1668 <0.001
file plus Acronym Finder no context 0.3871 <0.001
function no context 0.2215 <0.001

F-measure
Context 1 Context 2 Cliff’s d Adj p
file plus Acronym Finder file 0.0731 0.060
file function 0.0855 0.060
file no context 0.3214 <0.001
file plus Acronym Finder function 0.1530 <0.001
file plus Acronym Finder no context 0.3841 <0.001
function no context 0.2427 <0.001

Regarding Exp II, results reported in Table 4.10 indicate that all context levels (file and

application, with and without Acronym Finder) exhibit, in terms of precision, a significantly

higher precision than no context, with amedium effect size. The latter result is justified by the

fact that contextual information provides hints and clues to the participants to understand

the meaning of identifiers and, hence, correctly split/expand them. However, there is no

significant difference between any pair of these contexts. That is, beyond the file-level context,

the precision does not significantly increase, which means that providing participants with

a large context does not help attain better performances since, in general, participants will

browse the source code files where the identifiers appear when facing too much information

i.e., the application-level context. Consistent results—in terms of the statistical significance

and effect size—were obtained for recall and F-measure too between application plus Acronym

Finder and no context, as well as between file plus Acronym Finder and no context. The

latter results were expected since the level of context increased and also the availability of

the Acronym Finder helps improve the participants performance, in terms of recall, and,
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thus, F-measure by providing additional information and indications about the semantics

of identifiers. Results of recall and F-measure are, however, as expected, significant with

a small effect size between the application and no context levels, and between file and no

context levels because, in general, when facing identifiers made up of acronyms without

knowing or having clues about these acronyms, participants show low performances in terms

of recall, as they cannot figure out the exact expansion of the acronym even if they are able

to split/expand parts of it.

Table 4.10 Exp II: precision, recall, and F-measure for different context levels: results of
Wilcoxon paired test and Cliff’s delta.

Precision
Context 1 Context 2 Cliff’s d Adj p
application plus Acronym Finder application 0.0013 1.000
application plus Acronym Finder file plus Acronym Finder 0.0495 1.000
application plus Acronym Finder file 0.0077 1.000
application plus Acronym Finder no context 0.3345 <0.001
application file plus Acronym Finder 0.0507 1.000
application file 0.0034 1.00
application no context 0.3304 <0.001
file plus Acronym Finder file 0.0540 1.000
file plus Acronym Finder no context 0.3883 <0.001
file no context 0.3834 <0.001

Recall
Context 1 Context 2 Cliff’s d Adj p
application plus Acronym Finder application 0.0318 1.000
application plus Acronym Finder file plus Acronym Finder 0.0282 1.000
application plus Acronym Finder file 0.0453 1.000
application plus Acronym Finder no context 0.3519 <0.001
application file plus Acronym Finder 0.0604 1.000
application file 0.0145 1.0000
application no context 0.3120 <0.001
file plus Acronym Finder file 0.0741 1.000
file plus Acronym Finder no context 0.3836 <0.001
file no context 0.2916 <0.001

F-measure
application plus Acronym Finder application 0.0184 1.000
application plus Acronym Finder file plus Acronym Finder 0.0405 1.000
application plus Acronym Finder file 0.0277 1.000
application plus Acronym Finder no context 0.3471 <0.001
application file plus Acronym Finder 0.0548 1.000
application file 0.0093 1.0000
application no context 0.3234 <0.001
file plus Acronym Finder file 0.0647 1.000
file plus Acronym Finder no context 0.3882 <0.001
file no context 0.3095 <0.001

In summary, we can conclude that contextual information significantly increases the par-

ticipants’ performances when splitting and expanding identifiers, in terms of precision, recall,

and F-measure. Different levels of context do not exhibit significant differences, although

the file plus Acronym Finder-level context exhibits (in Exp I) better performances than the

function-level context. An application-level context does not contribute to improve the per-
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formance, if compared with a narrower context i.e., file-level.

4.4.2 RQ2: Effect of Kinds of Terms Composing Identifiers

In this section, we study the accuracy of splitting/expanding in terms of different kinds

of composing identifiers, and how this accuracy varies with different levels of context. Table

4.11 reports the number of abbreviations, acronyms, and plain English terms that have been

correctly expanded (# Matched), the number of those incorrectly expanded (# Unmatched),

and the expansion accuracy. Table 4.12 reports the results of the pairwise comparison of

accuracies for different kinds of terms; it shows Fisher’s exact test adjusted p-values and OR.

For Exp I, as shown by Table 4.12, and for all levels of context, plain English words

were significantly easier to expand than acronyms and abbreviations, with an OR between

2 and 2.6. The latter result can be perceived as obvious, because plain English words per

se do not need to be expanded. However, as discussed in Section 4.1.2, two problems can

still arise (i) identifiers composed of two or more English words can lead towards multiple

possible splittings, and (ii) people might still “expand”an English word by conjugating verbs,

adding/removing plurals, etc. Indeed, for these reasons, as Table 4.11 shows, the accuracy

for plain English words is not 100%, but it ranges between 81% for the no context level and

87% for the file- and function-level contexts in Exp I, and between 83% for the no context

level and 92% for the file-level context in Exp II.

Results of Exp I do not indicate any significant difference between proportions of correctly

expanded abbreviations and acronyms. Indeed, the accuracy is very similar for all context

levels, and the OR∼ 1, i.e., abbreviations and acronyms have equal chances to be correctly

expanded. As Table 4.11 shows, their accuracy ranges between 63% with no context and

78% with the file plus Acronym Finder context.

Exp II shows slightly different results than Exp I. First, as it can be noticed in Table 4.11,

the percentage of plain English terms correctly split/expanded is higher than in Exp I, and

it ranges between 83% with no context and 92% with the file-level context. Abbreviations

have accuracy in line with—or slightly higher than—Exp I, i.e., ranging between 68% (with

no context) and 83% (with the file plus Acronym Finder level). The latter results can be

explained by the fact that participants of Exp II have a high proficiency of English that

helped them recognize plain English words and expand abbreviations. Results of the statisti-

cal comparison—shown in Table 4.12—indicate, as expected, that plain English words always

exhibit a significantly higher accuracy than abbreviations. The OR shows that the chances of

correctly splitting/expanding plain English words are 2-4 times higher than abbreviations. In-

terestingly, in Exp II there is no significant difference between splitting/expanding acronyms

and plain English words. The latter result suggests that participants of Exp II did not face
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Table 4.11 Proportions of kind of identifiers’ terms correctly expanded per context level.

Exp I
Context Kind of term # Matched # Unmatched Accuracy (%)

file plus Acronym Finder abbreviation 523 169 75.58
acronym 112 31 78.32
plain 336 50 87.05

file abbreviation 542 164 76.77
acronym 94 32 74.60
plain 346 50 87.37

function abbreviation 582 161 78.33
acronym 97 36 72.93
plain 374 52 87.79

no context abbreviation 467 248 65.31
acronym 82 47 63.57
plain 326 75 81.30

OVERALL abbreviation 2114 742 74.02
acronym 385 146 72.50
plain 1382 227 85.89

Exp II
Context Kind of term # Matched # Unmatched Accuracy (%)

application plus Acronym Finder abbreviation 274 69 79.88
acronym 57 13 81.43
plain 181 17 91.41

application abbreviation 266 87 75.35
acronym 57 12 82.61
plain 180 19 90.45

file plus Acronym Finder abbreviation 295 61 82.87
acronym 63 10 86.30
plain 176 16 91.67

file abbreviation 272 84 76.40
acronym 57 10 85.07
plain 162 13 92.57

no context abbreviation 242 114 67.98
acronym 51 16 76.12
plain 162 31 83.94

OVERALL abbreviation 1349 415 76.47
acronym 285 61 82.37
plain 861 96 89.97

difficulties when splitting/expanding acronyms. This can be justified by their knowledge of

the domain, and thus, of its acronyms that play a important role besides their proficiency in

English. In summary, such a finding suggests that—at least for Exp II–the major issue for

participants was to split/expand abbreviations, and not acronyms.

In summary, findings of RQ2 indicate that:

• As expected, in both experiments, plain English words are handled better than abbre-

viations and acronyms.
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Table 4.12 Participants’ performances on different kind of identifiers’ terms per context level:
Fisher exact test results.

Exp I
Context Kind 1 Kind 2 OR Adj. p-value

file acronym abbreviation 0.889 0.649
plain abbreviation 2.093 <0.001
plain acronym 2.351 0.002

file plus Acronym Finder acronym abbreviation 1.167 0.520
plain abbreviation 2.170 <0.001
plain acronym 1.858 0.040

function acronym abbreviation 0.746 0.177
plain abbreviation 1.989 <0.001
plain acronym 2.664 <0.001

no context acronym abbreviation 0.927 0.690
plain abbreviation 2.307 <0.001
plain acronym 2.486 <0.001

Exp II
Context Kind 1 Kind 2 OR Adj. p-value

application plus Acronym Finder acronym abbreviation 1.104 0.870
plain abbreviation 2.677 0.001
plain acronym 2.419 0.057

application acronym abbreviation 1.552 0.217
plain abbreviation 3.093 <0.001
plain acronym 1.989 0.170

file plus Acronym Finder acronym abbreviation 1.302 0.604
plain abbreviation 2.271 0.013
plain acronym 1.742 0.493

file acronym abbreviation 1.758 0.176
plain abbreviation 3.840 <0.001
plain acronym 2.178 0.176

no context acronym abbreviation 1.500 0.392
plain abbreviation 2.458 <0.001
plain acronym 1.636 0.392

• In one case (Exp II), participants were able to handle acronyms with performances

not significantly different from plain English words. Intuitively, one could probably

be tempted to consider abbreviations easier to handle than acronyms, because they

are often obtained by dropping some letters (often vowels) from the original words.

However, it turns out that this is not the case. Our interpretation is that most of

the acronyms (at least within a specific domain) lead towards a unique expansion, and

many of them are well known by participants especially those knowledgable in the
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domain i.e., Linux in our case. Also, additional context levels such as Acronym Finder,

or the availability of the entire application source code can sometimes provide a useful

support for expanding acronyms. Instead, many abbreviations can lead to multiple

possible expansions, hence causing imprecisions, e.g., cntr can be expanded to counter

or control.

• The high performances obtained by participants of Exp II for acronyms rather than

abbreviations can be explained by their high level of English as shown in Table 4.1.

The effect of such a population variable will be further investigated in RQ3.

In summary, we can conclude that plain English words are handled/recognized better than

abbreviations and acronyms, that there is, in general, no significant difference in splitting and

expanding acronyms and abbreviations, although in some case (Exp II) acronyms are easy

to split/expand than abbreviations.

4.4.3 RQ3: Effect of Population Variables

This subsection reports results concerning the interaction of population variables—i.e.,

knowledge of Linux (domain knowledge), knowledge of the C programming language, knowl-

edge of English, and participants’ background.

Table 4.13 F-measure: two-way permutation test by context & knowledge of Linux.

Exp I
Df R Sum Sq R Mean Sq Pr(Prob)

Context 3.000 9.802 3.267 < 0.001
Linux 2.000 0.031 0.015 0.841
Context:Linux 6.000 0.587 0.098 0.309
Residuals 1668.000 142.012 0.085

Exp II
Df R Sum Sq R Mean Sq Pr(Prob)

Context 4.000 5.594 1.398 < 0.001
Linux 2.000 0.586 0.293 0.037
Context:Linux 8.000 0.150 0.019 0.988
Residuals 1035.000 91.541 0.088

Table 4.13 shows, for both experiments, the two-way permutation test of F-measure by

context (Context row) and Linux knowledge (Linux row). As the table shows, for Exp I the

Linux knowledge has no effect on the F-measure. Also, there is no significant interaction

(Context:Linux row) between the two factors. Thus, there is no evidence of a correlation
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Table 4.14 Knowledge of Linux (Exp II): results of the Tukey’s HSD test.

Pair of Linux knowledge levels diff lwr upr Adj. p-value
2: basic-1: occasional -0.021 -0.072 0.029 0.587
3: knowledgeable-1: occasional -0.059 -0.113 -0.005 0.027
3: knowledgeable-2: basic -0.037 -0.097 0.021 0.297

between the accuracy (i.e., F-measure) of identifier splitting/expansion and the knowledge

of Linux.

In Exp II, however, the Linux knowledge has a significant effect, although it does not

interact with the context. As reported in Table 4.14, results of the Tukey’s HSD test show

a significant difference between participants having a “knowledgeable” level of Linux and

participants having an “occasional” one.

Table 4.15 shows results of the two-way permutation test of F-measure by context (Con-

text row) and C experience (CExp row). As the table shows, for both experiments C experi-

ence has no effect on the F-measure. Also, there is no significant interaction (Context:CExp

row) between the two factors.

We concluded that there is no evidence of a correlation between identifier splitting/expansion

and C experience. The C experience does not play an important role because, in our under-

standing, when preforming identifier splitting/expanding tasks, most of the participants do

not try to perform a thorough source code understanding. Rather, they try to get an idea

about the context by reading comments or other identifiers parts of the same context for

example.

Table 4.16 shows results of the two-way permutation test of F-measure by context (Con-

text row) and program of studies (Program row). As the table shows, the program of studies

has no effect on the F-measure. Also, there is no significant interaction (Context:Program

row) between the two factors. We concluded that there is no evidence of a correlation between

identifier splitting/expansion and the program of studies.

Finally, Table 4.17 reports the two-way permutation test of F-measure by context (Con-

text row) and English proficiency (English row). For Exp I, as the table shows, not only does

the English proficiency have a significant effect on the F-measure (p-value=0.032), but there

is also a marginal interaction (Context:English row, p-value=0.54) between the context and

the English knowledge. The level of English knowledge also plays a significant effect in Exp

II, although in this case the permutation test does not show any significant interaction.

In Table 4.18, we report results of the post-hoc analysis using the Tukey’s HSD test. As
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Table 4.15 F-measure: two-way permutation test by context & knowledge of C.

Exp I
Df R Sum Sq R Mean Sq Pr(Prob)

Context 3.000 7.596 2.532 < 0.001
CExp 2.000 0.289 0.144 0.194
Context:CExp 6.000 0.300 0.050 0.741
Residuals 1668.000 142.040 0.085

Exp II

Df R Sum Sq R Mean Sq Pr(Prob)
Context 4.000 5.346 1.337 < 0.001
CExp 2.000 0.032 0.016 1.000
Context:CExp 8.000 0.484 0.061 0.703
Residuals 1035.000 91.760 0.089

the table shows, in Exp I subjects having a good English proficiency perform significantly

better than those having a bad proficiency. In Exp II, subjects having a good or very good

English proficiency significantly outperform those having a bad proficiency.

In summary, we can conclude that the English proficiency significantly influences the

ability of participants to split/expand identifiers. This conclusion reveals that the English

proficiency is used besides the domain knowledge that developers have about the programs

they are dealing with, to understand the source code, and hence disambiguate the concepts

conveyed by source code identifiers.

4.5 Qualitative Analysis

In this section, we report a qualitative analysis based on (i) the post-experiment question-

naires, and (ii) observations obtained by monitoring participants during the two experiments.

Also, we provide some illustrative examples, discussing cases in which the splitting/expansion

of identifiers was (not) correctly performed.

4.5.1 Exp I - Post Experiment Questionnaire Results

As it can be noticed from Fig. 4.3, participants agreed on the usefulness of the information

provided in the experiment procedures: 16 participants found this information very helpful

and 26 participants found it helpful. In summary, Q1 indicates that, overall, participants

correctly understood the experimental procedure and did not experience major problems in

performing the tasks.
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Table 4.16 F-measure: two-way permutation test by context & program of studies.

Exp I

Df R Sum Sq R Mean Sq Pr(Prob)
Context 3.000 2.860 0.953 < 0.001
Program 3.000 0.396 0.132 0.199
Context:Program 9.000 0.170 0.019 0.992
Residuals 1664.000 142.059 0.085

Exp II
Df R Sum Sq R Mean Sq Pr(Prob)

Context 4.000 4.633 1.158 < 0.001
Program 3.000 0.093 0.031 0.799
Context:Program 12.000 0.644 0.054 0.863
Residuals 1030.000 96.278 0.093
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Figure 4.3 Exp I - Post-experiment questionnaire: usefulness of experiment procedure.

Regarding Q2, which concerns the relevance of contextual information (cf. Fig. 4.4(a)),

30 participants agreed that the most helpful context for them was the file context level.

Eight participants found that the function level was the most useful for them. Yet, only

four participants found that the file plus Acronym Finder level was the most helpful during

the experiment. This confirms the quantitative results of RQ1 (Context Relevance), i.e.,

the file level is the most relevant context level, and the Acronym Finder does not introduce

significant additional benefits.

Concerning Q3, i.e., usefulness of C knowledge, Fig. 4.4(b) shows that eight participants
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Table 4.17 F-measure: two-way permutation test by context & English proficiency.

Exp I

Df R Sum Sq R Mean Sq Pr(Prob)
Context 3.000 8.224 2.741 < 0.001
English 3.000 0.728 0.243 0.032
Context:English 9.000 1.438 0.160 0.054
Residuals 1664.000 140.491 0.084

Exp II
Df R Sum Sq R Mean Sq Pr(Prob)

Context 4.000 3.172 0.793 < 0.001
English 3.000 0.714 0.238 0.044
Context:English 12.000 0.799 0.067 0.698
Residuals 1030.000 90.763 0.088

found that their experience in C programming was totally useless when splitting and expand-

ing source code identifiers. However, 14 participants found that their C experience was not

very useful when performing such a task, and 17 participants found it a bit useful. Only

three participants indicated that their C experience was helpful. In summary, participants

perceived the knowledge of C programming language not particularly useful for the task. The

latter observation confirms the quantitative results of RQ3 (Effect of Population Variable)

summarized in Table 4.15.

Regarding Q4 that deals with the knowledge of Linux utilities. As Fig. 4.4(c) shows, only

three participants found that their Linux knowledge was very useful for them when splitting

and expanding the identifiers given to them, and five participants found it a bit useful. Yet,

ten participants found that their Linux knowledge was not very useful, and 24 found it totally

useless. In summary, most of the participants perceived the Linux knowledge not particularly

useful when performing identifier splitting and expansion. The latter observation confirms

the quantitative results of RQ3 (Effect of Population Variable) summarized in Table 4.13 and

4.14.

As Fig. 4.4(d) indicates, five participants found the source comments very useful, 33

found them useful, and one participant found it a bit useful when performing identifier

splitting/expansion tasks. Only three participants found the comments not very useful.

Hence, most of the participants agreed on the usefulness of source code comments when

splitting/expanding source code identifiers.

Our observations also reveal the importance of having a good level of English proficiency

when performing identifier splitting and expansion tasks. In fact, English native speaker
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Table 4.18 English proficiency: results of the Tukey’s HSD test.

Exp I
Pair of English knowledge levels diff lwr upr Adj. p-value
2: good-1: bad -0.063 -0.122 -0.004 0.030
3: very good-1: bad -0.035 -0.086 0.014 0.253
4: excellent-1: bad -0.051 -0.110 0.007 0.110
3: very good-2: good 0.027 -0.022 0.077 0.500
4: excellent-2: good 0.011 -0.047 0.070 0.957
4: excellent-3: very good -0.015 -0.065 0.034 0.853

Exp II
Pair of English knowledge levels diff lwr upr Adj. p-value
2: good-1: bad -0.094 -0.219 0.030 0.209
3: very good-1: bad -0.120 -0.237 -0.003 0.040
4: excellent-1: bad -0.118 -0.231 -0.005 0.035
3: very good-2: good -0.025 -0.102 0.050 0.818
4: excellent-2: good -0.024 -0.094 0.046 0.813
4: excellent-3: very good 0.001 -0.053 0.056 0.999

participants (seven of them), or those having a good/excellent English proficiency, did not

face difficulty in recognizing English words in identifiers, even in presence of abbreviations

and acronyms. The latter observation confirms the quantitative results of RQ3 (Effect of

Population Variable) summarized in Table 4.17 and 4.18.

4.5.2 Exp II - Post Experiment Questionnaire Results

Similarly to Exp I, we collected and analyzed data gained from the post-experiment

questionnaire that we gave to the participants at the end of the experiment and where the

main questions are summarized in Table 4.7.

Regarding Q1 (usefulness of information provided by the experiment material), as shown

in Fig. 4.5, all participants agreed that this information was helpful for them, which means

that they did not face any problem when performing the tasks. For what concerns Q2

(relevance of context), Fig. 4.6(a) shows that 10 participants found that the application-level

context was helpful for them, five agreed that the application plus Acronym Finder was the

most helpful for them, four found the file-level context more important when performing

the identifier splitting and expansion tasks, and only two participants claim that the file

plus Acronym Finder was the most helpful level for them. The positive feedbacks about the

usefulness of the application level (partially) contrasts the quantitative results obtained in
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(d) Q5: Source code comments

Figure 4.4 Exp I - Post-experiment questionnaire: context and participants’ background
relevance.

RQ1, which indicated that application level context did not introduce significant additional

benefits with respect to file level context. Nevertheless, some participants indicated that

they found particularly useful the possibility to browse header files to better understand

identifiers used in C files. The latter observation highlights that for languages like C/C++

header files are a very important source of information, because very often functions, types,

data structures, or classes (C++) are defined there.

For Q3, we notice from Fig. 4.6(b) that 12 participants agreed that their experience in C

was not very helpful when performing the given tasks, and only nine participants claim that

their C expertise was a bit helpful for such experimental tasks, and this is in accordance with

the quantitative results of Exp II obtained for RQ3 and summarized in Table 4.15. Regarding

Q4, Fig. 4.6(c) reveals that one participant found that his knowledge in Linux was totally

useless. Yet, nine participants agreed that their knowledge in Linux was not very useful,



63

Totally useless N.V useful Useful Very useful

 Experiment Procedure Information Usefulness

Usefulness Scales

N
um

be
r 

of
 S

ub
je

ct
s

0
5

10
15

20

0 0 21 0

Figure 4.5 Exp II - Post-experiment questionnaire: usefulness of experiment procedure.

six mentioned that it was a bit useful when splitting and expanding the given C identifiers,

and five claim that the Linux knowledge was very helpful for them. The latter observation

confirms the quantitative results of Exp II obtained for RQ3 and summarized in Tables 4.13

and 4.14. The significant results obtained for Exp II can be explained by the fact that most of

the participants in Exp II know (according to our interviews with them) the applications from

where we sampled our identifiers, thus, they benefited from their knowledge of the domain

(i.e., Linux) when performing the experimental tasks of Exp II. Such homogeneity does not

apply to the participants of Exp I. As Fig. 4.6(d) shows, only one participant found the

source code comments not very useful, 17 participants found them useful, and three found

the source code comments very useful.

As shown by Table 4.1, participants in Exp II are homogenous in terms of C expertise and

the English proficiency. In fact, most of the participants have a good to excellent English

proficiency (six are English native speakers), having such a knowledge of English, partici-

pants of Exp II did not face difficulties when performing the experimental tasks. Also, the

participants have a medium to expert knowledge in C programming. Such homogeneity does

not apply to Exp I participants.

Overall, the post-experiments questionnaires results confirm the quantitative results pre-

sented in Section 4.2, i.e., the increase of the context help participants split/expand identi-

fiers. The application and file levels seem to be the most helpful context levels (even though

the difference between the two levels is not statistically significant). The external information

(i.e., the Acronym Finder) is not always useful, especially when the acronyms are specific to

the application in question. However, the source code comments were found helpful by almost
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(d) Q5: Source code comments

Figure 4.6 Exp II - Post-experiment questionnaire: context and participants’ background
relevance.

all the participants. Results of this section confirms the results reported in Section 4.2 for

what concerns the participants’ characteristics and background. In fact, the C programming

expertise was found not useful for the identifier splitting/expansion task. Yet, the Linux

knowledge was helpful for some participants, confirming that for Exp II it had a significant

effect.

4.5.3 Illustrative examples from the data exploration

To provide insights about identifier splitting/expansion difficulties faced by the partici-

pants of the two experiment, Table 4.19 reports examples of wrong splits/expansions with

brief explanations about the cause of the failure in expanding these identifiers. As it can be

noticed from the table, wrong splits/expansions were mainly due to single letters (e.g., p in

mempcpy, which some participants did not recognize), and abbreviations composed of only
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two letters (e.g., rw in case data rw idx). Wrong answers were also due to incorrect splits

(e.g., dupok that was incorrectly split into directory, up, and ok), or to the inability to recog-

nize terms composing an identifier, as in the case of lf isset that was kept as it is, instead of

being split into is and set. Difficulties were also faced when expanding few acronyms such as

(e.g., dbsm in dbsm start and arm in arm reg parse). Other wrong expansions were noticed

when a term part of an identifier appeared to be an English word, but indeed it required

an expansion which participants did not apply. For example, dumbterm was split into dumb

and term instead of dumb and terminal. Then, we investigated how participants expanded

acronyms, and to what extent the Acronym Finder was helpful for that. To this aim, we

classified acronyms into:

Table 4.19 Examples of wrong splits and expansions.

Identifier Wrong Expansion Identifier Oracle Type of Mistake
mempcpy memory p copy memory pointer copy correct split but inability to expand the

letter p into pointer
case data rw idx case data read write index case data row index correct split but incorrect expansion of

rw into read write instead of row
dupok dupok duplicate ok inability to correctly split dupok into

dup ok and expand it into duplicate ok
fpcw new offset floating point control word

new offset
f p control word new offset correct split and inability to expand the

letters f and p in fpcw into floating and
point

pendulist pend user list pending user list correct split and incorrect expansion by
keeping pend as it is instead of pending

pmat private matrix partitioned matrix incorrect expansion of p to private in-
stead of partitioned

rm so remove socket remove shared object incorrect splitting and expansion of
rm so into remove socket instead of re-
move shared object

ipfrag internet protocol fragmen-
tation

internet protocol fragment correct split and incorrect expansion of
frag to fragmentation instead of frag-
ment

assoc associate association incorrect expansion of assoc to asso-
ciate instead of association

dupok directory up ok duplicate ok incorrect splitting and expansion of
dupok into directory up ok instead of
duplicate ok

dbsm start data base state machine
start

decibel per square meter
start

incorrect expansion of the acronym
dbsm

internal auxent internal auxiliary entry internal auxiliary entities incorrect expansion of the abbreviation
ent to entry instead of entities

extcase external case extended case incorrect expansion of the abbreviation
ext to external instead of extended

pl stm tbl prolog statement table prolog stream table incorrect expansion of the abbreviation
stm to statement instead of stream

dumbterm dumb term dumb terminal keeping the abbreviation term as it is
instead of expanding it to terminal to-
wards a wrong expansion of dumbterm

1. AF ∧ ORA: acronyms that have an expansion proposed by the Acronym Finder that

matches the one of our oracle, 50% of acronyms fall into this category;
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Table 4.20 Proportions of correctly expanded acronyms with the file plus Acronym Finder
context.

Identifiers AF ∧ORA AF ∧ not(ORA) notAF Matched – Exp I (%) Unmatched – Exp II (%)
API SIGNON

√
100 100

argv to scm
√

0 20
arm reg parse

√
0 0

bfd abs section ptr
√

78 100
blk queue io stat

√
100 100

dbsm start
√

0 0
dfp

√
67 100

esi
√

25 25
FFEBAD severityFATAL

√
37.5 50

FFI Ok
√

100 75
fpcw new offset

√
25 20

gmon io write
√

100 100
GMP NUMB MAX

√
75 40

hol cluster base
√

50 66.7
ipfrag

√
100 100

pBt
√

12.5 50
PNG INFO PLTE

√
62.5 50

rrt prev
√

12.5 0
scm set smob print

√
25 0

2. AF ∧ not(ORA): acronyms that have an expansion proposed by the Acronym Finder

that does not matches the one of our oracle, 38% of acronyms fall into this category;

3. not AF : acronyms that are not in the Acronym Finder, 12% of acronyms fall into this

category.

We computed the proportions of correctly expanded acronyms for the file plus Acronym

Finder context, i.e., the common context level between Exp I and Exp II that uses the

Acronym Finder as an external source of information. The proportions of correctly expanded

acronyms (Matched) are reported in Table 4.20.

For what concerns the category AF ∧ ORA, participants were able to expand 100% of

well-known acronyms, i.e., API in the identifier API SIGNON ip in ipfrag, and io in the

identifiers gmon io write and blk queue io stat. In addition, some acronyms were expanded

in high proportions by participants of Exp II while others were easily handled by participants

of Exp I. Examples of acronyms that were expanded in high proportions by participants of

Exp II are bfd in the identifier bfd abs section ptr (with a percentage of 100% versus 75% in

Exp I), scm in the identifier argv to scm (20% of cases, versus no correct expansion in Exp

I).

Acronyms that were better expanded by the participants of Exp I areGMP in the identifier

GMP NUMB MAX (75% in Exp I versus 40% in Exp II), scm in scm set smob print (25%

in Exp I versus 0% in Exp II), FFI in FFI Ok (100% in Exp I and 75% in Exp II), PNG in

PNG INFO PLTE (62.5% in Exp I versus 50% in Exp II).
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The acronym esi was correctly expanded with a proportion of 25% in both Exp I and Exp

II. The acronym dbsm was not correctly expanded by any participant.

Overall, only well-known acronyms were expanded in 100% of cases, some were expanded

in different proportions less that 100% by participants of Exp I and II, and others were not

correctly expanded by any participant (e.g., dbsm) even if their expansions exist among the

expansions provided by the Acronym Finder. Thus, we concluded that the availability of the

Acronym Finder is not particularly useful, and that it could even be misleading by providing

several choices of expansions that are sometimes too generic, and do not fit with the exact

context/domain of the applications participants are dealing with.

For what concerns the second category of acronyms (AF ∧ not(ORA)), participants of

Exp II expanded a high proportion of almost all acronyms, and they were able to achieve an

accuracy between 50% and 100%. These further remarks show that the internal (source code

and comments) context is more useful than the external context (Acronym Finder). The high

proportion of acronym expansions provided by the participants of Exp II can be justified by

their high English proficiency as indicated in Table 4.1 and also by their knowledge of the

domain (Linux) as reported in Table 4.13.

Finally, we had only one acronym that does not exist in the Acronym Finder (not AF ),

i.e., fpcw in the identifier fpcw new offset. Participants were still able to correctly expand it

with a proportion of 25% in Exp I and 20% in Exp II.

Overall, we can conclude from these examples that, on the one hand, adding an external

source of information to the participants is not often helpful if this does not properly reflect

the application context and domain. On the other hand, the participants’ domain knowledge

can, sometimes, play an important role, and their English proficiency turns out to be very

useful.

In summary, we can conclude from both qualitative and quantitative analyses that the

increase of the context help participants split/expand identifiers. The application and file

levels are the most helpful context levels (even though the difference between the two levels

is not statistically significant). The external information (i.e., the Acronym Finder) is not

always useful if this does not properly reflect the application context and domain of the ap-

plication. Regarding participants’ characteristics and background, C programming expertise

was not useful for the identifier splitting/expansion task. Yet, the knowledge of the domain

(Linux) was helpful for some participants (Exp II), and their English proficiency turns out

to be very useful.
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4.6 Threats to Validity

Threats to construct validity concern the relation between the theory and the obser-

vation. In our study, this threat is mainly due to possible mistakes in the oracle, which we

cannot exclude a priori. To limit such a threat, the oracle was produced using a consen-

sus approach, i.e., two authors produced independent oracles, and then discussed cases of

disagreement. We proceeded in such a way to minimize the bias and the risk of producing

erroneous results. This decision was motivated by the complexity of identifiers, which capture

developers’ domain and solution knowledge, personal preferences, etc.

Threats to internal validity concern any confounding factor that could influence our

results. One case of an internal validity threat is the one related to learning and fatigue

effect. This threat is addressed in our experiment by (i) using different treatments—including

different ordering in which identifiers were shown to the participants—for each group of

participants in the experimental design (see Table 4.4), and (ii) having a task and lab duration

of a reasonable size, i.e., 40 identifiers (Exp I) and 50 identifiers (Exp II) for each participant,

and 120 minute laboratory session.

Another threat could be the one related to the subjectivity in the answers provided

in the pre-experiment questionnaire. Since we asked subjects to rate themselves for what

concerns their knowledge of Linux, C programming language, and English, we are aware

that the collected information can contain over-positive and over-negative assessments. To

limit threats related to variation of participants’ performance in the experimental tasks, we

divided participants into groups (“blocks”) of participants having, roughly, the same level of

skills/experience, and then performed a stratified sampling to make sure that skill/expertise

is uniformly distributed across groups in the experimental designs of Table 4.4.

A further internal validity threat is the diffusion or imitation of treatments. This threat is

also limited by preventing access to the experiment material outside the experiment hours by

other groups’ members. Also, although participants were aware of the laboratory objectives—

i.e., splitting and expanding identifiers using any source of information available—they did

not know exactly the experimental hypotheses.

Threats to conclusion validity are concerned with issues that affect the ability to draw

the correct conclusions about relations between the treatment and the outcome of the ex-

periment. We used non-parametric tests—e.g., Wilcoxon and permutation tests—which do

not make any assumption on the underlying distributions of the data set. Also, whenever

multiple Wilcoxon tests are performed, we adjusted p-values using the Holm’s correction.

Finally, other than the presence of significant differences, we also analyzed the magnitude of

the detected differences using a non-parametric effect-size measure, i.e., Cliff’s delta.
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Threats to external validity concern the possibility of generalizing our results. This

relates to (i) the choice of object programs from which identifiers to split/expand have been

sampled and (ii) the choice of the experiment participants. To make our results as general-

izable as possible, we randomly selected our sample of identifiers from a set of open-source

project. We only considered C programs rather than Java programs because previous studies

have already shown that in most cases Java identifiers can be split/expanded trivially, e.g.,

using a simple CamelCase heuristic (Madani et al., 2010; Guerrouj et al., 2012). This is

because Java identifiers are usually built using the CamelCase convention and, quite often,

are composed of full English words rather than abbreviations and/or acronyms. Instead, the

usage of a more complex splitting/expansion is particularly useful for programming languages

that use short identifiers (e.g., C, C++, and COBOL).

The participants that performed the experiments belong to a population of Canadian

students (Bachelor, Master, Ph.D.) and post-docs. Many of them already had previous

industrial experience. Nevertheless, we are aware that the context in which our experiment

was performed is still an academic one; therefore, replications in industrial settings are highly

desirable.

4.7 Chapter Summary

This work is a family of two controlled experiments investigating the effect of context

in one of the practical tasks in software maintenance and evolution, that is the splitting

and expansion of source code identifiers. More specifically, we investigated the extent to

which a source-code context could be helpful when splitting/expanding source code iden-

tifiers, and the extent to which other factors related to identifiers’ characteristics and to

developers skill/experience could influence participants’ performances or interact with the

effect of context.

The experiments involved 63 participants, students (Bachelor, Master, Ph.D.) and post-

docs from the École Polytechnique de Montréal, and used, as objects, a set of 50 identifiers

randomly sampled from a corpus of C open-source programs. Exp I involved 42 participants,

and investigated four different context levels: (i) splitting/expanding identifiers without any

contextual information, (ii) function-level context, (iii) file-level context, and (iv) file plus the

availability of an external context, i.e., the Acronym Finder. Exp II involved 21 participants

and, in addition to the Exp I contexts (excluding the function context only), considered the

application level context, with and without the Acronym Finder.

The experimental results provided evidence on the usefulness of context for identifier

splitting and expansion. In particular, results indicated that a wider context—i.e., file-
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level—is more helpful than a limited one—i.e., function level. However, a wider context, i.e.,

application level, does not introduce further improvements. In general, the presence of an

Acronym Finder did not introduce significant benefits, likely because the acronyms contained

in the identifiers are not domain specific.

We found no significant difference in the accuracy of splitting and expanding terms con-

sisting of abbreviations from those consisting of acronyms. However, while abbreviations are

always significantly more difficult to split/expand than English words, in Exp II this is not

the case for acronyms. This result highlights that, counterintuitively, developers would need

support to split/expand abbreviations, while acronyms are not always a big issue. Thus,

identifier splitting/expansion tools that exploit contextual information (Enslen et al., 2009;

Lawrie et al., 2010; Lawrie et Binkley, 2011; Corazza et al., 2012) are particularly useful.

Results also show that, in both experiments, the participants’ level of English plays a

significant role in the identifier splitting and expansion performance. In particular, partici-

pants are able to better exploit contextual information if they have a very good knowledge

of English. Instead, C experience and participants’ background (program of studies) do not

have a significant effect. The knowledge of Linux revealed to have a significant effect only in

Exp II.

In general, the obtained results can be used to provide useful insights to practitioners and

researchers, confirming the belief about the relevance of contextual information in program

comprehension. Such information is helpful not only to humans when performing program

comprehension tasks, but also to automatic tools that rely on source code lexicon to perform

various kinds of tasks, including feature location (Dit et al., 2011).
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CHAPTER 5

Context-Aware Source Code Vocabulary Normalization Approaches

Prior works on normalization have focused on identifier splitting (Hill et al., 2011). The

widely used techniques rely on CamelCase naming conventions. The CamelCase convention

is the practice of creating identifiers by concatenating terms with capitalized first letter,

giving identifiers a Camel-like looking with flats and humps, e.g., drawRectangle. It leads to

the development of a family of algorithms to split identifiers into component terms. These

algorithms have in common the assumption that the CamelCase convention and–or an explicit

separator are systematically used to create identifiers. Samurai can be thought as a clever

CamelCase that mines terms frequencies in programs under analysis and in a large corpus

of programs to perform the identifier splitting. The main weakness of Samurai is its reliance

on frequency tables which may lead to over-splits (Enslen et al., 2009). To overcome the

latter shortcomings, we suggest two novel context-aware approaches that both split and

expand source code identifiers even in the absence of naming conventions and–or presence of

abbreviations. We use context because our experimental results show that it is relevant for

vocabulary normalization (cf. Chapter 4).

In this chapter, we will present our contributions to source code vocabulary normalization,

i.e., TIDIER and TRIS. TRIS is inspired by TIDIER. However, it deals with the identifier

splitting/expansion problem differently and uses a tree-based representation that considerably

reduces its complexity and makes it fast.

5.1 TIDIER

When writing source code, in particular when naming source-code identifiers, developers

make use of concepts from high-level documentation and from the program domain. Also,

they encode identifiers using implicit and explicit coding conventions and–or past experience.

The goal of TIDIER is to split program identifiers using high-level and domain concepts by

associating identifier terms to domain-specific words or to words belonging to some generic

English dictionaries.

First, TIDIER assumes that it is possible to model developers creating an identifier with a

set of transformation rules on terms/words. For example, to create an identifier for a variable

that stores a number of customers, the two words number and customers can be concatenated

with or without an underscore, e.g., customer number or customernumber or following the
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CamelCase convention, e.g., customerNumber. Contractions of one or both words are also

possible, leading to identifiers such as customerNbr, nbr customer, or cstmr nbr.

Second, TIDIER assumes that it is possible to define a distance between dictionary words

and identifier terms to quantify how close are words, representing concepts, to such terms and,

thus, to provide a measure of the likelihood that the terms refer to some words. Although

there are several ways—none of which are the best—to compute a distance between two terms

and words, string-based distances have been used in the past for various purposes, such as

code differencing (Canfora et al., 2009) or clone tracking (Canfora et al., 2010), with good

results. Therefore, TIDIER use the string-edit distance between terms and words as a proxy

for the distance between the terms and the concepts they represent.

In a nutshell, TIDIER relies on a set of input dictionaries and a distance function to split (if

necessary) simple and composed identifiers and associate the resulting terms with words in the

dictionaries, even if the terms are truncated/abbreviated, e.g., objectPtr, cntr, or drawrect.

Dictionaries may include English words and–or technical words, e.g., microprocessor and

database (in the computer domain), or known acronyms, e.g., afaik (in the Internet jargon).

The distance function measures how close a given identifier term is to a dictionary word and,

thus, how well the concepts associated to the dictionary words are conveyed by the identifier.

Developers of C programs sometimes use word abbreviations to compose identifiers, which

is likely a heritage of the past when certain operating systems and compilers limited the

maximum length of identifiers. For example, a developer may use the term dir instead

of the word directory, ptr or pntr instead of pointer, or net instead of network. TIDIER

aims to segment identifiers into terms and recover the original non-abbreviated words. Thus,

TIDIER uses a thesaurus rather than English and–or domain dictionaries. A thesaurus entry,

a word, in TIDIER is the original word followed by the list of abbreviated terms, i.e., word

synonyms; if TIDIER finds the term ptr in an identifier, then it knows that this term is

actually an abbreviation of pointer. In the following, wherever there is no risk of confusion,

the two terms dictionary and thesaurus will be used interchangeably to indicate a list of

words; each word possibly associated with a list of abbreviations.

Some abbreviations are well-known and can, thus, be part of the thesaurus we built. In

such case, each row of the thesaurus contains a word and its possible synonyms, e.g., dir for

directory or direction. Some other abbreviations may not appear in the thesaurus because

they are too domain and–or developer specific. To cope with such abbreviations, TIDIER

is the first approach that finds the best splitting using a string-edit distance and a greedy

search. If the edit distance between a term and a word is not zero, TIDIER tries to reduce the

distance by transforming the word into some possible abbreviated forms, e.g., by removing

all vowels pointer is mapped into pntr. Then, TIDIER recomputes the edit distance and
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adds the abbreviated forms as possible synonyms of the word if the distance between the

abbreviated form and the term is smaller than the previous distance between the word and

the term. A hill-climbing algorithm iterates over all words and all transformation rules to

obtain the best split—i.e., a zero distance—or until a termination criterion is reached.

Thus, the current implementation of TIDIER takes as input an identifier and a thesaurus,

and uses a simple string-edit distance to split, whenever possible, the identifier into a number

of terms that have a small (or zero) distance with dictionary words. TIDIER is not able to

deal with missing information or to generate abbreviations in all cases. If the identifiers use

terms belonging to a specific domain, whose words are not present in the thesaurus, TIDIER

cannot split and associate these terms with words. Similarly, TIDIER cannot identify the

words composing acronyms, e.g., afaik, cpu, ssl, or imho, because it cannot associate a single

letter from the acronym with the corresponding word: for any letter, there exist thousands

of words with the same string-edit distance, e.g., the c of cpu has the same distance with

central and with any other word starting with c.

We now detail the main components of TIDIER.

5.1.1 String Edit Distance

The string-edit distance between two given strings, also known as Levenshtein distance

(Levenshtein, 1966), is the number of operations required to transform one string into an-

other. The most common setting considers the following edit operations: character deletion,

insertion, and substitution. Specifically, these settings assume that each insertion and each

deletion increase the distance between the two strings by one, whereas a substitution (i.e., a

deletion followed by one insertion) increases it by two (Cormen et al., 1990). An exact match

is just a special case of substitution; it has a zero cost since both characters are the same.

Let us assume that we must compute the edit distance between the strings pointer and

pntr. Their edit distance is three, as the characters o, i, and e must be removed from pointer

or, alternatively, added to pntr. The main problem in computing the string-edit distance is

8 r ∞ 6 5 4 3
7 e ∞ 5 4 3 4
6 t ∞ 4 3 2 3
5 n ∞ 3 2 5 6
4 i ∞ 2 3 4 5
3 o ∞ 1 2 3 4
2 p ∞ 0 1 2 3
1 0 ∞ ∞ ∞ ∞

p n t r
1 2 2 2 5

Figure 5.1 Single Word Edit Distance Example.
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the algorithm efficiency. A naive implementation is typically exponential in the string length.

A quadratic complexity implementation can be easily written using dynamic programming

and the algorithm is then often referred to as the Levenshtein algorithm. The Levenshtein

algorithm computes the distance between a string s of length N and a string w of length M

as follows.

First, a distance matrix D of (N + 1)× (M + 1) cells is allocated; in our example, 8× 5,

i.e., the lengths of pointer and pntr plus one. The cells in the first column and first row are

initialized to a very high value but for cell (1, 1), which is initialized to zero. (This allocation

and initialization strategy simplifies the algorithm implementation). Matrix D can be seen

as a Cartesian plane, and strings s and w, i.e., pointer and pntr, as places along the plane

axes starting from the second cells, as shown in Figure 5.1.

The computation proceeds column by column starting from cell (1, 1). The distance in

cell D(i, j) is computed as a function of the previously computed (or initialized) distances

in cells D(i − 1, j), D(i − 1, j − 1), and D(i, j − 1). At the end of the process, the cell

(N + 1,M + 1) contains D(N + 1,M + 1), which is the minimum edit distance.

c(i, j) =

{
1 if s[i] ̸= w[j]

0 if s[i] = w[j]

D(i, j) = min[D(i− 1, j) + c(i, j), // insertion

D(i, j − 1) + c(i, j), // deletion

D(i− 1, j − 1) + 2 ∗ c(i, j)] // substitution

Unfortunately, the Levenshtein algorithm is not suitable to split identifiers because it only

computes the distance between two given strings, not between sub-strings in a string (i.e.,

identifier terms) and some other strings (i.e., dictionary words).

In the early ’80s, Ney proposed (Ney, 1984) an adaptation to continuous speech recog-

nition of the dynamic programming alignment algorithm, known as Dynamic Time Warping

(DTW) (Sakoe et Chiba, 1978), originally conceived for isolated word recognition. Ney’s

adaptation considers that a word can begin and end at any point in an utterance, similarly

as a term can begin and end at any point in an identifier. It thus does not assume a-priori

knowledge of where a word is located in an utterance, i.e., where a term begins or ends in

an identifier. The details of Ney’s algorithm are available elsewhere (Ney, 1984). TIDIER

implements an extension of the Levenshtein algorithm based on Ney’s adaptation. This ex-
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Columns

1 2 3 4 5 6 7 8 9

4 r ∞ 2 3 2 1 3 3 4 3
3 t ∞ 1 2 1 2 3 3 3 4
2 p ∞ 0 1 2 3 2 3 4 3
1 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

s p n t r c n t r

w
o 5 r ∞ 4 4 3 2 3 3 2 1

R 4 t ∞ 3 3 2 3 3 2 1 2
3 n ∞ 2 2 3 3 2 1 2 3
2 c ∞ 1 2 3 2 1 2 3 3
1 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

p n t r c n t r

Minimal Distance ∞ 2 3 2 1 2 3 1 1

Figure 5.2 Multiple Words Edit Distance Example.

tension requires a dictionary (or a thesaurus) of known words (referred to as speech template

in (Sakoe et Chiba, 1978; Ney, 1984)).

Let us suppose that we have the identifier pntrcntr and that our dictionary contains only

the two words ptr and cntr, abbreviations of pointer and counter, respectively. The algorithm

is initialized as described above for the Levenshtein algorithm, except that it creates one

matrix for each word in the dictionary, as shown in Figure 5.2. The algorithm then proceeds

by computing one column at a time, going from Row 2, to Row N +1. Row 1 and Column 1

just contain initialization values used to simplify the DTW and, thus, the actual computation

goes from cell (2, 2) to cell (N + 1, N + 1).

Once Column 2 is computed for all words in the dictionary as in the Levenshtein algorithm,

a decision is taken on the minimum distance contained in cell (2, 4) for ptr and (2, 5) for cntr.

This minimum distance is equal to 2, as shown in Figure 5.2, and the corresponding best

term, i.e., ptr, is then recorded. The minimum distance is then copied into the cell (1, 3) of

the matrices, which corresponds to assuming that the word with lower cost ends at Column

2.

At the beginning of Column 3 (i.e., to calculate (2, 3)), the algorithm checks if it is less

costly to move from one of the cells (1, 2) and (2, 2) or, instead, if it is cheaper to assume

that a string was matched at Column two (previous column) with the distance cost recorded

in the minimum distance array (i.e., two) and copied into (1, 3). In the example, for both

dictionary words, the algorithm decides to insert a character, i.e., move to the next column

(along the x axis), as previous values are lower, i.e., zero for ptr and one for cntr.

When the column of the character c of pntrcntr is computed (Column 6), the minimum

distance recorded for dictionary terms at Column 5 is one, as ptr just needs one character

insertion to match pntr. Thus, the computation propagates the minimum distance in Column
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5 for ptr, i.e., ptr matches pntr with distance one, and the algorithm detects that the word

ptr ends at Column 5. Because the character c is matched in cntr, the distance of one is

propagated to cell (6, 2). The last part of the identifier pntrcntr matches cntr. Thus, when

all columns are computed, the lowest distance is one. Distance matrices and the minimum

distance array allow one to compute the minimum string-edit distance between the terms in

the identifier and the two words, and thus split the identifier.

The algorithm uses back-pointers matrices for improved performance, one for each dictio-

nary word. For a given term, in each cell (i, j), the back-pointer matrix records the decision

taken and thus words, words matching distances, as well as the beginning and end of each

word is recovered.

5.1.2 Thesaurus of Words and Abbreviations

The thesaurus used by TIDIER plays an important role for the quality of its results. In

the thesaurus, a word may be followed by a list of equivalent words or abbreviations. For

example, the words network and net are considered equivalent and form a single row as well

as the terms pointer, pntr, and ptr. Thus, if pntr is matched, TIDIER expands it into the

dictionary word pointer.

One possibility to build such a thesaurus would be to merge different specific or generic

dictionaries, such as those of spell checkers, e.g., i-spell1, which contains about 35,000 words,

or of upper ontologies, e.g., WordNet2, which contains about 90,000 entries.

Yet, it would be desirable, if possible, to build smaller dictionaries, e.g., dictionaries

containing the most frequently-used English words only as well as specialized dictionaries

containing acronyms and known abbreviations to reduce the computation time. In the fol-

lowing, we used five different kinds of dictionaries.

1. Small English dictionary (referred to as “English Dictionary”): an English dictionary

built from the 1,000 most frequent English words, the 250 most frequent technical words

(from the Oxford Dictionary), and 275 most frequent business words (from the Oxford

Dictionary), plus words from a glossary found on the Internet3. Overall, this dictionary

includes 2,774 words.

2. Small English dictionary, plus specialized knowledge: this dictionary consists of the

English Dictionary plus: (i) a set of 105 acronyms used in computer science (e.g., ansi,

dom, inode, ssl, url), (ii) a set of 164 abbreviations collected among the authors used

1http://www.gnu.org/software/ispell/ispell.html
2http://wordnet.princeton.edu/wordnet/
3http://www.matisse.net/files/glossary.html
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when programming in C (e.g., bool for boolean, buff for buffer, wrd for word), and (iii)

a set of 492 C library functions (e.g., malloc, printf, waitpid, access). This dictionary

includes the union of the 2,774 English words plus 761 abbreviations and C functions,

for a total of 3,535 distinct words.

3. Complete English dictionary (referred to as “WordNet”): a complete English dictionary

extracted from the WordNet upper-ontology database and from the GNU i-spell spell-

checker. This dictionary includes 175,225 words.

4. Context-aware dictionaries: dictionaries containing function-level, source code file-level,

and program-level identifiers. We built these dictionaries using dictionary words ap-

pearing in the context where the identifiers are located.

5. Application dictionary, plus specialized knowledge: a dictionary based on the program-

level dictionary—described in the previous step—augmented with domain knowledge

(abbreviations, acronyms, and C library functions).

The abbreviations used to describe specialized knowledge were collected with no prior

knowledge about the identifiers to be split. The rationale of including abbreviations is to

identify terms not contained in the English Dictionary but that are likely to be contained in

identifiers and that could not be expanded into English words because their distance from

the words that they represent is too large. For example, the identifier ipconfig contains the

term ip, which means “internet protocol”. It would be impossible for any algorithm to guess

that i stands for internet and p for protocol. Widely used abbreviations are introduced to

make the search faster as it would be useless and time consuming to generate well-known

abbreviations. C library terms are introduced because, often, they correspond to jargon or

domain-specific words, and C program identifiers contain these terms. For example, functions

wrapping known C functions often contain terms such as printf, socket, flush, and so on, as in

the Linux identifiers threads fprintf, seq printf, or, in the Apache Web server, snprintf flush

or apr socket create.

The context-aware dictionaries are built by tokenizing source code, extracting identifiers

and comment terms, and saving them into specialized context-aware dictionaries at the level

of functions, files, or programs. These lists of terms need to be pruned of strings not corre-

sponding to English words or technical terms before being considered as usable dictionaries;

in TIDIER, the filtering is done by string comparison with the WordNet dictionary.

TIDIER dictionaries must be carefully validated as its results depend on them. Building

and validating dictionaries is a non-trivial activity. We used two ways to validate a dictionary.
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Manual validation for small dictionaries or highly-specific dictionaries, such as the abbrevi-

ations, and automatic filtering using a trusted reference dictionary, among others WordNet,

for large dictionaries.

Typically, we created a dictionary for expanding identifiers as follows:

• First, we created a dictionary containing words from the English language (assuming

that identifiers are in English) using already-available dictionaries, such as GNU i-spell

or WordNet.

• Second, we built context-aware dictionaries by filtering WordNet/i-spell words that

appear in a given source-code context. We used source code tokenization and pattern

matching to automatically perform the filtering.

• Finally, we complemented the previously-built dictionaries with domain-specific words

(not contained in the original dictionaries) and acronyms (together with their expan-

sions), which is the most critical task.

Overall, TIDIER dictionaries requires one day to be produced, populated with abbre-

viations and acronyms typical for Unix utilities (i.e., the domain of our empirical study).

Documenting the C library functions required four to five days of manual verification.

5.1.3 Word Transformation Rules

Some identifier terms might not be part of the thesaurus and must be generated from

existing words and, possibly, added to the thesaurus. Let us consider the identifier fileLen

and suppose that the thesaurus contains the words length, file, lender, and ladder, and no

abbreviations. Clearly, the word file matches with a zero string-edit distance with the first

four characters of fileLen, while both length and lender have a distance of three from len

because their last three characters could be deleted. The distance of ladder to len is higher

than that of other words, because only l matches. Thus, both length and lender should be

preferred over ladder to be associated with the term len. Clearly TIDIER performs at the

character level and does not take in to account the software application semantic.

We defined and used the following transformation rules in TIDIER:

• Delete a random character: one randomly-chosen character is deleted from the word,

e.g., pointer becomes poiner;

• Delete a random vowel: one randomly-chosen vowel from the word is deleted, e.g.,

number becomes numbr;
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• Delete all vowels: all the vowels in a word are deleted, e.g., pointer becomes pntr;

• Delete suffix: the suffix of the word, such as ing, tion, ed, ment, able, is deleted, e.g.,

improvement becomes improve;

• Keep the first n characters only: the word is transformed by keeping the first n char-

acters only, e.g., rectangle becomes rect, with n = 4.

Constraints exist between transformation rules. For example, it is impossible to delete a

random vowel once all vowels have been deleted; a suffix can be removed if and only if it is

part of the word.

To choose the most suitable word to be transformed, TIDIER uses the following simple

heuristic. It selects the closest words to the term to be matched, i.e., the smallest non-

zero distances, and repeatedly transforms these words using randomly-chosen transformation

rules. This process continues until a transformed word matches the term or the transformed

words reach a length shorter than or equal to three characters. We choose three characters

as a lower limit because too many words would have the same abbreviation with two or less

characters. If the transformed word matches the term, then this abbreviation is added in

the thesaurus, else the algorithm tries to transform the next closest words to either find an

abbreviation or report a failure to match the term with any word/abbreviation.

Putting It All Together

We now describe a typical run of TIDIER. First, wherever possible, identifiers are simply

split using explicit separators, namely special characters, e.g., “ ”, “.”, “$”, “->”, and the

CamelCase convention. Then, TIDIER applies transformations and computes the distance

between the identifier terms and the thesaurus words by using a hill climbing search. For

a given identifier and a given dictionary, the string-edit distance assigns a distance to each

thesaurus word as well as the positions where it begins and ends in the identifier. In Fig.

5.3, we summarize the overall hill climbing procedure and its steps explained below.

The edit distance is the fitness function guiding the hill-climbing search as follows:

1. Based on the thesaurus, TIDIER (i) splits the identifier using the edit distance, (ii)

computes the global minimum distance between the input identifier and all words in

the thesaurus, (iii) associates a fitness value based on the distance computed in step

(ii) to each thesaurus word. If the minimum global distance in step (ii) is zero, the

process terminates successfully; else

2. From the thesaurus words with non-zero distance obtained at Step 1, TIDIER randomly

selects one word having a minimum distance and:
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Figure 5.3 Overall Identifier Mappping (Hill Climbing) Procedure

(a) TIDIER randomly selects one transformation not violating transformation con-

straints, applies it to the word, and adds the transformed word to a temporary

thesaurus;

(b) TIDIER splits the identifier using the temporary thesaurus and computes a new

minimum global distance. If the added transformed word reduces the previous

global distance, then TIDIER adds it to the current thesaurus and go to Step (a);

else

(c) If there are still applicable transformations, and the string produced in Step (a)

is longer than three characters, TIDIER goes to Step (a);

3. If the global distance is non-zero and the iteration limit was not reached, then, TIDIER

goes back to Step 1, otherwise it terminates with a failure.

The above steps describe a hill-climbing algorithm, in which a transformed term is added

to the thesaurus if and only if it reduces the global distance. Briefly, a hill-climbing algorithm

(Michalewicz et Fogel, 2004) searches for a (near) optimal solution of a problem by moving

from the current solution to a randomly chosen, nearby solution and accepts this solution

only if it improves the global fitness. The algorithm terminates when there is no move to
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nearby solutions improving the fitness. Differently from traditional hill-climbing algorithms,

in Steps 1 and 2, TIDIER attempts to explore as many neighboring solutions as possible by

performing word transformations. Different neighbors are explored depending on the order

of the transformations.

Currently, the implementation of TIDIER uses a naive strategy to select a transformation.

However, in our experience, even such a strategy performs well with small-to-medium size

dictionaries (up to 5,000 words). For dictionaries larger than 20,000 words, the computation

time to obtain meaningful results can become excessive. For example, with a dictionary of

about 100,000 words and an upper computation limit of 20,000 attempts to improve distance,

the computation can take up to 30 minutes or one hour depending on the input identifier.

5.2 TRIS

The cubic complexity of TIDIER makes it computationally demanding especially when

the size of the used dictionaries increases as is the case for large software systems. To

overcome this limitation, we suggested a fast solution, namely TRIS, which is inspired by

TIDIER, but dealing differently with the vocabulary normalization problem. Similarly to

TIDIER, TRIS assumes that programmers often build source code identifiers by applying

a set of transformation rules to words, such as dropping all vowels (e.g., pointer becomes

pntr), dropping one or more characters, or dropping a suffix (e.g., allocation becomes alloc)

(Guerrouj et al., 2013a). However, TRIS treats the identifier splitting and expansion as an

optimization problem, in the following referred as Optimal Splitting-Expansion (OSE) prob-

lem. The search space of the OSE problem contains a set of solutions that represent potential

splitting-expansions of the input identifier. Once a cost is assigned to each solution, the OSE

problem consists in finding a solution with minimal cost, which, hopefully, corresponds to

the correct splitting-expansion of the input identifier.

To efficiently resolve the OSE problem, TRIS applies a two-phase strategy. The first

phase—named “building dictionary transformations”—builds a set of legal transformations

based on an input dictionary using a family of transformation types. The obtained set of

transformations is then compressed and represented as an arborescence i.e., a directed rooted

tree. The second phase is named “identifier processing”. Its goal is to determine an optimal

splitting-expansion of a given input identifier. Note that the second phase uses the directed

rooted tree (i.e., the arborescence) built during the first phase.

In practice, we generally wanted to find the splitting-expansion of a set of identifiers

originating from the same source code—instead of a single one. It is very important to note

that building the dictionary transformations (phase 1) has to be performed only once. Then,
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identifier processing (phase 2) will be applied to each identifier to be split/expanded.

As we will show in Subsection 5.2.3, the identifier processing algorithm boils down to

finding a shortest path in an identifier graph. Its complexity is O(n2), where n represents the

size of the input identifier, this is to say quadratic in the length of the identifier to split. As

a result, producing the splitting-expansion of a given input identifier is very fast—thousands

of identifiers can be split within a few seconds oppositely to TIDIER that requires hours in

such case. On the other hand, the creation of dictionary transformations (which is performed

only once) can take a few seconds (e.g., 35 milliseconds for a dictionary of 2,953 words on a

machine having a processor running at 2.10 GHz and memory (RAM) of 6.00 GB).

5.2.1 TRIS Formalization of the Optimal Splitting-Expansion Problem

The input of the OSE problem consists of: (i) an identifier to be split/expanded; (ii) a

dictionary (iii) source code of the system that uses the identifier. In the following, we define

the transformations, the search space, and the cost function of the OSE problem.

Transformations

Similarly to TIDIER, we used a set of transformation rules that we believe are the most

used by software developers when creating identifiers. The current implementation of TRIS

uses four types of transformation rules:

1. Null transformation: keep the word as it is;

2. Vowels removal: remove all vowels contained in the dictionary word (e.g., pointer →
pntr) but the first one if it is the first character of the identifier;

3. Suffix removal: suffixes such as ing, tion, ed, ment, and able are removed from the

dictionary word (e.g., improvement → improve);

4. First n characters: keeps only the first n characters of a word with n ∈ {3,4,5}, e.g.,
rectangle → rect for n = 4.

In the following, we denote by type(.) the type of a given transformation.

Search Space

A potential solution (i.e., an element of the search space) corresponds to a splitting-

expansion. Such a solution is composed of a series of transformations. For example, a

potential splitting-expansion of drawimagrect is (draw→ draw)/(image→ imag)/(rectangle→
rect) as:
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• the concatenation of draw, imag, and rect produces draw.imag.rect=drawimagrect;

• the words draw, image, and rectangle belong to a given dictionary;

• the transformations (draw→ draw), (image→ imag), and (rectangle→ rect) are legal

transformations (whose types are respectively 1, 4, and 4).

Cost Function

Recall that a solution (splitting-expansion) is composed of a series of transformations.

The cost of a solution is simply the sum of the costs of the transformations it is composed of.

Each transformation has an associated cost C(wOrig→ w) defined as the sum of two terms:

C(wOrig→ w) = α∗Freq(wOrig)+C(type(wOrig→ w))

The first term Freq(wOrig) is the relative frequency of the dictionary word wOrig in the

source code, multiplied by a parameter α. The frequency is simply the number of occurrences

of a dictionary word in the source code, divided by the sum of all occurrences of dictionary

words in source code. TRIS uses the relative frequency as a local context to determine the

most likely identifier splitting-expansion. We use the parameter α to favor transformations

derived from original words having a high frequency. To minimize our cost function which

is the sum of the two components explained above while favoring the local context (high

frequencies), we multiply the frequency component (i.e., Freq(wOrig)) by a parameter α.

The value of the parameter α is negative: as a result, a transformation (wOrig→ w) such

that wOrig has a low frequency will be in fact penalized.

The second component C(type(wOrig→ w)) corresponds to the cost of the transformation

type. The cost of the four different transformation types are algorithm parameters whose

values will be reported in the empirical evaluation of TRIS (cf. Section 6.3 of Chapter 6);

the general idea is to assign a low cost to a transformation type that is believed to be more

natural and more often used by developers.

5.2.2 Building Dictionary Transformations Algorithm

The goal of this phase is to build the set of transformations and to represent it as an

arborescence. It consists of the three following successive steps:

(1.1) Computation of the frequency of dictionary words;

(1.2) Construction of the set of transformations;

(1.3) Construction of the arborescence of transformations.

Each of these steps is detailed in the following. In this context, a dictionary is just a collection
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of strings representing application-level concepts (e.g., socket), known acronyms (e.g., cpu),

and plain English words (e.g., a set of WordNet entries).

Computation of the frequency of dictionary words (step 1.1)

Input: (1) a dictionary; (2) code of the application.

Output: frequencies of dictionary words.

During this step, the source code is scanned. For each string found in the source code, if

this string corresponds to a dictionary word, we increment the number of occurrences of this

word. Finally, this procedure returns the frequency of each dictionary word.

Construction of the set of transformations (step 1.2)

Input: (1) a dictionary; (2) frequencies of dictionary words.

Output: set of transformation triples.

For each dictionary word wOrig and each type T of transformation (T=1..4), we determine

each word w that can be derived from wOrig according to T. For each transformed word w,

we add the triplet (wOrig, w, C(wOrig, w)) to the set of transformations.

Construction of the arborescence (step 1.3)

Input: set of transformation triples.

Output: arborescence of transformations.

The goal of this step is to represent the set of transformations (built during step 1.2) under

the form of an arborescence. The rationale is that, in the following, it will dramatically

decreases the complexity of the construction of the auxiliary graph (step 2.1).

In this arborescence, each node (except the root) is labeled with a letter of the alphabet.

Each transformation triple (wOrig, w, cost) is represented by a path that starts from the root

and whose nodes are labeled by the letters of w. The last node X contains a pointer towards

the considered transformation triple. In fact, as several transformations (wOrig1, w1, cost1),

(wOrig2, w2, cost2), etc. may produce the same string w, we only take into account one of

those whose cost is minimum. An interesting property of this arborescence is that, given a

string w, we can determine in O(|w|) if there exists at least one transformation (wOrig, w,

cost) and, if it is the case, which is the transformation of minimal cost. In Table 5.1, we

provide a simplified example of a (small) dictionary (D) used to split/expand the identifier

callableint along with dictionary words frequencies and the resulting transformation triples.

As shown in Table 5.1, the dictionary D contains four words (i.e., d1=“able”, d2=“call”,

d3=“callable”, and d4=“interface”). We computed for each word its relative frequency in the

source code, and then we applied the set of the four transformation rules on it. Thus, for

each dictionary word, we had all possible (legal) transformations corresponding to it. For
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example, after applying our four transformation rules to the dictionary word d1=“able”, we

got two legal transformations. The transformation t1 resulting from the application of the

fourth transformation rule (i.e., keeping the three first characters) and the transformation t2

resulting from the application of the first transformation rule (i.e., null transformation). All

the remaining transformation rules applied on d1=“able” lead to transformed words having less

than three characters. Since we did not consider transformed words of two characters and less,

we only kept the transformations t1 and t2 in our set of transformations. The transformations

t1 and t2 are triplets of the dictionary word d1 = “able”, the transformed words resulting from

a transformation rule (i.e., abl and able), and the cost computed according to the cost function

we previously detailed. The same procedure was followed to generate the transformations

corresponding to the other dictionary words.

The arborescence of the transformations corresponding to the dictionary D is shown in

Fig. 5.4.

Let N be the sum of the sizes of w such that (wOrig, w, cost) belongs to the set of trans-

formations. The arborescence construction algorithm complexity is O(N). Therefore, with

respect to worst-case complexity, there is no extra-cost to transform the set of transformation

triples into an arborescence.

5.2.3 Identifier Processing Algorithm

The goal of identifier processing is to determine an optimal splitting-expansion of a given

input identifier Idtf.

It consists of the two following steps:

(2.1) Construction of the auxiliary graph associated to Idtf;

(2.2) Search for a shortest path in the auxiliary graph, corresponding to an optimal splitting-

expansion of Idtf.

Construction of the auxiliary graph (step 2.1)

Input: (1) arborescence of transformations; (2) input identifier

Output: identifier auxiliary graph

Let Idtf[i;j] be the substring of Idtf between characters at position i and j. The auxiliary

graph of Idtf is defined as follows:

• The graph has |Idtf|+1 vertices denoted by v0,...,v|Idtf|;

• For a transformation triple (wOrig, w, cost) such that w=Idtf[i;j], there is an edge

between the vertices vi and vj and the weight of this edge equals cost.
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Table 5.1 Dictionary Transformations Building Information Example

Dictionary Transformations Building Phase Information: Identifier callableint
Dictionary Words (D) Words Frequencies Transformations Set
d1=“able” f1 = 0.1 t1 = (d1, abl, 0.55)

t2 = (d1, able,−0.2)
d2=“call” f2 = 0.2 t3 = (d2, cal, 0.35)

t4 = (d2, call,−0.4)
t5 = (d2, cll, 0.6)

d3=“callable” f3 = 0.6 t6 = (d3, calla,−0.95)
t7 = (d3, callable,−1.2)
t8 = (d3, cllbl,−0.2)

d4=“interface” f4 = 0.1 t9 = (d4, int, 0.55)
t10 = (d4, inte, 0.3)
t11 = (d4, inter,−0.05)
t12 = (d4, interface,−0.2)
t13 = (d4, intrfc, 0.8)
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Figure 5.4 Arborescence of Transformations for the Dictionary D.

We can notice that a path in the auxiliary graph corresponds to a splitting-expansion of

Idtf, and that the weight of this path corresponds to the cost of the corresponding splitting-

expansion. Therefore, a shortest path in the graph corresponds to an optimal splitting-

expansion.

The auxiliary graph is built as follows. For every position p in the identifier Idtf, p =

0...|Idtf |, we go from the root of the arborescence of transformations and down following the

path labeled by Idtf[p;n] where n = |Idtf |. For each node X on this path, if X.transfPtr

is not null and points toward a transformation (wOrig, w, cost), we insert into the graph an

edge between vp and vp+|w| and assign to this edge a weight equals to cost. The complexity

of this procedure is O(|n|2), thus it is quadratic in the identifier length and as identifiers are

usually short this step is very fast.
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Figure 5.5 Auxiliary Graph for the Identifier callableint.

In Fig. 5.5, we show the auxiliary graph corresponding to the identifier callableint, built

using the arborescence shown in Fig. 5.4. On this example, we have two possible splits

(based on the set of transformations shown in Table 5.1). The first split is: call-able-int. The

second is callable-int. Their corresponding expansions (pointing to their original dictionary

words) are respectively call-able-interface (as int is derived from interface in the example),

and callable-interface. According to the cost of transformations indicated in the last column

of Table 5.1, denoted (for simplification of Fig. 5.5) by ti.cost with i ∈ {1,...,13} (computed

based on words frequencies shown in the second column of the same table, plus costs of used

transformation types), the minimum cost is the one corresponding to the split callable-int

and hence to the expansion callable-interface.

Search for an optimal splitting-expansion (step 2.2)

Input: (1) Idtf auxiliary graph

Output: an optimal splitting-expansion of Idtf

The auxiliary graph is acyclic. Therefore, although some edges may have negative weights

(remember the α multiplier), it makes sense to talk about a shortest path in this graph. The

shortest path found in the auxiliary graph provides us with an optimal splitting-expansion

of Idtf. The complexity of this procedure is at worst O(|n|2), where n = |Idtf |.
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CHAPTER 6

TIDIER and TRIS: Evaluation, Results, Discussion, and Threats to Validity

To evaluate TIDIER and TRIS normalization accuracy, we conduct two empirical studies.

The first evaluates TIDIER on identifiers randomly-extracted from the source code of 340 C

open-source projects while the second evaluates TRIS on this data set in addition to data

sets used in previous studies and belonging to different programming languages (i.e., Java,

C, and C++).

We also compare TIDIER and TRIS, in terms of their correctness, precision, recall, and

F-measure with previous approaches (i.e., CamelCase, Samurai, or GenTest). For comparison

reasons, we perform convenient statistical tests plus appropriate effect-size measures.

This chapter thoroughly describes TIDIER and TRIS empirical evaluations, it also shows

their results and limitations. Then, it explains the main threats to validity related to our

studies. Finally, the chapter summarizes our main findings and observations.

6.1 TIDIER Empirical Evaluation

The goal of this study is to analyze TIDIER with the purpose of evaluating its ability to

adequately identify dictionary words composing identifiers, even in presence of abbreviations

and–or acronyms. The quality focus is the precision and recall of the approach when identi-

fying words composing identifiers with respect to a manually-built oracle and to alternative

normalization approaches. The perspective is of researchers, who want to understand if TI-

DIER can be used as a means to assess the quality of source-code identifiers, i.e., the extent

to which they would refer to domain terms or, in general, to meaningful words, e.g., words

belonging to a dictionary.

The context consists of a set of 1,026 composed identifiers randomly-sampled from the

source code of 337 GNU1 projects, the Linux Kernel2 2.6.31.6, FreeBSD3 8.0.0, and the

Apache Web server4 2.2.14. The GNU project was launched in 1984 with the ultimate goal

to provide a free, open-source operating system and environment. GNU projects include

well-known tools, such as the GCC compiler, parser generators, shells, editors, libraries, and

textual utilities, just to name a few. Most code of the GNU project is written in C, with a

1http://www.gnu.org/
2http://www.kernel.org/
3http://www.freebsd.org/
4http://www.apache.org/
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Table 6.1 Main characteristics of the 340 projects for the sampled identifiers.

GNU Projects (337 Projects)
C C++ .h Java

Files 57,268 13,445 39,257 14,811
Size (KLOCs) 25,442 2,846 6,062 3,414
Terms 26,824 – 17,563 –
Identifiers 1,154,280 – 619,652 –
Oracle Identifiers 927 – 26 –

Linux Kernel
C C++ .h Java

Files 12,581 – 11,166 –
Size (KLOCs) 8,474 – 1,994 –
Terms 19,512 – 13,006 –
Identifiers 845,335 – 352,850 –
Oracle Identifiers 73 – 4 –

FreeBSD
C C++ .h Java

Files 13,726 128 7,846 15
Size (KLOCs) 1,800 128 8,016 4
Terms 21,357 – 12,496 –
Identifiers 634,902 – 278,659 –
Oracle Identifiers 20 – 0 –

Apache Web Server
C C++ .h Java

Files 559 – 254 –
Size (KLOCs) 293 – 44 –
Terms 6,446 – 3,550 –
Identifiers 33,062 – 11,549 –
Oracle Identifiers 11 – 0 –

few C++ program (e.g., groff). Linux is the well-known operating system widely adopted on

servers and, in recent years, used as a desktop alternative to proprietary operating systems.

The Linux Kernel is entirely written in C with additional utilities written mostly in scripting

languages, such as Bash or TCL/TK. FreeBSD is another freely available operating system;

as the name suggests it derives from the BSD branch of the Unix tree. The Apache Web

server is a free and open-source Web server; it is adopted by public and private organizations

for its robustness, speed, and security as well as its large community of developers. It is

entirely developed in C. The main characteristics of these programs are listed in Table 6.1.

Table 6.2 Descriptive statistics of the contextual dictionaries.

Context Min 1Q Median 3Q Max Avg σ
Application 29 900 1,797 3,028 22,190 2,320 2,374
File 1 40 79 175 4,088 131 148
Function 1 3 6 21 1,625 16 29

TIDIER aims at splitting identifiers by trying to match their terms with words contained

in a thesaurus. We used the different kinds of dictionaries introduced in Subsection 5.1.2 (cf.

Chapter 5). In Table 6.2, we report descriptive statistics of the context-aware dictionaries,

built from all programs from which we sampled identifiers.
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Research Questions

The study reported in this section addresses the following research questions:

1. RQ1: How does TIDIER compare with alternative approaches, CamelCase splitting

and Samurai, when C identifiers must be split? This research question analyzes the

performance of TIDIER and compares it with alternative approaches, a CamelCase

splitter and an implementation of Samurai.

2. RQ2: How sensitive are the performances of TIDIER to the use of contextual informa-

tion and specialized knowledge in different dictionaries? This research question analyzes

the performances of TIDIER in function of different dictionaries.

3. RQ3: What percentage of identifiers containing word abbreviations is TIDIER able to

map to dictionary words? This research question evaluates the ability of TIDIER to

map identifier terms with dictionary words when these terms represent abbreviations

of dictionary words.

6.1.1 Variable Selection and Study Design

The main independent variable of our study is the kind of splitting algorithm being used.

There are three different values for this factor:

1. CamelCase

2. Samurai

3. TIDIER

The second independent variable is the used dictionary (or a set of dictionaries) among

those defined in Subsection 5.1.2 (cf. Chapter 5). Thus, we have a number of possible

treatments equal to the number of different dictionaries plus two, i.e., the two alternative

approaches: CamelCase and Samurai.

The first dependent variable considered in our study is the correctness of the split-

ting/mapping to dictionary words produced by TIDIER with respect to the oracle (cf. Sub-

section 2.8.1 of Chapter 2).

To provide a more insightful evaluation, we computed the precision and recall measures,

plus F-measure, i.e., the aggregated and overall measure of precision and recall (cf. Subsection

2.8.2 of Chapter 2).
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6.1.2 Analysis Method

RQ1 andRQ2 concern the comparison of the correctness, precision, recall, and F-measure

of the different approaches and of variations of TIDIER when using different dictionaries.

Thus, the analysis methods are the same for both research questions and their results are

presented together in the next section.

We tested the differences among different approaches using the Fisher’s exact test be-

cause correctness is a categorical measure. We tested the following null hypothesis H0: the

proportion of correct splits, p1 and p2, between two approaches do not significantly change.

To quantify the effect size of the difference between any two approaches, we computed

the odds ratio (OR) (Sheskin, 2007).

Precision, recall, and F-measure are compared using the Wilcoxon paired test. We quan-

tified the effect size of the difference using the Cohen d effect size for dependent variables.

As both the Fisher’s exact test and the Wilcoxon paired test are executed multiple times

to compare the various approaches and dictionaries, significant p-values was corrected using

Holm correction (Holm, 1979).

Fisher’s exact test, odds ratio, Wilcoxon paired test, Cohen d, and Holm correction are

defined in Chapter 2 of this thesis.

ForRQ3, we identified a set of abbreviations used in the sampled identifiers and computed

the percentage of these abbreviations that were correctly mapped to dictionary words by

TIDIER. We identified the set of likely abbreviations in our sample as follows:

1. For each identifier, e.g., counterPtr, we considered the split performed using the Camel-

Case, i.e., counter ptr, and the oracle, i.e., counter pointer;

2. Then, we compared each term in the split with the term appearing in the same position

in the oracle, e.g., counter is compared with counter and ptr with pointer;

3. For all cases where (i) the term in the splitting did not match the one in the oracle, (ii)

both terms started with the same letter, (iii) the term in the splitting did not appear

in the English dictionary of 2,774 words, and (iv) the term in the oracle appeared in

the English dictionary, we considered the term in the splitting as an abbreviation of

the term in the oracle: ptr is an abbreviation of pointer.

The set of 73 abbreviations obtained with the above process has been manually validated

to remove false positive. Then, we applied each approach, considering the English dictionary

with domain knowledge, and count the percentage of abbreviations correctly mapped to

dictionary words. We also computed the set of abbreviations that are not correctly mapped,

but with a distance of one from the oracle, i.e., the mapping failed for a single character
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only. Thus, we identified and discussed cases where the approach almost found the correct

solution, even though it failed to correctly split the identifier.

6.2 TIDIER Experimental Results

We now present and discuss the results of our study to answer the research questions for-

mulated in Section 6.1. Raw data of our study are available on-line5 for replication purposes.

For what concerns the comparison with Samurai, we generated the local frequency table of

each application by mining the source code terms frequencies in the application under anal-

ysis and we used as a global frequency list, a table generated by mining terms frequencies in

the corpus of the 340 GNU analyzed projects.

RQ1 and RQ2

First, we evaluated the correctness of TIDIER when using different dictionaries and com-

pare it with that of the two alternative approaches, i.e., CamelCase and Samurai. We re-

ported the percentages of correctly split/mapped identifiers in Figure 6.1.

The two bars at the bottom of the figure show the performances of the CamelCase splitter

and Samurai, respectively, while the other bars show the performances of TIDIER using

different dictionaries.

Table 6.3, we report results of the Fisher’s exact test (with corrected p-values, significant

p-values are shown in bold face) when performing a pair-wise comparison among approaches

of the percentages of correctly split identifiers. The table also reports the ORs. ORs greater

than one indicate results in favor of Approach 1 and vice versa.

Figure 6.1 and Table 6.3 show that:

• In the extracted sample, CamelCase performs nearly as well as Samurai and there are

no statistically significant differences among them.

• When using only the simple English dictionary, TIDIER performs worse than Camel-

Case and Samurai. The percentage of correctly-split identifiers is only 23.82%, while

CamelCase exhibits a performance of 30.08% and Samurai of 31.14%. The OR for

TIDIER is 0.73 and 0.69 with respect to the two alternatives.

• When using a larger dictionary, i.e., the WordNet dictionary, TIDIER does not perform

significantly better (nor worse) than when using the simple English dictionary.

• When domain knowledge is added to the English dictionary, TIDIER significantly out-

performs the alternative approaches. The percentage of correctly-split identifiers is

nearly 40% with ORs of about 1.5 in favor of TIDIER wrt. CamelCase and Samurai.

5http://web.soccerlab.polymtl.ca/ser-repos/public/TIDIER-rawdata.tgz
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Figure 6.1 Percentages of correctly-split identifier.

Table 6.3 Comparison among approaches: results of Fisher’s exact test and odds ratios.

Approach 1 Approach 2 p-values ORs
CamelCase Samurai 0.63 0.95
English dictionary CamelCase 0.01 0.73
English dictionary Samurai 0.01 0.69
English dictionary WordNet 1.00 0.95
English dictionary + domain kn. CamelCase <0.001 1.53
English dictionary + domain kn. Samurai <0.001 1.46
English dictionary + domain kn. English dictionary <0.001 2.13
Application CamelCase 1.00 1.06
Application Samurai 1.00 1.01
Application English dictionary + domain kn. <0.001 0.69
Application File <0.001 2.98
Application Function <0.001 7.86
File Function <0.001 2.63
Application + Domain kn. Application <0.001 2.56
Application + Domain kn. English dictionary <0.001 3.80
Application + Domain kn. English dictionary + domain kn. <0.001 1.80
Application + Domain kn. CamelCase <0.001 2.76
Application + Domain kn. Samurai <0.001 2.62

• When using a contextual, program-level dictionary, TIDIER performs slightly (but not

significantly) better (31.38%) than the alternative approaches but worse than when
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using the English dictionary with domain knowledge. Contextual dictionaries at file or

function levels do not seem particularly useful because of their limited size and, thus,

the number of terms that they capture.

• When adding domain knowledge to the program-level dictionary, TIDIER shows its

best performance, i.e., 54.29% of correct splits. This percentage is significantly higher

than those of the alternative approaches and than the one attained when using the

English dictionary. ORs are 2.76 and 2.62 times in favor of TIDIER wrt. CamelCase

and Samurai, respectively, and 1.80 wrt. using the English dictionary with domain

knowledge.

Table 6.4 Descriptive statistics of F-measure.

Method Dictionary 1Q Median 3Q Mean σ
CamelCase 0.00 0.40 1.00 0.44 0.43
Samurai 0.00 0.50 1.00 0.49 0.42
TIDIER English dictionary 0.00 0.29 0.67 0.38 0.41

English dict. + domain kn. 0.29 0.67 1.00 0.60 0.39
WordNet 0.00 0.40 0.80 0.43 0.40
Function 0.00 0.00 0.00 0.13 0.27
File 0.00 0.00 0.57 0.30 0.37
Application 0.00 0.50 1.00 0.52 0.40
Application + domain kn. 0.50 1.00 1.00 0.72 0.36

Table 6.5 Comparison among approaches: results of Wilcoxon paired test and Cohen d effect
size.

Approach 1 Approach 2 p-value ORs
CamelCase Samurai <0.001 −0.15
English dictionary CamelCase <0.001 −0.12
English dictionary Samurai <0.001 −0.19
English dictionary WordNet <0.001 −0.11
English dictionary + domain kn. CamelCase <0.001 0.29
English dictionary + domain kn. Samurai <0.001 0.22
English dictionary + domain kn. English dictionary <0.001 0.61
Application CamelCase <0.001 0.18
Application Samurai 0.01 0.10
Application English dictionary + domain kn. <0.001 −0.16
Application File <0.001 0.46
Application Function <0.001 0.85
File Function <0.001 0.54
Application + Domain kn. Application <0.001 0.52
Application + Domain kn. English dictionary <0.001 0.81
Application + Domain kn. English dictionary + domain kn. <0.001 0.38
Application + Domain kn. CamelCase <0.001 0.58
Application + Domain kn. Samurai <0.001 −0.51

In Table 6.4, we show the descriptive statistics (first quartile, median, third quartile,

mean, and standard deviation) of the F-measure. The aim is to evaluate the capability of the
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approaches to correctly and completely identify the terms part of the identifiers. We do not

show results of precision and recall separately (cf. Appendix A) because they are consistent

with the F-measure, i.e., there are no cases for which an approach exhibits a high precision

and a low recall or vice versa.

In Table 6.5, we report corrected results of the paired Wilcoxon test and the Cohen d

effect size (positive values of Cohen d are in favor of Approach 1, negative values are in favor

of Approach 2). Overall, these results are consistent with those obtained when measuring

correctness. They show that:

• TIDIER, with the English dictionary, performs significantly worse than the other ap-

proaches with a very small effect size, d < 0.2.

• When using the English dictionary with domain knowledge, TIDIER performs signifi-

cantly better than CamelCase (d = 0.29) and Samurai (d = 0.22).

• When using the program-level dictionary, TIDIER performs significantly better than

the alternative approaches, although the effect size is very small (d < 0.2).

• When using the program-level dictionary augmented with domain knowledge, TIDIER

again performs significantly better than the alternative approaches, with a medium

effect size (d = 0.58 for CamelCase and d = 0.51 for Samurai).

We can summarize the results for RQ1 as follows: with the simple English dictionary,

TIDIER performs worse than the alternative approaches. However, TIDIER outperforms

other approaches when the simple English dictionary is augmented with domain knowledge

or, with even better results, when it uses a program-level contextual dictionary augmented

with domain knowledge.

Regarding RQ2, we concluded that there are two factors contributing to the increase of

performance of TIDIER: augmenting the dictionary with domain knowledge, using a program-

level contextual dictionary, or, to obtain the best performances, augmenting a program-level

dictionary with domain knowledge.

RQ3

To answer RQ3, we ran TIDIER five times on the 73 abbreviations using the English

dictionary of 2,774 words. Out of the 73 abbreviations that TIDIER could potentially map to

dictionary words, TIDIER produced a correct mapping for 35 of them, achieving an accuracy

of 48%.
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Table 6.6 Examples of correct and wrong abbreviations.

Match with the Oracle
Abbreviation Oracle Expansion 1 Expansion 2
arr array array arrow
clr clear clear color
curr current current –
dev device device –
div division dividend divided
intern internal internal –
len length length lender
lng long long language
mov move move –
sec security security secret
snd sound sound sand
spec specify specify specialize
str string string strict
wrd word word –

Wrong Expansions
Abbreviation Oracle Expansion 1 Expansion 2
auth authenticate author
comm communication comment command
del delete deal delay
dest destination destroy
disp display dispatch
exp expresion expansion expire
mem memory membrane memo
procs process protocol css prototype css
vol volume voltage voluntary

Distance > 0
Abbreviation Oracle Expansion 1 Expansion 2
acct accounting act (1.0)
addr address add (1.0)
arch architecture march (1.0)
elt element felt (1.0)
lang language long (2.0)
num number enum (1.0)
paren parenthesis green (3.0)

The first block of Table 6.6 shows examples of abbreviations that were correctly mapped

by TIDIER to dictionary words. The table reports: (i) the abbreviations, (ii) the oracle,

and (iii) the different mappings produced by TIDIER. The second block of Table 6.6 shows

examples of wrong mappings, such as those of auth into author while the correct mapping

was authenticate) or of dest into destroy while the correct expansion was destination. Wrong

expansions were due to the fact that TIDIER does not use semantic information and, thus,

can generate expansions that are different from those in our oracle even though with a zero

distance. Consistently with insights gained from RQ1 and RQ2, wrong expansions suggest

that domain-specific dictionaries can be useful to better support source code vocabulary

normalization.

Out of the 73 − 35 = 38 abbreviations not correctly expanded by TIDIER, there are 16

identifiers wrongly expanded and 22 identifiers for which TIDIER was not able to produce

an expansion with a zero distance. Some of these cases are shown in the third block of Table
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6.6, where the numbers in parentheses report the achieved minimum distances. For example,

addr was mapped to add instead of address with distance two (trailing r removed), arch into

march instead of architecture (leading m added) with distance one, and def into prefix instead

of define with distance two (leading p and r added).

In conclusion, RQ3 suggested that TIDIER is, indeed, able to deal with the abbreviations

used to build identifiers and can map them into dictionary words in 48% of the abbreviations

considered in our sample.

6.3 TRIS Empirical Evaluation

The goal of this study is to analyze TRIS, with the purpose of evaluating its ability to

correctly split and expand compound identifiers. The quality focus is the accuracy (i.e., pre-

cision, recall, and F-measure) of TRIS when splitting identifiers and expanding abbreviated

terms (resulting from the splitting) with respect to oracles, and compared with other state-

of-the-art approaches, namely CamelCase, Samurai, TIDIER, and GenTest. The perspective

is of researchers interested in developing an approach for identifier splitting and expansion,

with the aim of easing program comprehension and maintenance tasks. The context consists

of a set of identifiers extracted from Java, C and C++ programs. Specifically, we used (i)

974 identifiers extracted from the source code of JHotDraw, (ii) 3,085 identifiers from Lynx,

(iii) 489 identifiers extracted from the source code of 340 C GNU Linux utilities, and (iii)

a mixed set of Java, C, and C++ identifiers used in a study by Lawrie et al. (Lawrie et

Binkley, 2011) and made available on-line6. We used the latter data for replication purposes

as we wanted to compare TRIS (in terms of splitting accuracy) with GenTest7.

JHotDraw8 is a Java framework for drawing 2D graphics. The project started in October

2000 with the main purpose of illustrating the use of design patterns in a real context.

Lynx9 is a free, open-source, text-only Web browser and Gopher client. Lynx is entirely

written in C. Its development began in 1992 and it is now available on several platforms,

including Linux, Unix, and Windows. In Table 6.7, we report the main characteristics of

Lynx and JHotDraw analyzed releases.

The benchmark of 340 C/C++ programs from which we sampled 489 identifiers is the

one we used to evaluate TIDIER and where the main characteristics are summarized in Table

6.1 of this chapter.

The sample of data used by Lawrie et al. was randomly drawn from a source base that

6www.cs.loyola.edu/ binkley/ludiso
7http://splitit.cs.loyola.edu
8http://www.jhotdraw.org
9http://lynx.isc.org/
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Table 6.7 Main characteristics of JHotDraw and Lynx

JHotDraw and Lynx Systems
JHotDraw Lynx

Analyzed Releases 5.1 2.8.5
Files 155 247
Size (KLOCs) 16 174
Identifiers (> 2 chars) 2,348 12,194

includes 186 programs, for a total of 26 MLOC of C, 15 MLOC of C++, and 7 MLOC of

Java. Raw and oracle data sets are available on-line10. Details about the empirical evaluation

can be found in a previous paper by Lawrie et al. (Lawrie et Binkley, 2011).

For what concerns the comparison with Samurai, we used the local and global frequency

lists provided by the authors for Java systems (i.e., JHotDraw) and already used in their

evaluation to Samurai (Enslen et al., 2009). Regarding C systems (i.e., Lynx and the sample

of 489 C identifiers), we generated the local frequency table of each application by mining

the source code terms frequencies in the application under analysis and we used as a global

frequency list, a table generated by mining terms frequencies in a large corpus of GNU

projects.

As explained in Section 5.2, the costs assigned to the introduced transformation types

(second component of our cost function) are algorithm parameters. In our empirical study,

we assigned 0 as a cost to the null transformation, (0.75, 0.5, and 0.25) as costs to the

three transformations keeping the n first characters with n ∈ {3,4,5} respectively. For the

transformations removing vowels and suffix removal, we respectively assigned 1 and 1.5 as

costs. Also, we assigned to the parameter α, -2 as a value. To determine the values of

the parameters, we run TRIS multiple times with different transformations’ costs and alpha

values.

The study reported in this section aims at addressing the following research question:

RQ: What is the accuracy of the TRIS identifier splitting and expansion ap-

proach compared with alternative state-of-the art approaches?

To address this research question, we measured the performance of TRIS in terms of

correctness, precision, recall, and F-measure of the identifier splits and expansions provided

wrt. to the oracles. In addition, we compared its performance to the one shown by CamelCase,

Samurai, TIDIER, and GenTest.

10http://www.cs.loyola.edu/ binkley/ludiso/
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6.3.1 Variable Selection and Study Design

The main independent variable of our study is the splitting algorithm used. This factor

has five possible levels: (1) TRIS (which is our experimental group), and four control groups,

i.e., (2) CamelCase, (3) Samurai, (4) TIDIER, (5) GenTest.

The dependent variables considered in this study are those we considered when evalu-

ating TIDIER, i.e., precision, recall, and F-measure, and the identifier splitting/expansion

correctness (cf. Chapter 2).

In this work, we generally measured and compared the performance of the various split-

ting/expansion algorithms in terms of precision, recall, and F-measure. The only case in

which we used the identifier splitting correctness is when comparing TRIS with GenTest on

the data and oracle sets used by Lawrie et al., for which we only had identifier splitting

correctness data (Lawrie et Binkley, 2011).

6.3.2 Analysis Method

Our research question aim is to understand if TRIS helps in splitting and expanding iden-

tifiers, thus, easing program comprehension and supporting IR-based software maintenance

tasks. Similarly to TIDIER, we assumed that, given an identifier, there exists an exact sub-

division of it into words that, possibly after being transformed and once concatenated, form

the identifier.

To apply TRIS, we built an application-level dictionary for each program part of our

study, i.e., for JHotDraw, Lynx, and for each one of the 340 programs from which we sam-

pled the C identifiers. In addition, we enriched these dictionaries by the use of domain

knowledge (i.e., common abbreviations and acronyms, library functions, etc) as TIDIER re-

sults showed that a dictionary containing application-level terms, English dictionary words,

and common abbreviations and acronyms, allows one to obtain the best performances. De-

tails about the construction of application-level dictionaries and the used domain knowledge

are provided in Chapter 5 of this thesis (cf. Subsection 5.1.2). More precisely we used: (i)

a set of 105 acronyms used in computer science (e.g., ansi, dom, inode, ssl, url ), (ii) a set

of 164 abbreviations collected among the authors used when programming in C (e.g., bool

for Boolean, buff for buffer, wrd for word), and (iii) a set of 492 C library functions (e.g.,

malloc, printf, waitpid, access). The application-level dictionaries for JHotDraw and Lynx

contain 2,289 and 2,953 dictionary words respectively, while descriptive statistics about the

size of application-level dictionaries for the 340 GNU utilities are reported in Table 6.8.

We filtered identifiers containing short (up to two letters) prefixes such as f in fname

or ly in lynx. This is because such prefixes can lead to any dictionary word containing the
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Table 6.8 Descriptive statistics of the used program-level dictionaries for the 340 GNU utilities

Dictionary level Min 1Q Median 3Q Max Avg σ
Application 29 900 1,797 3,028 22,190 2,320 2,374

character f or the string ly. We needed such a filtering in a very few cases (less than 1% of

the identifiers for the Lynx system in general).

To compare TRIS with other algorithms (except GenTest), we used the Wilcoxon paired

test. In addition, we computed the effect-size of the difference using Cliff’s delta (Grissom

et Kim, 2005).

Since we executed the Wilcoxon paired test multiple times to compare the various ap-

proaches, we must correct significant p-values. We adjusted the obtained p-values using the

Holm correction (Holm, 1979).

For what concerns the comparison with GenTest, since the comparison is performed in

terms of correctness (which is a categorical variable), we used Fisher’s exact test (Sheskin,

2007) which compares proportion of correct and non correct splittings provided by TRIS

and GenTest. To quantify the effect size of the difference between the two approaches, we

also computed the odds ratio (OR) (Sheskin, 2007) indicating the ratio of the percentage

of identifiers correctly split by TRIS (experimental group) and the percentage of identifiers

correctly split by GenTest (control group).

All the tests, effect-size measures, and p-values corrections used in this study are defined

in Chapter 2.

6.4 TRIS Experimental Results

This section reports the results of the empirical study. In Table 6.9, we report descriptive

statistics (1st quartile, median, 3rd quartile, mean, standard deviation) of the accuracy of

TRIS and the ones of CamelCase, Samurai, and TIDIER. Results of the statistical tests for

JHotDraw are reported in Table 6.10. Similarly, descriptive statistics and statistical test

results for Lynx are reported in Tables 6.11 and 6.12 respectively.

Results indicated that, for JHotDraw, TRIS achieved 93.28% of F-measure while Camel-

Case and Samurai attained 92.17% and 93.25% of F-measure respectively, and TIDIER exhib-

ited an F-measure of 92.33%. Not surprisingly, CamelCase and Samurai worked well enough

on JHotDraw, because JHotDraw developers carefully adhered to coding standards and iden-

tifier creation rules. Also, TIDIER performs almost similarly to them, even if its approach

does not necessarily reward the use of coding standards as for instance CamelCase does.

Statistical comparisons reported in Table 6.10 show that (i) there is no significant difference

between TRIS, CamelCase, and Samurai on JHotDraw; and (ii) TRIS performs significantly
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Table 6.9 Precision, Recall, and F-measure of TRIS, CamelCase, Samurai, and TIDIER on
JHotDraw

Metric Approach 1Q Median Mean 3Q σ
Precision CamelCase 1.0000 1.0000 0.9244 1.0000 0.2424

Samurai 1.0000 1.0000 0.9316 1.0000 0.2244
TIDIER 1.0000 1.0000 0.9716 1.0000 0.1472
TRIS 1.0000 1.0000 0.9804 1.0000 0.2025

Recall CamelCase 1.0000 1.0000 0.9203 1.0000 0.2502
Samurai 1.0000 1.0000 0.9367 1.0000 0.2129
TIDIER 1.0000 1.0000 0.8984 1.0000 0.2158
TRIS 1.0000 1.0000 0.9084 1.0000 0.1213

F-measure CamelCase 1.0000 1.0000 0.9217 1.0000 0.2476
Samurai 1.0000 1.0000 0.9325 1.0000 0.2200
TIDIER 1.0000 1.0000 0.9233 1.0000 0.1791
TRIS 1.0000 1.0000 0.9328 1.0000 0.1614

Table 6.10 Comparison among approaches: results of Wilcoxon paired test and Cliff’s delta
effect size on JHotDraw.

Approach 1 Approach 2 adj p-value Cliff’s delta
TRIS CamelCase 0.431 0.041
TRIS Samurai 0.894 0.001
TRIS TIDIER 0.024 0.043

Table 6.11 Precision, Recall, and F-measure of TRIS, CamelCase, Samurai, and TIDIER on
Lynx.

Metric Approach 1Q Median Mean 3Q σ
Precision CamelCase 0.0000 0.5000 0.4065 0.7500 0.4147

Samurai 0.0000 0.5000 0.4767 1.0000 0.4089
TIDIER 0.8000 1.0000 0.8609 1.0000 0.2674
TRIS 1.0000 1.0000 0.9344 1.0000 0.1369

Recall CamelCase 0.0000 0.3333 0.3705 0.6667 0.4066
Samurai 0.0000 0.3333 0.4569 1.0000 0.4101
TIDIER 0.7500 1.0000 0.8499 1.0000 0.2684
TRIS 1.0000 1.0000 0.9138 1.0000 0.2060

F-measure CamelCase 0.0000 0.4000 0.3851 0.7273 0.4086
Samurai 0.0000 0.4000 0.4634 1.0000 0.4084
TIDIER 0.6667 1.0000 0.8525 1.0000 0.2664
TRIS 1.0000 1.0000 0.9206 1.0000 0.2055

Table 6.12 Comparison among approaches: results of Wilcoxon paired test and Cliff’s delta
effect size on Lynx.

Approach 1 Approach 2 adj p-value Cliff’s delta
TRIS CamelCase <0.001 0.743
TRIS Samurai <0.001 0.684
TRIS TIDIER <0.001 0.204
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better than TIDIER with a very small effect size, d < 0.148. On Lynx, in terms of F-measure,

TRIS significantly outperforms (92.06%) CamelCase (38.51%), Samurai (46.34%), and TI-

DIER (85.25%). More precisely, the statistical comparisons shown in Table 6.12 indicate

that, on Lynx (i) TRIS significantly outperforms the CamelCase splitter (d = 0.743) and

Samurai (d = 0.684), and (ii) TRIS performs significantly better than TIDIER with a small

effect size (d = 0.204).

Table 6.13 Precision, Recall, and F-measure of TRIS and TIDIER on the 489 C sampled
identifiers.

Metric Approach 1Q Median Mean 3Q σ
Precision TIDIER 0.4000 0.6667 0.6368 1.000 0.3681

TRIS 1.0000 1.0000 0.8933 1.0000 0.2471
Recall TIDIER 0.5000 0.6667 0.6496 1.000 0.3654

TRIS 1.0000 1.0000 0.872 1.0000 0.2606
F-measure TIDIER 0.4000 0.6667 0.6409 1.0000 0.3650

TRIS 1.0000 1.0000 0.879 1.0000 0.2524

Table 6.13 reports the performance of TRIS and TIDIER on the sample of 489 C identi-

fiers. On such data set, we did not report performances of CamelCase and Samurai, since it is

known from (Guerrouj et al., 2013a) that TIDIER outperforms CamelCase and Samurai on C

systems when using application-level dictionaries augmented with domain knowledge. Hence,

we were only interested in comparing TRIS with the approach performing better on this data

set i.e., TIDIER. Results showed that, in terms of F-measure, TRIS performs better (87.9%)

than TIDIER (64.09%) for this set also. The statistical comparison through Wilcoxon test

indicated that the difference is statistically significant (p-value < 0.001), and that the Cliff’s

delta effect size is medium (d = 0.456).

In Table 6.14, we report the results of TRIS, in terms of precision, recall, and F-measure,

on the data set from Lawrie et al. (Lawrie et Binkley, 2011). As it can be noticed, perfor-

mances are very high, with a median of 100% and a mean precision of 98%, recall of 94%

and F-measure of 96%.

Table 6.14 Precision, Recall, and F-measure of TRIS on the Data Set from Lawrie et al..

Metric Approach 1Q Median Mean 3Q σ
Precision TRIS 1.0000 1.0000 0.9763 1.0000 0.1184
Recall TRIS 1.0000 1.0000 0.9439 1.0000 0.1565
F-measure TRIS 1.0000 1.0000 0.9559 1.0000 0.1358

In Table 6.15, we report the accuracy of TRIS in terms of percentage of correct splittings,

compared with the performances of GenTest and Samurai as reported by Lawrie et al. (Lawrie
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et Binkley, 2011). As it can be noticed, TRIS correctly splits identifiers in 86% of the cases,

while GenTest does it in 82% of the cases, and Samurai in 70% of the cases.

Table 6.15 Correctness of the splitting provided using the Data Set from Lawrie et al..

Approach Identifier Splitting Correctness
Samurai 70%
GenTest 82%
TRIS 86%

When comparing the correctness of TRIS with the one of GenTest, Fisher’s exact test

did not indicate a significant difference (p-value=0.5), even though the achieved correctness

is higher for TRIS. We believe the comparison would be insightful if precision, recall or

F-measure were provided because splitting correctness, in our case, is a Boolean variable

that returns (true) if the split is correct and (false) if not. Thus, when the splitting is

almost correct, i.e., most of the terms are correctly identified, the correctness would still

be false. Unfortunately, this was the case for identifiers such as the ones prefixed with

letters (e.g., mEnvironmentalistNb, sOS DriveDirectory, xGetJobStaus, xgetAutomaticFocus,

xgetColumnWidth, etc.) and that we filtered as the letters can be generated by any dictionary

word prefixed with them. Also, even though the difference in the strict correctness measure

is not high (86%) against (82%) for GenTest, the F-measure of our approach attains 96%.

The latter measure clearly shows that the novel approach performs well on the overall data

of Lawrie et al..

6.5 TIDIER and TRIS Discussion

TIDIER uses techniques inspired from dynamic programming and string-edit distance to

split and expand identifiers into meaningful words.

Although a distance-based identifier splitting and expansion approach is promising, it

does not consider, per se, semantics. For example, with fileLen, length should be preferred

over lender. However, the string-edit distance cannot be used to choose between lender or

length. In addition, it is not possible to disambiguate complex identifiers that actually have

an optimal non-zero distance splitting/expansion, because the algorithm always favors zero-

distance splitting/expansion. For example, imagEdges contains the words image and edges.

However, image and edges match the identifier with a distance of one because character E is

shared by both terms in the identifier. Clearly, in this example, developers would use syntax

and semantics as well as contextual and specialized knowledge: even if imag is not an English

word, they would correctly split imagEdges into image and edges.
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Finally, the string-edit distance used by TIDIER has a cubic complexity in the number of

characters in the identifier (say M), words in the dictionary (say T ), and maximum number

of characters composing dictionary words (say N). For each word in the dictionary, we

must compute as many distances as there are cells to fill in the distance matrix, with a

complexity of O(M × N). Because there are T dictionary words, the overall complexity

is O(T × M × N). The latter limitation makes TIDIER computationally demanding in

comparison with CamelCase and Samurai. Indeed, TIDIER has a cubic distance evaluation

cost plus the search time, while its prior works, i.e., CamelCase and Samurai have linear and

quadratic complexities respectively. Also, the performance of TIDIER is highly dependent

on the dictionary size and quality. In an extreme case, if each identifier is composed of

dictionary words and split/expanded with an exact match, the complexity of TIDIER would

be quadratic. TIDIER, even with the largest dictionary among those considered, took a

few hours to split and expand the 1,026 identifiers of our study. Clearly, if hundreds of

thousands of identifiers must be processed, the current implementation of TIDIER is not

suitable and heuristics must be used to reduce computation time. For example, identifiers

consisting of single words contained in the dictionary and neither composed of multiple words

nor containing abbreviations, could be filtered in linear time.

TRIS is accurate and fast, its wrong splittings were mainly due to identifiers containing

acronyms or short abbreviations. For example, we believe that it is impossible to correctly

split and expand acronyms such as afaik or imho. We also believe that even if we consider the

context (i.e., the frequency of dictionary words in the source code) in TRIS, it is impossible

to find the exact expansion of identifiers prefixed with letters such as f in the identifier

fsize (appearing in JHotDraw) because the mapping could vary from file size to figure size

depending on the JHotDraw code region where fsize appears.

Overall, the results showed that the novel approach performs more accurately than previ-

ous ones on the overall studied systems. In addition to splitting and expansion performances,

TRIS has the advantage of performing reasonably fast: it takes 0.049 seconds to compile the

JHotDraw dictionary (of 2,289 words) and 3.709 seconds to split/expand the 974 JHotDraw

identifiers, while it takes 0.053 seconds to compile the Lynx dictionary (of 2,953 words) and

16.940 seconds to process the 3085 Lynx identifiers. In fact, TIDIER computation time in-

creases with the increase of the dictionary size due to its cubic distance evaluation cost plus

the search time. CamelCase and Samurai performs fast their computations. Yet, they are not

accurate when naming conventions are not used. With the above timing performance, TRIS

showed an improvement of 4% (not statistically significant) in terms of identifier splitting

correctness over GenTest.

In summary, we can conclude that for Java programs properly following coding standards,
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a simple CamelCase is enough. For C and C++ programs, TRIS outperforms CamelCase,

Samurai and TIDIER. Also, TRIS performs slightly better than GenTest in terms of identifier

splitting correctness, although the difference is not statistically significant.

6.6 TIDIER and TRIS Threats to Validity

Threats to construct validity are mainly due to mistakes in the oracle. We cannot

guarantee that no errors are present in the oracle. As the intent of the oracle is to explain

identifiers semantics, we cannot exclude that some identifiers could have been split in different

ways by the developers that originally created them. This problem is related to guessing

the developers’ intent and we can only hope that, given the program domain, the class,

file, method, or function containing the identifiers (and the general information that can be

extracted from the source code and documentation), it will be possible to infer the developers’

likely intent. To limit this threat, different sources of information, such as comments, context,

and online documentation were used when producing the oracle. Another threat could be the

fact that a given string can be derived from several dictionary words, e.g., the string imag

can be derived from image and imagination by applying word transformations. We mitigated

such a threat by considering the identifier context, i.e., function, file or application in the

case of TIDIER and the frequency of source code strings in the case of TRIS.

Threats to internal validity are due to the subjectivity in the manual building of the

oracle and to the possible biases introduced by manually splitting identifiers. To limit this

threat, the oracle was produced following the consensus approach we previously explained

(cf. Chapter 2), i.e., the oracle was created by two of the authors independently and incon-

sistencies in splitting/expanding identifier terms to dictionary words were discussed.

Threats to Conclusion validity concern the relations between the treatment and the

outcome. Proper tests were performed to statistically reject the null hypotheses. In partic-

ular, we used non-parametric tests, which do not make any assumption on the underlying

distributions of the data, and, specifically, a test appropriate for categorical data (the Fisher’s

exact test) and one for paired, ranked data (the Wilcoxon paired test). Also, we based our

conclusions not only on the presence of significant differences but also on the presence of a

practically relevant difference, estimated by means of an effect-size measure. Last, but not

least, we dealt with problems related to performing multiple Fisher and Wilcoxon tests using

the Holm’s correction procedure.

Threats to external validity concern the possibility of generalizing our results. To make

our results as generalizable as possible, we evaluated TIDIER on a sample of identifiers that

we extracted from a very large set of open-source projects. The size of our sample (1,026
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composed identifiers) is comparable to the one used by Enslen et al. in their work (Enslen

et al., 2009).

To make our results as generalizable as possible, we analyzed C open-source projects in

TIDIER, and Java, C, and C++ projects in TRIS. We believe the number of the analyzed

systems is sufficient enough to generalize our results. However, we cannot be sure that our

findings will be valid for other domains, applications, or programming languages.

6.7 Chapter Summary

We proposed two source code vocabulary normalization approaches, namely, TIDIER and

TRIS. TIDIER is inspired by speech recognition, it uses Dynamic Time Warping, a string-edit

distance, and a hill-climbing search technique. TIDIER results show that, with program-level

dictionaries augmented with domain knowledge, i.e., common acronyms, abbreviations, and

C library functions, TIDIER significantly outperforms previous approaches. Specifically,

TIDIER achieved with the program-level dictionary complemented with domain knowledge

54% of correct splits, compared to 30% for CamelCase and 31% for Samurai. Moreover,

TIDIER was also able to map identifiers terms to dictionary words with a precision of 48%

for a set of 73 abbreviations. The only two main limitations of TIDIER are its pure lexical-

level matching and cubic complexity.

TRIS is a two-phases approach that we suggested as a fast solution for vocabulary normal-

ization, it deals with the identifier splitting and expansion problem as a graph optimization

(minimization) problem to find the optimal path (i.e., the optimal splitting-expansion) in

an acyclic weighted identifier graph. TRIS has been applied on several Java, C, and C++

systems, and compared to four techniques, i.e., CamelCase, Samurai (Enslen et al., 2009),

TIDIER (Guerrouj et al., 2013a), and GenTest (Lawrie et Binkley, 2011). TRIS results

indicated that while for Java systems following appropriate naming conventions—such as

JHotDraw—simple splitting approaches such as CamelCase are just enough, on C systems,

TRIS significantly outperformed CamelCase, Samurai, and TIDIER with a medium to large

effect size. In addition, TRIS performs slightly better than GenTest in terms of identifier

splitting correctness, it shows a small improvement, not statistically significant, of 4% on

a data set from Lawrie et al. (Lawrie et Binkley, 2011) consisting of Java, C, and C++

identifiers. TRIS uses a tree-based representation that makes it—in addition to being more

accurate than other approaches—efficient in terms of computation time. Thus, TRIS pro-

duced one optimal split and expansion fast using an identifier processing algorithm having a

quadratic complexity in the length of the identifier to normalize.
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CHAPTER 7

Impact of Identifier Splitting on Feature Location

Source code identifier splitting and expansion is one of the essential ingredients in any

feature location or traceability recovery technique (Antoniol et al., 2002; Marcus et al., 2005;

Liu et al., 2007; Poshyvanyk et al., 2007; Eaddy et al., 2008a; Revelle et al., 2010). ,

Several identifier splitting/expansion approaches have been suggested (Enslen et al., 2009;

Lawrie et Binkley, 2011; Guerrouj et al., 2013a) as a solution for the vocabulary mismatch

problem that exists in IR between the natural language found in source code and that used

in other software artifacts, making source code vocabulary more appropriate for use with

IR-based tools. To date there has been little empirical evidence on the impact of identifier

splitting/expansion on IR-based techniques.

In this chapter, we describe our empirical study on the impact of vocabulary normal-

ization on feature location. Specifically, we investigate the effect of three identifier splitting

techniques: CamelCase, Samurai and manually built splitting (i.e., Oracle) on two FLTs for

locating bugs and features. The first FLT is based on IR while the second uses both IR and

dynamic information (IRDyn).

7.1 Empirical Study Design

The goal of this study is to compare accuracy of two FLTs (i.e., IR and IRDyn), when

utilizing three identifier splitting algorithms: CamelCase, Samurai and Oracle (i.e., manual

splitting of identifiers). This study is done from the perspective of researchers who want to

understand if existing approaches for splitting identifiers can improve accuracy of FLTs under

different scenarios and settings, including best possible scenario where splitting is done by

experts. In addition, we are interested to know if an advanced splitting algorithm would be

still useful for enhancing the accuracy of feature location when execution information is used.

The context consists of two Java applications: Rhino and jEdit, their main characteristics

are described in Subsection 8.1.3.

7.1.1 Variable Selection and Study Design

The main independent variable of our study is the type of splitting algorithm used: Camel-

Case, Samurai or Oracle (i.e., manually split identifiers). The second independent variable is

the use of dynamic information. Thus, we have two FLTs, and each has three configurations,
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which depend on the identifier splitting technique (cf. Table 7.1). For example, IRCamelCase,

IRSamurai, and IROracle are the IR-based FLTs that use LSI to compute similarities between

queries and methods, after applying the CamelCase, Samurai and Oracle splitting algorithms

on the identifiers from the methods and queries. Similarly, IRCamelCaseDyn, IRSamuraiDyn

and IROracleDyn are the FLTs that use IR and dynamic information after applying the lat-

ter splitting algorithms respectively. In order to compare which configuration of the FLTs is

more accurate than another (i.e., IRCamelCase vs. IRSamurai), we considered their effectiveness

measure (Liu et al., 2007).

Table 7.1 The configurations of the two FLTs (i.e., IR and IRDyn) based on the splitting
algorithm.

Splitting Algorithm IR FLT IRDyn FLT
CamelCase IRCamelCase IRCamelCaseDyn
Samurai IRSamurai IRSamuraiDyn
Oracle (Manual Split) IROracle IROracleDyn

As indicated in Chapter 2, the effectiveness measure is the best rank (i.e., lowest rank)

among all the methods from the gold set for a specific feature. Intuitively, the effectiveness

measure quantifies the number of methods a developer has to examine from a list of ranked

methods returned by the feature location technique, before she is able to locate a relevant

method pertaining to the feature. Obviously, a technique that consistently places relevant

methods towards the top of the ranked list (i.e., lower ranks) is more effective than a technique

that contains relevant methods towards the middle or the bottom of the ranked list (i.e.,

higher ranks). In this analysis, we focused on the scenario of finding just one relevant method,

as opposed to finding all relevant methods from the gold set. The latter decision was made for

two reasons. First, our focus was on concept location, rather than impact analysis. Second,

once a relevant is found, it becomes easier to find other related methods by following program

dependencies from the relevant method, or by using other heuristics.

In literature, the identifiers that are split using CamelCase are referred as “hard-words”,

whereas the identifiers split using Samurai or TIDIER are called “soft-words” (cf. Chapter

2). During our analysis, we treated the hard and soft words in the same way and we refereed

to them as split identifiers.

The dependent variable considered in our study is the effectiveness measure of the FLTs.

We aimed at answering the following overarching question: if we had a perfect technique

for splitting identifiers, would it still help improve accuracy of FLTs? We answered this

question by examining these more specific research questions (RQs):
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1. RQ1: Does IRSamurai outperform IRCamelCase in terms of effectiveness?

2. RQ2: Does IRSamuraiDyn outperform IRCamelCaseDyn in terms of effectiveness?

3. RQ3: Does IROracle outperform IRCamelCase in terms of effectiveness?

4. RQ4: Does IROracleDyn outperform IRCamelCaseDyn in terms of effectiveness?

Previous work (Guerrouj et al., 2013a) compared the CamelCase, Samurai and TIDIER

splitting algorithms in terms of their accuracy for correctly splitting identifiers. However, in

this study we were addressing the impact that splitting algorithms have on feature location.

7.1.2 Simplifying Oracle - “Perfect Splitter”- Building

In this study, we tried to simplify the oracle building process explained in Chapter 2.

The reason is that manual verification and split can be a tedious and error prone task due

to the huge number of words contained in application dictionaries, collected identifiers and

terms from comments. We simplified this phase by applying a multi-step strategy aiming at

minimizing the manual effort. In the following subsections we report details of each step.

Step one - building software application dictionary

We parsed and extracted identifiers and comments from both Rhino and jEdit and created

a dictionary for each system. During this step we also built an application specific identifier

(or term) frequency table for Samurai. Following this preliminary step, we filtered some

dictionary entries to reduce manual validation effort.

Step two - filtering concordant identifier split

For each dictionary entry we ran the CamelCase, Samurai and TIDIER to locate the

identifiers for which these three splitting algorithms were in agreement. TIDIER was con-

figured with WordNet1 dictionary, as well as with acronyms and abbreviations known to the

authors. We used the Samurai global frequency table made available by Samurai authors

(Enslen et al., 2009), as well as a local frequency table estimated from the software appli-

cation under analysis (see Step 1). Whenever the three splitting algorithms agreed on the

identifier term subdivision, we considered this as a strong indication that the resulting split

was actually correct. This assumption divided the dictionary into two sub-dictionaries: one

on which the algorithms disagree and one where there is agreement among them. The sub-

dictionary where the tools agreed was then manually inspected to make sure that no errors

were present. For example, out of about 6,000 dictionary entries (or words) for Rhino, about

2,500 words were split in this phase with a minimum manual effort.

1http://wordnet.princeton.edu
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Step three - filtering discordant identifier split

We manually inspected the identifiers for which the three splitting algorithms did not

agree, in order to provide the best splitting. Examples of identifiers from the Rhino dictionary

are words such as DToA, DCMPG or impdep2. Most of identifiers were manually split in

this step (including careful inspection of the source code to understand the exact context of

those identifiers), but there was a reduced set where it was unfeasible to assign any evident

meaning even after inspecting the source code. For example, about 120 Rhino dictionary

entries fell into this category. Examples of such identifiers include short strings (e.g., DT, i3

or m5) and cryptic identifiers (e.g., P754, u00A0 or zzz).

During the oracle building process, we validated the split identifiers following the consen-

sus approach described in Chapter 2, i.e., we proposed an identifier split, which was then

verified and validated by two other Ph.D. Students who already worked with the analyzed

systems. In a few cases, we discussed disagreements. We adopted this approach in order to

minimize the bias and the risk of producing erroneous results. This decision was motivated

by the complexity of identifiers, which capture developers’ domain and solution knowledge,

experience, personal preference, etc.

7.1.3 Analyzed Systems

We conducted our evaluation on two open source Java systems, Rhino and jEdit, and

constructed four datasets from these two systems. The first system considered is Rhino2,

an open-source implementation of JavaScript written in Java. Rhino version 1.6R5 has 138

classes, 1,870 methods and 32K lines of code. Rhino implements the specifications of the Eu-

ropean Computer Manufacturers Association (ECMA) Script3. We constructed two datasets

from Rhino. The first dataset is RhinoFeatures and contains 241 features extracted from the

specifications. Each feature has a textual description that was used as a query in the eval-

uation. These descriptions correspond to sections of the ECMAScript specifications. Each

feature also has a set of methods which are associated with the features (i.e., gold set). The

gold sets were constructed using the mappings between the source code and the features,

which were made available by Eaddy et al. (Eaddy et al., 2008a). These mappings were

produced by considering the sections of the ECMAScript specification as features, and asso-

ciating them with software artifacts using the following prune dependency rule, created by

Eaddy et al. (Eaddy et al., 2008b): “A program element is relevant to a concern if it should

be removed, or otherwise altered, when the concern is pruned”. These mappings were used

in other research works, such as (Eaddy et al., 2008a,b; Revelle et al., 2010). Rhino is dis-

2http://www.mozilla.org/rhino/
3http://www.ecmascript.org/
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tributed with a suite of test cases, and each test case has a correspondence in the ECMAScript

specification. We used these test cases to collect full traces for each of the features.

The second dataset collected is RhinoBugs and contains 143 issue reports (i.e., bugs) that

were collected from Bugzilla, the issue tracking system of Rhino4. Each bug from Bugzilla

has a title and a description, and we used this information as queries in the evaluation. As

in the RhinoFeatures dataset, we used the information made available by Eaddy et al. (Eaddy

et al., 2008b) to associate each bug with a set of methods from Rhino, which are responsible

for the bug (i.e., the gold set). Eaddy et al. extracted the mappings between bugs and source

code by analyzing CVS commits. However, there was no association between the 143 issue

reports and the test cases, hence, we did not collect any execution traces for this dataset.

The second system considered is jEdit5, a popular open-source text editor written in Java.

jEdit version 4.3 has 483 classes, 6.4K methods and 109K lines of code. We constructed two

datasets from this system. The first dataset is jEditFeatures and consists of 64 issues (34

features and 30 patches) extracted from jEdit’s issue tracking system6. The second dataset

is jEditBugs and consist of 86 bug reports.

We now describe some steps used for collecting additional information for these two

datasets. We used the changes associated with the SVN commits between releases 4.2 and

4.3 to construct the gold sets. In addition, the SVN logs were parsed for issue identifiers

which were matched against the issues from the tracking system. Similarly to the RhinoBugs

dataset, the title and description of these issues were used in the evaluation as queries.

We used a tracer to generate marked traces, by executing jEdit and following the steps to

reproduce from the issue description. Details about the process of generating this dataset,

and the complete dataset, which includes queries and execution traces can be found in our

online appendix7.

The four datasets, extracted from Rhino and jEdit, which were used in the evaluation,

are summarized in Table 7.3. We also present additional information about the datasets used

in the evaluation in Table 7.2.

First, we present details about the number of methods from the gold sets of each dataset.

Each data point (i.e., a feature or a bug) from the RhinoFeatures dataset has on average

12 methods, whereas the RhinoBugs dataset has only two methods on average. For jEdit

there are on average four to six methods associated with each issue. The features from the

RhinoFeatures dataset have many gold set methods in common, hence the total number of

methods is much higher than for the other datasets.

4https://bugzilla.mozilla.org/
5https://www.jedit.org/
6https://www.jedit.org/
7http://www.cs.wm.edu/semeru/data/icpc11-identifier-splitting/
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Table 7.2 Descriptive statistics from datasets: number of methods in the gold set
(#GS Methods), number of methods in traces (#TR Methods), and number of identifiers
from corpora (#CR Identifiers).

# of Measure RhinoFeatures RhinoBugs jEditFeatures jEditBugs

GS Methods min 1 1 1 1
median 4 1 5 2
average 12.82 2.24 6.3 4.01
max 280 15 19 41
st. dev 28.8 2.39 5.33 5.63
total 3,089 320 403 345

TR Methods min 777 N/A 227 227
median 917 N/A 1.1K 1.1K
average 912 N/A 1.1K 1.1K
max 1.1K N/A 1.9K 1.9K
st. dev 54 N/A 310 310

CR Identifiers (with queries) split by CamelCase 3,318 (4,154) 3,318 (4,223) 4,227 (4,361) 4,227 (4,596)
split by Samurai 2,642 (3,416) 2,642 (3,411) 3,439 (3,552) 3,439 (3,751)
Split by Oracle 2,030 (2,921) 2,030 (2,718) 2,758 (2,852) 2,758 (3,051)

Table 7.3 Summary of the four datasets used in the evaluation: name (number of fea-
tures/issues), source of the queries and gold sets, and the type of execution information.

Dataset(Size) Queries Gold Sets Execution Infor-
mation

RhinoFeatures (241) Sections of EC-
MAScript

Eaddy et al. Full Execution

RhinoBugs (143) Bug title and descrip-
tion

Eaddy et al. (CVS) N/A

jEditFeatures (64) Feature (or Patch) ti-
tle and description

SVN Marked Execution
Traces

jEditBugs (86) Feature (or Patch) ti-
tle and description

SVN Marked Execution
Traces

Second, we present information about the number of methods extracted from the traces.

For both systems, the average number of unique methods extracted from each trace was

about one thousand. Third, we present information about the size of the corpora in terms of

the number of identifiers, after applying the CamelCase, Samurai and Oracle. As expected,

the more accurately we split the identifiers, the more we reduced the number of unique

soft-words. For example, the corpus for RhinoFeatures has 3,318 soft-words after applying

CamelCase, and has only 2,030 soft-words after using the Oracle. This is explained by the

fact that identifiers that could not be split by CamelCase formed unique soft-words, whereas

the Oracle split the identifier into two or more (common) terms that already appear in the
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corpus, hence reducing the number of unique soft-words.

7.1.4 Analysis Method

For each dataset, every FLT will produce a list of ranks (i.e., effectiveness measures) that

has the size of the number of features in the dataset. For example, the dataset RhinoFeatures

produced 241 ranks for IRCamelCase, 241 ranks for IRSamurai and 241 ranks for IROracle, and

each of those ranks represents the best position (i.e., lowest rank) of a method from the gold

set associated with that feature. These lists of ranks are used as an input for the following

comparison techniques: descriptive statistics, side by side comparisons, and statistical tests.

First, we compared the ranks using descriptive statistics, such as minimum, first quartile,

median, third quartile, maximum, and average. We presented all these descriptive statistics

graphically, using box plots (i.e., whisker charts). Although this technique provides a quick

and intuitive view of the data, it only presents a high level perspective. The second com-

parison technique examines the data in more details and works as follows. Given two lists

of ranks produced by two different FLTs, we compared the ranks side by side and counted

the number of cases the first technique produces lower ranks than the other, as well as the

number of cases the second technique produces lower ranks (i.e., better results) than the

other. We reported these values as percentages.

The third comparison of the ranks is a statistical analysis. We used the Wilcoxon signed-

rank test (Conover, 1998) to test whether the difference in terms of effectiveness for two

measures is statistically significant or not. This test is non-parametric, and it takes as

an input two lists of ranks produced by two different feature techniques. In the test we

used a significance level α = 0.05, and the output of the test is a p-value, which can be

interpreted as follows. If the p-value is less than α, then the difference in ranks produced by

one feature location technique is statistically significantly lower than the ranks produced by

the other technique. Otherwise, if the p-value is larger than α, then we concluded that the

two techniques produced almost equivalent results.

7.1.5 Hypotheses

We formulated several null hypotheses in order to test whether an improved splitting

algorithm has a higher effectiveness measure than a simple splitting algorithm. For example:

1. H0,IRSamurai: There is no statistical significant difference in terms of effectiveness be-

tween IRSamurai and IRCamelCase.

2. H0,IRSamuraiDyn: There is no statistical significant difference in terms of effectiveness

between IRSamuraiDyn and IRCamelCaseDyn.
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We also defined several alternative hypotheses for the case when a null hypothesis is re-

jected with high confidence. These alternative hypotheses state that an improved identifier

splitting technique (e.g., Samurai or Oracle) would produce higher effectiveness than the base-

line splitting technique (i.e., CamelCase). The following alternative hypotheses correspond

to the null hypotheses defined above.

1. Ha,IRSamurai: IRSamurai has statistically significantly higher effectiveness than IRCamelCase.

2. Ha,IRSamuraiDyn: IRSamuraiDyn has statistically significantly higher effectiveness than

IRCamelCaseDyn

The corresponding null and alternative hypotheses for the Oracle splitting technique

were defined analogously.

7.2 Results and Discussion

This section presents the effectiveness measures of the FLTs presented in Table 7.4, which

were applied on the four datasets (cf. Table 7.6) extracted from Rhino and jEdit.

In Fig. 7.1, we present the box plots of the effectiveness measures of the three IR-

based FLTs applied on the four datasets. For each dataset, all the instances of the IR

FLT produced very similar results in terms of lower quartile, median, mean, upper quartile,

etc. For example, Fig. 7.1(a) shows that for the RhinoFeatures dataset, using CamelCase

IRCamelCase, we obtained a median of 23 and an average of 86, and if we used the Oracle

splitting IROracle, we obtained a median of 20 and an average of 86. The same small differences

between the descriptive statistics measures are observed among all the IR instances, and in

all the four datasets.

Similarly to Fig. 7.1, Fig. 7.2 presents the box plots of the effectiveness measure of

the three IRDyn FLTs which were applied on the following three datasets: RhinoFeatures

(cf. Fig. 7.1(a)), RhinoBugs (cf. Fig. 7.1(b)), and jEditFeatures (cf. Fig. 7.1(c)). For all

the datasets, the three FLTs produced almost identical results, regardless of the technique

used for splitting the identifiers. For example, Fig. 7.1(a) shows that for the RhinoFeatures

dataset, using CamelCase splitting IRCamelCaseDyn, the median and average are 9 and 30

respectively, whereas for Oracle splitting IROracleDyn the median and average are 8 and 32

respectively. The small differences observed on the IR based instances are also observed

here. Even more so, for the other datasets, when incorporating dynamic information the

differences produced by the feature location techniques seem to be less noticeable than the

differences produced by IR-based FLTs. This fact may suggest that dynamic information has

some influence and the splitting techniques used for identifiers may not be as important. It is
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(a) RhinoFeatures (b) RhinoBugs

(c) jEditFeatures (d) jEditBugs

Figure 7.1 Box plots of the effectiveness measure of the three IR-based FLTs (IRCamelCase,
IRSamurai and IROracle) for the four datasets: RhinoFeatures, RhinoBugs, jEditFeatures,
jEditBugs.

(a) RhinoFeatures (b) RhinoBugs (c) jEditFeatures

Figure 7.2 Box plots of the effectiveness measure of the three FLTs (IRCamelCaseDyn
(IRCCDyn), IRSamuraiDyn (IRSamDyn) and IROracleDyn (IROraDyn) for the three datasets:
a) RhinoFeatures, b) jEditFeatures, and c) jEditBugs.
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also interesting to observe that feature location techniques applied on the datasets that use

features as queries (i.e., RhinoFeatures and jEditFeatures) have lower effectiveness measures

than the feature location techniques applied on the datasets that use bug descriptions as

queries. For example, for Rhino, the median effectiveness when using feature descriptions

as queries is about 21 (cf. Fig. 7.1(a)), whereas the median effectiveness when using bug

descriptions as queries is about 110 (cf. Fig. 7.1(b)). The same observation is valid for the

jEdit when only textual information is used (cf. Fig. 7.1(c) and 7.1(d)) as well as when

textual and execution information are combined (cf. Fig. 7.1(a) and 7.1(b)).

Table 7.4 Percentages of times the effectiveness of the FLT from the row is higher than
IRCamelCase.

FLT RhinoFeatures (%) RhinoBugs (%) jEditFeatures (%) jEditBugs (%)
IRSamurai 9 36 33 41
IROracle 49 45 44 40

Table 7.5 Percentages of times the effectiveness of the IRCamelCase is higher than the FLT
from the row.

FLT RhinoFeatures (%) RhinoBugs (%) jEditFeatures (%) jEditBugs (%)
IRSamurai 40 48 36 41
IROracle 33 48 38 55

The results illustrated in Fig. 7.1(a) and Fig. 7.1(b) provide only a high level picture

of the effectiveness measure. We now present results from a case by case comparison of the

effectiveness measure. In Table 7.4, we present the percentage of times an instance of the

IR-based FLT produced lower ranks than another instance of the IR-based FLT. The first

cell value represents the percentage of times the FLT from the corresponding row produced

lower ranks than IRCamelCase, whereas the number in parenthesis represents the percentage

of times IRCamelCase produced lower ranks than the technique from the row (in the remaining

percentages, the two techniques produce identical ranks). In this case, a higher percentage

denotes a more effective technique. Similarly, Table 7.6 shows the percentage of times the

FLT from the row produced better results than IRCamelCaseDyn.

We observe from Tables 7.4 and 7.5 that comparing the effectiveness measures of IROracle

and IRCamelCase side by side, IROracle produced lower ranks in 49% of cases, whereas IRCamelCase
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Table 7.6 Percentages of times the effectiveness of the FLT from the row is higher than
IRCamelCaseDyn.

FLT RhinoFeatures (%) RhinoBugs (%) jEditFeatures (%) jEditBugs (%)
IRSamuraiDyn 33 N/A 27 28
IROracleDyn 42 N/A 34 35

Table 7.7 Percentages of times the effectiveness of the IRCamelCaseDyn is higher than the FLT
from the row.

FLT RhinoFeatures (%) RhinoBugs (%) jEditFeatures (%) jEditBugs (%)
IRSamuraiDyn 36 N/A 22 41
IROracleDyn 35 N/A 22 50

produced better results in 33% of cases. In the remaining 18% of cases (i.e., 100%-49%-

33%) the two techniques produced identical ranks. Similarly, from Tables 7.6 and 7.7

we observe that when dynamic information is taken into account, for the RhinoFeatures

dataset, IROracleDyn produced lower ranks (i.e., better results) in 42% of cases, whereas

IRCamelCaseDyn produced better results in 35% of cases. In the remaining 23% of cases

(i.e., 100%- 42%-35%) the techniques produced the same results. It is interesting to observe

that for both systems, IROracle and IROracleDyn produced a higher percentage of good results

than IRCamelCase and IRCamelCaseDyn respectively, when these techniques are applied on the

datasets that use features as queries (columns two and four of the last rows of Tables 7.4

and 7.6). However, when these techniques are applied on the datasets that use bug de-

scription as queries, the opposite phenomenon is observed. In other words, IRCamelCase and

IRCamelCaseDyn produced higher percentage of good results than IROracle and IROracleDyn re-

spectively. The effectiveness measures presented as box plots and percentages are statistically

analyzed using the Wilcoxon signed-rank test.

In Table 7.8, we present the p-values of the Wilcoxon signed-rank test for all the instances

of the IR-based FLTs. The results that are statistically significant (i.e., the p-value is lower

than α = 0.05) are highlighted in bold. The table shows that there is only one instance

when the Oracle splitting technique (i.e., IROracle) produced results that are statistically

significantly better than the technique that uses CamelCase splitting (i.e., IRCamelCase). This

is for the RhinoFeature dataset and the p-value is equal to 0.005. We performed the same
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Table 7.8 The p-values of the Wilcoxon signed-rank test for the FLT from the row compared
with IRCamelCase (stat. significance values are in bold).

FLT RhinoFeatures RhinoBugs jEditFeatures jEditBugs

IRSamurai 0.692 0.890 0.742 0.479
IROracle 0.005 0.497 0.202 0.785

analysis between IROracle and IRSamurai and the results show that only for the RhinoFeatures

dataset IROracle produced results that are statistically significantly better than IRSamurai

(p-value=0.009).

Table 7.9 The p-values of the Wilcoxon signed-rank test for the FLTs from the row compared
with IRCamelCaseDyn (there are no stat. significant values).

FLT RhinoFeatures RhinoBugs jEditFeatures jEditBugs

IRSamuraiDyn 0.713 N/A 0.307 0.928
IROracleDyn 0.265 N/A 0.095 0.937

Similarly, Table 7.9 shows the p-values of the Wilcoxon signed-rank test applied on the

effectiveness measures produced by the IRDyn FLTs. The results show that no technique

produced statistically better results than any other technique. This observation helps in

answering the research questions RQ2 and RQ4, that the splitting technique used is not as

important if dynamic information is considered. When dynamic information is involved, no

technique produced statistically significant results than the other for any of the datasets.

If we look at the same results (i.e., the effectiveness measure) from three different points of

view (i.e., box plots, percentages and statistical analysis), we derive the following conclusions.

First, there are instances where a better identifier splitting technique (i.e., Oracle) improves

feature location. This has been the case for the Rhino, for the RhinoFeatures dataset. Second,

there are cases when even a perfect identifier splitting technique cannot help in the process

of feature location. Such an example is given by the jEditFeatures dataset, when the effective-

ness measure is improved for a few cases, but the difference is not statistically significant.

Moreover, there are instances where the perfect splitting technique can have negative impact

on feature location, as it was the case for the jEditBugs dataset. In this case, the original

CamelCase splitting technique produced better results than the Oracle in terms of percent-

ages (cf. Table 7.4), but the difference is still not statistically significant. Finally, there is

one instance, RhinoFeature dataset, where splitting helps when textual information is used.
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However, when dynamic information is used, all the splitting techniques produce equivalent

results from a statistical point of view.

7.3 Qualitative Analysis

This section presents some observations after examining the results produced by the

splitting techniques and after examining the queries. One of the problems that we encountered

using Samurai was that it tended to split certain types of identifiers into many meaningless

terms, some of them having between one to three characters. Examples of identifiers from

Rhino, where Samurai split them incorrectly were: debugAccelerators, tolocale, imitating,

imlementation, etc. Their incorrect Samurai splitting was: debug Ac ce le r at o rs, em tol

ocal e, imi ta ting, i ml eme n tat ion (cf. Table 7.10). For these examples, CamelCase

performed better, as it correctly split the first identifier (debug accelerators), but it left the

other ones unaltered.

Table 7.10 Examples of splitted identifiers from Rhino using CamelCase and Samurai. The
identifiers which are split correctly are highlighted in bold.

Original Identifier CamelCase Samurai
GETPROP getprop GET PROP
readadapterobject readadapterobject read adapter object
SHORTNUMBER shortnumber SHORT NUMBER
debugAccelerators debug accelerators debug Ac ce le r at o rs
tolocale tolocale tol ocal e
imitating imitating imi ta ting

One of the benefits of using Samurai was that it accurately split same-case identifiers

composed of multiple words. For these cases, CamelCase left the identifiers unmodified.

Examples of such identifiers from Rhino include SHORTNUMBER, readadapterobject, GET-

PROP which are correctly split by Samurai as SHORT NUMBER, read adapter object, and

GET PROP, and are left unchanged by CamelCase (cf. Table 7.10). However, there were

some cryptic identifiers that were almost impossible to split using CamelCase or Samurai.

Examples of such identifiers from Rhino include ldbl, njm, pun, rve, wbdry, etc. In these cases,

inferring the meaning from the context in which these identifiers appeared was the only way

to split them correctly.

We observed a vocabulary mismatch problem, which produced inconsistencies between the

identifiers used in the queries, and the identifiers used in the code. This problem seemed to

be less noticeable for features, and more severe for bugs. For jEdit, the issues that described
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features often contained terms that were later used in the code as identifiers for classes,

methods, variables, etc. For example, jEdit’s feature #16084869 (“Support ‘thick’ caret”)

contained in its description many identifiers that were also found in the name of the methods

(e.g., thick, caret, text, area, etc.). For features, their queries were expressive, and more

consistent with the source code vocabulary, so they benefitted less from an Oracle splitting.

Hence, when using feature descriptions as queries for both Rhino and jEdit, the median

effectiveness of the FLTs, regardless of splitting, were about 20 for Rhino (cf. Fig. 7.1(a))

and about 10 for jEdit (cf. Fig. 7.1(c))).

On the other hand, the vocabulary of the queries extracted from bug reports was less

consistent with the source code vocabulary, and a splitting technique, helped bridge this gap.

For example, jEdit’s bug #157550510 (“C+j bug”) reported a problem with the “join lines”

implementation; yet nowhere in its description were the words join or lines mentioned. In

general, the identifiers from the bug descriptions were less consistent with the code, and this

issue was reflected in terms of the effectiveness measures produced by the FLTs, when these

bug descriptions were used as queries. For example, in Figure 1 (b) the median effectiveness

for Rhino system was about 110 (as opposed to a median of 20 when features were used as

queries). Also, Figure 1 (d), shows that the median effectiveness of the techniques that used

bugs as queries was around 67, as opposed to 10, which was the median effectiveness when

features were used as queries.

Another problem with the queries is that some identifiers were used just for communica-

tion between developers, and no matter what splitting technique was used, these identifiers

provided no useful information, because they appeared only in the query vocabulary, and

did not appear at all in the source code vocabulary. Examples of such identifiers included

words that are common in communication, such as btw (i.e., by the way), thanks, hate, rant,

greetings, fly, annoying, etc., name of developers, ApeHanger, Slava, Carlos, etc.

7.4 Threats to Validity

Threats to construct validity are mainly due to mistakes in the oracle and gold sets.

We cannot guarantee that no errors are present in the oracle. As the intent of the oracle is to

explain identifier semantics, we cannot guarantee that there is no difference between oracle

splits and splits of developers that originally created the identifiers. This problem is difficult

and it relates to guessing the developers’ intent. To limit this threat, different sources of

information such as comments, source code context, and online documentation were used

when producing the oracle. To minimize the risk to the accuracy of the gold set, we used

data produced by other researchers, which was used in previous studies and made available
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to the research community.

Threats to internal validity are due to the subjectivity in the manual building of the

oracle and to the possible biases introduced by manually splitting identifiers. To limit this

threat, the oracle was produced by a joint work among the authors, using CamelCase, Samurai

and TIDIER. In addition, inconsistencies in splitting/mapping to dictionary words were

discussed.

Threats to conclusion validity concern the relations between the treatment and the out-

come. Proper tests were performed to statistically reject the null hypotheses. In particular,

we used a non-parametric test (i.e., Wilcoxon signed-rank test), which does not make any

assumptions on the underlying distributions of the data. Furthermore, we adjusted signifi-

cant p-values (cf. Table 7.8) using conservative Bonferroni correction. Our significant p-value

remained significant as the limit in such case is equal to α-value/number of tests (i.e., 0.05

/ 3 = 0.01666 < 0.05).

Threats to external validity concern the possibility of generalizing our results. To make

our results as generalizable as possible, we used two Java applications from two different

application domains but we cannot be sure that our findings will be valid for other domains,

applications, programming languages or software engineering tasks (i.e., different from feature

location). More case studies are needed to confirm the results presented and to verify if indeed,

in the general case, dynamic information reduces the gain of more sophisticated identifier split

techniques.

7.5 Chapter Summary

Perfecting splitting techniques can improve the accuracy of feature location, easing pro-

gram comprehension and thus, software evolution. This improvement is pronounced in situa-

tions where execution information cannot be collected (e.g., mission critical and time critical

applications). In fact, by splitting source code identifiers and mapping them to domain con-

cepts, the localization of entities contributing to implementing some user observable func-

tionality may be easier, which could minimize feature location effort. In this chapter, we

presented an exploratory study of two FLTs (i.e., IR and IRDyn) for locating bugs and

features, utilizing three strategies for splitting identifiers: CamelCase, Samurai and manual

splitting of identifiers. These FLTs and their preprocessing techniques were evaluated on two

open-source systems, Rhino and jEdit, and compared in terms of their effectiveness measure.

The results of the IR-based FLT reveal that Samurai and CamelCase produced similar

results. However, the IROracle outperforms IRCamelCase in terms of the effectiveness measure,

on the RhinoFeatures dataset. This supports our conjecture that when only textual informa-
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tion is available, an improved splitting technique can help improve effectiveness of feature

location. The results also show that when both textual and execution information are used,

any splitting algorithm will suffice, as FLTs produced equivalent results. In other words,

because execution information helps pruning the search space considerably, the benefit of an

advanced splitting algorithm is comparably smaller than the benefit obtained from execution

information; hence, the splitting algorithm will have little impact on the final results. Over-

all, our findings outline potential benefits of creating advanced preprocessing techniques as

they can be useful in situations where execution information cannot be easily collected.
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CHAPTER 8

Impact of Identifier Splitting on Traceability Recovery

Identifiers and comments represent an important source of information used by (semi-)

automated techniques to recover traceability links among software artifacts (Antoniol et al.,

2002; Marcus et al., 2005) and locate features in source code (Marcus et al., 2004, 2005; Poshy-

vanyk et al., 2007; Eaddy et al., 2008a; Revelle et Poshyvanyk, 2009; Revelle et al., 2010).

The latter IR-based software maintenance tasks rely on the consistency of the source code

lexicon available in the different artifacts and their effectiveness may worsen if programmers

introduce non-meaningful identifiers.

Identifier splitting approaches (e.g., (Lawrie et al., 2010; Lawrie et Binkley, 2011; Guerrouj

et al., 2013a)) have been suggested to tackle the vocabulary mismatch problem that exists

between source code and other project’s artifacts with the aim of reaping the full benefits of

IR-based techniques. However, there is a lack of research work on the impact of identifier

splitting/expansion on traceability recovery. Thus, we perform an empirical study aiming

at investigating the effect of identifier splitting on two traceability recovery techniques. The

first technique uses LSI, while the second is based on VSM.

In this chapter, we first describe our empirical study design, then we show the results of

our study and the qualitative analysis performed in support of our quantitative findings.

8.1 Empirical Study Design

The goal of this study is to compare the accuracy (i.e., precision and recall) of two

traceability recovery techniques; one is based on LSI (Liu et al., 2007) and the second uses

VSM (Eaddy et al., 2008a) (cf. Chapter 2), when utilizing three identifier splitting algorithms:

CamelCase, Samurai and Oracle (i.e., manual splitting of identifiers). The perspective is

of researchers who want to understand how approaches for splitting identifiers can impact

accuracy of traceability recovery techniques, including best possible scenario where splitting

is done by experts. The context of this investigation consists of three open-source systems:

iTrust, Pooka, and Lynx, their main characteristics are described in Section 8.1.3.

8.1.1 Variable Selection and Study Design

The main independent variable is the type of splitting algorithm used: CamelCase, Samu-

rai or Oracle (i.e., manually split identifiers). In the following, we will use CamelCase and
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baseline interchangeably.

The second independent variable is the technique used for traceability recovery. Thus,

we have two traceability recovery techniques, and each has three configurations, which de-

pend on the identifier splitting technique used. For example, LSICamelCase, LSISamurai, and

LSIOracle are the LSI-based traceability recovery techniques that use LSI to compute simi-

larities between documents, after applying the CamelCase and Samurai algorithms, and the

Oracle splitting on the identifiers. Similarly, VSMCamelCase, VSMSamurai, and VSMOracle are

the VSM-based traceability recovery techniques that use VSM to compute similarities be-

tween documents, after applying the three above-mentioned splitting techniques respectively.

In Table 8.1, we summarize the various instances of traceability recovery techniques we dealt

with.

Table 8.1 The configurations of the two studied traceability recovery (TR) techniques based
on the splitting algorithm.

Splitting Algorithm LSI-based TR VSM-based TR
CamelCase LSICamelCase VSMCamelCase

Samurai LSISamurai VSMSamurai

Oracle (Manual Split) LSIOracle VSMOracle

The dependent variables considered in our study are the precision and recall provided

by the traceability recovery techniques in question. The definition of precision and recall is

provided in Chapter 2 of this thesis.

We aimed at answering the following overarching question: How does different identifiers

splitting techniques impact traceability recovery?

We answered this question by examining these more specific research questions (RQs) :

1. RQ1: Does LSISamurai outperform LSICamelCase in terms of accuracy?

2. RQ2: Does LSIOracle outperform LSICamelCase in terms of accuracy?

3. RQ3: Does LSIOracle outperform LSISamurai in terms of accuracy?

By accuracy, we mean the precision and recall of the studied traceability recovery tech-

niques.

To address these research questions, we first used three different splitting techniques, i.e.,

CamelCase, Samurai, and oracle to built three corpora. The oracle was built for the three

studied systems (i.e., iTrust, Pooka, and Lynx) using the same multi-step strategy we adopted
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in our study on feature location (cf. Chapter 7). Second, we used each corpus to recover the

traceability links. Third, we computed the precision and recall of each traceability recovery

set to measure the improvement brought by the identifier splitting technique in question.

8.1.2 Building Traceability Recovery Sets

We used each corpora built using CamelCase, Samurai, and splitting/expansion oracles

created as described in Chapter 2. We performed standard document preprocessing steps on

these corpora (Gotel et Finkelstein, 1993). For each corpus, we built different traceability

recovery sets at different similarity threshold points. The similarity threshold helps to retrieve

only a set of traceability links whose similarity is above than a certain level. These sets help to

evaluate, which approach is better than the other at all the threshold values or some specific

thresholds values. We used LSI and VSM to recover traceability links between requirements

and source code documents.

We used a threshold t to prune the set of traceability recovery links, keeping only links

whose similarities values are greater than or equal to t ∈ [0, 1]. We considered different values

of t from 0.01 to 1 per steps of 0.01 to obtain different sets of traceability recovery links with

varying precision and recall values. We used these different sets to assess which approach

provides better precision and recall values.

8.1.3 Analyzed Systems

iTrust1 is a medical application written in Java; it provides patients with a means to keep

up with their medical history and records as well as communicate with their doctors. iTrust

(version 10) dataset contains 35 and 218 requirements and classes respectively.

Pooka2 is an e-mail client written in Java using the JavaMail API. Pooka (version 2.0)

dataset contains 90 and 298 requirements and classes respectively. This dataset contains

manually validated requirements to class traceability recovery links.

Lynx3 is a basic textual Web browser. Lynx is entirely written in C. Lynx (version

2.8.5) dataset has 247 files, 174 KLOCs, and 2,067 methods. This dataset contains manually

validated requirements to method traceability recovery links.

8.1.4 Analysis Method

To assess whether the differences in precision and recall values, in function of the threshold

t, are statistically significant or not, we used the Mann-Whitney test defined in Chapter 2.

1http://agile.csc.ncsu.edu/iTrust/
2http://www.suberic.net/pooka/
3http://lynx.isc.org/
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In addition to the statistical comparisons, we computed the effect-size of the difference using

Cliff’s delta (d) non-parametric effect size measure (Grissom et Kim, 2005) that we also

explained in the background chapter of this thesis (cf. Chapter 2).

All the above-mentioned computations have been applied using the R statistical environ-

ment (Team, 2012).

8.1.5 Hypotheses

We formulated several null hypotheses in order to test whether an improved splitting

algorithm has a higher precision (recall) than a simple splitting algorithm. For example:

1. H0,1: LSICamelCase and LSISamurai provide equal precision.

2. H0,2: LSICamelCase and LSIOracle provide equal precision.

3. H0,3: LSIOracle and LSISamurai provide equal precision.

Similar null hypotheses were defined for the traceability recovery techniques using VSM.

We also defined several alternative hypotheses for the case when a null hypothesis is

rejected with high confidence. These alternative hypotheses state that an improved identifier

splitting technique (e.g., Samurai or Oracle) would produce higher accuracy than the baseline

splitting technique (i.e., CamelCase). The following alternative hypotheses correspond to the

null hypotheses defined above.

1. Ha,1: LSISamurai has statistically significantly higher precision than LSICamelCase.

2. Ha,2: LSIOracle has statistically significantly higher precision than LSICamelCase.

3. Ha,3: LSIOracle has statistically significantly higher precision than LSISamurai.

The corresponding null and alternative hypotheses for the configuration using VSM

were defined analogously.

8.2 Results and Discussion

Figure 8.1 shows, for the three systems (i.e., iTrust, Pooka, Lynx), that using manually

split oracle does not perform any better than the baseline splitting techniques. At some

threshold points, in some cases, manually split oracle slightly provide better results. For

example, VSMOracle provides slightly better precision and recall at certain threshold points.

In other cases, the baseline provides better results than the oracle. For example, for lynx
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Figure 8.1 Precision and recall values of VSMCamelCase, VSMOracle, VSMSamurai, LSICamelCase,
LSIOracle, and LSISamurai with the threshold t varying from 0.01 to 1 by step of 0.01. The x
axis shows recall and y axis shows precision.

using VSM, the baseline provides better results, i.e., 100% of precision and recall rather than

87% for the oracle.

Table 8.2 shows the average precision and recall values at all the threshold points consid-

ered. The bold values in these tables represent the improved precision and–or recall values
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Table 8.2 Average values of precision and recall for iTrust, Pooka, and Lynx. Bold values
show the improvement brought by using Oracle.

Precision Recall
LSICamelCase LSISamurai LSIOracle LSICamelCase LSISamurai LSIOracle

iTrust 36.49 36.49 28.39 36.61 36.61 34.23
Pooka 14.06 14.14 15.64 22.31 22.37 22.36
Lynx 45.43 39.08 39.40 41.99 40.82 41.55

VSMCamelCase VSMSamurai VSMOracle VSMCamelCase VSMSamurai VSMOracle

iTrust 48.99 48.99 25.82 23.77 23.77 23.07
Pooka 40.54 40.54 42.07 11.59 11.63 12.19
Lynx 64.26 57.84 49.91 37.66 37.05 40.16

over baseline splitting. As it can be noticed, for Pooka, LSIOracle produced better results

(15.64%), in terms of precision, than LSISamurai (14.14%) and LSICamelCase (%14.06). In

addition, VSMOracle produced higher precision (42.07%) than VSMSamurai and VSMCamelCase

(40.54%). This is not the case for iTrust where LSICamelCase and LSISamurai produced the same

precision (36.49%), and LSIOracle showed a lower precision (28.39%). Regarding iTrust using

VSM, as for LSI, VSMCamelCase and VSMSamurai produced the same precision (48.99%) and

VSMOracle showed a lower precision than them (25.82%). For what concerns Lynx, LSIOracle

produced a lower precision (39.40%) than LSISamurai (39.08%). However, LSICamelCase showed

a higher precision (45.43%) than both techniques. Traceability recovery techniques based on

VSM, applied on Lynx, showed that VSMCamelCase (64.26%) produced higher precision than

LSISamurai (57.84%) and LSIOracle (49.91%).

Concerning the recall, Table 8.2 shows that, for Pooka, VSMOracle produced a higher recall

(12.19%) than VSMSamurai (11.63%) and VSMCamelCase (11.59%). Results also indicated that,

for Lynx, VSMOracle provided higher recall (40.16%) in comparison with VSMSamurai (37.05%)

and VSMCamelCase (37.66%). Regarding iTrust, VSMOracle, VSMSamurai, and VSMCamelCase

produced almost similar recall results (∼23%). The results obtained for recall using LSI do

not show any improvement (cf. Table 8.2).

In Tables 8.3 and 8.4, we report the p-values and effect size of different comparisons

between splitting techniques in terms of precision and recall respectively. The bold values in

the latter tables represent the improvement brought by the manually built oracle and italic

values represent the improvement brought by Samurai splitting technique. If the p-value is

not in bold but significant, this means that CamelCase (or Samurai) produces better results

than the Oracle. If the p-value is not in italics but significant, this means that CamelCase

produces better results than Samurai.

Results were statically improved using manually built oracle with none and–or large effect

size for Pooka. In some cases, manually built oracle and Samurai statistically decreased the
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Table 8.3 Precision: p-values and effect size of different identifiers splitting techniques.

Precision
iTrust

Approach 1 Approach 2 p-value Cliff’s d
LSICamelCase LSISamurai 0.76 0.01
LSICamelCase LSIOracle <0.01 0.54

LSIOracle LSISamurai <0.01 0.54
VSMCamelCase VSMSamurai 0.42 0.0002
VSMCamelCase VSMOracle <0.01 0.77

VSMOracle VSMSamurai <0.01 0.77
Pooka

Approach 1 Approach 2 p-value Cliff’s d
LSICamelCase LSISamurai 0.97 0.02
LSICamelCase LSIOracle <0.01 0.45

LSIOracle LSISamurai <0.01 0.45
VSMCamelCase VSMSamurai 0.72 0.07
VSMCamelCase VSMOracle <0.01 0.17

VSMOracle VSMSamurai <0.01 0.12
Lynx

Approach 1 Approach 2 p-value Cliff’s d
LSICamelCase LSISamurai <0.01 1.00
LSICamelCase LSIOracle <0.01 0.84

LSIOracle LSISamurai <0.01 0.62
VSMCamelCase VSMSamurai <0.01 0.56
VSMCamelCase VSMOracle <0.01 0.22

VSMOracle VSMSamurai <0.01 0.22

Table 8.4 Recall: p-values and effect size of different identifiers splitting techniques.

Recall
iTrust

Approach 1 Approach 2 p-value Cliff’s d
LSICamelCase LSISamurai 1.00 0.01
LSICamelCase LSIOracle <0.01 1.00

LSIOracle LSISamurai <0.01 1.00
VSMCamelCase VSMSamurai 1.00 0.00
VSMCamelCase VSMOracle <0.01 0.39

VSMOracle VSMSamurai <0.01 0.39
Pooka

Approach 1 Approach 2 p-value Cliff’s d
LSICamelCase LSISamurai 0.03 0.05
LSICamelCase LSIOracle 0.40 0.39

LSIOracle LSISamurai 0.98 0.39
VSMCamelCase VSMSamurai <0.01 0.13
VSMCamelCase VSMOracle <0.01 0.72

VSMOracle VSMSamurai <0.01 0.74
Lynx

Approach 1 Approach 2 p-value Cliff’s d
LSICamelCase LSISamurai <0.01 1.00
LSICamelCase LSIOracle <0.01 1.00

LSIOracle LSISamurai <0.01 0.91
VSMCamelCase VSMSamurai <0.01 0.36
VSMCamelCase VSMOracle <0.01 0.89

VSMOracle VSMSamurai <0.01 0.92

accuracy of traceability recovery techniques. As it can be noticed from Tables 8.3 and 8.4,

manually built oracle and Samurai provided statistically better results in 17% of the cases.

In 19% of the cases, there was no effect on the results. However, in 20% of the case, accuracy

statistically went down with small and medium effect-size, and it went down with large
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effect-size in 44% of the cases.

We concluded that advanced splitting techniques may provide better results than simple

techniques in some cases and that, for these analyzed systems, baseline splitting techniques

provided, overall, accuracy results almost similar to perfect splitters (i.e., oracles).

Figure 8.2 Percentage of the traceability links recovered (or missed) by the baseline and
oracle.

Figure 8.2 shows, however, that the oracle recovered more links than baseline splitting

technique (i.e., CamelCase). Only in the case of iTrust using LSI, oracle missed some links.

The latter observation could be justified by the LSI’s k value impact since the matrix size

was changed after using manually split oracle. In the case of iTrust using VSM, both the

oracle and baseline provided the same recall. In addition, we observed that in 67% of times

using the oracle recovered more links than the baseline splitting technique.

In summary, we can conclude from this study that advanced identifier splitting approaches

can help recover more traceability links than simple techniques in some cases. However, in

the general case, a simple identifier splitting approach (e.g., CamelCase) can be sufficient for

such a task. We believe, more studies should be performed on several projects belonging to

different programming languages to generalize our conclusions.

8.3 Qualitative Analysis

In some cases, we noticed that advanced splitting techniques, and oracles increased the

noise in the data. Consequently, it impacted the accuracy of IR techniques. For example,
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in Lynx, requirement 534 is “the browser should be able to manage store erase session infor-

mation”. Whereas a C method LYMain.c.i__nobrowse_fun is related to browse directories

functionality. Baseline splitting techniques could not split the term“nobrowse”and there was

no link created between requirement 534 and LYMain.c.i_nobrowse_fun.txt. Samurai and

manual oracle split the identifier “nobrowse” into “no browse”. Consequently, it linked to the

file LYMain.c.i__nobrowse_fun.txt. However, this is a false positive link. Similar kind of

splitting caused higher number of false positive links.

Another observation we had concerns the presence of acronyms and short words in

requirements which creates a vocabulary mismatch between requirements containing such

words and normalized source code. It is, therefore, clear in the latter cases, that identifier

split/expansion would negatively impact the results due to the quality of the considered data.

In summary, we concluded that identifier splitting and expansion techniques can help

improve IR techniques. However, this improvement requires data of quality. The latter

observation confirms our qualitative findings reported in (Dit et al., 2011) and where the

quality and expressiveness of queries describing the features to be located impacted the

obtained results. This qualitative result can also be supported by the results obtained by

Binkley et al. (Binkley et al., 2012) who showed that the improvement brought by identifier

splitting in favor of IR-based feature location is most pronounced for shorter, more natural,

queries.

8.4 Threats to Validity

Threats to construct validity are mainly due to erroneous manual splits and mistakes

in traceability recovery oracles. In fact, the semantic of identifiers reflects developer’s intent,

knowledge, and experience. Thus, identifiers can be split differently from the original de-

velopers who created them. To limit this threat, we analyzed several sources of information

(e.g., user manuals and online documentation) in addition to source code inspection. We

accessed the latter sources of information for about 60% of the identifiers. For what concerns

the oracles used to evaluate the studied traceability recovery methods, we used the original

traceability matrices provided by the original developers to mitigate such threat.

Threats to internal validity are due to the subjectivity in the manual building of the

oracle and to the possible biases introduced by manually splitting identifiers. To limit this

threat, the oracle was produced by a joint work among the authors.

Threats to conclusion validity concern the relations between the treatment and the out-

come. Proper tests and their convenient effect-size measures were performed to statistically
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reject the null hypotheses. In particular, we used a non-parametric test, i.e., Mann-Whitney,

which do not make any assumption on the underlying distributions of the data.

Threats to external validity concern the possibility of generalizing our results. To make

our results as generalizable as possible, we used different software systems (i.e., iTrust, Lynx,

and Pooka) belonging to different application domains and different programming languages,

but we cannot be sure that our findings will be valid for other domains, applications, pro-

gramming languages or software engineering tasks (i.e., code summarization).

8.5 Chapter Summary

Identifier splitting can improve traceability recovery, and thus software maintenance. In

this chapter, we presented an empirical study on traceability recovery using two different IR

techniques, i.e., LSI and VSM and three identifier splitting techniques: CamelCase, Samurai,

and manual splitting of identifiers. These two traceability recovery techniques were evaluated

on three open-source systems: iTrust, Pooka, and Lynx, and compared in terms of their

precision and recall.

The results of our study indicated that advanced splitting techniques help increase pre-

cision and recall in some cases. In addition, our qualitative analysis showed that the impact

or improvement brought by such techniques depended on the quality of studied data.
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CHAPTER 9

CONCLUSION

The main goal of this research has been to show context-awareness for source code vo-

cabulary normalization, develop context-aware approaches for vocabulary normalization, i.e.,

TIDIER and TRIS, empirically evaluate them, and finally use one (i.e., TIDIER) to investi-

gate the impact of vocabulary normalization on feature location and traceability recovery.

Software programs, especially legacy systems, are often poorly documented. In this case,

the only up-to-date source of information for developers is the source code. In source code,

identifiers are key means that support developers during their understanding tasks (Takang

et al., 1996; Caprile et Tonella, 1999, 2000; Lawrie et al., 2006, 2007b). The latter un-

structured data lends itself for further analysis using IR techniques that can be leveraged

to support maintenance tasks such as feature location, traceability recovery, code summa-

rization, etc. The problem is that developers often compose source code identifiers with

abbreviated words and acronyms, and do not always use consistent mechanisms and explicit

separators when creating identifiers. Developers and–or tools must therefore use the avail-

able contextual information to disambiguate concepts conveyed by such identifiers and thus

reap the full benefit of IR-based approaches. Unfortunately, there has been really very lit-

tle empirical evidence on the relevance of context for source code vocabulary normalization

and the impact of identifier splitting on software maintenance tasks. To tackle these chal-

lenges, we experimentally investigate the effect of context on identifier splitting, we show that

source code files are more helpful than functions, and that the application-level contextual

information does not help any further. External documentation only helps in some circum-

stances (Guerrouj et al., 2013b). We also propose context-aware vocabulary normalization

approaches, i.e., TIDIER and TRIS. TIDIER is inspired by speech recognition techniques, it

exploits contextual information in the form of specialized dictionaries and mimics the process

of transforming words via contraction rules. TIDIER has been empirically evaluated on a

large set of open-source systems (Guerrouj et al., 2013a). TRIS formalizes the source code

vocabulary normalization problem as a graph optimization (minimization) problem to find

the optimal path (i.e., optimal splitting-expansion) in an acyclic weighted identifier graph, it

uses the relative frequency of source code terms as a local context to determine the most likely

identifier splitting-expansion. TRIS relies on a tree-based representation that considerably

reduces its computation time, it has also been empirically evaluated on a set of open-source

systems (Guerrouj et al., 2012). Finally, we investigate the impact of source code vocabulary
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normalization on two IR-based software maintenance tasks, i.e., feature location and trace-

ability recovery. Their results outline potential benefits of developing advanced identifier

splitting approaches as they can still be useful in some cases (Dit et al., 2011).

9.1 Summary of Contributions

The main contributions of this thesis are as follows:

• two user studies to investigate the effect of context on source code vocabulary normal-

ization. This work has been published in 2013 in the Empirical Software Engineering

Journal;

• an approach inspired by speech recognition techniques for source code vocabulary nor-

malization (TIDIER) and its empirical evaluation. This work has been published in

2013 in the Journal of Software Evolution and Process;

• an fast implementation for source code vocabulary normalization dealing with normal-

ization as a graph minimization problem (TRIS) and its empirical evaluation. This work

has been published in 2012 in the Proceedings of the 19th IEEE Working Conference

on Reverse Engineering;

• an empirical study to analyze the impact of source code vocabulary normalization on

two feature location techniques. The first uses IR while the second combines IR and

dynamic information. This work has been published in 2011 in the Proceedings of the

19th IEEE International Conference on Program Comprehension;

• an empirical study to investigate the impact of source code vocabulary normalization

on traceability recovery; This work is in preparation for submission to the Empirical

Software Engineering Journal, 2013.

• an empirical study design to analyze the impact of identifiers styles on software qual-

ity by mining software repositories. This is an on-going work undergoing identifier

styles used by developers when joining open-source projects and showing whether spe-

cific styles introduce bugs into software projects and impact internal quality measures,

namely the semantic coupling and cohesion.

Context-Awareness for Source Code Vocabulary Normalization: To correctly

split and expand identifiers, especially non-trivial ones, developers and tools need context.
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To show the effect of context on vocabulary normalization, we performed two user studies

involving 63 participants from the École Polytechnique de Montréal, and used, as objects, a

set of identifiers randomly-sampled from a corpus of C open-source programs. In particular,

we considered an internal context consisting of the content of functions and source code files

in which the identifiers appear, and an external context involving external documentation.

The main findings of the two studies indicate that the file-level context is more helpful than

the function-level one, and that the application level, did not bring further improvements.

Also, in general, external documentation did not introduce significant benefits, likely because

the acronyms contained in the identifiers are domain specific. Results also show that the

participants’ level of English and the knowledge of the domain (Linux in both studies) have

a significant effect on vocabulary normalization (Guerrouj et al., 2013b). Overall, the ob-

tained results confirm our belief about the relevance of contextual information in program

comprehension. Such information is helpful not only to humans when performing program

comprehension tasks, but also to automatic tools that rely on source code lexicon to perform

various kinds of tasks, including feature location (Dit et al., 2011; Binkley et al., 2012).

TIDIER: From a comparative analysis of source code vocabulary normalization tech-

niques that exist when we started addressing this problem (i.e., CamelCase and Samurai)

and a literature review of the various theories and techniques used for entity recognition,

we developed a context-aware approach, TIDIER, which is inspired by speech recognition

techniques. TIDIER uses contextual information in the form of specialized dictionaries and

assumes the use of transformations rules to create identifiers. We evaluated TIDIER on iden-

tifiers randomly-extracted from a large corpus of C programs, and compared it with prior

works, i.e., CamelCase and Samurai (Enslen et al., 2009). TIDIER outperformed previous

approaches when using context-aware dictionaries built at the level of programs, enriched

with domain knowledge, i.e., common acronyms, abbreviations, and C library functions. In

addition, it was also able to correctly expand 48% of abbreviations for a set of 73 abbrevi-

ations (Guerrouj et al., 2013a). Moreover, TIDIER has been used to assess the impact of

vocabulary normalization on feature location (Dit et al., 2011).

TRIS: As a fast and accurate solution for source code vocabulary normalization, we devel-

oped TRIS, which deals with normalization as a graph optimization (minimization) problem

to find the optimal path (i.e., the optimal normalization) in an acyclic weighted identifier

graph. TRIS uses the relative frequency as a local context to select the best possible split-

expansion. It has been evaluated on several C, C++, and Java systems and compared with

other approaches, i.e., CamelCase, Samurai (Enslen et al., 2009), TIDIER (Guerrouj et al.,

2013a), and GenTest (Lawrie et al., 2010). TRIS significantly outperforms CamelCase, Samu-

rai, and TIDIER with a medium to large effect size on C systems. In addition, it shows a
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non-statistically significant improvement of 4%, in terms of identifier splitting correctness,

over GenTest. TRIS produces one optimal split and expansion fast, using an identifier pro-

cessing algorithm having a quadratic complexity in the length of the identifier to split/expand

(Guerrouj et al., 2012).

Impact of Identifier Splitting on Feature Location: We applied identifier splitting

on two FLTs using three splitting strategies (i.e., CamelCase, Samurai, and Oracles built

using TIDIER). The first FLT is based on IR while the second uses the combination of IR

and dynamic analysis. Our study was applied on two open-source systems, Rhino and jEdit.

The results of our empirical evaluation show that FLTs using IR can benefit from better

preprocessing algorithms. However, the results for FLT using the combination of IR and

dynamic analysis do not show any improvement while using manual splitting, indicating that

any preprocessing technique will suffice if execution data is available.

Overall, our results show the need for more sophisticated source code preprocessing tech-

niques as they can still be useful when dynamic information is not available (Dit et al.,

2011).

Impact of Identifier Splitting on Traceability Recovery: We applied three identi-

fier splitting strategies (i.e., CamelCase, Samurai, and Oracles built using TIDIER) on two

traceability recovery techniques. The first technique uses LSI while the second is based on

VSM. These two traceability recovery techniques were evaluated on three open-source sys-

tems: iTrust, Pooka, and Lynx, and compared in terms of their precision and recall. The

results of our study highlight that advanced splitting techniques help increase precision and

recall in some cases but, in general, they perform the same as the simple CamelCase on the

studied systems. In addition, our qualitative analysis showed that the impact or improve-

ment brought by such techniques depend on the quality of studied data. We are currently

performing more studies on other systems using other identifier splitting and expansion tech-

niques to generalize our conclusions on the impact of identifier splitting and expansion on

traceability recovery and feature location.

In summary, we bring empirical evidences of the relevance of context for source code

vocabulary normalization. We also propose two novel context-aware approaches and their

practical implementations for the normalization task. Finally, we investigate the impact of

identifier splitting on feature location and traceability recovery. The obtained results are

promising and can be used by both practitioners and researchers.
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9.2 Limitations

Despite the above promising results, our findings are also exposed to some limitations

such as:

Limitation of User Studies on the Effect of Contexts on Vocabulary Nor-

malization: Our controlled experiments were performed in an academic context, i.e., with

participants belonging to a population of Canadian students (Bachelor, Master, Ph.D.) and

post-docs. Many of them already had previous industrial experience. However, real devel-

opers can possibly perform differently to this population. It is, therefore, possible to obtain

different results in industrial settings with developers having different skills and levels of

experience.

Limitation of TIDIER: TIDIER performs well, however, it has some limitations. First,

it implements a set of word transformation rules that we assume the most used by software

developers when creating identifiers. These word transformations may not be helpful for

other software such as mathematical one where a number of variables such as i, j, and k are

declared. Also, TIDIER has a cubic complexity in the number of characters composing the

identifier, words in the dictionary, and maximum number of characters composing dictionary

words. Thus, it may require a considerable amount of time when dealing with large software

systems.

Limitation of TRIS: TRIS is accurate and faster than TIDIER. However, it shares with

TIDIER the inconvenience of being based on word transformations rules that may be not

helpful to expand some identifiers. In addition, TRIS is sensitive to the quality of the used

software application dictionaries.

Limitation of our Investigation on the Impact of Identifier Splitting on Fea-

ture Location: We observed from the exploration of the analyzed data that the quality and

expressiveness of queries impact the results of identifier splitting on feature location. In fact,

in some cases, we found that queries contain identifiers used just for informal communication

between developers, and no matter what splitting/expansion technique is used, these identi-

fiers provided no useful information, because they only appear in the query vocabulary, and

do not appear at all in the source code vocabulary. Examples of such identifiers include words

that are common in communication, name of developers, etc. Thus, the effect of identifier

splitting could be hidden by such a factor. The impact of queries has been also highlighted by

Binkley et al. who show that vocabulary normalization improve feature location techniques

that use short, more natural queries (Binkley et al., 2012). Recently, the quality of IR queries

has been addressed by Haiduc et al. (Haiduc et al., 2013b) who propose approaches for the

prediction of the quality of IR queries and techniques for their reformulation (Haiduc et al.,
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2013a).

Limitation of our Empirical Study on the Impact of Identifier Splitting on

Traceability Recovery: Different IR techniques showed different results when applying

identifier splitting on traceability recovery. The latter observation means that the type of the

used IR technique can impact the results of such kind of studies. As for feature location, the

quality of the data play also a role and impact the quality of the obtained results. In fact, we

noticed, in some cases, a vocabulary mismatch between requirements and source code due to

the presence of short acronyms in software requirements. Hence, it is clear that in the latter

case the splitting/expansion of identifiers will negatively impact the results of any traceability

recovery technique since it will introduce noise (false positives). Thus, the quality of software

artefacts to be linked may influence the results of such an empirical investigation.

9.3 Future Work

Future work should be devoted to further experiments on more larger software systems,

and to the application of our techniques/results in industrial settings. Below, we describe

how we plan to extend the work presented in this thesis:

Context-Awareness for Vocabulary Normalization: We aim at replicating this ex-

perimental study using eye-tracking tools, to better observe the way developers investigate the

contextual information when performing identifier splitting and expansion. Another research

direction we wish to explore is to implement a context-aware approach and tool that—within

an Integrated Development Environment—support developers program understanding, not

only by suggesting possible identifier splitting/expansions, but also by providing contextual

information useful when reading and understanding an identifier. We also would like to in-

volve people from industry in this kind of study instead of being limited to academic contexts.

TIDIER: In the future, it could be interesting to implement other word transformations

based on surveys conducted with software developers. We also want to improve the string-edit

distance guiding TIDIER, speed up its algorithm, and use semantic information.

TRIS: We would like to extend TRIS evaluation to larger systems using other words

transformations rules. In addition, we plan to compare it to more recent approaches such as

(Lawrie et Binkley, 2011) and LINSEN (Corazza et al., 2012).

Impact of Identifier Splitting on Feature Location: We plan to extend our eval-

uation to other software systems belonging to other systems such as C, C++ or COBOL.

In addition, we plan to investigate the impact of other clever identifier splitting/expansion

techniques such as Normalize (Lawrie et Binkley, 2011) to analyze whether they will show

further improvements.
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Impact of Identifier Splitting on Traceability Recovery: As for feature location,

it could be interesting to evaluate the studied traceability recovery techniques on large soft-

ware systems written in programming languages different from Java. The reason is that

Java developers adhere to naming conventions and identifiers creation rules and, thus, the

improvement brought by advanced splitting techniques may be equal to the one brought by

any other simple CamelCase splitter (Dit et al., 2011).

Mining Software Repositories to Study the Impact of Identifier Style on Soft-

ware Quality: Several research works (De Lucia et al., 2006; Lawrie et al., 2007b,a; Abebe

et al., 2012) have tried to assess the quality of identifiers. However, there is little empirical

evidence on the impact of identifier style on software quality.

To address this challenge, we are currently conducting an empirical study where the con-

text consists of six (Java and C) open-source projects: ArgoUML1, Ant2, Apache3, Samba4,

Hibernate5, and PostgrSQL6.

The main research questions that we are addressing are as follows:

1. RQ1: How open-source projects are written in terms of identifier styles?

2. RQ2: Do open-source developers adhere to the style of the project they join when

naming identifiers or do they bring their own style?

3. RQ3: How identifier style vary with respect to the type of identifier?

4. RQ4: Do developers’ characteristics (i.e., experience, activity focus, etc.) lead them

to adopt a specific identifier style?

5. RQ5: Does a specific identifier style (e.g., abbreviations or acronyms) introduce bugs

in software systems?

6. RQ6: Does a specific identifier style (e.g., abbreviations or acronyms) impact internal

quality attributes, in particular, the semantic coupling between classes and the semantic

cohesion between methods of a project?

7. RQ7: Is source code vocabulary normalization able to help improve cases of poor

semantic coupling and cohesion?

1http://argouml.tigris.org/
2http://ant.apache.org/
3http://www.apache.org/
4http://www.samba.org/
5http://www.hibernate.org/
6http://www.postgresql.org/
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To address these research questions, we follow the methodology described below.

For each project, we extract, using the distributed version control Git7, the identifiers

used in the projects and also the identifiers added by each developer. We classify identifiers

according to whether they are names of methods, local variables, parameters, or attributes.

Then, we infer the identifier style of the projects and the identifier style of developers. We do

so for the four type of identifiers considered, i.e., name of methods, local variables, attributes,

and parameters. We infer the identifier style using a statistical model, namely, the Hidden

Markov Model (HMM) (Baggenstoss, 2001). We choose the Baum-Welch (Baum, 1970)

algorithm to train our data sets and to define parameters of our HMM. We use HMM models

because they are especially known for their application in temporal pattern recognition such

as speech, handwriting, and gesture recognition (Juang et Rabiner, 1991; Starner et Pentl,

1995), part-of-speech tagging (Thede et Harper, 1999), musical score following (Pardo et

Birmingham, 2005), and bio-informatics analyses, such as the CpG island detection and

splice site recognition (R. Durbin et Mitchison, 1998) (RQ1, RQ2, and RQ3).

We also extract information about developers of the projects such as the number of files

they changed, number of commits they did, their experience in the project, etc. We define

their experience as the difference between the date of the last and first commits they did. In

addition, we extract information about the number of bugs they introduced (if any) and the

summary of the introduced bugs. Furthermore, we compute the activity focus of developers

as defined by Bird et al. (Bird et al., 2008). The activity focus is the average directory tree

distance between all pairs of files that are committed to by developers within each team.

The aim is to see whether the adoption of a specific identifier style is related to developers’

characteristics or not (RQ4).

The next challenge we are going to address is whether a specific identifier style (e.g.,

abbreviations or acronyms) introduces bugs in the systems and whether it impacts internal

quality measures, namely, semantic coupling and cohesion (Bavota et al., 2013) (RQ5 and

RQ6). Finally, we would like to see if normalizing source code identifiers using TRIS (Guer-

rouj et al., 2012) or Normalize (Lawrie et Binkley, 2011) in cases of poor semantic coupling

and cohesion can help improve these internal quality metrics (RQ7).

7http://git-scm.com/
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9.4 Publications

Our publications related to this thesis are as follows:

Journal articles

• Latifa Guerrouj, Massimilano Di Penta, Yann-Gaël Guéhéneuc, and Giuliano Anto-

niol. An Experimental Investigation on the Effects of Contexts on Source Code Identi-

fiers Splitting and Expansion. Empirical Software Engineering Journal (EMSE). DOI:

10.1007/s10664-013-9260-1, to appear (2013).

• Latifa Guerrouj, Massimilano Di Penta, Giuliano Antoniol, and Yann-Gaël Guéhéneuc.

TIDIER: An Identifier Splitting Approach Using Speech Recognition Techniques. Jour-

nal of Software Evolution and Process (JSEP). 25(6): 569-661 (2013).

Conference articles

• Latifa Guerrouj, Philippe Galinier, Yann-Gaël Guéhéneuc, Giuliano Antoniol, and

Massimiliano Di Penta.TRIS: a Fast and Accurate Identifiers Splitting and Expansion

Algorithm. Proceedings of the 19th IEEE Working Conference on Reverse Engineering

(WCRE), October 2012.

• Bogdan Dit, Latifa Guerrouj, Denys Poshyvanyk, Giuliano Antoniol. Can Better

Identifier Splitting Techniques Help Feature Location? Proceedings of the 19th IEEE

International Conference on Program Comprehension (ICPC), June 2011.

• Nioosha Madani, Latifa Guerrouj, Massimiliano Di Penta, Yann-Gaël Guéhéneuc,

Giuliano Antoniol. Recognizing Words from Source Code Identifiers Using Speech
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Recognition Techniques. Proceedings of the 14th IEEE European Conference on Soft-

ware Maintenance and Reengineering (CSMR), Mars 2010. This paper received the

Best Paper award of CSMR’10.

• Latifa Guerrouj. Normalizing Source Code Vocabulary to Enhance Program Compre-

hension and Software Quality. Proceedings of the 35th ACM International Conference

on Software Engineering (ICSE), May 2013.

• Latifa Guerrouj. Automatic Derivation of Concepts Based on the Analysis of Source

Code Identifiers. Proceedings of the 17th Working Conference on Reverse Engineering

(WCRE), October 2012.

During my Ph.D., I co-organized the 2nd Workshop on Mining Unstructured Data (MUD’12)

collocated with the 19th Working Conference on Reverse Engineering (WCRE’12). The work-

shop involved topics related to my dissertation:

• Alberto Bacchelli, Nicolas Bettenburg, Latifa Guerrouj. Mining Unstructured Data

because “Mining Unstructured Data is Like Fishing in Muddy Waters!”. Proceedings of

the 19th Working Conference on Reverse Engineering (WCRE), October 2012.
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Appendix A

TIDIER descriptive statistics of precision and recall

Table A.1 TIDIER, Samurai, and CamelCase descriptive statistics of precision.

Method Dictionary 1Q Median 3Q Mean σ

CamelCase 0.00 0.50 1.00 0.45 0.44
Samurai 0.00 0.50 1.00 0.50 0.43

TIDIER English dictionary 0.00 0.25 0.67 0.38 0.41
English dict. + domain kn. 0.25 0.50 1.00 0.58 0.40
WordNet 0.00 0.50 1.00 0.43 0.41
Function 0.00 0.00 0.00 0.14 0.28
File 0.00 0.00 0.50 0.30 0.37
Application 0.00 0.50 1.00 0.51 0.40
Application + domain kn. 0.50 1.00 1.00 0.72 0.37

Table A.2 TIDIER, Samurai, and CamelCase descriptive statistics of recall.

Method Dictionary 1Q Median 3Q Mean σ

CamelCase 0.00 0.50 1.00 0.44 0.44
Samurai 0.00 0.50 1.00 0.50 0.43

TIDIER English dictionary 0.00 0.33 1.00 0.40 0.42
English dict. + domain kn. 0.33 0.67 1.00 0.64 0.39
WordNet 0.00 0.50 1.00 0.45 0.41
Function 0.00 0.00 0.00 0.14 0.29
File 0.00 0.00 0.60 0.33 0.39
Application 0.00 0.50 1.00 0.55 0.41
Application + domain kn. 0.50 1.00 1.00 0.75 0.36
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Appendix B

User studies on context and vocabulary normalization: characteristics of

applications, identifers oracle and box plots of precision and recall

Table B.1 reports the characteristics of the 34 applications from which the 50 identifiers

used in our study were sampled.

Table B.1 Applications from which we sampled the identifiers used in Exp I and Exp II.

Application Description Files Comments Size (KLOC) Sampled Identifiers
gnuradio-3.2.2 Multimedia 1,520 51,515 96,352 dbsm start
acct-6.5.1 Login/accounting

utils
59 2,854 8,887 acct file

binutils-2.20 Unix utils 1,644 207,028 1,071,651 arm reg parse, dupok, gmon io write
cpio-2.9 Archiving util 204 9,217 30,309 hol cluster base
dico-2.0 DICT server 242 10,546 56,823 argv to scm, assoc
emacs-19.34 Editor 347 15,151 18,633 dfp, load scnptr
freebsd-8.0.0 OS kernel 21,609 1,884,742 5,822,143 rrt prev
g77-0.5.19.1 Fortran to C transla-

tor
237 14,105 100,451 FFEBAD severityFATAL

gcal-3.01 Calendar 74 15,855 61,824 HD SYLVESTER
gcc-2.7.2.2 C compiler 690 98,290 331,030 nvtbl
gcl-2.6.7 Common Lisp inter-

preter
1,492 90,899 331,940 bfd abs section ptr, internal auxent

glibc-2.0.4 C library 2,761 69,425 167,685 f getlk
gmp-4.3.1 GNU Multiple Pre-

cision Arithmetic Li-
brary (GMP)

706 19,575 81,931 GMP NUMB MAX

gnubatch-1.1 Batch scheduling 511 10,593 11,2751 API SIGNON
gnuspool-1.5 Spooling system 477 10,391 94,446 load maind, pendulist
gprolog-1.3.1 Prolog interpreter 170 15,701 49,246 pl stm tbl
gs5.50 Postscript interpreter 792 51,425 169,099 pmat, PNG INFO PLTE
guile-1.8.7 Scheme inter-

preter/compiler
265 14,610 73,964 scm set smob print

hurd-0.2 OS kernel 869 33,577 97,672 ipfrag
icecat-3.0.2-g1 Web browser 5,416 511,274 1,227,838 CKA KEY TYPE,

CKR SESSION READ ONLY, pBt,
PRBool, SECOID SetAlgorithmID

libextractor-0.5.22 Metadata extraction
lib

4,516 18,319 2,455 AV NOPTS VALUE, esi

libjit-0.1.2 Just in time compila-
tion

126 17,598 70,241 dpas sem is rvalue, fpcw new offset

libunistring-0.9.1.1 Unicode manipulation 1,183 20,787 203,195 ENOTCONN
linux-2.6.31.6 OS kernel 1,801 194,437 753,366 ac comm, blk queue io stat
lynx-2.7.1 Web browser 196 21,727 70241 dumbterm
mifluz-0.24.0 Library for full-text

inverted index
243 31,159 53,246 LF ISSET

mtools-4.0.12 MS-DOS utilities for
Unix

90 3,213 17,661 EXTCASE

nethack-3.2.2 Dungeon exploration
game

313 21,363 154,412 NUMMONS

pnet-0.8.0 .NET porting 680 77,546 330,447 FFI Ok
pspp-0.6.2 Statistical data analy-

sis
727 29,977 134,958 case data rw idx

radius-1.6 Remote user authenti-
cation

233 12,877 73,930 dict value iter helper, grad avp t,
mempcpy

sed-4.2.1 Regular expression in-
terpreter

116 6,355 25,601 rm so

sendmail-8.8.5 Mail server 52 10,594 34,444 denlstring
xaos-3.0 Fractal zoomer 109 1,978 26,894 cimage
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Table B.2 reports the expansions of all the identifiers used in the experiments. The

column Separator indicates whether underscore or CamelCase separators are used. The

columns Abbr., Acro. and Plain report the number of abbreviations, acronyms and plain

English words composing each identifier.

Table B.2 Splitting/expansion oracle and kinds of terms composing identifiers.

Identifiers Separators Oracle Abbr. Acro. Plain
ac comm

√
accounting communication 2 0 0

acct file
√

accounting file 1 0 1
API SIGNON

√
application programming interface sign on 0 1 2

argv to scm
√

argument vector to source code module 2 1 1
arm reg parse

√
arm register parse 1 1 1

assoc association 1 0 0
AV NOPTS VALUE

√
average number options value 3 0 1

bfd abs section ptr
√

binary file descriptor absolute section pointer 2 1 1
blk queue io stat

√
block queue input output statistic 2 1 1

case data rw idx
√

case data row index 2 0 2
cimage current image 1 0 1
CKA KEY TYPE

√
check attribute key type 2 0 2

CKR SESSION READ ONLY
√

check return session read only 2 0 3
dbsm start

√
decibel per square meter start 0 1 1

denlstring delete new line string 3 0 1
dfp default face pointer 0 1 0
dict value iter helper

√
dictionary value iterator helper 2 0 2

dpas sem is rvalue
√

dynamic pascal semantic is right value 4 0 2
dumbterm dumb terminal 1 0 1
dupok duplicate ok 1 0 1
ENOTCONN endpoint not connected 2 0 1
esi extended source index 0 1 0
EXTCASE extended case 1 0 1
f getlk

√
file get lock 2 0 1

FFEBAD severityFATAL
√

fortran front end bad severity fatal 0 1 3
FFI Ok

√
foreign function interface ok 0 1 1

fpcw new offset
√

floating point control unit word new offset 0 1 2
gmon io write

√
graphic monitor input output write 2 1 1

GMP NUMB MAX
√

gnu multi precision number maximum 2 1 0
grad avp t

√
gnu radius attribute value pointer type 6 0 0

HD SYLVESTER
√

holiday sylvester 1 0 1
hol cluster base

√
help option list cluster base 0 1 2

internal auxent
√

internal auxiliary entities 2 0 1
ipfrag internet protocol fragment 1 1 0
LF ISSET

√
line feed is set 2 0 2

load maind
√

load main directory 1 0 2
load scnptr

√
load scan pointer 2 0 1

HD SYLVESTER
√

holiday sylvester 1 0 1
mempcpy memory pointer copy 3 0 0
NUMMONS number monsters 2 0 0
nvtbl non virtual table 3 0 0
pBt pointer binary tree 0 1 9
pendulist pending user list 2 0 1
pl stm tbl

√
prolog stream table 3 0 0

pmat partitioned matrix 2 0 0
PNG INFO PLTE

√
portable network graphics information palette 2 1 0

PRBool portable runtime boolean 3 0 0
rm so

√
remove shared object 3 0 0

rrt prev
√

rip routing table 1 1 0
scm set smob print

√
scm set small object print 2 1 2

SECOID SetAlgorithmID
√

security object identifier set algorithm identifier 4 0 2

Detailed Results

This appendix reports figures detailing results presented and discussed in Section 4.4 of

Chapter 4. Specifically, Fig. B.1 and Fig. B.2 show boxplots of Precision and Recall for the
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different levels of context, respectively.
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Figure B.1 Boxplots of precision for the different context levels (AF= Acronym Finder).
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Figure B.2 Boxplots of recall for the different context levels (AF= Acronym Finder).


