
Laleh M. Eshkevari, Ph.D Dissertation Defense

Automatic Detection and
Classification of Renamings

Supervisors:
 Dr. Antoniol

Dr. Guéhéneuc

Department of Computer and Software Engineering
Ecole Polytechnique de Montreal, Quebec, Canada

 14 December 2015

❖ Context and Motivation

❖ Thesis Statement

❖ Taxonomy of Renaming

❖ Detection

❖ Classification

❖ Conclusion and Future Works

2

Outline

{
Java and PHP

Identifiers are added, deleted, or modified, i.e.,
renamed.

Why identifiers are renamed?

❖ Improve consistency

❖ Adjust naming convention

❖ Correct typos

3

Context and Motivation

❖ Developer A:
“There’s a balance to be struck: - identifiers are communication, and as the code
is refactored it is critical that identifiers continue to correctly describe their
purpose - changing identifiers tends to break APIs, and sometimes they’re used
for unintended purposes, over-frequent change is not good.”

❖ Developer B:
“I encountered a problem when my colleague wrote Java code which uses
reflection. I avoided renaming some classes/methods which will be inspected by
the reflection, since doing so can introduce unpredictable bugs.”

4

Context and Motivation

g ->

rebuildTypesAffectedByMissingSecondaryTypes ->

sessState ->

e ->

verifyAXFR ->

jj_3R_70 ->

length ->

generalization

sessionState

t

verifyStream

jj_3R_69

rebuildTypesAffectedBySecondaryTypes

l

MicroContainerNotAdvisedAnnotationOverrideProxyAdvisorTestCase ->

MicrocontainerAdvisedAnnotationOverrideProxyAdvisorTestCase

5

Examples of Renaming
parameter, Exception ->

local var, MGeneralization ->

local var, SessionState

local var, int

method, private, boolean, final

method, public, byte

Throwable

Object

Invited: 739 developers

Open-source and industrial programs

Object-Oriented

Participated: 71

❖ How often do developers rename?

❖ When do they rename?

❖ Is renaming straightforward?

❖ Already postpone a renaming?
6

Developers Opinion on Renamings

7

How often do developers rename?

Very frequently (almost every day)

Frequently (few times per week)

Occasionally (few times per month)

Rarely (up to once per month)

13% 25% 38% 50%

14%

46%

18%

21%

8

When do the developers rename?

When changing the functionality

When adding new functionality

When performing refactoring

When understanding code

When fixing a bug

Apart from other development activities

23% 45% 68% 90%

17%

42%

51%

90%

65%

89%

9

Is renaming straightforward?

In most cases yes

Requires time and effort

Sometimes no, sometimes

In most cases no

Identifier renaming is straightforward

10% 20% 30% 40%

8%

24%

32%

17%

25%

10

Already postponed a renaming?

High impact on the system

Too risky (could introduce bugs)

Potential impact on other systems

High effort required

15% 30% 45% 60%

25%

52%

35%

25%

Goal: To understand when, why, and how developers
rename identifiers.

11

Thesis Statement

Detection and linguistic analysis of identifier renamings
provides valuable insight on how, why, when developers
rename identifiers.

Tool supports, programming language, and naming
convention are factors that impact renamings frequency.

❖ We defined a Taxonomy of renaming based on grounded-theory
approach [Strauss, 1987; Glaser, 1992].

❖ We manually analyzed 500 renaming to identify dimensions of
renaming [Eshkevari et al, Arnaoudova et al].

12

Taxonomy of Renamings

Eshkevari et al. An exploratory study of identifier renamings. MSR 2011

Grammar
changes

Entity
kind

Form of
renamings

Semantic
changes

Arnaoudova et al. REPENT : Analyzing the Nature of Identifier Renamings. TSE 2014

13

Taxonomy of Renamings

Entity
kind

package
class
method

constructor
field

parameters
local vars

Form of
renamings

Semantic
changes

Grammar
changes

simple
complex
formatting only
term reordering

preserve meaning
change meaning
narrow meaning

add meaning
broaden meaning

remove meaning
none

part of speech change
none

hypernym color

hyponym red

holonym tree

meronym trunk

14

Taxonomy of Renamings

Form of
renamings

simple
complex
formatting only
term reordering

override -> overriding

JavaExtension -> JAVA_EXTENSION

setDelaySocketClose -> setSocketCloseDelay

IsAssignmentWithNoEffectMASK -> AssignmentHasNoEffect

15

Taxonomy of Renamings

Semantic
changes

preserve meaning
change meaning
narrow meaning

add meaning
broaden meaning

remove meaning
none

synonym
synonym phrase
spelling error
expansion
abbreviation

isPotentialMatch -> isPossibleMatch
notVisibleReference -> hiddenReference
sourceField -> fiieldInfo
 collab -> collaboration
operationDesc -> opDesc

opposite
opposite phrase
whole-part
whole-part phrase
unrelated

disableLookups -> enableLookups
isNotPrimitiveType -> isPrimitiveType
body -> node
Path -> FileAndDirectory
expressionModel -> scriptModel

specialization
specialization phrase

thrownExceptionSize -> boundExceptionLength

item -> toDoItem generalization
generalization phrase

getAccessRestriction -> getAccessRuleSet

eventName -> name
flags -> typeAndFlags

removedPackagePath -> packagePath

extension -> Extension

16

Taxonomy of Renamings

Grammar
changes

part of speech change
none

getUpdatedSize -> updateFigGroupSize

isPotentialMatch -> isPossibleMatch

private int invParamsPtr =-1;

private int invalidParamReferencesPtr=-1;

Entity
kind

Form of
renamings

Semantic
changes

Grammer
changes

complex preserve meaning

add meaning

field plural to singular

invParamsPtr -> invalidParamReferencesPtr

17

Example

18

Detection and Classification Approach

Detection

Line mapping
Entity mapping

19

Renaming Detection

Detection

Line mapping
Entity mapping
Data flow analysis

20

Renaming Detection
❖ We build a symbol table considering entities scope, signature, and
 line number
❖ Identify modifications and uses within and across file by resolving

 imported files

Detection

Line mapping
Entity mapping
Data flow analysis
Score of mapping

21

Renaming Detection

❖ We use the Normalized Levenshtein edit Distance (NLD)

NLD=
LD(Si,Sj)

Length(Si) + Length(Sj)

Hungarian algorithm
maximize score

Statement Similarity
Threshold (SST)

similarity_score=1- NLD Declaration Similarity
Threshold (DST)

Detection

Line mapping
Entity mapping
Data flow analysis
Score of mapping

22

Renaming Detection

score=sum(Si,j)
i,j ∈ mapped statements{ numMatched >= NST

numMatched < NST
score=0

score(El,Ek)=

O1 -> N1
O2 -> N2
O3 -> N4

score(STATE_INITIAL,STATE_PRE_INIT)=1+1+1=3

Number of
matched

Statement
Threshold

Detection

Line mapping
Entity mapping
Data flow analysis
Score of mapping

23

Renaming Detection

Renaming detection

Hungarian algorithm
maximize score

24

Analyzed Programs

Programs

Tomcat
Eclipse-JDT
ArgoUML
JBoss
dnsjava

46,498
54,571
68,400
25,028
1,415

RevisionsPeriod Total files

1999–2006
2001–2006
1998-2012
1999–2011
1998–2011

12,205
5,758
300
40,003
365

ArgoUML

17%

18%

10%
54%

Type
Field
Constructor
Method
LocalVar
parameter

dnsjava

41%

13%
20%

15%
5%6%

Eclipse-JDT

26%

31%
26%

1%
16%1%

JBoss

25%

24% 29%

3%
13%5%

Tomcat

21%

18%
35%

2%

20%
3%

25

Detection Results

How accurate is the set of renamings detected by REPENT?

❖ Sample size, 95%, 5% = 1,723

❖ Two evaluators, voting, conflict resolved by third evaluator

26

Detection Accuracy

Precision =
| TPS | + | FPS |

| TPS |
= 88% Programs

Tomcat
Eclipse-JDT
ArgoUml
JBoss
dnsjava

Precision

80%
94%
97%
91%
78%

Low precision in detection of parameter:
dnsjava: 54%
Tomcat : 67%

Not enough parameters when calibrating
the thresholds

+-

How complete is the set of renamings detected by REPENT?

❖ Commit logs “renam”, remove false positives

27

Detection Accuracy

Recall =
| DCR |

| DCR ∩ DR| = 92%
Programs

Tomcat
Eclipse-JDT
ArgoUml
JBoss
dnsjava

Recall

100%
63%
75%
96%
98%

Eclipse-JDT: Failed to identify Class
renamings due to missed file renamings.

ArgoUML: 3/4 documente renamings is
identified. The missed case was a combination
combination of renaming and refactoring

❖ We identify 33,812 renamings in five open source
programs.

❖ We manually validated a sample size (95% +- 5%) of
1,723 renamings.

❖ The overall precision of detection is 88%.

❖ The overall recall of detection is 92%.

❖ The high precision and recall make our approach
suitable for identifying renamings.

28

Detection Summary

29

Detection and Classification Approach

30

Taxonomy of Renamings

Entity
kind

package
class
method

constructor
field

parameters
local vars

Form of
renamings

Semantic
changes

Grammar
changes

simple
complex
formatting only
term reordering

preserve meaning
change meaning
narrow meaning

add meaning
broaden meaning

remove meaning
none

part of speech change
none

Classification

Identifier splitting

31

Renaming Classification

invParamsPtr -> invalidParamReferencesPtr

inv Params Ptr invalid Param References Ptr

Classification

Identifier splitting

32

Renaming Classification

invParamsPtr -> invalidParamReferencesPtr

inv Params Ptr invalid Param References Ptr

Term mapping

inv

Params

Ptr

invalid

Param

References

Ptr

Classification

Identifier splitting

33

Renaming Classification
invParamsPtr -> invalidParamReferencesPtr

inv Params Ptr invalid Param References Ptr

Term mapping

inv ->

invalid
param
References
ptr

?

exactMatch(t11,t21)?

caseDiff(t11,t21)?

semanticMatch(t11,t21)?

sameStem(t11,t21)?

N

N

N

Y

Y

Y

Y

t11 matched t21

t11 matched t21

t11 matched t21

t11 matched t21

N

WordNet,
prefix,suffix,NLD

Porter stemmingrepeat for t11 and t22

 inv ->
params ->
 - ->
 ptr ->

invalid
param
References
ptr

Semantic analyzer

Classification

Identifier splitting

34

Renaming Classification

invParamsPtr -> invalidParamReferencesPtr
inv Params Ptr invalid Param References Ptr

Term mapping

 inv ->
params ->
 - ->
 ptr ->

invalid
param
References
ptr

Semantic analyzer

{ { { NN NNS VBP { { JJ NN VBP{ { NNS

expansion
related
added

exact match

expansion, POS change
plural to singular

added
exact match

Stanford Part-of-Speech AnalyzerPOS tagger

35

Results for Form of Renaming
ArgoUML

45%

43%

12%

Complex
Formatting only
Simple
Term reordering

dnsjava

82%

11%8%

Eclipse

63% 1%

36%

JBoss

60%
5%

35%

Tomcat

69%
2%

28%

36

Results Semantic changes

1,750

3,500

5,250

7,000

ArgoUML dnsjava Eclipse JBoss Tomcat

Preserve meaning
Change meaning
Narrow meaning
Broaden meaning
Add meaning
Remove meaning
None

37

Results Grammar Change
ArgoUML

1%

83%

1%

15%

POS
Singular-Plural
None
Verb conj change

dnsjava

77%

1%
22%

Eclipse

2%

71%

5%

22%

JBoss

1%

78%

2%
19%

Tomcat

1%

76%

2%
20%

How accurate is the set of classified renamings?
❖ Sample size, 95%, 10% , for each level of dimension
❖ 330 , 1102, 355, for each dimension respectively.
❖ Two evaluators, voting, conflict was resolve

38

Classification Accuracy

Programs

Tomcat
Eclipse-JDT
ArgoUML
JBoss
dnsjava

Form of
renaming

96%
96%
100%
98%
100%

Semantic
changes

72%
82%
88%
79%
92%

Grammar
changes

61%
75%
88%
72%
100%

+-

39

Classification Accuracy

Programs

Tomcat
Eclipse-JDT
ArgoUML
JBoss
dnsjava

Form of
renaming

96%
96%
100%
98%
100%

Semantic
changes

72%
82%
88%
79%
92%

Grammar
changes

61%
75%
88%
72%
100%

wrong term mapping
add or remove meaning

- wrong splitting of all lower-cased

narrow or broaden meaning

- wrong splitting,

- wrong term mapping,

- wrong relations between terms

is -> get hyponym

long -> short antonym

- accurate in singular/plural

- fairly accurate in verb conj change

- low precision in other POS

Gupta et al. Part-of-Speech Tagging of Program Identifiers for Improved Text-based Software Engineering Tools . ICP 2013

❖ Java is a statically type and object-oriented language.

❖ We are interested to investigate the applicability of
our approach to a language different from Java.

❖ We choose PHP as it is a popular language, it is a
dynamically type language and it allows scripting,
procedural and object-oriented programming.

40

Applicability to other languages

41

Challenges!!

Entity
kind

package
class
method

constructor
field

parameters
local vars

namespace
class
method

constructor
field

parameters
vars
function

Form of
renaming

Semantic
changes

Grammar
changes

 Renamings Detection

-Line mappings

-Extracting entity declarations

-Extracting def-uses

- All entities except variables
have declaration

- Assignments are considered
as declarations of variables

- Access entities defined in other files

- Java: import, fixed location

- PHP: include, any location

42

PHP Renamings Detection

Detection

Line mapping
Entity mapping
Data flow analysis
Score of mapping
Renaming detection

- Resolve the include

- We use same thresholds SST,NST, DST as calibrated for
Java programs

Fixed point algorithm:

 - Eclipse PDT tool to expect AST
- Heuristic
- Symbolic execution

Eshkevari et al. Identifying and Locating Interference Issues in PHP Applications. ICPC 2014

- Resolve the include

- Resolve the type, method/function binding

- Perform inter/intra procedural, flow sensitive- context
insensitive analysis to extract the def-uses

43

Challenges!!

Entity
kind

namespace
class
method

constructor
filed

parameters
local vars

function

Form of
renaming

Semantic
changes

Grammar
changes

Identifier splitting

- no naming convention in PHP
- PHP is case insensitive

44

Analyzed Programs

Programs

Wordpress

Drupal

phpBB

386

322

368

RevisionsPeriod Total files

06 March 2015
06 April 2015

18 Jun 2006
21 July 2006

547

492

143

19 March 2011
30 May 2011

45

Detection Results
Wordpress

10%

80%

10%
Type
Field
LocalVar
Constructor
Method
parameter

Drupal

77%

23%

phpBB

6%

94%

Programs

Wordpress
Drupal
phpBB

Precision

100%
78%
84%

Precision =
| TPS | + | FPS |

| TPS | = 85%

Recall =
| TPS | + | FNS |

| TPS | = 78%
Recall

62%
81%
87%

46

Results for Form of Renaming
Wordpress

90%

10%

Complex
Formatting only
Simple
Term reordering

Drupal

100%

phpBB

79%

14%
7%

Programs

Wordpress
Drupal
phpBB

Precision

100%
100%
100%

47

Results Semantic changes

0

7.5

15

22.5

30

Wordpress phpBB Drupal

Preserve meaning
Change meaning
Add meaning
Remove meaning
Broaden meaning
Narrow meaning
None

_update_8000_node_get_types -> _update_7000_node_get_types

48

Precision of Semantic Change

Semantic
change

Preserve meaning

Broaden meaning

None
Narrow meaning

Change meaning

Add meaning
Remove meaning

Wordpress Drupal phpBB

100%- -
60% 57%-
0% 100%-

100% 50%-
0% - -

100% - -
100% 100%-

WP_Customize_Upload_Control->WP_Customize_Media_Control

title->link_text ACL_NO->ACL_NEVER
module_name->module_basename

49

Results Grammar Change
Wordpress

80%

10%10%

POS
Singular-Plural
None
Verb conj change

Drupal

100%

phpBB

86%

14%

50

Precision of Grammar Change

Semantic
change

Singular/Plural

None

Verb conj change
Other POS

Wordpress Drupal phpBB

-100% -
- --

100% 100%-
100% 100%100%

tags-> tag

{ NNS { NN
ACL_NO-> ACL_NEVER

{

NN {

NN{

RB { RB

new_content -> new_src

JJ{ JJ{ { NN { NN

column_type -> orig_column_type

{ NN { NN{ NN { NN{ VBG

Construct validity:

❖ File renamings: thresholds 60%, CVS verging system

❖ Precision: human errors, subjectiveness

❖ Recall: small number of documented renamings

Internal validity:

❖ Calibration of thresholds, different results with different thresholds

External validity:

❖ Five open-source Java programs, different domain and size

51

Limitations of Detection

Construct validity:

❖ Precision and recall of detection

❖ Precision: human errors, subjectiveness

Internal validity:

❖ Use of threshold for term mapping, abbreviation and
expansion

External validity:

❖ Generalization, Java and PHP, different trends

52

Limitations of Classification

53

Lesson Learned

Goal: To understand when, why, and how developers rename
identifiers.

❖ We know that renaming is quite a frequent activity during
program evolution.

❖ It is mostly done when functionality of entities are changed and
also during refactoring.

❖ Though sometimes there is an urge for renaming, it is avoided
due to its cost and efforts.

❖ Developers tends to add and remove terms to rename identifiers,
while keeping the part of speech intact.

54

Conclusion

❖ Recommending a name for a new entity or an entity
being renamed.

❖ Extends the study to other programming languages.

❖ Support automatic renamings in PHP programs.

55

Future Works

Thank you :)

g ->

rebuildTypesAffectedByMissingSecondaryTypes ->

sessState ->

e ->

verifyAXFR ->

jj_3R_70 ->

v ->

length ->

generalization

sessionState

t

verifyStream

jj_3R_69

rebuildTypesAffectedBySecondaryTypes

list

l

MicroContainerNotAdvisedAnnotationOverrideProxyAdvisorTestCase ->

MicrocontainerAdvisedAnnotationOverrideProxyAdvisorTestCase

58

Examples of Renaming
parameter, Exception ->

local var, MGeneralization ->

local var, SessionState

local var, Vector ->

local var, int

method, private, boolean, final

method, public, byte

method, protected, void

Throwable

Object

List

59

Detection and Classification Approach

60

Thresholds for Detection
Declaration Similarity Threshold (DST) -> 0.7
Number of matched Statement Threshold (NST) -> [0,1] step +0.1
Statement Similarity Threshold (SST) -> for each fixed NST, [0,1] step +0.1

NST= 0.1 -> SST = 0.1 ,0.2,…. 0.9,1
NST= 0.2 -> SST = 0.1 ,0.2,…. 0.9,1

…
NST= 0.9 -> SST = 0.1 ,0.2,…. 0.9,1
NST= 1 -> SST = 0.1 ,0.2,…. 0.9,1

NST= 0.1, SST = 0.1
NST= 0.1, SST = 0.2

…
NST= 0.1, SST = 0.9
NST= 0.1, SST = 1

DR1

DR2

…
DR9

DR10

INTERSECT = DR1 ∩ DR2 ∩ … DR9 ∩ DR10

UNION = DR1 ∪ DR2 ∪ … DR9 ∪ DR10

COMPLEMENT = UNION - INTERSECT

manual validation Oracle
724, Tomcat

manual validation

Oracle
2,265

❖ include(“./f1.php”)

❖ include_once (“./” . “f1.php”)

❖ require (PATH. “f1.php”)

❖ require_once (getRoot(). “f1.php”)

61

Include Statements

62

Include Resolution
Fixed point algorithm:

 - Eclipse PDT tool to expect AST
- Heuristic
- Symbolic execution

63

Experiment
Programs UnknownRelease Includes

statements

629
3
17
95
114

Wordpress

NextGen Gallery

Google XML Sitemap
Contact Form 7

Akismet

SEO by YOAST

WP Sitemap Page
Google XML Sitemaps

 for qTranslate

YARPP
Jetpack

W3 Total Cache

3.6 – 3.7
2.5.6 – 2.5.9
3.5 - 4.4.1
2.7 - 2.3.5
1.9.3 – 2.0.40
3.2 - 3.6
3.2.7 - 3.3.1
1.1.7 - 1.4.22

0.9.2.4 - 0.9.3
1.0.12 - 1.0.12

3.2.7.1 - 3.3.1

- 649
- 3
- 26
- 126
- 144

16 - 19
5
22 - 42

592 - 436

- 5

1 - 1
6 - 6

37
0
16
37
26

- 37
- 0
- 23
- 63
- 37

15 - 18
2
18 - 35
335 - 168

- 2

1 - 1
2 - 2

64

Experiment
Programs UnknownIncludes

statements

629
3
17
95
114

Wordpress

NextGen Gallery

Google XML Sitemap
Contact Form 7

Akismet

SEO by YOAST

WP Sitemap Page
Google XML Sitemaps

 for qTranslate

YARPP
Jetpack

W3 Total Cache

- 649
- 3
- 26
- 126
- 144

16 - 19
5
22 - 42

592 - 436

- 5

1 - 1
6 - 6

37
0
16
37
26

- 37
- 0
- 23
- 63
- 37

15 - 18
2
18 - 35
335 - 168

- 2

1 - 1
2 - 2

Resolved

2
0
11
22
14

- 2
- 0
- 19
- 43
- 15

11 - 13
2
16 - 33
290 - 135

- 2

1 - 1
2 - 2

65

Limitation of Static Resolution

Dynamic analysis
-Use TXL to instrument the include statements
 - Installed wordpress 3.6 with all 10 plugins
- Five simple scenarios
- Logged the actual files at run time

Software lexicon:

❖ Identifiers

❖ Comments

❖ Literal

Importance of lexicon

❖ Program comprehension

❖ Traceability links

❖ Concept location

66

Context and Motivation

❖ Methods and parameters renamings are unavoidable due to evolution, i.e.,
constant changes in requirements.

❖ Using APIs without planning for change can cause ripple effect on the
client lexicon.

❖It is important to choose the naming conventions for each specific project in
an early stage of the development process and following it consistently.

❖ It is worth taking the effort to identify the right order of terms constituting
an identifier to clarify its meaning and avoid possible misunderstandings.

❖ To avoid the need for a sequence of renamings towards spelling error
correction, it is worth taking the time to spellcheck the identifier name when
creating or modifying an entity.

67

Lesson Learned

❖ It is worth investigating which one of the two, an abbreviation or
its English alternative, is more common and thus should be used

❖ Identifiers that contain negation tend to be renamed towards
positive names.

❖ The majority of semantic changes during renamings change,
narrow, broaden, add, or remove a meaning to the identifier, as
part of the evolution process and thus cannot be avoided.

❖It is worth the effort to assure consistency between, on the one
hand, the name of an entity, and, on the other hand, its
functionality, type, or other entities.

68

Lesson Learned

