
UNIVERSITÉ DE MONTRÉAL

AUTOMATIC DETECTION AND CLASSIFICATION OF IDENTIFIERS

LALEH M. ESHKEVARI
DÉPARTEMENT DE GÉNIE INFORMATIQUE ET GÉNIE LOGICIEL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

THÈSE PRÉSENTÉE EN VUE DE L’OBTENTION
DU DIPLÔME DE PHILOSOPHIÆ DOCTOR

(GÉNIE INFORMATIQUE)
JUNE 2015

c© Laleh M. Eshkevari, 2015.

UNIVERSITÉ DE MONTRÉAL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

Cette thèse intitulée :

AUTOMATIC DETECTION AND CLASSIFICATION OF IDENTIFIERS

présentée par : M. ESHKEVARI Laleh
en vue de l’obtention du diplôme de : Philosophiæ Doctor
a été dûment acceptée par le jury d’examen constitué de :

M. KHOMH Foutse, Ph.D., président
M. ANTONIOL Giuliano, Ph.D., membre et directeur de recherche
M. GUÉHÉNEUC Yann-Gaël, Doctorat, membre et codirecteur de recherche
M. MERLO Ettore, Ph.D., membre
Mme HILL Emily, Ph.D., membre externe

iii

To Kianoush and Kevin

iv

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my supervisor, Giulio, for encouraging and
believing in me. Giulio, thank you very much for being always available, honest, and a true
mentor. I am grateful to my co-supervisor, Yann, for his support, and endless dedication.
Through your both guidance I gain valuable experience on how to conduct scientific re-
search, how to be critic of my own work and more importantly how to grow from failure.
Giulio and Yann, I appreciate your patience, and support specially after Kevin’s birth. Wi-
thout your help and support it would have been impossible pursuing my study.

I had the opportunity to collaborate with Dr. James Cordy, Dr. Massimiliano Di Penta
and Dr. Rocco Oliveto. I would like to thank them all for the valuable advice, and expertise
they provided during our collaborative works. I would like to thank all the members of ptidej
and soccer lab for making our research lab a fun, interactive and enjoyable environment.

Special thanks to my dearest friend Venera (Dr. Arnaoudova) for being always there for
me, during my breakdowns, frustrations, and of course happiness. I am thankful to my friend
Aminata, for her valuable comments, and suggestions specially during writing my disserta-
tion. Lastly I would like to thank my family. I would like to thank Kianoush for his endless
love and encouragement. Without you by my side I would not have had the courage to
start this journey. Thank you very much Kevin for being a nice boy and always cheering up
Mommy ! ! ! I would like to thank my parents who encouraged me to follow my dreams.

v

RÉSUMÉ

Le lexique du code source joue un rôle primordial dans la maintenabilité des logiciels. Un
lexique pauvre peut induire à une mauvaise compréhension du programme et à l’augmen-
tation des erreurs du logiciel. Il est donc important que les développeurs maintiennent le
lexique de leur code source en renommant les identifiants afin qu’ils reflètent les concepts
qu’ils expriment. Dans cette thèse, nous étudions le lexique et proposons une approche pour
détecter et classifier les renommages des identifiants dans le code source.
La détection des renommages est basée sur la combinaison de deux techniques : la diffé-
renciation des codes sources et l’analyse de flux de données. Tandis que le classificateur de
renommage utilise une base de données ontologique et un analyseur syntaxique du langage
naturel pour classer les renommages selon la taxonomie que nous avons défini. Afin d’évaluer
l’exactitude et l’exhaustivité du détecteur de renommage, nous avons réalisé une étude em-
pirique sur l’historique de cinq programmes Java open-source. Les résultats de cette étude
rapportent une précision de 88% et un rappel 92%. Nous avons également mené une étude
exploratoire qui analyse et discute comment les identifiants sont renommés, selon la taxono-
mie proposée, dans les cinq programmes Java de l’étude précédente. Les résultats de cette
étude exploratoire montrent qu’il existe des renommages dans chaque dimension de notre
taxonomie.
Afin d’appliquer l’approche proposée aux programmes PHP, nous avons adapte notre détec-
teur de renommages pour prendre en compte les caractéristiques inhérentes à ces programmes.
Une étude préliminaire effectuée sur trois programmes PHP montre que notre approche est
applicable aux programmes PHP. Cependant, ces programmes ont des tendances de renom-
mages différentes de celles observées dans les programmes Java. Cette thèse propose deux
résultats. Tout d’abord, la détection et la classification des renommages et un outil, qui peut
être utilisé pour documenter les renommages. Les développeurs seront en mesure de, par
exemple, rechercher des méthodes qui font partie de l’interface de programmation car celles-
ci impactent les applications clientes. Ils pourront également identifier les incohérences entre
le nom et la fonctionnalité d’une entité en cas de renommage dit risqué comme lors d’un re-
nommage vers un antonyme. Deuxièmement, les résultats de nos études nous fournissent des
leçons qui constituent une base de connaissance et de conseils pouvant aider les développeurs
à éviter des renommages inappropriés ou inutiles et ainsi maintenir la cohérence du lexique
de leur code source.

vi

ABSTRACT

Source code lexicon plays a paramount role in software maintainability: poor lexicon can lead
to poor comprehensibility and increase software fault-proneness. For this reason, developers
should maintain their source code lexicon by renaming identifiers when they do not reflect
the concepts that should express. In this thesis, we study lexicon and propose an approach to
detect and classify identifier renamings in source code. The renaming detection is based on a
combination of source code differencing and data flow analysis, while the renaming classifier
uses a ontological database and a natural language parser to classify renamings according to
a taxonomy we defined. We report a study—conducted on the evolution history of five open-
source Java programs—aimed at evaluating the accuracy and completeness of the renaming
detector. The study reports a precision of 88% and a recall 92%. In addition, we report an
exploratory study investigating and discussing how identifiers are renamed in the five Java
programs, according to our taxonomy. Moreover, we report the challenges and applicability
of the proposed approach to PHP programs and report our preliminary results of renamings
detection and classification for three programs. This thesis provides two outcomes. First, the
renaming detection and classification approach and tool, which can be used for documenting
renamings. Developers will be able to, for example, look up methods that are part of the
public API (as they impact client applications), or look for inconsistencies between the name
and the implementation of an entity that underwent a high risk renaming (e.g., towards the
opposite meaning). Second, pieces of actionable knowledge, based on our qualitative study
of renamings, that provide advice on how to avoid some unnecessary renamings.

vii

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

RÉSUMÉ . v

ABSTRACT . vi

TABLE OF CONTENTS . vii

LIST OF TABLES . x

LIST OF FIGURES . xii

LISTE DES ANNEXES . xiii

CHAPTER 1 INTRODUCTION . 1
1.1 Developer Survey on Identifier Renamings 2
1.2 Our Contributions . 5
1.3 Organization of the Thesis . 7

CHAPTER 2 LITERATURE REVIEW . 8
2.1 Role of Identifiers in Software Quality . 8
2.2 Analysis of Changes and Refactorings . 8
2.3 Summary . 11

CHAPTER 3 RENAMING TAXONOMY . 12
3.1 Entity Kinds . 13
3.2 Forms of Renamings . 14
3.3 Semantic Changes . 14

3.3.1 Preserve Meaning . 14
3.3.2 Change in Meaning . 15
3.3.3 Narrow Meaning . 16
3.3.4 Broaden Meaning . 16

3.4 Add Meaning . 16
3.5 Remove Meaning . 16

viii

3.5.1 None . 17
3.6 Grammar Changes . 17

3.6.1 Part of Speech Change . 17
3.6.2 None . 17

3.7 Summary . 17

CHAPTER 4 RENAMING DETECTION . 19
4.1 Methodology . 19
4.2 Candidate Renaming Filtering . 22
4.3 Summary . 28

CHAPTER 5 RESULTS OF DETECTION . 30
5.1 Research Questions and Study Procedure . 31

5.1.1 Evaluating the Precision of the Detection Approach: Manual Validation 31
5.1.2 Evaluating the Recall of the Detection Approach: Comparison with

Documented Renamings . 32
5.2 Results . 33

5.2.1 RQ-DP: How accurate is the set of renamings detected by REPENT? 33
5.2.2 RQ-DR: How complete is the set of renamings detected by REPENT? 33

5.3 Threats to Validity . 36
5.4 Comparison with Existing Approaches . 38
5.5 Summary . 39

CHAPTER 6 RENAMING CLASSIFICATION . 40
6.1 Identifier Splitting . 40
6.2 Mapping Terms . 42
6.3 Part of Speech and Semantic Analyses . 45
6.4 Summary . 47

CHAPTER 7 RESULTS OF CLASSIFICATION 49
7.1 Research Questions and Study Procedure . 49

7.1.1 Evaluating the Precision of the Classification Approach: Manual Vali-
dation . 50

7.2 Results . 50
7.2.1 RQ-CP: How accurate is the set of classified renamings? 51
7.2.2 RQ1: To what extent do renamings occur with respect to the different

kinds of entities? . 52

ix

7.2.3 RQ2: What kinds of changes occur to terms composing identifiers when
these are renamed? . 54

7.2.4 RQ3: What kinds of semantic changes occur in identifiers when they
are renamed? . 55

7.2.5 RQ4: What kinds of grammar changes occur in identifiers when they
are renamed? . 59

7.3 Threats to Validity . 62
7.4 Summary . 63

CHAPTER 8 CHALLENGES WITH DYNAMIC LANGUAGES 64
8.1 Related Work . 64

8.1.1 Web Application Reverse Engineering 64
8.1.2 Analysis on PHP application . 65

8.2 Challenges and adaptations . 66
8.3 Resolving file inclusion in PHP programs . 67

8.3.1 A Fixed-Point algorithm to resolve include 68
8.3.2 Case study on resolving include . 71

8.4 preliminary study of renamings in PHP aplication 73
8.4.1 Renaming Detection . 73
8.4.2 Results of Renamings Detection . 77
8.4.3 Results of Renamings Classification 78

8.5 Discussion . 80

CHAPTER 9 CONCLUSION . 84
9.1 Lessons Learned . 85
9.2 Future Work . 87

9.2.1 Short-term . 87
9.2.2 Long-term . 87

REFERENCES . 89

ANNEXES . 96

x

LIST OF TABLES

3.1 Summary of the identifier renaming taxonomy 18
5.1 Characteristics of the analyzed programs. 30
5.2 Estimated precision Pr for renaming detection of different entities (95%

±5 confidence). 34
5.3 Comparison with documented renamings. 34
5.4 Detected documented renamings and recall Rc of different entities. . . 35
5.5 REPENT precision and recall. 36
5.6 Accuracy of REPENT and DiffCat on a random sample of revisions. 38
7.1 Renamed entities identified by REPENT - Java programs. 50
7.2 Forms of renamings identified by REPENT in Java programs. 54
7.3 Semantic changes identified by REPENT in Java programs. 54
7.4 Preserve meaning renamings as classified by REPENT. 57
7.5 Change in meaning renamings as classified by REPENT. 58
7.6 Grammar change renamings as classified by REPENT. 61
8.1 Implemented functions, operators and Magic Variables 69
8.2 Analyzed releases of WP and its plugins, with details about include

relations. 72
8.3 Unknown includes resolved in WP 3.6 and its plugins by means of some

dynamic analysis. 73
8.4 Where static analysis fails. 73
8.5 Characteristics of the analyzed PHP programs. 77
8.6 Renamed entities identified by REPENT - PHP programs. 78
8.7 Precision Pr for renaming detection of different entities 78
8.8 Detected renamings and recall Rc of different entities. 79
8.9 Evaluation of classification for “Forms of renaming”- PHP programs. 79
8.10 Evaluation of classification for “Semantic changes” - PHP programs. . 81
8.11 Evaluation of classification for “Grammar changes”- PHP programs. . 81
9.1 Actionable knowledge. 86
.1 Thresholds chosen for the study as well as corresponding TPR and

FPR on the calibration set. 105
.2 Accuracy of the classification of renamings as spelling errors using dif-

ferent Levenshtein distance thresholds on Tomcat. 106
.1 Sample size to estimate the precision of REPENT. 107

xi

.2 Evaluation of classification for “Forms of renaming” - Java programs. 108

.3 Evaluation of classification for “Semantic changes”- Java programs. . 108

.4 Evaluation of classification for “Grammar changes”- Java programs. . 108

xii

LIST OF FIGURES

3.1 Example of classifying a renaming based on the proposed taxonomy. . 13
4.1 REPENT: Renaming detection and classification process. 20
4.2 Details of the renaming detection process. 20
4.3 Example of one-to-one entity mapping. 23
4.4 Example of many-to-one entity mapping. 23
4.5 Candidate renaming filtering process. 24
4.6 Computing the score of a candidate renaming in presence of entity

def-uses. 25
4.7 REPENT: Filtering false positives renamings. 28
6.1 REPENT: Renaming classification process. 41
6.2 REPENT: Term mapping and classification process. 48
7.1 Proportion of renamed entities identified by REPENT. 53
7.2 Proportion of forms of renamings identified by REPENT. 55
7.3 Proportion of semantic changes identified by REPENT. 56
7.4 Proportion of grammar changes identified by REPENT. 60
8.1 Example of include in PHP. 69
8.2 PHP renaming detection and classification. 74
8.3 Example of line mapping. 75
.1 Native language of the participants. 96
.2 Experience of the participants in software development. 97
.3 How often do developers rename ? . 97
.4 Activities accompanying renaming. 97
.5 Developers’ opinion on cost of renaming. 97
.6 How do developers rename ? . 97
.7 Reasons for which developers already postponed or canceled a renaming. 98
.8 Factors impacting developers decision to undertake a renaming. . . . 99
.9 When will developers rename ? . 99
.10 Developers’ opinion on the usefulness of documenting renamings. . . 99
.11 Developers’ opinion on renamings that are useful to document. 100
.12 Developers’ opinion on the usefulness of recommending renamings. . . 101
.13 Developers’ opinion on renamings that are useful to recommend. . . . 102
.1 REPENT class FielD (FD) ROC curves as functions of SST and NST. 104

xiii

LISTE DES ANNEXES

Survey details . 96

Thresholds for Detection and Classification . 103

Sampling for Evaluating Detection and Classification 107

1

CHAPTER 1 INTRODUCTION

Program comprehension is one of the important activities during software maintenance. Pre-
vious studies showed that majority of the time during maintenance is spent on understanding
source code (von Mayrhauser et al., 1997; Standish, 1984; Tiarks, 2011) . Researchers agree
on the paramount role of source code lexicon in software comprehensibility and maintainabil-
ity because, very often, documentation is either scarce or outdated. Hence, when performing
change tasks, developers must rely on source code lexicon. Recent studies have related the
quality of source code identifiers with the overall software quality (Takang et al., 1996; Lawrie
et al., 2007, 2006b). Also, researchers have developed approaches to help developers using
appropriate identifiers, consistent with requirements and other high-level artifacts (De Lu-
cia et al., 2011) as well as approaches to support program comprehension tasks by splitting
and expanding identifiers composed of multiple terms, including abbreviations and acronyms
(Corazza et al., 2012; Enslen et al., 2009; Lawrie et Binkley, 2011; Madani et al., 2010;
Guerrouj et al., 2011).

As source code evolves, identifiers evolve too (Abebe et al., 2009). Previous work (Lawrie
et al., 2006a; Malpohl et al., 2000) investigated the evolution of the structure of identifiers
and the presence and stability of domain terms (Haiduc et Marcus, 2008). Much as any other
programming element, identifiers are added, deleted, or modified, i.e., renamed. Renaming,
the modification of an entity name, happens for a variety of reasons. Renaming may occur
to improve program understanding, to better reflect the developers’ programming style, to
better convey domain or application concepts or when name of an entity is not (anymore)
consistent with its functionality. To the best of our knowledge, there has been no study for
understanding renamings, in particular why, how, and when developers rename identifiers.

The thesis of this dissertation is:

Renaming is an activity that occurs with different frequency during the life cycle
of a program. Renaming is inevitable and its purpose is to increase consistency.
Detection and linguistic analysis of identifier renamings provides valuable insight
on how, why, when developers rename identifiers. Tool supports, programming
language, and naming convention are factors that impact renamings frequency.

We propose a methodology to automatically detect identifier renamings across different ver-
sions of a program and to automatically classify renamings according to a novel taxonomy.
The taxonomy provide a view of identifier renamings across different dimensions: (i) what

2

kind of identifier was renamed (e.g., class name), (ii) whether one or more terms composing
the identifier were added/removed/changed (e.g., a term is added when renaming files to
srcFiles), and (iii) how terms were changed with respect to their semantics (e.g., towards
opposite meaning when renaming disable to enable) and grammar (e.g., from adjective to
noun when renaming localDeclaration to location). We use a lightweight file differencing
tool to identify changed source code lines and map the lines and the declared entities across
versions to identify candidate renamings. We apply data-flow analysis on programming enti-
ties and extract def-use for the entities participating in candidate renamings to further reduce
false positives. For classification, uses WordNet 1 (Miller, 1995) and the Stanford Part-of-
Speech Analyzer (Toutanova et Manning, 2000) to classify the detected renamings according
to our taxonomy. Our methodology is implemented via a tool suite called REPENT. The
tool is composed of two main components for the detection and classification of the identifier
renamings. In the following section we report the result of an online survey we designed to
seek developers of open-source/industrial projects opinion about renamings.

1.1 Developer Survey on Identifier Renamings

This section motivates the need for automatic renaming detection and classification. For this
purpose, we designed an online survey to understand the importance of renaming, i.e., to
what extent developers of open-source/industrial projects perform identifier renaming, under
what circumstances, and whether they believe that identifier renaming requires automatic
documentation.

We invited 739 developers, via e-mail using a convenience sampling (Groves et al., 2009),
involving (i) original developers of the five Java programs that we study and (ii) other de-
velopers from the industry and open-source communities. 71 developers responded to the
survey resulting in a response rate close to 10% as expected (Groves et al., 2009). Although
we profile survey participants based on their background, their identity is kept anonymous
for confidentiality purposes.

We observe that renaming is tangled with many development activities—most of the partic-
ipants perform renaming while performing other refactorings (90% of surveyed developers);
changing or adding functionality (89% and 65%, respectively); understanding existing code
(51%) or fixing bugs (42%). Sometime renaming is even performed apart from other develop-
ment activities (17%). Renaming is an activity that 39% of participants perform from a few
times per week to almost every day and 46% perform it a few times per month. Participants

1. http://wordnet.princeton.edu

http://wordnet.princeton.edu

3

mainly use automatic tools to perform renaming (72%), although 20% say that they rename
manually and 8% do both. However, although tool support is available, 92% of the partici-
pants consider renaming not straightforward and only 24% think that in most cases renaming
has no cost. Indeed, the largest fraction of the surveyed developers (67%) believes that the
cost of renaming depends on the particular case and that it requires time and effort. For
example, participants underline that renaming identifiers that belong to non-local scope may
break backward compatibility, increase integration cost, or impair program understanding
for those already familiar with the old name. Figures with detailed results are reported in
Appendix.

In the following we summarize the results of the survey and we illustrate them with comments
from the participants. We complement the survey output with examples that we collected
from online discussions of the analyzed programs (issue reports, mailing lists, and commit
notes).

How often do developers rename? Renaming is an activity that participants perform
from almost every day (21%), a few times per week (18%), a few times per month (46%), to
once per month (14%). A developer commented: “There’s a balance to be struck: - identi-
fiers are communication, and as the code is refactored it is critical that identifiers continue
to correctly describe their purpose - changing identifiers tends to break APIs, and sometimes
they’re used for unintended purposes, over-frequent change is not good.”

Is renaming straightforward? When we asked participants whether renaming has a cost,
only 8% answered that renaming is straightforward. 24% of participants think that in most
cases renaming has no cost, often due to the availability of automatic tool support. Indeed
the majority of participants (72%) use automatic tool support to perform renaming, although
20% rename manually and 8% use a mix of both, i.e., rename manually and automatically.
32% of participants believe that the cost of renaming depends on the particular case:

“Renaming identifiers that belong to non-local context (e.g., public or protected methods)
has a potentially massive cost associated with breaking the interfaces between components.
Otherwise it is typically a rather cheap and non-disruptive exercise that may have end benefit
of more readable and consistent code. Another element of cost and risk is when the identifiers
are being bound to at runtime only (e.g., when classes are loaded by name or methods are
bound by name). It is not always easy to trace all such use cases in a large system." Indeed,
renaming an entity that is part of a public API of a program has a higher cost as it breaks

4

backward compatibility and increases the integration cost of the program in client programs.
10% of participants believe that in most cases renaming has a cost, and finally 25% answer
that renaming defiantly requires time and effort. Another example where renaming has a
cost is when the team uses code reviews, as developers must schedule a code review and
justify their decision. A developer indicated that code reviews impact the frequency of
renaming “because you appear negatively to the boss when asking for a review on a ‘too
minor improvement”’. The cost of renaming also includes the cost of finding a proper name
and assuring that the new name reflects the purpose of the entity in all scenarios that
it is used. Quotes like “I have the feeling that your method name is not good [..]” for
method getBufferForWrite in an Eclipse issue report (issue #332248) indicates that, indeed,
developers spend time understanding the rationale behind names that are chosen by other
teammates.

Already postponed a renaming? It also appears that, although necessary, some renam-
ings are delayed. After discussing the difference between the term “delete” and “remove”,
an ArgoUML developer concluded that: “[..] maybe I shall rename these after next release"
(issue #2938).

We asked participants to share reasons for which they recall having decided not to rename
an entity. 52% recall the reason to be the potential impact on other systems. A developer
explains: “As a middleware developer, providing a stable API is paramount for clients. There
are numerous cases where we would not rename a class or method despite an obviously better
name being proposed, in order to minimize the cost of integrating new versions.” 35% recall
that the renaming was too risky, i.e., it might have introduced a bug—a developer recalls:
“I encountered a problem when my colleague wrote Java code which uses reflection. I avoided
renaming some classes/methods which will be inspected by the reflection, since doing so can
introduce unpredictable bugs.”

25% of participants answered that the high impact of the renaming on the system was
the show-stopper and finally, 25% recall deciding not to rename because of the high effort
required: “I’m not touching poorly-worded APIs which are shared across multiple projects -
the cost of the change does not justify it [..].”

Participants also shared that the impact on other developers is sometimes decisive: “If too
many people in the company know a thing by name X it’s sometimes better to keep it even
when name Y is more descriptive.”

Other factors impacting the decision to undertake a renaming are insufficient domain knowl-
edge (85% of participants), code ownership (79%), and close deadline (76%).

5

How can REPENT help in such a context? Detecting and classifying renamings with
REPENT—for example generating parts of commit notes when renaming occurs—can be
used by developers while backtracking bugs or understanding changes of program entities.
REPENT allows developers to differentiate and thus document and retrieve all or only
certain types of renamings—e.g., renamings towards opposite meaning as they deserve more
attention and can be flagged to make sure that they reflect the developer’s intentions. The
documentation of renamings is also useful as a starting point for documenting API changes
in release notes. Last but not least REPENT can reduce the unnecessary cost of some
renamings by informing developers about names that were already changed in the past.

We asked participants whether they consider useful automatically documenting renaming and
52% of them were positive. A developer elaborates: “It depends on how this was implemented,
but if it were field-level history, e.g., like svn records history for a file, then I’m all for it [..]";
“Tracking changes to public api is imperative in large fast moving teams.”

1.2 Our Contributions

We apply REPENT on five open-source Java programs. Despite the renaming cost, risks,
and implications for program understanding, only a small percentage of the renamings is actu-
ally documented—1% of the renamings. This novel observation explains why a high number
of surveyed developers (52%) considered automatic documentation of renamings useful; one
of the surveyed developers explains that “if there were an easy way to look renaming up,
it would potentially be informative when backtracking for problems, or even just trying to
understand someone else’s code. You can often learn a lot about what something does by
looking at how other people disagree regarding what it does.” The developer echoes George
Santayana: “Those who cannot remember the past are condemned to repeat it” (Santayana,
1905). We share their point of view and argue that documenting renamings is important to
track changes in vocabulary and to create traceability links between entities over time, and
to avoid using names that will be later changed.

The proposed taxonomy and thus renaming classification is language independent. However,
renamings detection requires parsing and data flow analysis and thus is bound to parser. To
investigate the applicability of the proposed approach on other programming languages, we
perform a preliminary study investigating the occurrence of renamings in a dynamic type
language. We chose PHP as it is a dynamically typed language and one of the most popular
Web scripting language 2, accounting for more than 80% of existing web sites. We analyzed

2. https://en.wikipedia.org/wiki/PHP#Usage

6

one month of daily commits of three open-source PHP programs. The results are motivating
in term of precision and recall for detection and classification of identifiers in PHP programs.
However, we need to analyze more data to make a concrete conclusion.

The contribution of this thesis can be summarized as:

– An empirical study to understand the developers point of view on renamings. The results
of the survey help us to know why developers rename identifiers. It provides evidence that
developers believe renaming is costly and they avoid renamings when the associated cost
is too high.

– A novel taxonomy to identify semantic changes of identifier renamings.
– Detection of identifier renamings to understand the frequency of renamings, and thus
answer when identifiers renamed and what are the most renamed entities.

– Classification of identifier renamings along orthogonal dimensions of proposed taxonomy.
Through the quantitative results of the study, we identify instances of semantic changes
in renamings and thus we can answer how identifiers are renamed, while the qualitative
results enable us to answer why developers rename identifiers.

– Adaption of our automatic detection for PHP programs. The results of this study enable
us to evaluate the feasibility of proposed methodology for detection and classification of
renamings in other programming language.

Our contribution published in the following journal and conference papers:

MSR 2011: Taxonomy and preliminary study of Identifier renaming
Laleh Eshkevari, Venera Arnaoudova, Massimiliano Di Penta, Rocco Oliveto, Yann-
Gaël Guéhéneuc, and Giuliano Antoniol. An Exploratory Study of Identifier Re-
namings. In Proceedings of the Working Conference on Mining Software Repositories
(MSR), 2011.

TSE 2014: Extension of taxonomy, improving renaming detection, and empirical study
Venera Arnaoudova, Laleh Eshkevari, Massimiliano Di Penta, Rocco Oliveto, Giuliano
Antoniol, and Yann-Gaël Guéhéneuc. REPENT : Analyzing the Nature of Identifier
Renamings". In: IEEE Transactions on Software Engineering (TSE), 40 (5), 2014,
pp.502–532.

ICPC 2014 Resolving include statements in PHP programs
Laleh Eshkevari, James R. Cordy, Massimiliano Di Penta, and Giuliano Antoniol. Iden-
tifying and locating interference issues in PHP applications: the case of WordPress. In
Proceedings of 22nd International Conference on Program Comprehension (ICPC),
2014.

7

1.3 Organization of the Thesis

The organization of this dissertation is presented below:

Chapter 2 discusses the related literature on role of identifiers in software quality, anal-
ysis of changes and refactoring. Chapter 3 describes the taxonomy we defined to classify
identifier renamings. Chapter 4 describes the proposed approach to detect identifier re-
namings. Chapters 5 reports and discusses the results of renamings detection, accuracy
and completeness of our approach. Chapter 6 describes our approach for classifying re-
namings according to our taxonomy. Chapter 7 reports and discusses the results of our
empirical study to classify renamings. Chapter 8 reports our challenges and preliminary
results on applicability of our automated approach on PHP programs. Chapter 9 concludes
the dissertation by summarizing our findings and discussing future work.

8

CHAPTER 2 LITERATURE REVIEW

Following our thesis, we present the related work on: (1) the role of identifiers in software
quality, and (2) approaches for detecting refactoring.

2.1 Role of Identifiers in Software Quality

There is quite a consensus among researchers (Caprile et Tonella, 2000; Deissenbock et Pizka,
2005; Lawrie et al., 2006a; Enslen et al., 2009) on the role played by identifiers on program
comprehension, maintainability, and quality in general. In particular, researchers studied
the usefulness of identifiers to recover traceability links (Antoniol et al., 2002; Maletic et al.,
2005), measure conceptual cohesion and coupling (Marcus et al., 2008; Poshyvanyk et Mar-
cus, 2006), and, in general, high quality identifiers are considered an asset for source code
understandability and maintainability (Takang et al., 1996; Lawrie et al., 2007, 2006b).

As suggested by (Deissenbock et Pizka, 2005), identifiers should be consistent and concise.
Unfortunately, verifying consistency and conciseness is a difficult task and thus approaches
have been developed to detect consistency and conciseness violations by identifying usages of
synonyms and holonyms (Lawrie et al., 2006a). We share the concern expressed in previous
studies on identifier quality as a support for various software engineering tasks. However,
we are focusing our study on identifier renaming based on a newly proposed taxonomy. We
concur with Lawrie et al. (2006a) that synonyms can indeed affect consistency. However, we
also believe that renaming towards synonyms or towards other semantically-related terms—
such as hypernyms, hyponyms, and antonyms—should be investigated as they likely point
to program understanding issues.

2.2 Analysis of Changes and Refactorings

Several authors have proposed automated approaches to detect different kinds of refactorings.
Renamings is one type of refactoring and thus we share with the following works detection
of renaming refacotrings.

At design level, Xing et Stroulia (2006) propose UMLDiff to detect refactorings. UMLD-
iff works with class diagrams; it inputs two class diagrams and it produces as output an
XML design differencing file. By querying such a XML file, it would be possible to detect
simple (e.g., rename class/method/field, pull-up/push-down method/field) and composite
refactoring actions (e.g., replace inheritance with delegation). For evaluating the detection

9

technique, the Xing et al. conducted a study on 11 versions of HTMLUnit and 31 versions
of JFreeChart. The results of the study showed that all refactorings documented by the
program developers as well as some that were not documented were identified. UMLDiff
analyses the design artefacts. As its purpose and objectives differs from our proposal, a
comparison with our approach would not be appropriate.

Demeyer et al. (2000) detect object-oriented refactorings based on a set of heuristics defined
in terms of changes of object-oriented metrics measuring two successive software versions
of Smalltalk programs. They validated the approach on several successive versions of three
cases studies implemented in Smalltalk.

Dig et al. (2006) propose Refactoring Crawler for detecting sequences of refactorings
between consecutive versions of Java programs. Refactoring Crawler identifies seven
types of refactoring. Among others, they detect—as does REPENT—-package, class, and
method renaming. The detection algorithm consists of a fast syntactic analyzer followed by a
more computationally intensive semantic analyzer. The syntactic analyzer finds similar text
fragments between two versions of source code based on Shingle encoding (Broder, 1997) as
candidates of refactorings. The semantic analyzer further filters the candidate pairs to reduce
false positives.

Weissgerber et Diehl (2006) propose a signature-based approach to identify refactorings.
The approach starts with collecting and pre-processing data from the version control system.
Next, it identifies added and removed entities (classes, interfaces, methods, and fields) in
each transaction. Those entities are then compared based on their signatures and potential
refactorings are identified. The approach then ranks and filters potential refactorings based on
the similarity of the entity body in the old and new version. To measure the similarity between
the two versions, the approach first tests for string equality. Then if it fails, the approach
uses the result of a token-based code clone detection algorithm, i.e., CCFINDER (Kamiya
et al., 2002). Among the detected refactorings, the approach detects “Rename Method” and
“Rename Class” refactorings, as REPENT does.

Prete et al. (2010) propose Ref-Finder as a way to detect atomic refactorings and then
based on logic templates reconstruct more complex refactorings (such as extract method).
Ref-Finder detects method renamings based on method body similarity.

It is important to point out that the approaches described above have been conceived to detect
refactorings in general. They detect only a subset of the renamings detected by REPENT,
and do not perform a classification of the detected renamings.

Malpohl et al. (2000) propose Renaming Detector for detecting identifier renamings. The

10

tool uses three main components: Parser, Symbol Analyzer, and Differencer. Renaming
Detector analyzes each file for extracting identifier declarations and references. Next, it
matches the declarations in two versions of a file. To increase accuracy, variable types and
references are compared for matching the identifiers. Malpohl et al. evaluated the technique
on two consecutive versions of the tool itself. They report a 100% precision rate for of the 77
analyzed file pairs. We share with Malpohl et al. the general idea as well as the use of data-
flow analysis in the renaming detection process. However, our approach for the detection of
renamings is substantially different. Specifically, it is a multi-stage approach, in which an
initial filtering localizing changes based on differencing analysis is then followed by a data-
flow analysis on candidate renamings, aimed at filtering out false positives. This allows us
a better scalability, and hence the ability to analyze the evolution of large projects such as
JBoss or Eclipse-JDT.

Neamtiu et al. (2005) propose an approach for understanding code evolution using AST
matching. They analyze open source programs written in C and provide a release digest
that summarized changes between two subsequent releases of a file. Renamings of types and
variables are part of the changes detected by the authors. Those renamings correspond to
our class, field, local variable, and parameter renamings. The approach does not handle
method renamings, nor local variable and parameter renamings when the latter are in a
renamed method because the approach is based on the hypothesis that in C functions are
relatively stable over time. Thus, to detect local variable and parameter renamings, Neamtiu
et al. compare the ASTs of two methods with the same name. Such an assumption would be
unrealistic for Java programs. As our results show, method renamings represent 26% of the
renamings for the 5 programs.

Fluri et al. (2007) propose a tree differencing algorithm, ChangeDistiller, for extracting
the changes from two consecutive versions of Java files. Renaming is a type of change that
ChangeDistiller can detect together with many others. The algorithm compares the
ASTs of the files and computes the edit operations to transform the AST of the old version
of a file to the AST of the new version of the same file. Fluri et al. used bi-gram string
similarity for calculating the similarity between two leaf nodes (i.e., identifier names). Thus,
the detection of renamings is based on the declaration, whereas in our case we consider
def-uses when available. As in our case, the detection of renamings depends on the pre-
established thresholds. To evaluate their approach, Fluri et al. built a benchmark that
consists of 1,064 manually classified changes of eight methods extracted from three open
source programs. Only four of the classified changes are renamings, specifically one method
and three parameters.

11

Kawrykow et Robillard (2011) measured the impact of non-essential differences on approaches
aimed at detecting change couplings based on association rule discovery (Zimmermann et al.,
2004). Kawrykow and Robillard treated the renaming of an entity as an “essential” change,
while the updated (i.e., impacted) statements of this renaming are considered as “non-
essential”. Although the end goal is different from ours, detecting renamings is part of
both approaches. To detect renamings Kawrykow and Robillard propose DiffCat, which
is built on the approach of Fluri et al. (2007). That is, they used ChangeDistiller to
detect method and field renamings. However, they further enhanced it to also detect class,
local variable, and additional field renamings. Since the goal of DiffCat is different from
ours, it favors precision at the expense of recall. We compare REPENT performances with
DiffCat on renamings detected in a random sample of revisions of dnsjava and JBoss. The
results shows that REPENT has better performance in terms of precision and recall. Details
of the comparison is provided in Section 5.4.

2.3 Summary

There have been quite a lot of woks on detection of refactorings at different level of ab-
straction. Renaming is also considered a refactoring, and thus we share with all these works
rename refactoring. Our proposed approach is specific to detection of renaming and thus
we identify renamings of all software entities. Comparison with the state of the art tool
DiffCat shows that our proposed technique outperform in terms of precision and recall on
a set of randomly selected versions of dnsjava and JBoss.

Previous works studied the importance of lexicon in software comprehension and quality. As
suggested by Deissenbock et al. identifiers must be sufficiently distinctive yet must relate to
one another and to the context in which they appear (Deissenbock et Pizka, 2005). Use of
synonym and homonyms and their impact on consistency have been investigated in litera-
ture. It is interesting to further explore use of other semantic relations such as hypernyms,
hyponyms, and antonyms. We propose a technique to classify renamings along all semantic
relations. Such analysis will provide a better understanding on how identifiers are changed,
and thus bring the attention of developers towards inconsistencies such as renaming towards
antonym. Next chapter will provide details on the proposed taxonomy.

12

CHAPTER 3 RENAMING TAXONOMY

Renamings are classified along the dimensions of a taxonomy that extends and refines the
taxonomy proposed in our previous work (Eshkevari et al., 2011). We built the taxonomy
based on a grounded-theory approach (Strauss, 1987; Glaser, 1992)

considering dimensions that we believe apply to source code identifiers and the terms that
compose them, the latter being hard or soft words in the following (Lawrie et al., 2006a)
Specifically, we built the taxonomy by looking at identifier renamings, which we manually
validated in our previous work (Eshkevari et al., 2011), and grouping them into categories.
The manual analysis required multiple iterations in order to converge and to consider all the
dimensions of the proposed taxonomy.

The taxonomy comprises four dimensions, namely entity kinds, forms of renaming, semantic
changes, and grammar changes. The first dimension distinguishes renamings based on the
programming paradigm, whereas the last three dimensions distinguish renamings based on
different natural language aspects. A summary of the taxonomy is reported in Table 3.1. The
dimensions are orthogonal and thus each renaming will be classified in each dimension of the
taxonomy. However, there are implicit relations between levels of the different dimensions.
For example, classifying an identifier renaming in form of renaming as formatting only implies
that in semantic change and grammar change it will be classified as none.

Concretely, in the field renaming invParamsPtr → invalidParamReferencesPtr the term
inv is expanded to become invalid; Params changed to Param; Reference was added; and Ptr

stayed unchanged (see Fig. 3.1). According to our taxonomy, this renaming will be classified
as follows:

– Entity kind: Field,
– Form of renaming: Complex as two terms are changed, and one term is added,
– Semantic change: Preserve meaning as the term renaming inv → invalid is an expan-
sion, and add meaning as the term Reference is added,

– Grammar change: Part of speech change as the term renaming Params → Param implies
a change from plural to singular.

In the rest of this section we describe the different dimensions of the taxonomy.

13

Figure 3.1 Example of classifying a renaming based on the proposed taxonomy.

3.1 Entity Kinds

The first dimension of the taxonomy concerns the kind of the renamed entity, i.e., whether
the renamed entity is a package, type (i.e., class, interface, or enumeration), field (i.e., class
variables, instance variables, constants, or enumeration constants), constructor, method,
getter (i.e., field accessor), setter (i.e., field modifier), parameter, or local variable. We
distinguish getters and setters from other methods using naming conventions, i.e., the method
name must start with the keywords “get” (“is" for boolean return type) or “set” and of a
field name.

14

3.2 Forms of Renamings

The second dimension provides a classification of the renaming to determine whether one or
more terms were changed, whether the renaming was solely related to text formatting, or
whether it consisted in term reordering.

Simple: Those are renamings where one term has been changed, e.g., predeclareStatements

→ predeclare where the term Statements has been removed and override → overriding

where the only term composing the old name has been renamed.

Complex: Those are renamings where more than one composing terms have been renamed,
e.g., IsAssignmentWithNoEffectMASK → Assignment HasNoEffect.

Formatting only: Those are renamings where no term renaming occurs, but rather chang-
ing letter cases or adding/removing term separators. Examples include getJRMPPort →
getJrmpPort and JavaExtension → JAVA_EXTENSION.

Term reordering: Those renamings consist in exchanging the position of terms com-
posing the old identifier. Examples: setDelaySocketClose → setSocketCloseDelay and
pojoNoInterfacesIntro → noInterfacesPOJOIntro.

3.3 Semantic Changes

The semantic changes dimension concerns changes (or not) in the meaning of the identifier
due to the addition/removal of terms to/from the identifier or due to changing one or more
terms with terms having different (or same) meaning. As a result, identifiers change while (i)
preserving their meaning, (ii) changing their meaning, (iii) adding meaning, or (iv) removing
meaning. There is no semantic change when only the format or order of terms change.

3.3.1 Preserve Meaning

Renamings falling in this category preserve the meaning of the identifier.

Synonym: The old and new terms have the same meaning (according to a given ontology).
For example, in the renaming isPotentialMatch → isPossibleMatch, the two terms are
synonyms.

Synonym phrase: One or more terms in the old identifier are renamed to one or more terms
in the new identifier while preserving the meaning. Example: javadocNotVisibleReference

→ javadocHiddenReference where the renamed terms (visible and hidden) are antonyms

15

and one of them is negated (visible and not visible).

Spelling error: Examples of correction and introduction of spelling errors are actionMesasage

→ actionMessage and sourceField → fiieldInfo respectively. While one can easily under-
stand the rationale of spelling error correction, spelling error introduction can happen as a
side effect of a renaming.

Expansion: A renaming towards expansion occurs when a term—often not belonging to the
English dictionary—is expanded into a (longer) term, often belonging to the English dictio-
nary: setAuthMechanism → setAuthenticationMechanism and collab → collaboration.

Abbreviation: A renaming towards abbreviation is the opposite of a renaming towards
expansion and occurs when a term—often belonging to the English dictionary—is contracted
into a shorter term, often not belonging to the English dictionary: packageName → pkgName

and operationDesc → opDesc.

3.3.2 Change in Meaning

Renamings falling in this category include cases in which the renaming changes the meaning
of the old identifier.

Opposite: The new term has the opposite meaning of the old term (antonym), e.g., disableLookups

→ enableLookups.

Opposite phrase: One or more terms in the old identifier are renamed to one or more terms
in the new identifier with an opposite meaning: isNotPrimitiveType → isPrimitiveType

where the term Primitive is negated. Also, it can happen that a term is replaced by a
synonym and is negated: isNonModifiableContainer → canUpdateContainer.

Whole-part: The new and the old terms hold a whole-part relation (holonym/meronym);
respective examples are Point → Line (fictitious example) and body → node.

Whole-part phrase: When more than one whole-part relation exists in the renamed iden-
tifiers. An example in this category is Path → FileAndDirectory (fictitious example 1).

Unrelated: The old and new terms have unrelated meanings. It is the case for the terms
expression and script in the identifier renaming expressionModel → scriptModel.

1. The example is fictitious as we did not classify any of the renamings detected in the five programs as
whole-part phrase. However, for the sake of completeness and because results may be different for different
programs we decided to keep this level of the taxonomy.

16

3.3.3 Narrow Meaning

Specialization: The meaning of the old identifier is narrowed when a term is renamed to its
hyponym, e.g., thrownExceptionSize → boundExceptionLength, where the new term Length

is a hyponym of the old term Size.

Specialization phrase: Adding a term that specifies another term narrows the meaning
of the old identifier: item → todoItem and type → authType. To do so, we consider nouns
and adjectives modifiers (as specifiers) added before a term because, based on our qualitative
analysis done using grounded theory, these are the most common modifiers that developers
use to specify other terms.

3.3.4 Broaden Meaning

Generalization: Opposite to specialization, here the old and new terms hold a generalization
relation, i.e., the new term is a hypernym of the old term, e.g., getAccessRestriction →
getAccessRuleSet, where the term Rule is a hypernym of term Restriction.

Generalization phrase: Opposite to specialization phrase, here a specifying term is re-
moved. Examples: eventName → name and getInitialRepetitions → getRepetitions. As
in specialization phrase, we consider nouns and adjectives as modifiers.

3.4 Add Meaning

Add meaning renamings happen when an identifier is renamed by adding one or more terms
and such a change does not fall into any of the cases discussed above, i.e., in which the mean-
ing is kept or changed. In other words, the added terms add meaning to the identifier, rather
than changing (e.g., generalizing, specializing, or negating) the current meaning: _delete→
deletePossible and flags → typeAndFlags.

3.5 Remove Meaning

Remove meaning renamings happen when an identifier is renamed by removing one or more
terms and, again, the change does not fall into any of the above cases. That is, the term
removal also removes meaning from the identifier. Examples: includeRule → rule and
removedPackagePath → packagePath.

17

3.5.1 None

No change in any of the terms in the identifier implies no semantic change, i.e., the semantic
change will be none. This is when the change is only in letter cases or adding/removing term
separators.

3.6 Grammar Changes

The grammar changes dimension concerns changes in the part of speech of terms. We further
classify part of speech changes into verb conjugation changes, singular to plural changes (and
vice versa), or other (e.g., change from noun to adverb).

3.6.1 Part of Speech Change

Those renamings occur when the part of speech of any term composing the old identifier
changes. We consider the part of speech set contained in the Penn Treebank Tagset (Marcus
et al., 1993). Thus, a grammar change occurs when an adjective is changed to a verb, as
in getUpdatedSize → updateFigGroupSize. We further focus our attention on nouns and
verbs as, to the best of our knowledge, they represent the most critical part of identifiers.
Specifically, nouns are shown to be the most important in terms of meaning (Capobianco
et al., 2013), whereas verbs are used in naming methods and thus changes of verbs can imply
changes in functionality (Abbott, 1983; Bruegge et Dutoit, 2003).

3.6.2 None

There is no grammar change when the modified terms’ part of speech remains the same.
For example, renaming method isPotentialMatch to isPossibleMatch does not imply any
grammar change as both terms, Potential and Possible, are tagged as adjective. Moreover,
renamings classified as formatting only in the forms of renaming will also be classified as
none in the grammar change, e.g., getJRMPPort → getJrmpPort.

3.7 Summary

In this chapter we provide the taxonomy of renamings classification along four orthogonal
dimensions: entity kinds, forms of renaming, semantic changes, and grammar changes. While
first dimension aims to provide insight on how often programming entities renamed the other
three dimensions aim to provide a view of linguistic transformations of identifiers. The
following chapter explains renamings detection in details.

18

Table 3.1 Summary of the identifier renaming taxonomy

Entity kinds

Package
Type
Field
Constructor
Method/Getter/Setter
Parameter
Local Variable

Forms of renaming

Simple
Complex
Formatting only
Term reordering

Semantic changes

Preserve meaning

Synonym
Synonym phrase
Spelling error correction/introduction
Expansion
Abbreviation

Change in meaning

Opposite
Opposite phrase
Whole-part
Whole-part phrase
Unrelated

Narrow meaning Specialization
Specialization phrase

Broaden meaning Generalization
Generalization phrase

Add meaning
Remove meaning
None

Grammar changes Part of speech change
Singular/Plural
Verb conjugation
Other

None

19

CHAPTER 4 RENAMING DETECTION

In this chapter we explain the detection component of the REPENT in details.

Fig. 4.1 shows the processing steps of REPENT at a high level of detail to outline the
renaming detection and classification processes. REPENT first detects a set of candidate
renamings by means of file context diff and filters out false renamings using def-uses pairs,
textual analysis, and heuristics. Finally, REPENT classifies renamings along the taxonomy
dimensions.

4.1 Methodology

The first step of the process, step 1 in Fig. 4.1, is detailed in Fig. 4.2. In this step, REPENT
compares two source files by applying a line differencing algorithm, the Unix context diff algo-
rithm, which produces as output a set of line mappings. REPENT uses the mapped source
code lines to compare and map entities declared into mapped lines and identify candidate
renamings.

The comparison of source files is performed between two consecutive versions of a file or, in
case of renamed files, between the file with the old name and the one with the new name. To
identify file renamings, REPENT first builds the list of candidate file renamings consisting
of (i) all possible couples formed by one file removed in the change set and one file added
in the same change set and (ii) explicit renamings in the versioning system (SVN only).
For CVS a change set is computed by grouping files based on the commit time stamp (less
than 200 seconds between commits belonging to the same change set), commit note, and
committer name (Zimmermann et al., 2004). Then, REPENT evaluates each couple and
selects the best option if the difference between the two files is reasonably low. Specifically,
we use the Unix diff algorithm to compare the number of changed lines between two files
and we consider them as a file renaming if the difference does not exceed a relative threshold
of 60%. The value for the threshold is estimated based on the central tendency of explicitly
renamed files as logged by the versioning file system.

The output of the comparison between two files is a mapping between lines of the old and
new files; four cases must be considered:

1. One-to-one line mapping: one line of the old file is mapped onto one line of the
new file. Fig. 4.3 shows an example where line 12 is mapped onto line 14. These two
mapped lines are completely unrelated. Indeed, this is a case where the line mapping

20

Pre-processing

Source
code

1: Line differencing
& mapping

2: Data flow
analysis

Line and
entity

mappings

Entity
def-use

3: Renaming
detection

Candidate
renamings

4: Candidate
renaming filtering

Detected
renamings

5: Renaming
classification

Renamings
Classified

Figure 4.1 REPENT: Renaming detection and classification process.

Figure 4.2 Details of the renaming detection process.

21

fails to map the lines correctly. To overcome this limitation of line mapping, we perform
a cross validation step (see Section 4.2).

2. One-to-many line mapping: one line of the old file is mapped onto multiple lines
of the new file.

3. Many-to-one line mapping: multiple lines of the old file are mapped onto one line
of the new file.

4. Many-to-many line mapping: multiple lines of the old file are mapped onto multiple
lines of the new file. Fig. 4.4 shows an example where lines 203 to 206 of the old file
are mapped onto lines 203 to 206 in the new file.

Once REPENT creates lines mappings, it maps entities that are declared into mapped lines,
i.e., it creates entities mappings. To this end, REPENT first parses source code, creates
an Abstract Syntax Tree (AST) using Eclipse Java Development Tools (JDT), and identifies
the line numbers of all declared entities. Next, given the line mappings and the entities
declarations for each source code line, REPENT creates an entity mapping. Again, four
cases are possible:

1. One-to-one entity mapping: there is exactly one entity of a same kind that is
declared in the old line(s) (e.g., local variable) as well as in the new line(s). In this
case, the old entity is mapped onto the new entity.

2. One-to-many entity mapping: there is only one entity declared in the old line(s),
while there are many entities declared in the new line(s). In this case, the old entity is
mapped onto several new entities.

3. Many-to-one entity mapping: this is the converse of the previous case, i.e., several
old entities are mapped onto one new entity.

4. Many-to-many entity mapping: there are several entities declared in the old line(s)
and in the new line(s). In this case, the old entities are mapped onto the several new
entities.

The entity mapping computed at this (early) stage has to be considered as possible mappings
and thus as candidates renamings.

Fig. 4.3 shows an example of a one-to-one line mapping corresponding to a one-to-one entity
mapping in Tomcat. The developer added a method terminate at line 14 of the new file. The
line mapping algorithm maps line 12 in the old file—containing the declaration of method
loadNative—onto line 14 of the new file. REPENT discovers only one entity declared in

22

the old file, as well as in the new one and builds the mapping, i.e., candidate renaming,
loadNative to terminate 1.

Fig. 4.4 shows a less trivial example where many entities are declared into the mapped lines
(i.e., many-to-many line mapping and many-to-one entity mapping). Thus, in this case, four
entities (STATE_INITIAL, STATE_INITIALIZED, STATE_STARTED, and STATE_STOPED) are mapped
into one (STATE_PRE_INIT).

For entities that are part of candidate renamings REPENT performs data flow analysis.
REPENT first builds a symbol table considering the entities scope, signature, and line
number. Then, it identifies modifications and uses within and across files by resolving the
imports of the files.

4.2 Candidate Renaming Filtering

The set of mapped entities computed in the previous step may contain false positives. For
example, if a code fragment is moved from the top to the bottom of its file then the context
diff may not trace it—produces incorrect results and several entity mappings may be created.
The mapped entities cannot however be discarded outright if the old entity also exists in the
new files. For example, a developer can move the body of a method into a new one (with a
new method name); replacing the body of the old method with a call to the new method.
Thus, REPENT must first assign a score to each entity mapping, then check if the entity in
the old file also exists in the new one, and if so, compute a score for this new pair, and based
on this latter score (compared to the other scores), keep or prune the other entity mappings.
This latter step is referred in the following as “cross validation consistency check”.

Fig. 4.5 reports details on the REPENT filtering strategy. Two cases may occur: (i) both
entities in the candidate renaming have def-uses or (ii) at least one of the entities has no
def-use.

The second case is particularly common for getters and setters as they are often automatically
generated and not necessarily used in the program.

For entities with def-uses, REPENT calculates the score of two entities involved in a can-
didate renaming as the textual similarity between the lines where the entity def-uses have
been detected. For the entities without def-uses, the score is the textual similarity between
the two entity declarations.

Finally, once scores are available, cross validation consistency check is performed. The fol-

1. This mapping is not desired and that the candidate renaming will be later filtered out due to the low
similarity between the two entity declarations.

23

public class AprImpl {
 …
 private void loadNative() {
 …
 }
 // Temp - testing only, will be moved
 //to separate file
 public void main(String args[]) {
 …
 }
}

1
…
12
…
…
…
…
…
…
...
...

public class AprImpl {
 …
 public native int terminate();
 …
 public void loadNative(String libPath) {
 try {
 if (libPath==null)
 libPath="jni_connect";
 // XXX use load() for full path
 if (libPath.indexOf("/") >=0 ||
 libPath.indexOf("\\") >=0) {
 System.load(libPath);
 } else {
 System.loadLibrary(libPath);
 }

} catch(RuntimeException ex) {
 ex.printStackTrace();
 }
 }
}

1
…
14
…
44
…
…
…
…
...
...
...
...
...
...
...
...
...
...
...

<<line mapping>>

Old version New version

terminateloadNative
<<entity mapping>>

Figure 4.3 Example of one-to-one entity mapping.

 ...
 public static final int ACC_INIT_END=1;
 public static final int ACCOUNTS=2;
 // State
 public static final int STATE_INITIAL=0;
 public static final int STATE_INITIALIZED=1;
 public static final int STATE_STARTED=2;
 public static final int STATE_STOPED=3;
 …
 // ------- local variables -------
 private int state=STATE_INITIAL;
 …
 /**
 * Adds a new Context to the set managed
 * by this ContextManager.
 * @param ctx context to be added.
 */
 public void addContext(Context ctx)
 throws TomcatException {
 ...
 if(state == STATE_INITIAL)
 return;
 …
 }
…
}

...
…
...
…

203
204
205
206
…
...
...

Old version
 ...
 public static final int ACC_INIT_END=1;
 public static final int ACCOUNTS=2;
 // State
 /** Server is not initialized
 */
 public static final int STATE_PRE_INIT=0;
 /** Server was initialized, engineInit() was called.
 * addContext() can be called.
 */
 public static final int STATE_INIT=1;
 …
 // ------- local variables -------
 private int state=STATE_PRE_INIT;
 …
 public final void initContext(Context ctx)
 throws TomcatException {
 if (state != STATE_PRE_INIT) {
 ...
 }
 }
 …
 /**
 * Adds a new Context to the set managed
 * by this ContextManager.
 * @param ctx context to be added.
 */
 public void addContext(Context ctx)
 throws TomcatException {
 ...
 if(state == STATE_INITIAL)
 return;
 …
 }
…
}

...
…
...
…

203
204
205
206
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...

New version

<<line mapping>>

STATE_PRE_INIT
STATE_INITIAL

STATE_INITIALIAZED
STATE_STARTED
STATE_STOPPED

O1

O2

O3

N1

N3

N2

N4

<<entity mapping>>

Figure 4.4 Example of many-to-one entity mapping.

24

Figure 4.5 Candidate renaming filtering process.

25

lowing subsections provide details on how REPENT computes such scores and filters out
likely false renamings.

Computing the Score between Entities with Def-uses

Let us assume that there are n statements in the old file where a given entity, say El, is
either defined or used (or both). Also, let us assume that El has a candidate mapping with
the entity Ek, and that in the new file there are m statements where the entity Ek is defined
or used. To assign a score to the matching (El, Ek) REPENT creates an n ×m statement
score matrix. A matrix entry (i, j) contains the similarity score between statement si and sj

respectively of the old and new release. Before computing the score, REPENT removes the
name of the entities from both statements (i.e., si and sj), to remove any bias introduced
by similar entity names. The assigned score is based on the Normalized Levenshtein edit
Distance (NLD) (Levenshtein, 1966), defined as:

NLD(si, sj) = LD(si, sj)
length(si) + length(sj)

(4.1)

where LD(si, sj) is the Levenshtein edit Distance between si and sj. The score assigned to the
statement pair (si, sj), cell (i, j), of the statement score matrix is computed as 1−NLD(si, sj).

REPENT uses heuristics to prune low scores and thus reduce false positives. If the similarity
is lower than a given threshold, named Statement Similarity Threshold (SST) (see Appendix),
the selection is filtered out by setting the (i, j) matrix entry to zero. REPENT uses different
threshold values depending on the kind of entity. The reason behind this choice is the different
nature of the definitions and uses of different entities.

As shown in Fig. 4.5, REPENT applies the Hungarian algorithm on the statement score
matrix to identify the best possible matching between statements. The Hungarian algorithm

STATE_INITIAL=0
state=STATE_INITIAL
IfStatement: state == STATE_INITIAL

STATE_PRE_INIT=0
state=STATE_PRE_INIT
IfStatement:state != STATE_PRE_INIT
IfStatement:state == STATE_PRE_INIT

Remove the name
of entity

Remove the name
of entity

=0
state=
IfStatement: state ==

=0
state=
IfStatement:state !=
IfStatement:state ==

Compute statement
score matrix

O1
O2
O3

N1
N2
N3
N4

0.00 0.00 0.001.00
1.00 0.000.00

0.00 0.980.00

N2 N3 N4N1

O1

O2

O3

0.00

O1
O2
O3

N1
N2
N3
N4

1.00

Statement score matrix

Def-uses
STATE_INITIAL

Filtered def-uses
STATE_INITIAL

Def-uses
STATE_PRE_INIT

Filtered def-uses
STATE_PRE_INIT Compute renaming

score
Candidate
renaming

score

Figure 4.6 Computing the score of a candidate renaming in presence of entity def-uses.

26

(Kuhn, 1955) is an optimization algorithm used to solve the assignment problem, e.g., as-
signing tasks to people, which given a score/cost matrix, will find the best assignment,
i.e., maximizing/minimizing the score/cost between matrix lines and columns.

The result of the Hungarian algorithm is used to assign a score to the pair of entities (El, Ek)
as follows. If the number of mapped statements with scores higher than zero is higher than
a predefined threshold—named Number of Matched Statements Threshold (NST)—then the
score between the two entities is the sum of the similarities between the mapped def-uses;
otherwise, the score is set to zero.

Consider the example in Fig. 4.4, which describes a many-to-one entity mapping where
entities have def-uses. In this example, REPENT computes the scores for the following four
possibilities:

STATE_INITIAL → STATE_PRE_INIT

STATE_INITIALIZED → STATE_PRE_INIT

STATE_STARTED → STATE_PRE_INIT

STATE_STOPED → STATE_PRE_INIT

Fig. 4.6 illustrates the computation of the score for the first possibility, i.e., STATE_INITIAL

→ STATE_PRE_INIT. In particular, once identified the def-uses, the entity names are removed
and the similarity is computed between all the possible pairs of def-uses for the old and new
entities. Such similarities are then stored in the statement score matrix.

The application of the Hungarian algorithm on the statement score matrix for the candidate
renaming STATE_INITIAL → STATE_PRE_INIT creates the following statement matches: O1 →
N1, O2 → N2, and O3 → N4, where Oi (Ni) is the ith statement of the older (newer) entity.
The similarity scores of the matched statements for fields should be more than 0.8 according
to Table .1. The heuristic to prune false renamings for fields states that one must have a
number of matched statements higher or equal to 40% (see Appendix) of the longest list
of def-use statements for a candidate matching to be considered (this is to say, 40% of the
largest score matrix dimension).

In the example described above, the matrix is a three by four matrix, which means that at
least two def-uses must be matched (4 × 40% = 1.6 ≈ 2). Actually, three statements have
been matched, thus the score for the two entities (STATE_INITIAL and STATE_PRE_INIT) is the
sum of the scores mapped by the Hungarian algorithm: 3.00 (= 1.00 + 1.00 + 1.00).

27

Computing the Score between Entities without Def-uses

If at least one of the entity has no def-uses, the computation of the similarity is based on
the textual similarity between the two entity declaration statements, ds1—the declaration
statement of the entity in the old file—and ds2—the declaration statement of the entity in
the new file. Also in this case, if the similarity (1 − NLD(ds1, ds2)) is lower than a prede-
fined threshold—named Declaration Similarity Threshold: (DST)—we discard the candidate
renaming by setting its similarity to the minimum, i.e., to zero.

To better understand how the similarity is computed in this particular case, let us go back to
the example of Fig. 4.3. In this example, only one candidate renaming has been identified,
i.e., loadNative → terminate. Because both methods have no def-uses, we simply com-
pute the similarity between the declarations, i.e., between private void loadNative() and
public native int terminate(). The similarity between these two entities (1−NLD(ds1, ds2),
where ds1 is the declaration statement of loadNative and ds2 is the declaration statement of
terminate) is 0.63 which is lower than the fixed DST threshold (0.7); thus the score between
loadNative and terminate is set to zero.

Computing the Score between Candidate Package Renamings

Using a package means importing that package or types declared in that package. Thus,
a score based on def-uses is not suitable for package renamings as it does not allow one to
distinguish between a case where types were moved from one package to another and a case
where the package was actually renamed. In both cases, the use of the package will change
in an identical manner; however, only the second situation is an actual package renaming.
Thus, REPENT first computes the score of candidate package renamings using the version
control system (to identify renamed, added, and deleted folders); then it filters out candidate
package renamings that do not match a change in the folder structure of the version control
system by setting their score to zero.

Filtering Out Likely False Renamings

As noted above, REPENT must also cross-check if entities exist in both files before pro-
moting a candidate renaming to a real renaming. In essence, two further steps are needed:
cross validation and entity score evaluation.

Cross validation consistency check This step is necessary as there may be cases in
which the line mapping is not precise. These cases often occur when source code fragments

28

are moved within the same file (as in Fig. 4.3). Since line mapping relies on the Unix diff,
and since diff relies of the context, i.e., surrounding statements, such moving of code may
result in wrong line mapping.

To cope with this imprecision, REPENT cross-checks each entity of a candidate renaming—
i.e., in the old file REPENT looks for an entity with the same name as the new entity and
in the new version REPENT looks for an entity with the same name as the old entity—and
computes the score between the two entities, using the algorithms described in Sections 4.2
and 4.2. If this score is greater than the score of the candidate renaming, then the renaming is
discarded, i.e., its score is set to zero. In the example in Fig. 4.3 the cross-checking identifies
that loadNative → terminate is not an actual renaming, since the method loadNative is
still present in the new file. Instead, in the example shown in Fig. 4.4, the cross-check fails
since neither of the entities in the older version of the file appear in the new file and the
entity of the new file does not appear in the old file.

Entity score evaluation For each candidate renaming the scores of all possibilities are
stored in p × q entity score matrix, where p and q are the number of old and new entities,
respectively. Once such a matrix is produced for a candidate renaming, we apply the Hungar-
ian algorithm to collect the assignments between the entities. Clearly, if a row (or a column)
of the score matrix contains all zero values, the related entity is not renamed.

Fig. 4.7 shows the computation of the entity score matrix for the example in Fig. 4.4. This
is a 4×1 entity score matrix where only one entry has a score greater than zero. Thus, when
applying the Hungarian algorithm we obtain that the best score is 3.00, i.e., the score between
STATE_INITIAL and STATE_PRE_INIT. Therefore, REPENT concludes that STATE_INITIAL has
been renamed to STATE_PRE_INIT.

4.3 Summary

REPENT uses line differencing algorithm, the Unix context diff algorithm, to identify line
mapping between two consecutive versions of files. File renamings are detected by comparing

Scores

STATE_INITIAL

Entity score matrix
Detected renaming

Compute entity
name score matrix

STATE_INITIALIZED

STATE_STARTED

STATE_STOPED

3.00
0.00

STATE_PRE_INIT

0.00

0.00

STATE_PRE_INITSTATE_INITIAL

Candidate
renaming

score
Candidate
renaming

score
Candidate
renaming

score
Candidate
renaming

score

Figure 4.7 REPENT: Filtering false positives renamings.

29

the added and deleted files in the repositories of the programs under analysis. Line mapping
is used to build the first renamings candidates list by extracting entity declarations of the
mapped lines. Using data flow analysis REPENT extracts for each software entity its def/use
statements. False positive are removed from renamings candidates by comparing the def/use
statements of mapped entities. In the next chapter we introduce characteristic of the five
open source Java programs we used to evaluate the accuracy of the proposed approach along
with the results of renamings..

30

CHAPTER 5 RESULTS OF DETECTION

This chapter reports the results of an empirical study conducted to evaluate the accuracy
and completeness of REPENT renaming detection. The goal of this study is to analyze the
detection accuracy of REPENT with the purpose of investigating to what extent undocu-
mented renamings can be identified. The perspective of the study is that of researchers, who
are interested in investigating how REPENT is suitable to identify renamings. The evalu-
ation has been carried out in the context of the source code history of five Java open-source
programs (ArgoUML, dnsjava, Eclipse-JDT, JBoss, and Tomcat).

ArgoUML 1 is a UML modeling tool. dnsjava 2 is a Java Domain Name System (DNS) imple-
mentation. Eclipse-JDT is a set of plug-ins that adds the capabilities of a full-featured Java
IDE to the Eclipse 3 platform. JBoss AS 4, in the following simply referred to as JBoss, is a
Java application server. Tomcat 5 is an implementation of a servlet container and Java Server
Page (JSP) engine. Table 5.1 reports the main characteristics of the analyzed programs: the
analyzed time periods, size ranges in KLOCs, numbers of files, numbers of analyzed revisions,
and numbers of committers. ArgoUML and Eclipse are versioned under CVS, while all other
Java programs are versioned under SVN.

The following sections detail the procedure and results of the accuracy evaluation of RE-
PENT, in particular we discuss precision and recall.

1. http://argouml.tigris.org
2. http://www.xbill.org/dnsjava
3. http://www.eclipse.org
4. http://www.jboss.org/jbossas
5. http://tomcat.apache.org

Table 5.1 Characteristics of the analyzed programs.

Program Analyzed KLOCs Files File Committers
period (range) (total) revisions

ArgoUML 1998-2012 1-20 300 68,400 42
dnsjava 1998–2011 9-35 365 1,415 2
Eclipse-JDT 2001–2006 2,089–6,949 5,758 54,571 50
JBoss 1999–2011 2,000-1,200 40,003 25,028 422
Tomcat 1999–2006 5–315 12,205 46,498 79

http://argouml.tigris.org
http://www.xbill.org/dnsjava
http://www.eclipse.org
http://www.jboss.org/jbossas
http://tomcat.apache.org

31

5.1 Research Questions and Study Procedure

To evaluate the accuracy of REPENT, we address the following two research questions:

RQ-DP: How accurate is the set of renamings detected by REPENT? This research question
aims at estimating the accuracy of the detection approach, measured in terms of precision.
Since Section 5.2 presents an empirical study on how developers rename identifiers, precision
indicates the accuracy of the renamings used in such a study.

RQ-DR: How complete is the set of renamings detected by REPENT? This research ques-
tion aims at estimating the completeness, measured in terms of recall, of REPENT with
respect to the set of renamings performed by the developers of the analyzed programs. Recall
gives an estimate of the representativeness of the analyzed renamings reported in Section 5.2.

The following subsections detail how we evaluate the accuracy of REPENT.

5.1.1 Evaluating the Precision of the Detection Approach: Manual Validation

This section explains in details the process of evaluating the precision for detection. Precision
is computed by manually validating a sample of renamings from the analyzed programs. We
reuse the oracle built from our previous work, i.e., manually validated renamings for Tomcat,
to calibrate thresholds (see Appendix).

We then evaluate the approach on all programs by validating a statistically representative
sample for each. Sampling separately for each program allows us to evaluate the detection
also on programs with low number of renamings (e.g., dnsjava), which otherwise would have
less chances to be selected (e.g., with respect to JBoss) if the total population was considered.

To estimate the size of the representative samples we choose a confidence level of 95% and
a confidence interval of ±5% Sheskin (2007). Thus, we can be 95% sure that the precision
of the approach on the detected renamings for each program will be the precision estimated
for the sample ±5%.

Once the sample sizes have been determined, we use a stratified random sampling to select
the renamings to be validated.

This means that for each program we first group renamings based on the kind of entity being
renamed, i.e., the first dimension of our taxonomy (e.g., type, method). Then, we estimate
the proportion of each group with respect to the total population of detected renamings for
that particular program and we use the same proportion for the sample. For example, if
type renamings are 5% of the total population of detected renamings in ArgoUML, 5% of
the sample must be type renamings. Finally, we randomly select the sample for each group.

32

The sample size and the number of detected renamings are reported in Appendix .

The advantage of using stratified random sampling is in ensuring that all groups are repre-
sented Black (1999). If random sampling is used instead, the chances that a package renaming
is selected for validation for Eclipse-JDT for example are almost zero (4 over 12,557).

The manual validation was conducted as follows. For each chosen detected renaming, two
evaluators independently inspected the source code of both versions of the file between which
the entity was renamed. Then, the evaluators marked the renaming as true positive (TP) or
false positive (FP). In all cases in which the two authors provided a different classification
for the renaming, the inconsistency was discussed and solved. When needed, a third author
also reviewed such candidate renamings in which case the classification was obtained by a
majority vote. All available details (comments, uses, neighboring entities) contributed to the
decision-making.

Whenever the lack of knowledge prevented us from taking a decision, the renaming was
removed and replaced by a new one; the process was iterated up to the required sample size.

Finally, the precision is computed as the fraction of detected renamings in the validated
sample that the validators classified as TP. In other words, given the subset of detected
renamings sampled for validation, TPS the set of those classified as true positives, and FPS

the set of those classified as false positives, the precision Pr is given by:

Pr = |TPS|
|TPS|+ |FPS|

5.1.2 Evaluating the Recall of the Detection Approach: Comparison with Doc-
umented Renamings

To evaluate the recall, ideally one should have the knowledge of all actual renamings that
occurred in a program. Unfortunately, such information is not available for open-source
programs.

With approximately two hundred thousand file revisions, it is very tedious, time consuming,
and error prone to manually extract all entity renaming. There are (relatively few) cases
in which developers documented renamings in the versioning system commit notes of Java
programs. Hence, we estimate the recall as the proportion of such documented renamings
also detected by REPENT.

To identify documented renamings, we filter the commit logs and consider only the commits
whose note contain the keyword “renam”. Then, we complement the automatic filtering with

33

a manual analysis of the identified commit notes, with the aim of pruning out false positives.
Typical cases of false positives are the commits in Eclipse-JDT related to changes to the
refactoring feature, which includes a renaming feature. Other false positives are related to
renaming of files not containing source code, e.g., images or documentation files. Then, we
analyze the source code of the files involved in the documented renaming to locate renamed
entities, and hence verify whether such renamings are detected by our approach. Hence,
given DCR, the set of documented renamings identified as described above and DR the set
of detected renamings, the recall Rc is the proportion of documented renamings that are also
detected by REPENT:

Rc = |DR ∩DCR|
|DCR|

5.2 Results

This section analyzes the results achieved aiming at answering our research questions RQ-
DP and RQ-DR.

5.2.1 RQ-DP: How accurate is the set of renamings detected by REPENT?

Table 5.2 reports, for the analyzed programs, the precision of REPENT computed for each
kind of entity as well as for the overall sample of renamings.

We observed an average precision of about 88%, as expected slightly lower than the one
computed when calibrating the thresholds (about 92%, see Table .1). The number of de-
tected package renamings is very low, thus at most 1 package renaming was sampled per
program, which results in a 0% or 100% precision and explains the lowest precision reported
in Table 5.2, i.e., 67% for package renamings. REPENT has a somehow low precision—
compared to the rest of the entity kinds—for parameters renamings (76%). The set used to
calibrate the thresholds may not have a sufficiently large set of parameter renaming and thus
thresholds may need to be recalibrated. The accuracy of REPENT may also be impacted
by methods not being called in the program, or getters/setters automatically generated and
again not used. In such cases REPENT relies on the fixed DST string matching threshold.
Higher values may improve precision but again at the cost of recall.

5.2.2 RQ-DR: How complete is the set of renamings detected by REPENT?

In the following we describe in details the computation of recall of detection.

34

Table 5.2 Estimated precision Pr for renaming detection of different entities (95% ±5 confi-
dence).

ArgoUML dnsjava Eclipse-JDT JBoss Tomcat Overall
Package 0% - 100% 100% - 67%
Type 100% 100% 100% 100% 100% 100%
Constructor 100% 100% 100% 100% 100% 100%
Field 100% 93% 95% 94% 73% 93%
Method 100% 98% 94% 94% 93% 94%
Getter/Setter 100% 83% 97% 96% 79% 90%
Parameter 90% 54% 92% 87% 67% 76%
Local variable 95% 86% 93% 84% 90% 92%
Overall 97% 78% 94% 91% 80% 88%

Table 5.3 Comparison with documented renamings.

Program Files Documented
involved renamings

ArgoUML 77 4
dnsjava 113 229
Eclipse-JDT 140 52
JBoss 146 50
Tomcat 66 2

Table 5.3 reports the number of files involved in the commits whose log message suggest pos-
sible renamings. Documented renamings refer to the number of renamings that we found in
the files committed with the log messages that were either documenting a renaming in a vague
manner (e.g., “renamed some stuff”) or explicitly (e.g., “rename Name.fromStringNoValidate(String)
to Name.fromStringNoException(String)”).

Table 5.4 reports—for each kind of entity—the detected proportion of documented renam-
ings. We conclude that although sometimes renamings are documented, this is not a general
rule. This result further motivates the use of REPENT as a renaming re-documentation
tool. Table 5.4 also shows that documented renamings often pertain to types and, thus, to
constructors.

For ArgoUML, the number of documented renamings is very low. We detect three out of four

35

Table 5.4 Detected documented renamings and recall Rc of different entities.

ArgoUML dnsjava Eclipse-JDT JBoss Tomcat Overall
Package - - 100% (1/1) - - 100% (1/1)
Type - 94% (58/62) 18% (4/22) 95% (20/21) - 78% (82/105)
Constructor - 100% (134/134) 100% (4/4) 95% (18/19) - 99% (156/157)
Field 100% (1/1) 100% (4/4) 100% (3/3) 100% (1/1) - 100% (9/9)
Method - 100% (1/1) 100% (7/7) 100% (5/5) - 100% (13/13)
Getter/Setter 67% (2/3) - - 100% (2/2) 100% (2/2) 86% (6/7)
Parameter - 100% (28/28) 100% (7/7) - - 100% (35/35)
Local variable - - 88% (7/8) 100% (2/2) - 90% (9/10)
Overall 75% (3/4) 98% (225/229) 63% (33/52) 96% (48/50) 100% (2/2) 92% (311/337)

renamings. The renaming our approach fails to detect is a complex combination of renaming
and refactoring activities, where the renamed getter method was abstract in the old version
and became a concrete method in the new version. Also, the field associated with the getter
was moved from the superclass to a subclass.

In Tomcat there are only two documented renamings and REPENT detects both of them.

For JBoss, REPENT only fails to identify two documented renamings, i.e., one class and
one constructor. Both entities are defined in the same file and the file was renamed as well.
REPENT misses these renamings as the difference between the original and renamed files
is greater than the 60% relative threshold for detecting renamed files.

For Eclipse-JDT, REPENT fails to identify one local variable and 18 class renamings. mainly
because Eclipse-JDT used (for the analyzed period) CVS. Therefore, as explained in Section
4.1, we grouped commits using the heuristic of Zimmermann et al. Zimmermann et Weisger-
ber (2004)

However, sometimes commits belonging to the same change occur in different days and
developers do not always use consistent commit notes. As a consequence, REPENT fails to
identify some file renamings.

Finally, dnsjava was (surprisingly) the program containing the highest number of documented
renamings, despite being the smallest one. In this case, our approach detected 98% of the
documented renamings, i.e., it fails to detect only four class renamings. These classes have
no def-uses. Although REPENT detects these class renamings as candidate renamings, it
filters them as false positive, since their similarities are less than the declaration similarity
threshold for type renamings (see Table .1).

Table 5.5 summarizes REPENT precision and recall. The first column reports the data set

36

used for the evaluation; the second column corresponds to the size of the data set (i.e., num-
bers of renamings); the last column reports the measures. Precision was evaluated over a
representative sample from the detected renamings while recall was evaluated with respect
to renamings documented by developers. The documented renaming set is extracted from
the repository of the programs under analysis. Although its size is not as large as the sample
used to evaluate the precision, it is an unbiased oracle as the entries are reported by the
developers.

REPENT detection accuracy: Overall, we found that REPENT reaches high
precision (88%) and recall (92%) thus being suitable for most of the foreseeable
tasks.

5.3 Threats to Validity

This section discusses the threats to validity that can affect the studies performed. We
discuss the most important threats that can affect this kind of study, i.e., construct validity,
conclusion validity, and external validity.

Construct validity threats concern the relationship between theory and observation. As for the
renaming detection study, construct validity threats are due to the detection of renamed files,
the estimation of precision, and recall. For programs using SVN versioning system, when
files are not explicitly renamed we compare deleted versus added files for two consecutive
revisions. We use the Unix diff algorithm to compare the number of changed lines between
all possible combinations of added and deleted files. We select the best possible combination
(i.e., smallest number of lines changed) if it does not exceed a relative threshold of 60%. The
value for the threshold is estimated based on the central tendency of explicitly renamed files
as logged by the versioning system files. For CVS, we first group files based on the commit
date, log message, and committer ID Zimmermann et al. (2004), and then apply the same
heuristic used for SVN, considering as deleted files the files that appear for the first time in
the “Attic” directory.

Table 5.5 REPENT precision and recall.

Data set Size Accuracy (measure)
Sample over detected renamings 1723 88% (Pr)
All documented renamings 337 92% (Rc)

37

As for precision, the manual validation could be affected by subjectiveness or human er-
ror. Specifically, regarding the classification, we may be affected by the lack of domain
knowledge—i.e., the original developers of the five programs may have classified differently
some of the renamings. To mitigate those threats, the validation was performed by two
persons independently and, in case of different classification, the renaming was discussed,
and a third person was also asked to perform the classification. As for the recall, we are
aware that the sample of documented renamings may not be fully representative of the en-
tire set of renamings performed in a project. First, this happens because developers do not
always document renamings in commit notes, especially if they are performed together with
other changes. Second, most of the documented renamings are related to types and thus to
constructors, i.e., to entities whose names can impact on other developers’ activities.

Internal validity threats are related to factors, internal to our study, that can affect our
results. Such a threat is mainly due to the calibration of thresholds. Indeed, different
calibration could have produced different results, and also indirectly affected the subsequent
renaming classification study. Appendix explains how thresholds have been empirically
determined. Clearly, the calibration has been performed based on a thorough validation on a
sample set of detected renamings of Tomcat, when using low thresholds. The use of data from
one of the projects to calibrate thresholds was also used in other studies Bavota et al. (2011);
Koschke et al. (2006); Thummalapenta et al. (2010). However, this does not guarantee that
the choice is optimal for the other projects.

Conclusion validity threats concern the relationship between the experimentation and the
outcome. Our study is an exploratory study in which we do not make use of statistical tests
to reject specific hypotheses. The only issue related to conclusion validity is the represen-
tativeness of the sample used to validate the renaming detection precision. To evaluate the
detection accuracy, we performed for each program a stratified random sampling across the
kinds of entities considering a confidence level of 95% and a confidence interval of at least
±5%.

External validity threats concern the generalizability of our results. Both the evaluation of
the renaming detection approach and the exploratory study were conducted on data from a
subset of the evolution history of five Java open-source projects. Although we have chosen a
pretty variegated set of projects—belonging to different domains and development organiza-
tion, and having different size—it could happen that replicating the study on other projects
could lead to different results, e.g., different performances of the renaming detection tool.
A different matter is the application of the proposed approach on programming languages
different from Java. Our preliminary results shows that the proposed approach is applicable

38

to other languages, but some adaptation may be needed.

5.4 Comparison with Existing Approaches

In the following we compare REPENT performances with existing approaches that detect
renamings as part of their refactoring detection.

Comparison with DiffCat: We compared REPENT to DiffCat on renamings de-
tected in a random sample of revisions of dnsjava and JBoss. For each randomly selected
revision, we applied both tools and manually validated the detected renamings. We stopped
sampling once both approaches reached a total of 100 renamings. Table 5.6 shows the re-
sults of the comparison 6. The last column of Table 5.6 reports the false negatives (FN),
i.e., the number of true renamings that each approach does not detect. Overall, REPENT
outperforms DiffCat in terms of precision and number of detected true renamings.

REPENT uses file context diff to reduce the search space of entities involved in potential re-
namings, the actual validation of renamings is mainly based on the def-use analysis or, when
not available, on the similarity between declarations. File context diff can be replaced with
any other differencing tool including ChangeDistiller. However, the advantage of the file
context diff is its speed and a simple comparison between file context diff and ChangeDis-
tiller showed that both tools are sensitive to cases where chunks of code are moved within
a file. In addition, the comparison with DiffCat, which is built on ChangeDistiller,
shows that REPENT is more accurate in terms of detected renamings.

We share with all of the above approaches their general ideas and goal. We also use parsing
and differencing technologies, though in a different combination, to achieve an approximated,
lightweight, robust, and scalable approach. The novelty of our work is a renaming taxonomy
directly conceived to better represent renamings on orthogonal dimensions, and a classifier
that—by relying on WordNet and on the Stanford NLP—classified renamings according to
the proposed taxonomy. Thus REPENT detects finer-grain details about renamings, such

6. The detected and validated renamings can be found in the replication package.

Table 5.6 Accuracy of REPENT and DiffCat on a random sample of revisions.

Precision TP / Detected FN
REPENT DiffCat REPENT DiffCat REPENT DiffCat

dnsjava 99% 96% 104 / 105 99 / 103 16 21
JBoss 81% 72% 108 / 133 77 / 107 33 63

39

as the grammatical renaming type or the semantic type. Furthermore, our approach does
not require a compilable program to work.

Comparison with Refactoring Crawler: Refactoring Crawler was applied on var-
ious releases of Eclipse UI, Struts, and JHotDraw with accuracy as high as 85%. The syntactic
analyzer is fast, however it may produce false positives; therefore, it is necessary to filter out
the false positives via the semantic analyzer. As reported in the paper, the semantic analyzer
does not scale up for real world applications with tens of thousands of entities. Detecting
renamings is the common part between Refactoring Crawler and our proposal. In ad-
dition to the renamings detected by Refactoring Crawler, our technique also detects
field, parameter, and local variable renamings. Moreover, we do not have any limitations for
detecting renaming of abstract methods and methods declared in interface. Our technique
can compare any two versions of Java source code and does not require the source code to
be compilable unlike Refactoring Crawler.

5.5 Summary

In this chapter we provide details of the studied programs, results of REPENT detection
component and the accuracy of the results in terms of precision and recall. We discussed
in details the threats to the validity of our study. The results show that renamings is a
frequent activity during software evolution and thus confirms our thesis. Having an overall
high precision and recall for detection of renamings assures that the input to the classification
is a trust able and thus motivates the classification of detected renamings. Next two chapters
explains how renamings are classified using our taxonomy and the results of classification for
the five Java programs.

40

CHAPTER 6 RENAMING CLASSIFICATION

In this chapter we provide details of our renaming classifications.

The classification process of REPENT is summarized in Fig. 6.1. It entails a sequence of
phases: (i) identifier splitting (Section 6.1), (ii) mapping of identifier terms (Section 6.2), and
(iii) combining part of speech and semantic analyses (Section 6.3). Each phase is detailed in
the following.

The renaming classifier heavily relies on tools—ontological databases such as WordNet (Miller,
1995) and natural language parsers such as the Stanford Part-of-Speech Analyzer (Toutanova
et Manning, 2000)—explicitly conceived to process natural language documents rather than
source code. As pointed out by Hindle et al. (Hindle et al., 2011), such tools can be far from
optimal when applied to source code. However, at the moment they represent, to the best of
our knowledge, the most suitable technology for our purposes. In future, REPENT could
be further improved by replacing or combining WordNet with a domain-specific ontology.

For example, in their recent work Yang and Tan (Yang et Tan, 2013) propose an approach
to mine semantically related words in a project or multiple projects from the same domain.
Similar work has been done by Howard et al. (Howard et al., 2013) where the authors mine
semantically similar words across projects from multiple domains. However, in the current
status we could not apply the aforementioned approaches, because they would have required
us to manually validate all the mined semantic relations, which would have required a deep
domain knowledge for the projects considered in our study (which we do not have).

6.1 Identifier Splitting

This step aims at splitting both the old and new names into their composing terms. RE-
PENT uses a Camel Case splitting algorithm. The output of this phase is the lists of terms
composing the old name i.e., t1,1, t1,2, . . . , t1,n1 and the new name i.e., t2,1, t2,2, . . . , t2,n2 , where
n1 and n2 are the number of terms composing the old and new names respectively. For ex-
ample, the identifier getChildCount is split into get, child, and count. More sophisticated
identifier splitting approaches such as Samurai (Enslen et al., 2009), TIDIER (Madani et al.,
2010; Guerrouj et al., 2011), Normalize (Lawrie et Binkley, 2011), or LINSEN (Corazza et al.,
2012) can be plugged in. However, the current implementation of REPENT favors speed
over accuracy; a Camel Case splitter is much faster than, for example, TIDIER (Madani
et al., 2010; Guerrouj et al., 2011). Moreover, previous studies found that for Java, the

41

Figure 6.1 REPENT: Renaming classification process.

42

identifier splitting/expansion accuracy does not vary substantially between Camel Case and
more sophisticated approaches (Madani et al., 2010).

6.2 Mapping Terms

The second phase aims at mapping the n1 terms t1,1, t1,2, . . . , t1,n1 composing the old name
onto the n2 terms t2,1, t2,2, . . . , t2,n2 of the new name. The mapping phase is, in turn, divided
into two main steps depicted in Fig. 6.2. In the reported example REPENT must map the
name getStorage onto getMemoryBlock.

First, REPENT discovers changed and unchanged terms plus added and deleted terms. To
this aim, each term composing the old and new names is thought of as a source code line.
In our example, the terms get, and Storage compose the lines of the first (old) file, while
get, Memory, and Block represent the lines of the second (new) file. Then, a diff algorithm
identifies churns of unchanged, added, removed, and changed terms (lines) between the two
versions of a name (file), using an algorithm that solves the longest common subsequence
(LCS) problem (Cormen et al., 1990). In the example in Fig. 6.2, after applying such an
algorithm, the renaming of getStorage to getMemoryBlock is considered as the removal of
the term Storage and the adding of the terms Memory, and Block. The term get is identified
as unchanged.

In the second step, REPENT performs a fine-grained analysis of changed terms (i.e., the
term Storage from the old name and the terms Memory, and Block from the new name in the
example shown in Fig. 6.2). Such an analysis is based on Algorithm 1 that builds a term-by-
term mapping and classifies it. A term t1,i of the old name is mapped onto a term t2,j of new
name according to multiple criteria, encoded in the function matching(t1, t2, matchType).
Given two terms and a matching criterion, this function returns true if the terms match
according to the matching criterion, false otherwise. Specifically, the matching is performed
using, sequentially, the following criteria:

1. Exact match: if the two terms exactly match, e.g., get and get.

2. Case difference: if the two terms only differ by the alphabetic letter case, e.g., Book

and book. If this does not happen, all terms are converted into lower case letter, and
the subsequent criterion are matched.

3. Semantic match: if the two terms have any semantic relation according to the upper
ontology WordNet. Words in WordNet are organized based on their relations. Syn-
onyms are grouped into unordered sets, called synsets, which in turn are related using
semantic and lexical relations. In the example reported in Fig. 6.2 the terms Storage

43

and Memory belong to the same synset. The semantic relations considered by REPENT
are synonym, hyponym, hypernym, antonym, meronym, and holonym. REPENT first
identifies semantic relation between two mapped terms and if there is no such semantic
relation it looks for a semantic relation between words in the synsets of the two mapped
terms. This process repeats for up to three synsets of each word in the synsets of two
mapped terms.
For example, when looking if an antonym relation exists between two terms, REPENT
first checks if there is an antonym relation. However, if this is not the case, REPENT
further analyzes their respective synsets for antonym relation between two words, each
belonging to the synset of the original terms. If an antonym relation is found, it will
be considered as a relation of level 1. In the opposite case, i.e., no relation is found,
REPENT further looks for antonym relation between the words of the synsets of the
synsets, i.e., by doing a transitive closure up to level 3.

4. Is stem: if the two terms have the same stem according to the Porter (Porter, 1980)
stemming. This rule is applied only if the semantic match rule fails. Indeed, if both
terms are defined in WordNet, e.g., synchronization and synchronizing, then they
will be related according to the semantic match. If any of the two terms is not defined
in WordNet, as it is the case of invoc from the identifier renaming invocationType→
invocType, then the rule is stem is applied.

Algorithm 1 builds a mapping of terms of the old name onto any (not yet mapped) term of
the new name, repeatedly traversing the terms of the new name, moving from the position of
the term of the old name and using the above matching criteria, in the order in which they
are mentioned.

After the term mapping has been performed, REPENT identifies mapped terms on which
the renaming classification will focus, i.e., all mapped terms that are not trivially mapped
according to the exact match criterion. For example, in the identifier renaming getStorage

→ getMemoryBlock, both identifiers contain get

that is an exact match and thus is removed from further consideration.

After terms of the old name have been mapped onto terms of the new name, REPENT
classifies the renamings at term level, as:

1. Removed: terms of the old name not mapped onto any term of the new name are clas-
sified as removed, as it is the case for the term statement from the identifier renaming
statementLength → length.

2. Added: terms of the new name not mapped onto any term of old name are classified

44

as added. In the example reported in Fig. 6.2 the terms Block is identified as an added
term.

3. Matched: terms of the old name mapped onto terms of the new name according to
Algorithm 1 with an exact match, e.g., the term get in the example reported in Fig. 6.2.

4. Change case: terms of the old name mapped onto terms of the new name according
to Algorithm 1 with a case difference match, as this is the case for the term jar from
the renaming pJARFile → jarFile.

5. Related: terms of the old name mapped onto terms of the new name according to
Algorithm 1 with a semantic match or a is stem match. In the example reported
in Fig. 6.2 the terms Storage and Memory are classified as related since there exists a
semantic relation (synonym) between them.

Algorithm 1 Algorithm for mapping and classifying the n1 terms of the old name onto the
n2 terms composing the new name.
for matchType in (exact, case_difference,semantic, is_stem) do

for x← 1 to n1 do
if ¬mapped1[x] then

y1← x, y2← x;
while y1 > 0 or y2 ≤ n2 do

for y in (y1, y2) do
if matching(t1,x, t2,y, matchType) AND ¬mapped2[y] AND y > 0 AND

y ≤ n2 then

mapped1[x]← y;
mapped2[y]← x;

end if
end for
y1−−, y2 + +;

end while
end if

end for
end for

REPENT uses the mapped terms to classify the renaming in dimension forms of renaming
as follows:

Simple: when only one term is added, removed, or changed.

Complex: when more than one terms are added, removed, or changed.

Formatting only: the following two conditions hold: (i) all term mappings are matched and/or

45

change case and (ii) the two identifiers are the same when underscore and camel case are
ignored.

Term reorder: the following two conditions hold: (i) at least two terms of the old identifier
are matched to two terms in the new identifier while possibly changing case and (ii) the two
identifiers are not the same when underscore and camel case are ignored.

REPENT refines related matches via WordNet to find semantic relations between terms,
i.e., synonymy, hyponymy, hypernymy, antonymy, meronymy, or holonymy and can thus clas-
sify the renaming in dimension semantic change as synonymy, specialization, generalization,
opposite, or whole-part when the corresponding relation exists.

If no semantic relation is found REPENT checks whether there is a spelling error correc-
tion/introduction. REPENT assumes there is a spelling error if the following three condi-
tions hold: (i) one of the two terms does not exist in WordNet but the other does, (ii) there
is only small (string) difference between the two

(Levenshtein distance is 2 or smaller—see Appendix for a discussion on the threshold value),
and (iii) one

term is not included in the other (to avoid misclassifying renamings such as frame→ jframe).

Finally, if the previous checks fail, REPENT checks if there is an abbreviation/expansion. It
assumes abbreviation/expansion if the following two conditions hold: (i) one of the two terms
does not exist in WordNet but the other does and (ii) all characters of one are contained in
the other.

6.3 Part of Speech and Semantic Analyses

In natural language, a word carries a specific meaning. Words are often grouped into
phrases which in turn can be combined to form sentences. The meaning carried by a phrase
can narrow, generalize, or change the meaning of an individual term within the phrase.
By analogy with natural language, to grasp the meaning of an identifier, one cannot rely
only on the terms constituting the identifier in isolation. For example, the term visible

(from the identifier JavadocNotVisibleReference) and the term hidden (from the identi-
fier JavadocHiddenReference) have opposite meaning, whereas the identifiers have the same
meaning.

Thus, after terms are mapped between the old and new name, REPENT explores the rela-
tions between the terms within the same identifier to classify identifier renamings. REPENT
builds a synthetic sentence out of the identifier, then it performs a part of speech analysis.

46

As identifiers do not always follow well-formed grammatical structure, before applying part
of speech analysis using natural language tools we apply a sentence template. Different
templates have been proposed in the literature by Abebe et al. (Abebe et Tonella, 2010) and
Binkley et al. (Binkley et al., 2011). For all kinds of entities, except methods, REPENT
applies the List Item Template by Binkley et al. (Binkley et al., 2011). Indeed, they provided
evidence that this template outperforms the other three templates they evaluated. For the
identifier inclusionPatterns the template produces inclusion patterns. However, if the first
term is a verb, as it is suggested according to Java standard for method names, REPENT
uses a different template, i.e., the verb template: “Try to <identifier terms>”. A template
is just an aid provided to the part of speech tagger to guide its analysis; thus for the method
name markAsDefinitelyUnknown, REPENT applies the verb template on the term sequence,
i.e., Try to mark as definitely unknown.

REPENT part of speech analysis uses the Stanford Part-of-Speech Analyzer 1. The Stan-
ford NLP classifies terms using the Penn Treebank Tagset (Marcus et al., 1993), thus not
only distinguishing between nouns, verbs, adjectives, and adverbs, but also distinguishing
between the different forms. From this step beyond, we use the part of speech of each term—
i.e., whether it is a noun, being it singular or plural, an adjective, an adverb, etc.—and the
relations between terms. More precisely, we are interested in the following relations: negation
modifier (i.e., the relation between a negation word and the word it modifies, as in the identi-
fier ignoreNotFoundField), adjectival modifier (i.e., a modifier relation between an adjective
and a noun, meaning that the adjective specifies the noun, as in the identifier binaryField),
and noun compound modifier (i.e., a modifier relation between two nouns, meaning that one
noun specifies the other, as in the identifier methodSignature).

Given a renaming pair, old and new names, REPENT processes the two part of speech
analyses and uses heuristics to assign a semantic label to the renaming. The heuristics work
as follows:

Synonym phrase: when the following two conditions hold: (i) there exists a term mapping
where the two terms hold an antonym relation and (ii) one of the two terms is involved in a
negation modifier relation.

Opposite phrase: when one of the following two conditions holds: (i) a negation modifier
relation is added/removed while the modified term exists in both identifiers or (ii) a term
renaming towards a synonym is accompanied with an addition/removal of a negation modifier
relation.

Specialization phrase: when the following two conditions hold: (i) a term is added and (ii) it

1. We will refer to it as the Stanford NLP.

47

participates in a modifier relation, either adjectival or noun, with an already existing term.

Generalization phrase: when the following two conditions hold: (i) a term is removed and
(ii) a modifier relation between the removed term and a term existing in both identifiers is
also removed.

Whole-part phrase: when more than one term mapping pair holds a whole-part relation.

Add meaning: when the following two conditions hold: (i) there exists a term mapping that
is classified as term added, and (ii) the added term is not the modifier of another term in the
new identifier.

Remove meaning: when the following two conditions hold: (i) there exists a term mapping
that is classified as term removed, and (ii) the removed term is not the modifier of a term in
the old identifier.

Unrelated: when a term mapping does not fall into any of the levels of semantic change.

Part of speech change: when the part of speech of two mapped terms are different.

6.4 Summary

REPENT classifies the detected renamings based on our proposed taxonomy. The first step
of classification is to split the old and new identifiers based on Camel Case splitting algorithm.
Then, term mapping is performed to identify added, removed and mapped terms between
the old and new identifiers. We use WordNet to identify the semantic changes between the
mapped terms. Finally, we use Stanford Part-of-Speech Analyze to extract more complex
semantic changes such as synonym, specialization, and generalization phrases. Moreover, the
part of speech tagger allow us to identify grammar changes between the mapped terms. In the
next chapter, we provide the results of our empirical study for classifications of renamings.

48

START

END

Step 1
Find unchanged

terms

Step 2
Map and classify

terms

get
Storage

get
Memory
Block

Algorithm 1
<<Added>>

<<Same synset>>

getStorage
getMemoryBlock

diff

get
Storage

get
Memory
Block

Figure 6.2 REPENT: Term mapping and classification process.

49

CHAPTER 7 RESULTS OF CLASSIFICATION

The goal of this study is to use REPENT to analyze renamings over the evolution history of
software programs with the purpose of investigating to what extent such renamings fall into
the dimensions defined in the taxonomy of Chapter 3. The perspective of the study is that
of researchers who are interested in investigating how identifiers are renamed in the same
context as the study reported in Chapter 5

7.1 Research Questions and Study Procedure

This empirical study aims at automatically detecting and classifying renamings in the five
Java programs described in Table 5.1.

Since we use REPENT to identify renamings, we analyze the classification accuracy of
REPENT to evaluate to what extent the classification of renamings with respect to our
taxonomy is affected by the performance of REPENT, thus answering the following research
question:

RQ-CP: How accurate is the set of classified renamings? This research question aims at
providing an estimate of the accuracy of the classification, measured in terms of precision.
Such an estimate indicates the accuracy of the results of this exploratory study, reported in
Section 5.

While the focus of the previous research questions is to evaluate the reliability of REPENT
as a tool to detect and classify identifier renamings, the following research questions are the
core of this study, i.e., they study the renaming phenomenon using the taxonomy defined in
Chapter 3. For each dimension of the taxonomy, we investigate to what extent renamings of
the programs fall into the different levels of the dimension.

RQ1: To what extent do renamings occur with respect to the different kinds of entities?
Specifically, we compute the number and proportion of renamings occurring for package,
type, constructor, method/getter/setter/function, field, parameter, and local variable names
to investigate which entities are more prone to be renamed.

RQ2: What kinds of changes occur to terms composing identifiers when these are renamed?
In other words, we compute the number and proportion of simple, complex, formatting only,
and term reordering renamings to investigate which forms are more frequent.

RQ3: What kinds of semantic changes occur in identifiers when they are renamed? In other

50

words, we compute the number and proportion of renamings that preserve, change, narrow,
broaden, add, and remove meaning to study how the renamings of the five programs are
distributed over the different levels of semantic change.

RQ4: What kinds of grammar changes occur in identifiers when they are renamed? Specifi-
cally, we investigate to what extent the renamings imply changes to nouns (singular/plural),
to verb conjugations, or other part of speech changes.

In order to find answers to our research questions, we investigate—from both a quantitative
and qualitative point of view—how identifier renamings detected in the studied programs
follow the taxonomy of Chapter 3.

7.1.1 Evaluating the Precision of the Classification Approach: Manual Valida-
tion

To evaluate the accuracy of the renaming classification on the Java programs we extract, for
each level of each dimension of the taxonomy, a representative random sample ensuring a
confidence interval of ±10% for a confidence level of 95%. This is different from the sampling
in Chapter 5 where the sample is representative for each program stratified over the kinds
of entities. Here, the confidence level and interval criteria are met for each level and each
dimension of the taxonomy for the total population of classified renamings. For the semantic
change dimension this means a representative number of expansions, a representative number
of abbreviations, etc.

7.2 Results

In this section we first discuss how accurately REPENT classifies renamings (Section 7.2.1),
then, in Sections 7.2.2 to 7.2.5, we discuss how the renamings of the programs that we studied
follow the taxonomy defined in Section 3, e.g., to what extent those renamings preserve
meaning or consist of changes that are formatting only.

Table 7.1 Renamed entities identified by REPENT - Java programs.

Package Type Field Constructor Method/Getter/Setter Parameter Local variable Total
ArgoUML 0 18 2,156 16 391 690 712 3,983
dnsjava 0 67 58 159 219 448 144 1,095
Eclipse 4 180 1,942 139 3,205 3,218 3,845 12,533
JBoss 7 656 1,805 475 3,985 3,406 3,247 13,581
Tomcat 0 69 478 48 830 507 428 2,360
Total 11 990 6,439 837 8,630 8,269 8,376 33,552

51

7.2.1 RQ-CP: How accurate is the set of classified renamings?

We manually analyzed a sample of the classified renamings of the five Java programs to
evaluate in how many cases REPENT correctly or wrongly classified the changes in the
identifiers. In addition, when REPENT fails to correctly classify a change we further inves-
tigate the reason. The sample size and the number of correctly classified renamings for each
dimension of taxonomy are reported in Tables .2 to .4 in Appendix .

With respect to the classification of forms of renaming, REPENT has an overall precision
of 98% (see Table .2). The few misclassified cases are due to wrong term mapping.

For the classification of semantic changes, REPENT exhibits an accuracy of 80% (see Table
.3). REPENT is very accurate in classifying renamings that add or remove meanings (82%
and 91% respectively), and the miss classification is due to splitting of identifiers that are all
in lower cases.

REPENT is also accurate in classifying renamings that preserve the meaning (overall pre-
cision of 93%). The lowest accuracy is achieved by REPENT when classifying renamings
as narrow and broaden meaning, 62% and 69% respectively. Wrongly classified renamings in
the category of semantic changes are due to wrong splitting, wrong term mapping, or wrong
relations between terms.

We also observed cases where REPENT misclassified a renaming because of the ontological
database. For example, WordNet infers a hyponym relation between “is” and “get” and an
antonym relation between “long” and “short”. Those relations are not valid in the context
of Java where in many cases “is” and “get” are used for accessors of boolean attributes and
where “long” and “short” are primitive types. Approaches by Yang and Tan Yang et Tan
(2013) and Howard et al. Howard et al. (2013) can be used to improve the classification of
semantic changes.

The classification accuracy of REPENT when classifying grammar changes is 74% (see Ta-
ble .4). REPENT is accurate in classifying changes of nouns from singular to plural (and
vice versa) and changes in verb conjugation, i.e., the precision is 100% and 79%. Moreover,
REPENT is very accurate where there is no grammar change (100%). By contrast, RE-
PENT performances are fairly low (20% of precision) in classifying changes in other part of
speech changes for Java programs.

Most of these cases are mainly due to the Stanford NLP not being accurate when parsing
source code identifiers. In a very recent work, Gupta et al. Gupta et al. (2013) proposed an
approach for part of speech tagging of source code identifiers and showed that the approach
parses identifiers 10% to 20% more accurately. Unfortunately, at current date, the source

52

code identifier tagger is not publicly available. However, it could be integrated in REPENT
to improve its performances. Other reasons for misclassification were incorrect splitting or
incorrect term mapping.

REPENT classification accuracy: REPENT almost perfectly classifies forms
of renamings (98%) and classifies reasonably well semantic changes (with an accu-
racy of 80%). The lowest performance is on the classification of grammar changes
(with an overall accuracy of 74%).

7.2.2 RQ1: To what extent do renamings occur with respect to the different
kinds of entities?

Table 7.1, and Fig. 7.1 report the number and proportion, respectively, of renamings occur-
ring for package, type, field, constructor, method/getter/setter, parameter, and local variable
names 1.

The entities that are more prone to be renamed are methods, and local variables. In addition,
we see that parameters tend to change more. Generally, such changes reflect the evolution
of the programs. Indeed 89% of the surveyed developers confirm that they rename while
changing functionality.

As an example in JBoss, REPENT identified that the parameter webserviceClientDeployer

has been renamed to webservicesClient. The renaming was performed to reflect a change in
the functionality, as confirmed by the log message: decouple WebserviceClientDeployer from
JSR109ClientService.

There is a large number of field renamings in ArgoUML. In this program, REPENT identified
2,156 field renamings, representing about 54% of the renamings. About 67% of the field
renamings consisted solely of underscore removal in the beginning of the field, i.e., renaming
away from the Hungarian notation. Finally, 11% of the field renamings were performed due
to the third party library that ArgoUML uses for logging purposes, i.e., Log4J. The class
org.apache.log4j.Category was deprecated and users of the library were supposed to use
class org.apache.log4j.Logger instead. As a result, fields were renamed from cat to LOG or
logger.

Finally, 448 out of 1,095 of the renamings in dnsjava were performed on method parameters
due to massive renaming activities that heavily changed the API and hence the method
parameters. Also, a considerable number (20%) of the parameter renamings consisted solely

1. For the classification of renamings we only considered the TP renamings from the validated sample,
thus the number of classified renamings is lower than the number of detected renamings.

53

0%	

10%	

20%	

30%	

40%	

50%	

60%	

ArgoUML	 dnsava	 Eclipse-‐JDT	 JBoss	 Tomcat	

Package	 Type	 Field	 Constructor	 Method/GeLer/SeLer	 Parameter	 Local	 variable	

Figure 7.1 Proportion of renamed entities identified by REPENT.

in removing a leading underscore. Conversely, in 52% of the parameter renamings (all being
renamed in the same revision) a leading underscore was added. In addition, the majority of
those parameters was renamed following the same pattern: names starting with the letter r

were renamed to start with underscore. Examples of those include rname → _name, rclass

→ _dclass, and rtype → _type. All those renamings were performed as part of “The big
rewrite...” in class Record, a generic resource record, or in one of its many subclasses. About
6% of the parameter renamings were performed on parameters of type DataByteOutputStream

where the name changed from dbs to out.

RQ1 conclusion: Renamings occur mostly for method, parameter, and local vari-
able names, with 26%, 25%, and 25% of the renamings respectively. Field renamings
represent also a large proportion of the renamings—close to 20%. Finally, type re-
namings, which in Java imply constructor renamings, as well as package renamings,
represent a small proportion of the renamings (less than 3% each for type and
constructor renamings, less than 1% for package renamings).

54

Table 7.2 Forms of renamings identified by REPENT in Java programs.

Simple Complex Formatting only Term reordering Total
ArgoUML 1,787 493 1,702 1 3,983
dnsjava 894 85 116 0 1,095
Eclipse-JDT 7,910 4,456 132 35 12,533
JBoss 8,094 4,786 655 46 13,581
Tomcat 1,638 658 58 6 2,360
Total 20,323 10,478 2,663 88 33,552

Table 7.3 Semantic changes identified by REPENT in Java programs.
Preserve meaning Change in meaning Narrow meaning Broaden meaning Add meaning Remove meaning None Total

ArgoUML 77 1,311 97 59 789 441 1,661 4,435
dnsjava 12 576 62 24 79 312 112 1,177
Eclipse 413 5,522 1,297 1,104 4,481 3,750 122 16,689
JBoss 580 6,042 1,130 851 4,884 4,198 564 18,249
Tomcat 259 1,061 186 138 731 628 35 3,038
Total 1,341 14,512 2,772 2,176 10,964 9,329 2,494 43,588

7.2.3 RQ2: What kinds of changes occur to terms composing identifiers when
these are renamed?

Table 7.2 reports the forms of identified renamings by REPENT, while Fig. 7.2 shows the
proportion of the different forms. Most of the renamings were classified as simple renamings,
where developers renamed a single term. In Eclipse-JDT, JBoss, and Tomcat, there is a
considerable number of complex renamings while this form of renamings is not so frequent in
the other two programs.

In ArgoUML, a substantial number of renamings is consist of formatting only—43% of the
identified renamings. The analysis of this form of renamings indicates that in 77% (1,314
out of 1,702) of the cases, the renaming relates to the removal of leading underscores from
identifiers, i.e., towards Java naming conventions, which recommend not to start identifiers
with underscore. However, in 2% (35 out of 1,702) of those renamings, a leading underscore
was added to identifiers, hence, against Java naming conventions. These results go along with
the opinion of surveyed developers—when the name of an entity does not follow the language
naming conventions, 34% would definitely rename while 46% would probably rename.

REPENT identified only a few renamings (88 of the classified renamings) that were per-
formed to change the order of terms. One may expect that term reordering involves entities
with limited scope, thus limiting the impact of the renaming. However, in the analyzed
renamings only 15% of such re-orderings involved local variables. We conjecture that de-
velopers tend to reorder terms to improve the comprehensibility of the identifier and avoid

55

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

ArgoUML	 dnsjava	 Eclipse-‐JDT	 JBoss	 Tomcat	

Simple	 Complex	 FormaKng	 only	 Term	 reordering	

Figure 7.2 Proportion of forms of renamings identified by REPENT.

misunderstanding. For example, in JBoss a developer changed a method parameter name
from serviceDest to destService, to clarify that the parameter contains the address of the
destination service.

RQ2 conclusion: The majority of renamings (61%) are simple renamings, i.e., only
one term of the identifier is renamed. In a considerable number of the Java renam-
ings (31%) multiple terms are changed simultaneously. Less often (8%), renamings
consist only of formatting changes. Even less often are those renamings where the
terms of the identifiers were reordered.

7.2.4 RQ3: What kinds of semantic changes occur in identifiers when they are
renamed?

Table 7.3 report the number of semantic changes identified by REPENT while Fig. 7.3 shows
the proportion of semantic changes.

56

0%	

10%	

20%	

30%	

40%	

50%	

60%	

ArgoUML	 dnsjava	 Eclipse-‐JDT	 JBoss	 Tomcat	

Preserve	 meaning	 	 Change	 in	 meaning	 Narrow	 meaning	 Broaden	 meaning	

Add	 meaning	 Remove	 meaning	 None	

Figure 7.3 Proportion of semantic changes identified by REPENT.

Renamings that preserve meaning are quite unusual in the analyzed programs. Table 7.4
shows detailed results for this category of renamings for Java programs. There is a num-
ber of renamings classified as spelling error as well. As expected, most renamings correct
spelling errors while only a small number introduce spelling errors. 301 out of the 364
spelling error renamings are simple renamings indicating that spelling errors are corrected
in isolation. Some renamings aim at correct spelling errors but even after multiple cor-
rections, the identifiers still contain spelling errors (e.g., defferedSyntaxAllowedAsLitteral

→ deferedSyntaxAllowedAsLitteral → deferedSyntaxAllowedAsLiteral) because only few
available IDEs (e.g., Emacs, Eclipse) provide support for spell-checking of identifiers.

We expected that renamings towards expansions would be performed for clarification pur-
poses, e.g., getAlg → getAlgorithm. 56% of such expansions concern Java local variables,
which indicates that entities with limited scope are also important and developers take care
of them. However, the overall number of renamings towards expansions is low (209): 49%
of the surveyed developers would probably not undertake a renaming if the name of an en-
tity contains an abbreviation or an acronym; 7% would definitely not rename; 30% were

57

undecided; and only 13% would probably rename. As for abbreviations, we expected that
abbreviation renamings would occur when identifiers are long and are composed of many
terms. Yet, in more than 75% of such renamings, the old names are composed of only one or
two terms. For example, the parameter parameters in JBoss was renamed to params, while
the local variable association in ArgoUML was renamed to assoc.

REPENT identified three cases of synonym phrase in Java programs only. Two fields were
renamed from NOT_CLOSED to OPEN; the third renaming is a false positive. We also man-
ually found an example in Eclipse-JDT, where javadocNotVisibleReference was renamed
to javadocHiddenReference. REPENT failed to correctly classify this renaming because
the Stanford NLP wrongly assigns the negation relation (due to the term Not) to the term
javadoc instead of assigning it to the term Visible.

Renamings that change meaning are the most frequent in Java programs. In general, 33%
of the Java renamings aim at changing the meaning of the identifiers. Such renamings are
particularly frequent in dnsjava—48% of the semantic changes. As explained in Section
7.2.2, dnsjava underwent a massive renaming (e.g., rname becomes _name). Those cases are
classified as change meaning as REPENT fails to relate the meaning of the two terms due
to the non-use of separator in the case of rname. Here, REPENT would benefit from a
more sophisticated splitting technique that would split the identifier into two terms, i.e., r

and name. ArgoUML also underwent a massive renaming activity, due to the use of Log4J
as explained in Section 7.2.2. While in the context of ArgoUML, REPENT classifies such
renamings as change in meaning, we suspect that for the developers of the third-party library
(Log4J) the terms Category and Logger have the same meaning, the former being a superclass
of the latter. If this is indeed the case, a domain dictionary would improve the classification.

Table 7.5 shows the results of change meaning renamings at a fine-grained leve for Java
programs—according to the proposed taxonomy. In general, there is no semantic relation-
ship, i.e., unrelated according to taxonomy, between the renamed terms in this category.

Table 7.4 Preserve meaning renamings as classified by REPENT.

Synonym Synonym Spelling error Expansion Abbreviation Total
phrase correction/introduction

ArgoUML 10 0 12 44 11 77
dnsjava 0 0 1 9 2 12
Eclipse 163 1 137 61 51 413
JBoss 195 2 180 84 119 580
Tomcat 185 0 34 11 29 259
Total 553 3 364 209 212 1,341

58

As an example, in ArgoUML, REPENT identified that a parameter name was changed
from eventNames to propertyNames to reflect the new semantics of the parameter. How-
ever, although quite rare, there are cases where the developers inverted the responsibility
of an entity, e.g., in JBoss REPENT identified that a method name was changed from
isInvisibleAnnotationPresent to getVisibleAnnotation to reflect the new behavior of the
method. REPENT identifies only two identifiers where the names changed from body to
node, i.e., renamings where the semantic change is a whole-part phrase. This type of renam-
ing is less likely to occur.

Particularly interesting are renamings that involve identifiers that contain a negation. Such
identifiers are usually renamed towards positive names; this is a particular example of op-
posite phrase renamings identified by REPENT. For example, in Eclipse-JDT the method
isNotPrimitiveType was renamed to isPrimitiveType and the local variable dontSetFigs of
ArgoUML was renamed to setFigs. From the analysis of the entities involved in such renam-
ings, we observed that they are usually used with the negation operator. In such cases it is
more difficult to interpret an expression containing such entities, especially if the expression
contains a Boolean negation operator. However, among the surveyed developers only 30%
would rename an entity if the name contains a negation.

There is a substantial number of renamings classified as narrow and broaden meaning in
Java programs. For example, the method testEJB3RemoteAccess of JBoss was renamed to
testRemoteAccess to emphasize a more general behavior of the involved entity. A simi-
lar example is represented by the method getServletRequest of Tomcat that was renamed
to getRequest. There are also cases where the identifier was made more specific. For
example, the method isRemoteInvocationExecutedInNewThread of JBoss was renamed to
isRemoteAsyncInvocation ExecutedInNewThread to highlight that the remote invocation is
asynchronous. A similar example is represented by the renaming type → authType in Tom-
cat.

There is also a high number of renamings that add or remove meaning. An example of

Table 7.5 Change in meaning renamings as classified by REPENT.

Opposite Opposite phrase Whole-part Whole-part phrase Unrelated Total
ArgoUML 0 2 0 0 1309 1,311
dnsjava 0 0 0 0 576 576
Eclipse 44 29 0 0 5449 5,522
JBoss 29 38 0 0 5975 6,042
Tomcat 16 7 2 0 1036 1,061
Total 89 76 2 0 14,345 14,512

59

adding a meaning is delete → removeFromDiagram, whereas an example of remove meaning
is addRecord→ add. Although these two kinds of renamings cover about half of the renamings
identified by REPENT, it is worthwhile to point out that the interpretation can be sub-
jective. Some of the examples may be classified differently by different people, e.g., narrow
meaning rather than add meaning.

Finally, 5% of the renamings contain no semantic change, i.e., are classified as none.

Our qualitative analysis confirms that in many renamings the goal of developers when per-
forming renamings is to improve the comprehensibility of identifiers. We observed that most
of these renamings are performed to increase the consistency between the name of an entity
and its functionality, or between an identifier and other identifiers. This goes along with
the high number of survey participants who would definitely rename an entity when the
name and functionality are inconsistent (66%). Specifically, analyzed renamings aimed at
improving the consistency with the existing code. For example, the method isChildOf in
Eclipse-JDT was renamed to isDescendantOf as its functionality considers all super types,
rather than the direct parent only. Sometimes developers rename identifiers to reflect new
functionality represented by an entity. For example, field typeMapping in JBoss was renamed
to datasourceMapping. The analysis of the log message confirmed that name changed to re-
flect the new functionality: “Changed type-mapping to datasource-mapping as is required by
new dtd.” Another example is the parameter principal in JBoss, renamed to authPrincipal.
Here the renaming was a result of a bug fixing (“incorrect principal used”).

RQ3 conclusion: Renamings rarely preserve the meaning of identifiers (less than
3%). Slightly more often, the meaning is narrowed (6%), or broadened (5%). More-
over, renamings with no semantic changes are rare (5%). Most often, renamings
change (33%), add (25%), or remove (21%) a meaning.

7.2.5 RQ4: What kinds of grammar changes occur in identifiers when they are
renamed?

Table 7.6 and Fig. 7.4 show the proportion of the grammar changes in the five programs.

76% of the classified renamings do not involve a part of speech change, i.e., are classified as
none in the grammar change dimension. When there is a part of speech change however,
only 5% of the changes involve a change in verb conjugation; 13% involve a singular/plural
change. The majority of the renamings, i.e., 83%, involve other part of speech changes.

One good reason for developers to change singular to plural and vice versa is to align an
identifier with the entity (or collection of entities) to which it refers. For example, a field

60

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

ArgoUML	 dnsjava	 Eclipse	 JBoss	 Tomcat	

Other	 part	 of	 speech	 change	 Verb	 conjugaKon	 Singular/plural	 None	

Figure 7.4 Proportion of grammar changes identified by REPENT.

or a local variable of a collection type (e.g., ArrayList) should have a plural name, whereas
atomic entities should have, in general, a singular name. Such inconsistencies have been
previously studied and denoted as linguistic antipatterns (LAs) Arnaoudova et al. (2013)
i.e., recurring poor practices in the naming, documentation, and choice of identifiers in the
implementation of an entity, thus possibly impairing program understanding. That is, a
method name containing only singular nouns but returning a collection is a LA of kind
“Expecting but not getting a single instance”. Similarly, method names containing plural
nouns but returning a single object are LA of kind “Expecting but not getting a collection”.
Similar considerations can be made for fields. In our study, one example of renaming aimed at
removing a LA occurred in JBoss, class BasicMBeanRegistry, where a local variable named
descriptors was renamed to descriptor because its type changed from Descriptor[] to
Descriptor. A similar case occurred in ArgoUML (class LabelledLayout) where a local
variable of type int named unknownHeights was renamed to unknownHeightCount, the new
name being consistent with the type. In this case, the program only keeps the count of
heights rather than the list of heights, as suggested by the old name. In Tomcat, a method of

61

Table 7.6 Grammar change renamings as classified by REPENT.

Singular/ Verb Other part of None Total
Plural conjugation speech change

ArgoUML 31 22 608 3,322 3,983
dnsjava 8 0 241 846 1,095
Eclipse 602 198 2,785 8,951 12,536
JBoss 337 125 2,531 10,589 13,582
Tomcat 51 25 479 1,805 2,360
Total 1,029 370 6,644 25,513 33,556

class RealmBase named findSecurityConstraint was renamed to findSecurityConstraints

and its return type changed from SecurityConstraint to SecurityConstraint[].

Examples of other part of speech changes include the parameter renaming localDeclaration

→ location and the method renaming deployOnMember → doDeployment. There were re-
namings where although the part of speech changes, the role played by the renamed term
remains the same. Examples are the method renaming getTreeCache → getClusteredCache

and the field renaming _multiPane → _editorPane where although the part of speech of the
renamed terms changed from noun to adjective and from adjective to noun respectively, the
role played by the terms before and after the renaming is the same, i.e., modifier of the term
after, i.e., Cache and Pane respectively.

REPENT reports 370 verb conjugation changes. In 32% of such changes the term is is
renamed to get or has (or vice versa). The part of speech that the tagger assigns to the
verb is and has is different from the part of speech of verb get. When using automatic code
generator tools (such as the Eclipse IDE) for generating getters and setters, the names of
getter methods returning a boolean value start with is. This is also the recommendation of
JAVA/J2EE naming conventions. This could be a possible reason to rename getter methods
of Boolean fields to start with is. One such example is the renaming getValidProject →
isValidProject, where the return type of both methods is Boolean. The rest of verb conjuga-
tion changes are change in the verb tense (past to present or vice versa) or changes of a verb
to gerund. Examples include method renamings such as methodNeedingAbstractModifier →
methodNeedBody and isOverridden Method → areOverriddenMethods.

62

RQ4 conclusion: With respect to the grammar changes, 76% of the classified
renamings did not involve a part of speech change. Of the 24% of the renamings
involving a part of speech change, a small proportion involved a verb conjugation
change (5%); 13% involved changes in nouns (singular/plural); 83% involved other
part of speech changes.

7.3 Threats to Validity

This section discusses the threats to validity that can affect classification.

Construct validity threats concern the relationship between theory and observation. The
construct validity threats are related to (i) the precision and recall of the set of detected
renamings on which the classification is performed, and (ii) the accuracy of the automatic
classification. Concerning the former, results of the study reported in Section 5.1 provide
an indication of such precision and recall. Concerning the latter, we performed—using a
process similar to the one described above—a manual validation of a sample of the classified
renamings, to provide an idea of how accurate such a classification is.

Conclusion validity threats concern the relationship between the experimentation and the
outcome. As mention before, our study is an exploratory study in which we do not make
use of statistical tests to reject specific hypotheses. The only issue related to conclusion
validity is the representativeness of the sample used to validate the classification accuracy.
We performed a random sampling for all dimensions and levels of the taxonomy considering
a confidence level of 95% and a confidence interval of at least ±10%.

External validity threats concern the generalizability of our results. Although we have chosen
a pretty variegated set of projects—belonging to different domains and development organi-
zation, and having different size—it could happen that replicating the study on other projects
could lead to different results, different distribution of the classified renamings with respect
to the proposed taxonomy. A different matter is the application of the proposed approach on
programming languages different from Java. For example, differently from Java identifiers,
C/C++ identifiers are more likely to contain abbreviations Madani et al. (2010); Guerrouj
et al. (2011), and would rarely use camel case or other explicit term separators. As explained
in Section 6.1, this would require the use of appropriate identifier splitting or normalization
approaches Enslen et al. (2009); Guerrouj et al. (2011); Lawrie et Binkley (2011); Corazza
et al. (2012).

63

7.4 Summary

In this chapter we provide the results of renaming classification for the five Java programs.
The results show all dimensions of the taxonomy are covered by renaming instances some with
more occurrences than the others and thus answer our thesis on how identifiers are renamed.
Moreover, we see that methods and local variables are renamed more than the other entities.
Though we found some rare case of renamings that introduce spelling error, we believe that
spelling error correction, and term reordering, are evidence that renamings’ purpose is to
improve the quality of identifiers. We see that REPENT has high precision in classifying
the renamings in forms of renaming as well ad semantic changes. For grammar changes,
REPENT performs fairly accurate and the miss classifications are due to application of the
tool designed to tag natural language text. In the following chapter we provide a preliminary
study of extending REPENT for detection and classification of renamings in PHP programs.

64

CHAPTER 8 CHALLENGES WITH DYNAMIC LANGUAGES

Java shares principles of object-oriented programming with other languages such as C++,
C# and Delphi. Moreover Java is statically typed language. It is interesting to further
investigate the applicability of the proposed methodology for other programming languages
that are very different from Java. Popularity of dynamic languages are increasing 1, (Paulson,
2007). Perl, Python, JavaScript, PHP, and Ruby are among the popular dynamic languages.
We choose PHP as the vast majority of websites use PHP 2. The rest of this chapter is
organized as followings: First we briefly discus the related works on PHP programs. Next,
we explain challenges for adapting the propose methodology for detection and classification
of renamings in PHP programs. Then we explain how we addressed some of the challenges
and finally we report the preliminary results on detection and classification of renamings in
PHP programs.

8.1 Related Work

The following covers a number of areas on: PHP analysis, and Web application reverse- and
re-engineering.

8.1.1 Web Application Reverse Engineering

While our overarching goal is clearly different, certain commonality can be found with the
reverse engineering of WEB applications (WAs), in particular static and dynamic analysis.
The first significant contribution was given by Ricca and Tonella, who developed the ReWeb
tool to perform analyses on web sites (Ricca et Tonella, 2001a,b). In particular, Ricca and
Tonella introduced a graphical representation of the web site to allow for traditional static
flow analyses such as reachability, dominance, and data flow analysis on WAs. The same
authors also proposed to enhance static analysis by using dynamic information (Tonella et
Ricca, 2002). Clearly, ReWeb does not need page instrumentation; on the other hand, web
server logs, do not allow fine-grained analyses such as needed to detect of a variable is being
assigned a different types in two dfferent execution paths.

Di Lucca et al. (2002, 2003a,b) proposed an approach and a tool to extract Conallen’s UML
documentation, use cases and business object from Web applications. Their approach uses

1. http://www.activestate.com/blog/2010/07/growth-dynamic-languages-pythonists-pythonistas-and-
pythoneers

2. https://en.wikipedia.org/wiki/PHP#Usage

65

static analysis, however they pointed out that diagrams can be refined using dynamic infor-
mation. WARE performs static analyses on WAs, stores the extracted information into a
database and then uses such an information for the reverse-engineering of UML diagrams.

Architectural recovery was also the goal of the works of Hassan et Holt (2002) and Antoniol
et al. (2004). Both teams reverse engineered high level views of the WEB application.

8.1.2 Analysis on PHP application

Nguyen et al. (2011) propose an automated approach, PhpSync, for detecting validation
errors in HTML files of PHP application. PhpSync uses and HTML validator tool, Tidy, to
detect errors in the HTML page and map the error-some HTML fragments to PHP page. Ph-
pSync builds a tree model, D-model, that represents the symbolic execution of the server-side
PHP code. Then it maps text in a given HTML page to the D-model. Using Tidy, PhpSync
is able to map the fragments contains error to the D-model. If Tidy fixes the validation error
in HTML page, PhpSync replaces the corrected HTML into D-model.
Nguyen et al. (2013a) developed a tool, WebDyn, for dynamic refactoring of PHP Web
applications. They manually analyzed 2,664 revisions of four open-source PHP-based Web
applications, and found that there exists an special form of refactoring that is specific to
dynamic Web applications. Next, they categorized these refactorings (which they called
output-oriented refactoring operations) in five groups: 1) dynamicalization (e.g., replacing
inline HTML/Javascript code with a PHP fragment or function), 2) re-structuring server and
client code, 3) renaming embedded HTML/Javascript elements, 4) standardizing embedded
HTML code, and 5) refactoring for separation of concerns. They use dynamic analysis cou-
pled with symbolic execution to identify variable declarations, references as well as dangling
references.
Merlo et al. (Gauthier et Merlo, 2013) detect semantic smells and errors in access control of
PHP application using static analysis, model checking, and information retrieval technique.
They defined semantic smell as poor implementations of the semantic of an access control
model and semantic errors as wrong implementations that need to be corrected. They assume
that semantically related sections of source code should be protected by similar privileges.
Using model-checking technique and static analysis, they first extract mappings between
source code fragments and the privileges. Next, they applied Latent Dirichlet Allocation
to extract topics hidden in code. Using logistic regression, they find related topics to the
extracted privileges. Finally, they infer privileges for blocks of code. Semantic smells are
identified when a semantically inferred privileges are different form the enforced privileges.
They applied the proposed technique on a medium size open source application (Moodle

66

2.3.2) with 307 privileges. They find 31 semantic smells and two errors. The found errors
were confirmed by the developers of Moodle, and action were taken to resolve the errors.

Nguyen et al. (2013b) proposed an automatic approach, DRC, to identify dangling reference
errors in PHP programs using static analysis of source code. DRC applies symbolic execu-
tion of PHP programs to identify variable declarations and references. For each detected
declaration or reference, DRC associates it with the current path constraint of the symbolic
execution. To identify the declaration and references of entities embedded in HTML or SQL
script within the PHP code, DRC uses the tree-based representation, called D-model (de-
scribed above). Next, for all variable references, DRC identifies a declaration that matches
the reference.
Gauthier et al. propose inter-procedural and intra-procedural algorithms in Datalog for prop-
agation of pattern-based properties such as permissions in access controls of PHP programs
(Gauthier et Merlo, 2012). They extract relation and rules from AST of the PHP program.
Assignment of patterns and variables to variables are translated to Datalog relations. Rules
are defined to infer "must hold" pattern relation recursively. The results show that security
checks are detected with high precision in eight open-source PHP programs.

8.2 Challenges and adaptations

Since PHP is very different from Java we need to adopt our approach to be able to detect and
classify renamings. In the followings we briefly discuss the challenges for such adaptation.

Taxonomy: The first dimension of taxonomy is the programming entity. PHP is scripting,
procedural, and object-oriented language, with the following programming entities: Names-
pace, class/interface/trait, function/method, parameter, field, and variables (local, global,
constants). Though namespace in PHP and package declaration in Java are different we
map them as both provide a mechanism to support organization of source code as well as en-
abling accessing controls. Class, interface and method share same concepts and principles in
both programming languages. PHP is a dynamic type language and thus fields, parameters
and variables are not bound to types. While parameters and fields need to be declared to
be used, variables in PHP does not require a declaration. We consider all above mentioned
entities for detection of renamings in PHP programs.

Our taxonomy is defined at first place through manual analysis of several identifiers renamings
in Java programs. We believe that the other three dimensions of taxonomy are language
independent; however, we need empirical data to support our claim.

67

Renamings detection: The core of detection component is extraction of programming
entities and their def/use statements. We need to parse PHP code to exact entity declarations,
and for variables we consider the assignment statement as declaration statements. To extract
def/use of the entities we need to perform data flow analysis. One crucial difference between
Java and PHP, is the way to access entities defined in other files. In Java entities defined in
other files or packages are accessible through import mechanism. In PHP it is done through
include statement that accepts as a parameter an expression. There are no constraints on
the include expression which can contain variables and calls to functions as well as string
operators. In other words, often, the file name path is dynamically computed and built at
run-time. Unlike Java, there is no restriction on where to include a file which makes it more
challenging to track variable’s def/use statement.

For comparing def/use statements of mapped entities we calibrated the thresholds on one
Java program and applied it for renamings detection of other programs. We may need to
re-calibrated the thresholds to achieve desired accuracy for detection of renamings in PHP
programs.

Renamings classification: Identifier splitting is the first and crucial step in renamings
classification. Unlike Java, there is no consensus among PHP developer for naming program-
ming entities, and rather it is framework and project dependent e.g., Zend 3 does not permit
underscores, and Wordpress 4 encourages underscores instead of camelCase. Moreover, PHP
is case insensitive and thus both names getSessionID and getSessionid can be used to invoke
function getSessionId, and thus we expect less renamings due to change of letter cases in
PHP programs. The project/framework dependent rules on naming may impact the perfor-
mance of renaming classifier. Moreover, we may need to re-calibrate the threshold used for
classification of renamings under spelling correction as well. The following sections explain
how we addressed some of the challenges discussed above for applying REPENT on PHP
programs.

8.3 Resolving file inclusion in PHP programs

Before performing deeper analyses such as data flow analysis, we need to resolve includes.
In PHP the inclusion is done with the include statement that accepts as a parameter an
expression. As mentioned before, there are no constraints on the include expression which
can contain variables and calls to functions as well as string operators. In other words,

3. http://framework.zend.com/manual/1.12/en/coding-standard.naming-conventions.html
4. https://make.wordpress.org/core/handbook/best-practices/coding-standards/php/

68

often, the file name path is dynamically computed and built at run-time. To avoid circu-
lar inclusions, PHP provides different include statements, namely include, include_once,
require and require_once. include and require always include the file passed as param-
eter. The difference is that require produces a compiler error upon failure. include_once
and require_once work similarly to include and require, however do not include a file if
it has been included already, i.e., avoiding a multiple inclusion.

Consider the example in Figure 8.1. The PHP define statement takes two arguments: a
string identifying the constant to be defined, and an expression to be evaluated and assigned
to the constant (the right hand side). In Figure 8.1 the constant CWD is defined in f1 by the
statement define(’CWD’, ’/’) and ’/’ is its value. In the same example we see file f1

include file f2 through the include statement include (CWD."f2".".php") where the path
to the file to be included is the result of the concatenation of three strings CWD, “f2”, and
“.php”, where the constant CWD is already defined in previous line.

Moreover, If included files are not resolved, one would think that variable pos is first encoun-
tered and thus defined in file f1, while actually it is declared/defined in file f2.

8.3.1 A Fixed-Point algorithm to resolve include

The approach for resolving include statements is based primarily on a static analysis, com-
plemented by dynamic analysis.

To analyze PHP source code, we rely on two widely-used infrastructures, the PHP parser
from the Eclipse PHP Development Environment (PDT) 5, and TXL (Cordy, 2006). Specif-
ically, we use the Eclipse PDT parser to assist in the static analysis, and the TXL source
transformation engine to add the code instrumentation needed to collect information at run-
time.

First, we use the PDT parser to create an Abstract Syntax Tree (AST) for each PHP file. We
build a symbol table to collect information about PHP entities namely files, classes/interfaces,
methods/functions, and constants. Algorithm 2 presents a high-level view of the computation
performed to resolve includes and constants. First, all files in the system are traversed and
entities of interest are added to the symbol table. For constant entities we collect their values
(i.e., right end side) if not dynamically built at run-time. If the value is not a scalar but it is
a concatenation of strings and/or return value of functions, we collect the whole statements
and mark the entity as non resolved. In the same way we process the include statements
(include, include_once, require, require_once) as well. We store in the symbol table

5. http://projects.eclipse.org/projects/tools.pdt

69

Figure 8.1 Example of include in PHP.

structure also the statement parse tree, later used by the symbolic execution. To statically
resolve constant and include statements, we implemented a simplified symbolic execution.
The simplified symbolic execution implements the behaviour of two PHP magic variables
and two functions as well as the string concatenation operator (See Table 8.1). We rely on
API function provided through FileNetworkUtility in PDT to handle the access to the
parent (current) directory (e.g., "../" and "./").

Once files are traversed and the symbol table initially populated, the fixed-point algorithm
attempts to resolve as many include file paths as possible. Before this step, we apply a simple
heuristic using the function
ScanAndAssignNameIfUnique. It may happen that the include path ends with a file
name (e.g., ’ABSPATH’ . ngg-config.php) and it may happen that this file name is actually
unique and not the suffix of any other file. In such cases, there is no need to perform any

Table 8.1 Implemented functions, operators and Magic Variables

Function/
Operator/ Description
Variable
dirname Extract directory name
basename Name with any leading directory components removed
. Concatenate two strings
__FILE__ Contains the current file absolute path
__DIR__ Equivalent to dirname(__FILE__)

70

Algorithm 2 Include resolution and symbol table construction.
update=false
for file in System do

entities = extractEntities()
addToSymbolTable(entities)

end for
for ent in SymbolTable do

if ent == Const|ent == Include&¬ent.resolved then
ScanAndAssignNameIfUnique(ent)

end if
end for
repeat

for ent in SymbolTable do
if ent == Const|ent == Include&¬ent.resolved then
update| = SymbExecAndUpdate(ent.stmnt, SymbolTable)
end if

end for
until update

complicated calculations and the include relation is resolved based on the file name identity.

Next, as shown in Algorithm 2 if the current entity is an include or a constant, and (so
far) it has not been resolved i.e., the value is not known, the function SymbExecAndUpdate
attempts to compute the current define right end side or include parameter value. If Sym-
bExecAndUpdate succeeds, it returns true so that the collected new information can percolate
and improve collected information, as well as updating the values of other entities depending
to the current entity. If SymbExecAndUpdate fails, the entity will be marked as delayed, and
its value may be resolved in following passes. In fact, if a new include file path (or constant)
is resolved this may impact on variable definition as well as on other constants or includes.

Algorithm 2 terminates when it is not able to further update any information (i.e., when it
has reached a fixed-point). In general, it may happen that, at this stage, some constants or
includes are still not resolved, because the path of some files is still unknown. This typically
happens for two reasons: (i) the right-hand side of the string constant definition or the include
parameter contains one or more PHP variables; or (ii) the string value is obtained from a
user defined function.

The remaining unknown includes make the analysis imprecise. In general, the way the
analysis is performed avoids the presence of false positives, but cannot exclude false negatives.
Typically—as it also happened in our study (see Section 8.3.2)—most includes are statically
resolved even before the fixed-point algorithm, and thus in principle, a good quality analysis

71

can be done without the need for dynamic analysis. However, if a complete analysis is needed,
the only possible solution is to resort on dynamic analysis to track the remaining unresolved
relations. Clearly, dynamic analysis requires deploying and executing the application, and
the design of scenarios that exercise the unresolved includes.

Once the includes have been resolved, we build a directed graph for the whole application.

8.3.2 Case study on resolving include

The context of the study consists of Wordpress (WP) itself—in two releases, namely 3.6 and
3.7—along with a set of 10 installed plugins. We did not consider the most recent versions
of WP (e.g., 3.8) because many plugins were not tested with that release. For what concerns
the selection of plugins, we focused on 10 popular ones. There is no general consensus
on the top ten must-have plugins; depending from the Web site’s application domain, user
communication goals and project constraints, different plugins may better serve the Web
site’s objectives. Indeed, there are several different lists of the top ten must-have WP plugins
on the Web. Based on the WP most popular plugins 6and other three most popular lists,
namely WeDesignPixel 7, TreeHouse Blog 8 and Selz Blog 9, we have chosen the set of plugins
reported in Table 8.2. As the table shows, we performed our study on two configurations of
WP: (i) an old one, consisting of WP 3.6 plus some old versions of the 10 plugins, and (ii) a
more recent one, consisting of WP 3.7 plus some newer versions of the plugins.

Table 8.2 reports a summary of the include relations in both releases of WP and their
corresponding plugins.

To simplify the computations we assume that we know the values of the constants: ABSPATH
(the path where WP is installed), WPINC (location of include directory), and WP_PLUGIN_DIR
(location of plugin directory). As Table 8.2 shows, most of WP includes are resolved before
the fixed point step; this points to a disciplined and not overly complex include file regimen
in the core framework. However, for plugins the situation changes. Consider the plugin W3
total cache. This plugin has almost the same number of include relations as WP itself,
but almost half of the included file relations are resolved only by the fixed point step. On
summary, only 8.2% (number of unknown after fix point over the total number of include
relations) cannot be identified statically.

When looking at release 3.7 of WP and its related plugins, the situation does not change
6. http://wordpress.org/plugins/browse/popular
7. http://wedesignpixel.com/top-must-have-wordpress-plugins
8. http://blog.teamtreehouse.com/best-free-wordpress-plugins-for-common-website-functionality
9. https://selz.com/blog/10-must-wordpress-free-plugins-starting-online-business-selling-digital-

downloads/

72

dramatically, and overall only about 9% of the include relations are not statically computed.

Table 8.2 Analyzed releases of WP and its plugins, with details about include relations.
Old Release New Release

Rel. Includes Unknown Unknown Edges Nodes Rel. Includes Unknown Unknown Edges Nodes
Before After Before After

Fix Point Fix Point Fix Point Fix Point
WordPress 3.6 629 37 (6%) 35 (5%) 627 366 3.7 647 37 (6%) 35 (5%) 645 368
NextGen Gallery 1.9.3 114 26 (23%) 12 (10%) 114 71 2.0.40 144 37 (26%) 22 (15%) 144 149
Google XML Sitemap 3.2.7 5 2 (40%) 2 (40%) 5 7 3.3.1 5 2 (40%) 2 (40%) 5 7
Contact Form 7 3.2 16 15 (94%) 4 (25%) 16 19 3.6 19 18 (95%) 5 (26%) 19 20
Akismet 2.5.6 3 0 (0%) 0 (0%) 3 4 2.5.9 3 0 (0%) 0 (0%) 3 4
SEO by YOAST 1.1.7 22 18 (82%) 2 (9%) 22 22 1.4.22 42 35(83%) 2 (5%) 42 40
WP Sitemap Page 1.0.12 1 1 (100%) 1(100%) 1 2 1.0.12 1 1 (100%) 1 (100%) 1 2
Google XML Sitemaps 3.2.7.1 6 2 (33%) 2 (33%) 6 8 3.3.1 6 2 (33%) 2 (33%) 6 8
for qTranslate
YARPP 3.5 17 16 (94%) 5 (29%) 17 17 4.1.1 26 23 (88%) 4 (15%) 26 25
Jetpack 2.7 95 37 (39%) 15 (16%) 95 108 2.3.5 126 63 (50%) 20 (16%) 126 143
W3 Total Cache 0.9.2.4 592 335 (56%) 45 (8%) 593 332 0.9.3 436 168 (38%) 33 (7%) 436 299
Total 1,500 489 (33%) 123 (8%) 1,499 956 1,455 386 (26%) 126 (9%) 1,453 1,065

Limitation of approach: Although, as explained, we used static analysis to resolve in-
cludes, we have validated it by means of dynamic analysis. Clearly, a thorough dynamic
analysis would have required to exercise all possible paths of the Web application that alter
the values of include file names. In our analysis, we focus on five execution scenario, to see
how we could have discovered some includes not resolved statically.

By comparing the log of dynamic analysis and the include relations that are extracted stati-
cally we identify a subset of unknown relations. Table 8.3 indicates the number of unknown
includes that were discovered by these five scenarios in WP 3.6 and its corresponding plu-
gins. The second column of the table shows the number of unknown files that are resolved
dynamically. Overall, by executing these scenarios 26% of all unknown include relation were
identified.

Table 8.4 summarizes all cases in which the static analysis analysis fails. In some cases the
include could not resolved because the string passed as a parameter to the include function
was produced as output of a function call, and the simplified symbolic execution could not
resolve that. In other cases, the file name could not be produced because this would have
required a symbolic execution able to support a context- and flow-sensitive data flow analysis.
In summary, very likely a more sophisticated symbolic executor could have further improved
the completeness of the include resolution. However, since the unknown includes represent
only about 9% of the total include relations, a lightweight analysis like the one we proposed
is appropriate and able to scale up to the size and complexity of WP with its plugins. The
study is limited to two releases of WP, and to a subset of its plugins. Although we expect
that similar problems can occur with other plugins and, possibly, with other PHP frameworks
besides WP, further, larger studies need to be conducted to verify such a conjecture.

73

Table 8.3 Unknown includes resolved in WP 3.6 and its plugins by means of some dynamic
analysis.

Scenario Discovered %
Unknown

1 17 (13%)
2 9 (7.3)%
3 31 (25%)
4 13 (10%)
5 12 (9.7%)
Overall 33 (26%)

Table 8.4 Where static analysis fails.

Program Path contains
variables function calls

WP 3.6 73 12
WP 3.7 89 8

8.4 preliminary study of renamings in PHP aplication

In this section we report the application of REPENT for detection and classification of
renamings in PHP programs. We extended REPENT’s detection component specifically the
pre-processing which relies on Java parser (see Figure 4.1). We use classification component
of REPENT in the same way as it was used for classification of Java programs.

Figure 8.2 illustrates the detection and the classification for PHP application. In the following
we explain the steps that are different from Java renaming detection.

8.4.1 Renaming Detection

The first step of the process is to build the line mappings between two source files. For file
renaming, REPENT takes the same approach as for Java file renamings. For PHP systems,
the change set is computed by files deleted and added in the same day to the Git repository.
Then each couple is compared using the same technique with the same threshold.

Line differencing algorithm is then used to generate line mappings. We use Eclipse PHP
Development Tools (PDT) to parse the code and extract the abstract syntax tree (AST). We
traverse the AST to build control flow graph of PHP files. Using Eclipse PDT we resolve
the method and type binding. The binding information will be used in data flow analysis.
The AST of PHP file does not contains variable declaration, thus we take every assignment

74

Figure 8.2 PHP renaming detection and classification.

75

where the left hand side (LHS) is a variable as variable declaration. Using the line mapping
we map nodes of the same type. Next we use the node mapping to extract entity mapping.
Figure 8.3 shows an example of line mapping.

Figure 8.3 Example of line mapping.

For example line 48 in old version is mapped to lines 54-57 which corresponds to a one-to-
many line mappings. Using the line mapping we map the cfg nodes within those mapped lines.
{assignment_statement}− > {if_statement, assignment_statement, assignment_statement}.
We first group the nodes with same type in both old and new version and then we ex-
tract assignments from each group to map the variable declarations. For this example we
will have {$url}− > {$fileurl, $url}. As the mapping in Figure 8.3 shows, lines 53-54
in old version is mapped to line 62-67 in new version, that gives us the node mapping:
{function_declaration} − > { function_declaration, if_statament, function_invocation

, function_invocation}. Form these node mapping we can map the function declarations
only (one-to-one-mapping) that corresponds to mapping {_wp_clear_update_cache}− >

76

{wp_clean_update_cache}.

At the end of this step we will have a list of candidate renaming that contains one-to-one,
one-to-many, many-to-one and many-to many mappings.

Candidate Renaming Filtering

As in our previous analysis we need the data flow analysis to filter false positives from the
candidate renaming list. For each entity we extract statements in which the entity is used
and redefined (for parameter, local and global variable, and constants). Using the type,
method, and function bindings we extract statements in which entities of type name-space,
class/interface method/function and field are used. For local variable we use intra-procedural
control flow analysis on the cfg of each method and function to extract the use and redefinition
of method/function parameters, and the local variables. For the variables at file level we
perform flow sensitive context insensitive analysis on the cfg of each PHP program. That is,
if a variable is being defined global in a function or method, we collect its uses and redefinition
from the function/method bodies as well. By connecting cfg of PHP files through resolved
include statements and resolved function/method calls we build the cfg of the whole program.
Then we collect the def/use statements for global variables through flow sensitive context
insensitive data flow analysis.

Computing the Score between Entities

Regarding comparison of mapped entities’ def/use for calculating the scores, REPENT
applies the same steps and thresholds used for Java programs. The only difference here is
that for parameters and fields with no def/use, we use their names, as there is no declaration
statement for such entities. In Java systems if we have a mapping between two fields with no
def/uses, we compare the field declaration statements which include: the modifiers, access
visibility, and the type declaration of the fields being mapped. In PHP, we do not have type
declaration and in majority of the cases fields (and parameters) do not have modifiers. Thus
if we follow the same approach as for Java systems, we would end up comparing the access
visibility of the fields and for parameter we have nothing to compare. Thus, we consider the
names of fields and parameters together with the modifiers (if exists) in cases where there is
no def/use for such entities.

77

8.4.2 Results of Renamings Detection

We have applied REPENT on three PHP open-source programs (Wordpress, Drupal, and
phpBB). We analyzed the daily file commits for a period of 30 consecutive days. Wordpress 10

and Drupal 11 both are content management systems that allows users to easily build and
customize complex Web applications. phpBB is an internet forum application that allows the
user to create a very unique forum in minutes, it has variety of styles and support multiple
database engines 12.

Table 8.5 reports the main characteristics of the analyzed programs: the analyzed time
periods, size ranges in KLOCs, numbers of files, numbers of analyzed revisions, and numbers
of committers. All PHP programs are versioned under Git repository.

Table 8.6 shows the detected renamings in PHP programs for different entities. We see
that all except one function renamings are in Drupal, and it seems that changes are due to
upgrades from version seven to eight with the log message: bfroehle: remove all 7xxx update
functions and tests (D6 to D7 upgrade path).

Precision of PHP programs: the number of detected renaming for PHP application is
very small as only 30 days of commits were analyzed. Using the gitdiff , we can extract
the added and deleted lines for each committed file, and an evaluator manually verified the
changes for all 1,067 files to build our oracle. In case of doubt, second opinion was sought.
Then by comparing the oracle and the detected renamins, we identify the TPS as the true
positive set and FPS as false positive set. The precision is computed using the same formula
for computing precision of detected renamings of Java programs:

10. https://wordpress.org/
11. https://www.drupal.org/
12. https://www.phpbb.com/

Table 8.5 Characteristics of the analyzed PHP programs.

Program Analyzed period KLOCs Files File Committers
(range) (total) revisions

Wordpress 6-Mar-2015 to 6-Apr-2015 263-265 547 386 15
Drupal 19-Mar-2011 to 30-May-2011 227-242 492 322 2
phpBB 18-Jun-2006 to 21-Jul-2006 90-97 143 368 5

https://wordpress.org/
https://www.drupal.org/
https://www.phpbb.com/

78

Table 8.6 Renamed entities identified by REPENT - PHP programs.

Type Field Constructor Function/Method Parameter Local variable Total
Wordpress 1 0 0 0 1 8 10
Drupal 0 0 0 24 0 7 31
phpBB 0 0 0 1 0 17 18
Total 1 0 0 25 1 32 59

Pr = |TPS|
|TPS|+ |FPS|

The overall precision is 85% and we can see that the entity renamings are not so divers
as in Java programs. We did not find any name space declarations and thus we don not
expect name space renamings. The lowest precision is for variable renmaings in Drupal. We
observed that the impressions comes from line mapping and comparison of declarations when
variables have no uses.

Recall for PHP programs: Using the oracle we compute the recall for each entity in
PHP programs. Table 8.8 reports—for each kind of entity—the true detected renamings and
the recall. We used the same thresholds used for detecting renamings in Java programs. This
could be a reason for low recall for local variables.

8.4.3 Results of Renamings Classification

For PHP programs, we manually analyzed all the classified renamings. With respect to the
classification of forms of renaming, REPENT has precision of 100% (see Table 8.9). We

Table 8.7 Precision Pr for renaming detection of different entities

Wordpress Drupal phpBB Overall
Type 100% - - 100%
Constructor - - - -
Field - - - -
Method /Function - 96% 100% 96%
Getter/Setter - - - -
Parameter 100% - - 100%
Variables 100% 76% 43% 75%
Overall 100% 78% 84% 85%

79

Table 8.8 Detected renamings and recall Rc of different entities.

Wordpress Drupal phpBB Overall
Type 100% (1/1) - - 100% (1/1)
Constructor - - - -
Field - - - -
Method/Function 0% (0/2) 100% (23/23) 100% (1/1) 92% (24/26)
Getter/Setter - - - -
Parameter 100% (1/1) - 0% (0/1) 50% (1/2)
Variable 67% (8/12) 33% (3/9) 93 (13/14) 68% (24/35)
Overall 62% (10/16) 81% (26/32) 87% (14/16) 78% (50/64)

see that most of the renamings are classified as simple renamings. We did not find any term
reordering instances and the term formatting instances are due to addition of underscore to
the beginning of the identifiers.

For the classification of semantic changes, REPENT exhibits an accuracy 81% (see Table
8.10). It has low performance in classifying renamings that add or remove meanings. The
miss classification is due to splitting of identifiers that are all in lower cases. The only case
of abbreviation is in identifier admin_ldap → acp_ldap in phpBB and REPENT failed to
classify it correctly. The term acp is the abbreviation of administrator control panel and
only recognizable if one has the domain knowledge. REPENT failed to classify two identifier
as whole-part in Wordpress. One case is due to use of abbreviation src instead of source

in the following renaming: new_content → new_src. The other missed instance is title

→ link_text which is due to wrong term mappings. No instance of broaden meaning is
found for PHP programs. The three instances of PHP renamings classified as narrow mean-

Table 8.9 Evaluation of classification for “Forms of renaming”- PHP programs.

Wordpress Drupal phpBB Overall
Simple 100% (9/9) 100% (26/26) 100% (11/11) 100% (46/46)
Complex 100% (1/1) - 100% (1/1) 100% (2/2)
Formatting only - - 100% (2/2) 100% (2/2)
Term reordering - - - -
Overall 100% (10/10) 100% (26/26) 100% (14/14) 100% (50/50)

80

ing are all specialization phrases. REPENT failed to classify three cases of specialization
phrases in phpBB. The reason is wrong splitting of identifier with lower case terms and use
of abbreviation in the following cases: module_name → module_basename , column_type →
orig_column_type and admin_ldap → acp_ldap.

Table 8.11 shows the results of and the precision of classification of the grammar changes in
the three programs.

Unlike for Java programs the accuracy of REPENT is 100% for PHP programs we analyzed.
Its high performance is due to higher number of renamings classified as None.

8.5 Discussion

In this chapter we explain applicability of proposed approach for the detection and classifi-
cation of renamings in PHP programs. We resolved file inclusion mechanism in PHP using
a simplified symbolic execution and a fix point algorithm. For Wordpress, in average 91% of
the include statement are resolved however in Drupla and phpBB in average 80% and 78% of
include statements are resolved. This is due to use of variables and function calls in include
statements of these two systems. Improvement requires propagation of variables as proposed
by Gauthier et al. (Gauthier et Merlo, 2012).
We used the same thresholds calibrated for the detection and classification of Java programs.
To re-calibrate the thresholds for PHP programs we need more data. We did not consider
dynamic features such as variable variables, function pointers and references passed to func-
tion/method while performing data flow analysis.
One interesting observation in the three PHP programs is that all the renamed variables (ex-
cept for two constants) are local variables. PHP has three scope levels: the (global) file-level,
the class-level, and the method/function level. Variables at file-level are visible in other files
trough include mechanism, and in other functions through use of global modifier. Renaming
of a variable at file-level requires more efforts than renaming of a variable in a local scope
specially if renaming is performed manually. Rename refactoring plugins embedded in IDEs
such as Eclipse and NetBean provide a fully automatic renaming for Java programs. Netbeans
for PHP 13 and phpStorm 14 provide a semi automatic renamings in PHP by identifying all
occurrences of a name in the program. However, it is up to the developer to manually inspect
and evaluate if renmaing is safe and would not alter the desired behavior. This could be one
factor contributes to less renamings in PHP programs. Some dynamic features of PHP such
as variable variables, and function variables make it difficult to provide a fully automatic re-

13. https://netbeans.org/features/php/
14. https://www.jetbrains.com/phpstorm/

81

Table 8.10 Evaluation of classification for “Semantic changes” - PHP programs.

Wordpress Drupal phpBB Overall

Preserve

Synonym - - - -
Synonym phrase - - - -
Spelling error - - 100% (3/3) 100% (3/3)
Expansion - - - -
Abbreviation - - - -
Overall - - 100% (3/3) 100% (3/3)

Change

Opposite - - - -
Opposite phrase - - - -
Whole-part - - - -
Whole-part phrase - - - - - -
Unrelated 60% (3/5) 57% (4/7) - 58% (7/12)
Overall 60% (3/5) 44% (4/9) - 40% (7/14)

Narrow Specialization - - - -
Specialization phrase 100% (3/3) - - 100% (3/3)
Overall 100% (3/3) - - 100% (3/3)

Broaden Generalization - - - -
Generalization phrase 0% (0/1) - - 0%
Overall 0% (0/1) - - 0%

Add 100% (1/1) 50% (1/2) - 67% (2/3)
Remove 0% (0/1) 100% (1/1) - 50% (1/2)
None - 100% (2/2) 100% (26/26) 100% (28/28)
Overall 64% (7/11) 65% (11/17) 100% (26/26) 81% (44/54)

Table 8.11 Evaluation of classification for “Grammar changes”- PHP programs.

Wordpress Drupal phpBB Overall

Grammar change Part of speech change
Singular/Plural 100% (1/1) - - 100% (1/1) 100%
Verb conjugation - - - -
Other 100% (1/1) - 100% (2/2) 100% (3/3)

None 100% (8/8) 100% (26/26) 100% (12/12) 100% (46/46)
Overall 100% (10/10) 100% (26/26) 100% (14/14) 100% (50/50)

82

name refracting because aside from the occurrence of name of a function or variable, strings
containing such name need to be evaluated. The following code snippet shows example of
the above mentioned dynamic features. Renaming variable $bar and function toto requires
renaming of both strings value ”bar” and ′toto′ respectively.

// Variable variable

$foo = "bar";

$$foo=35;

echo $bar;

// Function variable

function toto($arg = ’’){

echo "In toto(); argument was ’$arg’.
\n";

}

$func = ’toto’;

$func();

Another challenge to provide a fully automatic renamings is due to use of hook in plugin or
module based frameworks. For example, Wordpress and Drupal provide a callback mechanism
which both community refer to it as hook. The following code snippet show an example of
′helloworld′′ hook in Drupal 15. Call to function module_invoke_all initiates the call to
function module_helloworld, and thus renaming the function name requires renaming of the
argument passed to module_invoke_all.

define(’DRUPAL_ROOT’, getcwd());

require_once DRUPAL_ROOT . ’/includes/bootstrap.inc’;

drupal_bootstrap(DRUPAL_BOOTSTRAP_FULL);

module_invoke_all(’helloworld’);

echo ’<p>Done</p>’;

#File: sites/all/modules/moduleb/moduleb.module

<?php

function module_helloworld()

{

echo "<p>Our friends at ".__FUNCTION__." want to say Hello World</p>";

}

15. http://alanstorm.com/drupal_module_hooks

83

It is a preliminary study and to make any conclusion we need to study more file commits.
However, we see that REPENT has an overall good accuracy in terms of precision and recall
for both detection and classification of identifiers in PHP programs.

84

CHAPTER 9 CONCLUSION

In this chapter we summarize the findings and extract lessons learned from the classified
renamings. Identifier renaming is considered by developers as an important and non-trivial
task in the context of software evolution. We conducted a survey with 71 industrial and open-
source developers and show that, as part of the evolution of software programs, developers
rename identifiers to improve the quality of the source code lexicon and its consistency with
the program functionality. Despite the importance of renaming and the associated with it
cost (92% of the surveyed developers do not consider renaming as straightforward), renamings
are hardly ever documented (1% of the renamings in the five programs that we studied) hence
the need for an automatic documentation of renamings that 52% of the surveyed developers
consider useful.

We propose REPENT (REnaming Program ENTities)—an approach to automatically doc-
ument, i.e., detect and classify, identifier renamings between different versions of a Java
program. For detecting renamings, REPENT first reduces the search space by identifying
changes from mapped source code lines between versions of a program resulting in candi-
date renamings, after which it performs data flow analysis on the entities involved in the
candidate renamings to filter out false positives. We analyzed renamings detected by RE-
PENT in the evolution history of five open-source programs (ArgoUML, dnsjava, Eclipse-
JDT, JBoss, and Tomcat), and reported a precision of 88% and a recall—with respect to
the documented renamings—of 92%. By combining an ontological database (WordNet) with
a natural language parser (Stanford NLP) REPENT classifies renamings according to the
different dimensions of our taxonomy, and specifically (i) the kind of entity being renamed,
(ii) the form of the renaming, (iii) semantic change, and (iv) grammatical change. By relying
on REPENT, we conducted an exploratory study—on the five Java programs used to eval-
uate the performances—aimed at determining how developers rename identifiers according
to the proposed taxonomy. We assess feasibility of extending REPENT for detection and
classification of renamings in PHP programs. We analyzed three open-source PHP programs
(Wordpress, Drupal, and phpBB) and the results are motivating.

We conjecture that renamings documented and classified by REPENT can be used as a base
towards building a renaming recommender system. This also reflect results of our survey,
where 68% of the surveyed developers indicated the usefulness of automatic recommenda-
tions for renaming, provided that such recommendations are non-intrusive and offer reliable
suggestions.

85

9.1 Lessons Learned

These lessons, being them common to all studied programs, or specific to only some of them,
have the purpose to make developers aware about situations in which renamings occur where
some improve the quality of the identifier and therefore should be promoted, while other
decrease the quality and thus should be avoided. Lessons are extracted form detected and
classified renamings but they are neither based on how often such situations occur nor on
how important/crucial they are for the analyzed programs.

In RQ1 we concluded that developers tend to rename methods and parameters more than
other entities. In OO programming, methods express objects behavior and thus changing
constantly due to changing requirements. Renaming methods and parameters is a must
when one is concerned about consistency, as they carry a summary of the functionality and
are used to communicate with others. We thus derive the following lesson:

L1. Methods and parameters renamings are unavoidable due to evolution, i.e., con-
stant changes in requirements.

In RQ1 we also observed, based on results from ArgoUML, that changes in used API can
have a noticeable impact on the client lexicon, thus allowing us to conclude the next lesson:

L2. Using APIs without planning for change can cause ripple effect on the client
lexicon.

While answering RQ2, we observed that when formatting renamings occur, the majority of
the formatting changes tend to be renamings away from Hungarian notation. This allows us
to derive the following lesson:

L3. It is important to choose the naming conventions for each specific project in
an early stage of the development process and following it consistently.

We also observed a small fraction of renamings being about term reordering, which occurred
on entities with different scope/visibility, and thus with different impact of the renaming.
We can derive the next lesson:

L4. It is worth taking the effort to identify the right order of terms constituting
an identifier to clarify its meaning and avoid possible misunderstandings.

While answering RQ3, we identified a small set of renamings (1%) related to spelling errors
correction but also to spelling error introduction. Some identifiers were also involved into
a sequence of renamings where each renaming is only partially correcting the spelling error.
We deduce the next lesson, as follows:

L5. To avoid the need for a sequence of renamings towards spelling error correc-
tion, it is worth taking the time to spellcheck the identifier name when creating

86

or modifying an entity.

When answering RQ3 we also noted that about 1% of the renamings were performed towards
expansion or abbreviation and the distribution is relatively equal. We thus conclude the
following lesson:

L6. It is worth investigating which one of the two, an abbreviation or its English
alternative, is more common and thus should be used.

The qualitative analysis of the classified renamings while answering RQ3 resulted in identi-
fying a set of renamings where the old identifier name contains a negation, whereas the new
identifier does not. Such analysis allows us to derive the next lesson:

L7. Identifiers that contain negation tend to be renamed towards positive names.

In the discussion of RQ3, we also bring evidence that, with respect to semantic changes, the
majority of classified renamings are not about preserving the semantic meaning of identifiers,
but rather changing, narrowing, broadening, adding, or removing a meaning. We thus derive
the following lesson:

L8. The majority of semantic changes during renamings change, narrow, broaden,
add, or remove a meaning to the identifier, as part of the evolution process and
thus cannot be avoided.

In the discussion of RQ3 and RQ4, we encountered renamings that were performed to
increase the consistency between an entity and its functionality, between the name of an
entity and names of other entities, and between an entity name and its type. From all those
examples we derive the last lesson as follows:

L9. It is worth the effort to assure consistency between, on the one hand, the name
of an entity, and, on the other hand, its functionality, type, or other entities.

Table 9.1 Actionable knowledge.

AK1 Plan ahead to avoid an avalanche of renamings: design for change when using APIs, choose naming L2, L3
conventions at an early stage for the programming language you are using.

AK2 Provide a small amount of effort regularly to avoid unnecessary renamings: check identifiers for L5
spelling errors at the time of creation/renaming.

AK3 Name identifiers for others: identify the right order of terms, choose between abbreviation or full L4, L6, L7
English word, avoid using negation.

AK4 Strive for consistency: when changing behavior/type, change the name accordingly, choose identifiers L9
to be consistent with the rest of the programming lexicon.

AK5 Do not try to prevent all renamings – renaming is part of evolution: program behavior evolves, method L1, L8
names and parameters change accordingly.

87

Based on the above lessons, we further derive the so called actionable knowledge reported in
Table 9.1. Each actionable knowledge derives from one or more lessons and intend to provide
practical advice that the authors believe worth highlighting.

The study allowed us to distill nine lessons and a set of five guidelines, i.e., pieces of actionable
knowledge, summarized in Table 9.1. Such knowledge can be used by for developers, to drive
then towards using appropriate naming conventions—e.g., using singular/plurals properly,
making a wise usage of abbreviations, avoiding negated forms and Hungarian notation, and
also keeping in mind that API renaming can have quite an impact on the rest of the source
code if one wants to keep the lexicon consistent.

9.2 Future Work

Based on the results of our studies, the following extensions are possible future work. We
present them from short-term and long-term perspectives.

9.2.1 Short-term

As pointed out above, REPENT relies on external tools such as the Unix diff, WordNet,
and Stanford NLP, which turned out to suffice for our needs. However, future developent
activities could easily extend REPENT by replacing such tools with alternative and possibly
more accurate ones.

9.2.2 Long-term

Base on the literature, our studies and observations, we argue that the following changes will
happen to frameworks and their APIs.

More specifically, REPENT can be the core component of renaming recommenders that, by
learning from past renamings, could automatically point out inconsistencies to developers—
e.g., linguistic antipatterns Arnaoudova et al. (2013)—to proactively suggest how to rename
identifiers to improve source code comprehensibility as well as pointing to past renamings
conflicting with the ongoing renaming activity. Such foreseeable recommenders would for
example be useful in the following situation. In revision 67429 of JBoss, method deploy was
renamed to internalDeploy in five different classes. In the same revision, in three of those
classes method unDeploy was renamed to internalUnDepoly. The same set of renamings
occurred at a later stage (revision 79147) for a different class. Hence, documenting the
renamings in revision 67429 and learning from them would have facilitated the work of
developers in later revisions, when creating an entity or renaming it, by pointing to names

88

used in a similar context. If such a recommendation is not accepted by the developer, it will
still be beneficial as it will be clear that such contrast is deliberate and it is performed with
the developer’s full awareness, thus the rationale behind it must be explicitly documented
for future evolution.

Besides building a renaming recommender, work-in-progress also aims at supporting pro-
gramming languages other than Java, as for example scripting languages like PHP. Indeed
our preliminary results on detection and classification of identifiers in PHP programs show
the applicability of proposed methodology for this language as well. Although the results
are motivating we need to improve the detection component of REPENT by considering
dynamic features of PHP such as variable variable, function pointers and reference passing.

89

REFERENCES

Russell J. Abbott (1983). Program design by informal english descriptions. Commun. ACM,
26 (11), 882–894.

Surafel Lemma Abebe and Sonia Haiduc and Andrian Marcus and Paolo Tonella and Giu-
liano Antoniol (2009). Analyzing the evolution of the source code vocabulary. Proceedings
of the European Conference on Software Maintenance and Reengineering. 189–198.

Surafel Lemma Abebe and Paolo Tonella (2010). Natural language parsing of program ele-
ment names for concept extraction. Proceedings of the International Conference on Program
Comprehension (ICPC). 156–159.

Giuliano Antoniol and Gerardo Canfora and Gerardo Casazza and Andrea De Lucia and
Ettore Merlo (2002). Recovering traceability links between code and documentation. IEEE
Transactions on Software Engineering, 28 (10), 970–983.

Giuliano Antoniol and Massimiliano Di Penta and Michele Zazzara (2004). Understand-
ing web applications through dynamic analysis. Proceedings of 12th IEEE International
Workshop on Program Comprehension. 120–129.

Venera Arnaoudova and Massimiliano Di Penta and Giuliano Antoniol and Yann-Gaël
Guéhéneuc (2013). A new family of software anti-patterns: Linguistic anti-patterns. Pro-
ceedings of the European Conference on Software Maintenance and Reengineering (CSMR).

Bavota, Gabriele and De Lucia, Andrea and Oliveto, Rocco (2011). Identifying extract
class refactoring opportunities using structural and semantic cohesion measures. Journal of
Systems and Software, 84, 397–414.

David Binkley and Matthew Hearn and Dawn Lawrie (2011). Improving identifier infor-
mativeness using part of speech information. Proceedings of the International Working
Conference on Mining Software Repositories.

Black, Thomas R. (1999). Doing Quantitative Research in the Social Sciences: An Inte-
grated Approach to Research Design, Measurement and Statistics. Statistics Series. SAGE
Publications.

Broder, A.Z. (1997). On the resemblance and containment of documents. Proceedings of
the Compression and Complexity of Sequences. 21–29.

B. Bruegge and Dutoit, A. H. (2003). Object-Oriented Software Engineering: Using UML,
Patterns, and Java. Prentice Hall.

90

G. Capobianco and De Lucia, A. and R. Oliveto and A. Panichella and S. Panichella (2013).
Improving ir-based traceability recovery via noun-based indexing of software artifacts. Jour-
nal of Software: Evolution and Process, 25 (7), 743–762.

Bruno Caprile and Paolo Tonella (2000). Restructuring program identifier names. Proceed-
ings of the International Conference on Software Maintenance. 97–107.

Anna Corazza and Sergio Di Martino and Valerio Maggio (2012). Linsen: An approach
to split identifiers and expand abbreviations with linear complexity. Proceedings of the
International Conference on Software Maintenance, (ICSM).

James R. Cordy (2006). The TXL source transformation language. Science of Computer
Programming, 61 (3), 190–210.

Thomas H. Cormen and Charles E. Leiserson and Ronald L. Rivest (1990). Introductions
to Algorithms. MIT Press.

Andrea De Lucia and Massimiliano Di Penta and Rocco Oliveto (2011). Improving source
code lexicon via traceability and information retrieval. IEEE Transactions on Software
Engineering, 37 (2), 205–227.

Florian Deissenbock and Markus Pizka (2005). Concise and consistent naming. Proceedings
of the International Workshop on Program Comprehension.

Serge Demeyer and Stéphane Ducasse and Oscar Nierstrasz (2000). Finding refactorings via
change metrics. Proceedings of the International Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications. 166–177.

Di Lucca, G.A. and Fasolino, A.R. and Pace, F. and Tramontana, P. and De Carlini, U.
(2002). WARE: A tool for the reverse engineering of web applications. Proceedings of
the European Conference on Software Maintenance and Reengineering. Budapest, Hungary,
241–250.

Di Lucca, G.A. and Fasolino, A.R. and Tramontana, P. and De Carlini, U. (2003a). Ab-
stracting business level UML diagrams from web applications. Amsterdam, The Nether-
lands, 12–19.

Di Lucca, G.A. and Fasolino, A.R. and Tramontana, P. and De Carlini, U. (2003b). Re-
covering a business object model from web applications. Proceedings of 27th International
Computer Software and Applications Conference (COMPSAC). 348–353.

Danny Dig and Can Comertoglu and Darko Marinov and Ralph E. Johnson (2006). Au-
tomated detection of refactorings in evolving components. Proceedings of the European
Conference on Object-Oriented Programming. 404–428.

91

Eric Enslen and Emily Hill and Lori L. Pollock and K. Vijay-Shanker (2009). Mining source
code to automatically split identifiers for software analysis. Proceedings of the International
Working Conference on Mining Software Repositories. 71–80.

Laleh Mousavi Eshkevari and Venera Arnaoudova and Massimiliano Di Penta and Rocco
Oliveto and Yann-Gaël Guéhéneuc and Giuliano Antoniol (2011). An exploratory study of
identifier renamings. Proceedings of the 8th International Working Conference on Mining
Software Repositories (MSR 2011). 33–42.

Fluri, Beat and Wuersch, Michael and PInzger, Martin and Gall, Harald (2007). Change dis-
tilling: Tree differencing for fine-grained source code change extraction. IEEE Transactions
on Software Engineering, 33 (11), 725–743.

François Gauthier and Ettore Merlo (2012). Alias-aware propagation of simple pattern-based
properties in PHP applications. Proceedings of 12th International Working Conference on
Source Code Analysis and Manipulation, (SCAM). 44–53.

François Gauthier and Ettore Merlo (2013). Semantic smells and errors in access control
models: a case study in php. Proceedings of 35th International Conference on Software
Engineering (ICSE). 1169–1172.

Barney G. Glaser (1992). Basics of grounded theory analysis. Sociology Press.

Robert M. Groves and Floyd J. Fowler Jr. and Mick P. Couper and James M. Lepkowski
and Eleanor Singer and Roger Tourangeau (2009). Survey Methodology, 2nd edition. Wiley.

L. Guerrouj and M. Di Penta and G. Antoniol and Y. Gaël Guéhéneuc (2011). Tidier:
An identifier splitting approach using speech recognition techniques. Journal of Software
Maintenance - Research and Practice, 25 (6), 575–599.

Gupta, Samir and Malik, Sana and Pollock, Lori and Vijay-Shanker, K. (2013). Part-of-
speech tagging of program identifiers for improved text-based software engineering tool.
Proceedings of the International Conference on Program Comprehension (ICPC). 3–12.

Haiduc, Sonia and Marcus, Andrian (2008). On the use of domain terms in source code.
Proceedings of the International Conference on Program Comprehension (ICPC). 113–122.

Ahmed E. Hassan and Richard C. Holt (2002). Architecture recovery of web applications.
Proceedings of the 22rd International Conference on Software Engineering, (ICSE). 349–359.

Abram Hindle and Neil A. Ernst and Michael W. Godfrey and John Mylopoulos (2011).
Automated topic naming to support cross-project analysis of software maintenance activi-
ties. Proceedings of the International Working Conference on Mining Software Repositories
(MSR). 163–172.

92

Howard, Matthew J. and Gupta, Samir and Pollock, Lori and Vijay-Shanker, K. (2013).
Automatically mining software-based, semantically-similar words from comment-code map-
pings. Proceedings of the Working Conference on Mining Software Repositories (MSR).

Toshihiro Kamiya and Shinji Kusumoto and Katsuro Inoue (2002). CCFinder: A multilin-
guistic token-based code clone detection system for large scale source code. IEEE Transac-
tions on Software Engineering, 28 (7), 654–670.

Kawrykow, David and Robillard, Martin P. (2011). Non-essential changes in version histo-
ries. Proceedings of the International Conference on Software Engineering. 351–360.

Rainer Koschke and Gerardo Canfora and Jörg Czeranski (2006). Revisiting the delta ic
approach to component recovery. Science of Computer Programming, 60 (2), 171–188.

Harold W. Kuhn (1955). The hungarian method for the assignment problem. Naval Research
Logistics Quarterly, 2, 83–97.

Dawn Lawrie and David Binkley (2011). Expanding identifiers to normalize source code
vocabulary. Proceedings of the International Conference on Software Maintenance, (ICSM).
113–122.

Dawn Lawrie and Henry Feild and David Binkley (2006a). Syntactic identifier conciseness
and consistency. Proceedings of the International Workshop on Source Code Analysis and
Manipulation. 139–148.

Dawn Lawrie and Christopher Morrell and Henry Feild and David Binkley (2006b). What’s
in a name? a study of identifiers. Proceedings of the International Conference on Program
Comprehension. 3–12.

Dawn Lawrie and Christopher Morrell and Henry Feild and David Binkley (2007). Effective
identifier names for comprehension and memory. Innovations in Systems and Software
Engineering, 3 (4), 303–318.

Vladimir I. Levenshtein (1966). Binary codes capable of correcting deletions, insertions,
and reversals. Cybernetics and Control Theory, 10 (8), 707–710.

Nioosha Madani and Latifa Guerrouj and Massimiliano Di Penta and Yann-Gaël Guéhéneuc
and Giuliano Antoniol (2010). Recognizing words from source code identifiers using speech
recognition techniques. Proceedings of the European Conference on Software Maintenance
and Reengineering. 68–77.

Jonathan I. Maletic and Giuliano Antoniol and Jane Cleland-Huang and Jane Huffman
Hayes (2005). International Workshop on Traceability in Emerging Forms of Software En-
gineering. 462.

93

Malpohl, Guido and Hunt, James J. and Tichy, Walter F. (2000). Renaming detection.
Proceedings of the International Conference Automated Software Engineering (ASE). 73–
80.
Marcus, Andrian and Poshyvanyk, Denys and Ferenc, Rudolf (2008). Using the conceptual
cohesion of classes for fault prediction in object-oriented systems. IEEE Transactions on
Software Engineering, 34 (2), 287–300.
Marcus, Mitchell P. and Marcinkiewicz, Mary Ann and Santorini, Beatrice (1993). Build-
ing a large annotated corpus of english: the penn treebank. Journal of Computational
Linguistics - Special issue on using large corpora, 19 (2), 313–330.
George A. Miller (1995). Wordnet: A lexical database for english. Communications of the
ACM, 38 (11), 39–41.
Neamtiu, Iulian and Foster, Jeffrey S. and Hicks, Michael (2005). Understanding source
code evolution using abstract syntax tree matching. Software Engineering Notes, 30 (4),
1–5.
Hoan Anh Nguyen and Hung Viet Nguyen and Tung Thanh Nguyen and Tien N. Nguyen
(2013a). Output-oriented refactoring in php-based dynamic web applications. Proceedings
of International Conference on Software Maintenance (ICSM). 150–159.
Hung Viet Nguyen and Hoan Anh Nguyen and Tung Thanh Nguyen and Tien N. Nguyen
(2011). Auto-locating and fix-propagating for HTML validation errors to PHP server-side
code. Proceedings of 26th International Conference on Automated Software Engineering
(ASE). 13–22.
Hung Viet Nguyen and Hoan Anh Nguyen and Tung Thanh Nguyen and Tien N. Nguyen
(2013b). Drc: a detection tool for dangling references in php-based web applications. Pro-
ceedings of the International Conference on Software Engineering, (ICSE). 1299–1302.
Linda Dailey Paulson (2007). Developers shift to dynamic programming languages. IEEE
Computer, 40 (2), 12–15.
M. F. Porter (1980). An algorithm for suffix stripping. Program, 14 (3), 130–137.
Denys Poshyvanyk and Andrian Marcus (2006). The conceptual coupling metrics for object-
oriented systems. Proceedings of the International Conference on Software Maintenance.
469–478.
Kyle Prete and Napol Rachatasumrit and Nikita Sudan and Miryung Kim (2010). Template-
based reconstruction of complex refactorings. Proceedings of the International Conference
on Software Maintenance (ICSM). 1–10.
Ricca, F. and Tonella, P. (2001a). Analysis and testing of web applications. Proceedings of
the International Conference on Software Engineering, (ICSE). 25–34.

94

Ricca, F. and Tonella, P. (2001b). Understanding and restructuring web sites with ReWeb.
IEEE Multimedia, 8 (2), 40–51.

George Santayana (1905). The Life of Reason: Introduction and Reason in Common Sense,
vol. 1. Charles Scribner’s Sons.

David J. Sheskin (2007). Handbook of Parametric and Nonparametric Statistical Procedures
(fourth edition). Chapman & All.

Standish, Thomas A. (1984). An essay on software reuse. IEEE Transactions on Software
Engineering (TSE), 10 (5), 494–497.

Anselm L. Strauss (1987). Qualitative analysis for social scientists. Cambridge Univsersity
Press.

Armstrong Takang and Penny A. Grubb and Robert D. Macredie (1996). The effects
of comments and identifier names on program comprehensibility: an experiential study.
Journal of Program Languages, 4 (3), 143–167.

Suresh Thummalapenta and Luigi Cerulo and Lerina Aversano and Massimiliano Di Penta
(2010). An empirical study on the maintenance of source code clones. Empirical Software
Engineering, 15 (1), 1–34.

Rebecca Tiarks (2011). What maintenance programmers really do: An observational study.
Proceedings of the Workshop Software Reengineering (WSR). 36–37.

Tonella, P. and Ricca, F. (2002). Dynamic model extraction and statistical analysis of web
applications. 43–52.

Toutanova, Kristina and Manning, Christopher D. (2000). Enriching the knowledge sources
used in a maximum entropy part-of-speech tagger. Proceedings of the Joint SIGDAT Con-
ference on Empirical Methods in Natural Language Processing and Very Large Corpora.
63–70.

Anneliese von Mayrhauser and Marie A. Vans and Adele E. Howe (1997). Program un-
derstanding behaviour during enhancement of large-scale software. Journal of Software
Maintenance: Research and Practice, 9 (5), 299–327.

Weissgerber, Peter and Diehl, Stephan (2006). Identifying refactorings from source-code
changes. Proceedings of the International Conference on Automated Software Engineering
(ASE). 231–240.

Xing, Zhenchang and Stroulia, Eleni (2006). Refactoring detection based on UMLDiff
change-facts queries. Proceedings of Working Conference on Reverse Engineering. 263–274.

Jinqiu Yang and Lin Tan (2013). SWordNet: Inferring semantically related words from
software context. Empirical Software Engineering.

95

Thomas Zimmermann and Peter Weisgerber (2004). Preprocessing CVS data for fine-grained
analysis. Proceedings of the International Workshop on Mining Software Repositories. 2–6.

Thomas Zimmermann and Peter Weissgerber and Stephan Diehl and Andreas Zeller (2004).
Mining version histories to guide software changes. Proceedings of the International Con-
ference on Software Engineering. 563–572.

96

Survey details

This appendix reports detailed results of the survey

First, we report information about participants’ background. In particular, Fig. .1 shows
statistics regarding the native language of the participants, whereas Fig. .2 reports their
years of experience in industrial and open-source software development.

Fig. .3 reports how often developers rename. Only 14% of participants rename rarely (up
to once per month) : 46% rename occasionally (a few times per month) while 18% rename
frequently (a few times per week) and 21% rename very frequently (almost every day).

Fig. .4 indicates activities during which developers rename. Note that a participant may
select more than one activity, thus the sum of the percentages is above 100%. Participants
rarely perform renaming as a standalone activity (17%). Often, they rename when performing
other refactorings (90%), changing the functionality (89%), adding new functionality (65%),
understanding code (51%), or fixing a bug (42%).

Fig. .5 provides insights about the opinion of participants about the cost of renaming. 35%
of participants consider that renaming requires time and effort (at least in most cases) ; 32%
consider that the cost of renaming depends on the particular case ; 32% consider renaming
to be straightforward (at least in most cases). Note that the sum of the above is 99% due to
rounding errors.

Fig. .6 reports results on the use of tool support for renaming. The majority of the participants
(72%) use automatic tool support to perform renaming. There are however participants that
rename manually (20%) and participants that perform both, manual and automatic renaming
(8%).

We asked participants to share the reasons for which they recall having decided not to rename
an entity ; results are shown in Fig. .7. 52% of the participants recall the reason to be the
potential impact on other systems. 35% recall that the renaming was too risky, i.e., it might
have introduced a bug. 25% of the participants answered that the high impact of the renaming

raw numbers Nationality

Armenian 1 0.0140845070422535 Total

Hebrew 1 0.0140845070422535 71

Japanese 1 0.0140845070422535

Polish 1 0.0140845070422535

Serbian 1 0.0140845070422535

Spanish 1 0.0140845070422535

Swedish 1 0.0140845070422535

Dutch 2 0.028169014084507

German 2 0.028169014084507

Italian 2 0.028169014084507

Korean 2 0.028169014084507

Portuguese 2 0.028169014084507

Czech 3 0.0422535211267606

Persian 3 0.0422535211267606

Russian 6 0.0845070422535211

French 12 0.169014084507042

English 26 0.366197183098592

Unknown 4 0.0563380281690141

raw numbers Nationality

Armenian 1 0.0140845070422535 Total

Hebrew 1 0.0140845070422535 71

Japanese 1 0.0140845070422535

Polish 1 0.0140845070422535

Serbian 1 0.0140845070422535

Spanish 1 0.0140845070422535

Swedish 1 0.0140845070422535

Italian 2 0.028169014084507

Korean 2 0.028169014084507

Portuguese 2 0.028169014084507

Czech 3 4%

Persian 3 4%

English 26 37%

French 12 17%

Russian 6 8%

German 4 6%

Other 23 32%

Native language

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

32%6%8%17%37%

English French Russian German Other

Figure .1 Native language of the participants.

97

0-5 6-10 11-15 16+

How many years of experience do you have in
software development?!!

8 22 19 21 70 Total

How many years of industrial experience do you
have in software development?!!

27 18 15 11 71 71

How many years of experience do you have in
development of open-source systems?!!

46 18 7 0 71

How many years of experience do you have in
software development?!!

11% 31% 27% 30% 99%

How many years of industrial experience do you
have in software development?!!

38% 25% 21% 15% 100%

How many years of experience do you have in
development of open-source systems?!!

65% 25% 10% 0% 100%

Industrial experience in software development

Experience in development of open-source systems

0% 25% 50% 75% 100%

15%

10%

21%

25%

25%

65%

38%

0-5 6-10 11-15 16+

Figure .2 Experience of the participants in software development.

Renaming
frequency

Very frequently (almost every day) 15 21%

Frequently (few times per week) 13 18%

Occasionally (few times per month) 33 46% 71

Rarely (up to once per month) 10 14% Total

Renaming frequency

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

14%46%18%21%

Very frequently Frequently Occasionally Rarely

Figure .3 How often do developers rename ?

When do you rename?

When changing the functionality 63 89% Total

When adding new functionality 46 65% 71

When understanding code 36 51%

When fixing a bug 30 42%

When performing refactoring 64 90%

Apart from other development activities 12 17%

When changing the functionality

When adding new functionality

When understanding code

When fixing a bug

When performing refactoring

Apart from other development activities

0% 20% 40% 60% 80% 100%

17%

90%

42%

51%

65%

89%

When do developers rename?Figure .4 Activities accompanying renaming.

Yes (identifier renaming
requires time and effort)

18 25%

In most cases yes 7 10% 48

Sometimes no, sometimes
yes

23 32%

In most cases no 17 24% 71

No (identifier renaming
is straightforward)

6 8% Total

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

8%24%32%10%25%

Yes, it requires time and effort In most cases yes Sometimes no, sometimes yes In most cases no No, it is straightforward

Do renaming has a cost?

Figure .5 Developers’ opinion on cost of renaming.

Automatic tool
support

51 72% Total

Manually rename 14 20% 71

Both 6 8%

0% 25% 50% 75% 100%

8%20%72%

Automatic tool support Manually Both

How do developers rename?

Figure .6 How do developers rename ?

98

on the system was the show-stopper and finally, 25% recall deciding not to rename because
of the high effort required.

We also asked participants whether a set of predefined factors would impact the decision
to undertake a renaming. Results are not surprising (Fig. .8). The majority of participants
consider important all those factors. However, the factor that is worth highlighting here is
the impact on other projects—69% of participants say that this would definitely impact their
decision.

Fig. .9 shows when developers feel the need to rename. As expected, the majority (66%) of
participants clearly state that they will definitely rename an entity if its name is not consistent
with its functionality. They made less strong statements about naming conventions, spelling
errors, and hard to understand words, but still the majority of participants report that they
will probably rename in such cases. Surprisingly, only 13% of participants will probably
rename if an entity contains an abbreviation—the majority of participants (56%) will not
rename. Finally, when the name of an entity contains a negation, e.g., notOpen, 30% of the
participants will rename, while 46% will not.

We asked participants whether they consider useful automatically documenting renaming ;
results are shown in Fig. .10. The majority (52%) are positive. 33% of participants are negative
about automatic documentation. The remaining participants did not provide their opinion.

Fig. .11 reports participants’ opinion on renamings that are useful to document. More speci-
fically, developers see the usefulness of automatically documenting renamings of public APIs,
i.e., classes and methods, and renamings concerning the meaning of the name—renaming
towards opposite meaning, towards unrelated words, towards more general/specific names,
adding/removing meaning. Surprisingly, the percentage of participants that see a benefit
from automatic renaming towards synonyms is lower—36%. Similarly, but not surprisingly,
a small number of participants see a benefit from automatically documenting renaming of
entities with local scope, renamings towards abbreviations/expansions, and spelling errors.

High effort
required

18 25% Total

High impact on
the system

18 25% 71

Too risky (could
introduce bugs)

25 35%

Potential impact
on other systems
using this system
(e.g. as a library)

37 52%

High effort required

High impact on the system

Too risky (could introduce bugs)

Potential impact on other systems  
using this system (e.g. as a library)

0% 10% 20% 30% 40% 50% 60%

52%

35%

25%

25%

It happened to developers not to rename because:Figure .7 Reasons for which developers already postponed or canceled a renaming.

99

Definitely WILL impact Probably WILL impact Undecided Probably NO impactDefinitely NO impact

You are not the owner of the code 27 29 7 4 2 Total

The entity being renamed is used in many
places in the code

22 23 3 17 5 71

The entity being renamed is used in other
projects

49 19 1 0 0

You are close to a release deadline 31 23 7 6 2

Insufficient (or lack of) domain knowledge 41 19 5 4 1

Definitely YES Probably YES Undecided Probably NO Definitely NO

The name and functionality are not
consistent

38% 41% 10% 6% 3%

The name does not follow the language
naming conventions

31% 32% 4% 24% 7%

The name does not follow the team naming
conventions

69% 27% 1% 0% 0%

The name contains an abbreviation/acronym 44% 32% 10% 8% 3%

The name contains a spelling error 58% 27% 7% 6% 1%

Code ownership

Many uses

Uses in other projects

Close to deadline

Insufficient (lack of) domain knowledge

0% 25% 50% 75% 100%

1%

3%

7%

3%

6%

8%

24%

6%

7%

10%

1%

4%

10%

27%

32%

27%

32%

41%

58%

44%

69%

31%

38%

Definitely YES Probably YES Undecided Probably NO Definitely NO

Developers would rename an entity if:

Figure .8 Factors impacting developers decision to undertake a renaming.

Definitely YES Probably YES Undecided Probably NO Definitely NO

The name and functionality are not
consistent

47 23 0 1 0 Total

The name does not follow the language
naming conventions

24 33 7 5 2 71

The name does not follow the team
naming conventions

24 27 12 6 0

The name contains an abbreviation/
acronym

0 9 21 35 5

The name contains a spelling error 31 29 5 6 0

The name contains misleading/hard to
understand words

22 34 9 5 0

The name contains a negation 5 16 15 27 6

Definitely YES Probably YES Undecided Probably NO Definitely NO

The name and functionality are not
consistent

66% 32% 0% 1% 0%

The name does not follow the language
naming conventions

34% 46% 10% 7% 3%

The name does not follow the team naming
conventions

34% 38% 17% 8% 0%

The name contains an abbreviation/acronym 0% 13% 30% 49% 7%

The name contains a spelling error 44% 41% 7% 8% 0%

The name contains misleading/hard to
understand words

31% 48% 13% 7% 0%

The name contains a negation 7% 23% 21% 38% 8%

The name and functionality are not consistent

The name does not follow the language naming conventions

The name does not follow the team naming conventions

The name contains an abbreviation/acronym

The name contains a spelling error

The name contains misleading/hard to understand words

The name contains a negation

0% 25% 50% 75% 100%

8%

7%

3%

38%

7%

8%

49%

8%

7%

1%

21%

13%

7%

30%

17%

10%

23%

48%

41%

13%

38%

46%

32%

7%

31%

44%

34%

34%

66%

Definitely YES Probably YES Undecided Probably NO Definitely NO

Developers would rename an entity if:

Figure .9 When will developers rename ?

Definitely YES Probably YES Undecided Probably NO Definitely NO

Do you think that automatically
documenting identifier renamings is
useful?

13 24 0 18 6 Total

Do you think that automatically
documenting identifier renamings is
useful?

18% 34% 0% 25% 8% 71

Is automatically documenting identifier renamings useful?

0% 23% 45% 68% 90%

8%25%34%18%

Definitely YES Probably YES Probably NO Definitely NO

Figure .10 Developers’ opinion on the usefulness of documenting renamings.

100

Definitely YES Probably YES Undecided Probably NO Definitely NO

Class/Interface 29 11 9 9 6 Total

Attribute 17 14 12 13 8 71

Constructor 9 11 10 19 7

Getter/Setter 10 18 12 15 7

Other methods (excl. getters/setters
and constructors)

16 18 14 10 6

Parameter 10 8 7 28 11

Local variable 5 7 6 26 20

Towards synonyms 8 18 9 23 7

Correcting typos 6 15 7 23 14

Expanding a word 4 16 10 25 10

Abbreviating a word 8 15 11 21 9

Towards opposite meaning 23 18 10 7 6

Towards unrelated words 18 19 13 8 6

Towards more specific name 15 19 11 13 6

Towards more general name 16 19 12 11 6

Meaning is added in the new name 18 18 14 8 6

Meaning is removed in the new name 18 18 15 7 6

Definitely YES Probably YES Undecided Probably NO Definitely NO

Class/Interface 41% 15% 13% 13% 8% Total

Attribute 24% 20% 17% 18% 11% 71

Constructor 13% 15% 14% 27% 10%

Getter/Setter 14% 25% 17% 21% 10%

Other methods (excl. getters/setters
and constructors)

23% 25% 20% 14% 8%

Parameter 14% 11% 10% 39% 15%

Local variable 7% 10% 8% 37% 28%

Towards synonyms 11% 25% 13% 32% 10%

Correcting typos 8% 21% 10% 32% 20%

Expanding a word 6% 23% 14% 35% 14%

Abbreviating a word 11% 21% 15% 30% 13%

Towards opposite meaning 32% 25% 14% 10% 8%

Towards unrelated words 25% 27% 18% 11% 8%

Towards more specific name 21% 27% 15% 18% 8%

Towards more general name 23% 27% 17% 15% 8%

Meaning is added in the new name 25% 25% 20% 11% 8%

Meaning is removed in the new name 25% 25% 21% 10% 8%

Class/Interface

Attribute

Constructor

Getter/Setter

Methods

Parameter

Local variable

Towards synonyms

Correcting typos

Expanding a word

Abbreviating a word

Towards opposite meaning

Towards unrelated words

Towards more specific name

Towards more general name

Meaning is added in the new name

Meaning is removed in the new name

0% 25% 50% 75% 100%

8%
8%
8%
8%
8%
8%

13%
14%

20%
10%

28%
15%

8%
10%

10%
11%

8%

10%
11%

15%
18%

11%
10%

30%
35%

32%
32%

37%
39%

14%
21%

27%
18%

13%

21%
20%

17%
15%

18%
14%

15%
14%
10%

13%
8%

10%
20%

17%
14%

17%
13%

25%
25%

27%
27%

27%
25%

21%
23%

21%
25%

10%
11%

25%
25%

15%
20%

15%

25%
25%

23%
21%

25%
32%

11%
6%
8%
11%

7%
14%

23%
14%
13%

24%
41%

Definitely YES Probably YES Undecided Probably NO Definitely NO

Figure .11 Developers’ opinion on renamings that are useful to document.

101

The majority (68%) of participants see a benefit of automatic recommendations for renaming
(Fig. .12) provided that such recommendations are non-intrusive and offer reliable sugges-
tions. Fig. .12 reports developers’ opinion on the usefulness of recommending renamings.
Finally, participants see the benefit of recommendations regarding the majority of renamings
(Fig. .13).

Definitely YES Probably YES Undecided Probably NO Definitely NO

Do you think that recommend identifier names/renamings(and
therefore suggesting a better name from the beginningor at the time
of renaming)is useful?!!

22 26 0 12 1 Total

Do you think that recommend identifier names/renamings(and
therefore suggesting a better name from the beginningor at the time
of renaming)is useful?!!

31% 37% 0% 17% 1% 71

Is recommending identifier renamings useful?

0% 23% 45% 68% 90%

1%17%37%31%

Definitely YES Probably YES Probably NO Definitely NO

Figure .12 Developers’ opinion on the usefulness of recommending renamings.

102

Definitely YES Probably YES Undecided Probably NO Definitely NO

Class/Interface 23 21 9 4 3 Total

Attribute 16 29 6 7 2 71

Constructor 11 12 13 15 3

Getter/Setter 15 22 10 10 2

Other methods (excl. getters/setters
and constructors)

16 26 8 8 2

Parameter 15 24 11 7 2

Local variable 9 20 10 14 6

Regarding synonyms 13 27 11 7 2

Regarding typos 30 19 5 5 1

Regarding the expansion of a word 11 23 11 12 3

Regarding the abbreviation of a word 9 18 13 17 3

Regarding words with opposite
meaning

13 21 11 8 3

Regarding words with unrelated
meaning

11 13 18 10 3

Regarding more specific name 13 20 13 7 2

Regarding more general name 12 17 15 9 2

Regarding adding a meaning 11 18 18 6 2

Regarding removing a meaning 10 16 17 10 2

Definitely YES Probably YES Undecided Probably NO Definitely NO

Class/Interface 32% 30% 13% 6% 4% Total

Attribute 23% 41% 8% 10% 3% 71

Constructor 15% 17% 18% 21% 4%

Getter/Setter 21% 31% 14% 14% 3%

Other methods (excl. getters/setters
and constructors)

23% 37% 11% 11% 3%

Parameter 21% 34% 15% 10% 3%

Local variable 13% 28% 14% 20% 8%

Regarding synonyms 18% 38% 15% 10% 3%

Regarding typos 42% 27% 7% 7% 1%

Regarding the expansion of a word 15% 32% 15% 17% 4%

Regarding the abbreviation of a word 13% 25% 18% 24% 4%

Regarding words with opposite
meaning

18% 30% 15% 11% 4%

Regarding words with unrelated
meaning

15% 18% 25% 14% 4%

Regarding more specific name 18% 28% 18% 10% 3%

Regarding more general name 17% 24% 21% 13% 3%

Regarding adding a meaning 15% 25% 25% 8% 3%

Regarding removing a meaning 14% 23% 24% 14% 3%

Class/Interface

Attribute

Constructor

Getter/Setter

Methods

Parameter

Local variable

Regarding synonyms

Regarding typos

Regarding the expansion of a word

Regarding the abbreviation of a word

Regarding words with opposite meaning

Regarding words with unrelated meaning

Regarding more specific name

Regarding more general name

Regarding adding a meaning

Regarding removing a meaning

0% 23% 45% 68% 90%

3%

3%

3%

3%

4%

4%

4%

4%

1%

3%

8%

3%

3%

3%

4%

3%

4%

14%

8%

13%

10%

14%

11%

24%

17%

7%

10%

20%

10%

11%

14%

21%

10%

6%

24%

25%

21%

18%

25%

15%

18%

15%

7%

15%

14%

15%

11%

14%

18%

8%

13%

23%

25%

24%

28%

18%

30%

25%

32%

27%

38%

28%

34%

37%

31%

17%

41%

30%

14%

15%

17%

18%

15%

18%

13%

15%

42%

18%

13%

21%

23%

21%

15%

23%

32%

Definitely YES Probably YES Undecided Probably NO Definitely NO

Figure .13 Developers’ opinion on renamings that are useful to recommend.

103

Thresholds for Detection and Classification

Thresholds for Detecting Renamings REPENT uses three sets of thresholds, where
each threshold varies in the range [0, 1]. Specifically, the REPENT thresholds are described
as follows :

– Statement Similarity Threshold (SST) : used to match def-uses of the mapped enti-
ties.

– Number of Matched Statements Threshold (NST) : used to decide if the mapped
entities have a sufficiently high number of matched def-uses statements, to support the
evidence of a real renaming.

– Declaration Similarity Threshold (DST) : used to match the declaration of two
mapped entities, whenever one or both entities do not have uses.

While DST has been set to a constant value not depending on the kind of entity, SST and
NST require different calibrations to be able to work effectively on different kinds of entities,
in order to balance false positives as well as false negatives. The rationale is that for different
entities (class names, method names, etc.) the syntax and frequency of statements where
def-uses occur may be quite different.

We calibrate the thresholds by varying NST between zero and one, with step 0.1 ; for each
fixed value of NST (e.g., 0.4), we made SST vary (between zero and one with step 0.1).

We used Tomcat as a calibration data set, i.e., we used the oracle of 724 renamings detec-
ted in our previous study Eshkevari et al. (2011) and manually classified. In addition, to
better distinguish how REPENT performs with different thresholds, we computed the set
of renamings that change when thresholds vary—we computed the union and intersection
of the detected renamings for all combinations of the different values of NST and SST. We
then randomly sampled renamings from the complement of the intersection until reaching an
oracle that sufficiently discriminates the different thresholds—we stopped when the oracle
reached 2,265 renamings. Next, we computed the True Positive Rate (TPR) and the False
Positive Rate (FPR) for each entity kind on the calibration set. TPR and FPR were used to
generate a family of Receiver Operating Characteristic (ROC) curves. ROC curves plot the
TPR over the FPR at various threshold settings. Notice that TPR is equivalent to recall.
The relation between FPR (TPR) and precision is more complex as precision is the ratio
of true positives over the sum of true positives and false positives ; however, reducing FPR
increases the number of correctly classified items, and thus it improves precision.

104

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.1 0.15 0.2 0.25 0.3

TPR

FPR

Selected FD ROC curves parametrized by SST

NST: 0.1
NST: 0.2
NST: 0.3
NST: 0.4
NST: 0.5
NST: 0.6
NST: 0.7
NST: 0.8
NST: 0.9

Figure .1 REPENT class FielD (FD) ROC curves as functions of SST and NST.

105

Table .1 Thresholds chosen for the study as well as corresponding TPR and FPR on the
calibration set.

Kind of entity SST NST DST TPR FPR Precision
Type 0.8 0.3 0.7 89% (17/19) 0% (0/1) 100%
Constructor 0.6 0.8 0.7 100% (7/7) 0% (0/4) 100%
Field 0.8 0.4 0.7 86% (262/303) 12% (20/163) 93%
Method 0.8 0.3 0.7 95% (349/368) 18% (11/61) 97%
Getter/Setter 0.8 0.2 0.7 93% (250/270) 18% (22/122) 92%
Parameter 0.7 0.5 0.7 64% (214/334) 36% (48/132) 82%
Local variable 0.8 0.3 0.7 77% (172/224) 4% (11/257) 94%
Overall 83% (1271/1525) 15% (112/740) 92%

Fig. .1 shows a subset of ROC family computed for class FielD (FD) ; top right curve (symbol
+) was obtained setting NST= 0.1, while the bottom left curve (symbol N) corresponds to
NST=0.9. REPENT works on the ROC curve with NST= 0.4 (symbol �). The SST value
was fixed at 0.8 which gives (on the calibration set) TPR of 86% and FPR of 12%. As shown
in Fig. .1, these two values are the threshold values giving (on our FD calibration set) the
highest TPR with a reasonably low FPR for FD ; no other ROC curve has a lower FPR
with a higher (or equal) TPR. For example, the topmost-right ROC curve (denoted with
+) indicates a higher TPR at a price of a higher FPR. In essence, depending on the goal
to be achieved, REPENT can be calibrated to favor low FPR, high TPR or a compromise
between the two. This latter choice was used to select, via the same analysis process, for each
entity kind SST and NST values reported in Table .1.

Thresholds for Classifying Renamings To classify renamings as spelling errors RE-
PENT uses a threshold for the Levenshtein distance between the old and new name of an
entity. Lower values for the Levenshtein distance threshold ensure a high precision in the
classification, but also a higher number of false negatives. Table .2 shows the accuracy of
the classification of renamings as spelling errors on Tomcat when the Levenshtein distance
threshold varies from 1 to 5. A threshold of 1 ensures 0% FPR while failing to classify as
spelling errors renamings such as refeelReadBuffer → refillReadBuffer. Increasing the
threshold to 2 solves this issue while keeping a low FPR (4% on Tomcat). An example of
misclassified renaming when the Levenshtein distance threshold is set to 2 is class→ clazz.

106

Table .2 Accuracy of the classification of renamings as spelling errors using different Leven-
shtein distance thresholds on Tomcat.

Threshold value TPR FPR
1 86% 0%
2 100% 4%
3 100% 25%
4 100% 50%
5 100% 100%

107

Sampling for Evaluating Detection and Classification

Sampling for Evaluating the Detection Table .1 reports the sample size and the num-
ber of detected renamings, overall and for each kind of entity (we highlight in bold face
the size of the significant sample). For example, for ArgoUML (first system in Table .1) we
sampled 352 renamings for validation out of the 3,994 detected renamings for that program.

Sampling for Evaluating the Classification Tables .2 to .4 report the sample size and
the number of correctly classified renamings for each dimension of taxonomy. We highlight
in bold face the significant samples and the corresponding precision. For example, regarding
forms of renaming (Table .2) we sampled 96 simple renamings and 93 of them are correctly
classified thus resulting in a precision of 97%.

We do not evaluate the accuracy of the classification for the entity kind dimension as it
is correct by construction, i.e., it is extracted when parsing the source code, and its only
imprecision could also be due to mistakes in the Eclipse JDT parser we used.

Table .1 Sample size to estimate the precision of REPENT.

ArgoUML dnsjava Eclipse-JDT JBoss Tomcat Overall
Package 1 / 1 0 / 0 1 / 4 1 / 7 0 / 0 3 / 12
Type 2 / 18 17 / 67 5 / 180 18 / 656 9 / 70 51 / 991
Constructor 1 / 16 40 / 159 4 / 139 13 / 475 7 / 49 65 / 838
Field 190 / 2,156 15 / 59 58 / 1,945 49 / 1,808 67 / 498 379 / 6,466
other-MD 17 / 200 44 / 177 58 / 1,966 66 / 2,397 59 / 441 244 / 5,181
Getter/Setter 17 / 192 11 / 45 37 / 1,244 44 / 1,595 57 / 423 166 / 3,499
Parameter 61 / 696 126 / 506 96 / 3,226 94 / 3,419 75 / 561 452 / 8,408
Local variable 63 / 715 37 / 149 114 / 3,853 90 / 3,261 59 / 439 363 / 8,417
OVERALL 352 / 3,994 290 / 1162 373 / 12,557 375 / 13,618 333 / 2,481 1,723 / 33,812

108

Table .2 Evaluation of classification for “Forms of renaming” - Java programs.

ArgoUML dnsjava Eclipse-JDT JBoss Tomcat Overall
Simple 100% (4/4) 100% (1/1) 94% (34/36) 100% (43/43) 92% (11/12) 97% (93/96)
Complex 100% (2/2) 100% (2/2) 96% (47/49) 94% (32/34) 100% (8/8) 96% (91/95)
Formatting only 100% (58/58) 100% (6/6) 100% (3/3) 100% (24/24) 100% (2/2) 100% (93/93)
Term reordering - - 100% (23/23) 100% (18/18) 100% (5/5) 100% (46/46)
Overall 100% (64/64) 100% (9/9) 96% (107/111) 98% (117/119) 96% (26/27) 98% (323/330)

Table .3 Evaluation of classification for “Semantic changes”- Java programs.

ArgoUML dnsjava Eclipse-JDT JBoss Tomcat Overall

Preserve

Synonym 50% (1/2) - 94% (33/35) 97% (36/37) 88% (7/8) 94% (77/82)
Synonym phrase - - 0% (0/1) 100% (2/2) - 67% (2/3)
Spelling error - 100% (1/1) 100% (32/32) 94% (32/34) 100% (9/9) 97% (74/76)
Expansion 100% (17/17) 100% (1/1) 81% (17/21) 90% (19/21) 100% (6/6) 91% (60/66)
Abbreviation 67% (2/3) - 93% (13/14) 90% (36/40) 100% (9/9) 91% (60/66)
Overall 91% (20/22) 100% (2/2) 92% (95/103) 93% (125/134) 97% (31/32) 93% (273/293)

Change

Opposite - - 100% (25/25) 88% (14/16) 100% (5/5) 96% (44/46)
Opposite phrase 0% (0/1) - 29% (6/21) 44% (8/18) 0% (0/3) 33% (14/43)
Whole-part - - - - 100% (2/2) 100% (2/2)
Whole-part phrase - - - - - -
Unrelated 67% (4/6) - 78% (31/40) 79% (33/42) 71% (5/7) 77% (73/95)
Overall 57% (4/7) - 72% (62/86) 72% (55/76) 71% (12/17) 72% (133/186)

Narrow Specialization 0% (0/3) 100% (1/1) 78% (31/40) 35% (11/31) 50% (2/4) 57% (45/79)
Specialization phrase 100% (3/3) 50% (1/2) 70% (28/40) 63% (24/38) 56% (5/9) 66% (61/92)
Overall 50% (3/6) 67% (2/3) 74% (59/80) 51% (35/69) 54% (7/13) 62% (106/171)

Broaden Generalization 67% (2/3) - 85% (40/47) 75% (15/20) 63% (5/8) 79% (62/78)
Generalization phrase 67% (2/3) - 65% (33/51) 58% (15/26) 36% (4/11) 59% (54/91)
Overall 67% (4/6) - 74% (73/98) 65% (30/46) 47% (9/19) 69% (116/169)

Add 100% (1/1) - 84% (47/56) 87% (27/31) 43% (3/7) 82% (78/95)
Remove 100% (3/3) 100% (3/3) 94% (46/49) 88% (30/34) 67% (4/6) 91% (86/95)
None 100% (40/40) 100% (5/5) 100% (16/16) 100% (27/27) 100% (5/5) 100% (93/93)
Overall 88% (75/85) 92% (12/13) 82% (398/488) 79% (329/417) 72% (71/99) 80% (885/1102)

Table .4 Evaluation of classification for “Grammar changes”- Java programs.

ArgoUML dnsjava Eclipse-JDT JBoss Tomcat Overall

Grammar change Part of speech change
Singular/Plural 100% (1/1) - 100% (57/57) 100% (28/28) 100% (2/2) 100% (88/88)
Verb conjugation 50% (1/2) - 79% (23/29) 83% (29/35) 70% (7/10) 79% (60/76)
Other 40% (2/5) - 25% (11/44) 9% (3/33) 23% (3/13) 20% (19/95)

None 100% (26/26) 100% (4/4) 100% (24/24) 100% (34/34) 100% (8/8) 100% (96/96)
Overall 88% (30/34) 100% (4/4) 75% (115/154) 72% (94/130) 61% (20/33) 74% (263/355)

	DEDICATION
	ACKNOWLEDGEMENTS
	RÉSUMÉ
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LISTE DES ANNEXES
	1 INTRODUCTION
	1.1 Developer Survey on Identifier Renamings
	1.2 Our Contributions
	1.3 Organization of the Thesis

	2 LITERATURE REVIEW
	2.1 Role of Identifiers in Software Quality
	2.2 Analysis of Changes and Refactorings
	2.3 Summary

	3 RENAMING TAXONOMY
	3.1 Entity Kinds
	3.2 Forms of Renamings
	3.3 Semantic Changes
	3.3.1 Preserve Meaning
	3.3.2 Change in Meaning
	3.3.3 Narrow Meaning
	3.3.4 Broaden Meaning

	3.4 Add Meaning
	3.5 Remove Meaning
	3.5.1 None

	3.6 Grammar Changes
	3.6.1 Part of Speech Change
	3.6.2 None

	3.7 Summary

	4 RENAMING DETECTION
	4.1 Methodology
	4.2 Candidate Renaming Filtering
	4.3 Summary

	5 RESULTS OF DETECTION
	5.1 Research Questions and Study Procedure
	5.1.1 Evaluating the Precision of the Detection Approach: Manual Validation
	5.1.2 Evaluating the Recall of the Detection Approach: Comparison with Documented Renamings

	5.2 Results
	5.2.1 RQ-DP: How accurate is the set of renamings detected by REPENT?
	5.2.2 RQ-DR: How complete is the set of renamings detected by REPENT?

	5.3 Threats to Validity
	5.4 Comparison with Existing Approaches
	5.5 Summary

	6 RENAMING CLASSIFICATION
	6.1 Identifier Splitting
	6.2 Mapping Terms
	6.3 Part of Speech and Semantic Analyses
	6.4 Summary

	7 RESULTS OF CLASSIFICATION
	7.1 Research Questions and Study Procedure
	7.1.1 Evaluating the Precision of the Classification Approach: Manual Validation

	7.2 Results
	7.2.1 RQ-CP: How accurate is the set of classified renamings?
	7.2.2 RQ1: To what extent do renamings occur with respect to the different kinds of entities?
	7.2.3 RQ2: What kinds of changes occur to terms composing identifiers when these are renamed?
	7.2.4 RQ3: What kinds of semantic changes occur in identifiers when they are renamed?
	7.2.5 RQ4: What kinds of grammar changes occur in identifiers when they are renamed?

	7.3 Threats to Validity
	7.4 Summary

	8 CHALLENGES WITH DYNAMIC LANGUAGES
	8.1 Related Work
	8.1.1 Web Application Reverse Engineering
	8.1.2 Analysis on PHP application

	8.2 Challenges and adaptations
	8.3 Resolving file inclusion in PHP programs
	8.3.1 A Fixed-Point algorithm to resolve include
	8.3.2 Case study on resolving include

	8.4 preliminary study of renamings in PHP aplication
	8.4.1 Renaming Detection
	8.4.2 Results of Renamings Detection
	8.4.3 Results of Renamings Classification

	8.5 Discussion

	9 CONCLUSION
	9.1 Lessons Learned
	9.2 Future Work
	9.2.1 Short-term
	9.2.2 Long-term

	REFERENCES
	ANNEXES

