
Dr. Yann-Gaël Guéhéneuc
Concordia University

Dr. Fabio Petrillo
École de Technologie Supérieure

Supervised By:

SyDRA: An Exploratory Approach to Game
Engine Architecture Recovery

Gabriel C. Ullmann
Concordia University

Summary

2

Introduction Background Approach

ValidationConclusion Implementation

Start

End

1. Introduction

3

What is a Game Engine?

4

Game-making Flexibility
A tool to facilitate video game

development
Reusable and extendable

subsystems

GIF from Unreal Engine 4.27 release notes.

Introduction

https://docs.unrealengine.com/4.27/en-US/WhatsNew/Builds/ReleaseNotes/4_27/

What Can They Do?

5

Introduction

Life is Strange (2015) Fortnite Battle Royale (2023)

Tetris Effect (2018) Gears of War 5 (2019)

Games made with different versions of Unreal Engine.

What Game Engines Are Currently Used?

6

Adapted from 2022 Game Development Trends & Forecast by Perforce.

Introduction

https://mma.prnewswire.com/media/1880817/Game_Development_Trends.pdf

What Are The Problems?

7

Introduction

Problem 1: Changes Are Time-Consuming

8

Introduction

“[Dragon Age’s executive producer] went on to say

that developing the tools for Frostbite took up

about a third of the project's development time”

By Christian Miller for GameRant, 2022.

https://gamerant.com/dragon-age-mark-darrah-bioware-problems/

Problem 2: Changes Cause Bugs

9

Introduction

“According to one source who worked on the

game, Fallout 76’s tools were so poorly optimized

that simply updating the build could break it, which

could add even more production pressure on the

developers.”

By Sisi Jiang for Kotaku, 2023.

https://www.amazon.com/Fallout-76-PlayStation-4/dp/B07DD9571S?asc_campaign=kinjakotakulink-20&asc_refurl=https://kotaku.com/bethesda-zenimax-fallout-76-crunch-development-1849033233&asc_source=c854badc1484d24f95cc4ddc6dc5d2e191ef7490&tag=kinjakotakulink-20
https://kotaku.com/bethesda-zenimax-fallout-76-crunch-development-1849033233

Problem 3: Game Engines Are Complex Systems

10

Introduction

“Unreal Engine is a complex software project

consisting of 203 releases with around 215,000

commits. (...) ”

V. Agrahari and S. Chimalakonda. “What’s Inside Unreal Engine? - A
Curious Gaze!”. In 14th Innovations in Software Engineering
Conference, 2021.

Problem 3: Game Engines Are Complex Systems

11

Introduction

“A prerequisite for integration and extension is the

comprehension of the software. To understand the

architecture, we should identify the architectural

patterns involved and how they are coupled.”

V. Agrahari and S. Chimalakonda. “What’s Inside Unreal Engine? - A
Curious Gaze!”. In 14th Innovations in Software Engineering
Conference, 2021.

Thesis Statement

12

Introduction

Subsystem Dependency Recovery Approach

SyDRA

Proposal Implementation Evaluation

Apply to 10
open-source

game engines

Present a 6-step
architecture

recovery approach

Via literature
comparison

and user study

Research Questions

13

Introduction

RQ1 RQ2

Which subsystems are more
often coupled with one

another?

Do game engines share
subsystem coupling

patterns?

Research Evaluation

14

Introduction

Qualitative User Study

To what extent do the game
engines that we analysed with

SyDRA match the software
architecture literature?

Does SyDRA help developers
understand and maintain the

architecture of game engines?

2. Background

15

Software Architecture

16

“Software architecture is the
highest-level breakdown of a system into its parts.”

Background

Subsystem A Subsystem B

Software System

M. Fowler. “Patterns of enterprise application architecture”, 2003.

Software Architecture Recovery

17

“The extraction of architectural descriptions
from a system implementation”

Background

I. Bowman et al. “Linux as a case study: its extracted software architecture”. In Proceedings of the 21st International
Conference on Software Engineering (ICSE), 1999.

Software Architecture Recovery - Inputs

18

Background

Source
Code

Textual
Information

Dynamic
Information

Physical
Organization

Human
Expertise

Historical
Data

Software Architecture Recovery - Metamodels

19

Background

“A metamodel describes the possible structures which can
be expressed in a programming language”

H. Vangheluwe et al. “Meta-Models are models too”. In Proceedings of the IEEE Winter Simulation Conference, 2002.

Software Architecture Recovery - Graph Analysis

20

Background

In-degree
Incoming edge count

Out-degree
Outgoing edge count

Software Architecture Recovery - Graph Analysis

21

Background

Betweenness Centrality
How frequently a node is

positioned between other nodes

Density
Proportion of possible

incoming/outgoing edges

Betweenness Centrality

22

Background

This metric is measured with the number of shortest paths (between any couple of
nodes in the graphs) that passes through the target node u (denoted σv,w(u)). This
score is moderated by the total number of shortest paths existing between any
couple of nodes of the graph (denoted σv,w).

C. Perez et al. “Graph Creation and Analysis for Linking Actors: Application to Social Data”. In Automating Open Source
Intelligence, 2016

Game Engine Architectures

23

Background

J. Park and C. Park. “Development of a multiuser and multimedia game engine based on TCP/IP”.
In Proceedings of IEEE PACRIM, 1997.

Specific-purpose
game engine

Game Engine Architectures

24

Background

L. Bishop et al. “Designing a PC game engine”. In IEEE Computer Graphics and Applications, 1998.

Specific + General

Game Engine Architectures

25

Background

J. Gregory. “Game Engine Architecture”, 1st edition, 2009.

Expanded and
layered

Reference Game Engine Architecture: Gregory

26

Background

Adapted from J. Gregory. “Game Engine Architecture”, 2018.

3. Approach

27

Steps of the SyDRA

28

1. System selection

2. Subsystem selection

3. Subsystem detection

4. Include graph generation

5. Moose model generation

6. Architectural model visualisation

Approach

Steps of the SyDRA

29

Approach

4. Implementation

30

System Selection

31

10 game engines from GitHub which are:

● Publicly available

● General-purpose

● Popular (number of stars + forks)

● Written in C++

Implementation

System Selection

32

olcPixelGameEngine

Logos for the 10 selected game engines as provided by their official website or GitHub page.

Implementation

Subsystem Selection

33

16 subsystems from Gregory:

● AKA: modules, components

● Generalisation in mind

● Functionality descriptions

Adapted from J. Gregory. “Game Engine Architecture”, 2018.

Implementation

Subsystem Selection

34

Audio
(AUD)

Core
(COR)

Debug
(DEB)

Editor
(EDI)

Front End
(FES)

Gameplay
(GMP)

Inputs
(HID)

Renderer
(LLR)

Multipl.
(OMP)

Physics
(PHY)

Platforms
(PLA)

Resources
(RES)

3rd Party
(SDK)

Animation
(SKA)

Scene
(SGC)

Visuals
(VFX)

Implementation

Subsystem Selection

35

Implementation

Subsystem Detection and Include Graph Generation

36

Clustering files/folders by:

● Naming
● Children naming

Generate an include graph:

● We used cinclude2dot
● We resolved some absolute include paths manually

● Documentation
● Source Code

Implementation

https://www.flourish.org/cinclude2dot

Include path resolution issues: example

37

#include bla.h

Where is bla.h?

● Same folder
● Other folder(s) defined in the build config

files (e.g. CMakeLists.txt)
○ These folders could be in another repository (e.g.

third-party libraries)

● Some files are generated during build (e.g.
based on templates)

● P.S: not every game engine uses CMake

engine.cpp

Implementation

Architectural Model Generation and Visualisation

38

Generated using:

Moose , a platform for

software analysis; FamixCpp.

Visualised as:

Architectural Map (graph) +

derived visualisations

Implementation

SyDRA: Background x Approach

39

SyDRA

Metamodel

Reference
Architecture

Software System
(e.g. Game Engine)

Modeluses To create a

Graph

Which is

Visualised

AnalysedSubsystem
Organization

Coupling
Patterns

Which can be

To learn
about

Of a

Background

5. Results

40

Results

41

RQ1 RQ2
Which subsystems more often

couple with one another?
Do game engines share subsystem

coupling patterns?

Graph analysis: in-degree, centrality and density

Results

RQ1: Which Subsystems Are More Often Coupled
With One Another?

42

Unreal Engine

Results

RQ1: Which Subsystems Are More Often Coupled
With One Another?

43

O3DE

Results

RQ1: Which Subsystems Are More Often Coupled
With One Another?

44

Urho3D

Results

RQ1: Which Subsystems Are More Often Coupled
With One Another?

45

Gameplay3D

Results

RQ1: Which Subsystems Are More Often Coupled
With One Another?

46

Godot

Results

RQ1: Which Subsystems Are More Often Coupled
With One Another?

47

FlaxEngine

Results

RQ1: Which Subsystems Are More Often Coupled
With One Another?

48

Panda3D

Results

RQ1: Which Subsystems Are More Often Coupled
With One Another?

49

Cocos2d-x

Results

RQ1: Which Subsystems Are More Often Coupled
With One Another?

50

Piccolo

Results

RQ1: Which Subsystems Are More Often Coupled
With One Another?

51

olcPixelGameEngine

Results

RQ1: Which Subsystems Are More Often Coupled
With One Another?

52

Results

In-degree
Incoming edge count

Betweenness Centrality
How frequently a node is

positioned between other nodes

RQ1: Which Subsystems Are More Often Coupled
With One Another?

53

Average In-Degree
Overall

Results

RQ1: Which Subsystems Are More Often Coupled
With One Another?

54

Top Average
In-Degree Overall

Results

RQ1: Which Subsystems Are More Often Coupled
With One Another?

55

Top Average
Centrality Overall

Results

RQ1: Which Subsystems Are More Often Coupled
With One Another?

56

Top Average
Centrality Overall

Results

RQ2: Do Game Engines Share Subsystem
Coupling Patterns?

57

In 10 game engines,
how often subsystem A

includes B?

Results

58

Top In-degree
highlighted

Results
RQ2: Do Game Engines Share Subsystem
Coupling Patterns?

59

Results

For each subsystem we take:

1. The most frequent incoming pair
2. The most frequent outgoing pair
3. All pairs go to a new graph
4. Graph nodes are color-coded based on in-degree and centrality
5. Emergent architecture!

Emergent Game Engine Architecture

Emergent Game Engine Architecture

60

v top in-degree
v top centrality
v top in-degree
x top centrality
x top in-degree
x top centrality

Results

Subsystem Roles

61

Foundation
A subsystem frequently

depended by others

Gatekeeper
A subsystem acting as

intermediate

x

Results

62

Foundation

Results
RQ2: Do Game Engines Share Subsystem
Coupling Patterns?

63

Gatekeepers

Results
RQ2: Do Game Engines Share Subsystem
Coupling Patterns?

6. Evaluation

64

Evaluation Overview

65

Evaluation

Qualitative User Study

To what extent do the game
engines that we analysed with

SyDRA match the software
architecture literature?

Does SyDRA help developers
understand and maintain the

architecture of game engines?

Qualitative Evaluation - Description

66

Evaluation

We compared Gregory with 4 other game engine architectures:

Bishop et al.
(1998)

Sherrod
(2007)

Rollings and Morris
(2004)

Thorn
(2010)

Qualitative Evaluation - Description

67

Evaluation

Existence Naming Responsibilities

We compared the following aspects of subsystems:

ABC

Qualitative Evaluation - Results

68

Evaluation

Qualitative Evaluation - Conclusion

69

Evaluation

● Two-way mapping
● Naming differs
● Subsystem responsibility descriptions differ

User Study - Description

70

Evaluation

Hypotheses

Participants

Tasks

Procedures

Design

Data Analysis

Adapted from Briand et al. “A controlled experiment for evaluating quality guidelines on the maintainability of
object-oriented designs”. In IEEE Transactions on Software Engineering, 2001.

 User Study - Hypotheses

● H1: Game engine architecture is significantly easier to understand with the use of

SyDRA.

● H2: It is easier to perform impact analysis (locate changes) on game engines with

the use of SyDRA.

● H0 (Null Hypothesis): The use of SyDRA provides no significant difference in the

understandability and maintainability of game engine architecture.

71

Evaluation

72

Evaluation

● 16 participants

● Required: age, experience with OO programming

● Most frequent demographics:

○ Men under 30 years old

○ From Canada and Brazil

○ Software developers outside the video game industry

○ 2 to 5 years of development experience

○ Unreal, Unity, or no experience at all

 User Study - Participants

73

Evaluation

 User Study - Procedures

VS Code Moose

74

Evaluation

 User Study - Procedures - VS Code

75

Evaluation

 User Study - Procedures - Moose

76

Evaluation

 User Study - Tasks

Architectural
Understanding

Impact
Analysis

● “Explain the functionalities in

this subsystem.”

● “Explain what these files do and

why they depend on each other.”

● “If we were to change this file,

which other files are affected?”

● “If we were to remove this file,

which other files are affected?”

+ Debriefing questionnaire (NASA TLX)

77

VS Code

Evaluation

 User Study - Design

Moose + VS
Code

Control (8)

Treatment (8)

Tasks and
Debriefing

Questionnaire

Given to Analyse

78

Evaluation

 User Study - Data Analysis

● UndTime: Time spent on architectural understanding tasks (s).

● UndCorr: Correctness of architectural understanding tasks.

● ModTime: Time spent on impact analysis tasks (s).

● ModCorr: Participant Correct File Count / Actual Correct File Count.

● ModComp: Participant Total File Count / Actual Correct File Count.

● ModRate: Participant Correct File Count / ModTime.

Adapted from Briand et al. “A controlled experiment for evaluating quality guidelines on the maintainability of
object-oriented designs”. In IEEE Transactions on Software Engineering, 2001.

79

Evaluation

 User Study - Data Analysis

● Minimum number of participants (Two-sample t-test)

● Normality testing (Kolmogorov-Smirnov, Shapiro-Wilks' W)

● Statistical significance testing (Wilcoxon Matched Pairs)

● Descriptive statistics

● Effect size

Adapted from Briand et al. “A controlled experiment for evaluating quality guidelines on the maintainability of
object-oriented designs”. In IEEE Transactions on Software Engineering, 2001.

80

Evaluation

 User Study - Task Results

81

Evaluation

 User Study - Task Results

82

Evaluation

 User Study - Task Results

83

Evaluation

 User Study - Debriefing Results

84

Evaluation

 User Study - Debriefing Results

85

Evaluation

 User Study - Exit Interview Comments

“Mostly I found it a bit difficult to read when expanding modules within modules,

as everything starts to overlap.”

“It’s a painful question… What is a functionality? Both the terms and the scope of

the question are way too abstract/large.”

“The relationship lines [edges] always stand out from all other components, and

the lack of a border on the windows when I expand a node is very confusing.”

User Study - Conclusion

86

Evaluation

● We accept H1 and H2, we reject H0
● Influence in time and correctness
● Impact Analysis Correctness
● Treatment: lower task load

7. Conclusion

87

Conclusion

88

● Game engine source code can be used to create architectural models

● We show model visualisations can be used to analyse:

Division of
responsibility

Frequent subsystem
coupling

Analyse game engines
isolatedly or as a group

x6

Conclusion

Limitations

89

Reference
architecture

Game engines
and subsystems

Models and
Visualisations

Manual
processes

We are aware of the impact of our choices of:

Conclusion

Future Work

90

Include more
architectures

Expanded
user study

Automate
subsystem
detection

Study other
software families

Improvement and evaluation of the of the approach and implementation:

Conclusion

Dr. Yann-Gaël Guéhéneuc
Concordia University

Dr. Fabio Petrillo
École de Technologie Supérieure

Supervised By:

SyDRA: An Exploratory Approach to Game
Engine Architecture Recovery

Gabriel C. Ullmann
Concordia University

Attribution: this presentation contains icons from flaticon.com

