
SyDRA: An Exploratory Approach to Game Engine
Architecture Recovery

Gabriel Cavalheiro Ullmann

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of

Master of Applied Science (Software Engineering) at

Concordia University

Montréal, Québec, Canada

November 2023

© Gabriel Cavalheiro Ullmann, 2023

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Gabriel Cavalheiro Ullmann

Entitled: SyDRA: An Exploratory Approach to Game Engine Architecture

Recovery

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Software Engineering)

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the Final Examining Committee:

Chair
Dr. Joey Paquet

External Examiner
Dr. Anne Etien

Examiner
Dr. Juergen Rilling

Supervisor
Dr. Yann-Gaël Guéhéneuc

Co-supervisor
Dr. Fabio Petrillo

Approved by
Joey Paquet, Chair
Department of Computer Science and Software Engineering

2023
Mourad Debbabi, Dean
Faculty of Engineering and Computer Science

Abstract

SyDRA: An Exploratory Approach to Game Engine Architecture Recovery

Gabriel Cavalheiro Ullmann

Game engines provide video game developers with a wide range of fundamental subsystems for

creating games, such as 2D/3D graphics rendering, input device management, and audio playback.

In order to understand, develop and maintain game engines, developers need access to architectural

information to make informed decisions. However, architectural information is not always readily

available and is often overlooked in this kind of system. In this work, we propose, implement and

evaluate an approach for software architecture recovery we call the Subsystem-Dependency Recov-

ery Approach (SyDRA, pronounced SEE-dra). We apply it to 10 popular open-source game engines,

demonstrating how the resultant architectural models can be used to visualize and grasp subsystem

coupling patterns unique to each game engine. Additionally, we describe and discuss emergent ar-

chitectural characteristics shared by all these game engines. Through a qualitative evaluation and

a user study, we show the architectural models and visualisations we produced with SyDRA help

developers understand game engine architecture more swiftly and correctly.

iii

Acknowledgments

(Portuguese version follows / Versão em português em seguida)

Following the old Brazilian cliché, I will begin with a football analogy: I strive to give my best

on the pitch in every match. In every project, every class, every moment I spent with the people I

love and in every line of this thesis, you can find every last drop of my dedication. However, no

player ever won a championship alone. This is why I would like to thank everyone who accom-

panied me along the way, starting with my mother Loreni, my father Paulo and my aunt Cristine.

They taught me the importance of education from an early age and have motivated me to pursue

knowledge and happiness.

I would like to thank my supervisor, Dr. Yann-Gaël Guéhéneuc, and co-supervisor, Dr. Fabio

Petrillo, for the years of joint work and continuing support. I learned a lot with you and I hope to

keep learning. I would also like to thank my friend, Dr. Cristiano Politowski, for introducing me

to academia and, most specifically, to video game research. He transmitted to me his interest and

enthusiasm for this research topic, and this is what brought me to Montreal.

Finally, I would like to give my special thanks to all my colleagues from the Ptidej team and

all my friends, many of whom participated in the user study presented in this thesis. At a bar

table in Lille, a barbecue in Santa Rosa, an icy street in Montreal or connected via videoconference

anywhere in the world, it was great to play the beautiful game of Science (and life) with you. May

we have many more matches ahead of us.

Como bom brasileiro, vou começar com uma analogia futebolı́stica: em cada partida que dis-

puto, dou o meu melhor em campo. Em cada projeto, cada aula, cada momento que passei com

iv

pessoas queridas e em cada linha desta dissertação me dediquei plenamente. Porém, jogador soz-

inho não ganha campeonato. É por isso que eu gostaria de agradecer todas as pessoas que me

acompanharam ao longo do caminho, começando com minha mãe Loreni, meu pai Paulo e minha

tia Cristine. Foram essas pessoas que me ensinaram desde cedo a importância da educação e me

motivaram a buscar o conhecimento e a felicidade.

Gostaria de agradecer ao meu supervisor, Dr. Yann-Gaël Guéhéneuc, e ao meu co-supervisor,

Dr. Fabio Petrillo, pelos anos de trabalho conjunto e contı́nuo suporte. Aprendi muito com vocês e

espero continuar aprendendo. Gostaria também de agradecer meu amigo, Dr. Cristiano Politowski,

por ter me apresentado ao mundo acadêmico e, mais especificamente, à pesquisa na área de vı́deo

games. Seu interesse e entusiasmo por este tópico me contagiaram e me trouxeram até Montreal.

Por fim, gostaria de deixar meus agradecimentos especiais a todos os colegas do time Ptidej e a

todos os meus amigos, muitos dos quais participaram do estudo apresentado nesta dissertação. Em

um bar em Lille, um churrasco em Santa Rosa, nas ruas geladas de Montreal ou via videoconferência

em qualquer lugar do mundo, foi incrı́vel jogar o jogo da Ciência (e da vida) junto com vocês.

Espero que tenhamos ainda muitas partidas pela frente.

v

Contents

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Overview . 1

1.2 Research Methodology . 3

1.3 Research Contributions . 4

1.4 Thesis Outline . 4

2 Background 6

2.1 Software Architecture . 6

2.2 Software Architecture Recovery . 7

2.2.1 Approaches . 7

2.2.2 Use of metamodels . 9

2.2.3 Use of graph analysis . 10

2.2.4 Evaluation . 11

2.3 Game Engines . 12

2.3.1 Relations with software architecture recovery 18

3 Approach 20

3.1 System selection . 21

3.2 Subsystem selection . 21

vi

3.3 Subsystem detection . 22

3.4 Include graph generation . 22

3.5 Architectural model generation . 22

3.6 Architectural model visualisation . 22

4 Implementation 23

4.1 System Selection . 23

4.2 Subsystem Selection . 24

4.3 Subsystem Detection . 28

4.4 Include Graph Generation . 32

4.5 Architectural Model Generation . 33

4.6 Architectural Model Visualisation . 35

4.7 Results . 37

4.7.1 RQ1: Which Subsystems are Present in Game Engines? 37

4.7.2 RQ2: Do Game Engines Share Subsystem Coupling Patterns? 38

4.8 Discussion . 43

4.8.1 RQ1: Which Subsystems are Present in Game Engines? 43

4.8.2 RQ2: Do Game Engines Share Subsystem Coupling Patterns? 59

4.8.3 Unclustered Files/Folders . 71

5 Evaluation 74

5.1 RQ1 - To what extent do the game engines we selected for architecture recovery

with SyDRA match the architectural descriptions provided in the literature? 75

5.2 RQ2: Does SyDRA help developers understand and maintain the architecture of

game engines? . 77

5.2.1 Hypotheses . 78

5.2.2 Participants . 78

5.2.3 Experimental Materials . 79

5.2.4 Visual Studio Code . 81

5.2.5 Experimental Tasks . 83

vii

5.2.6 Procedures . 84

5.2.7 Design . 86

5.2.8 Dependent Variables and Their Collection Procedures 86

5.2.9 Data Analysis Procedure . 87

5.2.10 Results . 89

5.2.11 Discussion . 91

5.2.12 Threats to validity . 94

6 Conclusion 97

6.1 Limitations and Future Work . 98

Appendix A Task Statements and Questionnaires 100

Appendix B Absolute Path to Files in Results 102

Bibliography 105

viii

List of Figures

Figure 2.1 Examples of include graphs with incoming and outgoing edges 10

Figure 2.2 Architecture adapted from Jaeyong Park and Changhyeon Park [1, p. 102] . 13

Figure 2.3 Architecture by Bishop et al. [2, p. 47] . 14

Figure 2.4 Architecture adapted from Sherrod [3, p. 13] 14

Figure 2.5 Architecture by Rollings and Morris [4, p. 626] 15

Figure 2.6 Architecture adapted from Thorn [5, p. 6] 16

Figure 2.7 Summarized “Runtime Game Engine Architecture” diagram, adapted from

Gregory [6, p. 33]. 16

Figure 3.1 The six steps of SyDRA. 21

Figure 4.1 “Runtime Game Engine Architecture” diagram, adapted from Gregory [6,

p. 33] . 27

Figure 4.2 Subsystem Detection . 28

Figure 4.3 Include graph generation . 33

Figure 4.4 FAMIX-CPP metamodel used in SyDRA 34

Figure 4.5 Steps of Architectural Model Generation on Moose 34

Figure 4.6 Architectural Map showing files containing the word “camera” from Godot 35

Figure 4.7 Average subsystem in-degree. 39

Figure 4.8 Average subsystem betweenness centrality. 40

Figure 4.9 Subsystem coupling heatmap showing aggregated coupling counts. 41

Figure 4.10 Our emergent open-source game engine architecture. 42

Figure 4.11 Folder organization pattern we found in O3DE 50

ix

Figure 4.12 Alternative folder organization for O3DE 51

Figure 4.13 GamePlay3d folder organization . 54

Figure 4.14 Unreal Engine’s architectural model. 60

Figure 4.15 Godot’s architectural model. 61

Figure 4.16 Panda3D’s architectural model. 62

Figure 4.17 O3DE’s architectural model. 63

Figure 4.18 FlaxEngine’s architectural model. 64

Figure 4.19 GamePlay3d’s architectural model. 66

Figure 4.20 Urho3d’s architectural model. 67

Figure 4.21 Cocos2d-x’s architectural model. 68

Figure 4.22 Piccolo’s architectural model. 69

Figure 4.23 OlcPixelGameEngine’s architectural model. 70

Figure 5.1 Subsystem naming differences among architectures 76

Figure 5.2 Visual Studio Code set up for the study, showing a C++ file from Godot Engine 81

Figure 5.3 Moose set up for the study, with Architectural Map visible on the top right . 82

Figure 5.4 Correctness and completion time distribution for both study groups 90

Figure 5.5 Participants’ answers for NASA TLX questions 92

x

List of Tables

Table 2.1 Inputs in software architecture recovery, adapted from Ducasse and Pollet [7,

p. 4] . 8

Table 4.1 Overview of the selected game engine repositories from GitHub. 24

Table 4.2 Summarized “Runtime Game Engine Architecture” subsystem descriptions,

adapted from Gregory [6, p. 33] . 26

Table 4.3 Examples of subsystem detection using folder naming 29

Table 4.4 Examples of subsystem detection using documentation 30

Table 4.5 Examples of subsystem detection using source code comments 31

Table 4.6 Excerpt for Godot’s subsystem detection CSV 32

Table 4.7 Examples of files we did not cluster into any subsystem 38

Table 4.8 The top frequent subsystem coupling pairs. 40

Table 4.9 Unreal Engine’s ./Engine/Source folder . 45

Table 4.10 Godot’s root folder . 47

Table 4.11 Panda3D root folder . 49

Table 4.12 O3DE ./Code/Framework folder . 50

Table 4.13 FlaxEngine ./Source folder . 52

Table 4.14 GamePlay3d ./gameplay folder . 53

Table 4.15 Urho3d’s ./Source folder . 54

Table 4.16 Cocos2d-x’s root folder . 55

Table 4.17 Piccolo’s root folder . 56

Table 4.18 OlcPixelGameEngine’s ./Extensions folder 57

xi

Table 5.1 Demographics of the user study participants 80

Table 5.2 Original words used by Briand et al. [8, p. 527] in their task statements and

how we changed them . 84

Table 5.3 Experimental Design . 86

Table 5.4 Two-sample T-test results for study dependent variables 88

Table 5.5 P-values obtained with normality tests of the UndTime, UndCorr and Mod-

Time variables . 89

Table 5.6 Wilcoxon Matched Pairs test results for study dependent variables 89

Table 5.7 Descriptive statistics for each dependent variable 90

Table 5.8 Effect size for each dependent variable . 91

Table A.1 Architecture understanding tasks . 100

Table A.2 Impact analysis tasks . 101

Table A.3 Debriefing Questionnaire . 101

Table B.1 Absolute path to files mentioned in the Section 4.7 104

xii

Chapter 1

Introduction

In this chapter, we introduce the main concepts, objectives and contributions of this work.

1.1 Overview

While mainly focused on entertainment, video games currently play a role in many areas of

society. They are used for information, education, healthcare and as forms of art. Video games are

also part of an industry which reached 3.2 billion players and generated an estimated revenue of

$184.4 billion in 20221.

Much like movies or other works of entertainment, video games have a high production cost. For

example, GTA V, one the most acclaimed video games released in the past decade, cost $266 million

to develop and market2. Fortunately for the developer Rockstar Games, it also generated $800

million dollars in revenue in its first day of sales3. However, investment alone is not a guarantee

of success. Even though well-funded, game development projects suffer from a lack of specialized

workforce and environmental issues such as “lack of incentives, toxic behaviors (e.g., harassment or

bullying), excessive or mandatory crunch times, lack of open communication, and lack of working

standards” [9, p. 6].
1https://newzoo.com/insights/articles/the-games-market-in-2022-the-year-in-

numbers
2https://www.businessinsider.com/the-most-expensive-video-games-ever-made-

2014-7
3https://www.gamesindustry.biz/gta-v-is-the-most-profitable-entertainment-

product-of-all-time

1

https://newzoo.com/insights/articles/the-games-market-in-2022-the-year-in-numbers
https://newzoo.com/insights/articles/the-games-market-in-2022-the-year-in-numbers
https://www.businessinsider.com/the-most-expensive-video-games-ever-made-2014-7
https://www.businessinsider.com/the-most-expensive-video-games-ever-made-2014-7
https://www.gamesindustry.biz/gta-v-is-the-most-profitable-entertainment-product-of-all-time
https://www.gamesindustry.biz/gta-v-is-the-most-profitable-entertainment-product-of-all-time

Along with human aspects, technical aspects such as the choice of game engines also have a

large impact on video game projects. While most game developers choose to develop their projects

using commercially available game engines such as Unity and Unreal, a minority still chooses to

develop their own in-house solution4. Developing a game engine is expensive and time-consuming,

but it presents advantages such as the possibility of writing optimizations focused on a specific

kind of game or game genre, as well as avoiding paying licensing fees to third-party game engine

providers.

In contrast, re-writing game engine code to adapt it to different game genres increases develop-

ment time. For example, developers at Electronic Arts reported that adapting Frostbite, a first-person

shooter game engine, to the requirements of the role-playing game Dragon Age: Inquisition “took

up about a third of the project’s development time”5. Similarly, developers from Bethesda added

multiplayer support to Creation Engine, originally made for single-player games only. During the

development of Fallout 76, this newly added feature caused several bugs and “put additional time

pressure on the schedule”6.

Existing software architecture and development tools and techniques can help address issues in

game engine development. However, there are few studies assessing the effectiveness of these tools

and techniques, as well as the existing gaps in our understanding of game engine architecture. This

situation is further compounded by the relative absence of collaborations among major proprietary

game engine developers, which work in isolation and do not follow shared industry standards or

practices. We believe that breaking this isolation and establishing shared best practices and reference

game engine architectures is fundamental to the improvement and evolution of the video game

industry, a viewpoint which is also supported by other researchers in the field [10, p. 231].
4https://mma.prnewswire.com/media/1880817/Game_Development_Trends.pdf
5https://gamerant.com/dragon-age-mark-darrah-bioware-problems/
6https://kotaku.com/bethesda-zenimax-fallout-76-crunch-development-1849033233

2

https://mma.prnewswire.com/media/1880817/Game_Development_Trends.pdf
https://gamerant.com/dragon-age-mark-darrah-bioware-problems/
https://kotaku.com/bethesda-zenimax-fallout-76-crunch-development-1849033233

Thesis Statement

In this thesis, we propose, implement and evaluate the Subsystem-Dependency Recovery Ap-

proach (SyDRA, pronounced SEE-dra), an approach for software architecture recovery. We

apply it to 10 popular open-source game engines, and we use the resulting architectural mod-

els to visualise and understand subsystem coupling patterns for each game engine, as well as

emergent architectural characteristics common to all game engines.

By extracting, studying and evaluating the architectural models of open-source game engines,

we take a step towards improving game engine design, understanding and maintenance. We believe

this may positively impact not only game engine architects and developers but the video game

development industry as a whole, which can reap the benefits of having better tools and techniques

to support their work.

1.2 Research Methodology

Based on software architecture recovery approaches proposed by other researchers, we propose

SyDRA, an approach which extracts architectural models from software systems based on their

source code, documentation and folder hierarchy, as well as human expertise about its organization.

We then implement SyDRA and apply it to 10 popular open-source game engines selected from

GitHub, obtaining an architectural model of each game engine as a result. We use Moose and other

tools to create visualisations of these extracted architectural models, which enable us to answer the

following research questions:

• RQ1: Which subsystems are present in game engines?

• RQ2: Do game engines share subsystem coupling patterns?

We use these visualisations to observe subsystem coupling patterns for each game engine, as

well as emergent architectural characteristics common to all analysed game engines. We show that

developers can use architectural models to improve game engine architectural understanding and

maintainability. Finally, we evaluate SyDRA by comparing the extracted architectural models to

game engine architectural descriptions existing in the literature, as well as conducting a user study.

3

By asking 16 software developers to use the architectural models and visualisations produced via

SyDRA, we determine whether this information can help developers better perform architectural

understanding and impact analysis tasks in Godot, a popular open-source game engine.

1.3 Research Contributions

Based on the proposed research methodology, we make the following contributions:

• Architectural Model Extraction: By applying SyDRA to 10 open-source game engines, we

show it is possible to extract architectural models which represent how the parts of a game

engine are organized and how its parts relate.

• Identification of Architectural Commonalities: By studying game engine architectural

models, we show game engines share architectural commonalities with respect to internal

organization and coupling.

• Improved Architectural Understanding: As a result of a qualitative evaluation and a user

study, we show the architectural models and visualisations we produced with SyDRA help

developers understand game engine architecture more swiftly and correctly.

Based on the results we show in this thesis, we wrote the following papers:

• Ullmann et al. [11], “An Exploratory Approach for Game Engine Architecture Recovery” in

IEEE/ACM 7th International Workshop on Games and Software Engineering (GAS), 2023.

• Ullmann et al. [12], “Visualising Game Engine Subsystem Coupling” in 22nd IFIP Interna-

tional Conference on Entertainment Computing (ICEC), 2023.

1.4 Thesis Outline

This thesis is comprised of six chapters. Chapter 2 presents related work on software archi-

tecture and game engines, while also highlighting in which way this thesis is different from other

studies in the same subjects. Chapter 3 provides a high-level description of SyDRA, our soft-

ware architecture recovery approach. Chapter 4 shows and discusses how we implemented each

4

of SyDRA’s steps and the architectural models resulting from applying SyDRA to 10 open-source

game engines. It also describes how these models can be visualised, which architectural information

they provide and how it can be used by game engine developers. Chapter 5 describes a qualitative

evaluation and user study we conducted to validate SyDRA. Chapter 6 presents the conclusion,

limitations and future work.

5

Chapter 2

Background

In this chapter, we describe the main topics of research in this thesis, Software Architecture and

Software Architecture Recovery. We also describe the software systems we study, Game Engines,

which are video game creation tools.

2.1 Software Architecture

Software architecture is the highest-level breakdown of a system into its parts [13, p. 1]. Through

the study and application of this discipline, software architects can create architectural models,

which are formal, high-level descriptions of a system. Models support reasoning about a system,

the relations between its parts and the properties of both [14, p. 57]. Through reasoning, software

architects and developers can decide the best course of action when designing, maintaining and

extending systems.

A core principle of software architecture is the separation of concerns, which is “focusing one’s

attention upon some aspect” of system design, while at the same time not ignoring all other aspects

[15, p. 61]. This means that to reason effectively about the system, we must hide from the model

any information that is not useful for reasoning. Therefore, any given architectural model represents

only certain aspects of a system. It is the software architect’s task to decide what to model and how.

Architectural models are often visualised as box-and-line diagrams, which are not only useful

for the architect but also for communicating software design decisions to developers and other

6

project stakeholders.

2.2 Software Architecture Recovery

Software architecture recovery is the extraction of architectural descriptions from a system im-

plementation [16, p. 555]. The people responsible for creating and applying software architecture

recovery approaches are called reverse engineers [7, p. 4], and they create such approaches because,

while every system has an architecture, it is not always formalized in a model. This leads to sys-

tems that are hard to understand and, as a consequence, hard to maintain [17, p. 46]. Researchers

have applied it to systems such as the Apache Web server [18, p. 150], the Android OS and Apache

Hadoop [19, p. 1] as a way to improve understanding and maintainability.

Even when models exist, they become outdated over time, in a process known as architectural

drift or erosion [20, p. 173681]. As a system source code changes, its architectural model should

also change accordingly. Therefore, we can argue software architecture recovery is a continuous

process of taking informal and scattered architectural information and codifying it. The result of

this process is an architectural model. As explained by Shaw and Garlan [21, p. 11]:

“We begin by solving problems in any way we can manage. After some time we

distinguish in those ad hoc solutions things that usually work and things that don’t

usually work. The ones that work enter the folklore: people tell each other about them

informally. As the folklore becomes more and more systematic, we codify it as written

heuristics and rules of procedure. Eventually, that codification becomes crisp enough

to support models and theories, together with the associated mathematics. These can

then help improve practice, and experience from that practice can sharpen the theories.”

2.2.1 Approaches

A reverse engineer may consider different data sources to produce architectural models. For

example, Bowman et al. [16, p. 556] clustered Linux files “based on directory structure, naming

conventions, source code comments, and examination of the source code”. Ducasse and Pollet [7,

7

p. 4] propose a process-oriented taxonomy which defines nine types of inputs for software architec-

ture recovery:

Table 2.1: Inputs in software architecture recovery, adapted from Ducasse and Pollet [7, p. 4]

Type Description

Source Code Code written in a high-level or assembly programming language.
Textual information Text found in comments, class names, file names, etc.
Dynamic Information System runtime events obtained through dynamic analysis (e.g.,

method calls, CPU usage).
Physical Organisation Hierarchy and organisation of files, folders or packages.
Human Organisation Developer communication structures and ownership information.
Historical Information Source control and bug report data.
Human Expertise Domain-specific knowledge provided by system stakeholders.
Styles Architectural styles present in the system (e.g., pipes and filters,

layered system, data flow).
Viewpoints The stakeholder viewpoints the reverse engineer wishes to con-

sider (e.g., 4+1 viewpoints by Kruchten [22, p.1]).

Ducasse and Pollet’s taxonomy also defines three processes of architecture recovery: bottom-

up, top-down and hybrid. In bottom-up processes, reverse engineers start with low-level knowledge

such as source code, and based on that “they progressively raise the abstraction level until a high-

level understanding of the application is reached” [7, p. 5]. In a top-down process, a reverse engineer

does the opposite, matching a high-level architecture definition with source code. Finally, hybrid

processes are a combination of bottom-up and top-down processes: “On one hand, low-level knowl-

edge is abstracted using various techniques. On the other hand, high-level knowledge is refined and

confronted against the previously extracted views” [7, p. 6].

Bottom-up, top-down and hybrid processes can be performed by reverse engineers using three

techniques: quasi-manual, semi-automatic and quasi-automatic. In a quasi-manual technique, a

reverse engineer will search for architectural elements in the input data sources, and then use a

tool to help them understand their findings. In a semi-automatic technique, a reverse engineer will

input commands into a tool so it searches for architectural elements. Finally, in a quasi-automatic

approach, a tool searches for architectural elements with minimal engineer input [7, p. 11].

While beneficial to maintainability, software architecture recovery is tedious and costly be-

cause there is a constant need for the reverse engineer to check the consistency between a system

8

architectural model and its informal documentation [23, p.250]. Several semi-automatic and quasi-

automatic approaches have been proposed to mitigate this issue. In Chapter 3 we describe the data

sources and processes we used in SyDRA, our software architecture recovery approach.

2.2.2 Use of metamodels

A metamodel describes the possible structures which can be expressed in a programming lan-

guage [24, p. 2]. For example, FAMIX, a metamodel used with object-oriented languages, is able

to represent concepts such as classes, methods and calls [7, p. 7]. Metamodels are used to create

models of software systems. To do so, reverse engineers write parsers, programs that read the source

code, match each of its parts with concepts described in a metamodel and save them to a structured

text file. Each part matched by the parser and saved to this file is called a model entity (e.g., each

class in the analysed software system). This file can then be read by software analysis tools, which

may provide features such as:

• Querying: Instead of using regular expressions to search for patterns in the source code,

engineers can use a tool to filter model entities by name, type, and number of lines of code,

among other characteristics [7, p. 14].

• Visualisation: Engineers can visualise groups of model entities as box diagrams, or visualise

their relationships as graphs [7, p. 12].

• Conformance Checking: If an architecture specification exists, engineers can use a tool to

check whether the model matches it [7, p. 4].

When defining metamodels, engineers must consider some aspects of the software systems they

wish to represent and define these aspects into the metamodel. For example, if the software system

is implemented in several languages, the metamodel used to represent it must contain concepts from

all of them. For example, a language-agnostic model must be able to represent both the concept of

method (for object-oriented languages) and function (for procedural languages).

Moreover, engineers must also consider the level of granularity they want for the model when

defining the metamodel. For example, if a metamodel only contains the concept of class, it will not

9

be able to represent methods. Therefore, while it will be able to represent class relationships (e.g.,

inheritance) it will not be able to represent method relationships (e.g., method calls).

In Chapter 4, we show how we use the FAMIX-CPP metamodel to create models of 10 open-

source game engines. We then visualise the dependency graphs of file entities in these models to

detect and understand frequent dependencies between files. We call these occurrences “coupling

patterns”.

2.2.3 Use of graph analysis

A B

A includes B

(outgoing from A) (incoming to B)

C D

C is included by D

(incoming to C) (outgoing from D)

Figure 2.1: Examples of include graphs with incoming and outgoing edges

Software architecture recovery approaches may produce directed graphs as an output. A di-

rected graph is a set of nodes linked by edges representing relations between nodes [25, p. 16].

When pointing towards a node, an edge is “incoming”, and when pointing away from a node it

is “outgoing”, as illustrated in Figure 2.1. Call graphs and include graphs are commonly used by

researchers to study system architecture and model its behaviour [16, p. 557] [26, p. 1027]. In this

thesis, we use graph theory to measure the following aspects of include graphs:

• In-degree: The count of incoming edges of a node.

• Out-degree: The count of outgoing edges of a node.

• Betweenness centrality: The extent to which a node lies in the path of others [27, p. 758].

• Density: The proportion of possible incoming and outgoing edges in the graph that are actu-

ally present 1.
1https://www.ibm.com/docs/en/spss-modeler/18.0.0?topic=networks-network-

density

10

https://www.ibm.com/docs/en/spss-modeler/18.0.0?topic=networks-network-density
https://www.ibm.com/docs/en/spss-modeler/18.0.0?topic=networks-network-density

We chose these measurements because they show us which nodes of an include graph are highly

coupled. By clustering these nodes into functional modules, we can understand which modules are

more fundamental to system functionality, how they work together to provide functionality and to

which extent coupling between them is necessary. As explained by Fowler [28, p. 102]:

“Coupling also occurs when code in one module uses code from another, perhaps

by calling a function or accessing some data. At this point, it becomes clear that,

unlike duplication, you can’t treat coupling as something to always avoid. Coupling is

desirable, because if you ban coupling between modules, you have to put everything in

one big module. Then, there would be lots of coupling—just all hidden under the rug.”

In Chapter 4 we compute in-degree, out-degree and betweenness centrality in include graphs of

10 open-source game engines. We discuss coupling patterns in these systems, what they tell us about

their architecture and how this information can be used by practitioners to understand, maintain and

evolve software systems.

2.2.4 Evaluation

The accuracy of an architecture recovery approach can be evaluated by comparing the architec-

tural model extracted by the approach with a ground truth architectural model. Ideally, the ground

truth model is created by the original system architects and developers. A third party may also create

the model and then ask the original developers to validate it [29, p. 69]. Metrics such as MoJoFM or

a2a can be used to compute the difference between models. The lesser the difference between the

“extracted” and “ground truth” models, the more accurate the architecture recovery approach [30,

p. 490].

Other quality metrics can be used to evaluate architecture recovery algorithms, such as the

number of iterations and the number of arbitrary decisions [31, p. 240]. The number of iterations

refers to the number of times the algorithm has to iterate over the input data to create a model. For

an algorithm with a lower number of iterations, the computational cost tends to be lower as well.

The number of arbitrary decisions refers to situations where the algorithm cannot determine the

best way to cluster a model entity and then makes a random assignment. The larger the number

11

of random assignments, the less deterministic the algorithm and, as a consequence, the extracted

model.

We can also evaluate how much the extracted model helps developers understand a system’s

architecture. Several researchers make this type of validation via user study [8, 32]. In this kind of

study, a set of architectural understanding tasks is given to a group of developers. By measuring

how swiftly and correctly they can perform tasks with and without a supporting architectural model

or documentation, we can assess the benefit this model brings to system understanding. We perform

a user study based on the work of [8], as explained in Chapter 5.

It is also possible to assess the usefulness of extracted models via field study, observing how

developers and architects use them in real scenarios [33, p. 1]. However, this kind of study requires

collaboration with companies, and considering the closed-source nature of video game and game

engine development, that would not be a viable option for this work.

2.3 Game Engines

Game engines are tools to facilitate video game development. While allowing customization,

they also provide a foundation for video game developers to create many different types of games

without the need for major modifications [6, p. 11]. They provide a structure which “separates

execution of core functionality by the game engine from the creative assets that define the play

space or ‘content’ of a specific game title” [34, p. 1]. This structure is generally designed for reuse

[4, p. 269] and compatible with multiple operating systems [35, p. 164].

The first game engines were introduced in the early 1990s and originally provided only 3D

graphics rendering features. Over time they expanded to encompass physics, animation, sound

and scene management, among others [36, p. 43]. This expansion was motivated by the needs

of the video game industry. As video game developers worked to create games that allowed new

forms of interaction and that looked more realistic in terms of graphics and physics simulation,

their development tools had to become more flexible to accommodate these demands. This is why

currently most widely used game engines can be integrated with other software or extended via the

12

use of plugins, also known as “add-ons” or “extensions”2.

However, before writing a new plugin, video game developers need to understand the game

engine architecture they are working with and how its parts relate to one another: “[a] prerequisite

for integration and extension is the comprehension of the software. To understand the architecture,

we should identify the architectural patterns involved and how they are coupled.” [37, p. 1]. Even

though these are relevant concerns on both game engines and game development, literature on this

subject is limited [38, p. 1] and mostly focused on game engine implementation and not architecture.

Object Manager Script Loader

Network Module

Client

Scenario
Script

User
Data

m
es
sa
ge

co
nt
en

ts

m
es
sa
ge

Game Engine

data
structure

Figure 2.2: Architecture adapted from Jaeyong Park and Changhyeon Park [1, p. 102]

Several game engine architecture studies focus on a specific game engine. For example, Jaeyong

Park and Changhyeon Park describe their game engine as a “TCP/IP client/server” divided into

three subsystems: object manager, network model and script loader [1, p. 102]. A scripting system

is “used to describe the game scenario and facilitat[e] the development of a new game”[1, p. 102].

However, this game engine was created specifically for the creation of MUDs3 and the authors do

not argue whether the architecture of their game engine is applicable to other game genres.

Bishop et al. [2, p. 1] start their paper about the NetImmerse game engine stating: “we outline
2https://www.cocos.com/en/post/how-to-bring-your-extensions-to-cocos-creator
3Multi-User Dungeon, a text-based precursor of modern MMORPG games.

13

https://www.cocos.com/en/post/how-to-bring-your-extensions-to-cocos-creator

DynamicsEvent_Handler

Level_ Data
Input

Audio Graphics

Game logic

Platform

Figure 2.3: Architecture by Bishop et al. [2, p. 47]

here the requirements of a 3D game engine, illustrated by describing a particular engine’s compo-

nent”. As we show in Figure 2.3, the authors present audio, graphics and input as subsystems (solid

ellipses) that relate but remain separated from game-specific logic and assets (dashed ellipses).

However, as they focus on the implementation aspects of NetImmerse, they are not concerned with

creating a generalisable game engine architecture, or investigating how subsystems relate to each

other in more detail.

Input Rendering Sound

Scripting Physics Networking

Math Library Engine Core

Figure 2.4: Architecture adapted from Sherrod [3, p. 13]

Describing the subject with more breadth than Bishop et al. [2], the work of Sherrod [3] is

14

dedicated to a specific game engine called Building Blocks, but also relates it with a broader idea

of game engine architecture. According to the author, a game engine “can be a complex system

of programming engineering” and Building Blocks is a set of eight game development libraries

“designed to be small with the capability to be expanded upon” [3, p.13].

However, as we show in Figure 2.4, the author represents the parts of the game engine as dis-

connected boxes, which do not accurately reflect the reality of a complex system such as a game

engine. To create a playable video game, several activities must happen continuously and this im-

plies a dependency between different parts of the game engine. For example, if in a video game, we

want to play a sound every time the player presses a button in the joystick, a dependency between

the input management and sound management must be created.

Event
Handler

Menuing
System

Online
Help

Logic
Engine

Physics
Engine

Graphics

Level

Miscellaneous

Music
System

Sound
Engine

Graphics
Engine

User
Interface

Graphics AudioInput

HARDWARE

Configuration
System

Game
Data

Figure 2.5: Architecture by Rollings and Morris [4, p. 626]

Different from Sherrod [3], Rollings and Morris [4, p. 626] presents a diagram of subsystems

they consider the most important in video games in general, along with their relationships (Fig-

ure 2.5). While the author explains the diagram represents the architectural structure of a video

game, they argue video games tend to be “similar in internal design” [4, p. 625] and their subsys-

tems “can be implemented as a component that can be reused from project to project” [4, p. 626].

This implies the subsystems they show in their architecture are not specific to one video game, but

15

rather usable to create multiple kinds of video games, much like in a game engine.

Engine

R
en

de
r M

an
ag

er

Au
di

o
M

an
ag

er

In
pu

t M
an

ag
er

Er
ro

r M
an

ag
er

Sc
en

e
M

an
ag

er

R
es

ou
rc

e
M

an
ag

er

Ph
ys

ic
s

M
an

ag
er

Figure 2.6: Architecture adapted from Thorn [5, p. 6]

Also with generalization in mind, Thorn states that game engines “contain almost all the gen-

eralizable components that can be found in a game” [5, p. 6] and proposes a tree-view of the most

important game engine subsystems, as we show in Figure 2.6. Gregory proposes a layered “Run-

time Game Engine Architecture” [6, p. 33], as we show in Figure 2.7. The author also provides a

summary of the responsibilities of each subsystem, which is omitted from Figure 2.7 for brevity. To

the best of our knowledge, this is the most comprehensive game engine architecture and therefore

we use it as a reference architecture in this work.

Game-Specific Subsystems

Hardware, Drivers, Operating System

Third-Party SDKs

Platform Independence Layer

Core

Resources

Low-Level Renderer Profiling & Debugging Collision & Physics HID

Scene Graph/ Culling Optimization

Visual Effects
Skeletal Animation Audio

Online
Multiplayer

Front End Gameplay Foundations

Figure 2.7: Summarized “Runtime Game Engine Architecture” diagram, adapted from Gregory [6,
p. 33].

16

The proposers of game engine architectures also demonstrate they are aware of their limitations.

Rollings and Morris states that their list of subsystems “is not all-inclusive” [4, p. 626]. Thorn

states that “there is great variation among the many engines in circulation today” and that the “kind

of features a developer choose to put into an engine reflects their professional experience, design

preferences and business intention” [5, p. 6].

While most research is driven by existing architecture, there are researchers who propose novel

architectures. For example, Marin et al. proposes a game engine architecture based on software

agents and mentions that the research of common architectural elements can help “define a genre-

independent reference architecture and the recognition of the best practices on game engine de-

velopment” [39, p. 27]. Maggiorini et al. proposes a distributed game engine, where independent

subsystems communicate to each other “via a microkernel-like message bus” [38, p. 1]. The author

mentions the proposal was motivated not only by the lack of papers on the subject but also because

“the majority of the literature seems to be focused on optimising specific aspects or services, such

as 3D graphics or physics”.

Like game engine books, we can observe game engine comparison papers are also implementation-

driven. Comparisons frequently concern aspects such as ease of use [40, p. 70], available features

and target platforms [41, p. 70]. They seek to aid the developers in choosing which engine best

suits a given game genre [42, p. 728] or platform [43, p. 21]. These comparisons are all tabular in

nature, listing game engines in columns and relating them to features in rows. The authors aim to

determine which game engines have the largest number of features, which features are more com-

monly implemented and what benefit they bring to developers. But while discussing function, these

comparisons do not mention the architectural structures that support functionality.

Moreover, game engine books mostly focus on providing developers with an overview of game

engine subsystems and their implementation rather than architectural aspects [10, p. 228]. In the

context of graphics, for example, “there are a lot of sources of very good information from research

to practical jewels of knowledge. However, these sources are often not directly applicable to pro-

duction game environments or suffer from not having actual production-quality implementations.”

[6, p. xiv]. Similarly, Eberly explains that his book’s goal is “to cover a wide range of topics regard-

ing engines” [44, p. 507] and “discuss the mathematical concepts” [44, p. 7] related to 3D graphics

17

rendering and physics.

In this work, we recover and compare different open-source game engines in search of com-

mon architectural patterns. We believe the results of this comparison can motivate the exchange of

architectural knowledge between game engine projects and as a consequence improve the current

state of practice. We do not intend to propose a new architecture but rather recover, understand and

compare architectures that already exist. We want to determine whether these architectures follow

similar patterns.

One of the main challenges to the search for common architectural patterns in the game en-

gine domain is that many popular, widely-used game engines are closed-source. Some examples

are Unity4, Frostbite5 and Id Tech6. The impossibility of accessing the code makes it harder for

developers to understand their architecture [45, p. 103]. In a situation where developers do not have

access to architectural models, the software understanding process is mostly based on trial and error:

“the only way for a developer to understand the way certain components work and communicate is

to create his/her own computer game engine.” [46, p. 1717].

However, open-source engines exist and are our choice for this work. Unreal Engine, for exam-

ple, is currently among the most popular in the world7. Other well-known names in this category

are Godot8 and O3DE (formerly Amazon Lumberyard)9.

2.3.1 Relations with software architecture recovery

Software architecture recovery is rarely applied to game engines, but attempts have shown pos-

itive results. For example, Munro et al. [47, p. 247] used Doxygen10, a popular documentation gen-

eration tool, to extract dependency information from an open-source version of the IdTech engine.

This data was then used to create dependency graphs, which aided “in the process of identifying

suitable improvements and enhancements to a specific engine and have supported implementing

these in an appropriate manner”.
4https://unity.com/solutions/game
5https://www.ea.com/frostbite
6https://www.idsoftware.com/
7https://survey.stackoverflow.co/2022/#most-popular-technologies-tools-tech
8https://github.com/godotengine/godot
9https://github.com/o3de/o3de

10https://www.doxygen.nl

18

https://unity.com/solutions/game
https://www.ea.com/frostbite
https://www.idsoftware.com/
https://survey.stackoverflow.co/2022/#most-popular-technologies-tools-tech
https://github.com/godotengine/godot
https://github.com/o3de/o3de
https://www.doxygen.nl

Agrahari and Chimalakonda [37, p. 1] used AC2, a software analysis tool11 developed by authors

“to generate call graphs and collaboration graphs across three releases” of Unreal Engine. The

use of these visualisations helped them identify architectural patterns in components, observe their

evolution and “ aid in better comprehension of this complex and widely used game engine for

researchers and practitioners”.

More broadly, the application of software architecture recovery to game engines and the com-

parative study of the resulting architectural models also enables the “identification of components

that are common to all types of game engine, allowing the definition of a genre-independent refer-

ence architecture”, and “the identification of a ‘best practice’ for the development of game engines”

[10, p.230]. We explore insights obtained by comparing game engine architectures in Section 4.7.

11https://github.com/dheerajVagavolu/AC2

19

https://github.com/dheerajVagavolu/AC2

Chapter 3

Approach

In this section, we describe the Subsystem-Dependency Recovery Approach (SyDRA), a six-

step approach for software architecture recovery composed of the following steps: system selection,

subsystem selection, subsystem detection, include graph generation, architecture model generation,

and architectural model visualisation. According to the process-oriented taxonomy proposed by

Ducasse and Pollet [7, p. 4], SyDRA is defined as follows:

• Goals: Re-documentation, Analysis and Evolution. The objective of SyDRA is to provide

architects and developers with an architectural model they can use to understand software

architecture swiftly and correctly.

• Processes: SyDRA employs a hybrid architecture recovery process, which uses source code

dependencies and a reference high-level architecture and subsystem definition to create archi-

tectural models.

• Inputs: SyDRA creates architectural models based mainly on source code input. Supporting

inputs come from textual information (comments, file names and existing documentation),

physical organisation (folder structure) and human expertise (as described in Section 3.2).

• Techniques: Researchers implementing SyDRA can choose to perform its steps in quasi-

manual, semi-automatic or quasi-automatic fashion. In this thesis, we implement steps 1, 2

and 3 quasi-manually, step 4 quasi-automatically, and steps 5 and 6 semi-automatically. We

20

describe the implementation in more detail in Chapter 4.

• Outputs: SyDRA provides visual and architectural outputs, as described in more detail in

Section 3.6 and Section 3.5 respectively.

Sub A

Sub B

Sub C

dir1 dir2

dir3 dir4

dir1 dir2

dir3 dir4

BA

C

Start

+dir1 dir2

dir3 dir4

+

End

1. System Selection 2. Subystem Selection

3. Subsystem Detection

4. Include Graph Gen. 6. Visualisation

5. Arch. Model Gen.

Figure 3.1: The six steps of SyDRA.

3.1 System selection

We start by selecting source code repositories to analyse. The selection process must follow

criteria which will change depending on the intended goals of the analysis. Examples of selection

criteria are popularity among users, frequency of usage in industrial or academic settings, program-

ming language or available features.

3.2 Subsystem selection

In SyDRA, we cluster source code entities such as files and folders. In this step, we must define

clustering criteria. Examples of such criteria are: naming patterns, functionality, disk size, number

of lines of code or computational complexity.

We use the word “subsystem” to describe a cluster of files and folders in a software system.

While Gregory [6] uses the terms “component”, “module” and “subsystem” interchangeably in

their work, we chose to use the “sub” prefix because it emphasizes the separation of concerns we

21

show in Figure 2.7: we can see a game engine as a whole or as a series of evermore specialized

subdivisions.

3.3 Subsystem detection

In this step, we cluster files and folders from the selected systems into subsystems. The clus-

tering process must follow the criteria defined in Section 3.2. For example, if we decide to cluster

the source code files by functionality, we have to read each file, determine which functionality it

provides and then cluster it accordingly.

3.4 Include graph generation

In parallel to detecting subsystems, we generate an include graph that encompasses all files in

each of the selected systems. Given the large number of include relationships between files, we

recommend the use of a semi or quasi-automatic process in this step. The include graph must be

saved in a file so it can be used in the coming steps.

3.5 Architectural model generation

For each selected system, we merge the data obtained from Section 3.3 and Section 3.4 to

generate an architectural model. This model is an include graph where nodes are clustered by

subsystem. To perform this step, researchers can use software analysis tools or code a custom-made

solution.

3.6 Architectural model visualisation

We generate visualisations and apply graph analysis to each generated architectural model to

identify architectural similarities and frequent coupling patterns. To perform this step, researchers

can use software visualisation tools or code a custom-made solution.

22

Chapter 4

Implementation

In this section, we describe our implementation of the Subsystem-Dependency Recovery Ap-

proach (SyDRA), which is available on GitHub 1. For example, we describe the tools and techniques

we employed in each step and why we chose them.

4.1 System Selection

We chose popularity as the main criterion for system selection because we wanted to analyse

game engines that are widely used and therefore produce results that could help a large number of

game engine developers. However, as explained in Section 2.3, many popular game engines are

closed-source. Considering we need access to the systems’ source codes to apply SyDRA, we also

considered public code availability as a system selection criterion.

We chose GitHub as our source for game engine repositories because it is public, free and used

by millions of developers and researchers. We chose to measure GitHub repository popularity by

using stars and forks because they indicate “there is some form of collaboration and cooperation

involved in the development of the software system, which is partial evidence for the repository

containing an engineered software project” [48, p.7]. Moreover, the idea that repositories with a

high number of stars contain software that people like and use has been supported by several studies

[48–50].
1https://github.com/gamedev-studies/game-engine-analyser

23

https://github.com/gamedev-studies/game-engine-analyser

We started by searching for the term “game engine” on GitHub. We filtered the results to keep

only repositories where C++ was the predominant programming language due to its relevance to

game engine development [51, p. 10]. We then sorted the repositories by the sum of their stars

and forks (as of May 2022) in descending order. The result was a list of hundreds of game engine

repositories, from which we selected the top 20 for the sake of brevity.

We then filtered this list to keep only general-purpose game engines. For example, we filtered

out the minetest game engine2 from the list because it is limited to creating games in the style of

Minecraft. Finally, we selected the top 10 remaining game engines, as we show in Table 4.1. We

chose to analyse the source code on the default branch of each game engine repository, considering

its state at the most recent commit at the time we performed system selection (May 2022).

Table 4.1: Overview of the selected game engine repositories from GitHub.

Repository Branch Commit Forks + Stars Files (.h, .cpp)

UnrealEngine v4 f1b664d974 64,100 66,390
Godot 3.4 f9ac000d5d 59,200 5,603
Cocos2d-x v4 90f6542cf7 23,300 1,601
O3DE development 21ab0506da 6,400 7,278
Urho3d master feb0d90190 4,956 4,312
GamePlay3d master 4de92c4c6f 4,900 688
Panda3D master 2208cc8bff 4,100 5,344
OlcPixelGameEngine master 02dac30d50 3,963 81
Piccolo main b4166dbcba 3,892 1,572
FlaxEngine master 7b041bbaa5 3,613 2,134

4.2 Subsystem Selection

We used the 15 subsystems described in the “Runtime Engine Architecture” proposed by Gre-

gory [6, p. 33]. As explained in Section 2.1, we chose this architecture as our reference because it

describes subsystem responsibilities in detail, shows relationships between subsystems and is cited

in several game engine research works [38, 39, 51, 52]. We exclude from our analysis any subsys-

tems described by Gregory [6, p. 33] as game-specific, given our objective is to study characteristics

of game engines and not video games.
2https://github.com/minetest/minetest

24

https://github.com/minetest/minetest

We added the “World Editor” to the list of selected subsystems, totalling 16 subsystems, because

while not part of the “Runtime Game Engine Architecture”, it is described as “a tool that permits

game world chunks to be defined and populated” [6, p. 857]. Also, Petridis et al. [53, p.6] argue

that many commercial game engines currently provide users with a visual world editor, level editor

or integrated development environment, and therefore we cannot ignore this subsystem.

While the description of the responsibilities encompassed by each subsystem is beyond the

scope of this thesis, we summarise their definitions in Table 4.2 because they are a foundation

for the next step, subsystem detection. The complete subsystem responsibility list is provided in

Figure 4.1. We created 3-letter identifiers for each subsystem, which we use in diagrams for brevity.

25

Table 4.2: Summarized “Runtime Game Engine Architecture” subsystem descriptions, adapted
from Gregory [6, p. 33]

Identifier Subsystem Description

AUD Audio Manages audio playback and effects.

COR Core Systems Manages engine initialisation and contains li-
braries for math, memory allocation, etc.

DEB Profiling and Debugging Manages performance stats, debugging via in-
game menus or console.

EDI World Editor Enables visual game world-building.

FES Front End Manages GUI, menus, heads-up display
(HUD), and video playback.

GMP Gameplay Foundations Manages the game object model, scripting
and event/messaging system.

HID Human Interface Devices Manages game-specific input interfaces,
physical I/O devices.

LLR Low-Level Renderer Manages cameras, textures, shaders, fonts,
and general drawing tasks.

OMP Online Multiplayer Manages match-making and game state repli-
cation.

PHY Collision and Physics Manages forces and constraints, rigid bodies,
ray/shape casting.

PLA Platform Independence Layer Manages platform-specific graphics, file sys-
tems, threading, etc.

RES Resources Manages the loading/caching of game assets,
such as 3D models, textures, fonts, etc.

SDK Third-Party SDKs Enables interfacing with DirectX, OpenGL,
Havok, PhysX, STL, etc.

SKA Skeletal Animation Manages animation state tree, inverse kine-
matics (IK), and mesh rendering.

SGC Scene Graph/Culling Optimizations Computes spatial hash, occlusion, and level
of detail (LOD).

VFX Visual Effects Enables light mapping, dynamic shadows,
particles, decals, etc.

26

Heads-Up Display
(HUD)

Front-End (FES)

Full-Motion Video
(FMV)

In-GameCinematics
(IGC)

In-Game MenusIn-Game GUI Wrappers / Attract
Mode

Light Mapping &
Dynamic Shadows

Visual Effects (VFX)

HDR Lighting PRT Lighting,
Subsurf.Scatter

Post EffectsParticle & Decal
Systems

Environment
Mapping

SpatialHash (BSP
Tree, kd-Tree, ...)

Scene Graph / Culling Optimizations (SGC)

Occlusion & PVS LOD System

Materials&
Shaders

Low-Level Renderer (LLR)

Static & Dynamic
Lighting Cameras

Viewports &
Virtual Screens

Primitive
Submission

Texture and
Surface Mgmt.

Graphics Device Interface

Recording &
Playback

Profiling & Debugging
(DEB)

Memory &
Performance Stats

In-Game Menus
or Console

Forces &
Constraints

Collision & Physics
(PHY)

Rigid Bodies

Shapes/
Collidables

Ray/Shape
Casting (Queries)

Phantoms

Physics/Collision
World

Match-Making &
Game Mgmt.

Online Multiplayer (OMP)

Object Authority
Policy

Game State
Replication

Game-Specific
Interface

Physical Device
I/O

DSP/Effects

3D Audio Model

Audio Playback /
Management

Skeletal Animation (SKA) Audio (AUD)

Human Interface
Devices (HID)

Animation State
Tree & Layers

Inverse
Kinematics (IK)

LERP and
Additive Blending

Animation
Playback

Animation
Decompression

Game-Specific
Post-Processing

Sub-skeletal
Animation

Gameplay Foundations (GMP)

High-Level Game Flow System/FSM

Scripting System

Static World
Elements

Dynamic Game
Object Model

Real-Time Agent-
Based Simulation

Event/Messaging
System

World Loading /
Streaming

Resources (RES)

3D Model
Resource

Texture
Resource

Material
Resource

Font
Resource

Skeleton
Resource

Collision
Resource

Physics
Parameters

Game
World/Map

Resource Manager

Core (COR)

Module Start-Up
and Shut-Down Assertions Unit Testing Memory Allocation Math Library Strings and

Hashed String Ids
Debug Printing
and Logging

Localization
Services

Parsers(CSV,
XML, etc.)

Profiling / Stats
Gathering

Engine Config
(INI files etc.)

Random Number
Generator

Curves &
Surfaces Library

RTTI / Reflection
& Serialization

Object Handles /
Unique Ids

Asynchronous
File I/O

Platform Independence Layer (PLA)

Platform Detection Atomic Data
Types

Collections and
Iterators File System Network Transport

Layer (UDP/TCP) Hi-ResTimer Threading Library Graphics
Wrappers

3rd Party SDKs (SDK)

DirectX, OpenGL,
libgcm,Edge, etc.

Havok, PhysX,
ODE etc. Boost++ STL / STLPort Kynapse Granny, Havok

Animation, etc. Euphoria etc.

Text & Fonts

Debug Drawing
(Lines etc.)

etc.

Movie Player

Memory Card I/O
(Older Consoles)

Physics/Coll.
Wrapper

Skeletal Mesh
Rendering

Ragdoll
Physics

Hierarchical
Object Attachment

Figure 4.1: “Runtime Game Engine Architecture” diagram, adapted from Gregory [6, p. 33]

27

4.3 Subsystem Detection

Start

Read file/folder
name

Get parent
folder

Does it match a
subsystem?

Does it have
a parent?

Search for the
file/folder names in
the game engine's

documentation

Does it match a
subsystem?

Read source code
files in the folders

Cluster file/folder into
a subsystem based

on the analysed
information

Read other
documentation (e.g.
about C++, specific

libraries, etc.)

yes

yes

yes

no

no

no

End

Does it match a
subsystem?

yes

Do not cluster the
file/folder into any

subsystem

no

Figure 4.2: Subsystem Detection

We show an overview of the process of subsystem detection in Figure 4.2. For each file/folder

in each game engine, we analysed four pieces of information in the following order: name, parent

name, documentation, and source code. If we could not determine the subsystem of a file/folder

after analysing all pieces of information, or if it was not described in Table 4.2, we did not cluster it

into any subsystem.

The file/folder name was the first thing we considered in our decision process because it often

describes the subsystem it relates to very objectively. For example, in Godot, the subsystem division

can be easily understood by observing the scene folder, which contains subfolders with names such

as animation, audio, debugger and resources. All of these names match subsystem descriptions

from Section 4.2.

28

Some game engines also create codenames for their subsystems, which serve two purposes: in-

ternal identification (for architects and developers) and advertisement (to end-users). The Niagara

particle system3 from Unreal Engine is one of many well-known examples. Codenames are also

useful in subsystem identification because, when used both in the source code and in the documen-

tation, they allow us to quickly understand the purpose of a given file and what subsystem it belongs

to. In section 4.7 we discuss how codenames were used for subsystem identification in O3DE and

Unreal Engine, and what architectural information they provide us.

When the name is not entirely explanatory we inferred the folder’s subsystem by looking at

the name of the files/folders it contains. For example, Godot’s main folder contains a file named

main.cpp, which performs several checks to determine whether a subsystem should be initialized

during Godot’s start-up. Given initialisation is a responsibility of the game engine core, as described

in Table 4.2, we clustered the main folder into Core (COR). In Table 4.3, we show this and other

examples of subsystem detection using folder naming.

Table 4.3: Examples of subsystem detection using folder naming

Folder Path Belongs to Why?

/godot/servers/audio AUD The folder name describes its content.

/urho3d/Source/Urho3D/Audio AUD The folder name describes its content.

/godot/main COR Contains engine initialization (main.cpp).

/urho3d/Source/Urho3D/Math COR Contains math functions.

/godot/platform/android PLA Contains Android compatibility code.

/UnrealEngine/Engine/Source
Developer/Android

PLA Contains Android compatibility code.

If the file/folder naming was not informative enough, we searched for references in the game en-

gine’s official documentation. All 10 selected game engines provide official documentation, seven

of them hosted on their own website and three in GitHub Wiki (GamePlay3d, OlcPixelGameEngine

and Picollo). We used the search feature on each documentation website to search for the file/folder

names and obtain more information about them. We found many documentation entries that were
3https://docs.unrealengine.com/5.3/en-US/creating-visual-effects-in-niagara-

for-unreal-engine/

29

https://docs.unrealengine.com/5.3/en-US/creating-visual-effects-in-niagara-for-unreal-engine/
https://docs.unrealengine.com/5.3/en-US/creating-visual-effects-in-niagara-for-unreal-engine/

empty or incomplete, especially for Unreal engine4. In such cases, we resorted to informal docu-

mentation, such as game engine forums and GitHub issues, as we show in Table 4.4.

Table 4.4: Examples of subsystem detection using documentation

Folder Path Belongs to Source Quote

/cocos2d-x/cocos/editor-
support/spine

SKA Official docs5 “Skeletal animation assets in Creator
are exported from Spine.”

/UnrealEngine/Engine/
Source/Runtime/Engine/
Classes/Kismet

GMP Official docs 6 “The Kismet visual scripting system
puts the power in the hands of the level
designer (...).”

/panda3d/panda/src/egg RES Official docs7 “Egg files are used by Panda3D to de-
scribe many properties of a scene: sim-
ple geometry, (...) characters (...), and
character animation tables.”

/UnrealEngine/Engine/
Source/Developer/ Mate-
rialBaking

RES Forum8 “This method allows you to bake out
complex materials to a single texture
which means your material would not
affect your performance so heavy.”

/o3de/Code/Framework/
AzToolsFramework/
AzToolsFramework/
ActionManager

EDI GitHub Issue9 “The system is comprised of multiple
sub-systems that handle different as-
pects of action management in the Edi-
tor.”

Finally, if we did not find any information in the documentation, we read the source code.

We tried to understand the purpose of each file by reading comments and code. In Table 4.5,

we show examples of the comments found in Unreal Engine and O3DE. In a few cases, we re-

mained unable to cluster a file/folder in a subsystem even after reading the source code because we

could not understand it. This happened especially when the file/folder names referred to acronyms

which were not explained in the game engine’s documentation because they refer to external li-

braries or broader computer programming concepts which the game engine developer is expected

to know. For example, O3DE has a folder called /Code/Framework/AzCore/AzCore/RTTI, but

the documentation does not explain it means “Run-Time Type information”. The same goes for
4https://docs.unrealengine.com/4.27/en-US/API/Plugins/WarpUtils
5https://docs.cocos.com/creator/manual/en/asset/spine.html
6https://docs.unrealengine.com/udk/Three/KismetHome.html
7https://docs.panda3d.org/1.10/cpp/tools/model-export/egg-syntax
8https://forums.unrealengine.com/t/bake-out-materials/110074
9https://github.com/o3de/sig-content/issues/51#issue-1203873701

30

https://docs.unrealengine.com/4.27/en-US/API/Plugins/WarpUtils
https://docs.cocos.com/creator/manual/en/asset/spine.html
https://docs.unrealengine.com/udk/Three/KismetHome.html
https://docs.panda3d.org/1.10/cpp/tools/model-export/egg-syntax
https://forums.unrealengine.com/t/bake-out-materials/110074
https://github.com/o3de/sig-content/issues/51#issue-1203873701

/Code/Framework/AzCore/AzCore/IPC, which refers to Linux’s interprocess communication. In

such cases, we referred to programming books and other technical documentation to understand the

acronym’s meaning.

Table 4.5: Examples of subsystem detection using source code comments

Folder Path Belongs to Code comment

/UnrealEngine/Engine/Source/
Runtime/Engine/Classes/Interfaces

GMP “1) INetworkPredictionInterface is an inter-
face for objects that want to perform network
prediction of movement. 2) Interface for re-
trieving triangle mesh collision data from the
implementing object. 3) Interface for objects
to provide skeletons that can be used with
FBoneReference’s details customization.”

/UnrealEngine/Engine/Plugins/
Runtime/WarpUtils

LLR “PFM/MPCDI generation &
visualization”1011.

/o3de/Code/Legacy/CryCommon/
IIndexedMesh.h

LLR “2D Texture coordinates used by CMesh”

/o3de/Code/Legacy/CryCommon/
CryListenerSet.h

COR “A simple, intelligent and efficient container
for listeners”.

/o3de/Code/Framework/AzCore/
AzCore/RTTI

COR “Run-time type information”12

/o3de/Code/Framework/AzCore/
AzCore/IPC

PLA “Interprocess communication”13

We saved the results of the clustering in CSV files, one for each game engine. The file contains

all absolute file/folder paths and the subsystem identifier we assigned to each of them. Files/folders

that could not be clustered into any subsystem were recorded in the file with the OTH identifier

(meaning “other”). In such cases, we added a brief description of the file/folder as a way to demon-

strate why it did not fit any of the selected subsystems. For example, in Table 4.6 we show an

excerpt14 from Godot’s clustering CSV, in which the dot symbols (.) in the path denote the repos-

itory root. The folders ./godot/bin and ./godot/doc were not clustered into any subsystem because
10https://microsoft.github.io/AirSim/pfm/
11https://elib.dlr.de/140422/
12https://learn.microsoft.com/en-us/cpp/cpp/run-time-type-information
13https://tldp.org/LDP/tlk/ipc/ipc.html
14https://github.com/gamedev-studies/game-engine-analyser/blob/8109b22/3_

subsystem_detection/godot.csv

31

https://microsoft.github.io/AirSim/pfm/
https://elib.dlr.de/140422/
https://learn.microsoft.com/en-us/cpp/cpp/run-time-type-information
https://tldp.org/LDP/tlk/ipc/ipc.html
https://github.com/gamedev-studies/game-engine-analyser/blob/8109b22/3_subsystem_detection/godot.csv
https://github.com/gamedev-studies/game-engine-analyser/blob/8109b22/3_subsystem_detection/godot.csv

binaries and documentation are not described in Table 4.2 and therefore are not part of the game

engine architecture. In Section 4.7.1 and Section 4.8.3, we describe unclustered files/folders for all

game engines and discuss how they can supplement the reference architecture.

In the cases where we used information from the documentation or code comments in the clus-

tering process, we also saved the related links or text excerpts into the file under the column “Related

Information”.

Table 4.6: Excerpt for Godot’s subsystem detection CSV

Line Subsystem Description Path Related Information

2 OTH Binaries ./godot/bin

3 COR ./godot/core

4 OTH Docs ./godot/doc

17 PLA ./godot/drivers/wasapi https://docs.
microsoft.com/en-
us/windows/win32/
coreaudio/wasapi

61 RES ./godot/modules/gltf https://www.khronos.
org/gltf/

While the steps we outlined in Figure 4.2 provided us with a consistent foundation for perform-

ing subsystem detection, we acknowledge the potential biases could influence the detection process.

For example, the sequence in which these steps are carried out and the interpretation of technical

terminology within the documentation can introduce bias. In Section 6.1, we address threats to the

validity of subsystem detection and outline our strategies for mitigation.

4.4 Include Graph Generation

We generated an include graph of each game engine using a two-pass algorithm, as we show in

Figure 4.3. In the first pass, our analyser reads every source code file composing the game engine,

collects all includes and outputs an include graph in the DOT graph description language. In the

output DOT file, each row is an include relationship described as follows: /home/engine/source.cpp -

> /home/engine/target.h. The analyser attempts to resolve each relative include path into an absolute

32

https://docs.microsoft.com/en-us/windows/win32/coreaudio/wasapi
https://docs.microsoft.com/en-us/windows/win32/coreaudio/wasapi
https://docs.microsoft.com/en-us/windows/win32/coreaudio/wasapi
https://docs.microsoft.com/en-us/windows/win32/coreaudio/wasapi
https://www.khronos.org/gltf/
https://www.khronos.org/gltf/

path. If the resolution fails, the analyser writes the path to another file called engine-includes-

unr.csv.

Read source code
and collect includes

Game
Engine

Repository

engine-
includes-
unr.csv

Start Infer absolute path for
each include

Write to DOT file and
save to disk

Write to CSV file and
save to disk

is path
resolved?

yes

no

Search all repository
folders for absolute path
of unresolved includes

game
engine.dot

is path
resolved?

yes

no

End

unresolved
.csv

Write to CSV file and
save to disk

Figure 4.3: Include graph generation

In the original implementation of SyDRA [11, p. 4], we read and resolved each of the unresolved

include paths manually. However, repeating this operation for thousands of paths is time-consuming

and error-prone. Therefore, we automated this step by adding a second pass to our algorithm. In

this pass, it loads engine-includes-unr.csv, iterates over each of its paths, and splits them by their

folder delimiters. Then it searches for each part of the path, starting with the file name and moving

towards the repository root folder. It repeats this search until it finds a match. Finally, the resolved

absolute path is appended to the DOT file.

Some include paths inevitably remain unresolved because they refer to system or OS-specific

libraries (e.g., stdio.h, windows.h) which do not belong to the game engine. In Cocos2d-x, all third-

party dependencies are located in a separate repository. However, these paths do not contain code

written by game engine developers, so their absence is not detrimental to the consistency of our

architectural models.

4.5 Architectural Model Generation

To generate architectural models we used Moose 1015, a platform for software analysis com-

posed of several tools and built on top of the Pharo16 programming language. Moose enables users
15https://moosetechnology.org
16https://pharo.org

33

https://moosetechnology.org
https://pharo.org

to use existing metamodels or define their own. We used the FAMIX-CPP metamodel17, which can

represent the two architectural structures we want to study: folder and file, as we show in Figure 4.4.

A folder may contain many files, and files might include each other.

Folder File
contains

includes

0..*

1..*

1..1

1..*
1..1

0..*

contains

Figure 4.4: FAMIX-CPP metamodel used in SyDRA

Pharo’s development environment also gives users the flexibility to write their own tools. To

perform this step, we wrote a tool that loads the subsystem detection CSV file from Section 4.3 and

the include graph DOT file described in Section 4.4. The tool uses the information contained in

these files to create a FAMIX-CPP architectural model.

Load
metamodel

Generate
Moose model

Generate
visualisationsStart

FAMIX-CPP
metamodel

subsystem
detection

CSV

include
graph
DOT

EndSelect
model entities

Moose
model

outputs uses

outputs usesuses uses

Bus 1

entities

Bus 2

entities

Bus ...

...

Figure 4.5: Steps of Architectural Model Generation on Moose

Also using our tool, we selected the model entities we wanted to analyse and wrote them (or

“propagate” them, in Moose’s jargon) to a bus, which is a channel of communication between tools

[54, p.130]. As we show in Figure 4.5, Moose tools such as the Architectural Map can read entities

from a bus and do something with them (e.g. draw a visualisation). Users may create several buses

to store different groups of entities which the can select from different models. We discuss how
17https://github.com/moosetechnology/Famix-Cpp

34

https://github.com/moosetechnology/Famix-Cpp

these entities are visualised in more detail in Section 4.6.

4.6 Architectural Model Visualisation

camera.cpp camera.h camera_2d.cpp

camera_2d.h camera_editor_plugin.cpp

camera_editor_plugin.h camera_feed.cpp

camera_feed.h camera_matrix.cpp

camera_matrix.h camera_osx.h

camera_server.cpp camera_server.h

camera_win.cpp camera_win.h

gltf_camera.cpp gltf_camera.h

interpolated_camera.cpp interpolated_camera.h

(a) Viewing unclustered files

godot-LLR

godot-PLA

godot-COR

godot-OTH

godot-RES

godot-EDI

(b) Viewing files clustered by subsystem

Figure 4.6: Architectural Map showing files containing the word “camera” from Godot

Based on the architectural model generated in Section 4.5, we generated the Architectural Map

visualisation on Moose. It is a directed graph where each file entity in the model is a node, and

each include relationship is an edge. In Figure 4.6, we show how the Architectural Map allows us

to observe the relationship between individual files and subsystems as defined in Section 4.2. If the

visualisation shows an edge between subsystems, it means there is at least one file on the source

subsystem that includes one file in the target subsystem.

While Moose also provides other ways to visualise model entities, we chose the Architectural

Map because it represents the include relationship between files as a graph. By using graph anal-

ysis, we can determine which include relationships happen more frequently and therefore identify

coupling patterns. Given Moose does not provide us with graph analysis tools out of the box, we

used Gephi18. For the sake of simplicity, all graph analysis visualisations were created using Google

Spreadsheets and Seaborn, a Python visualisation library19:

• Average subsystem in-degree: A bar chart ordered by subsystem in-degree. It was created
18https://gephi.org
19https://seaborn.pydata.org/generated/seaborn.heatmap.html

35

https://gephi.org
https://seaborn.pydata.org/generated/seaborn.heatmap.html

using Google Spreadsheets.

• Average subsystem betweenness centrality: A bar chart order by subsystem betweenness

centrality. It was created using Google Spreadsheets.

• Subsystem coupling heatmap: A coloured dependency matrix showing how many times

each subsystem includes another in all 10 analysed game engines. It was created using

Seaborn.

We show and discuss visualisations in Section 4.7.2.

36

4.7 Results

In this section, we answer our RQs by showing subsystem counts and subsystem coupling pat-

terns we found in the 10 game engines we analysed. We use visualisations to illustrate how fre-

quently subsystem coupling patterns appear overall and what architectural information they convey.

4.7.1 RQ1: Which Subsystems are Present in Game Engines?

In Unreal Engine and Godot, we detected all 16 subsystems described in the reference archi-

tecture. In the remaining game engines, we detected 12 or more subsystems. The only exception

was OlcPixelGameEngine, in which we detected only five subsystems. Therefore, 90% of the game

engines we analysed contain at least 75% of the subsystems described in the reference architecture,

which shows there are many similarities between the reference architecture and the actual architec-

ture of open-source game engines.

However, the absence of a subsystem in a game engine should not be interpreted as an absence of

features. For instance, in the case of FlaxEngine, the absence of a Scene Graph / Culling Optimiza-

tions (SGC) subsystem does not equate to the absence of scene graph functionality. Files responsible

for implementing scene graph features can still be found within the ./Source/Engine/Level folder.

However, we clustered this folder into the Gameplay Foundations (GMP) subsystem based on its

naming and the content of other files within the folder. For example, files like Actor.h and Level.h

encompass responsibilities related to the game object model and world loading, which align with

the Gameplay Foundations (GMP) subsystem, as illustrated in Figure 4.1. The influence of these

subsystem detection procedures on our results is further discussed in Section 6.1.

During the subsystem detection step, we also found several files which we decided not to cluster

into any subsystems because they do not fit the definitions provided by the reference architecture.

For the sake of brevity, we show five examples in Table 4.7, along with a justification for our

choice. In Section 4.8.3 we discuss how the architectural information we obtained by studying these

unclustered files/folders can supplement the reference architecture. In Section 4.8.1, we describe

the folder organization of each of the game engines we analysed and how they map to subsystems.

We also discuss whether each folder organization could be changed to become more cohesive.

37

Table 4.7: Examples of files we did not cluster into any subsystem

Repository File/folder path Justification for not clustering
Cocos2d-x /tools It contains build tools only, there are no

files implementing game engine features.
GamePlay3d /gameplay/src/Terrain.cpp Terrain modelling is not described as part

of any subsystem in the reference architec-
ture.

Godot /modules/mobile vr Virtual Reality (VR) is not described as
part of any subsystem in the reference ar-
chitecture.

Godot /modules/recast Artificial Intelligence (AI) for navigation
is not described as part of any subsystem
in the reference architecture.

O3DE /Code/Framework/AtomCore/
Tests

It contains unit tests only, there are no files
implementing game engine features.

UnrealEngine /Engine/Source/Runtime/
AIModule

Artificial Intelligence (AI) is not described
as part of any subsystem in the reference
architecture.

UnrealEngine /Engine/Plugins/Runtime/
Oculus

Virtual Reality (VR) for Oculus devices is
not described as part of any subsystem in
the reference architecture.

4.7.2 RQ2: Do Game Engines Share Subsystem Coupling Patterns?

As we can observe in Figure 4.7, the top-five subsystems in average in-degree are: Core (COR),

Low-Level Renderer (LLR), Resources (RES), Platform Independence Layer (PLA) and Gameplay

Foundations (GMP). We obtained these results by computing the in-degree for each subsystem of

each game engine. Next, we computed the average of these in-degree measurements and sorted

them in descending order.

The subsystems in the top five act as a foundation for game engines because most of the other

subsystems depend on them to implement their functionalities. We expected Low-Level Renderer

(LLR) to be one of the subsystems with the highest in-degree because video games heavily depend

on visuals and the 2D/3D renderer is the part of the game engine responsible for creating visuals.

Same as the in-degree, we computed the average betweenness centrality, as we show in Fig-

ure 4.8. The top-five systems with the highest average betweenness centrality are Core (COR),

Platform Independence Layer (PLA), Low-Level Renderer (LLR), World Editor (EDI) and, tied in

5th place, Gameplay Foundations (GMP) and Resources (RES). For this reason, we decided to draw

38

subsystem

av
er
ag
e

0

2

4

6

8

10

12

COR LLR RES PLA GMP FES PHY SDK DEB SKA HID EDI SGC AUD OMP VFX

Figure 4.7: Average subsystem in-degree.

only the top four subsystems in the centre of the architectural maps we show in the following sub-

sections from Figure 4.14 to Figure 4.23.

Besides having a high in-degree, the Low-Level Renderer (LLR) subsystem also has a high

betweenness centrality because many subsystems perform activities that result in a visual output

(e.g., after the game engine runs physics computations on a particle, it must draw the particle’s new

position on the screen) or are triggered by a visual input (e.g., a sound is played by the game engine

every time the player moves their camera towards a certain direction).

To visualise which subystem coupling patterns are more frequent across game engines, we ag-

gregated coupling counts from all architectural models and organized them into a heatmap in Fig-

ure 4.9. The number of outgoing dependencies is noted in each of the rows of the heatmap, and the

number of incoming includes is noted in each of its columns. For example, starting from the top left

side, we can observe the Audio (AUD) subsystem includes files from itself in eight game engines

(line 1, column 1), and it includes files from Core (COR) in six game engines (line 1, column 2).

While we applied our approach to 10 game engines, no square shows the value 10 in the

39

subsystem

av
er
ag
e

0.00

10.00

20.00

30.00

CO
R

PL
A

LL
R ED

I
GM
P

RE
S

SG
C

FE
S

PH
Y

VF
X

SK
A

SD
K

HI
D

DE
B

OM
P

AU
D

Figure 4.8: Average subsystem betweenness centrality.

heatmap’s central diagonal. This happens because OlcPixelGameEngine is fully decoupled as ex-

plained in Section 4.8.2. Also, not all subsystems were detected in all game engines and therefore

not all self-include nine times.

Table 4.8: The top frequent subsystem coupling pairs.

Pair Count Pair Count
COR → LLR 9 COR → PHY 8
GMP → COR 9 FES → COR 8
LLR → COR 9 RES → COR 8
PHY → COR 9 SKA → COR 8
COR → RES 8 SKA → LLR 8
LLR → RES 8

For the sake of brevity, we consider all coupling pairs that occurred in eight game engines or

more to be frequent pairs, and we list them in Table 4.8. The Core (COR), Low-Level Renderer

(LLR) and Resources (RES) frequently appear among the most frequent coupling pairs. As we

show in Table 4.2, these subsystems have a long list of responsibilities, and we believe this may

be the reason why they are highly coupled. Concerning in-degree and centrality, Core (COR),

40

AUD COR DEB EDI FES GMP HID LLR OMP PHY PLA RES SDK SGC SKA VFX

A
U
D

C
O
R

D
E
B

E
D
I

FE
S

G
M
P

H
ID

LL
R

O
M
P

P
H
Y

P
LA

R
E
S

S
D
K

S
G
C

S
K
A

V
FX

8 7 3 3 3 4 5 5 4 3

6 9 6 4 5 6 7 9 5 8 7 8 5 6 4 3

6 7 4 3 4 3

4 6 4 6 6 5 5 6 3 5 5 3 3 5 4

3 8 4 3 9 5 6 7 3 3 5 4 4

4 9 5 5 6 9 4 5 4 7 5 7 3 3 6 3

7 3 3 8 6 4 3

9 4 4 5 5 5 9 6 5 8 5 6 5 3

7 3 3 7 5 3 4

9 4 3 5 7 9 4 6 5 4 4 3

3 7 3 4 4 5 6 5 3 8 4 3

8 4 4 4 5 4 4 5 9 5 4

4 5

7 3 3 3 3 5 3 4 7 3

3 8 4 3 5 8 4 4 4 6 9

6 3 3 6 4 4 4 4 6
0

1

2

3

4

5

6

7

8

9

incoming

o
u
tg
o
in
g

Figure 4.9: Subsystem coupling heatmap showing aggregated coupling counts.

Low-Level Renderer (LLR) and Resources (RES) also have high measurements, along with Platform

Independence Layer (PLA), which likewise centralizes utilities and cross-platform compatibility

code.

While graph analysis enables us to detect coupling patterns, it cannot explain why this coupling

exists and whether it could be reduced. For this reason, in Section 4.8.2, we show examples show

examples which explain why certain subsystems are more coupled in certain game engines, whether

these coupling patterns repeat in different game engines and what they can teach us about the archi-

tecture they are part of. Moreover, we show how observing the coupling between files from different

subsystems can be a starting point for understanding how a game engine works and how its parts

relate.

By compiling the game engine coupling pattern information from Table 4.8 we also observe

41

a new architecture emerge. In Figure 4.10, we placed in the centre of the model the subsystems

with the highest betweenness centrality, forming an inner core (dark red). Next, we placed other

subsystems which appear in Table 4.8 in the outer core (light red). Finally, we placed the subsystems

which do not appear in Table 4.8 in the outer core’s periphery (white). All relationships shown in

the diagram are among the most frequent, as shown in Table 4.8 and Figure 4.9. When there was

a tie (e.g. two pairs had the same frequency), we chose the coupling pair with the highest sum of

betweenness centrality.

Inner core

Outer core

Peripheral

LLR PLA

COR
EDI

GMPSKA

FES

SDK

VFX

SGC

OMP

PHY RES

AUD
DEB HID

Figure 4.10: Our emergent open-source game engine architecture.

In this emergent architecture, we observe the Low-Level Renderer (LLR) often inter-depends on

Core (COR), which it uses to access functionality in the Platform Compatibility Layer (PLA) and

the Resources (RES) subsystem. In Figure 2.7, we can observe these subsystems are also placed

close to each other in the reference architecture.

While not part of the inner core, the Front End (FES) subsystem plays an important role. It is

often included by the World Editor (EDI) and Gameplay Foundations (GMP), which are both visual

interfaces between the user and the game engine. Because it manages UI elements which emit events

and trigger actions throughout the system, Front End (FES) often depends on the event/messaging

system in Core (COR).

The metrics and visualisations we derived from architectural models and subsystem coupling

42

patterns can be used by practitioners as follows:

• Architectural Understanding: Architectural model visualisations provide a friendly way

for novice game engine developers to understand this kind of system and start developing

their own subsystems or plugins. We show examples of how the Architectural Map visu-

alisation enables exploration and learning about game engine architecture in Section 4.8.2.

Moreover, we show how the use of architectural models can aid architectural understanding

in Section 5.2.10.

• Refactoring: Game engine developers can refactor their code more safely by visualising

how changes to a subsystem could impact the whole game engine. We show how the use of

architectural models can aid impact analysis in Section 5.2.10.

• Reference Extraction: Game engine architects seeking to design a new engine can extract

architectural models from similar systems and use them as references. They have the option

to extract and visualize data for a single system, or they can join data from multiple systems

within the same family, as exemplified in the emergent architecture we show in Figure 4.10.

This is useful both for large companies and small indie developers who develop tailor-made

solutions, e.g. for performance.

4.8 Discussion

In this section, we show the folder organization and subsystem coupling patterns found in each

of the game engines we analysed, listed in descending order of popularity, as we show in Table 4.1.

We discuss what these patterns can teach us about a game engine’s architecture and how they can

be used by practitioners such as video game and game engine developers.

4.8.1 RQ1: Which Subsystems are Present in Game Engines?

In the following subsections, we describe and discuss the folder organization of each of the

game engines we analysed and how they map to subsystems. We show our results according to the

following template:

43

• The number of subsystems we identified in the game engine.

• The absolute path to the folder where most of the source code implementing game engine

subsystems is located. A dot (.) at the start of the folder path denotes the repository root.

• The names of the three largest subsystems, along with the number of files, are in descending

order.

• The third-party libraries used by the game engine are also listed under the Third-Party SDKs

(SDK) subsystem definition in the reference architecture as we show in Figure 4.1.

We chose to show these four items in the template because they give the reader an overview

of how much each game engine matches with the reference architecture, and what subsystems are

more frequently large. Also, by showing where these subsystems are located in the folder structure,

we provide a starting point for researchers who wish to delve into the source code and explore game

engine architecture and implementation on their own.

While we do not discuss in detail how developers make their choices of third-party libraries for

every game engine, we chose to list them in the template. For brevity, we show only those which

are both present in the game engine and in the Third-Party SDKs (SDK) subsystem definition in

the reference architecture. We include this information because it can give the reader a notion of

how diverse the selection of third-party libraries across game engines is, and also specify the cases

where we did not analyse the third-party libraries because they are kept by developers in a repository

separate from the game engine.

Along with the template and folder organization, we also discuss whether each folder organiza-

tion could be changed to increase file cohesion. However, when we mention cohesion we are not

referring to a quantitative metric, but rather a qualitative one. We decided not to use any cohesion

metrics from the Software Engineering domain because they are better suited for the analysis of

low-level design rather than high-level, as we do in this work. As Briand et al. [8, p.516] explains

in his work analysing system coupling and cohesion:

“Note that [in our work] there are no measures used to capture class cohesion. This

is because the information required by existing measures is not usually available at

44

high-level design, e.g., method attribute interactions, method-method interactions, and

pairs of methods which reference common attributes.”

In the following subsections, we consider file cohesion to mean “the act or state of keeping

together” 20. Therefore, if during our subsystem detection process, we determined files/folders to

be part of the same subsystem, we consider that they have high cohesion if they are centralized

under the same parent folder. Contrarily, if these files/folders are distributed in several folders under

different hierarchical levels in the folder organization, we consider they have low cohesion.

Unreal Engine

- Subsystems Detected: 16 out of 16 (100%)

- Main Source Code Folder: ./Engine/Source

- Largest Subsystems: Third-Party SDKs (SDK) with 21,843 files, World Editor (EDI) with

8,500 files, and Core (COR) with 4,674 files

- Reference Third-Party Libraries: Boost, DirectX, OpenGL, PhysX

In Table 4.9, we show Unreal Engine’s folder organization along with descriptions from the

official documentation 21. While the Editor folder contains only files from the World Editor (EDI)

subsystem, the Developer, Runtime and Program folders contain files for all other subsystems. Each

of its subfolders, called modules, corresponds to one subsystem.

Table 4.9: Unreal Engine’s ./Engine/Source folder

Folder Files Description

ThirdParty 20,074 Third-party SDKs
Runtime 12,343 Files used by just the engine
Editor 5,888 Files used by just the editor
Developer 2,493 Files used by both the editor and engine
Programs 855 External tools used by the engine or editor

Each module is further divided into two subfolders, Public and Private. While the documen-

tation does not explain this part of the folder structuring, according to video game development

blogger Tom Looman this structure specifies which files are used only internally and which are also
20https://www.oxfordlearnersdictionaries.com/definition/english/cohesion
21https://docs.unrealengine.com/4.26/en-US/Basics/DirectoryStructure/

45

https://www.oxfordlearnersdictionaries.com/definition/english/cohesion
https://docs.unrealengine.com/4.26/en-US/Basics/DirectoryStructure/

used by other modules: “your header files are placed in the Public folder so other modules can gain

access and the cpp files are in the Private folder” 22.

The concentration of files in the Runtime folder results in its large size and reduced file cohesion.

The mismatch between the number of files in the ThirdParty folder (20,074 files) and the Third-Party

SDKs (SDK) subsystem (21,843 files) is evidence of this lack of cohesion. This difference happens

because the Runtime folder also contains modules that act as drivers to third-party libraries such

as CUDA23, the parallel computing platform from Nvidia, which were clustered into the Third-

Party SDKs (SDK) subsystem. To increase cohesion, we argue these drivers could be moved to the

ThirdParty folder or a new sibling folder called Drivers.

Differently from other game engines, Unreal Engine provides integration with a wide range of

services from Google, Meta and Steam, implemented as libraries found in the ThirdParty folder.

Considering that Unreal Engine is currently the most popular open-source game engine and that it

is used by several large video game development companies, this integration diversity is not only a

convenience but also a need for developers who want to integrate with popular video game digital

distribution services.

Finally, we observed that, while conforming to the reference architecture, Unreal Engine design-

ers imply architectural divisions of their own using codenames. For example, while the reference

architecture states that both visual effects and light mapping are responsibilities of the Visual Ef-

fects (VFX) subsystem, Unreal Engine gives these two features distinctive codenames: Niagara24

for general visual effects and Lightmass25 for light mapping.
22https://www.tomlooman.com/unreal-engine-cpp-guide
23https://docs.unrealengine.com/5.1/en-US/API/Runtime/CUDA/
24https://docs.unrealengine.com/4.27/en-US/RenderingAndGraphics/Niagara/

Overview/
25https://docs.unrealengine.com/4.27/en-US/RenderingAndGraphics/Lightmass/

Basics/

46

https://www.tomlooman.com/unreal-engine-cpp-guide
https://docs.unrealengine.com/5.1/en-US/API/Runtime/CUDA/
https://docs.unrealengine.com/4.27/en-US/RenderingAndGraphics/Niagara/Overview/
https://docs.unrealengine.com/4.27/en-US/RenderingAndGraphics/Niagara/Overview/
https://docs.unrealengine.com/4.27/en-US/RenderingAndGraphics/Lightmass/Basics/
https://docs.unrealengine.com/4.27/en-US/RenderingAndGraphics/Lightmass/Basics/

Godot

- Subsystems Detected: 16 out of 16 (100%)

- Main Source Code Folder: the repository root

- Largest Subsystems: Third-Party SDKs (SDK) with 2,913 files, Core (COR) with 469 files

and World Editor (EDI) with 331 files

- Reference Third-Party Libraries: OpenGL (named Gles3 in Godot)

In Table 4.10 we show Godot’s folder organization along with descriptions we adapted from a

YouTube video tutorial by Juan Liniestsky, one of Godot’s creators 26.

Table 4.10: Godot’s root folder

Folder Files Description

thirdparty 2,913 Dependency bundle for distribution (e.g., Debian pack-
ages)

modules 546 Secondary (non-core) dependencies
scene 420 Classes representing scene tree nodes
editor 308 World editor
core 274 Godot’s core types and structures
servers 185 Exposed low-level interfaces (e.g., for rendering, physics)
platform 142 Code for OS compatibility (e.g., Android, iOS, Windows)
drivers 106 Core dependencies
main 44 Godot’s main loop

Inside the scene folder, each of the subfolders corresponds to one subsystem: audio, debugger,

gui, resources, animation. The only exceptions are the folders 2d and 3d, which encapsulate several

audio, graphics and physics-related features. The files in these folders implement different versions

of the same features (e.g., 2D collision and 3D collision).

As in Unreal Engine, observing file counts by folder and by subsystem also reveals interesting

architectural choices in Godot. For example, the difference between the file count in the core folder

(274 files) and the Core (COR) subsystem (469 files) happens because the main and modules folders

also contain files from the Core (COR) subsystem. The reasons why the Core (COR) subsystem is

divided into three folders are both organizational and historical, and we can understand them by

observing Godot’s branches and issues on GitHub.
26https://www.youtube.com/watch?v=5RIPRlCvRAk

47

https://www.youtube.com/watch?v=5RIPRlCvRAk

For example, by checking out branch v2.0, which contains the oldest version of Godot available

on GitHub, we observe the main and modules folders already existed at this version. While the

purpose of the main folder was to separate the main loop from the rest of Godot’s core, the modules

folder was created to bundle together all libraries, both those created by Godot’s developers and

third parties. Later, in branch v3.0, a thirdparty folder was created exclusively for keeping only

“unmodified upstream versions”27 of third-party libraries. However, the modules folder remained

with a mix of first-party and third-party code.

The existence of the modules is an example of how the evolution of system architecture may

leave behind “vestigial” structures, such as folders, which no longer work cohesively with the sur-

rounding architecture. To increase cohesion, we argue that all third-party libraries should be moved

to the thirdparty folder while libraries developed by Godot’s developers should be moved to a folder

with a name that is descriptive of the subsystem to which they belong, such as core or scene, for

example.

While the structure of the thirdparty folder may not be cohesive, its evolution and the choice of

libraries made throughout Godot’s development history are well-documented. For instance, Godot’s

documentation has an article dedicated to discussing the reasons why it does not use STL, a popular

C++ library providing containers, iterators and a series of useful algorithms. According to the

documentation, “STL templates create very large symbols, which results in huge debug binaries”.

The text also claims that Godot’s implementation of containers “helps better track memory usage”28.

Panda3D

- Subsystems Detected: 13 out of 16 (81%)

- Main Source Code Folder: the repository root

- Largest Subsystems: Core (COR) with 1,056 files, Resources (RES) with 838 files and Low-

Level Renderer (LLR) with 536 files

- Reference Third-Party Libraries: we did not analyse them because they are in a separate

repository 29

27https://github.com/godotengine/godot/issues/6157
28https://docs.godotengine.org/en/stable/about/faq.html#doc-faq-why-not-stl

48

https://github.com/godotengine/godot/issues/6157
https://docs.godotengine.org/en/stable/about/faq.html#doc-faq-why-not-stl

In Table 4.11, we show Panda3D’s folder organization along with descriptions we adapted from

source code comments and official documentation 30 31. Most files are in the panda folder as we

show in Table 4.11, which contains two subfolders: metalibs and src. The files in metalibs are C++

wrappers which implement no functionality themselves, but act as a facade to third-party libraries

both outside of the repository or in the src folder. The files in the src folder implement all game

engine features. Each of its subfolders corresponds to one subsystem.

Table 4.11: Panda3D root folder

Folder Files Description

panda 3,483 Panda3D engine core and features
pandatool 701 3D model and geometry import tools
dtool 504 Debugging tools and utility classes
direct 124 Supports “Distributed Networking”, Panda3D’s high-level

network API
contrib 86 Features by other project contributors (not the original de-

velopers)

O3DE

- Subsystems Detected: 14 out of 16 (87%)

- Main Source Code Folder: ./Code/Framework

- Largest Subsystems: Low-Level Renderer (LLR) with 1,892 files, Front-End (FES) with

1,567 files and Gameplay Foundations (GMP) with 1,440 files

- Reference Third-Party Libraries: we did not analyse them because they are in a separate

repository 32

In O3DE, most of the files implementing subsystem features are located in the ./Code/Framework

folder. In Table 4.12, we show this folder’s organization along with descriptions we adapted from

the official documentation 33.

By analysing the subfolder organization of each folder in Table 4.12, we found that the folders

AzCore, AzFramework, AzNetworking and AzToolsFramework share the same folder organization
30https://docs.panda3d.org/1.9/cpp/tools/index
31https://docs.panda3d.org/1.9/cpp/programming/networking/distributed
33https://docs.o3de.org/docs/welcome-guide/key-concepts/#overview-of-the-o3de-

sdk

49

https://docs.panda3d.org/1.9/cpp/tools/index
https://docs.panda3d.org/1.9/cpp/programming/networking/distributed
https://docs.o3de.org/docs/welcome-guide/key-concepts/#overview-of-the-o3de-sdk
https://docs.o3de.org/docs/welcome-guide/key-concepts/#overview-of-the-o3de-sdk

Table 4.12: O3DE ./Code/Framework folder

Folder Files Description

AzCore 1,139 Supports AzFramework
AzToolsFramework 1,073 CLI tools
AzFramework 519 Supports AzGameFramework and AzToolsFramework
AzQtComponents 278 GUI tools
AzNetworking 96 Networking features
AtomCore 18 Atom renderer core
AzGameFramework 4 Project runtime

pattern, comprised as follows:

• Features: Contain files that implement features related to the folder’s description in Ta-

ble 4.12. This folder always has the same name as its parent (e.g. AzCore has a “features”

folder also named AzCore).

• Platform: Contains files that implement a part of Platform Independence Layer (PLA) sub-

system related to the “features” folder.

• Tests: Contains unit tests to features in the “features” folder.

AzCore

AzCore

Features (...)

Platform

Linux

Windows

...

Tests

Features (...)

Features (...)

AzFramework

TestsPlatformsAzFramework

... ...

AzQtComponents

TestsPlatformsAzQtComponents

... ...

Figure 4.11: Folder organization pattern we found in O3DE

We demonstrate this folder organization pattern in Figure 4.11. While its rationale is not ex-

plained in O3DE’s documentation, we believe it was created to break down the Platform Indepen-

dence Layer (PLA), a large subsystem which encompasses many responsibilities, into smaller, more

specialized parts. However, while highlighting the separation between O3DE’s core and other sub-

systems, this organization does not use its folder hierarchy to express the level of granularity of

50

different parts of the game engine. For example,AzQtComponents, which is a part of the Front-End

(FES) subsystem, is in the same hierarchy level as AzFramework, a folder which contains files for

several subsystems.

Framework

Core

Features (...)

Features (...)

Features (...)

Features

AtomCore

AzQtComponents

Platform

Tests

AzNetworking

Platform

Tests

Figure 4.12: Alternative folder organization for O3DE

In Figure 4.12, we show an alternative organization which has two folders in its top level, “Core”

and “Features”, which are then subdivided according to their purpose: containing code from O3DE’s

core only or from other subsystems. Each of these top-level folders keeps its own Platform and Test

folders. This way, we avoid duplicated naming and create a more semantic folder hierarchy, which

separates the subsystems and their features from the higher-level concept of “Core” vs. “Features”.

FlaxEngine

- Subsystems Detected: 15 out of 16 (94%)

- Main Source Code Folder: ./Source

- Largest Subsystems: Third-Party SDKs (SDK) with 774 files, Platform Independence Layer

(PLA) with 295 files and Core (COR) with 254 files

- Reference Third-Party Libraries: DirectX, OpenGL (glslang in FlaxEngine) and PhysX

We show FlaxEngine’s folder organization in Table 4.13 along with descriptions we adapted

51

from the official documentation 34. In contrast to other game engines, FlaxEngine favours file

cohesion by centralising all files related to a subsystem in a single folder. For example, while

Unreal and Godot distribute their Third-Party SDKs (SDK) and World Editor (EDI) functionality

across multiple folders, FlaxEngine centralizes this functionality within its ThirdParty and Editor

folders.

Table 4.13: FlaxEngine ./Source folder

Folder Files Description

Engine 1,280 FlaxEngine core and features
ThirdParty 774 Third-Party SDKs (SDK)
Editor 72 World Editor (EDI)

We detected 15 out of 16 subsystems in FlaxEngine, which shows its architecture mostly matches

the reference architecture. However, we observed that, while being as conforming to the reference

architecture as other game engines, it has a much lower file count. For example, while O3DE, in

which we detected 14 out of 16 subsystems, contains 1,892 files in its Low-Level Renderer (LLR)

subsystem only, FlaxEngine’s entire Engine folder contains 1,280 files implementing the majority of

its subsystems. This shows that the subsystem count in a game engine is not necessarily proportional

to the amount of source code files it contains.

While FlaxEngine presents a high subsystem count and a low file count, we believe the subsys-

tems within this game engine may also implement fewer functionalities compared to their counter-

parts in other game engines. In future work, we intend to further investigate the correlation between

subsystem size and functionality, as we explain in Section 6.1.

GamePlay3d

- Subsystems Detected: 13 out of 16 (81%)

- Main Source Code Folder: ./gameplay

- Largest Subsystems: Gameplay Foundations (GMP) with 286 files, Resources (RES) with

97 files and Low-Level Renderer (LLR) with 44 files

- Reference Third-Party Libraries: not analysed because they are in a separate repository 35

34https://docs.flaxengine.com/manual/editor/advanced/game-engine-flow.html

52

https://docs.flaxengine.com/manual/editor/advanced/game-engine-flow.html

In Table 4.14, we show GamePlay3d’s folder organization along with descriptions we inferred

from file/folder naming and source code comments. The root folder contains three subfolders:

gameplay, which contains the source code for all subsystems; samples, which contains example

games, and tools, which contains two developer command-line utilities. The first, named luagen,

enables the generation of Lua script bindings for C++ 36. The second, named encoder, enables

“encoding games assets like true-type fonts and 3D scene files into a simple binary-based bundle

file format” which is specific to GamePlay3d 37.

Table 4.14: GamePlay3d ./gameplay folder

Folder Files Description

gameplay 1,280 GamePlay3d core and features
samples 774 Example games and demos
tools 72 Tools for generating Lua script bindings/asset encoding

Differently from other game engines, GamePlay3d does not distribute its files in several folders

named by subsystems. Instead, it centralizes all its files in the gameplay folder and its src subfolder,

as we show in Figure 4.13a. In Figure 4.13b, we show an alternative folder organization, where we

create folders for each of the 13 subsystems we detected in GamePlay3d. We also remove the game-

play folder to avoid ambiguity with the repository’s name. We argue this alternative organization

would be more cohesive and easier to understand.

Urho3d

- Subsystems Detected: 12 out of 16 (75%)

- Main Source Code Folder: ./Source

- Largest Subsystems: Third-Party SDKs (SDK) with 3,489 files, Low-Level Renderer (LLR)

with 182 files and Core (COR) with 143 files

- Reference Third-Party Libraries: OpenGL

In Table 4.15 we show Urho3d’s folder organization along with descriptions we inferred from

file/folder naming and source code comments. We observed this organization is very similar to
36https://github.com/gameplay3d/gameplay/tree/master/tools/luagen
37https://github.com/gameplay3d/gameplay/blob/master/tools/encoder/README.md

53

https://github.com/gameplay3d/gameplay/tree/master/tools/luagen
https://github.com/gameplay3d/gameplay/blob/master/tools/encoder/README.md

gameplay

samples

tools

src

gameplay

(a) Current

gameplay

src

core

physics

samples

tools

...

(b) Alternative

Figure 4.13: GamePlay3d folder organization

GamePlay3d’s, which also contains folders for Samples and Tools. They also have one tool in

common: a script-binding generator. However, while GamePlay3d’s script-binding generator is for

Lua scripts, Urho3d works with AngelScript, a “flexible cross-platform scripting library”38 used by

several C++ applications. Also, differently from GamePlay3d, Urho3d distributes the files in its

Urho3d folder into several subfolders, each corresponding to one subsystem, favouring file cohe-

sion.

Table 4.15: Urho3d’s ./Source folder

Folder Files Description

ThirdParty 3,489 Third-Party SDKs
Urho3D 638 Urho3d’s core and features
Samples 156 Example games and demos
Tools 28 Tools for asset importing, script binding

38https://www.angelcode.com/angelscript/

54

https://www.angelcode.com/angelscript/

Cocos2d-x

- Subsystems Detected: 12 out of 16 (75%)

- Main Source Code Folder: the repository root

- Largest Subsystems: Visual Effects (VFX) with 415 files, World Editor (EDI) with 144 files

and Skeletal Animation (SKA) with 107 files

- Reference Third-Party Libraries: not analysed because they are in a separate repository 39

In Table 4.16, we show Cocos2d-x’s folder organization along with descriptions we inferred

from file/folder naming and the official documentation 40. The root folder contains four subfold-

ers: cocos, which contains the source code for all subsystems; extensions, which are plugins which

enable extending the functionality of Cocos2d-x’s editor 41; tests, which contains test projects gen-

erated for each of the five platforms Cocos2d-x supports (Android, iOS, Linux, Mac and Windows),

and templates, which contains “template code used on automated project creation” 42. Most files

are in folder cocos, and each of its subfolders corresponds to one subsystem.

Table 4.16: Cocos2d-x’s root folder

Folder Files Description
cocos 923 Cocos2d-x’s core and features
extensions 348 Plugins to extend editor features
tests 324 Test projects for Windows, Mac, Linux, etc.
templates 13 Template code for automated project creation

Piccolo

- Subsystems Detected: 12 out of 16 (75%)

- Main Source Code Folder: the repository root

- Largest Subsystems: Third-Party SDKs (SDK) with 1,301 files, Core (COR) with 64 files

and Low-Level Renderer (LLR) with 45 files

- Reference Third-Party Libraries: OpenGL (glad, glfw and glm in Piccolo)

In Table 4.17, we show Piccolo’s folder organization along with descriptions we inferred from
40https://docs.cocos2d-x.org/cocos2d-x/v3/en/basic_concepts/
41https://docs.cocos.com/creator/manual/en/editor/extension/define.html
42https://subscription.packtpub.com/book/game-development/9781785283833/1/

ch01lvl1sec15/template-code-walk-through

55

https://docs.cocos2d-x.org/cocos2d-x/v3/en/basic_concepts/
https://docs.cocos.com/creator/manual/en/editor/extension/define.html
https://subscription.packtpub.com/book/game-development/9781785283833/1/ch01lvl1sec15/template-code-walk-through
https://subscription.packtpub.com/book/game-development/9781785283833/1/ch01lvl1sec15/template-code-walk-through

source code comments and Piccolo’s GitHub wiki 43. Most files are in folder ./engine/3rdparty.

Files that implement subsystem features are in the ./engine/source/runtime folder, which is fur-

ther subdivided into core, function, platform and resource folders. The files in core, platform

and resource belong respectively to the Core (COR), Platform Independence Layer (PLA) and

Resources (RES) subsystems. The folder function contains files for six other subsystems: Front-

End (FES), Gameplay Foundations (GMP), Human Interface Devices (HID), Low-Level Renderer

(LLR), Physics (PHY) and Skeletal Animation (SKA).

Table 4.17: Piccolo’s root folder

Folder Files Description

./engine/3rdparty 1,301 Third-Party SDKs

./engine/source/runtime 132 Piccolo’s core and features

./engine/source/meta parser 37 C++ reflection pipeline

./engine/source/editor 13 World Editor

OlcPixelGameEngine

- Subsystems Detected: 5 out of 16 (31%)

- Main Source Code Folder: ./Extensions

- Largest Subsystems: Low-Level Renderer (LLR) with 3 files, while all other subsystems are

implemented by a single file

- Reference Third-Party Libraries: not analysed because they are in a separate repository 44

In Table 4.18, we show OlcPixelGameEngine’s folder organization along with descriptions we

inferred from source code comments. The root folder contains two subfolders: Videos, which con-

tains game examples implemented with OlcPixelGameEngine and Extensions, where the source

code for all subsystems is located. We observed this game engine has only five subsystems, the

lowest subsystem count of all analysed game engines. This happens because OlcPixelGameEngine

was created for educational purposes and was never intended to be a production-ready game engine:

“Fundamentally the olcPixelGameEngine is designed to support the output of the OneLoneCoder

YouTube channel45. (...) For example, it does not provide tools to handle asset loading, collision
43https://github.com/BoomingTech/Piccolo/wiki
45https://www.youtube.com/c/javidx9

56

https://github.com/BoomingTech/Piccolo/wiki
https://www.youtube.com/c/javidx9

detection, vector mathematics. As it is an educational tool, it is expected the user will provide this

functionality.” 46.

The largest subsystem in OlcPixelGameEngine is Low-Level Renderer (LLR), implemented

by three files in the Extensions folder: olcPGEX Graphics2D.h, olcPGEX Graphics3D.h and ol-

cPGEX TransformedView.h. Files implementing basic Audio (AUD), Front-End (FES), Online Mul-

tiplayer (OMP) and Physics (PHY) features are also present. Given the entire game engine is com-

posed of only seven files, the absence of a more distributed folder organization is not detrimental

to cohesion. However, if OlcPixelGameEngine were to grow, we argue that the Extensions folder

should be divided into subfolders, one for each subsystem.

Table 4.18: OlcPixelGameEngine’s ./Extensions folder

Folder Description

olcPGEX Graphics2D.h Provides 2D sprite manipulation and drawing
olcPGEX Graphics3D.h Provides 3D software rendering
olcPGEX Network.h Provides networking based on the ASIO library47

olcPGEX PopUpMenu.h Provides a pop-up menu system
olcPGEX RayCastWorld.h Provides 3D ray-casting
olcPGEX Sound.h Provides sound generation
olcPGEX TransformedView.h Provides 2D drawing and conversion from local to

global coordinates

Summary

We summarize our findings to answer RQ1 and discuss folder organisation in terms of naming,

hierarchy and division. We also show the largest and smallest subsystems by file count and discuss

the reasons behind their size.

Folder Organisation

• Naming: Unreal Engine and O3DE give codenames to their subsystems, such as Niagara and

Atom Renderer, and use them as a way to delimit their own architectural divisions. However,

most game engines follow a more utilitarian approach to subsystem folder naming (e.g., in

Urho3d, the Physics subsystem is in the “physics” folder).
46https://github.com/OneLoneCoder/olcPixelGameEngine/wiki#what-doesnt-it-do

57

https://github.com/OneLoneCoder/olcPixelGameEngine/wiki#what-doesnt-it-do

• Hierarchy: The depth of the folder hierarchy varies significantly between game engines.

While Godot, Cocos2d-x, and Piccolo lay out their largest and most important folders in one

or two hierarchy levels, Unreal Engine and O3DE use up to five hierarchy levels.

• Division: Most game engines have one folder that contains most of the source code that

implements subsystems, along with folders dedicated to the Third-Party SDKs (SDK), World

Editor (EDI), a plugin subsystem, sample code and supporting tools (e.g., debug tools in

Panda3D, game asset encoding in GamePlay3d).

• Documentation: Unreal Engine and O3DE have articles in their documentation dedicated to

discussing folder organization. However, most game engines do not document the rationale

behind their folder structure, rather focusing on subsystem description and implementation

details.

Subsystem File Counts

• Largest Subsystems: The Third-Party SDKs (SDK) subsystem has the largest file count in

all game engines where it is present, frequently followed by Core (COR). As we show in

Table 4.2, these subsystems have a long list of responsibilities, and we believe this may be

the reason why they frequently have a large file count.

• Frequently Large Subsystems: Aside from Third-Party SDKs (SDK) and Core (COR),

the Low-Level Renderer (LLR), World Editor (EDI), Gameplay Foundations (GMP) and Re-

sources (RES) subsystems have a large file count in most game engines.

• Smallest Subsystems: The OlcPixelGameEngine implements all its features in 7 files, and

some of its subsystems are implemented entirely in one file. While architecturally simple, it

is also the game engine with the least features of all.

• Third-Party SDKs in Unreal Engine: Unreal Engine’s Third-Party SDKs (SDK) subsystem

has over 21,000 files, making it as large as all Godot, O3DE and Urho3d subsystem files

together.

58

4.8.2 RQ2: Do Game Engines Share Subsystem Coupling Patterns?

In the following subsections, we show the Architectural Map visualisation we generated for each

of the game engines we analysed. We also show examples which explain why certain subsystems

are more coupled in certain game engines, whether these coupling patterns repeat in different game

engines and what they can teach us about the architecture they are part of. Subsystems mentioned

in the examples are highlighted in the Architectural Map for ease of observation. Additionally, we

show coupling information for each game engine in a template as follows:

• The include graph density, as computed by Gephi.

• The count of frequent subsystem coupling patterns from Table 4.8 the game engine contains.

We chose to show these two items in the template because they support the understanding of

the Architectural Map visualisations. While game engines with a similar degree of coupling also

have very similar visualisations, the numerical representation of density is still different and enables

more accurate comparison. Moreover, the count of frequent subsystem coupling patterns serves as

an indicator of whether a game engine shares coupling patterns with its counterparts or if it exhibits

unique coupling patterns distinct from the majority.

For brevity, we only mention the names of files and folders in the examples, not their full

path. However, we provide the absolute paths for all mentioned files in Appendix B. We provide

this information because it may be useful for researchers who wish to further explore the files

we mention to understand the functionalities they implement and whether their coupling could be

reduced.

Unreal Engine

- Include Graph Density: 0,831

- Frequent Coupling Patterns: 11 out of 11 (100%)

Unreal Engine has the highest include graph density of all game engines we analysed. Its Core

(COR) subsystem contributes to this density by having both high centrality and in-degree. It pro-

vides base classes, such as UObject and UClass, which are inherited by classes in several subsys-

tems. They provide functionality such as garbage collection, reflection, serialization and automatic

59

integration with the editor48.

UnrealEngine-GMP

UnrealEngine-SKA

UnrealEngine-VFX

UnrealEngine-DEB

UnrealEngine-COR

UnrealEngine-RES

UnrealEngine-PLA

UnrealEngine-AUD

UnrealEngine-LLR

UnrealEngine-SDK UnrealEngine-PHY

UnrealEngine-HID

UnrealEngine-SGC

UnrealEngine-FES

UnrealEngine-EDI

UnrealEngine-OMP

Figure 4.14: Unreal Engine’s architectural model.

The World Editor (EDI) subsystem also has high in-degree and centrality, and it can be un-

derstood by observing its interface classes, for example, IPluginManager, which is used by other

subsystems to retrieve the list of plugins known to the local installation of Unreal Engine. It is

included, for example, by file SkeletalRenderGPUSkin.h from the Core (COR) subsystem, which

checks for whether a hair simulation plugin is installed. If the plugin is found, Unreal Engine will

disable deferred updates to skeletal data cache, because this feature needs continuous cache updat-

ing to work correctly 49.

Godot

- Include Graph Density: 0,482

- Frequent Coupling Patterns: 11 out of 11 (100%)

In Godot, the Core (COR) subsystem has a high in-degree because its files provide project con-

figuration data and implementations of mathematical functions used by several subsystems, such
48https://docs.unrealengine.com/4.26/en-US/ProgrammingAndScripting/

ProgrammingWithCPP/UnrealArchitecture/Objects/
49https://github.com/EpicGames/UnrealEngine/blob/f1b664d974/Engine/Source/

Runtime/Engine/Private/SkeletalRenderGPUSkin.cpp

60

https://docs.unrealengine.com/4.26/en-US/ProgrammingAndScripting/ProgrammingWithCPP/UnrealArchitecture/Objects/
https://docs.unrealengine.com/4.26/en-US/ProgrammingAndScripting/ProgrammingWithCPP/UnrealArchitecture/Objects/
https://github.com/EpicGames/UnrealEngine/blob/f1b664d974/Engine/Source/Runtime/Engine/Private/SkeletalRenderGPUSkin.cpp
https://github.com/EpicGames/UnrealEngine/blob/f1b664d974/Engine/Source/Runtime/Engine/Private/SkeletalRenderGPUSkin.cpp

as the files math funcs.h and project settings.h. The Scene Graph / Culling Optimizations (SGC)

subsystem has a high in-degree because it contains class definitions for game entities such as Win-

dow, Camera2D and Camera3D which are used by all graphics-related subsystems. Similarly, the

Resources (RES) subsystem also provides class definitions for game graphical resources such as

the class Mesh, which is “a type of Resource that contains vertex array-based geometry, divided in

surfaces”50.

godot-SDK

godot-EDI

godot-LLR

godot-RESgodot-SGC

godot-PHY

godot-FES

godot-COR

godot-VFX

godot-OMP

godot-DEB

godot-AUD godot-GMP

godot-SKA

godot-HID

godot-PLA

Figure 4.15: Godot’s architectural model.

The high in-degree and centrality of the World Editor (EDI) subsystem can be understood by ob-

serving the editor plugin.h file. It defines a class, EditorPlugin, which is inherited by classes in other

subsystems which integrate with Godot’s editor. For example, the file audio stream editor plugin.h

contains the AudioStreamEditorPlugin class, which inherits from EditorPlugin. It also includes sev-

eral files from the Audio (AUD) subsystem, such as audio stream player.h. O3DE’s World Editor

(EDI) subsystem employs a similar architecture, as we show in Section 4.8.2.

Panda3D

- Include Graph Density: 0,438

- Frequent Coupling Patterns: 10 out of 11 (90%)

50https://docs.godotengine.org/en/stable/classes/class_mesh.html

61

https://docs.godotengine.org/en/stable/classes/class_mesh.html

In Panda3D, the Gameplay Foundations (GMP) subsystem has a high in-degree because it con-

tains event management and task management features which are used by several subsystems. For

example, the file nonlinearImager.h from the Visual Effects (VFX) subsystem includes the file async-

TaskManager.h, which contains a class to “manage a loose queue of isolated tasks, which can be

performed either synchronously (in the foreground thread) or asynchronously (by a background

thread)”51.

panda3d-PHY

panda3d-HID

panda3d-SGC

panda3d-OMP

panda3d-GMP

panda3d-COR

panda3d-EDI

panda3d-SKA

panda3d-VFX

panda3d-FES

panda3d-PLA

panda3d-LLR

panda3d-AUD

panda3d-RES

panda3d-DEB

panda3d-SDK

Figure 4.16: Panda3D’s architectural model.

The Low-Level Renderer (LLR) subsystem has a high in-degree because of its display folder,

which contains files implementing graphics-related functionality used by the Scene Graph / Culling

Optimizations (SGC) and Visual Effects (VFX) subsystems. One of these files, graphicsState-

Guardian.h, implements a graphics state guardian (GSG), which receives high-level rendering in-

structions (e.g., drawing a character present in the scene graph) and, based on that, handling low-

level rendering instructions in a format the operating system and graphics hardware can understand.

As explained by Goslin and Mine [55, p. 112]:

“All code specific to rendering on a particular platform is contained within a well-

defined class called a graphics state guardian. After the system transforms and culls
51https://docs.panda3d.org/1.10/python/reference/panda3d.core.AsyncTaskManager

62

https://docs.panda3d.org/1.10/python/reference/panda3d.core.AsyncTaskManager

the scene graph, it hands off the graphics entities to the GSG for rendering. A game or

application only needs to interact with the scene graph, which means the only part of

the code that the system must port and optimize for a particular hardware platform is

the local version of the GSG class itself.”

O3DE

- Include Graph Density: 0,757

- Frequent Coupling Patterns: 11 out of 11 (100%)

In O3DE, both the Platform Independence Layer (PLA) and Core (COR) have high in-degree

because they centralize utilities and data structures used by several subsystems, such as Vector4.h,

a 4-dimensional vector data structure. Similarly, O3DE’s World Editor (EDI) subsystem provides a

common editor API which is included by files that wish to access editor features. For example, the

file AudioControlsEditorWindow.cpp, which implements an audio system control panel, includes

ToolsApplicationAPI.h, the file which implements several classes for the editor API52.

o3de-HID

o3de-LLR

o3de-EDI

o3de-SGC

o3de-OMP

o3de-RES

o3de-GMP

o3de-COR

o3de-FES

o3de-PHY

o3de-PLA

o3de-VFX

o3de-AUD

o3de-SKA

o3de-DEB

o3de-SDK

Figure 4.17: O3DE’s architectural model.

52https://docs.o3de.org/docs/user-guide/interactivity/audio/audio-controls-
editor/

63

https://docs.o3de.org/docs/user-guide/interactivity/audio/audio-controls-editor/
https://docs.o3de.org/docs/user-guide/interactivity/audio/audio-controls-editor/

The Skeletal Animation (SKA) subsystem has high centrality and its main component, the EMo-

tionFX animation gem, contains features that include and are included by several subsystems. For

example, the file MorphTargetEditWindow.h includes the file SpinBox.h from the Front-End (FES)

subsystem because it is a part of the UI animation editor which uses the SpinBox text input com-

ponent. Conversely, the Skeletal Animation (SKA) subsystem provides abstractions which are used

by Front-End (FES), such as AnimKey.h, a class which represents “a setting for a[n] [animation]

property at a specific time”53.

FlaxEngine

- Include Graph Density: 0,442

- Frequent Coupling Patterns: 11 out of 11 (100%)

In FlaxEngine, the World Editor (EDI) subsystem has high centrality and contains features that

both include and are included by other subsystems. For example, the file VisjectGraph.h, which is

responsible for FlaxEngine’s visual scripting system, is included by AnimGraph.h from the Skele-

tal Animation (SKA) subsystem. This inclusion exists because animation playback logic is also

represented as a graph in the editor, and therefore it uses the same data structure implementation.

FlaxEngine-AUD

FlaxEngine-RES

FlaxEngine-VFX

FlaxEngine-FES

FlaxEngine-HID

FlaxEngine-LLR

FlaxEngine-OMP

FlaxEngine-COR

FlaxEngine-EDI

FlaxEngine-PHY

FlaxEngine-DEB

FlaxEngine-GMP

FlaxEngine-SDK

FlaxEngine-PLA

FlaxEngine-SKA

FlaxEngine-SGC

Figure 4.18: FlaxEngine’s architectural model.

53https://docs.o3de.org/docs/user-guide/visualization/cinematics

64

https://docs.o3de.org/docs/user-guide/visualization/cinematics

Besides being included, we observe the World Editor (EDI) subsystem also includes files from

many subsystems. The game cooking process, which “compiles the game scripts and processes

all used assets to output standalone game files for the destination platform”54, is an example. The

file GameCooker.cpp from the World Editor (EDI) subsystem is responsible for game cooking and

includes 37 files across several subsystems. This inclusion exists because the game compilation

depends on OS-specific settings (provided by classes from the Platform Independence Layer (PLA))

and high-level utilities such as JSON processing (provided by Core (COR)).

GamePlay3d

- Include Graph Density: 0,489

- Frequent Coupling Patterns: 11 out of 11 (100%)

In GamePlay3d, the Profiling & Debugging(DEB) subsystem has a high in-degree because its

DebugNew.h file is included by several subsystems to replace global new and delete C++ operators

for “memory tracking”55. We observe the Logger.h file is also frequently included for debugging

purposes. Even though debugging code would normally be removed upon pushing to the master

branch, we observed four files in GamePlay3d’s repository still include either DebugNew.h or Log-

ger.h. We observed a similar implementation and use of debugging utilities in Urho3d, as we show

in Section 4.8.2.

The Gameplay Foundations (GMP) subsystem has high centrality, which indicates it has a gate-

keeper role. For example, the file lua Rectangle.h, which is part of the Lua bindings to Game-

Play3d’s scripting system, includes the file Rectangle.h from the Low-Level Renderer (LLR) sub-

system. This way, developers write Lua code to draw a rectangle, which is then processed by

GamePlay3d’s scripting system and mapped into a C++ call to the renderer. If the scripting feature

did not exist, developers would have to write C++ to call the renderer directly.
54https://docs.flaxengine.com/manual/editor/game-cooker/index.html
55https://github.com/gameplay3d/gameplay/blob/4de92c4c6f/gameplay/src/DebugNew.

h

65

https://docs.flaxengine.com/manual/editor/game-cooker/index.html
https://github.com/gameplay3d/gameplay/blob/4de92c4c6f/gameplay/src/DebugNew.h
https://github.com/gameplay3d/gameplay/blob/4de92c4c6f/gameplay/src/DebugNew.h

gameplay-LLR

gameplay-PLA

gameplay-COR

gameplay-DEB gameplay-FES

gameplay-AUD

gameplay-SKA

gameplay-PHY

gameplay-HID

gameplay-SDK

gameplay-VFX

gameplay-OMP

gameplay-SGC gameplay-RES

gameplay-GMP

gameplay-EDI

Figure 4.19: GamePlay3d’s architectural model.

Urho3d

- Include Graph Density: 0,505

- Frequent Coupling Patterns: 11 out of 11 (100%)

In Urho3d, Core (COR) and Third-Party SDKs (SDK) are both frequently included and central

because they contain data structures and utilities used by several subsystems, such as 2D and 3D

matrices (Matrix2.h, Matrix3.h), threads (Thread.cpp) and mutual exclusion flags (Mutex.cpp).

Similarly to what we observed in GamePlay3d, Urho3d’s Profiling & Debugging(DEB) subsys-

tem is one of the most frequently included by other subsystems and its features are centralized in

a single file, DebugNew.h. It contains code that replaces the global new C++ operator to allow for

“easier memory leak detection on MSVC compilers”56. Even though debugging code would nor-

mally be removed upon pushing to the master branch, we observed 235 files in Urho3d’s repository

include it.
56https://github.com/urho3d/urho3d/blob/e0ce107356b255bf2e24d94a41d00b512b9ce633/

Source/Urho3D/DebugNew.h

66

https://github.com/urho3d/urho3d/blob/e0ce107356b255bf2e24d94a41d00b512b9ce633/Source/Urho3D/DebugNew.h
https://github.com/urho3d/urho3d/blob/e0ce107356b255bf2e24d94a41d00b512b9ce633/Source/Urho3D/DebugNew.h

urho3d-VFX

urho3d-PHY

urho3d-FES

urho3d-SGC

urho3d-LLR

urho3d-COR

urho3d-GMP

urho3d-SKA

urho3d-SDK

urho3d-RES

urho3d-PLA urho3d-EDI

urho3d-HID

urho3d-OMP

urho3d-AUD

urho3d-DEB

Figure 4.20: Urho3d’s architectural model.

Cocos2d-x

- Include Graph Density: 0,363

- Frequent Coupling Patterns: 9 out of 11 (82%)

In Cocos2d-x, the Core (COR) subsystem is both frequently included and central to Cocos2d-

x because it contains data structures and utilities used by several subsystems, such as 2D and 3D

vectors (Vec2.cpp, Vec3.cpp) and a random number generator (ccRandom.cpp).

The Platform Independence Layer (PLA) and Visual Effects (VFX) subsystems are among the

most central, which indicates they have a gatekeeper role. For example, the CCImage.h file, which

defines a class to represent a game 2D image, includes CCTexture2D.h from Low-Level Renderer

(LLR), and is included by CCAutoPolygon.h from the Visual Effects (VFX) subsystem. The latter

converts images into polygon sprites for renderer optimization purposes57. Therefore, the Plat-

form Independence Layer (PLA) provides a link between fine-grained features and the more coarse-

grained domain classes they use.
57https://docs.cocos2d-x.org/cocos2d-x/v3/en/sprites/polygon.html

67

https://docs.cocos2d-x.org/cocos2d-x/v3/en/sprites/polygon.html

cocos2d-x-RES

cocos2d-x-LLR

cocos2d-x-COR

cocos2d-x-OMP

cocos2d-x-EDIcocos2d-x-PLA

cocos2d-x-SKA

cocos2d-x-SGC

cocos2d-x-VFX

cocos2d-x-DEB

cocos2d-x-HID

cocos2d-x-AUD

cocos2d-x-SDK

cocos2d-x-FES

cocos2d-x-GMP

cocos2d-x-PHY

Figure 4.21: Cocos2d-x’s architectural model.

Piccolo

- Include Graph Density: 0,273

- Frequent Coupling Patterns: 7 out of 11 (64%)

In Piccolo, the Resources (RES) subsystem is both frequently included and central because it

contains definitions of game entities, such as mesh.h used by Low-Level Renderer (LLR) and skele-

ton data.h used by Skeletal Animation (SKA). It also contains a configuration and asset manager

that is used by the World Editor (EDI) and Gameplay Foundations (GMP) subsystems.

The Low-Level Renderer (LLR) subsystem has high centrality because contains files that depend

on Third-Party SDKs (SDK), Gameplay Foundations (GMP), Physics (PHY) and Front-End (FES).

For example, the file ui pass.cpp, which is responsible for the UI rendering step, includes the file

window ui.h from the Front-End (FES) subsystem, which defines a class which represents a UI

window in a platform-agnostic way. At the same time, the file render camera.h from the Low-Level

Renderer (LLR) subsystem implements a RenderCamera class which is included by files in the Hu-

man Interface Devices (HID) subsystem to adjust camera position according to mouse movement.

68

Piccolo-PHY

Piccolo-EDI

Piccolo-RES

Piccolo-LLR

Piccolo-FES

Piccolo-SKA

Piccolo-COR

Piccolo-DEB

Piccolo-AUD

Piccolo-PLA

Piccolo-GMP

Piccolo-SGC

Piccolo-OMP

Piccolo-SDK

Piccolo-HIDPiccolo-VFX

Figure 4.22: Piccolo’s architectural model.

OlcPixelGameEngine

- Include Graph Density: 0,000

- Frequent Coupling Patterns: 0 out of 11 (0%)

As we explain in Section 4.8.1, most of OlcPixelGameEngine’s subsystems are small and con-

tained in a single .h file. These subsystem files do not include each other, making this game engine

fully decoupled. As an educational game engine, this is a design choice made by the game engine

developers, which delegates to OlcPixelGameEngine’s users the responsibility of coupling subsys-

tems as they see fit. For this reason, in-degree, centrality and density measurements equal zero

for all OlcPixelGameEngine subsystems, and therefore no coupling patterns exist as we show in

Figure 4.23.

While a fully decoupled game engine may facilitate users’ comprehension of its architecture,

this design may not align with the needs of professional game development. Video game developers

expect a game engine to offer a range of ready-to-use features, allowing them to initiate video game

development without the need to add or modify parts of the game engine’s architectural structure.

69

olc-PHY

olc-VFX

olc-AUD

olc-DEB

olc-COR

olc-EDI

olc-SKA

olc-PLA

olc-LLR

olc-SGC

olc-OMP

olc-GMP

olc-RES

olc-HID

olc-SDK

olc-FES

Figure 4.23: OlcPixelGameEngine’s architectural model.

Summary

We summarize our findings to answer RQ2 and discuss patterns we found in subsystem cou-

pling, as well as their individual and shared responsibilities within the game engine. The respon-

sibilities we found by analysing the source code of the selected game engines widely match the

descriptions from the reference architecture as we show in Figure 2.7. However, different from the

reference architecture, our results can demonstrate practically how these subsystems work together

and which role each of them plays.

subsystem Coupling Patterns

• Frequent Patterns: Out of the ten game engines we analysed, eight share the same frequent

coupling patterns. This is evidence that game engines share architectural commonalities de-

spite their differences in file count, subsystem count and features.

• Foundations: Subsystems with high in-degree play the role of foundations for their game

engines by providing features used by several other subsystems, most frequently Core (COR)

and Platform Independence Layer (PLA). We show examples of foundation subsystems in

Unreal Engine (Section 4.8.2) and O3DE (Section 4.8.2).

70

• Gatekeepers: Subsystems with high centrality play the role of gatekeepers, both using and

providing features for several subsystems, most frequently Platform Independence Layer

(PLA) and World Editor (EDI). We show examples of gatekeeper subsystems in Cocos2d-

x (Section 4.8.2) and GamePlay3d (Section 4.8.2).

• Peripherals: Audio (AUD), Physics (PHY) and Human Interface Devices (HID) are among

the least central subsystems overall. This shows these subsystems either include many others

or are included by many others, but not both at the same time.

Other Findings

• Highest and Lowest Graph Density: Unreal Engine and O3DE have the highest include

graph density of all game engines we analysed; Piccolo and OlcPixelGameEngine have the

lowest. While we observed a positive correlation between density and file count, it does not

imply causation. We discuss how this aspect will be explored in future work in Section 6.1.

• Relevance of Third-Party Libraries: While playing a foundational role in several game en-

gines, the Third-Party SDKs (SDK) subsystem is among the lowest in-degree overall. How-

ever, its relevance may have been diminished by the fact we detected this subsystem in only

4 out of 10 game engines.

• Debugging Code: GamePlay3d, Urho3d and Unreal Engine have highly coupled Profiling &

Debugging(DEB) subsystems because they have method calls for error logging and memory

profiling in several files.

4.8.3 Unclustered Files/Folders

As we explain in Section 4.7, we have a number of files/folders in each game engine which were

not clustered into any subsystem because their responsibilities were not described in the reference

architecture. As we show in Section 2.3, we expanded our analysis to other game engine architec-

tures but observed they also do not describe the responsibilities of these files. Therefore, we discuss

two possible reasons why these responsibilities are not considered to be subsystems in any of the

analysed software architectures:

71

New Technologies: The use of AR/VR technology in video games is relatively new and game

engines have implemented it only recently. For example, the commit which adds the folder to Godot

is from 2017 58, and we observed the same for Unreal Engine’s folder 59. This can be explained

by the fact the game engine architectures we analysed were all created in the early 2000s, including

Gregory [6], who published the first edition of their book on game engine architecture in 2009.

Therefore, these architectures do not represent all currently popular game engine technologies.

Low Generalisability: There is no consensus among game engine designers as to whether some

features are game-specific or generalisable. For example, while Gregory [6, p. 33] describes Artifi-

cial Intelligence as a “game-specific” feature, these are also provided by Godot and Unreal Engine,

as we show in Table 4.7.

However, the extent to which a feature is generalisable is open to debate. For example, Juan

Linietski, Godot’s creator, wrote the following about terrain modelling: “I insist [the] terrain [fea-

ture] has to be an add-on. There are just *so many different ways* to do it and all are great but

incompatible with each other” 60. Therefore, he argues that, if terrain modelling cannot be gener-

alised, it would be better implemented as an add-on, which is external to the game engine, and not

as a subsystem, which is within the game engine. This point of view is supported by Thorn [5, p.9]:

“The idea the game engine is the heart or core containing almost all the general-

izable components that can be found in a game implies that there are other parts of a

game and of game development that do not belong to the engine component on account

of their specific, nongeneralizable nature. These parts include at least game content and

game tools.”

There is also debate as to whether test and build tools should be considered game engine sub-

systems. For example, while studies argue that there is “a clear need for open-source, general tools”

for video game testing [56], we did not find this kind of feature in the game engines we analysed.

The unit test files we found, for example, in O3DE, are for O3DE itself. Therefore, by acting as a
58https://github.com/godotengine/godot/commit/ca4f055db0a4e6f9ea7b38cde14dc85ada3330e2
59https://github.com/EpicGames/UnrealEngine/commit/14d4bfaf3d10a67e7d7d8b984391d4f65070870a
60https://twitter.com/reduzio/status/1712403709785710598

72

https://github.com/godotengine/godot/commit/ca4f055db0a4e6f9ea7b38cde14dc85ada3330e2
https://github.com/EpicGames/UnrealEngine/commit/14d4bfaf3d10a67e7d7d8b984391d4f65070870a
https://twitter.com/reduzio/status/1712403709785710598

support for the game engine’s own development, we argue test and build functionalities should not

be considered subsystems.

In summary, we observed that what differentiates a subsystem from a feature is its generalisation

and game-making capabilities. The task of the game engine architect is defining what they want the

game engine to do and with which level of generalisation. This way, they can give developers a

starting point for building functionality in an understandable and consistent way.

73

Chapter 5

Evaluation

In this section, we evaluate the effectiveness SyDRA in helping developers better understand

and maintain game engines. We also use architectural descriptions in literature as a reference for

comparison with our findings. We perform a qualitative evaluation and a user study. By performing

the evaluation, we answer the following research questions:

RQ1: (Compliance, Qualitative) To what extent do the game engines we selected for archi-

tecture recovery with SyDRA match the architectural descriptions provided in the literature?

We compare the reference architecture used for subsystem detection in SyDRA to architectures pro-

posed by four other authors. We discuss how our subsystem counts and coupling patterns converge

and diverge with each of these architectures, and how a more complete architecture could be created

by combining information from these different sources.

RQ2: (Understanding/Maintainability, User Study) Does SyDRA help developers understand

and maintain the architecture of game engines? We conduct a user study with 16 software

developers where they use SyDRA to perform architectural understanding and impact analysis tasks

in Godot. We discuss how the use of SyDRA influences task completion time and correctness.

74

5.1 RQ1 - To what extent do the game engines we selected for archi-

tecture recovery with SyDRA match the architectural descriptions

provided in the literature?

We chose the “Runtime Game Engine Architecture” by Gregory [6, p. 33] as our reference

architecture for subsystem detection with SyDRA, as we explain in detail in Section 2.3. However,

before applying SyDRA to open-source game engines, we were not sure whether we would find a

match between what the reference architecture states a “usual” game engine looks like and what

open-source game engine developers actually build. After studying the folder structure and include

relationships of 10 open-source game engines, we observed that the reference architecture and actual

game engine architectures share many similarities, which we discuss in detail in Section 4.7.1 and

Section 4.7.2.

However, we are aware these matches might be biased because we used a single reference

architecture, and therefore we did subsystem detection with the concepts of this architecture in

mind only. In this section, we compare the “Runtime Game Engine Architecture” to architectures

proposed by four other authors: Bishop et al. [2], Rollings and Morris [4], Sherrod [3] and Thorn

[5], which we presented in Section 2.3. We discuss how our subsystem counts and coupling patterns

converge and diverge with each of these architectures, and how combining information from these

different sources enables us to have a more holistic view of game engine architecture.

In Figure 5.1, we show how the reference architecture and the architectures from four other

authors diverge in terms of naming but converge in terms of subsystem functionality. Three sub-

systems are unanimous: Audio, Graphics and Input. Given all modern video games draw things on

screen, play sounds and receive commands from the player via an input device (e.g., a joystick), this

is in line with our intuition about video games. We observed these subsystems are also frequently

present in open-source game engines. We found a Low-Level Renderer (LLR) subsystem in 9 out

of 10 game engines, and Audio (AUD) and Human Interface Devices (HID) in 8 out of 10 game

engines.

The only subsystems described solely by Gregory [6] are World Editor (EDI) and Third-Party

75

Audio Manager

Music Engine

Sound Engine

Audio

Graphics Render ManagerLow-Level
Renderer

Scene ManagerScene Graph/Culling
Optimization

Front End Menuing System

User InterfaceSkeletal
Animation

Visual
Effects

Configuration System

CoreMath Library

Engine Core Online
Multiplayer Networking

Profiling and
Debugging Error Manager

Human Interface
Devices Input

Gregory's
Architecture

Gameplay
Foundations

Logic Engine

Scripting

Dynamics

Event Handler

(Thorn)

(Rolllings)

(Rolllings)

(Bishop, Rollings) (Thorn)

(Bishop, Rollings, Thorn)

(Thorn)

(Rolllings)

(Rolllings)

(Sherrod)

(Rolllings)

(Rolllings)

(Bishop)

(Sherrod)

(Sherrod)

(Sherrod)

(Rolllings)

(Thorn)

Figure 5.1: Subsystem naming differences among architectures

SDKs (SDK). In tandem, these subsystems are among the less common in open-source game en-

gines. We found a World Editor (EDI) subsystem in 6 out of 10 game engines, and Third-Party

SDKs (SDK) in 5 out of 10 game engines. This is evidence that some architects and developers

might not think of these subsystems as essentials, or rather as subdivisions of other subsystems.

For example, one could argue that instead of having one editor that supports all subsystems, each

subsystem could encapsulate its own editor (e.g. audio editor, animation editor, etc.), leaving the

editor abstraction for another subsystem such as Core (COR).

Moreover, the definition of the game engine core diverges between architectures. On one hand,

Bishop et al. [2] and Thorn [5] do not acknowledge the existence of a subsystem named “core” or

mention its responsibilities. On the other hand, Gregory [6] and Sherrod [3] not only represent the

76

game engine core as a subsystem in their architecture but also describe its function in detail. Gregory

[6, p.39] describes core as “a grab bag of useful software utilities” that includes, for example, math

libraries, data structures and game engine configuration files. Rollings and Morris [4, p. 626] also

describes “configuration system” as a distinct subsystem, but does not refer to it as the core of the

engine.

Sherrod [3] provides a detailed description of the game engine core and divides it into two parts:

math library and engine core. The engine core contains utilities that are “parts of the game engine

framework that are not specific to any one system and are used to aid in the completion of a task”.

We observe these definitions of core match what we found in files and folders of open-source game

engines, which we describe and discuss in detail in Section 4.7.1.

Also as discussed in Section 4.7.1, we found several features in open-source game engines which

are not described by any architectures, such as AR/VR, AI character behaviour, AI navigation and

terrain creation. We argue that an extended version of the “Runtime Game Engine Architecture”

could be created by considering these newly found subsystems, as well as a wider range of naming

variants and subdivisions proposed by Gregory [6] and other authors. In future work, we intend to

re-apply SyDRA while using this extended “Runtime Game Engine Architecture” as a reference for

the subsystem detection step. We believe that making the reference architecture more representative

of the actual structure of most game engines may enable us to observe more fine-grained coupling

patterns and a more accurate emergent architecture.

5.2 RQ2: Does SyDRA help developers understand and maintain the

architecture of game engines?

We conducted an observational comparative user study with 16 developers to determine the

qualitative success of SyDRA in supporting developer understanding and maintenance of game

engines. We based our study design on another similar study by Briand et al. [8, p. 518], hereby

called “original study”.

In the original study, the authors observed and measured the impact of “good” and “bad” object-

oriented design on system understandability and maintainability. In our study, we observe and

77

measure the impact of the use of SyDRA on game engine understandability and maintainability. We

asked 16 developers to perform nine tasks of architectural pattern identification and impact analysis

for the Godot game engine. While the control group performs these tasks aided only by Visual

Studio Code, the treatment group is also aided by a Moose model, which is the result of applying

SyDRA to Godot.

In this section, we describe the user study. In Section 5.2.1, we describe the rationale of the study

and its null and alternative hypotheses. In Section 5.2.2, we explain the participant selection process.

In Section 5.2.3 we explain our choices of game engines and tools, in Section 5.2.5 our process of

task elaboration and in Section 5.2.7 how the division between control and treatment groups was

made. In Section 5.2.8, we explain the dependent variables of the study and how we measured

them. In Section 5.2.6, we explain the steps performed by participants and their interaction with

us. In Section 5.2.9 we explain the statistical analysis of the study data concerning normality and

statistical significance. Finally, we show the results of the study in Section 5.2.10, discuss them in

Section 5.2.11, and discuss possible threats to validity in Section 5.2.12.

5.2.1 Hypotheses

The null hypothesis is stated as:

• H0 The use of SyDRA provides no significant difference in the understandability and main-

tainability of game engine architecture.

The alternative hypotheses, i.e., what is expected to occur, are stated as:

• H1 Game engine architecture is significantly easier to understand with the use of SyDRA.

• H2 It is easier to perform impact analysis (locate changes) on game engines with the use of

SyDRA.

5.2.2 Participants

We selected 16 participants for the study, all of them over 18 years of age and with prior ex-

perience in object-oriented programming. The number of participants was determined before the

78

beginning of the study by using a two-sample T-test, which is explained in detail in Section 5.2.9.

We recruited participants via email or by asking them in person. Most participants based in Canada

chose to participate in person at the Griottes Lab at Concordia University in Montreal, Canada.

However, most participants participated remotely by connecting to a Windows 10 virtual machine

we set up on the Microsoft Azure cloud service.

In Table 5.1 and sub-tables we show study participant demographics. Most participants are

men under 30, currently based in either Brazil or Canada. They are mostly students, researchers or

software developers outside the video game industry. They have mostly 2 to 5 years of software

development experience and have used Unity for student or hobby projects. However, we observed

participants’ familiarity with game engine usage and development varies greatly. For example,

while 57% of the participants reported having no experience with game engines, two participants

reported coding their own game engines. This diversity of experience levels is important to our

study because it allowed us to observe how the tools we selected for the study were used differently

by each kind of developer and the challenges faced by each of them.

While the selected participants were very diverse with regard to development experience, they

were less diverse with regard to age, gender and country of residence. However, these demographics

match those found in well-known yearly surveys about the video game industry such as GDC’s 2023

State of the Game Industry Report1 and IGDA’s Diversity in the Game Industry Report 20212. We

discuss the influence of diversity in our study results and how we address related threats to validity

in Section 5.2.12.

5.2.3 Experimental Materials

In this study, participants analysed Godot3, a cross-platform, free and open-source game engine

released by Juan Linietsky and Ariel Manzur in 2014. We chose Godot due to its relevance to the

open-source developer community on GitHub, as explained in Section 4.1. While control group

participants used exclusively Visual Studio Code to analyse Godot’s source code, treatment group

participants used both Moose + Visual Studio Code.
1https://reg.gdconf.com/state-of-game-industry-2023
2https://igda.org/dss
3https://github.com/godotengine/godot

79

https://reg.gdconf.com/state-of-game-industry-2023
https://igda.org/dss
https://github.com/godotengine/godot

Table 5.1: Demographics of the user study participants

(a) Current job position

Job position Count

Student/Researcher 8
Non-Video Game Developer 5
Video Game Developer 2
Other: Software Eng. Teacher 1

(b) Years of software development experience

Years of experience Count

Between 2 and 5 years 7
Between 5 and 10 years 5
More than 10 years 2
Between 0 and 2 years 2

(c) Gender

Gender Count

Male 13
Female 3
Other 0
I prefer not to say 0

(d) Country of residence

Country of residence Count

Canada 8
Brazil 6
France 1
United Kingdom 1
I prefer not to say 0

(e) Age group

Age group Count

23 to 27 years 7
33 to 37 years 5
28 to 32 years 2
18 to 22 years 1
38 to 42 years 1
43 to 47 years 0
48 years or older 0
I prefer not to say 0

(f) Type of game engine experience

Game engine experience Count

I never used a game engine 7
I have used game engines as a
student/hobbyist

6

I have used game engines as a
video game developer

2

I have used game engines as a
game engine developer

1

(g) Game engines used (multiple choices allowed)

Game engine Count

I never used a game engine 8
Unity 8
Godot 3
Unreal Engine 3
Other: “I coded my own game engine” 2
CryEngine or any of its derivatives (e.g. Amazon Lumberyard, O3DE) 0

80

We created instructional documents to teach participants to use both tools. In these documents,

we provided step-by-step instructions on how to use tool features pertinent to the study, such as

searching for files. We provided screenshots to illustrate the instructions and, at the end of the

documents, optional exercises to help participants further familiarize themselves with the tools. We

explain how these documents were introduced and used by participants in Section 5.2.6.

In this section, we give an overview of Moose’s and Visual Studio Code’s main features, how

they were used by participants and our rationale for choosing these tools for the study.

5.2.4 Visual Studio Code

Figure 5.2: Visual Studio Code set up for the study, showing a C++ file from Godot Engine

Visual Studio Code4 is a source code editor released by Microsoft in 2015. It supports multiple

programming languages and allows users to write, execute and debug code. It also provides utilities

to aid code editing, such as code folding, syntax highlighting and word search both for single or

multiple files. During the study, control group participants located files and folders inside Godot’s

repository, read the source code and searched for words and file names as directed by the task

statements, as we show in Figure 5.2.

We chose Visual Studio Code due to its popularity among professional developers. According

to the Stack Overflow Developer Survey 2023, 74.09% of professional developers and 78.39% of
4https://code.visualstudio.com/

81

https://code.visualstudio.com/

developers learning to code use Visual Studio Code5. By asking our participants to use a tool

that they are likely to be familiar with, we decrease learning effects on the study, as discussed

in Section 5.2.12. Moreover, Visual Studio Code supports C++, the language in which Godot is

written, is cross-platform and can be installed and distributed freely without the need for a licence.

This platform and license flexibility allowed us to promptly set up a development environment for

the participants locally and on the cloud, as explained in Section 5.2.2.

Moose

Figure 5.3: Moose set up for the study, with Architectural Map visible on the top right

Moose 10 is a platform for software analysis we use in the implementation of SyDRA, as ex-

plained in Section 4.5 and Section 4.6. During the study, treatment group participants located files

and folders using Moose’s Architectural Map visualisation (Figure 5.2, top right) and propagated

them to a built-in source code browser to inspect the source code (Figure 5.2, bottom). Partici-

pants could also launch Visual Studio Code from Moose’s built-in editor to use features such as
5https://survey.stackoverflow.co/2023/#technology-most-popular-technologies

82

https://survey.stackoverflow.co/2023/#technology-most-popular-technologies

code folding, syntax highlighting and word search, not available on Moose. They could also use

Moose’s tag browser to see the list of files clustered into each subsystem, represented as coloured

tags (Figure 5.2, top left).

We chose Moose because we used it in the implementation of SyDRA, and the objective of

the user study is to evaluate whether this implementation helps developers understand and maintain

game engines. We also chose Moose because it is cross-platform, free and open-source, and there-

fore allowed us to promptly set up a development environment for the participants locally and on

the cloud, as explained in Section 5.2.2.

5.2.5 Experimental Tasks

Participants are expected to answer nine tasks during the study, which are divided into two

parts: architectural understanding and impact analysis. In architectural understanding tasks, par-

ticipants are asked to explain game engine subsystems and dependencies between files. In impact

analysis tasks, participants are asked to point out which files should be changed as a result of a

change/removal of functionality in another part of the system. Participants performed seven archi-

tectural understanding tasks and two impact analysis tasks.

We wrote our task statements based on those provided in Appendix A of the original study [8,

p. 527]. We changed the statements slightly to make them easier for novice developers to understand

and also to conform them to the scope of analysis of our Moose model. For example, while the

original study asked participants to identify classes and operations, we could not ask participants

to do the same with a Moose model because it is more coarse-grained, containing only files. The

changes we did are described in Table 5.2.

Task statements were also slightly adapted to reflect the steps participants in different groups

had to perform to find files in the tools they were using. For example, while in Task 2 we ask

treatment group participants to “Expand the Audio subsystem” and then “propagate” a given file,

we ask control group participants to search the file by name and then open it (see Appendix A,

Table A.1 and Table A.2 for reference). This way we make sure both participants are directed to the

same file, even though they follow different steps to find and open it.

We have no reason to believe that the changes we made to the task statements changed their

83

Table 5.2: Original words used by Briand et al. [8, p. 527] in their task statements and how we
changed them

Original study Our study

Class File

Component File

Externally visible system operations Functionalities

Services Functionalities

System Subsystem

meaning or their level of difficulty compared to the original study. As for the choice of files and

subsystems for the tasks, we also have no reason to believe any given group of files or subsystems is

significantly easier for participants to understand than another. However, some subsystems contain

fewer files than others, and we favoured subsystems with fewer files when elaborating the tasks. We

did so because there are tasks where participants are expected to list subsystem files, and writing the

names of hundreds of files is unfeasible. Besides file count, we did not follow any other subsystem

selection criteria, the same as done in the original study.

5.2.6 Procedures

Before the actual study took place, we performed a trial study with three participants to ensure

the task statements were understandable and the tasks feasible. The trial study participants were

selected following the same criteria as the actual study and also performed the same tasks. The

feedback they provided helped us develop a time estimation for task completion, and improve task

statements and instructional documents. The answers they provided were not considered in our

results and they were not invited to participate in the actual study.

The actual study session was divided into four parts. First, participants were asked to read

and follow the instructional document described in Section 5.2.3. As soon as participants were

ready, they could choose to move on to the second stage, which was performing the tasks. Finally,

participants were asked to complete a debriefing questionnaire and an exit interview, where we

asked participants for their thoughts about the tasks they performed. For the second and third parts,

participants submitted a form with their answers, so we could record both the answers and the time

84

elapsed between them.

The debriefing questionnaire is divided into two parts (see Appendix A, Table A.3, for refer-

ence). In questions 1 to 7, we ask participants about their professional backgrounds and demo-

graphics. In questions 8 to 13 we ask participants to make a workload assessment of the tasks they

performed, based on the NASA TLX (Task Load Index) questionnaire. We chose the NASA TLX

questionnaire because it has been used for over 20 years by several studies that evaluate software

development [57, p.668], interface design and decision-making activities [58, p.906].

We use the information provided by participants in the debriefing questionnaire to qualitatively

measure their experience with the tools they used and the tasks they performed. For example, we

can analyse the level of stress of participants who answered a high number of tasks correctly to

understand how hard it was for them to achieve a good performance. Similarly, we can correlate

their performance with their number of years of development experience and familiarity with game

engines to understand how each of these variables influences performance. We discuss these com-

parisons in more detail in Section 5.2.10.

After the debriefing questionnaire, we conducted a semi-structured exit interview. We asked

participants whether they would like to share their thoughts about the tasks they completed and the

tools they used in the study. In the case they accepted, we listened to their comments, wrote them

down and later analysed them using open card sorting, which we discuss in Section 5.2.11. In case

the participants did not want to share their thoughts, we told them their participation in the study

was finished.

We remained available by chat, email or in person throughout the actual study session to provide

support to participants. Our support was limited to clarifying task descriptions when asked and

resolving technical issues with the computer and tools related to the study. When the study was

administered in person, we remained sitting a few meters away from the participants in a position

where we could not see their screens. We chose to physically distance to mitigate the observer

effect, as we discuss in Section 5.2.12. For the same reason, we did not enforce a time limit for task

completion. When participants asked us about the expected completion time, we told them the tasks

could be completed in 40 to 60 minutes, but they could take as long as they considered necessary.

85

5.2.7 Design

Table 5.3: Experimental Design

Variable X Variable Y - Tool
Run Visual Studio Code Moose + Visual Studio Code

1 A B

We employed a between-group 2 x 1 design, as described in Table 5.3. The independent vari-

ables are the experimental runs (X) and the tools used to analyse the game engine (Y). Under the

names of the tools, the letters denote control (A) and treatment (B) groups. The assignment of par-

ticipants to the groups was done randomly, as a way to control learning and fatigue effects. Tasks

were shown in random order to participants, except for Tasks 3 and 4 which depend on each other

and therefore cannot be understood if shown in inverse order.

5.2.8 Dependent Variables and Their Collection Procedures

We measured the level of game engine architectural understanding by the participants by mea-

suring the time they spent on tasks and how correctly they completed tasks. From this data, we

derived six dependent variables, described as follows in the original study [8, p. 518]:

• UndTime: Time spent on architectural understanding tasks, in seconds.

• UndCorr: Correctness of architectural understanding tasks (e.g. the number of tasks correctly

answered).

• ModTime: Time spent on impact analysis tasks, in seconds.

• ModComp: Completeness of the impact analysis, obtained by dividing the number of correct

files informed by the participant by the actual number of correct files. The maximum value is

two because there are two impact analysis tasks.

• ModCorr: Correctness of the impact analysis, obtained by dividing the number of correct files

informed by the participant by the number of files informed by the participant. The maximum

value is two because there are two impact analysis tasks.

86

• ModRate: Modification rate, obtained by dividing the number of correct files informed by the

participant by ModTime.

5.2.9 Data Analysis Procedure

Data was collected for all participants during a single experimental run which lasted for about

one month. Therefore, seven data points were available for the control group and seven for the

treatment group. All participants answered all tasks and debriefing questions. In this section, we

describe the statistical techniques we employed before the study to determine the number of partic-

ipants, as well as to determine data normality, a measurement that will be later used to determine

statistical significance.

Number of participants

Our first data analysis procedure was done to determine the number of study participants. We

used a two-sample T-test to determine the number of participants we would need to detect a statis-

tically significant difference in the dependent variables. The two-sample T-test takes four inputs:

• Significance level (α): we considered α = 0.05, which is generally considered adequate for

quantitative studies. [59, p.150]

• Difference (delta): minimum difference in the value of a variable we wish to detect in the

study. We considered variables pertinent to each dependent variable.

• Statistical power (power): the probability the study will find a statistically significant differ-

ence. We considered power=0.9.

• Standard deviation (s): We considered the values provided in the original study for each

dependent variable.

We ran the two-sample T-test considering all the dependent variables of the study as we show in

Table 5.4. For the UndTime and ModTime variables we chose delta=60.00 because any difference

lower than 60 seconds would hardly be of practical use in game engine development work situations.

For example, considering the study’s architectural understanding tasks take up to 60 minutes to

87

Table 5.4: Two-sample T-test results for study dependent variables

Variable Difference (delta) Std deviation (s) Total participants

UndTime 60.00 9.61 6
UndCorr 3.00 1.38 12
ModTime 60.00 9.74 5
ModComp 0.66 0.22 14
ModCorr 1.00 0.12 6
ModRate 0.65 0.31 11

complete, if we showed that SyDRA allows developers to save less than 60 seconds of work time

that would not be significant, given it represents less than 2% of the total work time.

Concerning task correctness, we want to detect a minimum 30% difference. Given there are

seven architectural understanding tasks and two impact analysis tasks, this corresponds to delta=2

for UndCorr and delta=1 for ModCorr. The delta values for ModComp and ModRate were based

on the average values provided in the original study for the “Good OO Design” scenario [8, p.520].

Finally, the largest value we obtained by using the two-sample T-test was 14 participants, which

means this is the minimum number of participants we would need to detect a statistically significant

difference on all dependent variables. As described in Section 5.2.7, we exceeded this value by two,

totalling 16 participants divided equally between control and treatment groups.

Normality

As in the original study, we ran normality tests for data collected for the dependent variables.

We used both the Kolmogorov-Smirnov test and the Shapiro-Wilks’ W test. As we show in Ta-

ble 5.5, the variables’ p-values are all below 0.05, which means their distributions are non-normal.

Therefore just like in the original study, we use a non-parametric significance test that is adequate

to non-normal data, the Wilcoxon Matched Pairs test. We discuss statistical significance testing and

implications in Section 5.2.9.

Statistical Significance

Same as in the original study, we ran the Wilcoxon Matched Pairs test to determine whether

a significant difference was detected for each of the variables, as we show in Table 5.6. Column

88

Table 5.5: P-values obtained with normality tests of the UndTime, UndCorr and ModTime variables

Variable Kolmogorov-Smirnov Shapiro-Wilks’ W

UndTime p < 2.2× 10−16 p = 0.00582
UndCorr p = 2.8× 10−14 p = 0.00048
ModTime p < 2.2× 10−16 p = 0.00916
ModComp p = 5.2× 10−8 p = 0.01114
ModCorr p = 1.1× 10−5 p = 0.03985
ModRate p = 6.7× 10−4 p = 0.03805

Table 5.6: Wilcoxon Matched Pairs test results for study dependent variables

Variable Z Crit. Z0.95 p-value

UndTime 20.0 5 0.8438
UndCorr 10.5 5 0.6049
ModTime 5.0 5 0.0781
ModComp 5.0 5 0.0781
ModCorr 7.0 5 0.2719
ModRate 12.0 5 0.7768

one shows the Z value of the Wilcoxon Matched Pairs test, column two shows the critical value for

α = 0.05, one-tailed, which Z has to exceed to be significant, and column six provides the p-value.

The result of the Wilcoxon Matched Pairs test exceeded the critical value for the variables Und-

Time, UndCorr, ModCorr and ModRate. On the other hand, it did not exceed the critical value for

ModTime and ModComp. We discuss what this tells us about our hypotheses in Section 5.2.10.

5.2.10 Results

In Table 5.7 we show a summary of the dependent variables collected from the 16 participants

of the study. The columns represent the mean (X), the median (m̃), minimum and maximum values

and standard deviation (s). On average, participants took 62 minutes to complete understanding

tasks and 31 minutes to complete impact analysis tasks, totalling 1 hour and 33 minutes. This

completion time is higher than the 60 minutes we initially estimated based on three trial study par-

ticipants, which demonstrates the importance of conducting the study with a statistically significant

amount of participants.

From the standard deviation, we observe there was a high variability in both completion time and

89

Table 5.7: Descriptive statistics for each dependent variable

Variable X m̃ min max s

UndTime 3,717.73 4,035.36 1,498.74 7,721.69 1,802.58
UndCorr 6.06 6.50 2.00 7.00 1.34
ModTime 1,882.41 1,521.75 594.72 3,772.32 1,025.89
ModCorr 1.28 1.41 0.00 2.00 0.68
ModComp 1.53 1.15 0.64 3.61 0.93
ModRate 0.00 0.00 0.00 0.01 0.01

Control Treatment
0

1000

2000

3000

4000

5000

6000

7000

8000

Ti
m

e
 E

la
p
se

d
 (

s)

(a) UndTime

Control Treatment
0

1000

2000

3000

4000

Ti
m

e
 E

la
p
se

d
 (

s)

(b) ModTime

Control Treatment

2

3

4

5

6

7

C
o
rr

e
ct

 T
a
sk

s

(c) UndCorr

Control Treatment

0

1

2

C
o
rr

e
ct

 T
a
sk

s

(d) ModCorr

Figure 5.4: Correctness and completion time distribution for both study groups

correctness, which reflects the diverse levels of experience of participants. By observing variables

related to time and correctness together in Figure 5.4, we can understand how the tool used by

each group influenced the performance of participants. For example, the treatment group completed

architectural understanding tasks faster, but both groups had the same level of task correctness. This

shows that the use of Moose + Visual Studio Code decreases architectural understanding time but

has no effect on architectural understanding correctness.

In impact analysis tasks, the control group completed tasks faster than the treatment group, but

also less correctly. This happened because, by using exclusively Visual Studio Code, participants

had more difficulty finding all outgoing and incoming include relationships between files and there-

fore ended their analysis prematurely. In contrast, participants using Moose + Visual Studio Code

took longer searching for relationships in the Architectural Map, but that helped them complete

impact analysis more correctly.

However, statistical significance and effect size should also be considered when interpreting

these results. For example, while UndTime, UndCorr and ModCorr are statistically significant,

90

Table 5.8: Effect size for each dependent variable

Variable X Control X Treatment Effect Size Z

UndTime 4,377.78 3,545.19 0.368 20.0
UndCorr 5.87 6.25 0.303 10.5
ModTime 1,282.73 2,482.08 1.71 5.0
ModComp 1.02 2.04 1.48 5.0
ModCorr 1.09 1.46 0.55 7.0
ModRate 0.00 0.00 0.23 12.0

ModTime is not, which means the average impact analysis time observed in this study cannot be

generalized. Moreover, we did not identify a large effect size for any of the statistically significant

variables, as we show in table Table 5.8. Considering the scale defined by Kampenes et al. [60,

p. 1077] for the studies in the Software Engineering domain, the largest effect size we found for a

statistically significant variable was “medium” for ModCorr.

Finally, based on our observations, we accept both H1 and H2. The results show that the use

of Moose + Visual Studio Code enables faster architectural understanding while not affecting its

correctness. With respect to impact analysis, the use of Moose + Visual Studio Code enables slightly

higher correctness, but no statistically significant difference in completion time.

5.2.11 Discussion

In Figure 5.5, we compare participant answers about six aspects of task load described in the

NASA TLX questionnaire: mental, physical and temporal demand, perception of success, effort and

frustration. As for the perception of success and temporal demand, there was no difference between

groups, which is evidence that the tools the participants used did not make them feel overwhelmed.

We also observe that the participant’s perception of success correlates with their professional ex-

perience. For example, video game developers reported a higher perception of success, lower mental

demand and lower frustration compared to non-video game developers and student/researcher de-

velopers. We observe the same pattern when comparing novice (less than five years of professional

experience) and experienced (five years of professional experience or more) developers.

The treatment group reported lower mental demand, perception of effort and frustration when

compared to the control group. This is evidence that participants felt more comfortable using Moose

91

Control Treatment
0

1

2

3

4

5

(a) Mental Demand

Control Treatment
0

1

2

3

4

5

(b) Physical Demand

Control Treatment
0

1

2

3

4

5

(c) Temporal Demand

Control Treatment
0

1

2

3

4

5

(d) Success

Control Treatment
0

1

2

3

4

5

(e) Effort

Control Treatment
0

1

2

3

4

5

(f) Frustration

Figure 5.5: Participants’ answers for NASA TLX questions

+ Visual Studio Code instead of Visual Studio Code only. In contrast, the treatment group reported

higher physical demand than the control group. However, physical demand is not a major contrib-

utor to workload in software development [57, p.671] and therefore we believe this is not evidence

that using one tool demands more physical effort than using another.

Therefore, the results show that the participants perceive a lower task load when using Moose

+ Visual Studio Code, even though this perception is correlated to each participant’s amount of

professional experience and familiarity with the video game domain.

We also analysed participants’ perceptions of the task, questionnaires and tools presented in

92

the study by applying open card sorting to 17 participant comments collected via exit interview.

After the card sorting three major categories emerged: 1) unclear terminology, 2) unclear task

statements or debriefing questions and 3) usability issues in the Architectural Map. We show

participants quotes and discuss them:

1) Unclear terminology

(a) Several participants asked us to explain in more detail the terms “functionality” and “subsys-

tem” because they thought the meaning of these terms was “way too abstract or large”. We

instructed them to refer to instructional documents, where definitions were provided.

(b) Several participants admitted that they did not read the instructional documents in detail at

the beginning of the study session, even though we instructed them to do so. However, they

later referred to the documents when questions arose.

2) Unclear task statements or debriefing questions

(a) For Task 5, which instructed participants to open a file and list its “dependencies to other

files of its subsystem”, participants asked whether the term “dependencies” meant outgoing

or incoming dependency. We instructed them to choose the one they believed to be the most

correct. Given the original study does not provide any clarification about the direction of

the dependencies, we considered both incoming and outgoing dependencies to be the correct

answers for this task.

(b) A participant reported they could not answer Question 11 of the debriefing questionnaire

(“How successful were you in accomplishing what you were asked to do?”) because they did

not know whether they actually completed the tasks correctly: “I don’t know if my answers

are correct”.

(c) A participant reported they could not answer Question 13 of the debriefing questionnaire

(“How insecure, discouraged, irritated, stressed, and annoyed were you?”) because the feel-

ings listed in the question are not mutually inclusive: “I was stressed and insecure but I wasn’t

discouraged and irritated”.

93

3) Usability issues in the Architectural Map visualisation

(a) Several participants reported it was hard to find the files and folders they were looking for

among thousands of others, even though hiding parts of the visualisation helped in this pro-

cess: “I got really lost with the mapping at times, but understanding how to remove and add

links helped a lot”.

(b) A participant reported the lack of borders or contrasting colours in the rectangles representing

folders made the visualisation “confusing”.

(c) A participant reported being frustrated by not being able to propagate entities from the tag

browser to the source code browser in the same way they did in the Architectural Map: “I

know what the file [I am looking for] is, but as I can’t propagate it via tags [browser]”.

We reported issues concerning Architectural Map usability to the Moose development team.

As of the 1st November 2023, issues described in 3b6 and 3c7 have been fixed. Moreover, we are

experimenting with drawing folders and tags in a different order to mitigate the issues described in

3a. The participant’s comments on ambiguous terminology can also help us to improve our task

statements for future experiments, as well as other researchers conducting similar experiments.

Our study’s most important contribution is showing there is a small yet statistically significant

decrease in completion time for architectural understanding tasks when using Moose + Visual Studio

Code. By using these tools together, developers can better understand game engine architecture

while not increasing their perceived workload. Our study also provides insights into how developers

use software analysis tools and how they can be improved to decrease the time and effort needed to

complete architectural understanding and impact analysis tasks, especially for novice developers.

5.2.12 Threats to validity

First, understandability and maintainability are “difficult concepts to measure” [8, p. 524].

While we measured how swiftly and correctly participants completed understanding and impact

analysis tasks, we did not measure whether they would be able to implement the changes in the
6https://github.com/moosetechnology/MooseIDE/issues/889
7https://github.com/moosetechnology/MooseIDE/issues/879

94

https://github.com/moosetechnology/MooseIDE/issues/889
https://github.com/moosetechnology/MooseIDE/issues/879

source code swiftly and correctly as well. Also, while tasks allowed for several possible solutions,

we did not verify whether the solution provided by the participant was the best or most optimized

in practice, only whether it was architecturally sound.

As we explain in Section 5.2.11, we are aware that most task statements and debriefing ques-

tions allowed for multiple interpretations and that may have been the reason for the large variation

in terms of task completion time and task correctness we observed. An observer effect may have

also contributed to this variation, considering participants may have felt less stressed or behaved dif-

ferently if they were not being observed. As we explained in Section 5.2.6, we tried to mitigate this

effect by physically distancing from the participants and interacting with them only when necessary.

With regard to experimental design, while the original study used a 2x2 within-subject design,

we used a 2x1 design, not within-subject. We chose this design due to limited participant availabil-

ity, which made it hard or sometimes impossible to ensure all participants could participate twice

in the study. As explained in the original study, by using the 2x2 within-subject design “the error

variance due to differences among subjects is reduced” [8, p.518]. We are aware that by choosing

the 2x1 design we risked obtaining higher error variance for all dependent variables. In future work,

we will run another study with more participants and also use a 2x2 within-subject design.

During the study, a maturation effect may have occurred in the study due to participants learning

how the tools work as the study proceeded. Some participants also had prior experience with the

tools used in the study, which might have helped them complete tasks faster and more correctly than

others. As stated in Section 5.2.3, we mitigated this effect by choosing a tool that is known by most

developers (Visual Studio Code), as well as providing instructional documents for both tools.

An instrumentation effect may also have occurred during the study due to differences between

control and treatment task descriptions. As explained in Section 5.2.5, we did our best to ensure the

tasks could be completed with a similar amount of effort in both tools and that the task descriptions

were clear and stated in the same way to both groups. However, it is possible that these differences

also influenced the participants’ abilities to understand and complete tasks more correctly.

A confounding effect may result from our selection of game engines, analysis tools and partic-

ipants. For example, Godot may not be representative of all open-source game engines in size and

complexity. Also, most participants did not have prior experience with video game development

95

and therefore do not accurately represent developers in these domains. Finally, we did not detect a

large effect size for any of the statistically significant dependent variables, which is evidence that

our results may not generalize to other game engines or more diverse participants.

96

Chapter 6

Conclusion

In this work, we propose and implement SyDRA, an approach for software architecture recov-

ery. We then applied this approach to 10 open-source game engines and we used the extracted

architectural models to identify and understand game engine subsystem coupling patterns. Finally,

we evaluated SyDRA by comparing the extracted architectural models to architectural descriptions

from the game engine architecture literature. We also conducted a user study with 16 software de-

velopers to determine whether visualisations based on the extracted architectural models can help

developers better perform architectural understanding and impact analysis tasks in a game engine.

In Chapter 3 we propose SyDRA, an approach for software architecture recovery which extracts

architectural models from software systems based on their source code, documentation and folder

hierarchy, as well as human expertise about its subsystems.

In Chapter 4 we implement SyDRA and apply it to 10 popular open-source game engines se-

lected from GitHub, obtaining an architectural model of each game engine as a result. We use Moose

and other tools to create visualisations of these extracted architectural models. We then use these

visualisations to observe subsystem coupling patterns for each game engine, as well as emergent

architectural characteristics common to all analysed game engines. We show that developers can

use architectural models to improve game engine architectural understanding and maintainability.

In Chapter 5 we evaluate SyDRA by comparing the extracted architectural models to game

engine architectural descriptions existing in the literature. Finally, we conduct a user study with 16

software developers to determine whether visualisations based on the extracted architectural models

97

can help developers better perform architectural understanding and impact analysis tasks in Godot.

We show there is a small yet statistically significant decrease in completion time for architectural

understanding tasks when using Moose + Visual Studio Code.

We conclude the architectural models and visualisations we produced with SyDRA help de-

velopers understand game engine architecture more swiftly and correctly than by only reading the

source code. Moreover, the completeness and generalisability of the emergent architecture we cre-

ated with SyDRA is corroborated by the literature and is a step towards the development of best

practices of game engine design, understanding and maintenance.

6.1 Limitations and Future Work

In this section, we discuss threats to the validity of our results. First, while SyDRA applies

to any software system, in this work we limit its application to game engines. In future work, we

intend to apply SyDRA to diverse software families, such as databases and web browsers. In the

context of video games, we intend to apply SyDRA to specific-purpose game engines and to diverse

game genres (e.g., first-person shooters, point-and-click adventures, etc.). Our goal is to uncover

subsystem coupling patterns and emergent architectures across various domains.

We acknowledge that the game engines we selected for analysis may not be entirely represen-

tative of all open-source game engines or the entire video game industry. We mitigated this issue

by selecting game engines based on their popularity, as described in Section 4.1. We confined our

analysis to C++ game engines, which may have led to the exclusion of pertinent game engines de-

veloped in other programming languages. Furthermore, we considered exclusively .h and .cpp files,

omitting other types of files that could potentially provide valuable architectural insights, such as

assets and scripts in languages such as Python. In future work, we plan to conduct a comprehensive

study of these additional software artefacts.

Also, we acknowledge we employed the “Runtime Game Engine Architecture” Gregory [6,

p. 33] in subsystem detection across all game engines, which potentially introduced a bias. As a

mitigation strategy, we cross-referenced the “Runtime Game Engine Architecture” with existing lit-

erature, which corroborates its applicability within a broader context. However, the new subsystems

98

we found by applying SyDRA to 10 open-source game engines were not considered for subsystem

detection, as described in Section 4.8.3. In future work, we intend to encompass a wider spectrum

of subsystems, both obtained via SyDRA and from the literature.

The subsystem detection step of SyDRA was performed manually by the thesis’ author, which

may have introduced a bias in the process. To mitigate this issue, we intend to assign multiple

people to work in this step and later combine their results by consensus. We also intend to explore

quasi-automated approaches for subsystem detection to determine the most suitable method for

game engines and other types of software.

The architectural models we generated with SyDRA currently offer insights into file dependen-

cies, folder hierarchy and subsystems. In future work, we intend to add more architectural infor-

mation to these models, enabling developers to explore software quality metrics such as cohesion

and cyclomatic complexity, as well as more relationships between model entities, such as classic

inheritance and method calls. We also aim to study in more detail the correlation between file/folder

count and the range of functionality provided by a system, as well as how it affects its coupling.

Moreover, we are aware that SyDRA is dependent on the behaviour, metrics and visualisations

provided by Moose and Gephi, and changing them could also change the results and therefore our

perception of these game engine architectures. In future work, we intend to experiment with differ-

ent software analysis and visualisation tools and measure to what extent they can help developers

perform architectural understanding, impact analysis and testing activities.

Finally, all URLs in footnotes and references mentioned in this thesis were, to the best of our

knowledge, available on the Web as of 1st November 2023. However, we are aware availability may

change in the future.

99

Appendix A

Task Statements and Questionnaires

Table A.1: Architecture understanding tasks

Control Group Treatment Group

1 Give a brief description of the Audio subsys-
tem functionality. Write two sentences maxi-
mum.

Give a brief description of the Audio subsys-
tem functionality. Write two sentences maxi-
mum.

2 Search for the file servers/audio/audio effect
.h and open it. Provide a short description of
its functionality.

Expand the Audio subsystem, expand
the “audio” folder and propagate the file
servers/audio/audio effect.h. Provide a short
description of its functionality.

3 List a minimum of three functionalities pro-
vided by the Audio subsystem and provide a
short description of each of them.

List a minimum of three functionalities pro-
vided by the Audio subsystem and provide a
short description of each of them.

4 For each functionality you named in Audio,
please name the file(s) that implement them.

For each functionality you named in Audio,
please name the file(s) that implement them.

5 Open the file scene/2d/particles 2d.h and list
its dependencies to other files of its subsys-
tem.

Expand the Visual Effects subsystem
and list the dependencies of the file
scene/2d/particles 2d.h to other files of
its subsystem.

6 Name the subsystem(s) of Godot which han-
dle WebRTC functionality.

Name the subsystem(s) of Godot which han-
dle WebRTC functionality.

7 Open the file scene/2d/particles 2d.h and give
a short description of its functionality.

Expand the Visual Effects subsystem, propa-
gate the file scene/2d/particles 2d.h and give
a short description of its functionality.

100

Table A.2: Impact analysis tasks

Control Group Treatment Group

8 Suppose the rich text functionality in the
Front end subsystem of Godot was removed.
Please mention all files which may have to be
changed as a result of the removal of these
functionalities.

Suppose the rich text functionality in the
Front end subsystem of Godot was removed.
Please mention all files which may have to be
changed as a result of the removal of these
functionalities.

9 The file scene/gui/video player.cpp in the
Front End subsystem provides video player
functionality. Suppose a developer wants to
implement the following feature: change the
video playback speed (e.g. speed x2) for any
video stream. Please mention all files which
may have to be changed to implement this
feature.

The file scene/gui/video player.cpp in the
Front End subsystem provides video player
functionality. Suppose a developer wants to
implement the following feature: change the
video playback speed (e.g. speed x2) for any
video stream. Please mention all files which
may have to be changed to implement this
feature.

Table A.3: Debriefing Questionnaire

Question Answer Type Required?

1 Which of these titles best describes your current job po-
sition?

List, single choice Yes

2 How old are you? List, single choice No
3 What is your gender? List, single choice No
4 What is your country of residence? List, single choice No
5 How many years of software development experience

do you have?
List, single choice Yes

6 Which of the following best describes your experience
with game engines?

List, single choice Yes

7 What game engines have you used? List, multiple choice No
8 How mentally demanding were the tasks? Likert (1-5) Yes
9 How physically demanding were the tasks? Likert (1-5) Yes

10 How hurried or rushed was the pace of the tasks? Likert (1-5) Yes
11 How successful were you in accomplishing what you

were asked to do?
Likert (1-5) Yes

12 How hard did you have to work to accomplish your
level of performance?

Likert (1-5) Yes

13 How insecure, discouraged, irritated, stressed, and an-
noyed were you?

Likert (1-5) Yes

101

Appendix B

Absolute Path to Files in Results

Repository File or Class Name Absolute Path

UnrealEngine IPluginManager ./Engine/Source/Runtime/Projects/

Public/Interfaces/IPluginManager.h

UnrealEngine SkeletalRender

GPUSkin

./Engine/Source/Runtime/Engine/

Private/SkeletalRenderGPUSkin.h

UnrealEngine UObject/UClass ./Engine/Source/Runtime/CoreUObject/

Public/UObject/UObjectBase.h

Godot math funcs.h ./core/math/math_funcs.h

Godot project settings.h ./core/config/project_settings.h

Godot Camera2D ./scene/2d/camera_2d.h

Godot Camera3D ./scene/3d/camera_3d.h

Godot Window ./scene/main/window.h

Godot Mesh ./scene/resources/mesh_texture.h

Godot EditorPlugin ./editor/editor_plugin.h

Godot audio stream editor

plugin.h

./editor/plugins/audio_stream_

editor_plugin.h

Godot audio stream

player.h

./scene/audio/audio_stream_player.h

102

./Engine/Source/Runtime/Projects/Public/Interfaces/IPluginManager.h
./Engine/Source/Runtime/Projects/Public/Interfaces/IPluginManager.h
./Engine/Source/Runtime/Engine/Private/SkeletalRenderGPUSkin.h
./Engine/Source/Runtime/Engine/Private/SkeletalRenderGPUSkin.h
./Engine/Source/Runtime/CoreUObject/Public/UObject/UObjectBase.h
./Engine/Source/Runtime/CoreUObject/Public/UObject/UObjectBase.h
./core/math/math_funcs.h
./core/config/project_settings.h
./scene/2d/camera_2d.h
./scene/3d/camera_3d.h
./scene/main/window.h
./scene/resources/mesh_texture.h
./editor/editor_plugin.h
./editor/plugins/audio_stream_editor_plugin.h
./editor/plugins/audio_stream_editor_plugin.h
./scene/audio/audio_stream_player.h

Panda3d nonlinearImager.h ./panda/src/distort/nonlinearImager.

h

Panda3d asyncTask

Manager.h

./panda/src/event/asyncTaskManager.h

Panda3d graphicsState

Guardian.h

./panda/src/display/

graphicsStateGuardian.h

O3DE Vector4.h ./Code/Framework/AzCore/AzCore/Math/

Vector4.h

O3DE AudioControls

EditorWindow.cpp

./Gems/AudioSystem/Code/Source/

Editor/AudioControlsEditorWindow.cpp

O3DE ToolsApplication

API.h

./Code/Framework/AzToolsFramework/

AzToolsFramework/API/

ToolsApplicationAPI.h

O3DE MorphTargetEdit

Window.h

./Gems/EMotionFX/Code/

EMotionFX/Tools/EMotionStudio/

Plugins/StandardPlugins/

Source/MorphTargetsWindow/

MorphTargetEditWindow.h

O3DE SpinBox.h ./Code/Framework/AzQtComponents/

AzQtComponents/Components/Widgets/

SpinBox.h

O3DE AnimKey.h ./Code/Legacy/CryCommon/AnimKey.h

FlaxEngine VisjectGraph.h ./Source/Engine/Visject/

VisjectGraph.h

FlaxEngine AnimGraph.h ./Source/Engine/Animations/Graph/

AnimGraph.h

FlaxEngine GameCooker.cpp ./Source/Editor/Cooker/GameCooker.

cpp

103

./panda/src/distort/nonlinearImager.h
./panda/src/distort/nonlinearImager.h
./panda/src/event/asyncTaskManager.h
./panda/src/display/graphicsStateGuardian.h
./panda/src/display/graphicsStateGuardian.h
./Code/Framework/AzCore/AzCore/Math/Vector4.h
./Code/Framework/AzCore/AzCore/Math/Vector4.h
./Gems/AudioSystem/Code/Source/Editor/AudioControlsEditorWindow.cpp
./Gems/AudioSystem/Code/Source/Editor/AudioControlsEditorWindow.cpp
./Code/Framework/AzToolsFramework/AzToolsFramework/API/ToolsApplicationAPI.h
./Code/Framework/AzToolsFramework/AzToolsFramework/API/ToolsApplicationAPI.h
./Code/Framework/AzToolsFramework/AzToolsFramework/API/ToolsApplicationAPI.h
./Gems/EMotionFX/Code/EMotionFX/Tools/EMotionStudio/Plugins/StandardPlugins/Source/MorphTargetsWindow/MorphTargetEditWindow.h
./Gems/EMotionFX/Code/EMotionFX/Tools/EMotionStudio/Plugins/StandardPlugins/Source/MorphTargetsWindow/MorphTargetEditWindow.h
./Gems/EMotionFX/Code/EMotionFX/Tools/EMotionStudio/Plugins/StandardPlugins/Source/MorphTargetsWindow/MorphTargetEditWindow.h
./Gems/EMotionFX/Code/EMotionFX/Tools/EMotionStudio/Plugins/StandardPlugins/Source/MorphTargetsWindow/MorphTargetEditWindow.h
./Gems/EMotionFX/Code/EMotionFX/Tools/EMotionStudio/Plugins/StandardPlugins/Source/MorphTargetsWindow/MorphTargetEditWindow.h
./Code/Framework/AzQtComponents/AzQtComponents/Components/Widgets/SpinBox.h
./Code/Framework/AzQtComponents/AzQtComponents/Components/Widgets/SpinBox.h
./Code/Framework/AzQtComponents/AzQtComponents/Components/Widgets/SpinBox.h
./Code/Legacy/CryCommon/AnimKey.h
./Source/Engine/Visject/VisjectGraph.h
./Source/Engine/Visject/VisjectGraph.h
./Source/Engine/Animations/Graph/AnimGraph.h
./Source/Engine/Animations/Graph/AnimGraph.h
./Source/Editor/Cooker/GameCooker.cpp
./Source/Editor/Cooker/GameCooker.cpp

GamePlay3d DebugNew.h ./gameplay/src/DebugNew.h

GamePlay3d Logger.h ./gameplay/src/Logger.h

GamePlay3d lua Rectangle.h ./gameplay/src/lua/lua_Rectangle.h

GamePlay3d Rectangle.h ./gameplay/src/Rectangle.h

Urho3d Matrix2.h ./Source/Urho3D/Math/Matrix2.h

Urho3d Matrix3.h ./Source/Urho3D/Math/Matrix3.h

Urho3d Thread.cpp ./Source/Urho3D/Core/Thread.cpp

Urho3d Mutex.cpp ./Source/Urho3D/Core/Mutex.cpp

Cocos2d-x Vec2.cpp ./cocos/math/Vec2.cpp

Cocos2d-x Vec3.cpp ./cocos/math/Vec3.cpp

Cocos2d-x ccRandom.cpp ./cocos/base/ccRandom.cpp

Cocos2d-x CCImage.h ./cocos/platform/CCImage.h

Cocos2d-x CCTexture2D.h ./cocos/renderer/CCTexture2D.h

Cocos2d-x CCAutoPolygon.h ./cocos/2d/CCAutoPolygon.h

Piccolo mesh.h ./engine/source/runtime/resource/

res_type/components/mesh.h

Piccolo skeleton data.h ./engine/source/runtime/resource/

res_type/data/skeleton_data.h

Piccolo ui pass.cpp ./engine/source/runtime/function/

render/passes/ui_pass.cpp

Piccolo window ui.h ./engine/source/runtime/function/ui/

window_ui.h

Piccolo render camera.h ./engine/source/runtime/function/

render/render_camera.h

Table B.1: Absolute path to files mentioned in the Section 4.7

104

./gameplay/src/DebugNew.h
./gameplay/src/Logger.h
./gameplay/src/lua/lua_Rectangle.h
./gameplay/src/Rectangle.h
./Source/Urho3D/Math/Matrix2.h
./Source/Urho3D/Math/Matrix3.h
./Source/Urho3D/Core/Thread.cpp
./Source/Urho3D/Core/Mutex.cpp
./cocos/math/Vec2.cpp
./cocos/math/Vec3.cpp
./cocos/base/ccRandom.cpp
./cocos/platform/CCImage.h
./cocos/renderer/CCTexture2D.h
./cocos/2d/CCAutoPolygon.h
./engine/source/runtime/resource/res_type/components/mesh.h
./engine/source/runtime/resource/res_type/components/mesh.h
./engine/source/runtime/resource/res_type/data/skeleton_data.h
./engine/source/runtime/resource/res_type/data/skeleton_data.h
./engine/source/runtime/function/render/passes/ui_pass.cpp
./engine/source/runtime/function/render/passes/ui_pass.cpp
./engine/source/runtime/function/ui/window_ui.h
./engine/source/runtime/function/ui/window_ui.h
./engine/source/runtime/function/render/render_camera.h
./engine/source/runtime/function/render/render_camera.h

Bibliography

[1] Jaeyong Park and Changhyeon Park, “Development of a multiuser and multimedia game
engine based on TCP/IP,” in 1997 IEEE Pacific Rim Conference on Communications,
Computers and Signal Processing, PACRIM. 10 Years Networking the Pacific Rim,
1987-1997, vol. 1. Victoria, BC, Canada: IEEE, 1997, pp. 101–104. [Online]. Available:
http://ieeexplore.ieee.org/document/619911/

[2] L. Bishop, D. Eberly, T. Whitted, M. Finch, and M. Shantz, “Designing a PC game engine,”
IEEE Computer Graphics and Applications, vol. 18, no. 1, pp. 46–53, Feb. 1998. [Online].
Available: http://ieeexplore.ieee.org/document/637270/

[3] A. Sherrod, Ultimate 3D game engine design & architecture, 1st ed. Boston, Mass.: Charles
River Media, 2007, oCLC: 72161915.

[4] A. Rollings and D. Morris, Game architecture and design, 2nd ed. Indianapolis, Ind: New
Riders, 2004.

[5] A. Thorn, Game engine design and implementation. Sudbury, Mass: Jones & Bartlett Learn-
ing, 2010.

[6] J. Gregory, Game engine architecture, 3rd ed. Boca Raton: Taylor & Francis, CRC Press,
2018.

[7] S. Ducasse and D. Pollet, “Software Architecture Reconstruction: A Process-Oriented
Taxonomy,” IEEE Transactions on Software Engineering, vol. 35, no. 4, pp. 573–591, Jul.
2009. [Online]. Available: http://ieeexplore.ieee.org/document/4815276/

[8] L. Briand, C. Bunse, and J. Daly, “A controlled experiment for evaluating quality
guidelines on the maintainability of object-oriented designs,” IEEE Transactions on
Software Engineering, vol. 27, no. 6, pp. 513–530, Jun. 2001. [Online]. Available:
https://ieeexplore.ieee.org/document/926174/

[9] C. Politowski, F. Petrillo, G. C. Ullmann, and Y.-G. Guéhéneuc, “Game industry problems:
An extensive analysis of the gray literature,” Information and Software Technology, vol.
134, p. 106538, Jun. 2021. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/
S0950584921000252

[10] E. F. Anderson, S. Engel, P. Comninos, and L. McLoughlin, “The Case for Research in Game
Engine Architecture,” in Proceedings of the 2008 Conference on Future Play: Research,
Play, Share, ser. Future Play ’08. New York, NY, USA: Association for Computing
Machinery, 2008, pp. 228–231, event-place: Toronto, Ontario, Canada. [Online]. Available:
https://doi.org/10.1145/1496984.1497031

105

http://ieeexplore.ieee.org/document/619911/
http://ieeexplore.ieee.org/document/637270/
http://ieeexplore.ieee.org/document/4815276/
https://ieeexplore.ieee.org/document/926174/
https://linkinghub.elsevier.com/retrieve/pii/S0950584921000252
https://linkinghub.elsevier.com/retrieve/pii/S0950584921000252
https://doi.org/10.1145/1496984.1497031

[11] G. C. Ullmann, Y.-G. Guéhéneuc, F. Petrillo, N. Anquetil, and C. Politowski, “An Exploratory
Approach for Game Engine Architecture Recovery,” in 2023 IEEE/ACM 7th International
Workshop on Games and Software Engineering (GAS). Melbourne, Australia: IEEE, May
2023, pp. 8–15. [Online]. Available: https://ieeexplore.ieee.org/document/10190470/

[12] ——, “Visualising Game Engine Subsystem Coupling,” in Entertainment Computing – ICEC
2023, Sep. 2023, arXiv:2309.06329 [cs]. [Online]. Available: http://arxiv.org/abs/2309.06329

[13] M. Fowler, Patterns of enterprise application architecture, ser. The Addison-Wesley signature
series. Boston: Addison-Wesley, 2003.

[14] L. Bass, P. Clements, and R. Kazman, Software architecture in practice, 3rd ed., ser. SEI series
in software engineering. Upper Saddle River, NJ: Addison-Wesley, 2013.

[15] E. W. Dijkstra, Selected writings on computing: a personal perspective, ser. Texts and mono-
graphs in computer science. New York: Springer-Verlag, 1982.

[16] I. T. Bowman, R. C. Holt, and N. V. Brewster, “Linux as a case study: its extracted software
architecture,” in Proceedings of the 21st international conference on Software engineering -
ICSE ’99. Los Angeles, California, United States: ACM Press, 1999, pp. 555–563. [Online].
Available: http://portal.acm.org/citation.cfm?doid=302405.302691

[17] K. Wong, S. Tilley, H. Muller, and M.-A. Storey, “Structural redocumentation: a
case study,” IEEE Software, vol. 12, no. 1, pp. 46–54, Jan. 1995. [Online]. Available:
http://ieeexplore.ieee.org/document/363166/

[18] A. Hassan and R. Holt, “A reference architecture for Web servers,” in Proceedings Seventh
Working Conference on Reverse Engineering. Brisbane, Qld., Australia: IEEE Comput.
Soc, 2000, pp. 150–159. [Online]. Available: http://ieeexplore.ieee.org/document/891462/

[19] D. Link, P. Behnamghader, R. Moazeni, and B. Boehm, “The Value of Software Architecture
Recovery for Maintenance,” in Proceedings of the 12th Innovations on Software Engineering
Conference (formerly known as India Software Engineering Conference). Pune India: ACM,
Feb. 2019, pp. 1–10. [Online]. Available: https://dl.acm.org/doi/10.1145/3299771.3299787

[20] A. Baabad, H. B. Zulzalil, S. Hassan, and S. B. Baharom, “Software Architecture Degradation
in Open Source Software: A Systematic Literature Review,” IEEE Access, vol. 8, pp.
173 681–173 709, 2020. [Online]. Available: https://ieeexplore.ieee.org/document/9200327/

[21] M. Shaw and D. Garlan, Software architecture: perspectives on an emerging discipline. Up-
per Saddle River, N.J: Prentice Hall, 1996.

[22] P. Kruchten, “The 4+1 View Model of architecture,” IEEE Software, vol. 12, no. 6, pp. 42–50,
Nov. 1995. [Online]. Available: http://ieeexplore.ieee.org/document/469759/

[23] J. Keim and A. Koziolek, “Towards Consistency Checking Between Software Architecture
and Informal Documentation,” in 2019 IEEE International Conference on Software
Architecture Companion (ICSA-C). Hamburg, Germany: IEEE, Mar. 2019, pp. 250–253.
[Online]. Available: https://ieeexplore.ieee.org/document/8712160/

106

https://ieeexplore.ieee.org/document/10190470/
http://arxiv.org/abs/2309.06329
http://portal.acm.org/citation.cfm?doid=302405.302691
http://ieeexplore.ieee.org/document/363166/
http://ieeexplore.ieee.org/document/891462/
https://dl.acm.org/doi/10.1145/3299771.3299787
https://ieeexplore.ieee.org/document/9200327/
http://ieeexplore.ieee.org/document/469759/
https://ieeexplore.ieee.org/document/8712160/

[24] H. Vangheluwe and J. De Lara, “Meta-Models are models too,” in Proceedings of the Winter
Simulation Conference, vol. 1. San Diego, CA, USA: IEEE, 2002, pp. 597–605. [Online].
Available: http://ieeexplore.ieee.org/document/1172936/

[25] G. Chartrand, Introductory graph theory, 1st ed. New York: Dover, 1985.

[26] A. Pektaş and T. Acarman, “Deep learning for effective Android malware detection using API
call graph embeddings,” Soft Computing, vol. 24, no. 2, pp. 1027–1043, Jan. 2020. [Online].
Available: http://link.springer.com/10.1007/s00500-019-03940-5

[27] K. Badar, J. M. Hite, and Y. F. Badir, “Examining the relationship of co-authorship network
centrality and gender on academic research performance: the case of chemistry researchers
in Pakistan,” Scientometrics, vol. 94, no. 2, pp. 755–775, Feb. 2013. [Online]. Available:
http://link.springer.com/10.1007/s11192-012-0764-z

[28] M. Fowler, “Reducing coupling,” IEEE Software, vol. 18, no. 4, pp. 102–104, Jul. 2001.
[Online]. Available: http://ieeexplore.ieee.org/document/936226/

[29] T. Lutellier, D. Chollak, J. Garcia, L. Tan, D. Rayside, N. Medvidovic, and
R. Kroeger, “Comparing Software Architecture Recovery Techniques Using Accurate
Dependencies,” in 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering. Florence, Italy: IEEE, May 2015, pp. 69–78. [Online]. Available:
http://ieeexplore.ieee.org/document/7202951/

[30] J. Garcia, I. Ivkovic, and N. Medvidovic, “A comparative analysis of software architecture
recovery techniques,” in 2013 28th IEEE/ACM International Conference on Automated
Software Engineering (ASE). Silicon Valley, CA, USA: IEEE, Nov. 2013, pp. 486–496.
[Online]. Available: http://ieeexplore.ieee.org/document/6693106/

[31] Y. Wang, P. Liu, H. Guo, H. Li, and X. Chen, “Improved Hierarchical Clustering Algorithm
for Software Architecture Recovery,” in 2010 International Conference on Intelligent
Computing and Cognitive Informatics. Kuala Lumpur, Malaysia: IEEE, Jun. 2010, pp.
247–250. [Online]. Available: http://ieeexplore.ieee.org/document/5565989/

[32] W. Heijstek, T. Kuhne, and M. R. Chaudron, “Experimental Analysis of Textual and Graphical
Representations for Software Architecture Design,” in 2011 International Symposium on
Empirical Software Engineering and Measurement. Banff, AB, Canada: IEEE, Sep. 2011,
pp. 167–176. [Online]. Available: https://ieeexplore.ieee.org/document/6092565/

[33] M. Abi-Antoun and J. Aldrich, “A field study in static extraction of runtime architectures,” in
Proceedings of the 8th ACM SIGPLAN-SIGSOFT workshop on Program analysis for software
tools and engineering. Atlanta Georgia: ACM, Nov. 2008, pp. 22–28. [Online]. Available:
https://dl.acm.org/doi/10.1145/1512475.1512481

[34] M. Consalvo and D. Staines, “Reading Ren’Py: Game Engine Affordances and Design
Possibilities,” Games and Culture, vol. 16, no. 6, pp. 762–778, Sep. 2021. [Online]. Available:
http://journals.sagepub.com/doi/10.1177/1555412020973823

[35] M. Abbadi, “Taxonomy of Game Development Approaches,” in Entertainment Computing
and Serious Games, R. Dörner, S. Göbel, M. Kickmeier-Rust, M. Masuch, and

107

http://ieeexplore.ieee.org/document/1172936/
http://link.springer.com/10.1007/s00500-019-03940-5
http://link.springer.com/10.1007/s11192-012-0764-z
http://ieeexplore.ieee.org/document/936226/
http://ieeexplore.ieee.org/document/7202951/
http://ieeexplore.ieee.org/document/6693106/
http://ieeexplore.ieee.org/document/5565989/
https://ieeexplore.ieee.org/document/6092565/
https://dl.acm.org/doi/10.1145/1512475.1512481
http://journals.sagepub.com/doi/10.1177/1555412020973823

K. Zweig, Eds. Cham: Springer International Publishing, 2016, vol. 9970, pp.
119–147, series Title: Lecture Notes in Computer Science. [Online]. Available:
http://link.springer.com/10.1007/978-3-319-46152-6 6

[36] B. Cramblitt, “Start your engines,” Computer Graphics World, vol. 22, no. 6, p. 43,
1999. [Online]. Available: https://go-gale-com.lib-ezproxy.concordia.ca/ps/i.do?p=CPI&u=
concordi main&id=GALE|0CGW&v=2.1&it=aboutJournal

[37] V. Agrahari and S. Chimalakonda, “What’s Inside Unreal Engine? - A Curious Gaze!” in
14th Innovations in Software Engineering Conference (formerly known as India Software
Engineering Conference). Bhubaneswar, Odisha India: ACM, Feb. 2021, pp. 1–5. [Online].
Available: https://dl.acm.org/doi/10.1145/3452383.3452404

[38] D. Maggiorini, L. A. Ripamonti, E. Zanon, A. Bujari, and C. E. Palazzi, “SMASH:
A distributed game engine architecture,” in 2016 IEEE Symposium on Computers and
Communication (ISCC). Messina, Italy: IEEE, Jun. 2016, pp. 196–201. [Online]. Available:
http://ieeexplore.ieee.org/document/7543739/

[39] C. Marin, M. Chover, and J. M. Sotoca, “Prototyping a game engine architecture as a
multi-agent system,” in Computer Science Research Notes. Západočeská univerzita, 2019.
[Online]. Available: http://wscg.zcu.cz/wscg2019/2019-papers/!! CSRN-2802-4.pdf

[40] P. E. Dickson, J. E. Block, G. N. Echevarria, and K. C. Keenan, “An Experience-based
Comparison of Unity and Unreal for a Stand-alone 3D Game Development Course,” in
Proceedings of the 2017 ACM Conference on Innovation and Technology in Computer
Science Education. Bologna Italy: ACM, Jun. 2017, pp. 70–75. [Online]. Available:
https://dl.acm.org/doi/10.1145/3059009.3059013

[41] P. Mishra and U. Shrawankar, “Comparison between Famous Game Engines and Eminent
Games,” International Journal of Interactive Multimedia and Artificial Intelligence, vol. 4,
no. 1, p. 69, 2016. [Online]. Available: http://www.ijimai.org/journal/node/1232

[42] S. Pavkov, I. Frankovic, and N. Hoic-Bozic, “Comparison of game engines for serious games,”
in 2017 40th International Convention on Information and Communication Technology,
Electronics and Microelectronics (MIPRO). Opatija, Croatia: IEEE, May 2017, pp.
728–733. [Online]. Available: http://ieeexplore.ieee.org/document/7973518/

[43] E. Christopoulou and S. Xinogalos, “Overview and Comparative Analysis of Game
Engines for Desktop and Mobile Devices,” International Journal of Serious Games, vol. 4,
no. 4, Dec. 2017. [Online]. Available: http://journal.seriousgamessociety.org/index.php/IJSG/
article/view/194

[44] D. H. Eberly, 3D game engine design: a practical approach to real-time computer graphics,
2nd ed. Amsterdam ; Boston: Elsevier/Morgan Kaufmann, 2007.

[45] G. C. Ullmann, C. Politowski, Y.-G. Guéhéneuc, and F. Petrillo, “Game Engine Comparative
Anatomy,” in Entertainment Computing – ICEC 2022, B. Göbl, E. van der Spek,
J. Baalsrud Hauge, and R. McCall, Eds. Cham: Springer International Publishing, 2022, vol.
13477, pp. 103–111, series Title: Lecture Notes in Computer Science. [Online]. Available:
https://link.springer.com/10.1007/978-3-031-20212-4 8

108

http://link.springer.com/10.1007/978-3-319-46152-6_6
https://go-gale-com.lib-ezproxy.concordia.ca/ps/i.do?p=CPI&u=concordi_main&id=GALE|0CGW&v=2.1&it=aboutJournal
https://go-gale-com.lib-ezproxy.concordia.ca/ps/i.do?p=CPI&u=concordi_main&id=GALE|0CGW&v=2.1&it=aboutJournal
https://dl.acm.org/doi/10.1145/3452383.3452404
http://ieeexplore.ieee.org/document/7543739/
http://wscg.zcu.cz/wscg2019/2019-papers/!!_CSRN-2802-4.pdf
https://dl.acm.org/doi/10.1145/3059009.3059013
http://www.ijimai.org/journal/node/1232
http://ieeexplore.ieee.org/document/7973518/
http://journal.seriousgamessociety.org/index.php/IJSG/article/view/194
http://journal.seriousgamessociety.org/index.php/IJSG/article/view/194
https://link.springer.com/10.1007/978-3-031-20212-4_8

[46] M. Srsen and T. Orehovacki, “Developing a Game Engine in C# Programming Language,”
in 2021 44th International Convention on Information, Communication and Electronic
Technology (MIPRO). Opatija, Croatia: IEEE, Sep. 2021, pp. 1717–1722. [Online].
Available: https://ieeexplore.ieee.org/document/9596801/

[47] J. Munro, C. Boldyreff, and A. Capiluppi, “Architectural studies of games engines —
The quake series,” in 2009 International IEEE Consumer Electronics Society’s Games
Innovations Conference. London, UK: IEEE, Aug. 2009, pp. 246–255. [Online]. Available:
http://ieeexplore.ieee.org/document/5293600/

[48] N. Munaiah, S. Kroh, C. Cabrey, and M. Nagappan, “Curating GitHub for engineered
software projects,” Empirical Software Engineering, vol. 22, no. 6, pp. 3219–3253, Dec.
2017. [Online]. Available: http://link.springer.com/10.1007/s10664-017-9512-6

[49] H. Borges, A. Hora, and M. T. Valente, “Understanding the Factors That Impact the
Popularity of GitHub Repositories,” in 2016 IEEE International Conference on Software
Maintenance and Evolution (ICSME). Raleigh, NC, USA: IEEE, Oct. 2016, pp. 334–344.
[Online]. Available: http://ieeexplore.ieee.org/document/7816479/

[50] O. Dabic, E. Aghajani, and G. Bavota, “Sampling Projects in GitHub for MSR
Studies,” in 2021 IEEE/ACM 18th International Conference on Mining Software
Repositories (MSR). Madrid, Spain: IEEE, May 2021, pp. 560–564. [Online]. Available:
https://ieeexplore.ieee.org/document/9463094/

[51] C. Politowski, F. Petrillo, J. E. Montandon, M. T. Valente, and Y.-G. Guéhéneuc,
“Are game engines software frameworks? A three-perspective study,” Journal
of Systems and Software, vol. 171, p. 110846, Jan. 2021. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0164121220302363

[52] W. K. Mizutani, V. K. Daros, and F. Kon, “Software architecture for digital game mechanics:
A systematic literature review,” Entertainment Computing, vol. 38, p. 100421, May 2021.
[Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S1875952121000185

[53] P. Petridis, I. Dunwell, D. Panzoli, S. Arnab, A. Protopsaltis, M. Hendrix, and
S. De Freitas, “Game Engines Selection Framework for High-Fidelity Serious Applications,”
International Journal of Interactive Worlds, pp. 1–19, Jun. 2012. [Online]. Available:
http://www.ibimapublishing.com/journals/IJIW/2012/418638/418638.html

[54] N. Anquetil, A. Etien, M. H. Houekpetodji, B. Verhaeghe, S. Ducasse, C. Toullec,
F. Djareddir, J. Sudich, and M. Derras, “Modular Moose: A New Generation of Software
Reverse Engineering Platform,” in Reuse in Emerging Software Engineering Practices,
S. Ben Sassi, S. Ducasse, and H. Mili, Eds. Cham: Springer International Publishing,
2020, vol. 12541, pp. 119–134, series Title: Lecture Notes in Computer Science. [Online].
Available: http://link.springer.com/10.1007/978-3-030-64694-3 8

[55] M. Goslin and M. Mine, “The Panda3D graphics engine,” Computer, vol. 37, no. 10, pp.
112–114, Oct. 2004. [Online]. Available: http://ieeexplore.ieee.org/document/1350741/

[56] C. Politowski, Y.-G. Guéhéneuc, and F. Petrillo, “Towards automated video game
testing: still a long way to go,” in Proceedings of the 6th International ICSE

109

https://ieeexplore.ieee.org/document/9596801/
http://ieeexplore.ieee.org/document/5293600/
http://link.springer.com/10.1007/s10664-017-9512-6
http://ieeexplore.ieee.org/document/7816479/
https://ieeexplore.ieee.org/document/9463094/
https://linkinghub.elsevier.com/retrieve/pii/S0164121220302363
https://linkinghub.elsevier.com/retrieve/pii/S1875952121000185
http://www.ibimapublishing.com/journals/IJIW/2012/418638/418638.html
http://link.springer.com/10.1007/978-3-030-64694-3_8
http://ieeexplore.ieee.org/document/1350741/

Workshop on Games and Software Engineering: Engineering Fun, Inspiration, and
Motivation. Pittsburgh Pennsylvania: ACM, May 2022, pp. 37–43. [Online]. Available:
https://dl.acm.org/doi/10.1145/3524494.3527627

[57] N. Al Madi, S. Peng, and T. Rogers, “Assessing Workload Perception in Introductory
Computer Science Projects using NASA-TLX,” in Proceedings of the 53rd ACM Technical
Symposium on Computer Science Education. Providence RI USA: ACM, Feb. 2022, pp.
668–674. [Online]. Available: https://dl.acm.org/doi/10.1145/3478431.3499406

[58] S. G. Hart, “Nasa-Task Load Index (NASA-TLX); 20 Years Later,” Proceedings of the
Human Factors and Ergonomics Society Annual Meeting, vol. 50, no. 9, pp. 904–908, Oct.
2006. [Online]. Available: http://journals.sagepub.com/doi/10.1177/154193120605000909

[59] S. Diehl, Software Visualization, 1st ed. Berlin, Heidelberg: Springer Berlin Heidelberg,
2007. [Online]. Available: http://link.springer.com/10.1007/978-3-540-46505-8

[60] V. B. Kampenes, T. Dybå, J. E. Hannay, and D. I. Sjøberg, “A systematic
review of effect size in software engineering experiments,” Information and Software
Technology, vol. 49, no. 11-12, pp. 1073–1086, Nov. 2007. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0950584907000195

110

https://dl.acm.org/doi/10.1145/3524494.3527627
https://dl.acm.org/doi/10.1145/3478431.3499406
http://journals.sagepub.com/doi/10.1177/154193120605000909
http://link.springer.com/10.1007/978-3-540-46505-8
https://linkinghub.elsevier.com/retrieve/pii/S0950584907000195

	List of Figures
	List of Tables
	Introduction
	Overview
	Research Methodology
	Research Contributions
	Thesis Outline

	Background
	Software Architecture
	Software Architecture Recovery
	Approaches
	Use of metamodels
	Use of graph analysis
	Evaluation

	Game Engines
	Relations with software architecture recovery

	Approach
	System selection
	Subsystem selection
	Subsystem detection
	Include graph generation
	Architectural model generation
	Architectural model visualisation

	Implementation
	System Selection
	Subsystem Selection
	Subsystem Detection
	Include Graph Generation
	Architectural Model Generation
	Architectural Model Visualisation
	Results
	RQ1: Which Subsystems are Present in Game Engines?
	RQ2: Do Game Engines Share Subsystem Coupling Patterns?

	Discussion
	RQ1: Which Subsystems are Present in Game Engines?
	RQ2: Do Game Engines Share Subsystem Coupling Patterns?
	Unclustered Files/Folders

	Evaluation
	RQ1 - To what extent do the game engines we selected for architecture recovery with SyDRA match the architectural descriptions provided in the literature?
	RQ2: Does SyDRA help developers understand and maintain the architecture of game engines?
	Hypotheses
	Participants
	Experimental Materials
	Visual Studio Code
	Experimental Tasks
	Procedures
	Design
	Dependent Variables and Their Collection Procedures
	Data Analysis Procedure
	Results
	Discussion
	Threats to validity

	Conclusion
	Limitations and Future Work

	Appendix Task Statements and Questionnaires
	Appendix Absolute Path to Files in Results
	Bibliography

