
UNIVERSITÉ DE MONTRÉAL

UNIFYING SERVICE ORIENTED TECHNOLOGIES FOR THE SPECIFICATION AND
DETECTION OF THEIR ANTIPATTERNS

FRANCIS PALMA
DÉPARTEMENT DE GÉNIE INFORMATIQUE ET GÉNIE LOGICIEL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

THÈSE PRÉSENTÉE EN VUE DE L’OBTENTION
DU DIPLÔME DE PHILOSOPHIÆ DOCTOR

(GÉNIE INFORMATIQUE)
AOÛT 2015

c© Francis Palma, 2015.

UNIVERSITÉ DE MONTRÉAL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

Cette thèse intitulée :

UNIFYING SERVICE ORIENTED TECHNOLOGIES FOR THE SPECIFICATION AND
DETECTION OF THEIR ANTIPATTERNS

présentée par : PALMA Francis
en vue de l’obtention du diplôme de : Philosophiæ Doctor
a été dûment acceptée par le jury d’examen constitué de :

M. MULLINS John, Ph.D., président
M. GUÉHÉNEUC Yann-Gaël, Doctorat, membre et directeur de recherche
Mme MOHA Naouel, Ph.D., membre et codirectrice de recherche
M. DESMARAIS Michel C., Ph.D., membre
Mme STROULIA Eleni, Ph.D., membre externe

iii

To...

Dr. Hermann Gmeiner,
the founder father of SOS Children’s Villages International

Mr. Helmut Kutin,
the honorary president and ex-president of SOS Children’s Villages International

SOS Children’s Villages International
a loving home for every child and my forever home

iv

ACKNOWLEDGEMENTS

I am especially grateful to my supervisors, Dr. Yann-Gaël Guéhéneuc and Dr. Naouel
Moha, for everything I learned from them. They were always available for constructive feed-
backs, no matter where they were and how busy they were. Their software engineering,
programming, statistical, mathematical, and other skills and knowledge aided me to build
this thesis. I really appreciate the guidance, patience, and challenges that they gave me. They
led me to reach a level that I never imagined. Thank you, Naouel and Yann !

I would like also to thank Dr. Guy Trembly and Dr. Foutse Khomh. Their encoura-
gements and insightful comments and suggestions made an important part of this thesis. I
would also like to thank Javier Gonzalez-Huerta, a post-doctoral researcher in Latece and a
colleague of mine who also contributed with his comments and suggestions.

I would like to thank various interns for their excellent work during their internship to
conduct our experiments and investigating results. Among them, I must mention gratitude
to Charlie Faucheux, Dubois Johann, Ons Mlouki, and Mathieu Nayrolles. I would like to
thank all the people participating the experiments.

I would like to thank all the members of Ptidej, SoccerLab, Latece, SWAT and MCIS
teams for collaborations, discussions, suggestions, and all the activities that we did together.

Last but not least, I am thankful to all my friends and family members who supported
me in my times in needs.

I also thank my Little Linette (my God daughter in Montreal) who just born when I
started my Ph.D. in 2011 and has grown up now, being such a lovely and sweet little girl
and calling me ‘Papa’, the sweetest name I was ever called by.

My doctoral studies were supported by NSERC (Natural Sciences and Engineering Re-
search Council of Canada), Canada Chairs, and FRQNT Canada research grants.

I am personally grateful to SOS Children’s Villages International (SOS KDI), who helped
me with everything since my very childhood, to pursue my every dream !

v

PUBLICATIONS

Portions of the material in this dissertation have previously appeared in the following
publications.

The list of international journal article(s) (peer reviewed) :
1. Francis Palma, Naouel Moha, and Yann-Gaël Guéhéneuc, Unifying SBSs Technologies

for the Specification and Detection of their Antipatterns. IEEE Transactions on Software
Engineering (IEEE TSE, 2015) (under review)

2. Francis Palma, Mathieu Nayrolles, Naouel Moha, Yann-Gaël Guéhéneuc, Benoit Bau-
dry, and Jean-Marc Jézéquel, SOA Antipatterns : An Approach for their Specifica-
tion and Detection. International Journal of Cooperative Information Systems (IJCIS,
2013).

The list of international conference proceeding(s) (peer reviewed) :
1. Francis Palma, Javier Gonzalez-Huerta, Naouel Moha, Guy Tremblay, and Yann-

Gaël Guéhéneuc : Are RESTful APIs Well-designed ? Detection of their Linguistic
(Anti)Patterns. International Conference on Service Oriented Computing (ICSOC),
Goa, India (November 2015).

2. Francis Palma, Naouel Moha, and Yann-Gaël Guéhéneuc : Specification and Detection
of Business Process Antipatterns. In Proceedings of the 6th International MCETECH
Conference, May 12-15th, 2015, Montreal, Canada. (May 2015).

3. Francis Palma, Le An, Foutse Khomh, Naouel Moha, and Yann-Gaël Guéhéneuc :
Investigating the Change-proneness of Service Patterns and Antipatterns. (Best Paper
Award). In Proceedings of the 7th IEEE International Conference on Service Oriented
Computing and Applications (SOCA), Matsue, Japan. (November 2014).

4. Francis Palma, Johann Dubois, Naouel Moha, and Yann-Gaël Guéhéneuc : Detection
of REST Patterns and Antipatterns : A Heuristics-based Approach. In Proceedings of
the 12th International Conference on Service Oriented Computing (ICSOC), Paris,
France. Springer (November 2014).

5. Francis Palma, Naouel Moha, Guy Tremblay, and Yann-Gaël Guéhéneuc : Specifi-
cation and Detection of SOA Antipatterns in Web Services. In Proceedings of the 8th
European Conference on Software Architecture (ECSA), Vienna, Austria. Springer
(August 2014).

vi

6. Naouel Moha, Francis Palma, Mathieu Nayrolles, Benjamin Joyen Conseil, Yann-
Gaël Guéhéneuc, Benoit Baudry, and Jean-Marc Jézéquel : Specification and Detection
of SOA Antipatterns. (Best Paper Award–Runner up). In Proceedings of the 10th
International Conference on Service Oriented Computing (ICSOC), Shanghai, China.
Springer (November 2012).

The list of workshop, symposium, and tool demo paper(s) (peer reviewed) :

1. Francis Palma and Naouel Moha, A Study on the Taxonomy of Service Antipatterns.
In the proceedings of 2nd on Patterns Promotion and Anti-patterns Prevention (PPAP
2015) co-located with 22nd IEEE International Conference on Software Analysis, Evo-
lution, and Reengineering (SANER 2015), Montréal, Canada.

2. Francis Palma, Specification and Detection of SOA Antipatterns, PhD Symposium, in
conjunction, with 30th International Conference on Software Maintenance and Evolu-
tion (Victoria, Canada), ICSME 2014, September 28 - October 3, Victoria, Canada.

3. Francis Palma, Naouel Moha, and Yann-Gaël Guéhéneuc, Detection of Process Anti-
patterns : A BPEL Perspective. Workshop on Methodologies for Robustness Injection
into Business Processes (MRI-BP), in conjunction with the 17th IEEE Internatio-
nal EDOC Conference (EDOC 2013), "The Enterprise Computing Conference", 9–13
September 2013, Vancouver, Canada.

4. Francis Palma, Detection of SOA Antipatterns. 8th PhD Symposium (Shanghai,
China), in conjunction with ICSOC 2012, (10th International Conference on Service
Oriented Computing), November 12-16, Shanghai, China, 2012.

5. Mathieu Nayrolles, Francis Palma, Naouel Moha and Yann-Gaël Guéhéneuc, SODA :
A Tool Support for the Detection of SOA Antipatterns. ICSOC Demonstration Track,
in conjunction with ICSOC 2012, (10th International Conference on Service Oriented
Computing), November 12-16, Shanghai, China, 2012.

6. Francis Palma, Hadi Farzin, Yann-Gaël Guéhéneuc and Naouel Moha, Recommen-
dation System for Design Patterns in Software Development : An DPR Overview. 3rd
International Workshop on Recommendation Systems for Software Engineering (RSSE
2012), in conjunction with ICSE 2012, Zurich, Switzerland.

vii

RÉSUMÉ

Les logiciels basés sur les services (SBSs) sont développés en utilisant l’Architecture
Orientée Services (SOA), comme les SOAP Web services, Service Component Architecture
(SCA) et REST. Pourtant, comme tous les autres systèmes complexes, les SBSs sont su-
jets aux changements. Les changements peuvent être fonctionnelles ou non fonctionnelles et
peuvent apparaître à la conception ou a l’implémentation. Ces changements peuvent dégra-
der la qualité de la conception et la qualité de service (QoS) dans les SBS en introduisant
des mauvaises solutions—antipatrons de services. La présence d’antipatron de services dans
les SBSs peut entraver l’entretien futur et l’évolution de SBSs. L’évaluation de la qualité de
la conception et de la qualité de service de SBSs via la détection des antipatrons de services
peut faciliter leur maintenance et leur évolution. Bien qu’il existe quelques points communs
entre les différentes technologies SBS, ils varient dans leurs (1) building blocks, (2) les styles
de composition, (3) la méthodologie de développement et (4) les styles de communication
ou d’interaction client ; ce qui posent des défis pour les analyser d’une manière unique. La
littérature actuelle manque une approche unifiée pour évaluer la qualité de la conception et
de la QoS SBS.

Pour répondre à ce besoin, cette thèse présente un méta-modèle unifiant trois techno-
logies SBSs : Web services, SCA et REST. Nous utilisons ce méta-modèle, pour créer une
approche unifiée, SODA (Service Oriented Détection for Antipatterns), soutenue par un fra-
mework, SOFA (Service Oriented Framework for Antipatterns), pour évaluer la conception
et la QoS des SBSs. En utilisant l’approche SODA, nous définissons des règles de détection
pour 31 antipatrons de service et 10 patrons de service indépendamment de leurs technolo-
gies. Basé sur ces règles, nous générons automatiquement (pour SCA et Web services) ou
implémentons (pour REST) leurs algorithmes de detection. Nous appliquons et validons ces
algorithmes en termes de precision et de rappel sur (1) deux systemes de SCA, (2) plus de 120
Web services et (3) un ensemble de 15 services REST largement utilisés, incluant Facebook,
Twitter et YouTube.

Les résultats de détection fournissent des preuves de la présence d’antipatrons de services
dans les SBS. Notre méthode de détection possède une précision et un rappel élevées et une
performance de détection acceptable en termes de temps. Notre approche SODA et l’outil
sous-jacent peuvent aider les praticiens à évaluer leur SBS, ce qui peut entraîner un SBS (1)
avec une meilleure qualité de conception et un entretien facilité et (2) une QoS améliorée
pour les utilisateurs finaux comparé à un SBS contenant les antipatrons de services.

viii

ABSTRACT

Service-based Systems (SBSs) are developed on top of diverse emerging Service-Oriented
Architecture (SOA) technologies and architectural choices, including SOAP Web services,
SCA (Service Component Architecture), and REST. Yet, like any other complex systems,
SBSs are subject to change. The changes can be functional or non-functional and can be at
design or implementation-level. Such changes may degrade the quality of design and quality
of service (QoS) of the services in SBSs by introducing poor solutions—service antipatterns.
The presence of service antipatterns in SBSs may hinder the future maintenance and evo-
lution of SBSs. Assessing the quality of design and QoS of SBSs through the detection of
service antipatterns may ease their maintenance and evolution. With a few commonalities
among various SBSs implementation technologies, they vary in their (1) building blocks, (2)
composition styles, (3) development methodology, and (4) communication or client interac-
tion styles; which pose challenges to analyse them in a unique manner. However, the current
literature lacks a unified approach for evaluating the design quality and QoS of SBSs.

To address this need, this dissertation presents an abstraction unifying three SBSs
technologies: Web services, SCA, and REST. Using this abstraction, it describes a unified
approach, SODA (Service Oriented Detection for Antipatterns), supported by a framework,
SOFA (Service Oriented Framework for Antipatterns), for assessing the design and QoS of
SBSs. Using the SODA approach, we define detection rules for 31 service antipatterns and
10 service patterns independent of their technologies. Based on these rules, we automatically
generate (for SCA and Web services) or implement (for REST) their detection algorithms.
We apply and validate these algorithms in terms of precision and recall on (1) two SCA
systems, (2) more than 120 SOAP Web services, and (3) a set of 15 widely-used RESTful
services, including Facebook, Twitter, and YouTube.

The detection results provide evidence of the presence of service antipatterns in SBSs.
The reported detection accuracy exhibits a high precision and recall and an acceptable detec-
tion performance in terms of detection time. Our SODA approach and the underlying tool
can help practitioners to evaluate their SBSs, which may result in an SBS (1) with improved
quality of design and easy maintenance and (2) with improved QoS for the end-users than
an SBS with antipatterns.

ix

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

PUBLICATIONS . v

RÉSUMÉ . vii

ABSTRACT . viii

TABLE OF CONTENTS . ix

LIST OF TABLES . xii

LIST OF FIGURES . xiv

LIST OF ACRONYMS AND ABBREVIATIONS . xvi

CHAPTER 1 INTRODUCTION . 1
1.1 Research Context . 1
1.2 Problem Statement and Thesis . 4
1.3 The Unified Abstraction and SODA Approach 8
1.4 Contributions . 9

1.4.1 Other Related Contributions . 10
1.5 Organisation of the Dissertation . 11

CHAPTER 2 BACKGROUND . 13
2.1 Chapter Overview . 13
2.2 Service-Oriented Architecture . 13
2.3 Different SBSs Technologies . 16

2.3.1 Web Services . 16
2.3.2 Service Component Architecture . 17

2.4 Comparison among Technologies . 18
2.4.1 Core Design Elements . 20
2.4.2 Service Consumption Styles . 21

2.5 Comparison among Service Antipatterns . 21

x

2.6 Discussion . 23

CHAPTER 3 LITERATURE REVIEW . 25
3.1 Chapter Overview . 25
3.2 Catalog of Antipatterns . 25
3.3 Detection of Antipatterns . 26

3.3.1 Studies on the Detection of OO Antipatterns 27
3.3.2 Studies on the Detection of Service Antipatterns 28
3.3.3 Other Related Studies . 30

3.4 Summary on Literature Review . 31
3.5 Discussion . 32

CHAPTER 4 ABSTRACTION OF SBSs TECHNOLOGIES 34
4.1 Chapter Overview . 34
4.2 The Unified Abstraction . 34

4.2.1 Our Observations on the Unified Abstraction 37
4.3 The Meta-abstraction . 38
4.4 Discussion . 38

CHAPTER 5 SPECIFICATION AND DETECTION OF SERVICE ANTIPATTERNS 40
5.1 Chapter Overview . 40
5.2 Proposed Unified Approach . 40

5.2.1 Step 1. Specification of Service Antipatterns 41
5.2.2 Step 2. Generation of Detection Algorithms 46
5.2.3 Step 3. Detection of Service Antipatterns: The SOFA Framework . . 49

5.3 Discussion . 51
5.3.1 Extension of the DSL for REST Antipatterns 52

CHAPTER 6 VALIDATION . 54
6.1 Chapter Overview . 54
6.2 Assumptions . 54
6.3 Subjects . 55
6.4 Objects . 55
6.5 Overall Process . 56
6.6 Detection Results and Discussions . 58

6.6.1 Detection of Antipatterns Common in SCA, Web services, and REST 58
6.6.2 Detection of Antipatterns Common in SCA and Web services 61

xi

6.6.3 Detection of Antipatterns Common in Web services and REST 65
6.6.4 Detection of SCA-specific Antipatterns 67
6.6.5 Detection of Web services-specific Antipatterns 68
6.6.6 Detection of REST-specific Antipatterns 69
6.6.7 Detection of REST Patterns . 77

6.7 Discussion on Assumptions . 80
6.8 Threats to Validity . 83
6.9 Tool Support . 84
6.10 Discussion . 88

CHAPTER 7 AN IMPACT STUDY OF SERVICE ANTIPATTERNS 90
7.1 Chapter Overview . 90
7.2 Motivation and Research Questions . 90
7.3 The Study Object: FraSCAti . 92
7.4 Study Design . 93

7.4.1 Data Collection and Processing . 93
7.4.2 Variable Selection . 96
7.4.3 Analysis Method . 97

7.5 Case Study Results . 98
7.6 Threats to Validity . 107
7.7 Discussion . 108

CHAPTER 8 CONCLUSION AND RESEARCH PERSPECTIVES 110
8.1 Conclusion . 110
8.2 Research Perspectives . 113

8.2.1 Short-term Perspectives . 113
8.2.2 Long-term Perspectives . 114

REFERENCES . 116

CHAPTER Appendices . 127

CHAPTER Appendix A . 128

CHAPTER Appendix B . 147

CHAPTER Appendix C . 150

CHAPTER Appendix D . 154

xii

LIST OF TABLES

Table 2.1 Non-trivial Architectural Differences among SCA, Web services, and
REST. 19

Table 2.2 Comparison among Antipatterns in SCA, SOAP Web service, and REST. 24
Table 3.1 Relevant Works in the Literature (in the Chronological Order) on the

Catalog and the Detection of Antipatterns in Component-based Sys-
tems (CBS), Object-Oriented Systems (OO), and Service-based Sys-
tems (SBSs)—SCA, SOAP Web services, and REST. 32

Table 5.1 List of 27 Service Metrics for Specifying Service Antipatterns. 45
Table 5.2 List of 12 REST-specific Metrics for Specifying Antipatterns in REST-

ful APIs. 52
Table 6.1 List of 15 RESTful APIs with Their Online Documentations. 56
Table 6.2 Detection Results of the Three Service Antipatterns: Ambiguous Name,

Bloated Service, and Nobody Home commonly found in the three SBSs
Implementation Technologies SCA, Web services, and REST. 60

Table 6.3 Detection Results of the Eight Service Antipatterns Commonly Found
in the Two SBSs Implementation Technologies SCA and Web services. 63

Table 6.4 Detection Results of the Two Service Antipatterns: CRUDy Interface
and CRUDy URI Commonly Found in the Two SBSs Implementation
Technologies Web services and REST. 66

Table 6.5 Detection Results of the Three Service Antipatterns: God Component,
Sand Pile, and The Knot Commonly Found in SCA. 67

Table 6.6 Detection Results of the Three Service Antipatterns: Low Cohesive Op-
erations, May be It’s Not RPC, and Redundant PortTypes Commonly
Found in Web services. 69

Table 6.7 The Mapping between REST Antipatterns and Patterns. 70
Table 6.8 Detection results of the Eight REST Antipatterns Related to the Syn-

tactic Design of REST Requests/Responses Obtained by Applying De-
tection Algorithms on the 12 RESTful APIs (numbers in the parenthe-
ses show total test methods for each API). 72

xiii

Table 6.9 Detection Results of the Four REST Linguistic Antipatterns Related to
the Semantic Design of REST URIs Obtained by Applying Detection
Algorithms on the 15 RESTful APIs (numbers in the parentheses show
total test methods for each API). The Detection Time Excludes the
Execution Time—Sending Requests and Receiving Responses. 76

Table 6.10 Detection results of the Five REST Patterns Related to the Syntactic
Design of REST Requests/Responses Obtained by Applying Detection
Algorithms on the 12 RESTful APIs (numbers in the parentheses show
total test methods for each API). 77

Table 6.11 Detection results of the Five REST Linguistic Patterns Related to the
Semantic Design of REST URIs Obtained by Applying Detection Al-
gorithms on the 15 RESTful APIs (numbers in the parentheses show
total test methods for each API). The Detection Time Excludes the
Execution Time—Sending Requests and Receiving Responses. 78

Table 6.12 Complete validation results on Dropbox (Validation 1) and partial val-
idation results on Facebook, Dropbox, Twitter, and YouTube (Valida-
tion 2). ‘P’ represents the numbers of detected positives and ‘TP’ the
numbers of true positives. 79

Table 6.13 Average Precision, Recall, and F1-measure for the Different Antipat-
terns Groups. 82

Table 6.14 Average Detection Times for the Different Antipatterns Groups. . . . 83
Table 7.1 Summary of the Characteristics of the FraSCAti OW2 v1.4 (the entire

revision history). 92
Table 7.2 Summary of the Detection Results for Five Service Patterns and Eight

Service Antipatterns in FraSCAti OW2 System. 96
Table 7.3 Mapping Cohen’s d to Cliff’s δ. 98
Table 7.4 The informal interpretation of p-values. 98
Table 7.5 The Wilcoxon Rank Sum Test Between Service Antipatterns and Other

Services. 101
Table 7.6 The Non-parametric Cliff’s δ Effect Size Measure Between Service An-

tipatterns and Other Services. 101
Table 7.7 Kruskal-Wallis Test for the Different Kinds of Service Antipatterns. . 104
Table 7.8 The Wilcoxon rank sum test between service patterns and other services.107
Table 7.9 The non-parametric Cliff’s δ effect size measure between service pat-

terns and other services. 107

xiv

LIST OF FIGURES

Figure 1.1 The Overview of the Proposed Unified SODA Approach. 9
Figure 2.1 The Four Key Elements in SOA and Their Sub-elements. 14
Figure 2.2 The Simple Client-Server Model. 14
Figure 2.3 A Typical SOA Service Interaction Scenario. 15
Figure 2.4 Type Distribution of Web APIs Protocols and Styles. 18
Figure 2.5 Building Blocks of the Three SBSs Implementation Technologies. . . 20
Figure 2.6 The Set Relation Among Service Antipatterns Found in SCA, Web

services, and REST. 22
Figure 4.1 The Unified Abstraction for Web services, SCA, and REST (the ele-

ments related to meta-abstraction are shown inside angle brackets). . 35
Figure 4.2 The Meta-abstraction of Web services, SCA, and REST. 38
Figure 5.1 The Unified SODA Approach. 40
Figure 5.2 BNF Grammar of Rule Cards for SODA. 42
Figure 5.3 Rule Cards for Multi Service and Tiny Service antipatterns in SCA

and Web services. 44
Figure 5.4 Heuristic of Forgetting Hypermedia Antipattern. 45
Figure 5.5 Different Steps Involved in the Automatic Algorithms Generation Pro-

cess. 46
Figure 5.6 Automatically Generated Detection Algorithm of Multi Service An-

tipattern Represented as a Java Class. 47
Figure 5.7 The Meta-model of Rule Cards. 48
Figure 5.8 The SOFA Framework. 50
Figure 5.9 The Example of the Usage of Sensors and Triggers. 51
Figure 5.10 Heuristic of Forgetting Hypermedia antipattern (top) and the Corre-

sponding Rule Card (bottom). 53
Figure 6.1 Overview on the Detection Results of REST Request/Response Syntac-

tic Antipatterns. [BSD→Breaking Self-descriptiveness; FH→Forgetting
Hypermedia; EL→Entity Linking; IC→Ignoring Caching; RC→Response
Caching; IMT→Ignoring MIME Types; CN→Content Negotiation; ISC→Ignoring
Status Code; MC→Misusing Cookies; TTG→Tunnelling Through GET;
TTP→Tunnelling Through POST; EPR→End-point Redirection; EE→Entity
Endpoint.] . 71

Figure 6.2 Linguistic (Anti)Patterns Detected in each REST API. 74

xv

Figure 6.3 The Home Page of the Prototype Web Interface for the Detection of
Web services-specific Service Antipatterns. 85

Figure 6.4 The Search and Detection Page of the Prototype Web Interface for the
Detection of Web services-specific Service Antipatterns. 86

Figure 6.5 The Prototype Web Interface for the Detection of REST-specific Ser-
vice Antipatterns. 87

Figure 7.1 An Overview of Our Approach to Study the Impact of Service Patterns
and Antipatterns on the Change-proneness of SBSs. 94

Figure 7.2 Comparison between Antipattern Services and Non-antipattern Ser-
vices in Terms of Number of Changes (top) and Code Churns (bottom).100

Figure 7.3 Comparison among Antipattern Services in Terms of Total Number of
Changes (top) and Code Churns (bottom). 103

Figure 7.4 Comparison Between Pattern Services and Non-pattern Services in
Terms of Number of Changes (top) and Code Churns (bottom). . . . 106

xvi

LIST OF ACRONYMS AND ABBREVIATIONS

BNF Backus Normal Form
BPEL4WS Business Process Execution Language for Web Services
CBS Component-based Systems
DSL Domain Specific Language
GQM Goal Question Metric
HATEOS Hypermedia as the Engine of Application State
ISBSG International Software Benchmarking Standards Group
JSON JavaScript Object Notation
OMG Object Management Group
OOP Object-Oriented Programming
QoD Quality of Design
QoS Quality of Service
REST REpresentational State Transfer
ROI Return On Investment
SBSs Service-based Systems
SCA Service Component Architecture
SCDL Service Component Definition Language
SDLC Software Development Life Cycle
SDO Service Data Objects
SOA Service-Oriented Architecture
SOAP Simple Object Access Protocol
SODA Service Oriented Detection for Antipatterns
SODA-BP Service Oriented Detection for Antipatterns in Business Processes
SOFA Service Oriented Framework for Antipatterns
SOMAD Service Oriented Mining for Antipattern Detection
SOP Service-Oriented Programming
UDDI Universal Description, Discovery, and Integration
URIs Uniform Resource Identifiers
WSDL Web Service Description Language
XML eXtensible Markup Language

1

CHAPTER 1 INTRODUCTION

1.1 Research Context

Service-Oriented Architecture and Service-Oriented Programming: Software en-
gineering is defined as “the systematic application of scientific and technological knowledge,
methods, and experience to the design, implementation, testing, and documentation of soft-
ware” [ISO/IEC/IEEE (2010)]. The technological knowledge and methods applied for soft-
ware development evolve regularly to develop more flexible, high-performance, and high-
maintainable software systems. Therefore, the existing software development paradigms vary
in facilitating the reusability and ease of maintenance and evolution for software.

One of the earliest software development paradigms is the procedural development—a
simple but powerful development paradigm—which followed the sequential execution of a
program. However, it has several drawbacks: (1) it is hard to relate real world concepts
programmatically; (2) systems are difficult to maintain when the code grows; (3) data are
publicly exposed, i.e., not secured. To overcome those pitfalls, Object-Oriented Programming
(OOP) was introduced with an increased software development productivity and reuse, with
reduced software maintenance cost, and improved data security [Champeaux et al. (1993)].
Moreover, software performance and quality of software improved significantly.

After the Internet was invented, and industries required conducting their business and
transactions remotely over the Web, a new software development paradigm was inevitable.
Thus, a new programming paradigm—Service-Oriented Programming (SOP)—appeared for
developing remotely accessible and platform independent autonomous functional entities—
services [Papazoglou et al. (2003); Erl (2004); Turner et al. (2003)]. Compared to the pro-
cedural and OOP paradigms, SOP introduced an additional layer of software abstraction—
the service layer. A benefit of having this additional layer of service abstraction is that it
helps propagate business changes rapidly and can significantly reduce the maintenance efforts
[Woods et Mattern (2006)]. A service-based system relies on services as its building blocks
and on the Service-Oriented Architecture (SOA) as its underlying architecture [Erl (2005)].

Service-Oriented Architecture (SOA) [Papazoglou et al. (2003); Erl (2005); Heffner et al.
(2007)] is a collection of principles and methodologies for designing and developing service-
based systems (SBSs). SOA helps IT organisations to meet their business needs by composing
loosely-coupled, platform-independent, reusable functional services, which encapsulate appli-
cation and business logics [Erl (2005)]. The rapid growth of SOA is strongly supported by

2

the major software vendors, e.g., IBM, Sun, and SAP, offering Service-Oriented middleware
platforms, SBSs development and deployment tools with development environments.

SBSs are designed and developed applying SOA design patterns and principles [Erl
(2009)] and using a number of different technologies and architectural styles, typically REpre-
sentational State Transfer (REST, [Fielding (2000)]), Service Component Architecture (SCA,
[Chappell (2007)]), and SOAP Web services [Alonso et al. (2003)]. In this dissertation,
we refer these technologies as SBSs technologies. Google Maps, Amazon, eBay, PayPal,
and FedEx are examples of industry-scale SBSs. Spanoudakis and Mahbub [Spanoudakis
et Mahbub (2004)] defined ‘SBSs’ as composite systems, which are dynamically composed
with autonomous Web services and whose composition is controlled by some composition
processes. The definition of SBSs provided by Spanoudakis and Mahbub focuses only on the
compositional aspect of SBSs. Therefore, this dissertation further generalises the definition:

“SBSs are built on top of SOA design principles and are composed of autonomous services
implemented with heterogeneous technologies as their building blocks.” [Palma et al. (2013)].

Systems developed with these SBSs technologies exhibit high flexibility and agility, ex-
pedite rapid business changes, and more importantly, have high reusability [Erl (2007)]. How-
ever, services and SBSs are not exempt of some common software engineering challenges—
maintenance and evolution. Maintenance and evolution take place when new or changed user
requirements appear. More specifically, the maintenance and evolution can take place due to
(1) functional changes, i.e., changes at design and implementation-level; (2) non-functional
changes, i.e., changes in the execution contexts or in service-level agreements.

Maintenance and Evolution of SBSs: For any software systems including the SBSs,
maintainability and evolvability—the two most important quality characteristics—represent
the ability of a software system to be modified and evolved at ease [Khurana (2007); ISO/IEC
(2011)]. Among the several iterative and long-running development phases, software main-
tenance and evolution phase is the most resource-intensive phase (i.e., consumes more than
70% of overall project resources) and involves continuous corrective, preventive, adaptive, and
perfective activities performed on existing software components [Lientz et Swanson (1980);
Khurana (2007); Pigoski (1996); Rombach et al. (1992); Holgeid et al. (2000); Coleman et al.
(1994); Zuse (1997)]. These studies showed the importance of having well-maintainable soft-
ware systems. Thus, developing a software that is difficult to maintain can lead to halting the
project in the long-run due to the increased maintenance cost and effort [Khurana (2007)].
Boehm et al. [Boehm et al. (1976)] suggested that the main benefit of having a software
system of good quality is its cost-effective maintenance and evolution. This dissertation

3

considers software quality as the combination of (1) quality of design that facilitates future
maintenance and evolution and (2) end user’s satisfaction in terms of quality of service.

From the SOA perspective, developing highly-maintainable services and SBSs of good
quality is crucial due to their continuous-evolving nature. Due to the rapid changes in (grow-
ing and global) business needs, SBSs must adapt to client requirements by changing their
underlying business logics and rules with the shortest delay [Newcomer et Lomow (2004)]. A
highly maintainable service can facilitate better adaptation. Moreover, firm time constraints,
i.e., shorter software product release times, might lead to producing less-maintainable sys-
tems. SBSs operate in a highly dynamic execution environment, and, thus, SBSs developers
need to take an extra care of the desired functional (i.e., system’s functional capabilities)
and non-functional behaviors (i.e., throughput, latency, availability, etc.), after performing
all kinds of maintenance activities.

More than 50% of the efforts during the maintenance activities are typically spent
on the perfective maintenance [ISBSG (2005)]. Perfective maintenance activities involve
modifications of a system to accommodate new user requirements or change the existing
functionalities. Perfective maintenance is highly relevant to the service-oriented development,
which, in general, incorporates a large number of business rules integrated within a business
process. A business process may involve a number of partner remote services and plays
as a media between the end-users and the services providing desired functionalities. Such
complex business processes are the most unstable part of SBSs [Wan-Kadir et Loucopoulos
(2004)]. This instability of SBSs causes them going under frequent perfective maintenance to
seamlessly cope with the changed business requirements. Thus, developing SBSs exhibiting
high maintainability is one of the key factors towards a successful adoption of SOA.

Antipatterns to Assess Software Quality: During the maintenance and evolution of
SBSs the various functional and non-functional changes may degrade the quality of design
and implementation and the quality of service (QoS) of SBSs and may cause the appearance of
poor solutions to recurring design problems—service antipatterns. These poor solutions, i.e.,
service antipatterns, are documented in the literature as the common bad design practices
considered during the design and development of services and SBSs. In other words, service
antipatterns typically capture some aspects of design inelegance, component complexity, lack
of cohesion, and–or high coupling among a group of services (or components). Assessing
the design quality and QoS of any systems by detecting antipatterns may help to ease their
maintenance and evolution [Bennett et Rajlich (2000)].

Multi Service and Tiny Service are examples of two typical service antipatterns [Dudney
et al. (2003)] in SBSs. Multi Service represents a service that implements a long list of

4

operations varying in business abstractions. A service implemented as a Multi Service is
not easily reusable and exhibits a low cohesion among its operations. Being overloaded by
many different client requests, the Multi Service might become frequently inaccessible to its
end-users. This excessive load, however, can be reduced by deploying multiple instances of
the service, which is not an inexpensive resolution. On the contrary, Tiny Service, a small
service with very few operations, implements only a part of an abstraction, thus requiring
several other tightly coupled services to complete an abstraction, increasing the design and
development complexity. Researchers suggest that Tiny Service is the cause of a number
of SOA failures [Král et Žemlička (2008)]. Detecting such service antipatterns requires the
rigorous assessment of the design and QoS of SBSs.

However, such assessment of the design and QoS of SBSs is challenging because (1)
service antipatterns do not have a formal specification, i.e., they are only textually described
in the current literature and (2) each kind of SBSs technology: Web services, SCA, and
REST, includes common and differing concepts. Diverse SBSs technologies vary in their (1)
building blocks, (2) composition styles, (3) development methodology, and (4) communication
or client interaction styles, which pose some challenges to analyse them in a unique manner.

Assessing the design of an SBS involves its static analysis while assessing its QoS involves
measuring various dynamic aspects (i.e., performance and availability). Detecting service
antipatterns in SBSs is one of the effective means of analysing and assessing the design and
QoS criteria of SBSs. The detection of service antipatterns within SBSs is also a part of
maintenance activities: (1) to improve their quality of design and QoS and (2) to decrease
the effort and cost of their future maintenance and evolution.

1.2 Problem Statement and Thesis

Despite their importance to assess the design and QoS of SBSs, service antipatterns
have not received much attention in the literature. Till today, a little research effort was
dedicated to considering how service antipatterns in SBSs impact their maintainability. More
importantly, the detection mechanisms of service antipatterns in various SBSs technologies
are still immature. Pressman in his book Software Engineering: A Practitioner’s Approach
[Pressman (2010)] suggested that the detection and correction of design problems (in this
dissertation the service antipatterns) in any software systems can reduce the cost and effort of
their future maintenance and evolution activities. He also argued that software systems with
least possible design problems are easier to implement and cope with the change requests
[Pressman (2010)].

5

To support software engineers and developers in the assessment of software quality, a
number of quality models were proposed in the literature, for example [Boehm et al. (1976);
Kitchenham (1987); Dromey (1995)]. However, the existing literature on the quality assess-
ment is mostly subjective, incomplete and–or not strong enough to gain wide acceptance
[Mattsson et al. (2006)]. Moreover, due to the unique characteristics of SOA paradigm de-
scribed in Section 2.2, the existing procedural and OO approaches are not applicable for the
identification of bad design practices in SBSs [Perepletchikov et al. (2005)]. Therefore, this
dissertation specifies, detects, and empirically evaluates a suite of service antipatterns. These
service antipatterns provide a means to assess the structural properties of service interfaces
and behavioral aspects of services while invoking them. Moreover, in the literature, there
exists no formal specification of service antipatterns to facilitate their detection.

We identified the four following potential problems from the literature on the detection
of service antipatterns in SBSs:

– Problem 1. No unified abstraction of various SBSs technologies: To de-
tect service antipatterns in various SBSs technologies (e.g., SCA, Web services, and
REST), we need a unified abstraction, first, to understand those technologies well,
and, second, to apply generic approaches to specify and detect service antipatterns.
Combining various technologies brings potential challenges because despite their com-
monalities, these technologies have many architectural differences and they differ how
clients consume services.

– Problem 2. No specification of service antipatterns: To detect service an-
tipatterns, we must specify them in a machine-processable and human-understandable
format. Without proper specifications, service antipatterns are ambiguous and can-
not be detected automatically. The present service antipatterns literature is still in
textual format, which is hard to handle and use.

– Problem 3. No dedicated unified approach and framework for the detection
of service antipatterns: SBSs operate in the Internet-based dynamic environment.
The complex execution context of SBSs, i.e., scenarios based on choreographed ser-
vices and their dynamic nature, i.e., physical availability and service-level agreements
between services and clients make the analysis of services and detection of service
antipatterns challenging. There are numerous contributions in the literature for the
detection of object-oriented (OO) antipatterns. Yet, there is no consolidated method
and technique for such detection in SBSs to assess their QoS and design. There is no
unified framework for the detection of various service antipatterns.

– Problem 4. No empirical evidence on the impact of service antipatterns

6

on service-based systems: An empirical study aimed at quantifying the impact of
service patterns and antipatterns on the maintenance and evolution of service-based
systems can provide a concrete evidence. No study quantitatively assesses the impact
of service patterns and antipatterns on specific quality attributes. Based on such
evidence, the developers and engineers would be aware of introducing antipatterns,
intentionally or either way. There are some works in the Object-Oriented domain
[Khomh et al. (2009, 2012b); Romano et al. (2012)]. However, no such strong evidence
exists in the service-oriented literature.

In the literature, no solution exists dealing with the above four gaps. Thus, with the
problems stated above, we formulate our thesis statement as following:

Thesis: “A unified approach to assessing the design and quality of service (QoS)
of SBSs, supported by a framework for specifying and detecting service antipat-
terns, can facilitate the maintenance and evolution of SBSs, with the conjecture
that service antipatterns may degrade the design and QoS, and hinder the future
maintenance and evolution of SBSs.”

To support the above thesis statement, we answer the two following research questions:

RQ1 – Can we efficiently specify and detect service antipatterns in different
development technologies and architectural styles of service-based systems in
terms of detection accuracy and performance?

By answering RQ1, we show that we can specify any service antipatterns and detect them
with high accuracy and low performance overhead in terms of detection time. Moreover, the
proposed detection framework must be extensible for new service antipatterns and new SBSs
technologies.

7

A positive answer to RQ1 solves Problem 1, Problem 2, and Problem 3 iden-
tified in the literature:
Solution to Problem 1: A unified abstraction of various SBSs technologies for
their better understanding and for the specification and detection of service antipat-
terns in various SBSs technologies.
Solution to Problem 2: Specification of service antipatterns in an automatable
format for their automatic detection.
Solution to Problem 3: A unified approach based on a framework that can
facilitate the detection of service antipatterns in SBSs regardless of their underly-
ing technologies and can ensure the reusability and extensibility of the proposed
framework.

RQ2 – What are the impact of service antipatterns and patterns on the main-
tenance and evolution of service-based systems?

By answering RQ2, we empirically show that services involved in antipatterns are more
change-prone, i.e., antipatterns require more maintenance effort. In contrast, services in-
volved in patterns are less change-prone than those not involved in any patterns, i.e., patterns
require less maintenance effort. To conclude with RQ2, we investigate the following:

1. RQ2.1 – What is the relation between service antipatterns and change-proneness?
Finding: The total number of source code changes and code churns performed during
the maintenance and evolution of services involved in antipatterns is higher than the
total number of source code changes and code churns performed on other services—the
difference is statistically significant.

2. RQ2.2 – What is the relation between particular kinds of service antipatterns and
change-proneness?
Finding: Services found to be involved in God Component, Multi service, and Service
Chain antipatterns are more change-prone than services involved in other antipatterns—
the difference is statistically significant.

3. RQ2.3 – What is the relation between service patterns and change-proneness?
Finding: The total number of source code changes and code churns performed dur-
ing the maintenance and evolution of services involved in patterns is less than the
total number of source code changes and code churns performed in other services—the
difference is not statistically significant.

8

An answer to RQ2 with a statistically significant evidence solves the Problem 4
identified in the literature:
Solution to Problem 4: A strong evidence of the relationship between service
antipatterns in SBSs and their maintainability, i.e., change-proneness. Such strong
evidence on the negative impact of service antipatterns on maintainability will raise
awareness among SBSs designers and developers.

1.3 The Unified Abstraction and SODA Approach

To answer RQ1, which concerns the efficient specification and detection of service an-
tipatterns in SBSs regardless of SBSs technologies, we propose a unified abstraction of differ-
ent SBSs technologies. Later, using this unified abstraction, we propose and follow a unified
approach, SODA (Service Oriented Detection for Antipatterns), to specify antipatterns at
higher-level of abstraction and perform their detection on a number of SBSs developed using
diverse SBSs implementation technologies, namely Web services, SCA, and REST.

Figure 1.1 presents an overview of our proposed SODA approach with the three steps.
Our novel and innovative SODA approach, relies on a unified framework, SOFA (Service Ori-
ented Framework for Antipatterns), for the specification and automatic detection of service
antipatterns in SBSs. Our SOFA framework facilitates the static and dynamic analyses of
SBSs where the static analysis concerns quantifying design-related structural properties and
the dynamic analysis refers to quantifying runtime properties while executing an SBS. The
SOFA framework is also capable of performing the syntactic and semantic analyses of services
interfaces based on WordNet [Miller (1995)] and Stanford CoreNLP [Manning et al. (2014)].
Using the SODA, we perform a series of experiments intended for the empirical validation of
the presence of service antipatterns in SBSs.

The three steps of the SODA approach include:

– Step 1: Our proposed unified SODA approach relies upon a domain specific language
(DSL) to specify service antipatterns in terms of metrics, both static and dynamic.
The DSL is defined after a thorough domain analysis of service antipatterns from the
literature and provides the means to specify service antipatterns at higher-level of
abstraction;

– Step 2: With the help of DSL and SOFA, we automatically generate (for SCA and
Web services) or implement (for REST) antipatterns detection algorithms from the
rules of service antipatterns;

9

– Step 3: Finally, we apply them on a target SBS for the detection of service antipat-
terns and report suspicious services.

Textual
Description of

Antipatterns

Rule s
Detection

Services
involved in
Antipatterns

Step 1

SBS

D
et

ec
tio

n

Algorithms

Step 2 Step 3

Service

D
ef

in
iti

on
 o

f
R

ul
es

G
en

er
at

io
n

of

A
lg

or
ith

m
s

Figure 1.1: The Overview of the Proposed Unified SODA Approach.

We show the usefulness of SODA by defining rules for 31 service antipatterns from SCA,
REST, and Web services and by performing their detection. We validate the detection results
in terms of precision, recall, and F1-measure on:

1. FraSCAti, the largest open-source SCA system with 130 services andHome-Automation,
a demo SCA application with 13 services;

2. more than 120 Web services collected from a Web services search engine:
www.programmableweb.com;

3. 15 well-known RESTful APIs, including Facebook, Twitter, Dropbox, and YouTube.
We show that SODA allows the specification and detection of a representative set of

service antipatterns of different types with an average precision and recall of more than 75%.

1.4 Contributions

This dissertation makes a contribution to the field of SOA by presenting a dedicated
approach for specifying and detecting bad design practices, i.e., service antipatterns, in SBSs.

The main contributions of this dissertation are:

1. A unified abstraction combining different SBSs technologies and architectural styles
showing the differences and commonalities among them (solving Problem 1);

2. On top of the unified abstraction, a service DSL to specify service antipatterns regard-
less of SBSs technologies with higher-level of abstractions (solving Problem 2);

3. Using the proposed unified abstraction and the service DSL, a unified SODA approach
for the specification and automatic detection of service antipatterns in SBSs technolo-
gies (solving Problem 3);

10

4. An extensive validation of the SODA approach using precision, recall, and F1-measure
on the largest SCA system—FraSCAti, more than 120 Web services, and 15 well-known
REST services (solving Problem 3);

5. An empirical evidence on the impact of service antipatterns on the maintenance and
evolution of SBSs, in particular on SCA systems (solving Problem 4).

However, this dissertation contributes towards the detection of service antipatterns and
does not consider removing or refactoring service antipatterns. Demonstrating the elimina-
tion of service antipatterns requires significant research effort investigating the refactoring
methodology from the literature based on the best practices for each service antipattern. We
consider the refactoring of service antipatterns as one of our future works.

1.4.1 Other Related Contributions

Detection of Process Antipatterns: As an additional contribution, we also performed
detection of business process antipatterns in BPEL4WS business processes [Curbera et al.
(2006); Alves et et al. (2007)]. BPEL4WS (Business Process Execution Language for Web
Services) is a de facto business process definition language in the industry built on top of the
Web services model. However, business processes may evolve, i.e., changes may take place
(1) by modifying the existing tasks and–or adding new tasks or elements (2) by modifying
the flow in the processes. This evolution of business processes may deteriorate their designs
over time and introduce poor but recurring solutions to process design problems—process
antipatterns. Process antipatterns describe common design problems in SBPs that may hin-
der their maintenance and evolution and result in poor quality of design (QoD) [Koehler et
Vanhatalo (2007)]. Therefore, for SBPs, the automatic detection of such antipatterns is an
important activity by assessing their design (1) to ease their maintenance and evolution and
(2) to improve their QoD. We proposed SODA-BP (Service Oriented Detection for Antipat-
terns in Business Processes) supported by our underlying framework, SOFA, to specify and
detect process antipatterns. Please refer to the full paper in [Palma et al. (2015)] for the
detail description and validation of our SODA-BP approach.

Taxonomy of Service Antipatterns: A better understanding of service antipatterns is a
must prerequisite to perform their detection. The study in [Palma et Moha (2015)] presents a
taxonomy of service antipatterns in Web services and SCA (Service Component Architecture),
the two state-of-the-art SBSs implementation technologies. The presented taxonomy will
facilitate engineers their understanding on service antipatterns. Other substantial benefits
of the presented taxonomy include: (1) assisting in the specification and detection of service
antipatterns, (2) revealing the relationships among various groups of service antipatterns, (3)

11

grouping together antipatterns that are fundamentally related, and (4) providing an overview
of various system-level design problems ensemble.

1.5 Organisation of the Dissertation

The remainder of this dissertation provides the following content:

Chapter 2: Background (P. 13) provides a background on Service Oriented Architecture
and on the SBSs technologies we studied in this dissertation. It also compares among those
technologies from the architectural point of view. Finally, it compares services antipatterns
and classify them to show their distribution among technologies.

Chapter 3: Literature Review (P. 25) performs a literature review on the existing con-
tributions in both Object- and Service-Oriented domain. Finally, it identifies the gaps in the
current literature.

Chapter 4: Abstraction of SBSs Technologies (P. 34) presents the proposed unified
abstraction and the meta-abstraction that we use for the specification of service antipatterns
across various SBSs technologies.

Chapter 5: Specification and Detection of Service Antipatterns (P. 40) presents our
proposed unified approach, SODA, relying on the unified abstraction, for the specification of
service antipatterns. It also presents the unified framework, SOFA that is used by SODA for
the automatic detection of service antipatterns.

Chapter 6: Validation (P. 54) presents the results of the empirical validation of SODA
approach and discusses the results in detail for each antipattern.

Chapter 7: An Impact Study Of Service Antipatterns (P. 90) explores the impact
of service patterns and antipatterns on SBSs change-proneness, and provides quantitative
evidence of the negative impact of antipatterns on services change-proneness on an SCA
system.

Chapter 8: Conclusion (P. 110) presents the conclusion of this dissertation and outlines
some directions of future research.

Appendix A: Antipatterns in SBSs Technologies (P. 128) presents the brief descriptions
of all service antipatterns and their rule cards or heuristics studied in this dissertation.

Appendix B: Transformation of REST Heuristics to Rule Cards: (P. 147) presents
the transformation of five REST heuristics into their corresponding rule cards—using those
rule cards we can automate the generation of their detection algorithms.

12

Appendix C: Design Overview of FraSCAti and Home-Automation (P. 150) presents
the overall design for the two SCA systems FraSCAti and Home-Automation analysed in this
dissertation for the detection of service antipatterns in SCA.

Appendix D: List of SOAP Web services (P. 154) presents the list of 123 service
interfaces analysed in this dissertation for the detection of service antipatterns in SOAP Web
services.

13

CHAPTER 2 BACKGROUND

2.1 Chapter Overview

This chapter provides a short introduction to Service-Oriented Architecture (SOA) and
its various key concepts. Section 2.3 briefly describes the three Service-based Systems (SBSs)
implementation technologies, namely SOAP Web services, REST, and Service Component
Architecture (SCA). We provide a detailed comparison among those three SBSs implementa-
tion technologies in Section 2.4. We compare those technologies to show their differences and
commonalities in various aspects. Finally, in Section 2.5, we show a classification of service
antipatterns using a Venn diagram. The classification shows that different SBSs implemen-
tation technologies may share common service antipatterns, and there are antipatterns that
are technology-specific. This classification is important because antipatterns that exist across
technologies can be detected using similar detection algorithms whereas technology-specific
antipatterns might require dedicated detection algorithms.

In the next section, we briefly discuss SOA and its various key concepts.

2.2 Service-Oriented Architecture

Primarily, a Service-Oriented Architecture (SOA), as shown in Figure 2.1, considers
these four elements as its key: (1) an application front-end, (2) a set of services, (3) a service
repository holding services specifications, which facilitates searching for services, and (4)
a service bus that provides a mechanism to the services for their interaction [Rosen et al.
(2008)]. Each service has a contract defining its capabilities. A service implements at least
one interface, which lists and exposes service’s functional capabilities. Overall, a service
implements a business abstraction. In the following, we identify and discuss the four key
concepts in SOA-based systems.

A Service: A service in a service-oriented architecture (SOA) is an (entirely) autonomous
functional entity and several autonomous services can be composed to achieve higher level
business goals [Erl (2005)]. Services in the context of SOA hold two main notions: (1) they
perform business-related tasks and are not visible elements and (2) services are black-box
entities and only expose their functionalities while hiding their implementation details. A
service has end-point(s) through which the prospective clients will connect to it. An end-
point holds a set of related operations. Each end-point compulsorily defines a binding type,

14

Service Oriented Architecture

Application Frontend Service

Contract Implementation

Business Logic

Data Store

Contract

Service Repository Service Bus

Figure 2.1: The Four Key Elements in SOA and Their Sub-elements.

i.e., how a client will communicate with the service and a physical address, i.e., where the
end-point is hosted.

Client-Server Model: As depicted in Figure 2.2, the SOA-based systems rely on the
client-server communication model and their communications rely on SOAP messages or
HTTP requests/responses. In general, the client can be an application front-end or a Web
browser. The server holds the service(s) and manages and serves the client’s requests. The
details on SOAP messages and HTTP requests/responses and their formats are not discussed
in this dissertation (more on SOAP and HTTP requests/responses can be read from here
[Daigneau (2011)]). However, the services’ interfaces, provided and exposed in a registry by
a service provider is our subject of interest in this dissertation. We briefly discuss on WSDL
interfaces.

 Client Server

SOAP Messages OR

HTTP Requests/Responses

Figure 2.2: The Simple Client-Server Model.

WSDL Interface: Once a service provider creates a service, he must describe the service
using a specification language and provides the physical location (i.e., end-point) of the
service for potential clients to connect and consume functionalities provided by the service.

15

W3C defines a service end-point as “an association between a fully specified interface binding
and a network address, specified by a URI that may be used to communicate with an instance
of a Web service” [Christensen et al. (2011)].

WSDL (Web Service Description Language) specifications are written in XML format
and are published over the network, i.e., the Internet. WSDL contains a set of end-points
associated with a set of messages, i.e., exchanged data and operations, which are bound to a
binding protocol. Thus, a WSDL specification has three main constituents: (1) definitions of
data types and–or messages, (2) operations of four different types, namely one-way request,
request/response, one-way response, and notification, and (3) service bindings to connect a
service’s port by the clients.

UDDI Registry: UDDI (Universal Description, Discovery, and Integration), a platform-
independent and XML-based registry, plays a major role in helping clients to search for
services already published over the Internet. The UDDI is formed with three components:
(1) white pages containing providers’ addresses and contacts, (2) yellow pages providing
industry-standard services categorisations, and (3) green pages containing technical details
on services, i.e., their functional capabilities and communications protocols. UDDI relies on
SOAP messages to interact with clients.

Finally, if we combine the above individual SOA key concepts, it works together to
fulfill clients business requirements from searching for an appropriate service to an actual
interaction with the service, as shown in Figure 2.3. The steps from service’s search to its
consumption include:

 Client UDDI

 Web service Service
 Vendor

Internet

1

2

3

4

5

6

Connect
Search service

functionality

7

SOAP message

8

Figure 2.3: A Typical SOA Service Interaction Scenario.

16

Step 1: A client requires a Web service and, therefore, the client searches for a directory;

Step 2: The client connects to a UDDI directory to search for relevant services;

Step 3: The client and UDDI directory determine if the desired service is available;

Step 4: The UDDI directory contacts the service provider for the service availability;

Step 5: The service provider responds with a WSDL document if the service is available;

Step 6: The client prepares to consume the service, for example, by creating a client stub;

Step 7: The client interacts with the actual service using the SOAP or HTTP messages;

Step 8: The service responds with the client’s business data to be processed by the client;

However, the UDDI registries and the underlying SOAP messaging protocol are getting
desolated. Because, at present, the UDDI registries are not well-maintained and are not
complete. Moreover, the SOAPmessaging protocol is losing its popularity due to its verbosity.
Marshalling and unmarshalling SOAP messages are computationally expensive [Daigneau
(2011); Weerawarana et al. (2005)].

In Figure 2.3, the service vendors might implement services using different service im-
plementation technologies. In the next section, we briefly highlight various implementation
technologies for Service-based Systems (SBSs).

2.3 Different SBSs Technologies

This section briefly introduces the three SBSs technologies considered in this disserta-
tion: Service Component Architecture (SCA) [Chappell (2007)], SOAP Web services [Alonso
et al. (2003)], and REpresentational State Transfer (REST) [Fielding (2000)]. Later, a de-
tailed comparison among them follows.

2.3.1 Web Services

W3C defines a Web service as “a software system designed to support interoperable
machine-to-machine interaction over a network". Developers rely on Web services as the
remote interfaces for their software systems. The two main categories of Web service are (1)
SOAP Web services and (2) RESTful Web services.

SOAP Web Services:

Web services rely on an XML-based messaging protocol SOAP (Simple Object Access
Protocol) [Alonso et al. (2003)]. Such Web services operate using customised operations and

17

the communications between clients and Web services are based on standards: (1) XML (eX-
tensible Markup Language) as the service data format, (2) HTTP as the transport protocol,
(3) SOAP as the reliable and secured messaging protocol, (4) UDDI (Universal Description,
Discovery, and Integration) as the service discovery mechanism, and, finally, (5) WSDL (Web
Services Description Language) as the formal service contract.

RESTful Web Services:

REST allows resource-centric remote services [Fielding (2000)]. A Web service created
based on the REST architecture can be referred as RESTful Web service. Strictly speaking,
RESTful Web services must adhere to the rules and standards of HTTP. Unlike Web services,
which operate using customised operations, REST services use standard HTTP operations,
e.g., GET, POST, PUT, and DELETE, to access and manipulate resources. It is a matter
of great importance selecting the appropriate HTTP method for a certain context. REST
architecture has an increased data transport efficiency and reduced data handling complexity,
which come from its light-weight design and simple usage scheme. Among many others, the
unique characteristics of REST architectures are: (1) the explicit use of HTTP methods,
(2) the statelessness and cacheability, thus scalability, (3) the exposure of directory-like URIs
(Uniform Resource Identifiers), (4) the ability to transfer data in many Web formats including
XML and JSON (JavaScript Object Notation), a.k.a., the media-types or MIME types. The
lack of proper knowledge on REST can lead to the creation of SOAP-REST hybrid services.

In the past years, SOAP Web services were strongly adopted in the industry. In the
recent years, many large companies are moving towards using RESTful services. In 2011, a
study by ProgrammableWeb on the types of services used in the industry (among its 3,200
listed Web APIs) showed that more than 70% of listed Web APIs are currently RESTful
whereas around 17% services rely on SOAP-based protocols. This clearly shows the present
dominance of REST over SOAP. Figure 2.4 shows the type distribution of Web APIs (from
the source: programmableweb.com).

2.3.2 Service Component Architecture

SCA is a software technology that provides a model to compose applications on top of
SOA design principles [Chappell (2007)]. SCA provides a complete model for the service con-
struction, assembly, and deployment. The composition, a.k.a., SCA composite, is described
using a standard XML-based language, SCDL (Service Component Definition Language)
where a set of related SCA components are orchestrated. The components provide the actual
desired business functionalities in the form of services. SCA defines a technology-agnostic

18

Figure 2.4: Type Distribution of Web APIs Protocols and Styles.

model for composing diverse interface definition languages (WSDL or Java), implementation
languages and frameworks (Java, BPEL, C/C++, Spring, or OSGi), and bindings (SOAP,
JMS, or REST).

The next section compares the above three SOA implementation technologies in detail.

2.4 Comparison among Technologies

Differences at architectural, design, and implementation-level exist among the above
SBSs technologies, summarised in Table 2.1. An extensive review of the literature helped
us to identify and classify the various technology-specific properties highlighted in Table 2.1.
Hence, we must consider such varying properties when analysing SBSs developed relying on
them.

The next two sections discuss the basic differences among three SBSs technologies in
two aspects: their core design elements and service consumption styles.

19

Table 2.1: Non-trivial Architectural Differences among SCA, Web services, and REST.

Criteria Web services SCA REST
Cacheability no no cacheable
Contract design contract first/last contract last contract-less
Dynamic configuration management no yes no
Dynamic deployment no yes no
Error handling no built-in built-in
Message encoding yes yes no
Messaging support yes within domain vendor-specific no
Policy WS-Policy SCA policy framework no standard
Operations invoking protocol SOAP SOAP, JMS, RMI, so on HTTP
Reliability WS-Reliability non-standard no
Representation of information XML-standard XML-standard JSON, XML, MIME, so on
Security WS-Security SCA security policy HTTP, SSL
Standards based yes yes no
Statelessness mostly stateful by default stateless completely stateless
Transactions WS-AtomicTransaction WS-AtomicTransaction no standard
Transport protocol HTTP, TCP, SMTP, JMS, etc. same as SOAP HTTP
Verbosity more more less
Service composition WS-BPEL SCDL mashups
Service/resource identification WS-Addressing no URI
Core design elements service component resource
Focus accessing named operations accessing components as service units accessing named resources
Human intelligible payload no no yes
Hypermedia/hyperlinking no support no support natural support
Interface different interfaces for services different interfaces for components uniform interface for resources
Service discovery UDDI registries not applicable no standard
Service invocation through calling RPC method same as SOAP via URL path
Standardised interface definition Web Services Description Language Service Component Definition Language no
Interface exposure public neither neither
Method callability exposed as remotely callable operation no no
Specification JAX-WS SCA-J JAX-RS
Written documentation no dependency no dependency highly dependent

20

2.4.1 Core Design Elements

A first major difference among the three SBSs technologies is in their core design ele-
ments. SCA relies on component as its building block that provides a specific service and
implements at least one interface [Chappell (2007)]. The SCA components communicate
among themselves by passing the data as service data objects (SDO) and can be composed
to achieve higher-level business goals. A collection of related components are specified in an
SCA composite to achieve a higher-level business goal.

A service in Web services is operation-centric and exposes an arbitrary set of customised
operations. Clients can search their desired customised interfaces. One use of such services is
by orchestrating using a well-defined structured language, BPEL4WS 1. The communications
in Web services are verbose, i.e., the message encoding and decoding are computationally
expensive [Kumar (2004); Papazoglou (2008)].

REST relies on resources that include from one single data (e.g., name, salary) to a
file (e.g., JPEG or PDF). Resources are identified using URIs (Uniform Resource Identifiers)
and are accessible via standard HTTP methods. Thus, RESTful services rely on a uniform
interface with common HTTP methods that can be applied on any resources. A resource has
several essential properties including a location and a representation. REST resources can
be a collection of other resources.

An SCA
Component

S
er

vi
ce

s

Properties

R
eferen

ces

Web Service Interface

Port Types

Bindings

Service

Operations
Input
Output

Port

Types

Messages

<types> ... </types>

<message> ... </message>

<portType> ... </portType>

<operation> ... </operation>

<input> ... </input>

<output> ... </output>

<binding> ... </binding>

<service> ... </service>

<port> ... </port>

REST Resource

Entity Endpoint HTTP Method

Location: URL Representation

(Identifier: URI)

Figure 2.5: Building Blocks of the Three SBSs Implementation Technologies.

Figure 2.5 shows the building blocks of the three SBSs implementation technologies,
namely a component for SCA, a service interface for SOAP Web services, and a REST
resource with its different properties.

1. www.oasis-open.org/committees/wsbpel/

21

2.4.2 Service Consumption Styles

Differences among the three SBSs technologies from the service consumption view-point
include:

1. Web services have publicly discoverable WSDL-based contracts. SCA systems have
SCDL-based specifications that are private and non-discoverable. REST has no stan-
dardised contract or specification. Generating or writing those contracts and specifi-
cations must follow standardised conventions and best practices to allow their better
understandability and re-usability.
Summary: Depending on the technologies, the appearance of service antipatterns re-
lated to service contracts might vary.

2. The Web services clients invoke services relying on SOAP protocols. SCA also exe-
cutes its component services relying on SOAP or REST protocols when various SCA
composites are not within a single machine. As for REST, the service invocation is
completely HTTP dependent and relies on client requests based on resources URIs.
Summary: Antipatterns in REST depend on how well the HTTP client requests are
formed following best practices for REST described in the literature from the client side
and how well the HTTP responses are designed from the server side. Thus, depending
on the technologies the types of antipatterns may vary.

3. Finally, the response data and exchanged messages are available only in the XML-form
for Web services, in XML or SDO (Service Data Objects) for SCA systems, and in any
Web formats like JSON, MIME, YAML, or PDF for REST.
Summary: For Web services and SCA, having only one data representation is not a
bad practice at all; whereas REST must facilitate multiple representations of the same
resource, and, if not, it might be considered as one of the bad practices in REST.

In the next section, we compare among service antipatterns based on their appearances
in various SBSs technologies.

2.5 Comparison among Service Antipatterns

Designers or developers may follow common bad practices while designing or developing
SBSs using different SBSs technologies. Thus, service antipatterns exist in different SBSs
technologies, including SCA, Web services, and REST.

Figure 2.6 shows the Venn diagram relating 31 service antipatterns found in SCA, Web
services, and REST. We identify and relate these 31 service antipatterns from the literature
[Král et Žemlička (2008); Rodriguez et al. (2010a); Modi (2006); Dudney et al. (2003); Jones

22

SCA
WS

REST

Sand Pile

Forgetting Hypermedia
Ignoring MIME Types

Breaking Self-descriptiveness
Ignoring Caching

Ignorning Status Code
Misusing Cookies

Tunelling Through GET
Tunelling Through POST

Amorphous URI
Contextless Resource Names

Non-heirarchical Nodes
Pluralised Nodes

Ambiguous Name
Nobody Home
Bloated Service

Multi Service
Tiny Service
Data Service
Chatty service

CRUDy Interface
CRUDy URI

The Knot Bottleneck Service

Service Chain

Duplicated Service

God Component

Stovepipe Service
Low Cohesive Operations
May be It's Not RPC
Redundant Port-Types

Figure 2.6: The Set Relation Among Service Antipatterns Found in SCA, Web services, and
REST.

(2006); Evdemon (2005); Massé (2012); Tilkov (2008)]. This diagram shows the specific
and common antipatterns shared by SBSs technologies. Antipatterns may be of types inter-
service (involve other services in the system) or intra-service (do not depend or impact other
services directly) and may require static, dynamic, or hybrid analyses of services to detect
them.

The antipatterns in SCA and Web services are described in the literature based on
various criteria related to services design and implementation and their runtime behavior
(e.g., Multi Service, Tiny Service, and Chatty Web service) because in SCA and Web services,
clients consume services by invoking operations defined in their services’ interfaces, and
that the runtime behavior of services depend on how well the services are designed and
implemented.

In contrast, the antipatterns in REST are described based on resources, client requests,
and server responses. REST clients are unaware of the concrete service interfaces and can
only send requests using well-known HTTP methods. REST antipatterns are defined in
the literature focusing on best practices of making requests by clients and sending responds

23

by servers. For example, Forgetting Hypermedia and Ignoring MIME Types antipatterns
indicate the scarcity of HATEOS (Hypermedia as the Engine of Application State) principle
and content negotiation mechanism [Tilkov (2008)].

The detection algorithms for common antipatterns (see Table 2.2) should be similar
across technologies, but require a unified abstraction of the SBSs technologies. However,
the detection mechanism for technology-specific antipatterns will vary. Table 2.2 shows a
comparison among antipatterns in SCA, Web services, and REST. In general, antipatterns
in Web services are defined at the service interface-level, whereas antipatterns in SCA are at
component-level. Components in SCA are at the higher-level of granularity than the services
in Web services.

In this dissertation, we consider Web services as individual entities, i.e., no composition
among them. Therefore, none of the discussed antipatterns for Web services are at the
service composition-level. Nevertheless, there are antipatterns that spread across several
Web services, for example, Stovepipe Service or Single-Schema Dream [Dudney et al. (2003)],
which we plan to analyse as our future work because analysing a set of services requires at
least one execution scenario that can be defined using a process language1.

2.6 Discussion

Service-Oriented Architecture (SOA), with its own design principles, is already a dom-
inant architectural model for designing and developing service-based systems (SBSs). SOA
has several distinct concepts including—services, a remote client-server model, publicly avail-
able service interfaces, and searchable services registries. Besides, the implementation of SOA
requires various SBSs implementation technologies. In this chapter, we compared those dif-
ferent SBSs implementation technologies and identifies a list of non-trivial differences that
describe the technology-specific characteristics. These characteristics also provide a ground
for antipatterns to be different from one technology to another. We also showed the differ-
ences and commonalities among the services antipatterns in various SBSs implementation
technologies with which we can conclude:

Summary: Despite the presence of some common antipatterns across di-
verse SBSs technologies, there exist also antipatterns that are technology-
specific, and, therefore, their specification and detection may differ, which
poses the challenge to have a unified and technology-independent approach
for the detection of service antipatterns in different SBSs technologies.

24

Table 2.2: Comparison among Antipatterns in SCA, SOAP Web service, and REST.

Architectural Choices Antipatterns Names Existence Level Distribution Level

SCA ∩ REST ∩ Web services
Ambiguous Name Interface Intra-service
Nobody Home Interface Intra-service
Bloated Service Interface Intra-service

SCA ∩ Web services

Multi Service Interface Intra-service
Tiny Service Interface Intra-service
Data Service Interface Intra-service
Chatty service Interface Intra-service
Service Chain Interface Inter-service
Duplicated Service Interface Intra-service
Stovepipe Service Interface Intra-service
Bottleneck Service Interface Intra-service

REST ∩ Web services CRUDy Interface Interface Intra-service
CRUDy URI Resource Intra-resource

SCA
Sand Pile Composition Inter-service
The Knot Composition Inter-service
God Component Component Inter-component

Web services
Low Cohesive Operations Interface Intra-service
May be It’s Not RPC Interface Intra-service
Redundant Port-Types Interface Intra-service

REST

Forgetting Hypermedia Resource Intra-resource
Ignoring MIME Types Resource Intra-resource
Breaking Self-descriptiveness Resource Intra-resource
Ignoring Caching Resource Intra-resource
Ignorning Status Code Resource Intra-resource
Misusing Cookies Resource Intra-resource
Tunelling Through GET Interface Intra-service
Tunelling Through POST Interface Intra-service
Amorphous URI Resource Intra-resource
Contextless Resource Names Resource Intra-resource
Non-heirarchical Nodes Resource Intra-resource
Pluralised Nodes Resource Intra-resource

In the next chapter, we highlight various research contributions in the literature on the
detection of service antipatterns in various SBSs implementation technologies. Moreover, we
briefly discuss various research contributions on the detection of OO antipatterns, which, we
believe, would inspire us to derive a methodology that can be applied uniformly on various
SBSs implementation technologies.

25

CHAPTER 3 LITERATURE REVIEW

3.1 Chapter Overview

Design of quality is essential for building easily maintainable and evolvable Service-
based Systems (SBSs). Service antipatterns are potential ways to measure the design quality
of SBSs. The most famous book on antipatterns by Brown et al. [Brown et al. (1998)]
described an antipattern as a “literary form that describes a commonly occurring solution to
a problem that generates decidedly negative consequences”, and introduced a collection of 40
Object-Oriented (OO) antipatterns.

This chapter on the literature review presents notable studies on antipatterns that
have been performed in the OO, Service-Oriented, and Component-based Systems (CBS)
domains. Section 3.2 presents the various catalogs of antipatterns. Section 3.3.1 highlights
the relevant studies on OO antipatterns detection that may inspire our research in the service
domain. Section 3.3.2 discusses the relevant works on the detection of antipatterns in Web
services, SCA, and REST—the three emerging SBSs implementation technologies. Section
3.3.3 highlights relevant works from the CBS domain. Finally, Section 3.4 summarises the
chapter and identifies the existing gaps in the literature.

Since, this dissertation focuses only on antipatterns (and not on design patterns), in the
below, we provide an exhaustive catalog of antipatterns proposed in the literature.

3.2 Catalog of Antipatterns

The catalog of OO antipatterns has already became enriched and matured. However,
unlike the OO antipatterns, fewer books, and articles deal with service antipatterns: most
references are Web sites where SOA practitioners share their experiences in service design and
development [Král et Žemlička (2008); Jones (2006); Modi (2006); Fredrich (2012); Tilkov
(2008); Pautasso (2009)].

Dudney et al. [Dudney et al. (2003)] in their book on service antipatterns provided a
catalog of 53 antipatterns related to the architecture, design, and implementation of systems
based on J2EE technologies, such as EJB, JSP, Servlet, and Web Services. Most service
antipatterns described in this book cannot be detected automatically and are specific to a
technology and correspond to variants of the Tiny and Multi Service. Král et al. [Král
et Žemlička (2007)] described seven service antipatterns, which are caused by an improper

26

usage of SOA standards and improper practices borrowed from the OO design style. The
catalog of service antipatterns is still growing. Moreover, the current literature suggests that
due to the smaller ‘catalog size’ and limited available resources, i.e., articles, books, journals,
etc., the specification and detection of service antipatterns were not considered with greater
importance by the SOA community.

The catalog of Web services-specific antipatterns and their specification and detection
are still in their infancy. Antipatterns in the book J2EE Antipatterns [Dudney et al. (2003)]
are described informally. Rotem-Gal-Oz et al. [Rotem-Gal-Oz et al. (2012)] also informally
described several service antipatterns. All the above works contributed to the existing catalog
of service antipatterns, but did not discuss their specification nor their detection.

As for the REST, there are few books [Erl (2009); Daigneau (2011); Erl et al. (2012)] that
discussed a number of REST patterns. In addition, a number of online resources [Pautasso
(2009); Tilkov (2008); Fredrich (2012)] by REST practitioners provided a high-level overview
of REST patterns and antipatterns related to API design with simple examples and discussed
how they are introduced by the developers.

For example, Erl in his book [Erl (2009)] discussed 85 SOA patterns related to service
design and composition. Erl et al. [Erl et al. (2012)] also explained the REST and RESTful
service-orientation, and discussed seven new REST patterns, thus in total, the catalog defines
92 REST patterns. Daigneau [Daigneau (2011)] introduced 25 design patterns for SOAP
(Simple Object Access Protocol) and RESTful services related to the service interaction,
implementation, and evolution. Moreover, various online resources [Pautasso (2009); Tilkov
(2008); Fredrich (2012)] defined a limited number of REST antipatterns. Moreover, the
definitions of a number of linguistic patterns and antipatterns in REST are proposed in the
literature [Massé (2012); Berners-Lee et al. (2005); Fredrich (2012); Tilkov (2008)]. Beyond
those studies, however, the detection of REST patterns and antipatterns require a concrete
approach, to support their rigorous analysis, which is still lacking in the current literature.

In the next section, we highlight the relevant works in the literature (in the ascending
chronological order) on the detection of antipatterns in the OO, service, and CBS domains.

3.3 Detection of Antipatterns

Detection of antipatterns might help in improving programs design and performance,
and facilitate better evolution and maintenance in general. There are numerous approaches
dealing with the detection of OO antipatterns. However, unlike the research in the OO
domain, research on methods and techniques for the detection of service antipatterns is in

27

their infancy.

3.3.1 Studies on the Detection of OO Antipatterns

Table 3.1 highlights notable works, e.g., [Smith et Williams (2000); Peiris et Hill (2014);
Cortellessa et al. (2012, 2014); Marco et Trubiani (2014); Coscia et al. (2013); Khomh et al.
(2011); Mateos et al. (2011); Moha et al. (2010); Salehie et al. (2006)] in the OO domain
inspiring our work on the detection of service antipatterns in SBSs. Below, we discuss few of
them briefly in connection to our research.

Smith and Williams [Smith et Williams (2000, 2002)] proposed a catalog of performance
antipatterns exploiting well-defined templates. The authors coined the term performance an-
tipatterns as ‘the common performance mistakes made in software architectures or designs,
which may have negative impacts on other quality attributes like reusability or modifiability’
[Smith et Williams (2000, 2002)]. They empirically showed the negative consequences of per-
formance antipatterns, i.e., performance antipatterns have a negative impact on the runtime
performance of OO systems.

Salehie et al. [Salehie et al. (2006)] proposed a framework based on metrics and heuristics
to detect OO antipattern with a direct comparison with the good OO design heuristics at the
classes and their interaction-levels. The authors argued that the key benefit of their proposed
detection framework is its extensibility, i.e., new quality factors and their related heuristics
and metrics can be added and detected incrementally.

Moha et al. [Moha et al. (2010)] proposed the first rule-based DECOR approach for the
specification and detection of OO antipatterns. Using the DECOR, engineers can specify OO
antipatterns at higher-level of abstraction and automatically generate their detection algo-
rithms. The authors validated DECOR with four well-known OO antipatterns, namely Blob,
Functional Decomposition, Spaghetti Code, and Swiss Army Knife. However, the proposed
DECOR approach suffered from the low precision [Moha et al. (2010)].

Later, Khomh et al. [Khomh et al. (2011)] proposed BDTEX, a GQM-based (Goal
Question Metric) method, for the detection of antipatterns in OO systems. The authors
relied on a Bayesian Belief Network (BBN) built using symptoms—a set of attributes of an
antipattern—and investigated the probabilistic relationships between symptoms and antipat-
terns. The BDTEX outperformed its state of the art approach, DECOR [Moha et al. (2010)]
in terms of precision and recall, and minimised the effort required by the quality analysts, as
suggested by the authors [Khomh et al. (2011)].

In another recent work, Maiga et al. [Maiga et al. (2012)] proposed the SMURF approach

28

(using SVM and feedback from engineers) to detect OO antipatterns. The authors identified
several limitations in the literature, including the fact that existing studies were demanding
an extensive knowledge of OO antipatterns and those studies suffered from low precision and
recall, which could be tackled through receiving feedback from the engineers at detection
time. The authors showed improvement in terms of accuracy over the two state of the art
methods DECOR [Moha et al. (2010)] and BDTEX [Khomh et al. (2011)].

Other relevant studies on the detection of OO antipatterns include [Peiris et Hill (2014)]
and [Marco et Trubiani (2014)] where the authors monitored system performance metrics,
for example, the CPU utilisation metrics. They supported the argument of using system per-
formance metrics because the source code analysis requires highly-skilled domain knowledge
and source code may not always be available for such analysis.

Although a number of OO methods exist in the literature for the detection of OO
antipatterns, these detection techniques cannot be directly applied to SOA. Indeed, SOA
focuses on services as first-class entities, whereas OO focuses on classes, which are at a
lower level of granularity. Moreover, the highly dynamic nature of SOA environment raises
several challenges that are not faced in OO development and requires more dynamic analyses
than OO systems. However, all those previous works on OO systems may form a sound
basis of expertise and technical knowledge for building methods for the detection of service
antipatterns in SBSs.

3.3.2 Studies on the Detection of Service Antipatterns

Various studies were carried out for the detection of technology-specific antipatterns, for
example, in SCA [Nayrolles et al. (2013)] and Web services [Tripathi et al. (2014); Torkamani
et Bagheri (2014); Anchuri et al. (2014); Zheng et Krause (2006); Rodriguez et al. (2010b);
Mateos et al. (2011); Rodriguez et al. (2013)]. There are a number of works for discovering
bad practices in writing WSDLs [Torkamani et Bagheri (2014); Anchuri et al. (2014); Zheng
et Krause (2006); Rodriguez et al. (2010b); Mateos et al. (2011); Rodriguez et al. (2013)].
Some works contribute to the catalog of service antipatterns by defining new antipatterns,
but do not focus on their specification and detection, for example, [Král et Žemlička (2008,
2007, 2009); Tripathi et al. (2014)]. However, to get the full benefit of these newly defined
service antipatterns, not only the definitions of new service antipatterns, but also there should
be a generic way to specify and automatically detect them within the SBSs regardless of their
underlying implementation technologies.

29

Detection of Service Antipatterns in SCA

A fewer studies were performed on the detection of antipatterns in SCA. For example,
Nayrolles et al. [Nayrolles et al. (2013)] proposed SOMAD approach (Service Oriented Min-
ing for Antipattern Detection) for the detection of antipatterns in SCA systems by mining
execution traces. SOMAD mines strong associations between sequences of service/method
calls from the execution traces of an SBS and further filters them by using metrics. Nev-
ertheless, the SOMAD approach requires the instrumentation of the SBSs under analysis.
However, the source codes of the SBSs for instrumentation are not always publicly available,
which is the main drawback of SOMAD.

Detection of Service Antipatterns in Web Services

Král and Žemlička [Král et Žemlička (2008, 2007)] presented a list of the most risky
antipatterns, i.e., antipatterns occurring very often and having crucial consequences (conse-
quences are measured using he process risk assessment). In another work, Král and Žemlička
[Král et Žemlička (2009)] analysed frequently used SOA development practices by the devel-
opers and showed that the practices implicitly apply some known service antipatterns. The
authors concluded that it is important to avoid developing fine-grained (very small) services
and interfaces. They also suggested that the antipatterns in SOA are mainly caused by im-
proper design principles borrowed from OO domain. However, the authors did not discuss
the detection strategies of those newly defined service antipatterns.

Rodriguez et al. [Rodriguez et al. (2010b, 2013)] presented a catalog of eight Web Service
discoverability antipatterns and conducted an empirical study on the retrieval performance
of three Web services discovery systems. The study was performed using the Web Services
with antipatterns and the Web services with refactored antipatterns. The results showed that
the refactoring of the antipatterns eases the discovery process by allowing the Web services
discovery systems better rank more relevant Web services, given the same search query.

Coscia et al. [Coscia et al. (2013)] empirically showed that for Web Services, there is
a significant statistical correlation between OO metrics and WSDL-related metrics. These
OO metrics and WSDL-metrics measure the quality of source code and the complexity of
services’ WSDL interfaces, respectively. However, the detection of antipatterns in service
interfaces was not aimed in the study.

Torkamani and Bagheri [Torkamani et Bagheri (2014)] presented a repository of 45
general antipatterns in SOA from the literature and proposed a systematic approach to assist
architects for the detecting and avoiding antipatterns in the service development process. The

30

authors, however, did not offer their automatic detection strategies.

Anchuri et al. [Anchuri et al. (2014)] presented a framework to detect hot-spots in SBSs
relying on objective functions. The proposed framework combines service metrics data, both
the historical and current, for ranking hot-spots in the services call graph, which recommends
a set of services to be optimised. However, the assessment of the quality of the structural
design for services were not their main goal.

Finally, one highly relevant study to our research, recently Ouni et al. [Ouni et al. (2015)]
introduced a novel search-based approach for detecting antipatterns in Web services. In the
proposed approach, the detection rules are automatically inferred from a set of examples of
Web service antipatterns after selecting the best combination of metrics (and their threshold
values) from a set of candidate metrics. This work is interesting as the authors represented
the detection problem as an optimisation problem relying on genetic programming [Koza
(1992)]. The authors conducted experiments on a benchmark of 310 Web services from
various domains. However, their detection accuracy did not improve compared to one of our
recent studies in [Palma et al. (2014b)].

In summary, the studies on Web services either focus on providing the catalog of service
antipatterns [Král et Žemlička (2008, 2007, 2009); Torkamani et Bagheri (2014)] or only on
the structural aspects [Rodriguez et al. (2010b, 2013)], or solely on the behavioral aspects
[Coscia et al. (2013); Anchuri et al. (2014); Ouni et al. (2015)] of service interfaces. However,
in the literature, no work focused on both the structural and behavioral aspects of Web
services, which we considered in this dissertation.

Detection of Service Antipatterns in REST

After a thorough literature survey, we found no direct study on the antipatterns in
REST. However, some works, for example, dealt with the fault tolerance of RESTful appli-
cations [Edstrom et Tilevich (2012)] or with the evolution patterns of RESTful APIs [Wang
et al. (2014)] classifying the types of changes over several versions of RESTful APIs. Thus,
our study on REST antipatterns will bring direct benefit to the REST community by showing
the evidence of the presence of antipatterns in real-world RESTful APIs.

3.3.3 Other Related Studies

Also, some works on the detection of antipatterns in the CBS have been carried out
[Garcia et al. (2009); Parsons et Murphy (2008); Cortellessa et al. (2010); Trubiani et al.
(2014); Wert et al. (2014); Zhang et al. (2012)].

31

For example, Parsons and Murphy [Parsons et Murphy (2008)] proposed a framework
for automatically detecting performance antipatterns and assessing the impact of poor per-
formance designs in CBS. The authors relied on run-time analysis of CBS. One notable ben-
efit of their framework is the ability to visualise the detected antipatterns, which facilitates
the better comprehension of the identified design problems and promotes faster resolutions.
However, their framework is dedicated to only component-based J2EE systems.

Garcia et al. [Garcia et al. (2009)] introduced the notion of architectural smells and
defined their characteristics. The authors argued that architectural smells are different from
the antipatterns. According to the authors, the architectural smells are the group of potential
problems caused by the presence of design fragments that frequently change over the whole
duration of software development and maintenance. The proposed approach is applicable on
both the newly developed or reversed engineered architecture. However, these architectural
smells works only for CBS.

The approach proposed by Cortellessa et al. [Cortellessa et al. (2010)] ranks the possible
causes of performance antipatterns based on their guiltiness where the guiltiness is a given
score for an antipattern for its violation against a set of performance requirements. The main
goal of this study was to generate a new software model free of performance deficiencies. For
the detection of antipatterns, the authors defined rules using first-order logic and relied on
the Java Rule Engine API as their rule engine and later applied those rules on a system
model. However, the implementation part of the rules were done manually and the proposed
work focused only on antipatterns related to performance degradation and the quality of
structural design was not of their interest.

Among the other related works: Trubiani et al. [Trubiani et al. (2014)] investigated
the relations between the bottleneck analysis and performance antipatterns detection. The
detection of performance antipatterns were performed based on defined heuristics. Zhang et
al. [Zhang et al. (2012)] reported the SM@RT tool for the detection of Java EE antipatterns
in a system model at runtime and experimented with 35 antipatterns on six real Java EE
applications.

3.4 Summary on Literature Review

We performed a thorough literature review following the guidelines by Kitchenham
[Kitchenham (2004)] and retrieved relevant research works related to service antipatterns
detection and provide a summary. In Table 3.1, we list works that specifically deal with
antipatterns in CBS, OO and SO domains. For the SO domain, Table 3.1 shows the indi-

32

Table 3.1: Relevant Works in the Literature (in the Chronological Order) on the Catalog and
the Detection of Antipatterns in Component-based Systems (CBS), Object-Oriented Systems
(OO), and Service-based Systems (SBSs)—SCA, SOAP Web services, and REST.

Component-based Systems Object-Oriented Systems Service-based Systems (SBSs)

(CBS) (OO) SCA SOAP Web services REST Unified

Cortellessa et al. (2010) Peiris et Hill (2014) Nayrolles et al. (2013) Ouni et al. (2015)

Trubiani et al. (2014) Cortellessa et al. (2014) Anchuri et al. (2014)

Wert et al. (2014) Marco et Trubiani (2014) Torkamani et Bagheri (2014)

Zhang et al. (2012) Ouni et al. (2013) Tripathi et al. (2014)

Garcia et al. (2009) Maiga et al. (2012) Coscia et al. (2013)

Parsons et Murphy (2008) Cortellessa et al. (2012) Rodriguez et al. (2013) X X

Khomh et al. (2011) Mateos et al. (2011)

Stoianov et Sora (2010) Rodriguez et al. (2010b)

Moha et al. (2010) Král et Žemlička (2009)

Salehie et al. (2006) Král et Žemlička (2008)

Smith et Williams (2002) Král et Žemlička (2007)

Smith et Williams (2000) Zheng et Krause (2006)

vidual studies performed on providing antipatterns catalogs or on the detection of service
antipatterns in SCA, Web services, and REST.

3.5 Discussion

From the literature survey performed in Sections 3.2 and 3.3, we identified the following
gaps in the literature:

1. Numerous contributions are presented in the literature for analysing OO design quality
to detect antipatterns in OO systems, whereas the analysis of SBSs was exploited a
little. Those OO approaches are not applicable to SBSs;

2. Several approaches were proposed in the literature to analyse SCA systems, relying on
the analysis of execution traces [Nayrolles et al. (2013)] or metric-based quantitative
analysis [Demange et al. (2013)]. However, these approaches are strict to SCA;

3. A number of empirical validations were performed in the literature on the detection
of antipatterns in Web services interfaces, i.e., discovering bad practices in writing
WSDL or identifying best practices [Rodriguez et al. (2010b, 2013); Tripathi et al.
(2014)]. However, these analyses are static and do not incorporate services runtime
aspects (e.g., availability or response time);

33

4. Moreover, there exists no approach in the literature dealing with the detection of an-
tipatterns in RESTful APIs. A high demand of RESTful APIs and their increased
usage require rigorous assessment for the improved consumption and maintenance of
RESTful APIs;

5. There exists no unified abstraction that combines different SBSs technologies and pro-
vides a means to detect service antipatterns in SBSs developed using diverse technolo-
gies in a generic way;

6. A unified (framework-based) approach is missing in the literature for the static and
dynamic analyses of SBSs to detect service antipatterns in SBSs independent of SBSs
technologies.

In this dissertation, we fill the above gaps in the literature and contribute by proposing
a unified abstraction that can model and represent any SBSs implementation technologies
and a unified detection approach, relying on an underlying detection framework that can
support the specification of various service antipatterns.

However, before proposing any solution, a good understanding of various SBSs tech-
nologies and their relations is a prerequisite. Modeling various technology-specific concepts
and relating those concepts (where applicable) will facilitate the better comprehension of var-
ious SBSs implementation technologies. Such a model—a unified abstraction—will also help
having a common language for the specification of service antipatterns with a higher-level of
abstraction.

In the next chapter, we present a unified abstraction and a meta-abstraction of three
SBSs implementation technologies: Service Component Architecture (SCA), Web services,
and REST.

34

CHAPTER 4 ABSTRACTION OF SBSs TECHNOLOGIES

4.1 Chapter Overview

This chapter introduces a unified abstraction and a meta-abstraction for SBSs technolo-
gies. We combine various SBSs technology meta-models, as shown in Figure 4.1, showing
their commonalities and differences at the level of their design, implementation, and con-
sumption to build the unified abstraction. Then, we abstract the concepts in an abstract
abstraction to reduce heterogeneity, which is applicable to each of the three SBSs technolo-
gies discussed in Section 2.3. The meta-abstraction we present in Section 4.3 helps viewing all
the technology-specific models from a single perspective and thus facilitates reasoning about
antipatterns in an abstract way. The meta-abstraction in Figure 4.3 presents the strong
inter-technological relations among the various design components in the service domain.

4.2 The Unified Abstraction

We introduce the unified abstraction for Web services, SCA, and REST in Figure 4.1.
Individual meta-models of SCA, REST, and Web services can be found in [Abid et al. (2011)],
[Valverde et Pastor (2009)], and [WWW-Consortium (2006)], respectively. We present the
simplified versions of their meta-models by hiding optional details not related to services
concrete design and implementation. Our proposed unified abstraction has five parts, each
representing a distinct area within the model.

Part 1. The first part includes only the REST-related section and excludes those that
are common between REST and Web services. More specifically, the concepts Resource,
HTTP Method, Request, and RESTService based on URI conventions reside with REST-style
architecture where a RESTService is defined as a collection of multiple Resources that can
be accessed via a baseURI. To access a Resource at least one Method is defined by the REST
developer. HTTP methods (e.g., GET, POST, PUT or DELETE) are used to make user
requests on the Resource.

35

+name

+targetNamespace

Composite

+name

Component

+name

+value

Property

+source

+target

Wire

Implementation

+class

ImplementationJava

+process

ImplementationBPEL

+name

ImplementationComposite

+class

ImplementationC++

+name

Reference

+name

Interface (PortType)

+name

Service

+name

Operation

+uri

+name

Binding

Interface.Java Interface.WSDL

+name

+type

Message (Parameter)

+name

Part

+name

+targetNamespace

Definition

Types SCAClient

+name

+location

Port (EndPoint)

WSClient

Response

-media-type

Representation

+xmlSchemaURI

+xsdElement

XML

+JavaScriptObject

JSON

WS-Style

Binding

SCA-style

Binding

+HTTPMethod : HTTPMethods

+path : string

Method

-GET

-POST

-PUT

-DELETE

<<enumeration>>

HTTPMethods
Request

+URI : string

Resource

+baseURI

+description : string

RESTService

RESTClient

1..*

0..1

0..*
0..*

1..*

1

1

0..1

0..*

0..*

1..*

1..*

1

1

1..*

0..1

1..*

1..*

0..*

1

1

1..*

0..*

0..*

0..1
1..*

0..1

0..*

0..*

0..1

1..*

*

11..*

0..1

1..*

1..*

0..*

0..*

0..1

0..1

0..*

<<invoke>>
<<perform>>

response

output

input

<<instantiate>>

has

Powered ByVi sual Par adi gm Co mmu ni ty Ed i tion

1

4

2

3

5

><

><

><

><

><

><

><
><

><
><

>< ><

Figure 4.1: The Unified Abstraction for Web services, SCA, and REST (the elements related to meta-abstraction are shown
inside angle brackets).

36

Part 2. The second part includes the intersection between REST and SOAP Web service
meta-models. A set of arguments, a.k.a., Parameter, must be specified to make an HTTP
Request. The last state of the requested resource is returned as a Response message that
must have a Representation. A Representation is generally in a globally accepted form,
i.e., XML, JSON, and so on. Thus, in the meta-model, the Representation is defined as an
abstract entity, which is generalised in various data representation formats.

Part 3. The unique concepts in this third part are: Definition of message, Binding,
Parts, and Types of messages. For Web services, the Types and Parts of the Messages
and Binding types are required during the services invocation. Also, the way Messages
are defined in Web services interfaces is unique to the meta-model of Web services—each
message related to different operations has a particular type and message-parts are defined
independently within the service interface. This part of the unified abstraction excludes the
common parts of REST and SCA from the Web services.

Part 4. The fourth part includes the common concepts between Web services and SCA
where a Service implements an Interface and each service has at least one Operation
defined and at least one Binding is required to be specified. Therefore, the concepts
Interface/PortType, Service, Operation, and Binding are common between Web ser-
vices and SCA architectural meta-models.

Part 5. This part includes the concepts specific to SCA, including Reference, Component,
Wire, Property, Composite, and so on. The design and implementation of SCA systems
conform such architectural components, which are not found in REST and Web services ar-
chitectural meta-models. In SCA, a Component provides at least one Service and several
Components may reside within a Composite. Multiple Composites may be connected via
Wires and Components might be dynamically reconfigured via various Property values.

This first unified abstraction for SBSs technologies brings the following benefits:

1. It is helpful in analysing various service antipatterns and SBSs by providing a com-
mon language to specify service antipatterns at high-level of abstraction beyond any
ambiguity;

2. It clearly separates the technology-specific concepts and relates them where applicable,
thus is helpful in understanding the commonalities and differences among various SBSs
technologies;

3. Finally, it allows building a meta-abstraction using inter-related concepts.

Our unified abstraction is applicable to any SBSs developed with SCA, REST, or Web

37

services. It is, however, extensible for new technologies by integrating their shared concepts,
i.e., architectural components and communication styles.

In the next section, we discuss some of our observations based on our experience while
trying to build a technology-neutral unified abstraction.

4.2.1 Our Observations on the Unified Abstraction

– The presented unified abstraction (in Section 4.2) plays an important conceptual role.
It provides a clear understanding of the mutual exclusiveness and inclusiveness among
different SBSs implementation technologies. However, our ultimate goal is to use this
unified abstraction towards the specification of service antipatterns.

– According to the unified abstraction, it is evident that SBSs technologies are not so
similar in terms of their technical specifications and domain-specific concepts. The
three presented SBSs technologies have a number of entities and concepts that are
unique. This uniqueness poses the challenge to have a unified approach for the speci-
fication and detection of service antipatterns in a unique manner, e.g., to rely on the
same grammar and use the same specification language for service antipatterns.

– The proposed unified abstraction can be seen as the composition of different SOA
schemas with some relations among elements (or concepts) from different technology
domains. In the literature, this unification was never been attempted. In fact, due
to its complexity to build and the possibility to reuse this abstraction, very few
contributions are made.

– One of the complexities arises from the fact that these three technologies (e.g., SOAP
Web services, SCA, and REST) have unique building blocks as their first class de-
sign elements. SOAP Web services rely on SOAP services and WSDLs to publish
and consume their services, SCA relies on its own specific types of components, and
REST relies on resources to conceptually design and fully operationalise an SBS. The
technical specifications of these three building blocks differ significantly.

– Finally, acquiring such a unified abstraction was not so easy and straightforward. A
significant amount of literature review effort and paper works were involved before
coming up with a final unification, which conforms to all the three technologies and
does not negate their individual syntactic and semantic meanings.

In the next section, we introduce the proposed meta-abstraction of the three SBSs
implementation technologies.

38

4.3 The Meta-abstraction

We propose a meta-abstraction that combines all the base but mandatory elements
of different SBSs technologies (i.e., SCA, Web services, and REST). Figure 4.2 shows our
proposed meta-abstraction, which embodies a Service implementing an Interface and has
a concrete implementation. Services incorporate a list of operations where each Operation is
associated with some Messages, i.e., parameters. Every service has some Bindings defined
that denote which transport protocol and data format to use. A service is also related to a
dedicated port, i.e., service’s physical location, referred as Service Endpoint. An operation
deals with a set of Messages and–or Resources, which have some schematic object-style
representation and are transferable through a network, i.e., the Internet.

Implementation

+name

Interface/PortType

+name

Operation

+uri

+name

Binding

+name

+type

Message

+name

+location

Service Endpoint

Representation

Resource

Client

+name

Service

1..*

1..*

1..*

1..*

0..1

0..*

1

1

1

1..*

0..1

1..*

0..1

1..*

invokes

Figure 4.2: The Meta-abstraction of Web services, SCA, and REST.

4.4 Discussion

The proposed meta-abstraction conforms to any current SBSs implementation tech-
nologies and we believe will fit upcoming (if any) SBSs technologies. Each of the SBSs
technologies discussed in Section 2.3 shares these common service-related concepts, and,
thus, this conceptual abstraction for technologies helps us to work with different SBSs tech-

39

nologies. Moreover, the proposed unified abstraction (see Section 4.2) facilitates us to have
a common specification language to represent various service antipatterns with higher level
of abstraction.

Relying on the proposed unified abstraction (in Section 4.2) and the meta-abstraction
(in Section 4.3), in the following chapter, we present a unified approach for the specification
and detection of service antipatterns in different SBSs implementation technologies. The
unified abstraction comes into effect in introducing a common specification language, which
is the first step for the detection of service antipatterns.

40

CHAPTER 5 SPECIFICATION AND DETECTION OF SERVICE
ANTIPATTERNS

5.1 Chapter Overview

This chapter presents and discusses our proposed unified approach in detail. The dif-
ferent steps of our approach are described in Sections 5.2.1 to 5.2.3. In particular, Section
5.2.1 elaborates the process of antipatterns specification and further discusses how we spec-
ify heuristics for REST-specific service antipatterns. Section 5.2.1 also presents our common
domain specific language that we use for the specification of antipatterns. Section 5.2.2 de-
scribes the process of automatically generating detection algorithms for service antipatterns
in SCA and Web services, and the process of manually implementing detection algorithms
for REST antipatterns. Finally, Section 5.2.3 presents our unified detection framework and
its various components. The unified framework is the core of our detection process.

5.2 Proposed Unified Approach

Figure 5.1 shows our proposed unified approach, SODA (Service Oriented Detection
for Antipatterns), for specifying and detecting service antipatterns in service-based systems
(SBSs). Our SODA approach encompasses the proposed unified abstraction presented in
Sections 4.2 and 4.3 (see Figures 4.1 and 4.2). Starting with the textual description of service
antipatterns, the specification and the generation of detection algorithms to the detection
phase, we follow through with a validation at the end of the detection process. The three
main steps of the proposed SODA approach include:

Textual
Description

Antipatterns

Rule Cards
Detection

Services
involved in
Antipatterns

Step 1

Definition
Heuristics

Generation

Implementation

1.1

1.2

2.1

2.2

SBS

Detection

Specification
Algorithms

Step 2 Step 3

of Service

Figure 5.1: The Unified SODA Approach.

41

Step 1: Specification. This step includes performing a thorough domain analysis by
studying the definitions and textual descriptions of antipatterns from the literature to identify
relevant static and dynamic properties to specify them. The identified properties represent
(1) measurable attributes of the proposed unified abstraction elements and (2) the inter-
element relations among them. We use these properties as the basis of the vocabulary to
define a common domain specific language (DSL) and formalise antipatterns with rule cards.
Rule cards are representation of antipatterns at a high-level of abstraction, which are both
machine processable and human understandable. Figure 5.3 shows examples of rule cards for
Multi Service and Tiny Service. For REST antipatterns, we define detection heuristics that
are applicable on REST requests and responses (see Figure 5.10).

Step 2: Generation. From the rule cards in the previous step, we intend to automati-
cally generate their detection algorithms using a simple template-based technique (for SCA
and Web services) or implement the detection algorithms for defined heuristics (for REST).
Templates are defined with well-defined tags that can be replaced with values at runtime.

Step 3: Detection. For the detection of antipatterns, we introduce an underlying frame-
work, SOFA (Service Oriented Framework for Antipatterns). The computations of all static
and dynamic metrics, i.e., identified relevant properties of antipatterns and related analy-
ses are performed in SOFA framework. It also assists in syntactic and semantic analyses
of services interfaces based on WordNet [Miller (1995)] and Stanford CoreNLP [Manning
et al. (2014)]. In this step, we apply the detection algorithms automatically generated in the
previous step on different SBSs and report suspicious services. Moreover, for REST services,
SOFA provides the means to concretely send HTTP requests and to automatically apply the
detection algorithms on both HTTP requests and responses.

The next two sections describe the process of the specification of service antipatterns and
the generation of their detection algorithms. We describe our detection framework, SOFA,
in Section 5.2.3. The validation of the approach is discussed in Chapter 6.

5.2.1 Step 1. Specification of Service Antipatterns

Current literature does not provide the specification of any service antipatterns. As
the first step towards their specification, we perform a thorough domain analysis of service
antipatterns by studying their definitions and textual descriptions in the literature [Král et
Žemlička (2008); Dudney et al. (2003); Král et Žemlička (2009)] and in online resources and
articles [Rodriguez et al. (2010a); Evdemon (2005); Cherbakov et al. (2006); Jones (2006);
Modi (2006)]. The process of domain analysis involves identifying, capturing, and organis-
ing reusable information for using them in software development [Prieto-Díaz (1990)]. The

42

1 rule_card ::= RULE_CARD:rule_cardName { (rule)+ };
2 rule ::= RULE:ruleName { content_rule };

3 content_rule ::= metric | relationship | operator ruleType (ruleType)+

4 | RULE_CARD: rule_cardName

5 ruleType ::= ruleName | rule_cardName

6 operator ::= INTER | UNION | DIFF | INCL | NEG

7 metric ::= id_metric ordi_value
8 | id_metric comparator num_value

9 id_metric ::= ALS | ANAM/ANAO | ANIM | ANP | ANPT | ARIM | ARIO | ARIP
10 | COH | CPL | NCO | NI | NIR | NMD/NOD | NOPT
11 | NOR | NPT | NSE | NUM | NVMS | NVOS | RGTS | TNP
12 | A | NMI | NTMI | RT

13 ordi_value ::= VERY HIGH | HIGH | MEDIUM | LOW | VERY LOW
14 comparator ::= < | ≤ | = | ≥ | >

15 relationship ::= relationType FROM ruleName cardinality TO ruleName cardinality
16 relationType ::= ASSOC | COMPOS
17 cardinality ::= ONE | MANY | ONE_OR_MANY | num_value NUMBER_OR_MANY

18 rule_cardName, ruleName, ruleClass ∈ string
19 num_value ∈ double

Figure 5.2: BNF Grammar of Rule Cards for SODA.

domain analysis allows us to identify properties relevant to service antipatterns, including
static properties related to their design (e.g., cohesion and coupling) and also dynamic prop-
erties, such as various QoS properties (e.g., response time or availability). Static properties
are properties that apply to the static descriptions of SBSs, such as WSDL files for Web
services, whereas dynamic properties are related to the dynamic behavior or nature of SBSs
as observed during their execution. Our proposed unified abstraction (see Figure 4.1) and
meta-abstraction (see Figure 4.2) represent the properties related to their static aspects.
However, we do not show the dynamic or behavioral aspects of services in these meta-models
because all the three SBSs technologies share the same quality of service concepts. Table 2.2
lists selected antipatterns in the SCA, Web services, and REST from the literature, which are
commonly found in SBSs and well-explained with their related examples. A brief description
of those service antipatterns are presented in Appendix A where we highlight various relevant
properties in bold-italic. We use these properties as the base vocabulary to define our own
DSL, in the form of a rule-based language for specifying service antipatterns. The DSL offers
software engineers high-level domain-related abstractions and variability points to express
different properties of service antipatterns based on their own judgment, experiences, and
context.

43

We manually identify and organise relevant domain concepts and properties essential
for specifying service antipatterns via rule cards at a high-level of abstraction using a DSL.
Our proposed DSL (see Figure 5.2) allows the specification of antipatterns in a declarative
way, relying on the compositions of multiple rules. We define DSL using a Backus Normal
Form (BNF) grammar as shown in Figure 5.2. A rule card is identified by the keyword
RULE_CARD, followed by a rule card name and a set of rules (line 1). A rule describes a
set of static or dynamic properties, e.g., metrics (lines 9–12), and may have relationships
with other rules, such as via association (ASSOC) (lines 15-17), and may combine with other
rules via set operators such as union (UNION) or intersection (INTER) (line 6). A metric may
define a numerical value (line 7) or an ordinal value defined using five-point Likert scale (line
13). In SOFA framework, we define ordinal values, by relating ordinal values with concrete
numerical values to avoid manually setting threshold values with the box-plot statistical
technique [Chambers et al. (1983)]. We identify, as listed in Table 5.1, a set of 27 metrics
(lines 9-12) after a thorough domain analysis, which can be easily extended by adding new
metrics and can be used to specify various SCA and Web services antipatterns.

From Table 5.1, for example, the ARIP, ARIO, and ARIM metrics combine both the
structural and semantic similarity computation for Web services. Structural similarity uses
the well-known Levenshtein Distance algorithm, whereas semantic similarity uses WordNet
[Miller (1995)] and Standford CoreNLP [Manning et al. (2014)]. WordNet is a widely used lex-
ical database that groups nouns, verbs, adjectives, etc. into the sets of synsets, i.e., cognitive
synonyms, each representing a distinct concept. We use WordNet to find the cognitive simi-
larity between two (sets of) operations, messages, or port-types. We use Stanford’s CoreNLP:
(1) to find the base forms of a set of signatures of operations, messages, or port-types and
(2) to annotate them with the part-of-speech (POS) tagger after we split the signatures based
on the CamelCase.

As for REST, we concretely define detection heuristics for REST-specific antipatterns.
Thus, we do not rely on the proposed DSL for REST antipatterns.

With our domain analysis, antipatterns specifications are made in a consistent high-
level abstraction and capture all relevant domain expertise. Thus, for the domain experts,
it becomes easy to understand and modify the specifications without prior knowledge of the
underlying detection framework. We provide the specifications of all service antipatterns
analysed in this dissertation in Appendix A (see P. 128).

Figure 5.3 shows the rule cards for Tiny Service and Multi Service antipatterns. The
Multi Service antipattern is characterised by very high response time, high number of op-
erations, low availability, and low cohesion. A Tiny Service corresponds to a service that

44

1 RULE_CARD: MultiService {
2 RULE: MultiService {INTER MultiOperation HighResponse LowA LowCohesion};
3 RULE: MultiOperation {NOD VERY_HIGH};
4 RULE: HighResponse {RT VERY_HIGH};
5 RULE: LowA {A LOW};
6 RULE: LowCohesion {COH LOW};
7 };

1 RULE_CARD: TinyService {
2 RULE: TinyService {INTER FewOperation HighCoupling};
3 RULE: FewOperation {NOD VERY_LOW};
4 RULE: HighCoupling {CPL HIGH};
5 };

Figure 5.3: Rule Cards for Multi Service and Tiny Service antipatterns in SCA and Web
services.

declares a very low number of operations and has a high coupling with other services. Thus,
the Multi Service and Tiny Service antipatterns rely, for example, on the Operation and
Message or Parameter elements and their measurable attributes from the proposed unified
abstraction (see Figure 4.1).

Using a DSL offers greater flexibility than implementing ad-hoc detection algorithms
manually. Indeed, the DSL is independent of any implementation concern, such as the com-
putation of static and dynamic metrics and the multitude of underlying SBSs technologies.
Moreover, the DSL allows the adaptation of the antipattern specifications to the context
and characteristics of the analysed SBS by adjusting the metrics and associated values and
considering the unified abstraction for SBSs technologies.

Heuristics of REST-specific Antipatterns

Unlike SCA and Web services, we do not formally specify REST antipatterns using
rule cards because the specification of REST antipatterns does not imply the use of metrics.
Moreover, the antipatterns in the literature defined for REST are of the nature that require
observation rather than measurement, to be detected. For example, as presented in Figure
5.10, Forgetting Hypermedia [Tilkov (2008)] represents a case where the link to an entity,
i.e., entity links, are absent in the response body or header provided by the server. More
specifically, for the HTTP GET requests, such entity links are provided in the response body
or header, hence, checking missing links in the body or header of the response is adequate (see
line 4, Figure 5.10). As for HTTP POST requests, the server provides an external location
in the response header or a link in the response body. Therefore, looking for the absence of
such location in the response header (see line 5, Figure 5.10), or missing link in the response

45

Table 5.1: List of 27 Service Metrics for Specifying Service Antipatterns.

Metrics Full Names Static/Dynamic
A Availability of a Service dynamic

ALS Average Length of Signatures static
ANP Average Number of Parameters in Operations static
ANPT Average Number of Primitive Type Parameters static
ANIO Average Number of Identical Operations static
ANAO Average Number of Accessor Operations static
ARIP Average Ratio of Identical Port-Types static
ARIO Average Ratio of Identical Operations static
ARIM Average Ratio of Identical Messages static
COH Service Cohesion static
CPL Service Coupling static
NCO Number of CRUD Operations static
NOD Number of Operations Declared static
NOPT Number of Operations in Port-Types static
NI Number of Interfaces static
NIR Number of Incoming References static
NMI Number of Method Invocations dynamic
NOR Number of Outgoing References static
NPT Number of Port-Types static
NTMI Number of Transitive Methods Invoked dynamic
NSE Number of Services Encapsulated static
NUM Number of Utility Methods static
NVMS Number of Verbs in Message Signatures static
NVOS Number of Verbs in Operation Signatures static
RGTS Ratio of General Terms in Signatures static
RT Response Time of a Service dynamic
TNP Total Number of Parameters static

1: Forget-Hyper-media(response-header, response-body, http-method)
2: body-links[] ← Extract-Entity-Links(response-body)
3: header-link ← response-header.getValue(“Link")
4: if(http-method = GET and (length(body-links[]) = 0 or header-link = NIL)) or
5: (http-method = POST and (“Location:" 6∈ response-header.getKeys() and
6: length(body-links[]) = 0))) then
7: print “Forgetting Hypermedia detected"
8: end if

Figure 5.4: Heuristic of Forgetting Hypermedia Antipattern.

body (see line 6, Figure 5.10) is enough to detect Forgetting Hypermedia antipattern.

Thus, we rely on defining detection heuristics in the form of pseudo-code to ease their
comprehension and detection. Using various static and dynamic properties identified from

46

Write Rules

R
ul

e
ca

rd
s

(.
rc

)

Step 2E
co

re
 m

o
de

l
(.

ec
or

e
)

Create
Meta-model

Step 1
Parse and

Validate Rules

Step 3 M
od

el
s

of
 r

ul
es

Templates

D
et

ec
tio

n
A

lg
or

ith
m

s
(.

ja
va

)

Generation

Step 4

Figure 5.5: Different Steps Involved in the Automatic Algorithms Generation Process.

REST requests and responses, we define detection heuristics for REST antipatterns. The
heuristic presented in Figure 5.10 is more suitable than a rule card for the detection of REST
antipatterns because of their more intuitive nature. Moreover, an engineer’s knowledge and
experience on REST plays an important role in defining such heuristic.

5.2.2 Step 2. Generation of Detection Algorithms

This step follows a procedure to generate detection algorithms automatically using a
simple template-based technique. From the previous step, for the SCA and Web services,
using the specified rule cards, we generate detection algorithms for the service antipatterns.
More specifically, we rely on Eclipse Modeling Framework [EMF-Eclipse (2010)] and code
generation facility based on a predefined Ecore [Sciamma et al. (2013)] model. The EMF
project, a modeling framework and code generation facility, provides tools and runtime sup-
port to generate compilable code.

To follow with the generation process, first, we create a meta-model of our DSL in
Ecore format (Step 1). We detail the meta-model in Section 5.2.2. Then, we use EMFText
[EMFText (2007)] to write and validate rule cards on-the-fly (Step 2). For the generation
of the detection algorithms, first, we parse the rule cards of each antipattern and represent
them as models. Then, we use Ecore to syntactically validate the rule card models against the
meta-model of our DSL (Step 3). Ecore guarantees the correctness of the rule card models.
We use a template-based code generation technique provided by Acceleo [Obeo (2005)] (Step
4). To do this, we define a unique template for all rule cards consisting of well-defined tags
to be replaced with the values of different metrics defined in the rule cards of antipatterns.
Finally, the template is applied to a rule card model resulting in a Java class, which is
directly compilable and executable without any manual involvement. Figure 5.5 shows the
different steps involved in the algorithm generation process. Figure 5.6 shows the snapshot
of automatically generated detection algorithm for Multi Service antipattern. We show the
class template for automatically generated detection code in Appendix B (see P. 150). Also,

47

Figure 5.6: Automatically Generated Detection Algorithm of Multi Service Antipattern Rep-
resented as a Java Class.

the concrete EMF syntax of the rule cards is presented in Appendix B (see P. 151).

In Figure 5.6, the class Multi Service consists of four objects corresponding to four
metrics defined in its rule card (see Figure 5.3). The four metric objects, e.g., NOD, RT, A,
and COH, are composed together and added to a rootSmell, which is the root container of
the Multi Service rule card. Each of the metrics is implemented as a singleton class. When
the Multi Service class is instantiated, the underlying metrics will be calculated and the
values will be filtered accordingly, i.e., based on the provided OrdinalValue.

This generative process is fully automated to avoid any manual tasks, which are usually
repetitive and error-prone. This process also ensures the traceability between the specifica-
tions of antipatterns with the DSL and their concrete detection in SBSs using our underlying

48

Figure 5.7: The Meta-model of Rule Cards.

framework. Consequently, software engineers can focus on the specification of antipatterns,
without considering any technical aspects of the underlying framework.

As for REST antipatterns, from the heuristics defined in Section 5.2.1, we implemented
their detection algorithms, which is fundamental to REST. These detection algorithms, by
their nature, conform to their corresponding heuristics. We also require to implement REST
services’ interfaces for consuming REST services. Such interfaces comprise a list of methods
mapped to their respective HTTP requests. We formulate these requests based on their online
documentation (see Table 6.1), which contain a list of resources with their corresponding
HTTP methods, specific end-point for each HTTP request, and a set of well-defined request
parameters.

The next section discusses the meta-model of rule cards that we use to automatically
generate detection algorithms for service antipatterns in SCA and Web services, in particular.

The Meta-model of Rule Cards

The meta-model of rule cards, as shown in Figure 5.7, defines different constituents to
represent our rule cards, rules, set operators, relationships among rules, and various static
and dynamic properties, i.e., metrics. A rule card is specified concretely as an instance of
Ecore EClass RuleCard. An instance of RuleCard is composed of Smell objects, which

49

describe rules that can be either simple or composite. A composite rule, SmellComposite,
is composed of other rules, using the Composite design pattern [Gamma et al. (1994)] and
different set operators. Various set operators are defined as an Ecore ENum and the structural
relationships among rules are defined with RelationType and Cardinality. We have defined
three other ENum classes: Comparator, OrdinalValue, and NumOperator for comparing and
handling metric values.

In the next section, we describe SODA’s underlying unified framework and its different
components.

5.2.3 Step 3. Detection of Service Antipatterns: The SOFA Framework

Figure 5.8 shows the underlying framework, SOFA (Service Oriented Framework for
Antipatterns), that supports the specification and detection of service antipatterns in SBSs.
Our SOFA framework is also capable of performing the syntactic and semantic analyses of
services interfaces based on WordNet [Miller (1995)] and Stanford CoreNLP [Manning et al.
(2014)]. SOFA has eight modules, programmatically each of which represents a component
providing a stand-alone service. The components include:

– Detection component represents the main detection engine that initiates and controls
the overall detection process. It also provides an interface to the clients to run the
detection process and help the clients visualise the detection results;

– Metric component provides the computation of both the static and dynamic metrics
of our metric suite. This component also stores the static metric values in a repository
to be used on the fly. The values of dynamic metrics cannot be restored, as they may
change over executions;

– Rule Specification component is responsible for specifying rule cards using the
Rule component and Operator component. All the rule cards are also restored in a
repository used by the Algorithm Generation component;

– Algorithm Generation component generates the detection algorithms automati-
cally from the specified rules. Then, these detection algorithms will be executed by
the clients using the Detection component;

– Rule component represents a repository of all the singleton rules that are composed
of metrics, and depends on Metric component to get required metrics;

– Operator component provides all the boolean and comparison operators to merge
or group the rules to form a rule card;

– Boxplot component provides the means for computing boundary values and threshold
values. It provides all statistical analyses during the detection phase of our approach;

50

Detection

Algorithm
Generation

SOFA Framework

Rule
Specification

Rule

Operator

Boxplot

Metric

SCA Handler

Web Service
Handler

REST
Handler

Heuristics

Figure 5.8: The SOFA Framework.

– Heuristics component provides the implementations for the defined heuristics to be
applied on REST services for detecting REST antipatterns;

With respect to the computation of metrics, the generated detection algorithms call
sensors and triggers implemented using the services provided by FraSCAti. These sensors
and triggers, implemented as join points in an aspect-oriented programming style, allow, at
runtime, the introspection of the interface of services and the triggering of events to add
non-functional concerns, such as transactions, debugging, and, in our case, the computation
of metrics such as response time.

These sensors and triggers are provided at the deployment of the SBS under analysis.
The code excerpt shown in Figure 5.9 presents the computation of the response time as a
join point at the service interface level. The sensor RTIntentHandler (line 1) corresponds
to an aspect that will intercept a service call and monitor the service response time. An
intent join point (line 2) corresponds to the interface where a service invocation has been
intercepted. The code enabling the computation of the response time is inserted before and
after the invocation of the service (line 5). This new monitoring aspect is then declared as a
service and added to the SOFA framework within the metric module (line 7).

The SOFA itself is a service-based framework and developed with SCA technology
[Chappell (2007)]. We also have three other components: SCA Handler, Web Service Handler,
and REST Handler dedicated to the analyses of different technology-specific systems. More

51

1: public class ‹RT›IntentHandler implements IntentHandler {

2: public Object ‹invoke›(‹IntentJoinPoint ijp›) {

3: long ‹startTime = System.currentTimeMillis();›
4: Object ret = null;
5: ‹ret = ijp.proceed()›;
6: long ‹estimatedTime = System.currentTimeMillis() - startTime;›

7: ‹Metrics.setValue(“RT",estimatedTime);›

8: return ret;

9: }

10: }

Figure 5.9: The Example of the Usage of Sensors and Triggers.

specifically, the SCA Handler is responsible for executing the use-case scenarios of FraSCAti
and Home-Automation systems. The different functionalities performed by the Web Service
Handler component include: (1) given keywords, it returns a list of SOAP Web services
from a search engine, (2) it then filters broken service descriptions or unavailable services,
and finally (3) for all Web services, it generates a list of SCA components. Concretely, these
SCA components wrap Web services because our SOFA framework can only introspect SCA
components. On the other hand, the REST Handler component supports the detection of
REST (anti)patterns by (1) wrapping each REST API with an SCA component and (2)
automatically applying the detection heuristics on the SCA-wrapped RESTful APIs. This
wrapping allows us to introspect each request and response at runtime by using a FraSCAti
IntentHandler.

5.3 Discussion

Our proposed unified detection approach—SODA—involves three main steps from the
specification of service antipatterns to the automatic generation (or manual implementation)
of detection algorithms, and, finally, the detection of service antipatterns by applying au-
tomatically generated (or implemented) detection algorithms on SCA systems, SOAP Web
services, or on RESTful APIs. For the specification of service antipatterns, we rely on a com-
mon service domain specific language, which was designed after a thorough domain analysis
with the available resources, i.e., research articles, proceedings, Web sites, and blogs of SOA

52

practitioners.

Our SCA-based unified detection framework, SOFA, is in the core of the detection
process. We chose SCA as our framework implementation technology because SCA encom-
passes many other service/interface types including Java RMI, SOAP, REST, JSON-RPC,
JNA, and UPnP, and it facilitates introspection of any SCA-wrapped components where the
components can wrap a REST API, or a Web service, or even an SCA component itself.

5.3.1 Extension of the DSL for REST Antipatterns

Although, for REST-specific antipatterns (in Section 5.2.1) we relied on detection heuris-
tics and implemented their concrete detection algorithms manually, the generation process
can be automated by taking the advantage of same model-driven engineering approach. For
such extension, we extend our proposed language and its underlying grammar (see Section
5.2.1). To extend the proposed BNF grammar, we introduce new metrics, operators, com-
parators, and rule constructs. We can thus convert our heuristics into rule cards. In this
dissertation, we list some new REST-specific metrics and provide some rule cards that are
translated from the corresponding heuristics.

Table 5.2: List of 12 REST-specific Metrics for Specifying Antipatterns in RESTful APIs.

Metrics Full Names
AC Authentication Cookie
AK Action Keywords
CC Client Cookie
CCV Client Caching Value
HL Header Link
HM Http Method
RRF Resource Representation Format
SC Server Cookie
SCV Server Caching Value
TLB Total number of Links in response Body
VRB Verbs in Request Body
VRU Verbs in Request URI

For example, Table 5.2 shows the list of 12 metrics that we use to specify REST antipat-
terns. However, this is not an exhaustive list of metrics and addition of new antipatterns may
require to add or define new metrics. In the following, we give an example of the heuristic for

53

Forgetting Hypermedia antipattern and its corresponding translated rule card. We provide
the rule cards of five other REST antipatterns in Appendix B (see P. 147).

1: Forget-Hyper-media(response-header, response-body, http-method)
2: body-links[] ← Extract-Entity-Links(response-body)
3: header-link ← response-header.getValue(“Link")
4: if(http-method = GET and (length(body-links[]) = 0 or header-link = NIL)) or
5: (http-method = POST and (“Location:" 6∈ response-header.getKeys() and
6: length(body-links[]) = 0))) then
7: print “Forgetting Hypermedia detected"
8: end if

1 RULE_CARD: ForgetHyperMedia {
2 RULE: ForgetHyperMedia { UNION GetRequestLink PostRequestLink };
3 RULE: GetRequestLink { INTER HttpMethodGet NoLinkGet };
4 RULE: PostRequestLink { INTER HttpMethodPost NoLinkPost };
5 RULE: NoLinkGet { UNION NoBodyLink NoHeaderLink };
6 RULE: NoLinkPost { INTER NoBodyLink NoLocationHeader };
7 RULE: HttpMethodGet { HM = ’GET’ };
8 RULE: HttpMethodPost { HM = ’POST’ };
9 RULE: NoBodyLink { TLB = 0 };
10 RULE: NoHeaderLink { HL = NULL };
11 RULE: NoLocationHeader { ’Location’ 6∈ ResponseHeader };
12 };

Figure 5.10: Heuristic of Forgetting Hypermedia antipattern (top) and the Corresponding Rule
Card (bottom).

As our future work, we plan to translate all the heuristics from this dissertation into rule
cards and automatically generate their corresponding detection algorithms. This transforma-
tion ensures the full use of our SODA approach, which relies on a model-driven engineering
technique and benefit from our unified abstraction as sound basis to build the grammar of
the rule cards.

With our elaborated unified approach, a thorough validation will rationalise its effec-
tiveness and efficiency. The next chapter discusses the thorough validation of our proposed
unified SODA approach where we state our four experimental assumptions, the subjects, the
objects, the overall validation process, and, finally, discuss the antipatterns detection results
in details.

54

CHAPTER 6 VALIDATION

6.1 Chapter Overview

This chapter discusses the validation of the proposed unified SODA approach (Service
Oriented Detection for Antipatterns) through a series of experiments. The goals of our ex-
periments are, despite of differences and commonalities among the various SBSs technologies,
to show that we can: (1) specify service antipatterns using the proposed domain specific lan-
guage (DSL) and that our DSL is extensible for new antipatterns and SBSs technologies and
(2) efficiently detect antipatterns across various SBSs technologies in terms of the accuracy
and performance of the detection algorithms. Section 6.2, 6.3, and 6.4 describe respectively
the assumptions, subjects, and objects of our experiments. Section 6.5 describes the overall
validation process. Section 6.6 presents detailed detection results for all service antipatterns
while Section 6.7 discusses our experimental assumptions. Finally, Section 6.8 explores the
threats to the validity of our results.

6.2 Assumptions

The objective of our experiments is to positively support the four following assumptions
through which we can answer our first research question RQ1: “Can we efficiently specify
and detect service antipatterns in different development technologies and architectural styles
of service-based systems in terms of detection accuracy and performance?”

A1. Generality: Our DSL allows the specification of different service antipatterns, from
simple to more complex ones, in various SBSs technologies using the proposed unified ab-
straction. This assumption supports the applicability of SODA using the rule cards on 31
service antipatterns, composed of 27 static and dynamic metrics.

A2. Accuracy: Our automatically generated (or implemented) detection algorithms have a
precision and recall of greater than 75%, i.e., more than three-quarters of detected antipat-
terns are true positive and more than three-quarters of all existing antipatterns are detected,
respectively. Given the trade-off between precision and recall, we assume that 75% precision
is significant enough with respect to 75% recall. This assumption supports the precision of
the rule cards and the accuracy of the algorithm generation and of the SOFA framework.

A3. Extensibility: Our DSL and the proposed framework, SOFA is extensible for adding
new service metrics and technology-specific or technology-neutral antipatterns. Through this

55

assumption, we show how well the DSL, and in particular the metrics, with the supporting
SOFA framework, can be combined to specify and detect new antipatterns.

A4. Performance: The computation time required for the detection of service antipatterns
using the generated (or implemented) algorithms is reasonably very low, i.e., in the order of
seconds in various technologies. This assumption supports the performance of the services
provided by the SOFA framework for the detection of antipatterns.

6.3 Subjects

In our validation, we use 31 service antipatterns and 10 patterns from the domains of
SCA, Web services, and REST from the literature [Dudney et al. (2003); Král et Žemlička
(2008); Rotem-Gal-Oz et al. (2012); Jones (2006); Cherbakov et al. (2006); Modi (2006);
Rodriguez et al. (2010a); Evdemon (2005); Hess et al. (2004); Tilkov (2008); Erl et al. (2012);
Pautasso (2009); Fredrich (2012); Berners-Lee et al. (2005)], which are commonly found and
well-explained with related examples. The list of service antipatterns that we analysed and
detected is presented in Table 2.2. We put a brief description for all the service (anti)patterns
and their specifications (for SCA and Web services) or heuristics (for REST) in Appendix A.

6.4 Objects

For our validation, we use the following systems:

– SCA: We perform experiments on two SCA systems: Home-Automation [FraSCAti
(June 2013)] and FraSCAti [Seinturier et al. (2012)]. The Home-Automation is de-
veloped independently in Spirals Project-Team, INRIA, France to simulate a digi-
tal home for controlling basic household tasks remotely. Home-Automation is de-
signed with 13 SCA components, each providing unique services with seven use cases.
FraSCAti has a total of 91 SCA components providing 130 distinct services. To
the best our knowledge, FraSCAti is currently the largest open-source SCA system
implementing the SCA standard. We present the design of Home-Automation and
FraSCAti in Appendix B. The detailed design of FraSCAti system can be found on
http://frascati.ow2.org/doc/1.4/ch12s04.html.

– Web services: Since most of Web services are proprietary, it is hard to find freely
available services for the validation. However, some existing Web services search
engines, e.g., eil.cs.txstate.edu/ServiceXplorer or programmableweb.com, fa-
cilitate search for service-interfaces and are limited in number and have the risk of

56

Table 6.1: List of 15 RESTful APIs with Their Online Documentations.

RESTful APIs Online Documentations
Alchemy alchemyapi.com/api
BestBuy developer.bestbuy.com/documentation
Bitly dev.bitly.com/api.html
CharlieHarvey charlieharvey.org.uk/about/api
Dropbox dropbox.com/developers/core/docs
Externalip api.externalip.net
Facebook developers.facebook.com/docs/graph-api
Instagram instagram.com/developer
Musicgraph developer.musicgraph.com/api-docs/overview
Ohloh github.com/blackducksw/ohloh_api
StackExchange api.stackexchange.com.docs
TeamViewer integrate.teamviewer.com/en/develop/documentation
Twitter dev.twitter.com/rest/public
YouTube youtube.com/yt/dev/api-resources.html
Zappos developer.zappos.com/docs/api-documentation

providing broken or dislocated results. We performed our validation with more than
120 Web services collected from programmableweb.com. The list of all Web services
interfaces is available in Appendix C.

– REST: We use 15 widely-used and popular RESTful APIs that we found well-
documented as shown in Table 6.1. These 15 REST experimental objects well-
define their underlying HTTP methods, service end-points, authentication details,
and client-request parameter details.

6.5 Overall Process

Using the SOFA framework, we generated the detection algorithms corresponding to
the rule cards (for SCA and Web services) or implemented the detection algorithms corre-
sponding to the detection heuristics (for REST) of the 31 service antipatterns. Then, we
applied those detection algorithms at run-time on the target SBSs. Finally, we validated
the detection results by analysing the suspicious services manually (1) to validate that these
suspicious services are true positives, and (2) to identify false negatives (if any), i.e., missing
antipatterns. To validate the results on Web services and SCA we involved graduate students
who are not the part of any experiment steps. As for the validation on FraSCAti, the core
developers from the FraSCAti team assisted us. To measure the accuracy, we use the mea-

alchemyapi.com/api
developer.bestbuy.com/documentation
dev.bitly.com/api.html
charlieharvey.org.uk/about/api
dropbox.com/developers/core/docs
api.externalip.net
developers.facebook.com/docs/graph-api
instagram.com/developer
developer.musicgraph.com/api-docs/overview
github.com/blackducksw/ohloh_api
api.stackexchange.com.docs
integrate.teamviewer.com/en/develop/documentation
dev.twitter.com/rest/public
youtube.com/yt/dev/api-resources.html
developer.zappos.com/docs/api-documentation

57

sures of precision, recall, and F1-measure. Precision estimates the ratio of true antipatterns
identified among the detected antipatterns (cf. Equation 6.1), while recall estimates the ratio
of detected antipatterns among the existing antipatterns (cf. Equation 6.2). F1-measure is
the harmonic mean of precision and recall, to conclude the detection accuracy with a single
value (cf. Equation 6.3).

precision = |{existing_antipatterns} ∩ {detected_antipatterns}|
|{detected_antipatterns}| (6.1)

recall = |{existing_antipatterns} ∩ {detected_antipatterns}|
|{existing_antipatterns}| (6.2)

F1 = 2× precision× recall
precision+ recall

(6.3)

As for the validation of REST detection results, we performed the validation in two
phases: (1) all the Dropbox URIs and (2) four representative APIs, i.e., Facebook, Twit-
ter, Dropbox, and YouTube, for which we randomly selected some candidate request URIs
detected as patterns or antipatterns. We chose those four APIs based on our findings in
[Palma et al. (2014a)], which concluded that Twitter and Dropbox are more problematic
APIs, whereas Facebook and YouTube were well-designed.

We involved three professionals manually evaluated the URIs to identify the true pos-
itives and false negatives. The professionals have knowledge on REST and did not take
part in the detection step. We provided them with the descriptions of REST linguistics
(anti)patterns and the sets of all requests URIs collected during the service invocations. We
resolved conflicts at the majority.

Due to the large size of the data-sets, we performed the validation on two sample sets
because it is a laborious task to validate all APIs and all (anti)patterns and because Facebook,
Dropbox, Twitter, and YouTube are representative APIs [Palma et al. (2014a)]. Therefore,
in the first phase, we choose one medium sized API, Dropbox, to calculate the recall on one
API (the entire validation would have required 1,545 questions for 309 test methods). In the
second phase, we randomly selected 50 validation questions (out of 630 possible candidates)
to measure overall accuracy. Here, we also used precision and recall to measure the detection
accuracy.

58

6.6 Detection Results and Discussions

In this section, we discuss detection results of different groups of antipatterns presented
in Table 2.2 (see Section 2.5). More specifically, Section 6.6.1 presents results on the detection
of service antipatterns commonly found in SCA, Web services, and REST. Section 6.6.2 de-
tails the detection results of service antipatterns common in SCA and Web services while Sec-
tion 6.6.3 presents results for service antipatterns in Web services and REST. Finally, Sections
6.6.4, 6.6.5, and 6.6.6 present the detection results of service antipatterns exclusively found in
SCA, Web services, and REST only. A more detailed representation of the detection results
for all 31 service antipatterns is available on our Web site http://sofa.uqam.ca/soda/.

6.6.1 Detection of Antipatterns Common in SCA, Web services, and REST

In this section, we detail the detection of three service antipatterns commonly found in
SCA, Web services, and REST, namely Ambiguous Name, Nobody Home, and Bloated Service
antipatterns. Table 6.2 shows the services involved in the service antipatterns (Column 3),
the associated metrics and their values (Column 4), required detection times (Column 5).
The last three columns in Table 6.2 show the precision, recall, and F1-measure.

Ambiguous Name: The AIP3_PV_ImpactCallback as reported in Table 6.2 was detected
as the Ambiguous Name antipattern. This Web service offers operations with a set of sig-
natures that (1) are extremely long (ALS=0.675), (2) use high number of general terms for
naming (RGTS=0.85), (3) contain many messages having verbs (NVMS=26), and (4) having
multiple verbs or action names within a single signature (NVOS=7). In comparison to the
median values (e.g., median of ALS=0.463, RGTS=0.0, NVMS=6, and NVOS=3) as calculated
by BoxPlot service, the computed values measure high. The Web services having Ambiguous
Name antipattern—which represents poor interface elements naming with (1) very short or
long identifiers, (2) too general terms as identifiers, and (3) improper use of verbs—are not
published semantically and syntactically sound interface over the Web and, thus, impact the
discoverability and the reusability of a service. Applying SODA can help service developers
in detecting and refactoring Ambiguous Name antipattern in SBSs.

Nobody Home: We detected NativeCompiler, ServletManager, WsdlCompiler, and
BPELEngine components from FraSCAti as Nobody Home antipatterns. The SCA compo-
nent, BPELEngine, for example, is detected as an antipattern because its implementation
does not support the weaving of sensors and triggers to introspect at runtime [Seinturier

59

et al. (2012)], which is discarded by default, by the FraSCAti design. The UselessService
component in Home-Automation is also identified as Nobody Home antipattern because it was
not invoked in any executed scenarios (i.e., NIR=0 and NMI=0) even though the component
was orchestrated with other components in Home-Automation. The presence of such com-
ponents or services not in use within an SBS may increase its maintenance cost. In REST,
we did not detect corresponding Deprecated Resources antipattern because we implemented
only a part of entire resources and tested them all.

60

Table 6.2: Detection Results of the Three Service Antipatterns: Ambiguous Name, Bloated Service, and Nobody Home commonly
found in the three SBSs Implementation Technologies SCA, Web services, and REST.

Service
Antipatterns

Applicable
SBS Technology

Identified Service(s) Metrics/Occurrences
Detection

Time
Precision Recall F1

AIP3 PV ImpactCallback ALS=0.675;RGTS=0.85;NVMS=26;NVOS=7;
Bliquidity ALS=0.576;RGTS=0.682;NVMS=42;NVOS=7;
CurrencyServerWebService ALS=0.136;RGTS=0.682;NVMS=42;NVOS=5;

… … … …
ProhibitedInvestorsService ALS=0.158;RGTS=0.684;NVMS=12;NVOS=4;

SCA none detected n/a
REST none detected n/a

Web services none detected n/a
component-factory NOI=1;NMD=7;TNP=12;COH=0.066;
factory NOI=1;NMD=7;TNP=12;COH=0.066;
frascati-binding-http NOI=1;NMD=5;TNP=8;COH=0.065;

REST none detected n/a
Web services none detected n/a n/a n/a n/a n/a

SCA
(Home-Automation)

UselessService NIR>0;NMI=0;

NativeCompiler COH=0.1;NMD=5;RT=1018ms;
ServletManager NMI=0;NIR>0;
WsdlCompiler NMI=0;NIR>0;
BPELEngine NMI=0;NIR>0;

REST none detected n/a n/a n/a n/a n/a

Average 0.511s
[16/17]
93.33%

[16/16]
100%

96.3%

Nobody
Home

0.606s
[4/5]
80%

[4/4]
100%

88.89%
SCA

(FraSCAti)

Ambiguous
Name

Bloated
Service

SCA
(FraSCAti)

Web services
0.855s

0.071s

[9/9]
100%

[9/9]
100%

100%

[3/3]
100%

[3/3]
100%

100%

61

The next section presents the detection results of eight service antipatterns commonly
found in SCA and Web services.

6.6.2 Detection of Antipatterns Common in SCA and Web services

Table 6.3 presents the detection results of eight service antipatterns commonly found
in SCA and Web services. Table 6.3 shows the services involved in the service antipatterns
(Column 3), the associated metrics and their values (Column 4), required detection times
(Column 5). The last three columns in Table 6.3 show the precision, recall, and F1-measure.

In the below, Bottleneck Service, Service Chain, Multi Service, and Tiny Service an-
tipatterns are discussed in detail.

Bottleneck Service: The sca-composite and sca-parser services in FraSCAti were de-
tected as Bottleneck Service with a high response time (i.e., RT values are 41ms and 45ms,
respectively) and a very high coupling (i.e., CPL values are 0.96 and 0.84). The coupling
CPL was calculated by means of NIR and NOR, which are also very high for these two ser-
vices. As estimated by the Boxplot service, the median for CPL and RT were 0.68 and 5ms
respectively. After manually analysing the FraSCAti design, the engineer found that only
the sca-parser service is highly used by other services, and validated sca-parser as the
only Bottleneck Service. The FraSCAti development team also agreed with this manual de-
tection result, and confirmed that if too many external clients try to invoke the sca-parser
service, they might wait to get the access. The precision and recall for Bottleneck Service
are 75% and 100% respectively (see Table 6.3), with one false positive. The sca-composite
is detected as Bottleneck Service and is a false positive again because of the value of avail-
ability (A), which is always very high, i.e., 100%. For an SBS with several Composites,
while the FraSCAti invokes the sca-parser service to parse all the relevant Composites, the
sca-parser service naturally has the low availability. This low availability is mainly due to
multiple invocations simultaneously by several clients to parse their Composites using the
same sca-parser. Since, we had the availability (A) of 100% for all the components and did
not consider the value of availability while reporting suspicious services, the sca-parser was
reported as Bottleneck Service.

Service Chain: In Home-Automation, we detected a consecutive chain of invocations
of IMediator → SunSpotService → PatientDAO → PatientDAO2, which forms a Ser-
vice Chain, whereas engineers validated IMediator → PatientDAO → PatientDAO2. The
SunSpotService was not validated by the engineers and thus, it was considered as a false

62

positive. However, the detected chain exists in the system but only in one scenario. Engineers
did not consider the full chain as harmful and therefore did not classify it as an antipattern.

We also identified {MembraneGeneration, TypeFactory, and Processor} as involved
in a Service Chain in FraSCAti. The BPELEngine was detected as a Nobody Home an-
tipattern because its implementation does not support the weaving of non-functional code
such as sensors and triggers. In fact, all the BPEL implementations of FraSCAti are, by
default, discarded from the weaving algorithms provided by FraSCAti. We also detected
one false positive for the Service Chain (Processor → Processor → BindingFactory →
PluginResolver) that was not confirmed by the engineers. This detection was due to the
fact that the Processor service calls itself using a public method and artificially extends the
chain of calls. We may consider the modification of the Service Chain detection algorithm
in order to eliminate self calls.

In summary, our detection algorithms did not detect any Duplicated Service, Chatty
Service, Sand Pile, and Data Service antipatterns in FraSCAti. The absence of Sand Pile
and Chatty Service were obvious, as they are related to Data Service and evidently, there were
no such antipatterns in FraSCAti, i.e., as confirmed by the FraSCAti team and our detection
results. Our detection algorithms did not identify any suspicious services, after calculating the
metric values we define in rule cards for those antipatterns. Indeed, as validated by FraSCAti
team, there were no Duplicated Service and Data Service antipatterns in FraSCAti, and our
detection algorithms did not filter any services as false positives either.

Indeed, very few services, i.e., 10 were actually involved in 6 antipatterns (4 antipatterns
are not present) in FraSCAti, in comparison to the high number of services, i.e., 130 services.
FraSCAti is well designed with continuous maintenance and evolution. Mostly, services (e.g.,
sca-parser and sca-composite-*) related to parsing and handling the composite file were
involved in the antipatterns. The presence of such antipatterns in a system is not surprising
because there is no other way to develop a parser without introducing a high coupling among
services.

63

Table 6.3: Detection Results of the Eight Service Antipatterns Commonly Found in the Two SBSs Implementation Technologies
SCA and Web services.

Service

 Antipatterns

Applicable

SBS Technology
Identified Service(s) Metrics/Occurrences

Detection

Time
Precision Recall F1

IMediator NIR=7;NOR=7;CPL=1.0;RT=40ms;

PatientDAO NIR=4;NOR=4;CPL=0.57;RT=2ms;

sca-composie RT=41ms;CPL=0.96;NIR=16;NOR=8;

sca-parser RT=45ms;CPL=0.84;NIR=16;NOR=5;

Web services none detected n/a

IMediator ANP=1.0;ANPT=1.0;NMI=3;ANAM=100%;COH=0.167;

PatientDAO ANP=1.0;ANPT=1.0;NMI=3;ANAM=100%;COH=0.167;

ForeignExchangeRates COH=0.16;ANAO=50;NOD=24;RT=3286ms;

TaarifCustoms COH=0.12;ANAO=72.22;NOD=18;RT=4105ms;

SCA

(Home-Automation)
PatientDAO ANAM=100%;COH=0.167;ANPT=1.0;ANP=1.0; 0.268s

[1/1]

100%

[1/1]

100%
100%

Web services none detected n/a n/a n/a n/a n/a

SCA

(Home-Automation)

CommunicationService vs.

IMediator
ANIM=25% 0.215s

[2/2]

100%

[2/2]

100%
100%

Web services none detected n/a n/a n/a n/a n/a

SCA

(Home-Automation)
IMediator COH=0.027;NMD=13;RT=132ms;

juliac COH=0.1;NMD=5;RT=1018ms;

Explorer-GUI n/a

Web services none detected n/a

SCA

(Home-Automation)
MediatorDelegate NOR=4;CPL=0.44;NMD=1; 0.194s

SCA

(FraSCAti)
sca-parser NMD=1;CPL=0.56; 0.067s

SrtmWsPortType

Hydro1KWsPortType

ShadowWsPortType

XigniteTranscripts NOD=4;COH=0.125;

BGCantorUSTreasuries NOD=3;COH=0.083;

SCA

(Home-Automation)

Imediator > SunSpotService >

PatientDAO > PatientDAO2
NTMI=4

MembraneGeneration > rocessor >

ComponentFactory >

MembraneGeneration

NTMI=4

TypeFactory > Processor >

ComponentFactory >

MembraneGeneration

NTMI=4

Processor > Processor >

ComponentFactory >

MembraneGeneration

NTMI=4

Web services none detected n/a n/a n/a n/a n/a

SCA none detected n/a n/a n/a n/a n/a

Web services none detected n/a n/a n/a n/a n/a

Average 9.09s
[21/26]

82.59%

[21/22]

95.83%
86.34%

SCA

(Home-Automation)

SCA

(FraSCAti)

0.167s
[3/4]

75%

[3/3]

100%
85.71%

n/a n/a

Bottleneck

Service

Stovepipe

Service

Duplicated

Service
SCA

(FraSCAti)
none detected n/a

Data Service

n/a n/a

[3/4]

75%

[3/3]

100%
85.71%

1.14s

[3/3]

100%
85.71%

SCA

(FraSCAti)

Service Chain
0.143s

[3/4]

75%

Chatty Service

SCA

(Home-Automation)

SCA

(FraSCAti)
none detected n/a n/a n/a n/a n/a

Web services
[1/2]

50%

[1/1]

100%
66.67%

Tiny Service
[6/7]

85.71%

[6/6]

100%
92.31%

Web services

NOD=2;COH=0.0;

0.945s

Multi Service 78.67s
[2/2]

100%

[2/3]

66.67%
74.63%SCA

(FraSCAti)

64

Multi Service and Tiny Service: From Table 6.3, we briefly discuss detection results of
Tiny Service and Multi Service. In particular, the IMediator SCA component was identified
as a Multi Service antipattern in Home-Automation due to its very high number of interface
methods (NMD=13) with a very low cohesion among its methods (COH=0.027) and a very
high response time (RT=132ms). All these values were assessed as high or low by the Boxplot
component in our SOFA framework compared to the values from other components in Home-
Automation. For example, the Boxplot component estimated the median value of NMD in
Home-Automation as 2, compared to which 13 is quite high. Similarly, the detected Tiny
Service antipattern, i.e., MediatorDelegate, has a very low number of methods (NMD=l)
with a high coupling (CPL=0.44) with respect to other Home-Automation components. The
cohesion (COH) and coupling (CPL) metrics range between 0 and 1.

We also detected juliac as Multi Service antipattern because of its very high response
time (RT=1,018ms), low cohesion (COH=0.1), and high number of methods declared (NMD=5).
The median values estimated by the Boxplot service, i.e., median of RT is 4ms, COH is 0.1, and
NMD is 1 compared to other services in FraSCAti classified juliac as Multi Service. juliac
is likely a true positive because it implements six different features belonging to two different
abstractions. Indeed, juliac provides services for the membrane generation and the Java
compilers. Therefore, it is low cohesive and highly used because each component needs a
membrane, and each composite file needs to be compiled by the Java compiler. Moreover,
these actions are resource-consuming and requires more execution time than other services.
Manual inspection by the engineer also validated this detection.

Subsequently, the inspection of FraSCAti also allowed the identification of Explorer-GUI
as a Multi Service. The FraSCAti development team confirmed that this service uses a high
number of other services provided by FraSCAti. Indeed, this component encapsulates the
graphical interface of FraSCAti Explorer, which aims to provide an exhaustive interface of
FraSCAti functionalities. SOFA was not able to detect it because the execution scenarios did
not involve the graphical interface of FraSCAti Explorer. Therefore, with two services de-
tected as true positives, and with one missing occurrence ofMulti Service, i.e., Explorer-GUI,
we had a precision of 100% and recall of 66.67%.

We also detected sca-parser as the Tiny Service with its small number of methods
(NMD=1) and a high coupling (CPL=0.56). The engineer and the FraSCAti team also validated
this detection. The boxplot median values are respectively 1 and 0.11 for NMD and CPL.
After the manual inspection of FraSCAti implementation, the independent engineer identified
that sca-parser contains only one method, i.e., parse(QName qname, ParsingContext

65

parsingContex t). In some cases, for a given metric, the median value and the high and–or
low value might be identical if the values of most services are equal. For example, the median
and low values are the same for NMD because out of 86 analysed services, 50 services have
the NMD value of 1. While concerned about the coupling CPL, sca-parser has dependency
references to five other services (i.e., sca-metamodel-*) that give a high coupling. In fact,
the coupling CPL values presented here were calculated on the logarithmic scale, i.e., the
more references a service has to other services, the more highly coupled it is. The FraSCAti
development team also validated sca-parser as a Tiny Service. However, according to them,
sca-parser is invoked alone when only a reading for an SCA composite file is requested.
However, FraSCAti performs more tasks than just reading and–or parsing an SCA composite
file, and these other tasks are performed by other services such as AssemblyFactory. These
several delegation also explains the high outgoing coupling..

Moreover, we detected SrtmWsPortType, ShadowWsPortType, and Hydro1KWsPortType
as Tiny Service antipatterns in Web services since they possessed very low values for NOD
(i.e., 2) and COH (i.e., 0.0). As computed by the Box-Plot component in SOFA framework,
NOD values of 2 are rather low compared to the median of 5.5. Moreover, the COH values
are less-significant compared to other Web services whose COH values are in the range of
0.216 and 0.443. Such small services implemented as Tiny Service antipatterns often require
other services to be used together, resulting in higher development complexity and reduced
usability of Web services. The manual validation with the Web services interfaces confirmed
the detection of this antipattern only for ShadowWsPortType and Hydro1KWsPortType Web
services. Two other Web services, i.e., XigniteTranscripts and BGCantorUSTreasuries
were also detected as Fine Grained Web Service. Both those Web services have a very small
number of operations defined (NOD is 3 and 4) and have a low cohesion (COH between 0.083
and 0.125), compared to the maximum values (i.e., 70 for NOD, and 0.667 for COH) from other
Web services. However, no occurrences of Multi Service were detected in Web services.

In the next section, we discuss two service antipatterns commonly found in the Web
services and REST domains.

6.6.3 Detection of Antipatterns Common in Web services and REST

Table 6.4 presents detection results of service antipatterns in Web services and REST.
The table shows the services involved in the service antipatterns (Column 3), the associated
metrics and their values or their occurrences (Column 4), required detection times (Column
5). The last three columns in Table 6.4 show the precision, recall, and F1-measure. In the
below, we discuss CRUDy Interface and CRUDy URIs antipatterns in detail.

66

CRUDy Interface and CRUDy URIs: ForeignExchangeRates and TaarifCustoms
are both identified as Chatty Web Service and CRUDy Interface antipatterns because of
their low cohesion (COH=0.16 and 0.12, respectively), high average number of accessor op-
erations (50≤ANAO≤72.22), high number of operations (18≤NOD≤24), and high response
time (RT>3s), compared to other Web services. The manual validation did not confirm
ForeignExchangeRates as a Chatty Web Service because the order of operations invocation
could be inferred from the service’s interface. The specification of CRUDy Interface in-
cludes Chatty Web Service. Therefore, the detection of ForeignExchangeRates as a CRUDy
Interface was not confirmed.

Thus, having a chatty Web service in an SBS, which exhibits low cohesion among its
operations and causes high response time, impacts the maintainability (since, inferring the
order of invocation is difficult and many interactions are required) and the overall perfor-
mance. SODA can automatically detect such bottleneck services within SBSs and, therefore,
facilitates their maintenance.

Table 6.4: Detection Results of the Two Service Antipatterns: CRUDy Interface and CRUDy
URI Commonly Found in the Two SBSs Implementation Technologies Web services and
REST.

Service
Antipatterns

Applicable
SBS Technology

Identified Service(s) Metrics/Occurrences
Detection

Time
Precision Recall F1

ForeignExchangeRates COH=0.16;ANAO=66.67;NOD=24;RT=3113ms;NCO=9;
TaarifCustoms COH=0.12;ANAO=72.22;NOD=18;RT=4105ms;NCO=18;

DropBox

POST /fileops/move
POST /1/fileops/delete
POST /1/fileops/create_folder
POST /1/fileops/copy

StackExchange GET /2.2/suggested-edits

Twitter

GET /1.1/users/show.json
POST /1.1/statuses/update.json
GET /1.1/statuses/show.json
POST /1.1/account/update_profile_colors.json

Average 18.98s
[4/5]
75%

[4/4]
100%

83.33%

CRUDy URI REST

[1/2]
50%

[1/1]
100%

66.67%

[3/3]
100%

[3/3]
100%

100%

CRUDy
Interface

Web services 37.23s

0.737s

As shown in Table 6.4, the occurrences of CRUDy URI antipattern in RESTful APIs
were detected in only 4% (12 out of 309) tested URIs. In contrast, 93% (287 out of 309) of
the tested URIs are Verbless URI—the corresponding REST pattern. In other words, APIs
designers seem aware of not mixing the definition of traditional Web service operations and
resource-oriented HTTP requests in REST. In traditional Web services, operation identifiers

67

reflect what they are doing, whereas in REST, actions to be performed on a resource should
be explicitly mentioned only using HTTP methods and not within a URI through a CRUDy
term.

In the next section, we discuss three service antipatterns commonly found only in the
SCA technology.

6.6.4 Detection of SCA-specific Antipatterns

Table 6.5 presents the detection results of eight service antipatterns commonly found
in SCA and Web services. The table shows the services involved in the service antipatterns
(Column 3), the associated metrics and their values (Column 4), required detection time
(Column 5). The last three columns in Table 6.5 show the precision, recall, and F1-measure.

As shown in Table 6.5, the Home-Automation itself was detection as Sand Pile antipat-
tern by our detection algorithm. After the manual investigation, we found that it contained a
high number of service (NCS=13) with an average number of parameter per operation and an
average number of primitive-type parameter per operation as very high. Moreover, the con-
tainer service and the contained (child) services were highly cohesive, in our case, COH=0.17,
which is high in comparison to other services. Moreover, IMediator and PatientDAO com-
ponents in Home-Automation system are detected as The Knot antipatterns. Those ser-
vices exhibit a very low cohesion (COH=0.027), a very strong coupling with partner services
(CPL=1), and a high response time (RT=57ms) in comparison to other services. In Table 6.5,
our detection algorithm reported PatientDAO service as The Knot antipattern because the
availability (A) value was discarded, which was high, i.e., 100%.

Table 6.5: Detection Results of the Three Service Antipatterns: God Component, Sand Pile,
and The Knot Commonly Found in SCA.

Service
Antipatterns

Applicable
SBS Technology

Identified Service(s) Metrics/Occurrences
Detection

Time
Precision Recall F1

FraSCAti NOSE=6;NMD=12;TNP=12
component-factory NOSE=5;NMD=7;TNP=12

Sand Pile
SCA

(Home-Automation)
HomeAutomation NCS=13;ANP=1;ANPT=1;ANAM=100%;COH=0.17 0.184s

[1/1]
100%

[1/1]
100%

100%

IMediator COH=0.027;NIR=7;NOR=7;CPL=1.0;RT=57ms
PatientDAO COH=0.027;NIR=7;NOR=7;CPL=1.0;RT=57ms

SCA
(FraSCAti)

sca-parser CPL=0.84;COH=0.08;RT=44ms 0.07s

Average 0.184s
[5/6]

88.89%
[5/5]

100%
93.3%

The Knot

SCA
(Home-Automation)

God
Component

SCA
(FraSCAti)

0.412s
[2/3]

66.67%
[2/2]
100%

80%

0.069s
[2/2]
100%

[2/2]
100%

100%

68

In the next section, we discuss three service antipatterns commonly found in the domain
of Web services.

6.6.5 Detection of Web services-specific Antipatterns

Table 6.6 presents the detection results of eight service antipatterns commonly found
in SCA and Web services. The table shows the services involved in the service antipatterns
(Column 3), the associated metrics and their values (Column 4), required detection time
(Column 5). The last three columns in Table 6.6.5 show the precision, recall, and F1-measure.
In the below, the Redundant PortTypes antipattern is discussed in detail.

Redundant PortTypes: As shown in Table 6.6, we identified wsIndicadoresEconomicos*
groups of PortTypes as the Redundant PortTypes antipatterns in Web services with multiple
identical port-types (i.e., NPT>1 and NOPT>1) defined in their service interfaces, thus have
ARIP=1.0, i.e., a very high value compared to the median of 0.465. If a Web service has
redundant port-types, it is a good practice to merge them, while making sure that this merge
does not introduce a God Object Web Service antipattern.

Low Cohesive Operations: We detected seven other Web services as Low Cohesive Op-
erations antipatterns (see Table 6.6). A Web service is said to have low cohesive operations
when it declares a large number of low-cohesive operations, which affects the comprehension,
reusability, and overall, the maintainability of the Web service. For example, in Table 6.6,
eight Web services were detected as Low Cohesive Operations antipatterns, which had from
12 to 37 operations defined in their interfaces. Moreover, they were not very cohesive, both
syntactically and semantically, with the ARIO values ranging between 0.177 and 0.268. The
maximum value of ARIO is 1 and such low values of eight Web services suggests that their
interfaces were not well-designed, which may hinder their discoverability.

69

Table 6.6: Detection Results of the Three Service Antipatterns: Low Cohesive Operations,
May be It’s Not RPC, and Redundant PortTypes Commonly Found in Web services.

Service
Antipatterns

Applicable
SBS Technology

Identified Service(s) Metrics/Occurrences
Detection

Time
Precision Recall F1

ndfdXMLPortType NOD=12;ARIO=0.221;
ServiceSoap NOD=24;ARIO=0.253;
XigniteSecuritySoap NOD=25;ARIO=0.177;

… … … …
XigniteSecurityHttpPost NOD=25;ARIO=0.177;
XigniteCorporateActionsSoap NOD=37;ARIO=0.268;

May be
It’s Not RPC

Web services none detected n/a n/a n/a n/a n/a

AIP3 PV Impact vs.
AIP3 PV ImpactCallback

NOPT=9;ARIP=0.378;

wsIndicadoresEconomicosHttpPost vs.
wsIndicadoresEconomicosSoap vs.
wsIndicadoresEconomicosHttpGet

Average 144.72s
[13/13]
100%

[13/13]
100%

100%

100%167.62s
Redundant
PortTypes

Web services

100%

NOPT=2;ARIP=1.0;

[5/5]
100%

[5/5]
100%

Low Cohesive
Operations

Web services 121.81s
[8/8]
100%

[8/8]
100%

However, we did not detect any occurrences of May be It’s Not RPC antipattern among
the 123 Web services. This suggest that none of the analysed Web services provided CRUD
operations with a large number of parameters. In general, the consequence of this antipattern
is a poor system performance because the clients often wait for the synchronous responses.

In the next section, we discuss service antipatterns commonly found only in REST.

6.6.6 Detection of REST-specific Antipatterns

Table 6.8 presents detailed detection results for the eight REST antipatterns related to
the syntactic design of REST requests/responses. The table reports the antipatterns in the
first column followed by the analysed RESTful APIs in the following twelve columns. For
each REST API and for each antipattern, we report: (1) the total number of validated true
positives with respect to the total detected antipatterns by our algorithms, i.e., the precision,
in the first row and (2) the total number of detected true positives with respect to the total
existing true positives, i.e., the recall, in the following row. The last two columns show, for
all APIs, the average precision-recall and the total detection time for each antipattern.

Since, we perform the detection for both REST antipatterns and patterns, some of
the antipatterns can be mapped to their corresponding patterns. Table 6.7 shows the such
mapping between REST antipatterns and patterns.

70

Table 6.7: The Mapping between REST Antipatterns and Patterns.

REST Patterns Corresponding REST Antipatterns
Content Negotiation Ignoring MIME Types

Contextualised Resource Names Contextless Resource Names
End-point Redirection -

Entity Endpoint -
Entity Linking Forgetting Hypermedia

Hierarchical Nodes Non-hierarchical Nodes
Response Caching Ignoring Caching
Singularised Nodes Pluralised Nodes

Tidy URI Amorphous URI
Verbless URI CRUDy URI

A more detailed representation of the REST detection results is available on our Web
site http://sofa.uqam.ca/soda/, which presents the detection results for each REST resource
and each REST request from 15 RESTful APIs.

Overview of REST Request/Response Syntactic Antipatterns

Overall, RESTful APIs that follow patterns tend to avoid corresponding antipatterns
and vice-versa. For example: BestBuy and Facebook are found involved respectively in 0
and 8 instances of Forgetting Hypermedia antipattern; however, these APIs are involved in
11 and 21 corresponding Entity Linking pattern. Moreover, DropBox, Alchemy, YouTube,
and Twitter APIs had 27 instances of Ignoring Caching antipattern, but they were involved
in 8 instances of the corresponding Response Cashing pattern. Finally, we found Facebook,
DropBox, BestBuy, and Zappos APIs involved in only 3 instances of Ignoring MIME Types
antipattern, which conversely are involved in more than 55 instances of corresponding Content
Negotiation pattern.

In general, while detecting antipatterns related to REST request/response syntactic de-
sign, among the 12 analysed RESTful APIs with 115 methods tested and eight antipatterns,
we found Twitter (32 instances of four antipatterns), DropBox (40 instances of four antipat-
terns), and Alchemy (19 instances of five antipatterns) are more problematic, i.e., contain
more antipatterns than others (see Figure 6.1). On the other hand, considering the five
REST patterns, we found Facebook (49 instances of four patterns), BestBuy (22 instances of
two patterns), and YouTube (15 instances of three patterns) are well designed, i.e., involve
more patterns than others (see Figure 6.1).

http://sofa.uqam.ca/soda/

71

B
S

D

F
H
vs
.

E
L IC vs
.

R
C

IM
T

vs
.

C
N

IS
C

M
C

T
T

G

T
T

P

E
P

R
E

E

Alchemy

BestBuy

Bitly
CharlieHarvey

DropBox

Facebook

Musicgraph

Ohloh

TeamViewer

Twitter

YouTube

Zappos

No Detection

Pattern

Antipattern

Figure 6.1: Overview on the Detection Results of REST Request/Response Syntac-
tic Antipatterns. [BSD→Breaking Self-descriptiveness; FH→Forgetting Hypermedia;
EL→Entity Linking; IC→Ignoring Caching; RC→Response Caching; IMT→Ignoring MIME
Types; CN→Content Negotiation; ISC→Ignoring Status Code; MC→Misusing Cookies;
TTG→Tunnelling Through GET; TTP→Tunnelling Through POST; EPR→End-point Redi-
rection; EE→Entity Endpoint.]

In the below, Breaking Self-descriptiveness, Forgetting Hypermedia, Ignoring Caching,
and Ignoring MIME Types REST antipatterns are discussed in detail.

Breaking Self-descriptiveness: REST developers tend to rely on their own customised
headers, formats, and protocols, and thus introduce Breaking Self-descriptiveness antipat-
tern. The analysis on the 12 RESTful APIs shows that developers used non-standard header
fields and protocols in most APIs including BestBuy, DropBox, Facebook, and Twitter. For
example, Facebook used x-fb-debug and x-fb-rev header fields, which are mainly used to
track a request id for their internal bug management purpose. Similarly, we found Drop-

72

Box using the x-dropbox-request-id and Twitter using x-tfe-logging-request-* and
x-xss-protection header fields. In general, the designers and implementers often distin-
guish the standardised and non-standardised header members by prefixing their names with
“x-" (a.k.a., eXperimental). Indeed, the “x-" convention was highly discouraged by the In-
ternet Society in RFC822 [RFC2822 (2001)]. The manual validation reveals that all our
detection was true positives and we reported all existing non-standard header fields and pro-
tocols, except two in DropBox where the manual validation considered them as non-standard
practice. This leads to the precision of 100% and the recall of 98.21% for this detection.

Table 6.8: Detection results of the Eight REST Antipatterns Related to the Syntactic De-
sign of REST Requests/Responses Obtained by Applying Detection Algorithms on the 12
RESTful APIs (numbers in the parentheses show total test methods for each API).

R
E

ST
A

P
I

(7
)A

lc
he

m
y

(1
2)

B
es

tB
uy

(3
)B

it
ly

(4
)C

ha
rl

ie
H

ar
ve

y

(1
5)

D
ro

pB
ox

(2
9)

Fa
ce

bo
ok

(8
)M

us
ic

gr
ap

h

(3
)O

hl
oh

(8
)T

ea
m

V
ie

w
er

(1
0)

T
w

it
te

r

(9
)Y

ou
T

ub
e

(7
)Z

ap
po

s

pr
ec

is
io

n-
re

ca
ll

(1
15

)
T

ot
al

A
ve

ra
ge

P
re

ci
si

on
-R

ec
al

l

D
et

ec
ti

on
T

im
e

REST Antipatterns
Breaking Self- 0/0 12/12 0/0 4/4 12/12 29/29 0/0 3/3 0/0 10/10 9/9 7/7 p 86/86 100% 21.31sdescriptiveness 0/0 12/12 0/0 4/4 12/14 29/29 0/0 3/3 0/0 10/10 9/9 7/7 r 86/88 98.21%
Forgetting 1/1 0/0 2/2 0/0 9/10 8/8 7/7 0/0 3/3 4/4 2/3 0/0 p 36/38 94.58% 19.54sHypermedia 1/1 0/0 2/2 0/0 9/9 8/8 7/7 0/0 3/3 4/4 2/2 0/0 r 36/36 100%
Ignoring 7/7 0/0 0/0 0/0 12/12 1/1 0/0 1/1 4/4 8/8 0/0 0/0 p 33/33 100% 18.99sCaching 7/7 0/0 0/0 0/0 12/12 1/1 0/0 1/1 4/4 8/8 0/0 0/0 r 33/33 100%
Ignoring 2/2 1/1 3/3 4/4 0/0 2/2 8/8 0/0 0/0 10/10 9/9 0/0 p 39/39 100% 19.39sMIME Types 2/2 1/1 3/3 4/4 0/0 2/2 8/8 0/0 0/0 10/10 9/9 0/0 r 39/39 100%
Ignoring 1/2 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 p 1/2 50% 21.22sStatus Code 1/2 0/0 0/1 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 r 1/3 25%
Misusing 0/0 0/0 0/0 0/0 0/0 0/0 0/0 3/3 0/0 0/0 0/0 0/0 p 3/3 100% 19.1sCookies 0/0 0/0 0/0 0/0 0/0 0/0 0/0 3/3 0/0 0/0 0/0 0/0 r 3/3 100%
Tunnelling 5/7 0/0 0/2 0/0 0/0 0/0 0/1 0/0 0/0 0/0 0/0 0/1 p 5/11 17.86% 28.26sThrough GET 5/5 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 r 5/5 100%
Tunnelling 0/0 0/0 0/0 0/0 5/5 0/0 0/0 0/0 0/0 0/0 0/0 0/0 p 5/5 100% 28.64sThrough POST 0/0 0/0 0/0 0/0 5/5 0/0 0/0 0/0 0/0 0/0 0/0 0/0 r 5/5 100%

Average p 208/217 82.81% 22.06sr 208/212 90.4%

Forgetting Hypermedia: Any RESTful interaction is driven by hypermedia—by which
clients interact with application servers via URL links provided by servers in resource repre-
sentations [Fielding (2000)]. The absence of such interaction pattern is known as Forgetting

73

Hypermedia antipattern [Tilkov (2008)], which was detected in eight APIs, namely Bitly,
DropBox, Facebook, and so on (see Table 6.8). Among the 115 methods tested, we found 38
instances of this antipattern. Moreover, RESTful APIs that do not have this antipattern well
applied the corresponding Entity Linking pattern [Erl et al. (2012)], e.g., Alchemy, BestBuy,
and Ohloh, which is a good practice. This observation suggests that, in practice, developers
sometimes do not provide hyper-links in resource representations. As for the validation, 36
instances of Forgetting Hypermedia antipattern were manually validated; therefore, we have
an average precision of 94.58% and a recall of 100%. For Entity Linking pattern, the manual
validation confirmed 66 instances whereas we detected a total of 65 instances, all of which
were true positives. Thus, we had an average precision of 100% and a recall of 98.81%.

Ignoring Caching: Caching helps developers implementing high-performance and scalable
REST services by limiting repetitive interactions, which if not properly applied violates one
of the six REST principles [Fielding (2000)]. REST developers widely ignore the caching
capability by using Pragma: no-cache or Cache-Control: no-cache header in the requests,
which forces the application to retrieve duplicate responses from servers. This bad practice
is known as Ignoring Caching antipattern [Tilkov (2008)].

In contrast, Response Caching [Erl et al. (2012)] REST pattern supports response
cacheability. We detected six RESTful APIs that explicitly avoid caching capability, namely
Alchemy, DropBox, Ohloh, and so on (see Table 6.8). On the other hand, cacheability is
supported by YouTube and Zappos, which were detected as Response Caching patterns. The
manual analysis of requests and responses also confirmed these detections, and we had an
average precision and recall of 100% (see Table 6.10).

Ignoring MIME Types: We also detected Ignoring MIME Types in eight REST services.
According to REST principle [Fielding (2000)], the server should represent resources in mul-
tiple formats, which allow clients a more flexible service consumption. Yet, the server-side
developers often intend to have a single representation of resources (or rely on their own
formats), which limits the resource and the underlying service accessibility and reusability.
We detected ten instances of Ignoring MIME Types antipattern in Twitter and nine instances
in YouTube. Moreover, we found Facebook, DropBox, and BestBuy, APIs involved in only
three instances of Ignoring MIME Types antipattern, i.e., they mostly support the good
design practice of multiple resource representations.

74

Tidy
vs.

Contextualised
vs.

Verbless
vs.

Hierarchical
vs.

Singularised
vs.

Figure 6.2: Linguistic (Anti)Patterns Detected in each REST API.

Overview of REST Linguistic Antipatterns

The mosaic plot in Figure 6.2 shows the pattern-wise representation of the detection
results of ten linguistic patterns and antipatterns on the 15 RESTful APIs. Columns corre-
spond to each (anti)pattern while rows represent the detected (anti)patterns on each API.
In each row, the height of the mosaic represents the size of the method suite we tested for an
API. In Figure 6.2, the most frequent patterns are Verbless URI and Contextualised Resource
Names—the majority of the analysed APIs did not include any CRUDy terms or any of their
synonyms and the nodes in these URIs belong to the same semantic context. In contrast, the
most frequent antipatterns are Amorphous URI and Non-Hierarchical Nodes—the majority
of the analysed APIs involve at least one syntactical problem and that URI nodes for those
APIs were not organised in a hierarchical manner.

Table 6.9 presents detailed detection results for the four REST linguistic antipatterns
related to the semantic design of REST URIs on 15 RESTful APIs. The table reports the

75

antipatterns in the first column followed by the analysed RESTful APIs in the following
fifteen columns. For each REST API and for each antipattern, we report the total number
of occurrences reported as positives by our detection algorithms. The last two columns show
the total detected occurrences across 15 APIs (with percentage) and the average detection
time.

As shown in Table 6.8, more than 70% of analysed URIs (219 out of 309) show amor-
phousness. Exceptionally, the Bestbuy API has all the URIs detected as Tidy URI. In con-
trast, all the URIs in Instagram and Twitter, for example, have syntactic problems and all
of them are detected as Amorphous URI. As for the Contextualised Resource Names pattern,
most of the APIs applied this pattern correctly—APIs providers use contextual resources
names as nodes in URIs design—an important factor that affects the understandability of
RESTful APIs. We rely on WordNet [Miller (1995)] and Stanford CoreNLP [Manning et al.
(2014)] to capture contexts and perform semantic analyses. WordNet is a widely used lexical
database, which groups nouns, verbs, and adjectives into sets of cognitive synonyms, each
representing unique concepts. WordNet helps finding the semantic similarity between two
nodes or resource names. Stanford’s CoreNLP annotate nodes (after splitting CamelCase
nodes) with its underlying POS (part-of-speech) tagger to differentiate verbs (i.e., actions)
and nouns (i.e., resources).

However, our dictionary-based analyses did not relate contexts among URI nodes for
137 cases because the dictionaries we used are general English dictionaries and do not relate
to specific domains like social networks such as Twitter and Facebook. A domain specific
dictionary might reason about URIs contexts more accurately. We plan to build API-specific
ontologies to better capture the context.

We observe the same detection results for Hierarchical Nodes pattern, i.e., the dictionar-
ies could not find hierarchical relations among URIs nodes. Indeed, we have zero detection
for Hierarchical Nodes pattern because: (1) around 50% of tested URIs used only one node
(excluding the base URI) in which case we cannot check the hierarchical relation and (2)
more than 20% URIs contain digits or numbers as nodes, which again do not fall under any
hierarchical relations. Finally, there is a significant amount of No Detection for Singularised
vs. Pluralised Nodes since about 90% of our tested requests used HTTP GET method. HTTP
GET requests can retrieve both single and multitude of resources. However, for the remain-
ing 10%, the Pluralised Nodes antipattern appeared more frequently than the Singularised
Nodes pattern.

Here, we discuss the Contextless Resource Names antipattern in detail (since, it is our
running example). Out of 309 tested URIs, 14% (42 occurrences) of them are detected as

76

Contextless Resource Names antipatterns, 42% (130 occurrences) are detected as Contex-
tualised Resource Names patterns, and 44% (137 occurrences) are detected as None. More
specifically, for example, in Bestbuy, most of the URIs have only one node followed by param-
eters. We ignore parameters while we capture the context. Thus, if there is only one node in
URIs, it is not possible to find any contextual relationship. Therefore, all the Bestbuy URIs
are detected as No Detection.

In contrast, the Dropbox, Facebook, StackExchange, Twitter, and YouTube involve a
high number of contextualised URIs naming. These good practices may help their APIs
clients better understand and reuse. The following snippet shows two request URIs from
Facebook where the URI nodes are considered to be in the same semantic context:

https://graph.facebook.com/v2.2/{user_id1}/mutualfriends/{user_id2}?access_token=CAATt8..

https://graph.facebook.com/v2.2/{user_id1}/friendlists?access_token=CAATt8..

For Facebook, our DOLAR approach reported 21 tested methods (out of 67) as Con-
textualised Resource Names patterns.

Table 6.9: Detection Results of the Four REST Linguistic Antipatterns Related to the Seman-
tic Design of REST URIs Obtained by Applying Detection Algorithms on the 15 RESTful
APIs (numbers in the parentheses show total test methods for each API). The Detection
Time Excludes the Execution Time—Sending Requests and Receiving Responses.

R
E
ST

fu
l
A
P
Is

(9
)A

lc
he

m
y

(2
0)
B
es
tb
uy

(1
5)
B
it
ly

(1
2)
C
ha

rl
ie
H
ar
ve
y

(1
7)
D
ro
pB

ox
(6
)E

xt
er
na

lip
(6
7)
Fa

ce
bo

ok
(1
4)
In
st
ag
ra
m

(1
9)
M
us
ic
gr
ap

h
(7
)O

hl
oh

(5
3)
St
ac
kE

xc
ha

ng
e

(1
9)
T
ea
m
V
ie
w
er

(2
5)
T
w
it
te
r

(1
7)
Y
ou

T
ub

e
(9
)Z
ap

po
s

(3
09
)
T
ot
al

D
et
ec
ti
on

T
im

e

REST Linguistic Antipatterns

Amorphous URI 8 0 15 0 14 2 65 14 19 7 28 3 25 10 9 219(71%) 0.984s

Contextless Resource Names 0 0 2 4 1 0 7 4 9 2 6 0 6 1 0 42(14%) 0.565s

Non-hierarchical Nodes 9 0 10 8 15 0 28 12 19 5 34 0 25 6 0 171(55%) 0.584s

Pluralised Nodes 0 0 0 0 8 0 0 0 0 0 0 2 1 0 0 11(4%) 0.668s

Average 0.7s

In the next section, we discuss service patterns commonly found in REST related to the

77

syntactic design of REST requests/responses.

6.6.7 Detection of REST Patterns

Table 6.10 presents detailed detection results for the five REST patterns related to the
syntactic design of REST requests/responses. The table reports the patterns in the first
column followed by the analysed RESTful APIs in the following twelve columns. For each
REST API and for each pattern, we report: (1) the total number of validated true positives
with respect to the total detected patterns by our algorithms, i.e., the precision, in the first
row and (2) the total number of detected true positives with respect to the total existing
true positives, i.e., the recall, in the following row. The last two columns show, for all APIs,
the average precision-recall and the total detection time for each pattern.

Table 6.10: Detection results of the Five REST Patterns Related to the Syntactic Design of
REST Requests/Responses Obtained by Applying Detection Algorithms on the 12 RESTful
APIs (numbers in the parentheses show total test methods for each API).

R
E
ST

A
P
I

(7
)A

lc
he

m
y

(1
2)
B
es
tB

uy

(3
)B

it
ly

(4
)C

ha
rl
ie
H
ar
ve
y

(1
5)
D
ro
pB

ox

(2
9)
Fa

ce
bo

ok

(8
)M

us
ic
gr
ap

h

(3
)O

hl
oh

(8
)T

ea
m
V
ie
w
er

(1
0)
T
w
it
te
r

(9
)Y

ou
T
ub

e

(7
)Z
ap

po
s

pr
ec
is
io
n-
re
ca
ll

(1
15
)
T
ot
al

A
ve
ra
ge

P
re
ci
si
on

-R
ec
al
l

D
et
ec
ti
on

T
im

e

REST Patterns

Content 5/5 11/11 0/0 0/0 14/14 26/26 0/0 3/3 5/5 0/0 0/0 7/7 p 71/71 100%
19.63s

Negotiation 5/5 11/11 0/0 0/0 14/14 26/26 0/0 3/3 5/5 0/0 0/0 7/7 r 71/71 100%

Entity 6/6 11/11 1/1 4/4 3/3 21/21 1/1 2/2 1/1 5/5 6/6 4/4 p 65/65 100%
19.90s

Linking 6/6 11/11 1/1 4/4 3/3 21/21 1/1 2/2 1/1 5/5 6/7 4/4 r 65/66 98.81%

End-point 0/0 0/0 0/0 0/0 0/0 1/1 0/0 1/1 0/0 0/0 0/0 0/0 p 2/2 100%
20.36s

Redirection 0/0 0/0 0/0 0/0 0/0 1/1 0/0 1/1 0/0 0/0 0/0 0/0 r 2/2 100%

Entity 1/1 0/0 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 0/0 p 10/10 100%
23.06s

Endpoint 1/1 0/0 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 0/0 r 10/10 100%

Response 0/0 0/0 0/0 0/0 0/0 0/0 0/0 1/1 0/0 0/0 8/8 4/4 p 13/13 100%
19.23s

Caching 0/0 0/0 0/0 0/0 0/0 0/0 0/0 1/1 0/0 0/0 8/8 4/4 r 13/13 100%

Average
p 161/161 100%

20.44s
r 161/162 99.76%

78

In the next section, we discuss five REST antipatterns commonly found in RESTful
APIs.

Detection of Linguistic Patterns in REST

Table 6.11 presents detailed detection results for the five REST linguistic patterns re-
lated to the semantic design of REST URIs on 15 RESTful APIs. The table reports the
patterns in the first column followed by the analysed RESTful APIs in the following fifteen
columns. For each REST API and for each pattern, we report the total number of occur-
rences reported as positives by our detection algorithms. The last two columns show the
total detected occurrences across 15 APIs (with percentage) and the average detection time.

Table 6.11: Detection results of the Five REST Linguistic Patterns Related to the Semantic
Design of REST URIs Obtained by Applying Detection Algorithms on the 15 RESTful APIs
(numbers in the parentheses show total test methods for each API). The Detection Time
Excludes the Execution Time—Sending Requests and Receiving Responses.

R
E
ST

fu
l
A
P
Is

(9
)A

lc
he

m
y

(2
0)
B
es
tb
uy

(1
5)
B
it
ly

(1
2)
C
ha

rl
ie
H
ar
ve
y

(1
7)
D
ro
pB

ox
(6
)E

xt
er
na

lip
(6
7)
Fa

ce
bo

ok
(1
4)
In
st
ag
ra
m

(1
9)
M
us
ic
gr
ap

h
(7
)O

hl
oh

(5
3)
St
ac
kE

xc
ha

ng
e

(1
9)
T
ea
m
V
ie
w
er

(2
5)
T
w
it
te
r

(1
7)
Y
ou

T
ub

e
(9
)Z
ap

po
s

(3
09
)
T
ot
al

D
et
ec
ti
on

T
im

e

REST Linguistic Patterns

Tidy URI 1 20 0 12 3 4 2 0 0 0 25 16 0 7 0 90(29%) 0.968s

Contextualised Resource Names 9 0 8 4 14 0 21 8 10 3 28 0 19 6 0 130(42%) 0.66s

Verbless URI 9 20 15 12 11 5 58 14 19 7 52 19 20 17 9 287(93%) 0.677s

Hierarchical Nodes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0(0.0%) 0.592s

Singularised Nodes 0 0 0 0 0 0 0 1 0 0 0 2 1 3 0 7(2%) 0.656s

Average 0.656s

Further Discussion of the REST Results:

Table 6.12 shows the validation results on Dropbox (Validation 1) and on four represen-
tative APIs (Validation 2). For the first validation, the average precision is 81.4% and recall
is 78% for all (anti)patterns. For the second validation, the average precision is 79.7%.

79

Table 6.12: Complete validation results on Dropbox (Validation 1) and partial validation
results on Facebook, Dropbox, Twitter, and YouTube (Validation 2). ‘P’ represents the
numbers of detected positives and ‘TP’ the numbers of true positives.

In the first validation of Dropbox, two occurrences of Verbless URI are false positives.
The terms ‘copy’ and ‘search’ (or their synonyms) were not considered CRUDy by our algo-
rithm in /1/copy_ref/dropbox/MyDropboxFolder/ and /1/search/dropbox/MyDropboxFolder/.
However, the manual validation considered those terms CRUDy. Thus, on Dropbox, we had
a precision of 100% and a recall of 75% for CRUDy URI and a precision of 80%, recall of
100% for Verbless URI.

The Non-hierarchical Nodes antipattern was detected by our detection algorithm in 14
cases whereas the manual validation suggested only three of them actually are organised in a
non-hierarchical order. We manually investigated the causes of such discrepancies, and found
that the URIs that we identified as antipatterns by our detection algorithms and, later, were
(manually) validated as patterns have the following URI pattern:

{baseURI}/{media|revisions|shares}/dropbox/MyDropboxFolder/...

{baseURI}/fileops/{copy|delete|move|create_folder}/?root=dropbox&path=...

Our dictionary-based analyses did not find any hierarchical relations between {me-
dia,revisions,shares} and dropbox, between MyDropboxFolder and dropbox, and so on. Yet,
these hierarchical relations are obvious for developers and it was easy to infer the hierarchi-
cal relations among those pairs simply because they use a natural naming scheme [Laitinen

/1/copy_ref/dropbox/MyDropboxFolder/
/1/search/dropbox/MyDropboxFolder/

80

(1996)]. It is the same for the second example, where fileops and {copy, delete, move, cre-
ate_folder} are validated to be in hierarchical relation and the English dictionaries could
not find any hierarchical relations, thus DOLAR considered them as Non-hierarchical Nodes
antipatterns. Therefore, for this antipattern, we had a low precision of 21.43%.

In the second validation, also for the Non-hierarchical Nodes antipattern, DOLAR faces
a similar problem for Twitter as illustrated in these examples:

{baseURI}/help/privacy.json

{baseURI}/statuses/{show.json|user_timeline.json}?screen_name=...

The dictionary-based analyses did not find any hierarchical relations between ‘help’
and ‘privacy’ or between ‘statuses’ and {show,user,timeline} and reported them as non-
hierarchical. The precision for Non-hierarchical Nodes antipattern is therefore 16.67%, due
to this limitation with the analyses.

Finally, an interesting observation from Table 6.12: two cases were identified as Context-
less Resource Names antipatterns that were manually validated as Contextualised Resource
Names pattern. Our investigation shows that the English dictionaries suggested ‘Canucks’
and ‘albums’ in Facebook and ‘followers’ and ‘list’ in Twitter to be in two different contexts.
However, three professionals validated them as patterns, which caused the precision down to
0% for this antipattern in four representative APIs, with an average precision of 53.3%.

https://graph.facebook.com/Canucks/albums?access_token=CAA2...

https://api.twitter.com/1.1/followers/list.json?screen_name=...

In the next section, we assess the four assumptions stated in Section 6.2. The assessment
helps us to show that the SODA approach can efficiently and effectively detection service
antipatterns in SBSs.

6.7 Discussion on Assumptions

We now discuss the four assumptions stated in Section 6.2.

A1: Generality

Using our DSL, derived from our proposed unified abstraction, we specified 13 SCA
antipatterns (as listed in Table 2.2). Please refer to Appendix A for the full set of antipatterns
and their specifications. These antipatterns range from simple ones, such as the Tiny Service

81

and Multi Service, to complex ones such as the Sand Pile, which involve several services and
complex relationships. In particular, Sand Pile has both the ASSOC and COMPOS relation types.
Also, both Sand Pile refers, in its specification, to another antipattern, i.e., Data Service. As
for the Web services antipatterns, we specified ten antipatterns from the literature (see Table
2.2) where we specified complex antipatterns with composite rules, such as CRUDy Interface
composed of another rule card, i.e., Chatty Web Service. We also specified antipatterns
combining six different rules, Ambiguous Name antipattern, for instance. The generality of
defined heuristics is fulfilled because engineers can define their own heuristics based on their
needs. Thus, we show that we can specify from simple to complex antipatterns regardless
of the SBSs technology, which supports the generality of our DSL. As for the REST, we
define only pseudocode-style detection heuristics and we do not rely on the DSL. Thus, the
definition of REST heuristics is not related to the generality of our DSL.

A2: Accuracy

Concerning the accuracy of our detection algorithms, as shown in Table 6.13, we ob-
tained an average recall of 95.5%, precision of 88%, and an average F1-measure of 90.66%
for all service antipatterns and patterns. The achievement of such detection accuracy was
possible because we defined the rule cards (for Web services and SCA) and the heuristics (for
REST) after a thorough literature review and a careful analysis of relevant properties for all
service antipatterns. Consecutively, the detection algorithms were generated or implemented
precisely according to the rule cards and heuristics.

Thus, we can positively support our second assumption on the accuracy of our auto-
matically generated (or implemented) detection algorithms.

A3: Extensibility

Our proposed DSL was initially designed for specifying SCA antipatterns described
in the literature (see Table 2.2). Such design requires inclusion of various service metrics,
mathematical, logical, and set operators. Table 5.1 provides the list of service metrics among
which the metrics specific to SCA, namely COH, CPL, NIR, NOR, NUM were initially defined
and extracted from the literature. Later, for specifying new Web services antipatterns, we
reused several pre-existing metrics, for example ANP, ANPT, COH, CPL. Moreover, we added
some new Web services metrics to our metric suite, namely ALS, ARIP, NOPT, RGTS, and so
on, which are very specific to Web services. Our defined DSL is flexible in the integration of
new service metrics and antipatterns. However, the underlying SOFA framework should also
be extended to provide the operational implementations of the new service metrics. Such an

82

Table 6.13: Average Precision, Recall, and F1-measure for the Different Antipatterns Groups.

Antipatterns Groups Average Average Average
(Tables) Precision Recall F-1 measure

SCA ∩ REST ∩ Web services (Table 6.2) 93.33% 100% 96.3%
SCA ∩ Web services (Table 6.3) 82.59% 95.83% 86.34%
REST ∩ Web services (Table 6.4) 75% 100% 83.33%
SCA (Table 6.5) 88.89% 100% 93.3%
Web services (Table 6.6) 100% 100% 100%
REST Syntactic Antipatterns (Table 6.8) 82.81% 90.4% 86.44%
REST Syntactic Patterns (Table 6.10) 100% 99.76% 99.88%
REST Linguistic Antipatterns (Table 6.12) 81.4% 78% 79.66%
Average 88% 95.5% 90.66%

addition can only be realised by developers skilled with our framework, which may require
hours according to the complexity of the metrics. However, once the metrics are integrated
in the SOFA framework, their use is straightforward for the specification of rule cards using
the DSL.

We added SCA antipatterns (e.g., Sand Pile, Bloated Service, and Multi Service, and
so on) within our detection framework first and then extended the framework with new
Web services antipatterns (e.g., CRUDy Interface) and REST (e.g., Forgetting Hypermedia,
Ignoring MIME Types), which further confirms the extensibility of our SOFA framework.
To add REST antipatterns, we add their detection algorithms within the framework and
add each REST API to test their underlying resources. Later, we automatically apply those
detection algorithms on requests and responses received from server at run-time.

Thus, with these extensibility features of our DSL and our SOFA framework, we posi-
tively support A3.

A4: Performance

We performed all our experiments on an Intel Dual Core at 3.30GHz with 4GB of RAM.
For SCA, computation times include introspection delay during static and dynamic analyses,
computing metric values, and applying detection algorithms.

As for the Web services, for each antipattern, the detection time also includes: (i) the

83

filtering of the WSDL files, (ii) the generation of the concrete services implementation, (iii)
the generation of the detection algorithms, and (iv) the computation of the related metrics.

For the detection of antipatterns in RESTful APIs, the total required time includes: (i)
the execution time, i.e., sending REST requests and receiving REST responses and (ii) the
time required to apply and run the detection algorithms on the requests and responses.

As shown in Table 6.14, the average detection time for all service antipatterns (regardless
of the technologies) is 27.086s with a minimum of 0.184s (for SCA-specific antipatterns) and
a maximum of 144.72s (for Web services-specific antipatterns with a high number of required
pair-wise comparisons). Thus, with such low average detection time of 27.086s, we can
positively support our fourth assumption on performance.

Table 6.14: Average Detection Times for the Different Antipatterns Groups.

Antipatterns Groups Average
(Tables) Detection Times

SCA ∩ REST ∩ Web services (Table 6.2) 0.511s
SCA ∩ Web services (Table 6.3) 9.09s
REST ∩ Web services (Table 6.4) 18.98s
SCA (Table 6.5) 0.184s
Web services (Table 6.6) 144.72s
REST Syntactic Antipatterns (Table 6.8) 22.06s
REST Syntactic Patterns (Table 6.10) 20.44s
REST Linguistic Antipatterns (Table 6.12) 0.7s
Average 27.086s

It is important to note that the complexities of our detection algorithms are linear, i.e.,
O(n), where n represents the number of rules. Therefore, the cumulative detection times
increase with the number of rules and with the number of antipatterns to be detected.

6.8 Threats to Validity

The main threat to the validity of our results concerns their external validity, i.e.,
the possibility to generalise our approach to other SCA systems, SOAP Web services, and
RESTful APIs. We minimise the external validity by experimenting with one demo SCA
system and one large scale SCA system, i.e., FraSCAti. For Web services, we experimented

84

with more than 120 Web services, while we analysed 15 common and widely-used RESTful
APIs by invoking more than 300 methods from them to minimise external validity.

For internal validity, the detection results not only depend on the services provided by
the SOFA framework, but also on the antipattern specifications using rule cards and–or on
the heuristics defined for the REST antipatterns. To minimise the threat to the internal
validity: (1) we thoroughly studied the descriptions and definitions of each antipattern from
the literature and (2) we made sure that our SOFA framework itself does not introduce
any antipatterns. Moreover, for RESTful APIs, we confirmed that every invocation receives
responses from servers with the correct request URI, and the client authentication is done
while necessary. We tested all the major HTTP methods in REST, i.e., GET, DELETE,
PUT, and POST on resources to minimise such threat. Also, we performed experiments on
a representative set of antipatterns to lessen the threat to internal validity.

The subjective nature of specifying and validating antipatterns and defining detection
heuristics is a threat to construct validity. We tried to lessen this threat by defining rule
cards and detection heuristics based on a literature review and thorough domain analysis
and by involving independent engineers in the validation.

We also tried to minimise the threat to reliability validity by automating the generation
of the detection algorithms for SCA and Web services, such that each subsequent detection
produces consistent sets of results with high precision and recall. However, for REST, the
manual implementation of detection algorithms was fundamental. The threats to reliability
validity also concern the possibility of replicating all the studies in this dissertation. We
provided all the details required to replicate the study, including the rule cards and heuristics
on our Web site http://sofa.uqam.ca/soda/ to minimise such threats.

In the next section, we introduce our SODA tool-set, which relies on our proposed unified
SODA approach.

6.9 Tool Support

The methods and techniques presented in this dissertation are partially and–or fully
implemented and integrated with the SODA tool-set. The SODA tool-set relies on the proposed
unified SODA approach and currently is a prototype implementation. The SODA tool-set is
capable of performing the detection of service antipatterns in SCA systems, Web services,
and RESTful APIs.

Following the three steps in the SODA approach, an engineer can express service an-
tipatterns using rule cards. The rule cards must conform to the grammar defined in Figure

85

5.2 (see Section 5.2.1). This is the first step in detecting service antipatterns. The two key
parts in this step are: (1) engineers must have certain domain knowledge on service antipat-
terns and (2) engineers can use their own threshold values while writing rule cards, which
give them the flexibility to rely on their knowledge and experience (expected detection) over
the detection results returned by the tool (actual detection).

In the second step of the detection, the SODA tool-set allows two separate mechanisms
for generating detection algorithms: automatic and manual. Currently, for SCA and Web
services, an EMF-driven code generation technique helps engineers to generate detection al-
gorithms for antipatterns specific to SCA and Web services. However, for REST antipatterns,
the SODA tool-set requires engineers to manually implement the detection algorithms.

The third step in the SODA tool-set is completely automatic, and both the automatically
generated or manually implemented algorithms are applied either on SCA systems, Web
services, or on RESTful APIs. The mandatory condition for this step is to wrap each Web
service and each REST API with an SCA component because the SODA tool-set (likewise the
SOFA framework) allows the introspection of only SCA components.

Figure 6.3: The Home Page of the Prototype Web Interface for the Detection of Web services-
specific Service Antipatterns.

Thus, the SODA tool-set has three main modules: (1) the specification module, which

86

Figure 6.4: The Search and Detection Page of the Prototype Web Interface for the Detection
of Web services-specific Service Antipatterns.

helps engineers specifying rule cards or heuristics (2) the generation module, which helps
engineers generating detection algorithms and (3) the detection module, which performs
detection and report suspicious services.

In summary, most of the dynamic and static metrics calculated by SODA tool-set use
only the service interfaces that are freely available. The principal features of SODA tool-set
include:

1. SODA does direct import of an SCA system as a Jar package, or a WSDL interface,
or a REST API implemented as a Java class with methods to access its underlying
resources;

2. SODA has a straightforward and simple detection interface for the engineers, which is
handy both for beginners and experts;

3. SODA shows all the detection details, i.e., metric values, corresponding rule cards, tex-
tual descriptions of antipatterns, and so on, in the form of a detection report for SCA
and Web services, and the request and response headers and bodies for RESTful APIs;

87

Figure 6.5: The Prototype Web Interface for the Detection of REST-specific Service Antipat-
terns.

4. For the detection, the SODA tool-set invokes Web services on the fly and can calculate
various run-time properties of a Web service, for example, response time and availabil-
ity;

5. Features we plan to implement: (1) the calculation of other quality metrics, including
reliability and accessibility of services and (2) the visualisation of detected antipatterns
in SCA components, Web services, and REST resources.

The downloadable or Web-accessible versions of the SODA tool-set can be found on our
Web site http://sofa.uqam.ca/soda/. For the detection tool on Web services, users can

88

download the War version and deploy on a local Apache Tomcat server. The tool’s Web
interface is presented in Figures 6.3 (tool’s home page) and 6.4 (tool’s search and detection
page). The detection tool on SCA can be executed from command line. As the detection
tool of REST antipatterns, we provide a Web-based interface from where users can perform
the detection of REST antipatterns on selected RESTful APIs as shown in Figure 6.5. It is
important to note that although we provide two separate tools for SCA and Web services,
they share a common language for the specification of service antipatterns and rely on a
generic approach for the detection of service antipatterns.

6.10 Discussion

Based on our proposed unified abstraction (see Section 4.2), we presented the unified
SODA approach for the detection of service antipatterns in various SBSs technologies involv-
ing three main steps from the specification of service antipatterns to their detection via the
step of automatic generation of detection algorithms (Section 5.1). We also listed various
service metrics that we use to specify service antipatterns (Table 5.1). Using those metrics
we defined rule cards and detection heuristics for 31 service antipatterns. We also presented
the SOFA detection framework (Section 5.2.3) and discussed the detailed evaluation of our
proposed methodology where we experimented with three commonly used SBSs technologies,
i.e., SCA, Web services, and REST.

In particular, we discussed the detection results for service antipatterns for different
groups as we mentioned in Section 2.2. The discussions on the detection results confirm
the presence of service antipatterns in practice. Some significant observations are: (1) the
occurrence of Ambiguous Name antipattern is very common in Web services interfaces, (2) a
significant number of eight service antipatterns are common in SCA and Web services (see
Table 6.3), (3) the Tiny Service antipattern is also very common in SCA and Web services,
which further confirms the fact that (as suggested by researchers) Tiny Service antipattern is
the cause of a number of SOA failures [Král et Žemlička (2008)], (4) maintaining the syntactic
and semantic cohesiveness among the service interface elements is still a major challenge for
service designers and developers (as reflected in Table 6.6), and, (5) RESTful APIs suffer
comparatively higher syntactic and lexical design challenges than SCA and Web services (as
shown in Tables 6.8, 6.9).

With a detailed discussion on the detection results, we positively supported four assump-
tions (Section 6.7) showing the generality of our specification language (A1), the accuracy of
our detection algorithms (A2), the extensibility of our language and of the framework (A3),
and the low performance overhead of our detection algorithms in terms of detection time

89

(A4). Therefore, we can conclude that:

Summary: With our proposed unified SODA approach that encompasses
the unified abstraction and the DSL, we can effectively specify and detect
service antipatterns in different SBSs technologies in terms of accuracy and
performance.

In this chapter, we provided the evidence of the presence of service antipatterns in SBSs
in practice. However, a strong motivation showing why the engineers and developers should
and need to care about service antipatterns and detect them as early as possible, is still
missing.

In the next chapter, we conduct a study to observe the impact of service antipatterns
on the maintainability, i.e., change-proneness, of SBSs. To verify and confirm the impact
of service antipatterns on maintainability, negative or positive, we study the entire evolu-
tion history of FraSCAti system—the largest open-source SCA system available at present
[Seinturier et al. (2012)]. We rely on eight service antipatterns detected and discussed in the
previous chapter in SCA (see Sections 6.6.1, 6.6.2, and 6.6.4). To confirm the correlation
between service antipatterns and change-proneness of an SBS, we perform two well-known
non-parametric statistical tests, e.g., Wilcoxon rank sum, a.k.a., Mann–Whitney test and
Kruskal-Wallis tests [Sheskin (2007)].

90

CHAPTER 7 AN IMPACT STUDY OF SERVICE ANTIPATTERNS

7.1 Chapter Overview

Like any other software systems, service-based systems (SBSs) evolve frequently to ac-
commodate new user requirements. This evolution may degrade their design and implemen-
tation and may cause the introduction of common bad practice solutions—antipatterns—in
opposition to patterns which are good solutions to common recurring design problems. It is
natural to believe that the degradation of the design of SBSs does not only affect the clients
of the SBSs but also the maintenance and evolution of the SBSs themselves. This chapter
presents the results of an empirical study that aimed to quantify the impact of service pat-
terns and antipatterns on the maintenance and evolution of SBSs. The maintenance effort
of a service implementation is measured in terms of the number of changes and the size of
changes (i.e., code churns) performed by developers to maintain and evolve the service; two
effort metrics that have been widely used in software engineering studies. Using data collected
from the evolutionary history of the SBS FraSCAti, we investigate if (1) services involved in
patterns require less maintenance effort; (2) services detected as antipatterns require more
maintenance effort than other services; and (3) if some particular service antipatterns are
more change-prone than others. Results show that (1) services involved in patterns require
less maintenance effort, but not at statistically significant level; (2) services detected as an-
tipatterns require significantly more maintenance effort than non-antipattern services; and
(3) services detected as God Component, Multi Service, and Service Chain antipatterns are
more change-prone (i.e., require more maintenance effort) than the services involved in other
antipatterns.

The remainder of this chapter is organised as follows. Section 7.2 discusses the mo-
tivation behind this study. Section 7.3 presents background information on the FraSCAti
project. Section 7.4 describes the approach used to extract change and churn information,
and to identify FraSCAti services involved in patterns and antipatterns, and the design of
our study. We present the findings in Section 7.5. Section 7.6 reports the threats to the
validity of our results. Finally, Section 7.7 concludes the chapter.

7.2 Motivation and Research Questions

Like any complex software systems, service-based systems (SBSs) evolve to accommo-
date new user requirements both in terms of functionality and quality of service (QoS). These

91

frequent changes may degrade the design and QoS of SBSs and cause the introduction of an-
tipatterns which are common bad practice solutions—in opposition to patterns which are
good solutions to common recurring design problems. A degradation of the design of an SBS
means that it fails to follow one of the eight SOA design principles [Erl (2009)], including
loose coupling, composability, and reusability. Multi service [Dudney et al. (2003)], an exam-
ple of service antipattern corresponds to a service that implements a multitude of business
and technical abstractions. Its reusability is low because it aggregates too much into a single
service, resulting in methods with low cohesion. This service is often unavailable to end-users
because of its overload, which may induce a high response time. Proxy pattern [Daigneau
(2011)], an example of service pattern, is a well-known service design pattern that adds an
additional indirection level between the client and the invoked service, e.g., to support adding
non-functional behaviors.

Despite the relatively large body of work on the detection of service patterns and an-
tipatterns in SBSs [Demange et al. (2013); Moha et al. (2012); Penta et al. (2007); Tsantalis
et al. (2006)], to the best of our knowledge, there are very few studies that empirically inves-
tigated the impact of service patterns or antipatterns on the maintenance and evolution of
SBSs. To perform such a study, one needs detailed information about the implementations of
services, which is not easy to obtain because of the scarcity of open-source SBSs. We believe
that service antipatterns do not only affect the clients of SBSs but also the maintenance and
evolution of the SBSs, for example by making it harder for developers to modify existing
functionalities, or to implement new ones. Several works exist in the object-oriented (OO)
literature relating code smells and antipatterns to the change-proneness of software systems
[Abbes et al. (2011); Khomh et al. (2012a); Mäntylä et Lassenius (2006)]. However, because
of the dynamic nature of service patterns and antipatterns [Moha et al. (2012)] and because
of the difference in granularity, results obtained for OO systems cannot be simply transferred
to SBSs. Service antipatterns and OO antipatterns are two very different concepts. Indeed,
one of the root causes of OO antipatterns is the adoption of a procedural design style in OO
systems, whereas service antipatterns often stem from the adoption of OO design style in
SBSs.

In this chapter, using data collected from the evolutionary history of the SBS FraSCAti,
we perform an empirical study aimed at quantifying the impact of service antipatterns on the
maintenance and evolution of SBSs. To measure the change-proneness of a service, in terms
of its implementation, we rely on two widely used effort metrics: (1) number of changes and
(2) code churns; which capture the frequency and the size of changes on a service.

92

We address the following three research questions:

RQ2.1: What is the relation between service antipatterns and change-proneness?
Finding: The total number of source code changes and code churns performed during the
maintenance and evolution of services involved in antipatterns is higher than the total num-
ber of source code changes and code churns performed on other services—the difference is
statistically significant.
RQ2.2: What is the relation between particular kinds of service antipatterns and change-
proneness?
Finding: Services found to be involved in God Component, Multi service, and Service Chain
antipatterns are more change-prone than services involved in other antipatterns—the differ-
ence is statistically significant.
RQ2.3: What is the relation between service patterns and change-proneness?
Finding: The total number of source code changes and code churns performed during the
maintenance and evolution of services involved in patterns is less than the total number of
source code changes and code churns performed in other services—the difference is not sta-
tistically significant.

In summary, service antipatterns (respectively patterns)—which indicate poor (respec-
tively good) service designs—do not only affect the clients of SBSs but also the cost of
maintenance of the SBSs themselves. Developers and maintainers should therefore avoid
implementing antipatterns in their SBSs since it will significantly increase the maintenance
effort and hence the maintenance cost of the system.

7.3 The Study Object: FraSCAti

Table 7.1: Summary of the Characteristics of the FraSCAti OW2 v1.4 (the entire revision
history).

Total Services Total Size Total Changed Files Total Java Source Files Total Changes Total Code Churns
130 170 KLOC 15,863 9,020 71,151 62,676,363

Analysed Analysed Java Java Source Files Java Source Files Java Source Files Java Source Files
Services Source Files Related to Patterns Related to Antipatterns Related to Both Related to None

62 3,717 1,860 2,114 1,840 18

FraSCAti [Seinturier et al. (2012)] is a Java-based open-source implementation of the
Service Component Architecture (SCA) standard [Edwards (2011)]. FraSCAti is based on

93

the OW2 Fractal 1 component model and provides an open architecture for the integration
and binding of SCA components. SCA defines a technology-agnostic model for composing
diverse interface definition languages (WSDL, Java, WADL, etc.), implementation languages
and frameworks (Java, BPEL, C/C++, Spring, OSGi, etc.), bindings (SOAP, JMS, REST,
etc.). To date, FraSCAti is the largest service-oriented SCA system for which the source code
and change commits are publicly available. Table 7.1 summarises the main attributes of the
FraSCAti project for its entire revision history. FraSCAti offers 130 distinct services. The
size of the FraSCAti project is around 170 KLOC excluding any supporting and configuration
files. We collected more than 15,000 changed files from the entire FraSCAti revision history,
more than 9,000 of which are Java source files. The patterns and antipatterns studied in this
dissertation were detected for 62 services, thus around 3,700 Java source files were involved
directly or indirectly with these services implementations. Moreover, a few more than 1,800
and 2,100 analysed Java source files were directly involved with the studied patters and
antipatterns in [Demange et al. (2013)] and [Palma et al. (2013)], respectively. As shown
in Table 7.1, we extracted more than 71,000 changes and approximately 62.6 million code
churns from the entire FraSCAti commits.

7.4 Study Design

This section presents the design of our study, which aims to address the three research
questions stated in Section 7.2.

7.4.1 Data Collection and Processing

In this study, we analyse FraSCAti services over their entire revision history. Our data
set contains, for each FraSCAti service: (1) all the source code changes performed and (2)
the code churns in its entire revision history. We also gather the type and the number of
service patterns and antipatterns in which a FraSCAti service is involved, using SODOP
[Demange et al. (2013)] and SODA [Palma et al. (2013)] detection techniques. Figure 7.1
shows an overview of our data collection and processing approach. The remainder of this
section elaborates on each of its steps.

1. http://fractal.ow2.org/

94

FraSCAti version
control system

Data Preparation

invoke and execute
FraSCAti services

Service
Patterns/Antipatterns

Detection

Server-side artefacts analysis

Client-side artefacts analysis

4

3

Source Changes
Extractor

number of
changes

per service

code churns

involved in
and ntipatternsa

patterns
FraSCAti services

1
Import Mailing Data

2

Code Churns
Extractor

Figure 7.1: An Overview of Our Approach to Study the Impact of Service Patterns and
Antipatterns on the Change-proneness of SBSs.

Step 1: Collecting Mailing Data

The first step consists in mining change data information from the complete FraSCAti-
commits mailing list archives. The FraSCAti-commits mailing list archive is available online 2.
We developed a Python script to recursively download all the change histories for the entire
FraSCAti project. For each commit message in the mailing list, we extract (1) the revision
number, (2) the author, (3) the date of the commit, (4) the log message, (5) the modified
paths, i.e., the list of changed files, (6) the added paths, i.e., the list of newly added files,
(7) the removed paths, i.e., the list of removed files, and (7) the diff which contains detailed
information about the changes that were performed on each of the modified, added, or
removed files. We stored all these information in a MySQL database for analysis.

Step 2: Extracting Source Code Changes and Code Churns

The second step involves the extraction of the number of changes made and the number
of code churns for a certain service artefact. In this case, we also used a Python script to query
our database and calculate the number of times that each file involved in the implementation
of a service appeared in the commit. For each file and for each commit containing the file,
we parse the diff contained in the commit and extract information about the number of lines
of code that were added and removed. We use this information to compute the Code churn
of the file for that commit, as the total number of added, modified and deleted lines of code

2. http://mail-archive.ow2.org/

95

in the file. In a diff, the modification of a line is recorded as a line deletion followed by a line
addition. We aggregate the code churns values of the file obtained for all commits in which
the file was involved to obtain the total code churn of the file.

Step 3: Service Patterns and Antipatterns Detection

The third step in our approach involves detecting service patterns and antipatterns in
FraSCAti. This detection is done on the client-side by analysing service compositions, system
design, and the quality of service (QoS). We perform the detection of service antipatterns
using SODA (Service Oriented Detection for Antipatterns) [Palma et al. (2013)]. We asked
the core development team of FraSCAti to manually validate all the antipatterns that were
found in FraSCAti before their usage in our study. We also used the SODOP approach
(Service Oriented Detection Of Patterns) proposed by Demange et al. [Demange et al.
(2013)] to perform the detection of service patterns. The SODOP approach is dedicated
to the detection of service patterns in SCA systems and an essential part of our integrated
SOFA framework. SODOP shares the same specification language with SODA to represent
service patterns at a higher abstraction level. However, new service metrics are required by
SODOP to capture various design decisions, which are considered to be good design practices
to common recurring service design problems.

The patterns found in FraSCAti were also manually validated by the core development
team of FraSCAti. A detailed description of the service antipatterns and patterns analysed
in this study is presented in Appendix. Table 7.2 shows the summary of the detection results
for service-oriented patterns and antipatterns in FraSCAti v1.4.

Step 4: Data Preparation

Once we extracted the changes and code churns and performed the detection of service
patterns and antipatterns, in this last step of our approach, we grouped the source code
changes and code churns to link them with the detected patterns and antipatterns. In our
current study, we do not consider the types of changes (that we plan to investigate in the
future) and only focus on the number of changes and code churns as the measures of change-
proneness of a service implementation.

We map each service to the corresponding artifacts or source files from the entire FraS-
CAti project in the form of si→f 1 to k, where for each i from 1 to 130, a service s is associated
with different numbers of artefacts or source files f up to k. We classify the entire FraSCAti
project into three groups: (1) Java source files that underwent any number of changes and

96

Table 7.2: Summary of the Detection Results for Five Service Patterns and Eight Service
Antipatterns in FraSCAti OW2 System.

Names Detected Instances Involved Java Source Files
Pa

tt
er
ns Adapter 1 14

Basic Service 5 54
Facade 3 62
Proxy 3 61

A
nt
ip
at
te
rn
s

Bloated Service 3 25
Bottleneck Service 2 24
God Component 2 4
Multi Service 1 5
Nobody Home 4 12
Service Chain 3 10
The Knot 1 24
Tiny Service 1 24
OO Code Smells 26,381 3,717

are part of any patterns or antipatterns, (2) Java source files that underwent any changes
and are not related to any patterns or antipatterns, and (3) Java source files that did not
undergo any changes. This classification helps us to restrain relevant source files while we
compare among changed vs. unchanged and pattern vs. antipattern service groups. We also
manually gather various details about the patterns and antipatterns considered in this study,
e.g., their categories, the levels of their appearance, root causes, and symptoms. Finally, we
collected the feature details from the FraSCAti feature model 3 for each FraSCAti service, i.e.,
which particular features are implemented by a service in FraSCAti. This feature information
helps us to better understand the changes made in services that are involved in patterns or
antipatterns. Using these data, we perform a series of statistical analysis to examine the
relation between service patterns/antipatterns and change-proneness. The following sections
discuss the details of our analysis method.

7.4.2 Variable Selection

We identify the following dependent and independent variables to test the null hypothe-
ses (defined in Section 7.5) corresponding to each research question.

Independent Variables

The total set of service patterns and antipatterns that we considered in this study are
the independent variables. We investigate the presence of eight different service antipatterns

3. http://frascati.ow2.org/doc/1.4/ch12s02.html

97

and four different service patterns.

For RQ2.3, we use the boolean variable f 3
i to indicate whether a file i was involved in

the implementation of at least one pattern. For RQ2.1, we use a similar boolean variable f 1
i

to indicate whether a file i was involved in the implementation of at least one antipattern.
Finally, for RQ2.2, we use the boolean variables f 2

i,j to indicate whether a file i was involved
in the implementation of the antipattern j.

Dependent Variables

The dependent variables measure the phenomena related to services participating in
service antipatterns or patterns. Our dependent variable for research questions RQ2.1 to
RQ2.3 is the change-proneness of the files involved in the implementation of a service. We
measure the change-proneness of a file i using the total number of changes ci and the total
number of code churns d i that the file i underwent in its entire revision history.

7.4.3 Analysis Method

We apply the Wilcoxon rank sum and Kruskal-Wallis tests [Sheskin (2007)] to compare
the proportion of source code changes and code churns in the different categories of services
(i.e., service antipatterns, service patterns, and others), using a 95% confidence level (i.e.,
p-value<0.05). For any comparison exhibiting a statistically significant difference, we further
compute the Cliff’s δ effect size [Romano et al. (2006)] to quantify the importance of the
difference because Cliff’s δ is reported to be more robust and reliable than Cohen’s d [Cohen
(1988)].

The Wilcoxon rank sum test is a non-parametric statistical test to assess whether two
independent distributions have equally large values. Non-parametric statistical tests make
no assumptions about the distributions of assessed variables. The Kruskal-Wallis test is
an extension of the Wilcoxon rank sum test for more than two groups. Cliff’s δ is a non-
parametric effect sizes measure (i.e., it makes no assumptions of a particular distribution)
which represents the degree of overlap between two sample distributions [Romano et al.
(2006)]. It ranges from -1 (if all selected values in the first group are larger than the second
group) to +1 (if all selected values in the first group are smaller than the second group). It
is zero when two sample distributions are identical [Cliff (1993)].

Cliff’s δ=

+1, Group 1 > Group 2;
−1, Group 1 < Group 2;
0, Group 1 = Group 2.

98

Interpreting the Effect Sizes

Cohen’s d is mapped to Cliff’s δ via the percentage of non-overlap as shown in Table
7.3 [Romano et al. (2006)]: 0.20 (small) of Cohen’s d corresponds to 0.147 of Cliff’s delta
δ, 0.50 (medium) corresponds to 0.33, and 0.80 (large) corresponds to 0.474. Cohen [Cohen
(1992)] states that a medium effect size represents a difference likely to be visible to a careful
observer, while a large effect is noticeably larger than medium.

Table 7.3: Mapping Cohen’s d to Cliff’s δ.

Cohen’s Standard Cohen’s d % of Non-overlap Cliff’s δ

small 0.20 14.7% 0.147
medium 0.50 33.0% 0.330
large 0.80 47.4% 0.474

Interpreting the p-values

In a statistical test, the p-value helps to determine the significance of the results and if
the p-value is less than or equal to the threshold value (default is 5%), the null hypothesis can
be rejected. The p-value ranges between 0 and 1. Different interpretations in our statistical
tests are presented in Table 7.4.

Table 7.4: The informal interpretation of p-values.

p-values Interpretation

p < 0.001 Very strong evidence against the null hypothesis.
0.001 < p < 0.01 Strong evidence against the null hypothesis.
0.01 < p < 0.05 Moderate evidence against the null hypothesis.
0.05 > p < 0.1 Weak evidence against the null hypothesis.

p > 0.1 No evidence against the null hypothesis.

7.5 Case Study Results

In this section, we present and discuss the answers to our three research questions. For
each research question, we present the motivation behind the question, our analysis approach,
and a discussion on our findings.

99

RQ2.1: What is the relation between service antipatterns and change-proneness?

Motivation: Since service antipatterns represent poor designs, it is very likely that they
negatively impact the quality of SBSs, for example by making them more prone to changes,
which may result in an increase of maintenance costs. Clearing up the interaction between
service antipatterns and change-proneness is important from both researchers’ and practi-
tioners’ points of view. For researchers, a quantitative analysis of the impact of service
antipatterns on change-proneness will contribute to proving or refuting the conjecture about
their negative impact. For practitioners, knowing how service antipatterns affect the change-
proneness of their code will help them make educated decisions about which antipattern to
remove first. In this research question, we investigate the effect of service antipatterns on
code change-proneness. Code change-proneness is an important quality attribute since it
captures the effort required to modify and evolve the code of the SBSs, which translates into
maintenance costs.

In general, the presence of service antipatterns cause solutions with poor quality of
design and bad quality of service and hinder maintenance [Dudney et al. (2003)]. No one
empirically validated the fact that service antipatterns have negative impact on the main-
tenance cost. After we detected services as antipatterns on client-side, we show that the
services involved in antipatterns changed more during server-side maintenance in terms of
number of changes and code churns.

Approach: We answer this research question in three steps: First, we perform the detection
of service antipatterns using SODA [Palma et al. (2013)] and obtain a set of services involved
in different antipatterns. We manually validated the results of our detection as discussed in
Section 7.4.1. Next, for each file implementing a FraSCAti service, we measure the change-
proneness of the service’s implementation using the following two metrics:

– Total number of changes: the total number of times that the file was changed in
its entire revision history.

– Total number of code churns: the total number of churns (i.e., lines added,
deleted, and modified) that the file underwent in its entire revision history.

Finally, to compare the change-proneness of files involved in the implementation of
service antipatterns with the change-proneness of files implementing services, but not involved
in a service antipattern, we test the two following null hypotheses:

H1
01: there is no difference between the total number of changes experienced by files involved

in the implementation of a service antipattern and other files.

H2
01: there is no difference between the total number of code churns experienced by files in-

100

0
50

10
0

15
0

20
0

25
0

30
0

T
ot

al
 N

um
be

r
O

f C
ha

ng
es

SOA Antipattern Implementation Others

0
10

00
20

00
30

00
40

00
50

00
60

00

T
ot

al
 N

um
be

r
O

f C
od

e
C

hu
rn

s

SOA Antipattern Implementation Others

Figure 7.2: Comparison between Antipattern Services and Non-antipattern Services in Terms
of Number of Changes (top) and Code Churns (bottom).

volved in the implementation of a service antipattern and other files.

We use the Wilcoxon rank sum test to examine H1
01 and H2

01, which are also two-tailed
since they investigate whether service antipatterns are related to higher or lower change and
code churn rates. For any comparison exhibiting a statistically significant difference, we

101

compute the Cliff’s δ effect size [Romano et al. (2006)] to quantify the importance of the
difference. All the tests are performed using the 5% significance level (i.e., p-value<0.05).

Findings: Services involved in service antipatterns are more change-prone than the services
that are not involved in any service antipattern. Figure 7.2 presents the box-plots showing
the median difference between antipattern services and non-antipattern services both for the
total number of changes (top) and the total number of code churns (bottom). This difference
is statistically significant as the Wilcoxon rank sum test yielded p-values of 0.011 (<0.05)
and 0.015 (<0.05) for respectively the total number of changes and the total number of code
churns (see Table 7.5). Therefore, we reject both H1

01 and H2
01. The Cliff’s δ effect size values

presented in Table 7.6 shows that the difference is large for both the total number of changes
and the total number of code churns (p-value <0.01), (i.e., Cliff’s δ=0.515 for changed LOC
and 0.4962 for code churns) between two treatment groups, i.e., antipattern-services and
non-antipattern services.

There is a significant difference between the proportion of services undergoing at least
one change and one code churn between services involved in antipatterns and other services.
The Wilcoxon rank sum test in Table 7.5 confirms this observation (i.e., p-value=0.0152 for
changed LOC and p-value=0.011 for code churns), therefore we can strongly reject H02.

Table 7.5: The Wilcoxon Rank Sum Test Between Service Antipatterns and Other Services.

Treatment Groups Treatment Types p-value
antipatterns ∼ non-antipatterns total number of code churns 0.015
antipatterns ∼ non-antipatterns total number of changes 0.011

The non-parametric Cliff’s δ effect size measure in Table 7.6 shows the large difference
(i.e., Cliff’s δ=0.515 for changed LOC and 0.4962 for code churns) between two treatment
groups, i.e., antipattern-services and non-antipattern services. In this test, with the signif-
icant p-value of ∼0.01, our Cliff’s δ effect size measure is ∼0.5, which is expected, i.e., the
difference between two treatment groups is large.

Table 7.6: The Non-parametric Cliff’s δ Effect Size Measure Between Service Antipatterns
and Other Services.

Treatment Groups Treatment Types Cliff’s δ
antipatterns ∼ non-antipatterns total number of code churns 0.515 (large)
antipatterns ∼ non-antipatterns total number of changes 0.496 (large)

102

Summary: Services involved in service antipatterns, in terms of their imple-
mentations, are more change-prone than the services that are not involved in
any service antipattern. The total number of source code changes and code
churns performed during the maintenance and evolution of services involved
in a service antipattern is higher than the total number of source code changes
and code churns performed on other services. The difference is statistically
significant.

RQ2.2: What is the relation between particular kinds of service antipatterns and
change-proneness?

Motivation: In this research question, we investigate whether certain kinds of service an-
tipatterns are more change-prone than others. Knowing which service antipatterns are more
change-prone could help development teams and managers better focus their limited resources
toward the correction of the most change-prone antipatterns, thereby reducing the mainte-
nance cost of their SBSs. Researchers working on antipatterns detection tools could also use
this information to prioritise the results of their detection tools and guide their users toward
service antipatterns with high change-proneness.

Approach: To answer this research question we proceed as follows: First, using the re-
sults of the antipattern detection performed in RQ2.1, we divide the files involved in the
implementation of service antipatterns in different categories corresponding to the 13 kinds
of antipatterns that are considered in this study. For each kind of antipattern Ai, we cre-
ate a group GAi containing files that are involved in the implementation of an antipattern
of type Ai. In total, we obtained eight groups of files (GAi, i ∈ {1, . . . 8} since only eight
kinds of service antipatterns were detected and validated in FraSCAti. We also create a
group GNoAP containing files implementing services that are not antipatterns. Next, for
each file implementing a FraSCAti service, we measure the change-proneness of the service’s
implementation using the same metrics as in RQ2.1 (i.e., total number of changes and total
number of code churns). Finally, to compare the change-proneness of files involved in the
implementation of different kinds of service antipatterns with the change-proneness of files
implementing services that are not antipatterns, we test the two following null hypotheses:

H1
02: there is no difference between the total number of changes experienced by files from

groups (GAi)i∈{1,...8} and GNoAP .

H2
02: there is no difference between the total number of code churns experienced by files from

groups (GAi)i∈{1,...8} and GNoAP .

We use the Kruskal-Wallis test to examine H1
02 and H2

02. The two hypotheses are two-

103

BlS BotS GC MS NH NoAP SC TK TS

0
50

10
0

15
0

20
0

25
0

30
0

T
ot

al
 N

um
be

r
O

f C
ha

ng
es

BlS BotS GC MS NH NoAP SC TK TS

0
10

00
20

00
30

00
40

00
50

00
60

00

T
ot

al
 N

um
be

r
O

f C
od

e
C

hu
rn

s

Figure 7.3: Comparison among Antipattern Services in Terms of Total Number of Changes
(top) and Code Churns (bottom).

tailed (as in RQ2.1). We test H1
02 and H2

02 using the 5% significance level (i.e., p-value<0.05).

Findings: The eight kinds of antipatterns investigated in this study are not equally change-
prone. Figure 7.3 presents the box-plots showing the medians of the total number of changes
(top) and total number of code churns (bottom) in the nine groups (eight groups for the
eight kinds of antipatterns and the no antipattern group). The result of the Kruskal-Wallis

104

test presented in Table 7.7 suggests that the difference is statistically significant. Hence,
we reject both H1

02 and H2
02. From Figure 7.3, we observe that God Component (GC), Multi

service (MS), and Service Chain (SC) antipatterns have code churn values greater than 4000,
while most other kinds of antipatterns have churn values less than 2000. As for the number
of changes, the highest median value for a kind of antipattern is between 160 and 230 while
others range from ∼10 to ∼100. Overall, God Component, Multi service, and Service Chain
antipatterns are more change-prone than other kinds of antipatterns with significantly higher
median than other antipatterns.

The confirms this observation (i.e., p-value=0.00017 for changed LOC and p-value=0.01003
for code churns), therefore we can strongly reject H02. In particular, we observed God Compo-
nent, Multi service, and Service Chain antipatterns are more change-prone with significantly
higher median than other antipatterns.

Table 7.7: Kruskal-Wallis Test for the Different Kinds of Service Antipatterns.

Test Types p-value
total number of code churns ∼ antipattern 0.0002
total number of changes ∼ antipattern 0.01003

Summary: Services involved in God Component, Multi service, and Service
Chain antipatterns, in terms of their implementations, are more change-prone
than services involved in other kinds of service antipatterns. The difference is
statistically significant.

We now discuss the possible reasons behind the high change-proneness of these three
kinds of antipatterns. The service ComponentFactory, identified as Service Chain [Palma
et al. (2013)] and God Component [Palma et al. (2013)] antipattern, is implemented by the
component-factory FraSCAti component. The main role of this service is to generate and
instantiate SCA components, which is one of the major steps to execute an SCA application.
When an SCA application executes, it follows several sequential steps, including loading the
SCA configuration file, parsing it, instantiating the SCA components, resolving the bindings,
and so on. Therefore, the ComponentFactory service is in that invocation chain and highly
related to other collaborating services. Because of this strong dependency, if others change,
there is a high possibility that this ComponentFactory will also change frequently. Being
a God Component, the ComponentFactory service also has a high number of encapsulated
services with many methods and parameters.

105

The service MembraneGeneration, identified as Multi Service antipattern, is imple-
mented by the component-factory-juliac FraSCAti component. The MembraneGeneration
service wraps SCA components with the help of ComponentFactory service, in this way it
helps each SCA components to be treated as an individual entity. According to the specifi-
cation of Multi Service [Palma et al. (2013)], we found that the MembraneGeneration service
had a high number of low cohesive methods defined in its interface, which might cause its
frequent and large changes. Among the less change-prone antipatterns: Bottleneck Service
(BotS), The Knot (TK), and Tiny Service (TS) show the very low number of changes and
code churns. Also, the Bloated Service (BlS) antipattern change with a significant variation,
i.e., large inter-quartile range, in the number of changes and code churns. Based on these
findings, development teams could decide to prioritise the code of services involved in the
Service Chain (SC), Multi Service (MS), and God Component (GC) antipatterns, for special
reviews and refactoring, since as shown in Figure 7.3, they have a high change-proneness.
We have also investigated the change-proneness of the four kinds of service patterns found in
FraSCAti (i.e., Basic service, Adapter, Facade, and Proxy pattern). We report the possible
relationship in the next section.

RQ2.3: What is the relation between service patterns and change-proneness?

Motivation: The SOA paradigm has a specific set of design principles associated with
it. Over the past years, patterns for SOA (i.e., service patterns) have been proposed to
guide developers through the application of these design principles, in order to help them
reap the benefits of SOA, which includes fast and cost-effective responses to changes [Koch
(2005)]. Each SOA service pattern affects and influences the application of one or more SOA
design principles. There are also adverse relationships, where the results and trade-offs of
some service patterns have a negative impact on a design principle [Erl (2009)]. A violation of
some design principles can in turn result in a degradation of the quality of the SBSs. A better
understanding of relations between service patterns and SBSs software quality is therefore
important to guide development teams in making good design decisions. Yet, to date, no
empirical evidence is available to validate the positive or negative impact of service patterns
on the quality of SBSs. In this research question, we investigate the effect of service patterns
on code change-proneness. Code change-proneness is an important quality attribute since it
captures the effort required to modify and evolve the code of the SBSs, which translates into
maintenance costs.

Approach: We answer this research question in three steps: First, we perform the detection
of service design patterns using SODOP [Demange et al. (2013)] and obtain a set of FraS-

106

0
50

10
0

15
0

20
0

25
0

30
0

T
ot

al
 N

um
be

r
O

f C
ha

ng
es

SOA Pattern Implementation Others

0
10

00
20

00
30

00
40

00
50

00
60

00

T
ot

al
 N

um
be

r
O

f C
od

e
C

hu
rn

s

SOA Pattern Implementation Others

Figure 7.4: Comparison Between Pattern Services and Non-pattern Services in Terms of
Number of Changes (top) and Code Churns (bottom).

CAti services involved in different design patterns. We manually validate the results of our
detection as discussed in Section 7.4.1. Next, for each file implementing a FraSCAti service,
we measure the change-proneness of the service’s implementation using the two metrics: total
number of changes and total number of code churns.

To compare the change-proneness of files involved in the implementation of service
patterns with the change-proneness of files implementing services that are not involved in a
pattern, we test the two following null hypotheses:

107

H1
03: there is no difference between the total number of changes experienced by files involved

in the implementation of a service pattern and other files.

H2
03: there is no difference between the total number of code churns experienced by files in-

volved in the implementation of a service pattern and other files.

We use the Wilcoxon rank sum test to examine H1
03 and H2

03. H1
03 and H2

03 are two-tailed
since they investigate whether service patterns are related to higher or lower change and code
churn rates. All the tests are performed using the 5% significance level (i.e., p-value< 0.05).

Findings: Services involved in service patterns are less change-prone than the services not in-
volved in any service pattern, but not at statistically significant level. Figure 7.4 presents the
box-plots showing the median difference between pattern services and non-pattern services,
both for the total number of changes (top) and the total number of code churns (bottom). In
Figure 7.4, we observe the difference between the median values of the two groups. However,
this difference is not statistically significant as the Wilcoxon rank sum test yielded p-values
of 0.487 (>0.1) and 0.603 (>0.1), for respectively the total number of changes and the total
number of code churns (see Table 7.8). The Cliff’s δ effect size values presented in Table 7.9
also show a negligible difference.

Table 7.8: The Wilcoxon rank sum test between service patterns and other services.

Treatment Groups Treatment Types p-value
patterns ∼ non-patterns total number of changes 0.487
patterns ∼ non-patterns total number of code churns 0.603

Table 7.9: The non-parametric Cliff’s δ effect size measure between service patterns and
other services.

Treatment Groups Treatment Types Cliff’s δ
patterns ∼ other-services total number of changes -0.075 (negligible)
patterns ∼ other-services total number of code churns -0.075 (negligible)

7.6 Threats to Validity

For this study, the construct validity threats refer to the relation between theory and
observation, which is apparent by the measurement errors. The identification of changes and
code churns in this study is reliable because we rely on the FraSCAti mailing list archives.

108

Summary: Services involved in service patterns, in terms of their implemen-
tations, are less change-prone than the services that are not involved in any
service pattern. The total number of source code changes and code churns
performed during the maintenance and evolution of services involved in a ser-
vice pattern is lower than the total number of source code changes and code
churns performed on other services. However, the difference is not statistically
significant.

In this study, we only look for the number of changes and code churns for a service artefact.
We plan to investigate and quantify the types of changes in the future. SODOP [Demange
et al. (2013)] and SODA [Palma et al. (2013)] reflect their authors’ subjective understanding
of the service patterns and antipatterns, but they have good detection accuracy. Moreover,
the service patterns and antipatterns instances used in this study were manually validated
by the developers of FraSCAti, which minimises the threats to construct validity. Another
threat to this validity that might affect us, in RQ2.1, for some service patterns we had very
few data points. We did not investigate the reason of the introduction of service patterns or
antipatterns analysed in SODOP [Demange et al. (2013)] and SODA [Palma et al. (2013)].
External validity threats concern the possibility to generalise our findings. Further validation
should be done on other service-based systems (SBSs) to better analyse the impact of service
patterns and antipatterns on the change-proneness. One major challenge to minimise the
threat to the external validity is the very limited availability of open-source SBSs. The
FraSCAti project that we have studied is the largest open-source SBS available presently. It
contains 130 services and 91 SCA components. Also, we have used a representative set of
service patterns and antipatterns in our study. Finally, the conclusion validity threats refer
to the relation between the treatment and the outcome. We paid full attention not to violate
the assumptions of the performed statistical tests. We mainly used non-parametric tests that
do not require making any presumption about the data distribution.

7.7 Discussion

This chapter reports on the results of an empirical study aimed at quantifying the impact
of service patterns and antipatterns on the change-proneness of service-based systems (SBSs).
We performed the detection of five service patterns and 13 service antipatterns using SODOP
[Demange et al. (2013)] and SODA [Palma et al. (2013)], respectively, and answered three
research questions RQ2.1 to RQ2.3. Results show that the services involved in antipatterns,
in terms of their implementations, are more change-prone than the services that are not

109

involved in any antipattern (RQ2.1). The services involved in God Component, Multi service,
and Service Chain antipatterns, in terms of their implementations, are more change-prone
than services involved in other kinds of service antipatterns (RQ2.2). Results also show that
the services involved in patterns, in terms of their implementations, are less change-prone
than other services; however, this difference is not statistically significant (RQ2.3).

However, for this study on the impact of service antipatterns on the change-proneness
of services, we did not investigate the types of changes underwent for the services. Investi-
gating the types of changes, e.g., if they are related to new external requirements or to the
improvement of existing code quality, will reveal more interesting facts on the correlation
between service antipatterns and services’ change-proneness.

In summary, we found that the services that involve antipatterns are more subject to
change during maintenance and evolution, supporting the claim that the presence of antipat-
terns is an indicator of software quality. However, this observation might not be the only
causal effect. Although, in a more general sense, this observation can be true because more
skilled programmers make greater use of patterns and lesser use of antipatterns. Therefore,
the developers’ skills also impact the quality of design and implementation. Moreover, code
reviews might tend to remove antipatterns and introduce patterns to improve the code qual-
ity. As a result, the more code reviews a service implementation will go through, the less
maintenance effort it is likely to face in the future.

110

CHAPTER 8 CONCLUSION AND RESEARCH PERSPECTIVES

8.1 Conclusion

Service-based Systems (SBSs), relying on services as first-class entities, are developed on
top of diverse SBSs technologies and architectural styles. SOAP Web services, SCA (Service
Component Architecture), and REST are widely used by companies to design and develop
SBSs [Fielding (2000); Chappell (2007); Alonso et al. (2003)].

SBSs are subject to functional and non-functional changes, which may degrade their
design and implementation and introduce service antipatterns. Antipatterns in SBSs (1) may
hinder their further maintenance and evolution and (2) may degrade their design quality and
quality of service (QoS). Such antipatterns must be detected to improve their design and
QoS, and ease their maintenance and evolution. Detecting antipatterns in SBSs developed
using various technologies requires the analysis of their design and QoS. However, diverse
SBSs technologies vary in their (1) building blocks, (2) composition styles, (3) development
methodology, and (4) communication or client interaction styles. These differences pose
challenges to develop a unified framework for the specification and detection of service an-
tipatterns in SBSs. Moreover, the current literature did not consider service antipatterns
with great importance and there exist some potential problems highlighted as follows:

– Problem 1. No unified abstraction of various SBSs technologies.
– Problem 2. No specification of service antipatterns.
– Problem 3. No dedicated unified approach and framework for the detection of service
antipatterns.

– Problem 4. No empirical evidence on the impact of service antipatterns on service-
based systems.

On solving the above problems, we formulated our thesis statement as below:

“A unified approach to assessing the design and quality of service (QoS)
of SBSs, supported by a framework for specifying and detecting service
antipatterns, can facilitate the maintenance and evolution of SBSs, with
the conjecture that service antipatterns may degrade the design and QoS,
and hinder the future maintenance and evolution of SBSs.”

111

Our Solution: To support the above thesis statement and solve the problems identified
from the literature, we presented a unified abstraction and a meta-abstraction to support the
comprehension and specification of service antipatterns in different SBSs technologies. Then,
we proposed a unified approach, SODA (Service Oriented Detection for Antipatterns) that
uses the unified abstraction and meta-abstraction, to assess the design and QoS of SBSs by
means of the specification and detection of service antipatterns in SBSs. SODA is supported
by an underlying framework, SOFA (Service Oriented Framework for Antipatterns), which
provides a common platform to (1) specify service antipatterns at higher-level of abstraction
or define detection heuristics, (2) automatically generate detection algorithms for service
antipatterns, and (3) apply generated algorithms on diverse SBSs and report suspicious
services involved in service antipatterns. Our SOFA framework is also capable of performing
the syntactic and semantic analyses of services interfaces based on WordNet [Miller (1995)]
and Stanford CoreNLP [Manning et al. (2014)].

In this dissertation, we investigated the two following research questions:

– RQ1: Can we efficiently specify and detect service antipatterns in dif-
ferent development technologies and architectural styles of service-based
systems in terms of detection accuracy and performance?
We positively supported four assumptions:
(1) Using our proposed domain specification language and the proposed unified ab-
straction, we specified 31 service antipatterns from different SBSs technologies;
(2) The overall accuracy of our detection algorithms is high, i.e., the average preci-
sion is 88% and the average recall is 95.5%;
(3) Our detection framework and the proposed domain specification language are
extensible for adding new service antipatterns and new SBSs technologies; and,
(4) The average detection time for all 31 service antipatterns is 27.086s.

– RQ2: What are the impact of service antipatterns and patterns on the
maintenance and evolution of service-based systems?
We found a negative impact of service antipatterns on the change-proneness of SBSs:
(1) The total number of source code changes and code churns performed during the
maintenance and evolution of services involved in antipatterns is higher than the
total number of source code changes and code churns performed on other services—
the difference is statistically significant;
(2) Services found to be involved in God Component, Multi service, and Service Chain
antipatterns are more change-prone than services involved in other antipatterns—the

112

difference is statistically significant; and,
(3) The total number of source code changes and code churns performed during
the maintenance and evolution of services involved in patterns is less than the total
number of source code changes and code churns performed in other services—the
difference is not statistically significant.

In summary, this dissertation made a contribution to the field of SOA by presenting a
first unified approach, SODA, for specifying and detecting bad design practices, i.e., service
antipatterns, in SBSs regardless of their underlying implementation technologies.

Therefore, the main contributions of this dissertation included:

1. A unified abstraction combining different SBSs technologies and architectural styles
showing the differences and commonalities among them;

2. On top of the unified abstraction, a service DSL to specify service antipatterns regard-
less of SBSs technologies with higher-level of abstractions;

3. Using the unified abstraction and the DSL, a unified SODA approach for the specifi-
cation and detection of service antipatterns in SBSs technologies;

4. An extensive validation of SODA using precision, recall, and F1-measure on the
largest SCA system, FraSCAti, more than 120 SOAP Web services, and 15 well-known
RESTful APIs.

5. An empirical evidence on the impact of service antipatterns and patterns on the
maintenance and evolution of service-based systems, in particular on SCA systems.

113

8.2 Research Perspectives

Service-Oriented Architecture (SOA) and Service-based Systems (SBSs) are widely
adopted in practice as an architecture and as an emerged software development style, respec-
tively. Accordingly, to get the best out of SOA and SBSs, software engineers and developers
must deliver the final software product of good design quality, easy to maintain and extend.
To assist SBSs developers and engineers, this dissertation proposed an approach capable of
rigorous analysis of SBSs by assessing their design and quality of service. Beside this disser-
tation, which provides a first unified approach for assessing the design and quality of service
of SBSs, we have several short and long-term research plans (in addition to the detection of
service antipatterns).

8.2.1 Short-term Perspectives

We plan to perform the following research activities, which will compliment this disser-
tation:

1. In this dissertation, we performed the detection of linguistic antipatterns related to the
lexical design of resources URIs used to make HTTP requests. We plan to apply SODA
on other RESTful APIs and consider linguistic antipatterns related to responses, i.e.,
how well the REST responses are designed from lexical aspects, which may affect their
comprehension and reusability. We plan also to include domain-specific ontologies in
the semantic analyses to overcome the limitations of English dictionaries;

2. For the extensive validation of REST antipatterns, we want to replicate SODA on
other RESTful APIs with other REST patterns and antipatterns. Moreover, we intend
to enrich the catalog of REST antipatterns by thoroughly investigating a large set of
RESTful APIs;

3. We plan to convert all our REST heuristics into rule cards. This conversion will extend
our DSL and make it more generic—applicable to all SBSs implementation technolo-
gies. Thus, we will be able to analyse all the three SBSs technologies using the same
mechanism: specifying rule cards to automatically generate detection algorithms, and,
later on, automatically apply those detection algorithms on REST resources and URIs;

4. The detection of REST antipatterns is now semi-automatic, i.e., the detection requires
significant manual involvement from wrapping RESTful APIs with SCA components
to implementing detection algorithms from predefined heuristics. We plan to automate
more these wrapping and implementation steps to lessen manual efforts;

114

5. To analyse the impact of service antipatterns, we plan to replicate the study presented
in Chapter 7 on other SBSs, e.g., Web services and RESTful APIs, with different service
antipatterns. However, one major challenge is the availability of open-source SBSs and
the evolution history of Web services. In connection to this plan, we are also interested
in investigating the types of changes made and their impact on service antipatterns.
Furthermore, using bug reports we want to explore the possible relation between service
antipatterns and fault-proneness;

6. For the process antipatterns, as discussed in the Introduction chapter, we analysed the
business processes statically. We plan to perform dynamic analyses of business processes
by executing them to collect their runtime properties. An automatic correction of
process antipatterns is also in our future plan; and, finally,

7. We want to study the evolution of service antipatterns in SBSs, i.e., the study on how,
when, and why service antipatterns are introduced and their lifespan;

8.2.2 Long-term Perspectives

In addition to the above short-term research activities, we also plan to perform the
following long-term research activities:

1. We plan to conduct more experiments and analyse results in an industrial setup using
real systems. To conduct such experiments, we need to perform some preparatory steps
including:
– Instrumenting the target service-based system;
– Deploy our SOFA framework within their (i.e., industrial partners’) platform; and,
– Finally, perform the three steps in our proposed SODA approach to detect service
antipatterns, and report suspicious services.
Summary: The experiments with industrial setup will help us to fine-tune our
approach and the framework more, and facilitate the approach and the framework
to be more matured.

2. We also plan to propose a corrective approach, which follows the detection of service
antipatterns as a long-term research activity. To perform the correction of detected
service antipatterns, finding an alternative design is a crucial and mandatory step.
Thus, for the refactoring, we intend to follow steps in the below:
– To perform a thorough literature review on the treatments of service antipatterns;
– To propose an independent refactoring approach, possibly supported by an underly-
ing framework; finally,

115

– To perform the correction and validation of the refactored service antipatterns by
using the proposed refactoring approach in the previous step by the actual services
developers;
Summary: Through this research activity we will be able to rectify the detected
service antipatterns in SBSs.

3. We plan to perform a study showing how refactored service antipatterns can improve the
maintainability of an SBS in terms of cost and efforts where the cost can be measured
as the maintenance expenses and the efforts can be measured with time spent on the
program comprehension, design analysis, and required modifications.

116

REFERENCES

Marwen Abbes and Foutse Khomh and Yann-Gaël Guéhéneuc and Giuliano Antoniol (2011).
An Empirical Study of the Impact of Two Antipatterns, Blob and Spaghetti Code, on Pro-
gram Comprehension. 15th European Conference on Software Maintenance and Reengineer-
ing. 181–190.

Wided Ben Abid and Mohamed Graiet and Mourad Kmimech and Mohamed Tahar Bhiri
and Walid Gaaloul and Eric Cariou (2011). Profile UML2.0 for Specification of the SCA
Architectures. Semantics, Knowledge and Grid, International Conference on, 0, 191–194.

Gustavo Alonso and Fabio Casati and Harumi Kuno and Vijay Machiraju (2003). Web
Services: Concepts, Architectures and Applications. Springer, Data-Centric Systems and
Applications.

Alexandre Alves and et al. (2007). Web Services Business Process Execution Language
Version 2.0. Rapport technique.

Anchuri, Pranay and Sumbaly, Roshan and Shah, Sam (2014). Hotspot Detection in a
Service-Oriented Architecture. Proceedings of the 23rd ACM International Conference on
Conference on Information and Knowledge Management. ACM, New York, NY, USA, CIKM
’14, 1749–1758.

Keith H. Bennett and Václav T. Rajlich (2000). Software Maintenance and Evolution: A
Roadmap. Proceedings of the Conference on The Future of Software Engineering. ACM,
New York, NY, USA, ICSE ’00, 73–87.

Berners-Lee, Tim and Fielding, Roy Thomas and Masinter, L. (2005). Uniform Resource
Identifier (URI): Generic Syntax.

Boehm, B. W. and Brown, J. R. and Lipow, M. (1976). Quantitative Evaluation of Software
Quality. Proceedings of the 2Nd International Conference on Software Engineering. IEEE
Computer Society Press, Los Alamitos, CA, USA, ICSE ’76, 592–605.

William J. Brown and Raphael C. Malveau and Hays W. “Skip" McCormick and Thomas
J. Mowbray (1998). Anti Patterns: Refactoring Software, Architectures, and Projects in
Crisis. John Wiley and Sons.

John M. Chambers and William S. Cleveland and Paul A. Tukey and Beat Kleiner (1983).
Graphical Methods for Data Analysis. Wadsworth International.

Dennis De Champeaux and Douglas Lea and Penelope Faure (1993). Object-oriented System
Development. Lectures in Mathematics Eth Zurich. Addison-Wesley.

117

David Chappell (2007). Introducing SCA. Chappell & Associates, USA.

Luba Cherbakov and Mamdouh Ibrahim and Jenny Ang (2006). SOA Antipatterns: The
Obstacles to the Adoption and Successful Realization of Service-Oriented Architecture.

Erik Christensen and Francisco Curbera and Greg Meredith and Sanjiva Weerawarana
(2011). Web Services Description Language (WSDL) 1.1. Rapport technique, W3C.

Cliff, Norman (1993). Dominance Statistics: Ordinal Analyses To Answer Ordinal Ques-
tions. Psychological Bulletin, 114 (3), 494–509.

Jacob Cohen (1988). Statistical Power Analysis For The Behavioral Sciences. Lawrence
Erlbaum, seconde édition.

Cohen, Jacob (1992). A Power Pprimer. Psychological Bulletin, 112 (1), 155–159.

Coleman, Don and Ash, Dan and Lowther, Bruce and Oman, Paul (1994). Using Metrics
to Evaluate Software System Maintainability. Computer, 27 (8), 44–49.

Cortellessa, Vittorio and Di Marco, Antinisca and Trubiani, Catia (2012). Software Perfor-
mance Antipatterns: Modeling and Analysis. M. Bernardo, V. Cortellessa et A. Pierantonio,
éditeurs, Formal Methods for Model-Driven Engineering, Springer Berlin Heidelberg, vol.
7320 de Lecture Notes in Computer Science. 290–335.

Cortellessa, Vittorio and Di Marco, Antinisca and Trubiani, Catia (2014). An Approach for
Modeling and Detecting Software Performance Antipatterns based on First-order Logics.
Software & Systems Modeling, 13 (1), 391–432.

Cortellessa, Vittorio and Martens, Anne and Reussner, Ralf and Trubiani, Catia (2010). A
Process to Effectively Identify “guilty” Performance Antipatterns. Fundamental Approaches
to Software Engineering, Springer. 368–382.

Jose Luis Ordiales Coscia and Marco Crasso and Cristian Mateos and Alejandro Zunino
(2013). Estimating Web Service Interface Quality Through Conventional Object-oriented
Metrics. CLEI Electronic Journal, 16.

Curbera, Francisco and Khalaf, Rania and Nagy, William A. and Weerawarana, Sanjiva
(2006). Implementing bpel4ws: the architecture of a bpel4ws implementation. Concurrency
and Computation: Practice and Experience, 18 (10), 1219–1228.

Robert Daigneau (2011). Service Design Patterns: Fundamental Design Solutions for
SOAP/WSDL and RESTful Web Services. Addison-Wesley.

Anthony Demange and Naouel Moha and Guy Tremblay (2013). Detection of SOA Patterns.
S. Basu, C. Pautasso, L. Zhang et X. Fu, éditeurs, Service-Oriented Computing. Springer
Berlin Heidelberg, vol. 8274 de Lecture Notes in Computer Science, 114–130.

118

Dromey, R. Geoff (1995). A model for software product quality. IEEE Trans. Softw. Eng.,
21 (2), 146–162.
Bill Dudney and Stephen Asbury and Joseph K. Krozak and Kevin Wittkopf (2003). J2EE
AntiPatterns. John Wiley and Sons.
Edstrom, J. and Tilevich, E. (2012). Reusable and Extensible Fault Tolerance for RESTful
Applications. Trust, Security and Privacy in Computing and Communications (TrustCom),
2012 IEEE 11th International Conference on. 737–744.
Mike Edwards (2011). Service Component Architecture (SCA). OASIS, USA.
EMF-Eclipse (2010). Eclipse Modeling Framework (EMF) - http://www.eclipse.org/emf.
EMFText (2007). http://www.emftext.org/. Rapport technique, www.eclipse.org/acceleo.
Erl, Thomas (2004). Service-Oriented Architecture: A Field Guide to Integrating XML and
Web Services. Prentice Hall PTR, Upper Saddle River, NJ, USA.
Thomas Erl (2005). Service-Oriented Architecture: Concepts, Technology, and Design. Pren-
tice Hall PTR.
Erl, Thomas (2007). SOA Principles of Service Design. Prentice Hall PTR, Upper Saddle
River, NJ, USA.
Thomas Erl (2009). SOA Design Patterns. Prentice Hall PTR.
Thomas Erl and Benjamin Carlyle and Cesare Pautasso and Raj Balasubramanian (2012).
SOA with REST: Principles, Patterns & Constraints for Building Enterprise Solutions with
REST. The Prentice Hall Service Technology Series from Thomas Erl. Prentice Hall.
John Evdemon (2005). Principles of Service Design: Service Patterns and Anti-Patterns.
Roy Thomas Fielding (2000). Architectural Styles and the Design of Network-based Software
Architectures. Thèse de doctorat.
Martin J. Fowler and Kent Beck and John Brant and William Opdyke and Don Roberts
(1999). Refactoring: Improving the Design of Existing Code. Addison-Wesley.
FraSCAti (June 2013). Home-Automation: websvn.ow2.org/listing.php?repname=
frascati&path=/trunk/demo/home-automation/.
Todd Fredrich (2012). RESTful Service Best Practices: Recommendations for Creating Web
Services.
Erich Gamma and Richard Helm and Ralph Johnson and John Vlissides (1994). Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley Professional.
Garcia, J. and Popescu, D. and Edwards, G. and Medvidovic, N. (2009). Identifying Archi-
tectural Bad Smells. 13th European Conference on Software Maintenance and Reengineering
(CSMR). 255–258.

119

Randy Heffner and Carey Schwaber and Jonathan Browne and Tim Sheedy and Jacqueline
Stone and Gene Leganza (2007). Planned SOA Usage Grows Faster Than Actual SOA
Usage. Business Data Services North America, Europe, And Asia Pacific. Forrester.

Andreas Hess and Eddie Johnston and Nicholas Kushmerick (2004). ASSAM: A Tool for
Semi-Automatically Annotating Semantic Web Services. In Proceedings of International
Semantic Web Conference.

K.K Holgeid and J Krogstie and Dag I.K Sjøberg (2000). A Study of Development and
Maintenance in Norway: Assessing the Efficiency of Information Systems Support using
Functional Maintenance. Information and Software Technology, 42 (10), 687–700.

ISBSG (2005). Application Software Maintenance and Support: An Initial Analysis of New
Data. Rapport technique.

ISO/IEC (2011). Systems and software engineering – Systems and software Quality Re-
quirements and Evaluation (SQuaRE) – System and software quality models. Reference
Number: ISO/IEC 25010:2011.

ISO/IEC/IEEE (2010). Systems and Software Engineering – Vocabulary. ISO/IEC/IEEE
24765:2010(E), 1–418.

Steve Jones (2006). SOA Anti-patterns, Available Online: www.infoq.com/articles/SOA-
anti-patterns.

Khomh, F. and Di Penta, M. and Guéhéneuc, Y.G. (2009). An Exploratory Study of the
Impact of Code Smells on Software Change-proneness. Reverse Engineering, 2009. WCRE
’09. 16th Working Conference on. 75–84.

Foutse Khomh and Massimiliano Di Penta and Yann-Gaël Guéhéneuc and Giuliano Antoniol
(2012a). An Exploratory Study of the Impact of Antipatterns on Class Change- and Fault-
proneness. Empirical Software Engineering, 17 (3), 243–275.

Khomh, Foutse and Penta, Massimiliano Di and Guéhéneuc, Yann-Gaël and Antoniol, Giu-
liano (2012b). An exploratory study of the impact of antipatterns on class change- and
fault-proneness. Kluwer Academic Publishers, Hingham, MA, USA, vol. 17, 243–275.

Foutse Khomh and Stephane Vaucher and Yann-Gaël Guéhéneuc and Houari Sahraoui
(2011). BDTEX: A GQM-based Bayesian Approach for the Detection of Antipatterns.
Journal of Systems and Software, 84 (4), 559–572.

Khurana, R. (2007). Software Engineering: Principles and Practices. Vikas Publication.

Kitchenham, Barbara (1987). Towards a Constructive Quality Model: Part 1: Software
Quality Modelling, Measurement and Prediction. Software Engineering Journal, 2 (4), 105–
113.

120

Barbara Kitchenham (2004). Procedures for performing systematic reviews.

Christopher Koch (2005). A New Blueprint For The Enterprise. CIO Magazine.

Jana Koehler and Jussi Vanhatalo (2007). Process Anti-Patterns: How to Avoid the Com-
mon Traps of Business Process Modeling. IBM WebSphere Developer Technical Journal.

John R. Koza (1992). Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge.

Jaroslav Král and Michal Žemlička (2007). The Most Important Service-Oriented Antipat-
terns. International Conference on Software Engineering Advances. 29–29.

Jaroslav Král and Michal Žemlička (2008). Crucial Service-Oriented Antipatterns. In Pro-
ceedings of the International Conference on Software Engineering Advances. International
Academy, Research and Industry Association (IARIA), vol. 2, 160–171.

Jaroslav Král and Michal Žemlička (2009). Popular SOA Antipatterns. Proceedings of
the 2009 Computation World: Future Computing, Service Computation, Cognitive, Adap-
tive, Content, Patterns. IEEE Computer Society, Washington, DC, USA, COMPUTATION-
WORLD ’09, 271–276.

B. V. Kumar (2004). Web Services. McGraw-Hill Education (India) Pvt Limited.

Laitinen, Kari (1996). Estimating Understandability of Software Documents. SIGSOFT
Softw. Eng. Notes, 21 (4), 81–92.

Lientz, B.P. and Swanson, E.B. (1980). Software maintenance management: a study of
the maintenance of computer application software in 487 data processing organizations.
Addison-Wesley.

Maiga, Abdou and Ali, Nasir and Bhattacharya, Neelesh and Sabane, Aminata, and
Yann-Gaël Guéhéneuc and Aimeur, Esma (2012). SMURF: A SVM-based Incremental
Anti-pattern Detection Approach. 2012 19th Working Conference on Reverse Engineering
(WCRE). IEEE, 466–475.

Manning, Christopher D. and Surdeanu, Mihai and Bauer, John and Finkel, Jenny and
Bethard, Steven J. and McClosky, David (2014). The Stanford CoreNLP Natural Language
Processing Toolkit. Proceedings of 52nd Annual Meeting of the Association for Compu-
tational Linguistics: System Demonstrations. Association for Computational Linguistics,
Baltimore, Maryland, 55–60.

Mika V. Mäntylä and Casper Lassenius (2006). Subjective Evaluation of Software Evolv-
ability Using Code Smells: An Empirical Study. Empirical Software Engineering, 11 (3),
395–431.

121

Antinisca Di Marco and Catia Trubiani (2014). A model-driven approach to broaden the
detection of software performance antipatterns at runtime. Proceedings 11th International
Workshop on Formal Engineering approaches to Software Components and Architectures,
Grenoble, France. 77–92.

Massé, Mark (2012). REST API Design Rulebook. O’Reilly.

Mateos, Cristian and Crasso, Marco and Zunino, Alejandro and Coscia, José Luis Ordiales
(2011). Detecting WSDL Bad Practices in Code-first Web Services. International Journal
of Web and Grid Services, 7 (4), 357–387.

Mira Kajko Mattsson and Gerardo Canfora and Dan Chiorean and Tuomas Ihme and Meir
M Lehman and Rupert Reiger and Eads Deutschland Gmbh and Torsten Engel (2006). A
Model of Maintainability - Suggestion for Future Research. International Conference on
Software Engineering Research and Practice.

Microsoft:MSDN (1992). Capitalization Styles, Available On:
https://msdn.microsoft.com/en-us/library/x2dbyw72(v=vs.71).aspx.

Miller, George A. (1995). WordNet: A Lexical Database for English. Commun. ACM,
38 (11), 39–41.

Tarak Modi (2006). SOA Management: SOA Antipatterns.

Naouel Moha and Yann-Gaël Guéhéneuc and Laurence Duchien and Anne-Francoise Le
Meur (2010). DECOR: A Method for the Specification and Detection of Code and Design
Smells. IEEE Transaction on Software Engineering, 36 (1), 20–36.

Naouel Moha and Francis Palma and Mathieu Nayrolles and Benjamin Joyen Conseil and
Yann-Gaël Guéhéneuc and Benoit Baudry and Jean-Marc Jézéquel (2012). Specification and
Detection of SOA Antipatterns. C. Liu, H. Ludwig et F. Toumani, éditeurs, Proceedings
of the 10th International Conference on Service Oriented Computing (ICSOC). Springer.
Runner-up best paper. 15 pages.

Mathieu Nayrolles and Naouel Moha and Petko Valtchev (2013). Improving SOA An-
tipatterns Detection in Service Based Systems by Mining Execution Traces. 20th Working
Conference on Reverse Engineering. 321–330.

Newcomer, Eric and Lomow, Greg (2004). Understanding SOA with Web Services (Inde-
pendent Technology Guides). Addison-Wesley Professional.

Obeo (2005). Acceleo. Rapport technique, www.eclipse.org/acceleo.

Ouni, Ali and Kessentini, Marouane and Sahraoui, Houari and Boukadoum, Mounir (2013).
Maintainability Defects Detection and Correction: A Multi-objective Approach. Automated
Software Engineering, 20 (1), 47–79.

122

Ouni, Ali and Kula, Raula Gaikovina and Kessentini, Marouane and Inoue, Katsuro (2015).
Web Service Antipatterns Detection Using Genetic Programming.

Palma, Francis and Dubois, Johann and Moha, Naouel and Yann-Gaël Guéhéneuc (2014a).
Detection of REST Patterns and Antipatterns: A Heuristics-Based Approach. X. Franch,
A. Ghose, G. Lewis et S. Bhiri, éditeurs, Service-Oriented Computing. Springer Berlin Hei-
delberg, vol. 8831 de Lecture Notes in Computer Science, 230–244.

Palma, Francis and Moha, Naouel (2015). A Study on the Taxonomy of Service Antipatterns.
Patterns Promotion and Anti-patterns Prevention (PPAP), 2015 IEEE 2nd Workshop on.
IEEE, 5–8.

Francis Palma and Naouel Moha and Yann-Gaël Guéhéneuc (2015). Specification and De-
tection of Business Process Antipatterns. H. Mili, M. Benyoucef et M. Weiss, éditeurs,
Proceedings of the 6th International MCETECH Conference. Springer International Pub-
lishing, Lecture Notes in Business Information Processing.

Palma, Francis and Moha, Naouel and Tremblay, Guy and Yann-Gaël Guéhéneuc (2014b).
Specification and Detection of SOA Antipatterns in Web Services. P. Avgeriou et U. Zdun,
éditeurs, Software Architecture. Springer International Publishing, vol. 8627 de Lecture
Notes in Computer Science, 58–73.

Francis Palma and Mathieu Nayrolles and Naouel Moha and Yann-Gaël Guéhéneuc and
Benoit Baudry and Jean-Marc Jézéquel (2013). SOA Antipatterns: An Approach for their
Specification and Detection. International Journal of Cooperative Information Systems,
22 (04).

M. Papazoglou (2008). Web Services: Principles and Technology. Pearson Education.
Prentice Hall.

Michael P. Papazoglou and Paolo Traverso and Schahram Dustdar and Frank Leymann
(2003). Service-oriented Computing. Communications of the ACM, 46, 25–28.

Trevor Parsons and John Murphy (2008). Detecting Performance Antipatterns in Compo-
nent Based Enterprise Systems. Journal of Object Technology, 7 (3), 55–90.

Cesare Pautasso (2009). Some REST Design Patterns (and Anti-Patterns), Available Online:
http://www.jopera.org/node/442.

Peiris, Manjula and Hill, James H. (2014). Towards Detecting Software Performance Anti-
patterns Using Classification Techniques. SIGSOFT Software Engineering Notes, 39 (1),
1–4.

Massimiliano Di Penta and Antonella Santone and Maria Luisa Villani (2007). Discovery
of SOA Patterns via Model Checking. 2nd International Workshop on Service Oriented

123

Software Engineering: In Conjunction with the 6th ESEC/FSE Joint Meeting. ACM, New
York, USA, IW-SOSWE ’07, 8–14.
Perepletchikov, Mikhail and Ryan, Caspar and Frampton, Keith (2005). Comparing the
Impact of Service-Oriented and Object-Oriented Paradigms on the Structural Properties
of Software. R. Meersman, Z. Tari et P. Herrero, éditeurs, On the Move to Meaningful
Internet Systems 2005: OTM 2005 Workshops, Springer Berlin Heidelberg, vol. 3762 de
Lecture Notes in Computer Science. 431–441.
Pigoski, Thomas M. (1996). Practical Software Maintenance: Best Practices for Managing
Your Software Investment. John Wiley & Sons, Inc., New York, NY, USA.
Roger S. Pressman (2010). Software Engineering: A Practitioner’s Approach. McGraw-Hill
higher education. McGraw-Hill Education.
Prieto-Díaz, Rubén (1990). Domain Analysis: An Introduction. SIGSOFT Softw. Eng.
Notes, 15 (2), 47–54.
RFC2822 (2001). Internet Message Format by Internet Engineering Task Force. Rapport
technique.
Juan Manuel Rodriguez and Marco Crasso and Cristian Mateos and Alejandro Zunino
(2013). Best Practices for Describing, Consuming, and Discovering Web Services: A Com-
prehensive Toolset. Software: Practice and Experience, 43 (6), 613–639.
Juan Manuel Rodriguez and Marco Crasso and Alejandro Zunino and Marcelo Campo
(2010a). Automatically Detecting Opportunities for Web Service Descriptions Improvement.
Springer Berlin Heidelberg, vol. 341. 139–150.
Juan Manuel Rodriguez and Marco Crasso and Alejandro Zunino and Marcelo Campo
(2010b). Improving Web Service Descriptions for Effective Service Discovery. Science of
Computer Programming, 75 (11), 1001–1021.
Romano, Daniele and Raila, Paulius and Pinzger, Martin and Khomh, Foutse (2012).
Analyzing the impact of antipatterns on change-proneness using fine-grained source code
changes. Proceedings of the 2012 19th Working Conference on Reverse Engineering. IEEE
Computer Society, Washington, DC, USA, WCRE ’12, 437–446.
Jeanine Romano and Jeffrey D. Kromrey and Jesse Coraggio and Jeff Skowronek (2006).
Appropriate Statistics For Ordinal Level Data: Should We Really Be Using T-Test And
Cohen’s D For Evaluating Group Differences On The NSSE And Other Surveys? Annual
Meeting of the Florida Association of Institutional Research. 1–33.
H.Dieter Rombach and Bradford T. Ulery and Jon D. Valett (1992). Toward full life cycle
control: Adding maintenance measurement to the {SEL}. Journal of Systems and Software,
18 (2), 125 – 138.

124

Michael Rosen and Boris Lublinsky and Kevin T. Smith and Marc J. Balcer (2008). Applied
SOA: Service-Oriented Architecture and Design Strategies. Wiley.

Arnon Rotem-Gal-Oz and E. Bruno and U. Dahan (2012). SOA Patterns. Manning Publi-
cations Co.

Mazeiar Salehie and Shimin Li and Ladan Tahvildari (2006). A Metric-Based Heuristic
Framework to Detect Object-Oriented Design Flaws. Proceedings of the 14th IEEE Interna-
tional Conference on Program Comprehension. IEEE Computer Society, Washington, DC,
USA, ICPC, 159–168.

David Sciamma and Gilles Cannenterre and Jacques Lescot (2013). Ecore Tools. Rapport
technique, www.eclipse.org/modeling/emft/?project=ecoretools.

Lionel Seinturier and Philippe Merle and Romain Rouvoy and Daniel Romero and Valerio
Schiavoni and Jean-Bernard Stefani (2012). A Component-Based Middleware Platform for
Reconfigurable Service-Oriented Architectures. Software: Practice and Experience, 42 (5),
559–583.

Sheskin, David J. (2007). Handbook Of Parametric And Nonparametric Statistical Proce-
dures, Fourth Edition. Chapman & Hall/CRC.

Smith, Connie U. and Williams, Lloyd G. (2000). Software Performance Antipatterns.
Proceedings of the 2nd International Workshop on Software and Performance. ACM, New
York, NY, USA, WOSP ’00, 127–136.

Connie U. Smith and Lloyd G. Williams (2002). New Software Performance AntiPatterns:
More Ways to Shoot Yourself in the Foot. International Computer Measurement Group
Conference. 667–674.

George Spanoudakis and Khaled Mahbub (2004). Requirements Monitoring for Service-
based Systems: Towards a Framework based on Event Calculus. Automated Software Engi-
neering, 2004. Proceedings. 19th International Conference on. 379–384.

Alecsandar Stoianov and Ioana Sora (2010). Detecting Patterns and Antipatterns in Soft-
ware using Prolog Rules. International Joint Conference on Computational Cybernetics and
Technical Informatics (ICCC-CONTI). 253–258.

Stefan Tilkov (2008). REST Anti-Patterns, Available Online: www.infoq.com/articles/rest-
anti-patterns.

Mohammad Ali Torkamani and Hamid Bagheri (2014). A Systematic Method for Identifi-
cation of Antipatterns in Service Oriented System Development. International Journal of
Electrical and Computer Engineering (IJECE), 4 (1), 16–23.

125

Deepali Tripathi and Ugrasen Suman and Maya Ingle and S. K. Tanwani (2014). Towards
Introducing and Implementation of SOA Design Antipatterns. International Journal of
Computer Theory and Engineering, 6 (1), 20–25.

Trubiani, Catia and Di Marco, Antinisca and Cortellessa, Vittorio and Mani, Nariman and
Petriu, Dorina (2014). Exploring Synergies Between Bottleneck Analysis and Performance
Antipatterns. Proceedings of the 5th ACM/SPEC International Conference on Performance
Engineering. ACM, New York, NY, USA, ICPE ’14, 75–86.

Nikolaos Tsantalis and Alexander Chatzigeorgiou and George Stephanides and Spyros T.
Halkidis (2006). Design Pattern Detection Using Similarity Scoring. IEEE Transaction on
Software Engineering, 32 (11), 896–909.

Turner, M. and Budgen, D. and Brereton, P. (2003). Turning software into a service.
Computer, 36 (10), 38–44.

Valverde, Francisco and Pastor, Oscar (2009). Dealing with REST Services in Model-
driven Web Engineering Methods. V Jornadas Científico-Técnicas en Servicios Web y
SOA, JSWEB, 243–250.

Wan-Kadir, W. M. N. and Loucopoulos, Pericles (2004). Relating evolving business rules
to software design. J. Syst. Archit., 50 (7), 367–382.

Wang, Shaohua and Keivanloo, Iman and Zou, Ying (2014). How Do Developers React to
RESTful API Evolution? X. Franch, A. Ghose, G. Lewis et S. Bhiri, éditeurs, Service-
Oriented Computing, Springer Berlin Heidelberg, vol. 8831 de Lecture Notes in Computer
Science. 245–259.

Sanjiva Weerawarana and Francisco Curbera and Frank Leymann and Tony Storey and
Donald Ferguson (2005). Web Services Platform Architecture: SOAP, WSDL, WS-Policy,
WS-Addressing, WS-BPEL, WS-Reliable Messaging, and More. Prentice Hall PTR.

Wert, Alexander and Oehler, Marius and Heger, Christoph and Farahbod, Roozbeh (2014).
Automatic Detection of Performance Anti-patterns in Inter-component Communications.
Proceedings of the 10th International ACM Sigsoft Conference on Quality of Software Ar-
chitectures. ACM, New York, NY, USA, QoSA ’14, 3–12.

Woods, D. and Mattern, T. (2006). Enterprise SOA: Designing IT for Business Innovation.
O’Reilly Media.

WWW-Consortium (2006). WWW Consortium, Web Services Description Language
(WSDL) Version 2.0. Rapport technique.

Zhang, Lei and Sun, Yanchun and Song, Hui and Wang, Weihu and Huang, Gang (2012).
Detecting Anti-patterns in Java EE Runtime System Model. Proceedings of the Fourth

126

Asia-Pacific Symposium on Internetware. ACM, New York, NY, USA, Internetware ’12,
1–8.

Yongyan Zheng and Krause, P. (2006). Asynchronous Semantics and Anti-patterns for
Interacting Web Services. 6th International Conference on Quality Software (QSIC). 74–84.

Zuse, Horst (1997). A Framework of Software Measurement. Walter de Gruyter & Co.,
Hawthorne, NJ, USA.

127

Appendices

128

Appendix A

List of antipatterns in SBSs technologies :

Multi Service :

Multi Service also known as God Object corresponds to a service that implements a multitude
of operations related to different business and technical abstractions. This service aggregates
too many operations into a single service, such a service is not easily reusable because of the low
cohesion of its operations and is often unavailable to end-users because of it is overloaded,
which may also induce a high response time. However, the excessive load of this service
can be reduced by deploying multiple instances of the service, which is not an inexpensive
resolution [Dudney et al. (2003)].
1 RULE_CARD : MultiService {
2 RULE : MultiService {INTER MultiOperation HighResponse LowAvailability LowCohesion} ;
3 RULE : MultiOperation {NOD VERY_HIGH} ;
4 RULE : HighResponse {RT VERY_HIGH} ;
5 RULE : LowAvailability {A LOW} ;
6 RULE : LowCohesion {COH LOW} ;
7 } ;

Tiny Service :

Tiny Service is a small service with few methods, which only implements part of an abstrac-
tion. Such service often requires several coupled services to be used together, resulting in
higher development complexity and reduced usability. In the extreme case, a Tiny Service
will be limited to one method, resulting in many services that implement an overall set of
requirements [Dudney et al. (2003)].
1 RULE_CARD : TinyService {
2 RULE : TinyService {INTER FewOperation HighCouplingORLowCohesion} ;
3 RULE : FewOperation {NOD VERY_LOW} ;
4 RULE : HighCouplingORLowCohesion {UNION HighCoupling LowCohesion} ;
5 RULE : HighCoupling {CPL HIGH} ;
6 RULE : LowCohesion {COH LOW} ;
7 } ;

129

Sand Pile :

Sand Pile is also known as “Fine-Grained Services”. It appears when a service is composed by
multiple smaller services sharing common data. It thus has a high data cohesion. The com-
mon data shared may be located in a Data Service antipattern (see below) [Král et Žemlička
(2008)].
1 RULE_CARD : SandPile {
2 RULE : SandPile {COMPOS FROM ParentService ONE TO ChildService MANY} ;
3 RULE : ChildService {ASSOC FROM ContainedService MANY TO DataSource ONE} ;
4 RULE : ParentService {COH HIGH} ;
5 RULE : DataSource {RULE_CARD : DataService} ;
6 RULE : ContainedService {NRO > 1} ;
7 } ;

Chatty Service :

Chatty Service corresponds to a set of services that exchange a lot of small data of primitive
types, usually with a Data Service antipattern. The Chatty Service is also characterized by
a high number of method invocations. Chatty Services chat a lot with each other [Dudney
et al. (2003)].
1 RULE_CARD : ChattyService {
2 RULE : ChattyService { INTER TotalInvocation DSRuleCard} ;
3 RULE : DSRuleCard {RULE_CARD : DataService} ;
4 RULE : TotalInvocation {NMI VERY_HIGH} ;
5 } ;

The Knot :

The Knot is a set of very low cohesive services, which are tightly coupled. These services
are thus less reusable. Due to this complex architecture, the availability of these services may
be low, and their response time high [Rotem-Gal-Oz et al. (2012)].
1 RULE_CARD : TheKnot {
2 RULE : TheKnot {INTER HighCoupling LowCohesion LowAvailability HighResponse} ;
3 RULE : HighCoupling {CPL VERY_HIGH} ;
4 RULE : LowCohesion {COH VERY_LOW} ;
5 RULE : LowAvailability {A LOW} ;
6 RULE : HighResponse {RT HIGH} ;
7 } ;

130

Nobody Home :

Nobody Home corresponds to a service, defined but actually never used by clients. Thus, the
methods from this service are never invoked, even though it may be coupled to other services.
Yet, it still requires deployment and management, despite of its non-usage [Jones (2006)].
1 RULE_CARD : NobodyHome {
2 RULE : NobodyHome {INTER IncomingReference MethodInvocation} ;
3 RULE : IncomingReference {NIR GREATER 0} ;
4 RULE : MethodInvocation {NMI EQUAL 0} ;
5 } ;

Duplicated Service :

Duplicated Service, a.k.a., The Silo Approach, introduced by IBM, corresponds to a set of highly
similar services. Because services are implemented multiple times as a result of the silo ap-
proach, there may have common or identical methods with the same names and–or
parameters [Cherbakov et al. (2006)].
1 RULE_CARD : DuplicatedService {
2 RULE : DuplicatedService {ANIM HIGH} ;
3 } ;

Bottleneck Service :

Bottleneck Service is a service that is highly used by other services or clients. It has a high
incoming and outgoing coupling. Its response time can be high because it may be used
by too many external clients, for which clients may need to wait to get access to the service.
Moreover, its availability may also be low due to the traffic.
1 RULE_CARD : BottleneckService {
2 RULE : BottleneckService {INTER LowPerformance HighCoupling} ;
3 RULE : LowPerformance {INTER LowAvailability HighResponse} ;
4 RULE : HighResponse {RT HIGH} ;
5 RULE : LowAvailability {A LOW} ;
6 RULE : HighCoupling {CPL VERY_HIGH} ;
7 } ;

131

Service Chain :

Service Chain, a.k.a.,Message Chain [Fowler et al. (1999)] in OO systems corresponds to a chain
of services. The Service Chain appears when clients request consecutive service invocations
to fulfill their goals. This kind of dependency chain reflects the subsequent invocation of
services.
1 RULE_CARD : ServiceChain {
2 RULE : ServiceChain {INTER TransitiveInvocation LowAvailability} ;
3 RULE : TransitiveInvocation {NTMI VERY_HIGH} ;
4 RULE : LowAvailability {A LOW} ;
5 } ;

Data Service :

Data Service, a.k.a., Data Class [Fowler et al. (1999)] in OO systems, corresponds to a service
that contains mainly accessor methods, i.e., getters and setters. In the distributed applica-
tions, there can be some services that may only perform some simple information retrieval or
data access to such services. Data Services contain usually accessor methods with small
parameters of primitive types. Such service has a high data cohesion.
1 RULE_CARD : DataService {
2 RULE : DataService {INTER HighDataAccessor SmallParameter PrimitiveParameter HighCo-
hesion} ;
3 RULE : SmallParameter {ANP LOW} ;
4 RULE : PrimitiveParameter {ANPT HIGH} ;
5 RULE : HighDataAccessor {ANAM VERY_HIGH} ;
6 RULE : HighCohesion {COH HIGH} ;
7 } ;

132

God Component :

God Component in SCA technology corresponds to a component that encapsulates a multi-
tude of services. This component represents high responsibility enclosed by many methods
with many different types of parameters to exchange. It may have a high coupling with the
communicating services. Being at the component-level, God Component is at a higher level of
abstraction than the Multi Service, which is at the service-level, and usually aggregates a set
of services [Dudney et al. (2003)].
1 RULE_CARD : GodComponent {
2 RULE : GodComponent {INTER HighEncapsulatedService MultiMethod HighParameter} ;
3 RULE : HighEncapsulatedService {NOSE HIGH} ;
4 RULE : MultiMethod {NMD VERY_HIGH} ;
5 RULE : HighParameter {TNP VERY_HIGH} ;
6 } ;

Bloated Service :

Bloated Service is an antipattern related to service implementation where services in SOA be-
come ‘blobs’ with one large interface and lots of parameters. Bloated Service performs
heterogeneous operations with low cohesion among them. It results in a system with less
maintainability, testability, and reusability within other business processes. It requires the consu-
mers to be aware of many details (i.e., parameters) to invoke or customize them [Modi (2006)].
1 RULE_CARD : BloatedService {
2 RULE : BloatedService {INTER SingleInterface MultiMethod HighParameter LowCohesion} ;
3 RULE : SingleInterface {NOI EQUAL 1} ;
4 RULE : MultiMethod {NMD VERY_HIGH} ;
5 RULE : HighParameter {TNP VERY_HIGH} ;
6 RULE : LowCohesion {COH LOW} ;
7 } ;

133

Stovepipe Service :

Stovepipe Service is an antipattern with large number of private or protected methods that
primarily focus on performing infrastructure and utility functions (i.e., logging, data vali-
dation, notifications, etc.) and few business processes (i.e., data type conversion), rather than
focusing on main operational goals (i.e., very few public methods). This may result in services
with duplicated code, longer development time, inconsistent functioning, and poor extensibility
[Dudney et al. (2003)].
1 RULE_CARD : StovepipeService {
2 RULE : StovepipeService {INTER HighUtilMethod FewMethod DuplicatedCode} ;
3 RULE : HighUtilMethod {NUM VERY_HIGH} ;
4 RULE : FewMethod {NMD VERY_LOW} ;
5 RULE : DuplicatedCode {ANIM HIGH} ;
6 } ;

Ambiguous Name :

Ambiguous Name is an antipattern where the developers use the names of interface ele-
ments (e.g., port-types, operations, and messages) that are very short or long, include
too general terms, or even show the improper use of verbs, etc. Ambiguous names are not
semantically and syntactically sound and impact the discoverability and the reusability
of a Web service [Rodriguez et al. (2010a)].
1 RULE_CARD : AmbiguousName {
2 RULE : AmbiguousName {INTER GeneralTerm ShortORLongSignature VerbedMessage Multi-
VerbedOperation} ;
3 RULE : ShortORLongSignature {UNION ShortSignature LongSignature} ;
4 RULE : LongSignature {ALS VERY_HIGH} ;
5 RULE : ShortSignature {ALS VERY_LOW} ;
6 RULE : GeneralTerm {RGTS HIGH} ;
7 RULE : VerbedMessage {NVMS > 0} ;
8 RULE : MultiVerbedOperation {NVOS > 1} ;
9 } ;

134

CRUDy Interface :

CRUDy Interface is an antipattern where the design encourages services the RPC-like beha-
vior by creating CRUD-type operations, e.g., create_X(), read_Y(), etc. Interfaces de-
signed in that way might be chatty because multiple operations need to be invoked to achieve
one goal. In general, CRUD operations should not be exposed via interfaces [Evdemon
(2005)].
1 RULE_CARD : CRUDyInterface {
2 RULE : CRUDyInterface {INTER ChattyInterface HighCRUDOperation} ;
3 RULE : ChattyInterface {RULE_CARD : ChattyWebService} ;
4 RULE : HighCRUDOperation {NCO > 1} ;
5 } ;

Low Cohesive Operations in the Same PortType :

Low Cohesive Operations in the Same PortType is an antipattern where developers place low
cohesive operations in a single port-type. From the Web services perspective, if the opera-
tions belonging to the same prototype do not provide a set of semantically related operations,
the prototype becomes less cohesive [Rodriguez et al. (2010a)].
1 RULE_CARD : LowCohesiveOperations {
2 RULE : LowCohesiveOperations {INTER MultiOperation LowCohesivePortType} ;
4 RULE : MultiOperation {NOD HIGH} ;
5 RULE : LowCohesivePortType {ARIO LOW} ;
6 } ;

Maybe It’s Not RPC :

Maybe It’s Not RPC is an antipattern where the Web service mainly provides CRUD opera-
tions with a large number of parameters. This antipattern causes poor system perfor-
mance because the clients often wait for the synchronous responses [Dudney et al. (2003)].
1 RULE_CARD : MaybeItsNotRPC {
2 RULE : MaybeItsNotRPC {INTER HighResponseTime HighCRUDOperation HighParameter} ;
3 RULE : HighResponseTime {RT HIGH} ;
4 RULE : HighCRUDOperation {NCO VERY_HIGH} ;
5 RULE : HighParameter {ANP HIGH} ;
6 } ;

135

Redundant PortTypes :

Redundant PortTypes is an antipattern where multiple port-types are duplicated with the
similar set of operations. Very often, such port-types deal with the same messages. The
Redundant PortType antipattern may negatively impact the ranking of the Web Services
[Hess et al. (2004)].
1 RULE_CARD : RedundantPortType {
2 RULE : RedundantPortType {INTER MultiPortType MultiOperations HighCohesivePortType} ;
4 RULE : MultiPortType {NPT > 1} ;
5 RULE : MultiOperations {NOPT > 1} ;
6 RULE : HighCohesivePortType {ARIP VERY_HIGH} ;
7 } ;

Breaking Self-descriptiveness :

REST developers tend to ignore the standardised headers, formats, or protocols and use
their own customised ones. This practice shatters the self-descriptiveness or containment of a
message header. Breaking the self-descriptiveness also limits the reusability and adaptability
of REST resources [Tilkov (2008)].
1 Breaking-Self-descriptiveness(request-header, response-header)
2 std-request-headers[] ← {“Content-Type”, “Proxy-Authorization”, “Host”, ...}
3 std-response-headers[] ← {“Set-Cookie”, “Last-Modified”, “Location”, ...}
4 for each hreq ∈ request-header.getKeys() and hres ∈ response-header.getKeys()
5 if(hreq 6∈ std-request-headers[]) or (hres 6∈ std-response-headers[])
6 print “Breaking Self-descriptiveness detected”
7 end if
8 end for

136

Forgetting Hypermedia :

The lack of hypermedia, i.e., not linking resources, hinders the state transition for REST

applications. One possible indication of this antipattern is the absence of URL links in the
resource representation, which typically restricts clients to follow the links, i.e., limits the
dynamic communication between clients and servers [Tilkov (2008)].
1 Forget-Hyper-media(response-header, response-body, http-method)
2 body-links[] ← Extract-Entity-Links(response-body)
3 header-link ← response-header.getValue(“Link”)
4 if(http-method = GET and (length(body-links[]) = 0 or header-link = NIL)) or

(http-method = POST and (“Location :” 6∈ response-header.getKeys() and
length(body-links[]) = 0))) then

5 print “Forgetting Hypermedia detected”
6 end if

Ignoring Caching :

REST clients and server-side developers tend to avoid the caching capability due to its com-
plexity to implement. However, caching capability is one of the principle REST constraints.
The developers ignore caching by setting Cache-Control : no-cache or no-store and by not
providing an ETag in the response header [Tilkov (2008)].
1 Ignoring-Caching(request-header, response-header, http-method)
2 client-caching ← request-header.getValue(“Cache-Control”)
3 server-caching ← response-header.getValue(“Cache-Control”)
4 if((http-method = GET and ((client-caching = “no-cache” or “no-store”) or

(server-caching = “no-cache” or “no-store”)) and
“ETag” 6∈ response-header.getKeys()))

5 print “Ignoring Caching detected”
6 end if

137

Ignoring MIME Types :

The server should represent resources in various formats, e.g., xml, json, pdf, etc., which may
allow clients, developed in diverse languages, a more flexible service consumption. However, the
server side developers often intend to have a single representation of resources or rely on
their own formats, which limits the resource (or service) accessibility and reusability [Tilkov
(2008)].
1 Ignoring-MIME-Types(request-header, response-header)
2 std-types[] ← {“json”, “xml”, “yaml”, “pdf”, “jpeg”, ...}
3 client-format[] ← request-header.getValue(“Accept”)
4 server-format ← response-header.getValue(“Content-Type”)
5 if(server-format 6∈ client-format[] and server-format 6∈ std-types[])
6 print “Ignoring MIME Types detected”
7 end if

Ignoring Status Code :

Despite of a rich set of defined application-level status codes suitable for various contexts,
REST developers tend to avoid them, i.e., rely only on common ones, namely 200, 404, and
500, or even use the wrong or no status codes. The correct use of status codes from the classes
2xx, 3xx, 4xx, and 5xx helps clients and servers to communicate in a more semantic manner
[Tilkov (2008)].
1 Ignoring-Status-Code(response-body, response-header, http-method)
2 std-codes[] ← {‘GET-OK-200’, ‘POST-Created-201’, ‘DELETE-Unauthorized-401’}
3 status-description ← Extract-Status(response-body)
4 status-code ← Extract-Status-Code(response-header)
5 response-status ← Concat(http-method, status-description, status-code)
6 if(response-status 6∈ std-codes[] or status-code = NIL)
7 print “Ignoring Status Code detected”
8 end if

138

Misusing Cookies :

Statelessness is another REST principle to adhere—session state in the server side is disallo-
wed and any cookies violate RESTful-ness [Fielding (2000)]. Sending keys or tokens in the
Set-Cookie or Cookie header field to server-side session is an example of misusing cookies,
which concerns both security and privacy [Tilkov (2008)].
1 Misusing-Cookies(request-header, response-header)
2 client-cookie ← request-header.getValue(“Cookie”)
3 server-cookie ← response-header.getValue(“Set-Cookie”)
4 if((client-cookie 6= NIL and Check-Key(client-cookie) = TRUE) or

(server-cookie 6= NIL and Check-Key(server-cookie) = TRUE))
5 print “Misusing Cookies detected”
6 end if

Tunnelling Through GET :

Being the most fundamental HTTP method in REST, the GET method retrieves a resource
identified by a URI. However, very often the developers rely only on GET method to perform
any kind of actions or operations including creating, deleting, or even for updating a resource.
Nevertheless, HTTP GET is an inappropriate method for any actions other than accessing a
resource, and does not match its semantic purpose, if improperly used [Tilkov (2008)].
1 Tunnelling-Through-GET(request-uri, http-method)
2 keywords[] ← {“method”, “action”, “operation”, ...}
3 if(http-method = GET and

(keywords[] ∈ request-uri or Check-Verb(request-uri) = TRUE))
4 print “Tunnelling Through GET detected”
5 end if

139

Tunnelling Through POST :

This anti-pattern is very similar to the previous one, except that in addition to the URI the
body of the HTTP POST request may embody operations and parameters to apply on the
resource. The developers tend to depend only on HTTP POST method for sending any types
of requests to the server including accessing, updating, or deleting a resource. In general,
the proper use of HTTP POST is to create a server-side resource [Tilkov (2008)].
1 Tunnelling-Through-POST(request-uri, request-body, http-method)
2 keywords[] ← {“method”, “action”, “operation”, ...}
3 if(http-method = POST and

((keywords[] ∈ request-uri or Check-Verb(request-uri) = TRUE) or
(keywords[] ∈ request-body or Check-Verb(request-body) = TRUE)))

4 print “Tunnelling Through POST detected”
5 end if

Content Negotiation :

This pattern supports alternative resource representations, e.g., in json, xml, pdf, etc. so
that the service consuming becomes more flexible with high reusability. Servers can provide
resources in any standard format requested by the clients. This pattern is applied via standard
HTTP media types and adhere to service loose coupling principle. If not applied at all, this
turns into Ignoring MIME Types antipattern [Erl et al. (2012)].
1 Content-Negotiation(request-header)
2 std-types[] ← {“json”, “xml”, “yaml”, “pdf”, “jpeg”, ...}
3 client-format[] ← request-header.getValue(“Accept”)
4 server-format ← response-header.getValue(“Content-Type”)
5 if(server-format ∈ client-format[] and server-format ∈ std-types[])
6 print “Content Negotiation detected”
7 end if

140

End-point Redirection :

The redirection feature over the Web is supported by this pattern, which also plays a role as
the means of service composition. To redirect clients, servers send a new location to follow
with one of the status code among 301, 302, 307, or 308. The main benefit of this pattern
is—an alternative service remains active even if the requested service end-point is not sound
[Erl et al. (2012)].
1 End-point-Redirection(response-header)
2 new-location ← response-header.getValue(“Location”)
3 status-code ← Extract-Status-Code(response-header)
4 if(new-location 6= NIL and (status-code = 301 or 302 or 307 or 308))
5 print “End-point Redirection detected”
6 end if

Entity Linking :

This pattern enables runtime communication via links provided by the server in the res-
ponse body or via Location : in the response header. By using hyper-links, the servers and
clients can be loosely coupled, and the clients can automatically find the related entities at
runtime. If not properly applied, this pattern turns into Forgetting Hypermedia antipattern
[Erl et al. (2012)].
1 Entity-Linking(response-header, response-body, http-method)
2 body-links[] ← Extract-Entity-Links(response-body)
3 header-link ← response-header.getValue(“Link”)
4 if(http-method = GET and (length(body-links[]) ≥ 1 or header-link 6= NIL)) or

(http-method = POST and (“Location :” ∈ response-header.getKeys() or
length(body-links[]) ≥ 1))) then

5 print “Entity Linking detected”
6 end if

141

Entity Endpoint :

Services with single end-points are too coarse-grained. Usually, a client requires at least two
identifiers : (1) a global for the service itself and (2) a local for the resource or entity
managed by the service. By applying this pattern, i.e., using multiple end-points, each entity
(or resource) of the incorporating service can be uniquely identified and addressed globally
[Pautasso (2009)].
1 Entity-End-point(interface)
2 method-endpoints<http-method, end-points[]> ← Get-Unique-Endpoints(interface)
3 for each http-method ∈ method-endpoints
4 unique-end-point ← Count(Get-Unique-Paths(end-points[]))
5 if(unique-end-point = Count(Get-Paths(end-points[])))
6 print “Entity Endpoint detected”
7 end if
8 end for

Response Caching :

Response caching is a good practice to avoid sending duplicate requests and responses by
caching all response messages in the local client machine. In opposed to Ignoring Caching
antipattern, the Cache-Control : is set to any value other than no-cache and no-store, or
an ETag is used along with the status code 304 [Erl et al. (2012)].
1 Response-Caching(request-header, response-header, status-code)
2 client-caching ← request-header.getValue(“Cache-Control”)
3 server-caching ← response-header.getValue(“Cache-Control”)
4 if((client-caching or server-caching 6= “no-cache” and “no-store”) and

(“ETag” ∈ (request-header.getKeys() or response-header.getKeys())) and
status-code = 304)

5 print “Response Caching detected”
6 end if

142

Contextualised vs. Contextless Resource Names :

Description : URIs should be contextual, i.e., nodes in URIs should belong to semantically-
related context. Thus, the Contextless Resource Names antipattern appears when URIs are
composed of nodes that do not belong to the same semantic context.
Example : https://www.example.com/newspapers/players?id=123 is a Contextless Re-
source Names antipattern because ‘newspapers’ and ‘players’ do not belong to same semantic
context. https://www.example.com/soccer/team/players?id=123 is a Contextual Resource
Names pattern because ‘soccer’, ‘team’, and ‘players’ belong to same semantic context.
Consequences : Contextless Resource Names do not provide a clear context for a request,
which may mislead the APIs clients by decreasing the understandability of the APIs [Fredrich
(2012)].
1 Contextless-Resource-Names(Request-URI)
2 URINodes ← Extract-URI-Nodes(Request-URI)
3 for each index = 1 to Length(URINodes)
4 Set1 ← Capture-Context-by-Synsets(URINodesindex)
5 Set2 ← Capture-Context-by-Synsets(URINodesindex+1)
6 if Set1 ∩ Set2 = ∅
7 print “Contextless Resource Names detected”
8 break
9 end if
10 end for

143

Hierarchical vs. Non-hierarchical Nodes :

Description : Each node forming a URI should be hierarchically related to its neighbor nodes.
In contrast, Non-hierarchical Nodes is an antipattern that appears when at least one node in a
URI is not hierarchically related to its neighbor nodes.
Example : https://www.example.com/professors/faculty/university/ is a Non-
hierarchical Nodes antipattern since ‘professors’, ‘faculty’, and ‘university’ are not in a hierar-
chical relationship. https://www.example.com/university/faculty/professors/ is a Hie-
rarchical Nodes pattern since ‘university’, ‘faculty’, and ‘professors’ are in a hierarchical rela-
tionship.
Consequences : Using non-hierarchical names may confuse users on the real purpose of the
API and hinders their understandability and, therefore, the API’s usability [Fredrich (2012)].
1 Non-hierarchical-Nodes(Request-URI)
2 URINodes[] ← Extract-URI-Nodes(Request-URI)
3 for each index = 1 to Length(URINodes)
4 if((is-Hierarchical-Relation(URINodesi,URINodesi+1) = false) or
5 is-Specialisation-Relation(URINodesi,URINodesi+1))
6 print “Non-hierarchical Nodes detected”
7 end if

144

Tidy vs. Amorphous URIs :

Description : REST resource URIs should be tidy and easy to read. A Tidy URI is a URI
with appropriate lower-case resource naming, no extensions, underscores, or trailing slashes.
Amorphous URI antipatterns appear when URIs contain symbols or capital letters that make
them difficult to read and use. As opposed to good practices [Massé (2012)], a URI is amorphous
if it contains : (1) upper-case letter (except for Camel Cases [Microsoft :MSDN (1992)]), (2) file
extensions, (3) underscores, and, (4) a final trailing-slash.
Example : https://www.example.com/NEW_Customer/_photo01.jpg/ is a Amorphous URI
antipattern since it includes a file extension, upper-case resource names, and underscores.
https://www.example.com/customers/1234 is a Tidy URI pattern since it only contains lower-
case resource naming, without extensions, underscores, or trailing slashes.
Consequences : (1) Upper/lower-case names may refer to different resources, RFC 3986
[Berners-Lee et al. (2005)]. (2) File extensions in URIs violate RFC 3986 and affect service evo-
lution. (3) Underscores are hidden when highlighting URIs, decreasing readability. (4) Trailing-
slash mislead users to provide more resources.
1 Amorphous-URI(Request-URI)
2 URINodes[] ← Extract-URI-Nodes(Request-URI)
3 for each index = 1 to Length(URINodes)
4 if(URINodesi.contains(“_”) or URINodesi.contains(“/”) or
5 URINodesi.contains(Find-File-Extensions(Request-URI)) or
6 URINodesi.contains(Find-Uppercase-Resources(Request-URI)))
7 print “Amorphous URI detected”
8 end if

145

Verbless vs. CRUDy URIs :

Description : Appropriate HTTP methods, e.g., GET, POST, PUT, or DELETE, should be
used in Verbless URIs instead of using CRUDy terms (e.g., create, read, update, delete, or their
synonyms) [Fredrich (2012)]. The use of such terms as resource names or requested actions is
highly discouraged [Massé (2012)].
Example : POST https://www.example.com/update/players/age?id=123 is a CRUDy URIs
antipattern since it contains a CRUDy term ‘update’ while updating the user’s profile color
relying on an HTTP POST method. POST https://www.example.com/players/age?id=123 is
a Verbless URIs pattern since is an HTTP POST request without any verb.
Consequences : Using CRUDy terms in URIs can be confusing for API clients, i.e., in the best
cases they overload the HTTP methods and in the worst cases they go against HTTP methods.
CRUDy terms in a URI confuse and prohibit users to use proper HTTP methods in a certain
context and may introduce another REST antipattern, Tunnelling through GET/POST [Tilkov
(2008)].
1 CRUDy-URI(Request-URI)
2 CRUDyWords[] ← {“create”, “read”, “delete”, “destroy”, “update”, “copy”, “move”,...}
3 URINodes[] ← Extract-URI-Nodes(Request-URI)
4 for each i = 1 to Length(URINodes)
5 if((Synonyms(URINodesi) or Antonyms(URINodesi)) ∈ CRUDyWords)
6 print “CRUDy URI detected”
7 end if

146

Singularised vs. Pluralised Nodes :

Description : URIs should use singular/plural nouns consistently for resources naming across
the API. When clients send PUT/DELETE requests, the last node of the request URI should be
singular. In contrast, for POST requests, the last node should be plural. Therefore, the Pluralised
Nodes antipattern appears when plural names are used for PUT/DELETE requests or singular
names are used for POST requests. However, GET requests are not affected by this antipattern
[Fredrich (2012)].
Example : The first example URI is a POST method that does not use a pluralised resource,
thus leading to Pluralised Nodes antipattern (Example 1). On the other hand, for the Singularised
Nodes pattern, the DELETE request acts on a single resource for deleting it (Example 2).
(1) DELETE www.example.com/team/players or POST www.example.com/team/player

(2) DELETE www.example.com/team/player or POST www.example.com/team/players

Consequences : If a plural node for PUT (or DELETE) request is used at the end of a URI, the
API clients cannot create (or delete) a collection of resources, which may result in, for example,
a 403 Forbidden server response. In addition, even if the resources can be filtered through
query-like parameters, it confuse the user if one or multiple resources are being accessed/deleted
[Fredrich (2012)].
1 Pluralised-URI-Nodes(Request-URI, http-method)
2 lastNode ← Get-Last-Node(Request-URI)
3 secondLastNode ← Get-Second-Last-Node(Request-URI)
4 if(((http-method = PUT or DELETE) and is-Plural-Node(lastNode) = true) or

((http-method = POST) and (is-Plural-Node(secondLastNode) = false)))
5 print “Pluralised URI Nodes detected”
6 end if

147

Appendix B

Transformation of REST Heuristics to Rule Cards :

1 : Ignoring-Caching(request-header, response-header, http-method)
2 : client-caching ← request-header.getValue(“Cache-Control")
3 : server-caching ← response-header.getValue(“Cache-Control")
4 : if((http-method = GET and ((client-caching = “no-cache" or “no-store")
5 : or (server-caching = “no-cache" or “no-store")) and
6 : “ETag" 6∈ response-header.getKeys())) then
7 : print “Ignoring Caching detected"
8 : end if

1 RULE_CARD : IgnoringCaching {
2 RULE : IgnoringCaching { INTER HeaderCaching NoEntityTag } ;
3 RULE : HeaderCaching { INTER HttpMethodGet NoClientOrServerCaching } ;
7 RULE : HttpMethodGet { HM = ’GET’ } ;
8 RULE : NoClientOrServerCaching { UNION NoClientCaching NoSeverCaching } ;
9 RULE : NoClientCaching { CCV = ‘no-cache’ | ‘no-store’ } ;
9 RULE : NoServerCaching { SCV = ‘no-cache’ | ‘no-store’ } ;
11 RULE : NoEntityTag { ‘ETag’ 6∈ ResponseHeader } ;
12 } ;

Figure .1: Heuristic of Ignoring Caching antipattern (top) and the Corresponding Rule Card (bot-
tom).

148

1 : Ignoring-MIME-Types(request-header, response-header)
2 : std-types[] ← {“json", “xml", “yaml", “pdf", “jpeg", ...}
3 : client-format[] ← request-header.getValue(“Accept")
4 : server-format ← response-header.getValue(“Content-Type")
5 : if(server-format 6∈ client-format[] and server-format 6∈ std-types[]) then
6 : print “Ignoring MIME Types detected"
7 : end if

1 RULE_CARD : IgnoringMIMETypes {
2 RULE : IgnoringMIMETypes { INTER UnavailableClientFormat NonStandardServerFormat } ;
3 RULE : UnavailableClientFormat { ServerFormat 6∈ ClientFormat } ;
4 RULE : NonStandardServerFormat { ServerFormat 6∈ StandardTypes } ;
5 RULE : ServerFormat { ResponseHeader$Content-Type } ;
6 RULE : ClientFormat { RequestHeader$Accept } ;
7 RULE : StandardTypes { RRF = ‘json’ | ‘xml’ | ‘yaml’ | ‘pdf’ | ‘jpeg’ | ...} ;
8 } ;

Figure .2: Heuristic of Ignoring MIME Types antipattern (top) and the Corresponding Rule Card
(bottom).

1 : Misusing-Cookies(request-header, response-header)
2 : client-cookie ← request-header.getValue(“Cookie")
3 : server-cookie ← response-header.getValue(“Set-Cookie")
4 : if((client-cookie 6= NIL and Check-Key(client-cookie) = TRUE) or
5 : (server-cookie 6= NIL and Check-Key(server-cookie) = TRUE)) then
6 : print “Misusing Cookies detected"
7 : end if

1 RULE_CARD : MisusingCookies {
2 RULE : MisusingCookies { UNION ClientCookie ServerCookie } ;
3 RULE : ClientCookie { INTER ClientCookieValue AuthenticationCookie } ;
4 RULE : ServerCookie { INTER ServerCookieValue AuthenticationCookie } ;
5 RULE : ClientCookieValue { CC 6= NULL } ;
6 RULE : ServerCookieValue { SC 6= NULL } ;
7 RULE : AuthenticationCookie { AC = TRUE } ;
8 } ;

Figure .3: Heuristic of Misusing Cookies antipattern (top) and the Corresponding Rule Card
(bottom).

149

1 : Tunnelling-Through-GET(request-uri, http-method)
2 : keywords[] ← {“method", “action", “operation", ...}
3 : if(http-method = GET and
4 : (keywords[] ∈ request-uri or Check-Verb(request-uri) = TRUE)) then
5 : print“Tunnelling Everything Through GET detected"
6 : end if

1 RULE_CARD : TunnellingThroughGET {
2 RULE : TunnellingThroughGET { INTER HttpMethodGet VerbedRequestURI } ;
3 RULE : HttpMethodGet { HM = ‘GET’ } ;
4 RULE : VerbedRequestURI { UNION KeywordBasedURI URIwithVerbs } ;
5 RULE : KeywordBasedURI { Keywords ∈ request-uri } ;
6 RULE : URIwithVerbs { VRU = TRUE } ;
7 RULE : Keywords { AK = ‘method’ | ‘action’ | ‘operation’ | ...} ;
8 } ;

Figure .4: Heuristic of Tunnelling Everything Through GET antipattern (top) and the Correspon-
ding Rule Card (bottom).

1 : Tunnelling-Through-POST(request-uri, request-body, http-method)
2 : keywords[] ← {“method", “action", “operation", ...}
3 : if(http-method = POST and
4 : ((keywords[] ∈ request-uri or Check-Verb(request-uri) = TRUE) or
5 : (keywords[] ∈ request-body or Check-Verb(request-body) = TRUE))) then
6 : print “Tunnelling Everything Through POST detected"
7 : end if

1 RULE_CARD : TunnellingThroughPOST {
2 RULE : TunnellingThroughPOST { INTER HttpMethodPost VerbedRequestURI } ;
3 RULE : HttpMethodPost { HM = ‘POST’ } ;
4 RULE : VerbedRequestURI { UNION URIWithVerbs BodyWithVerbs } ;
4 RULE : URIWithVerbs { UNION KeywordBasedURI URIwithVerbs } ;
5 RULE : KeywordBasedURI { Keywords ∈ request-uri } ;
6 RULE : URIwithVerbs { VRU = TRUE } ;
4 RULE : BodyWithVerbs { UNION KeywordBasedBody VerbsInBody } ;
5 RULE : KeywordBasedBody { Keywords ∈ request-body } ;
6 RULE : VerbsInBody { VRB = TRUE } ;
7 RULE : Keywords { AK = ‘method’ | ‘action’ | ‘operation’ | ...} ;
8 } ;

Figure .5: Heuristic of Tunnelling Everything Through POST antipattern (top) and the Corres-
ponding Rule Card (bottom).

150

Appendix C

The class template for generating the detection algorithms of service antipatterns.

[comment encoding = UTF-8 /]
[module generateJava('http://rulecards/1.0')]

[template public generateJava(ruleCard : RuleCard)]
[comment @main/]
[file (ruleCard.name.concat('.java'), false, 'UTF-8')]

package com.sodop.patterns;

import com.sofa.metric.Metric;
import com.sofa.motifs.AMotif;
import com.sofa.rulecard.comparators.Comparator;
import com.sofa.rulecard.numoperators.NumOperator;
import com.sofa.rulecard.setoperators.SetOperator;
import com.sofa.rulecard.values.OrdinalValue;
import com.sofa.rulecard.smells.*;

public class [ruleCard.name/] extends AMotif {

 public [ruleCard.name/]() {

 [for (smell : Smell | ruleCard.children)]
 [if (smell.oclIsTypeOf(SmellComposite))]
 [generateSmell(smell, i)/]
 [/if]
 [/for]
 }
}

[/file]
[/template]

[template public generateSmell(smell : SmellComposite, index : Integer)]
[for (child : Smell | smell.children)]
 // SMELL [i/]
 [generateSmell(child, i)/]

[/for]
 // ROOT SMELL
 this.rootSmell = new SmellComposite(SetOperator.[smell.setOperator/]);
[for (i : Integer | Sequence{1..smell.children->size()})]
 this.rootSmell.addChildSmell(smell[i/]);
[/for]
[/template]

[template public generateSmell(smell : SmellOrdinalValue, index : Integer)]
MetricValue metricValueSmell[index/] = [generateMetricValue(smell.leftMetricValue)/];
Smell smell[index/] = new SmellOrdinalValue(metricValueSmell[index/], Comparator.[smell.comparator/],
OrdinalValue.[smell.ordinalValue/]);
[/template]

[template public generateSmell(smell : SmellNumericValue, index : Integer)]
MetricValue metricValueSmell[index/] = [generateMetricValue(smell.leftMetricValue)/];
Smell smell[index/] = new SmellNumericValue(metricValueSmell[index/], Comparator.[smell.comparator/],
new Double([smell.numValue/]));
[/template]

[template public generateSmell(smell : SmellMetricValue, index : Integer)]
MetricValue metricValue1Smell[index/] = [generateMetricValue(smell.leftMetricValue)/];
MetricValue metricValue2Smell[index/] = [generateMetricValue(smell.rightMetricValue)/];
Smell smell[index/] = new SmellMetricValue(metricValue1Smell[index/], Comparator.[smell.comparator/],
metricValue2Smell[index/]);
[/template]

[template public generateMetricValue(metricComposite : MetricComposite)]
new MetricComposite([generateMetricValue(metricComposite.leftChild)/],
NumOperator.[metricComposite.numOperator/], [generateMetricValue(metricComposite.rightChild)/])
[/template]

[template public generateMetricValue(metricLeaf : MetricLeaf)]
new MetricLeaf(Metric.[metricLeaf.metric/])
[/template]

[template public generateMetricValue(metricValue : MetricValue)]
[/template]

[template public generateSmell(smell : Smell, index : Integer)]
[/template]

[template public generateSmell(smell : SmellLeaf, index : Integer)]
[/template]

151

The concrete syntax for the rule cards of service antipatterns.

SYNTAXDEF rc
FOR <http://rulecards/1.0>
START RuleCard

OPTIONS
{
 generateCodeFromGeneratorModel = "true";
}

TOKENS {
 DEFINE COMMENT $'//'(~('\n'|'\r'|'\uffff'))*$;
 DEFINE FLOAT $('-')?(('1'..'9') ('0'..'9')* | '0') '.' ('0'..'9')+ $;
 DEFINE ORDINAL_VALUE $('VERY_HIGH')|('HIGH')|('MEDIUM')|('LOW')|('VERY_LOW')$;
 DEFINE SET_OPERATOR $ ('INTER') | ('UNION') | ('DIFF') | ('INCL') | ('NEG')$;
}

TOKENSTYLES {
 "TEXT" COLOR #000000;
 "COMMENT" COLOR #00bb00, ITALIC;
 "ORDINAL_VALUE" COLOR #FF6600, BOLD;
 "FLOAT" COLOR #B20000, BOLD;
 "SET_OPERATOR" COLOR #CC0099, BOLD;
}

RULES {

 RuleCard ::= "RULE_CARD:" name[] "{"
 children+
 "};";

 SmellComposite ::= "RULE:" name[] "{"
 setOperator[SET_OPERATOR] children[]+
 "};";

 SmellNumericValue ::= "RULE:" name[] "{"
 leftMetricValue comparator[LOWER:"<",LOWER_EQUAL:"<=",EQUAL:"=",GREATER_EQUAL:">=",GREATER:">"]
 numValue[FLOAT]
 "};";

 SmellOrdinalValue ::= "RULE:" name[] "{"
 leftMetricValue comparator[LOWER:"<",LOWER_EQUAL:"<=",EQUAL:"=",GREATER_EQUAL:">=",GREATER:">"]
 ordinalValue[ORDINAL_VALUE]
 "};";

 SmellMetricValue ::= "RULE:" name[] "{"
 leftMetricValue comparator[LOWER:"<",LOWER_EQUAL:"<=",EQUAL:"=",GREATER_EQUAL:">=",GREATER:">"]
 rightMetricValue
 "};";

 MetricLeaf ::= metric[];

 MetricComposite ::= leftChild:MetricLeaf numOperator[ADDITION:"+",SUBSTRACTION:"-",MULTIPLICATION:"*",DIVISION:"/"]
 rightChild:MetricLeaf;
}

152

The architectural design of the Home-Automation system with 13 components.

HomeAutomationDemo

Mediator

knx

calendar

map

tts

weather

communication

rfid

gui

patient
DAO

accesscode

sunspot

staff

Mediator

GUI
TTS

RFID
Staff

PatientDAO
Weather

Map

AccessCode

Communication

KNX

Sunspot

Calender

HomeAutomationDemo

153

The architectural design of the FraSCAti system with 91 components taken from FraSCAti
Web site http://frascati.ow2.org/doc/1.4/ch12s04.html. Each component represents an inde-
pendent SCA composite.

frascati

fscript

explorer

assembly-
factory

sca-parser
remote

Jmx

component-
factory

binding-factory

services

explorer

fscript

FraSCAti

http://frascati.ow2.org/doc/1.4/ch12s04.html

154

Appendix D

The list of 13 weather-related Web services :

1. http://soap.webservice-energy.org/empclimat_ws/service?wsdl

2. http://toolbox.webservice-energy.org/TOOLBOX/WSDL/AIP3_PV_Impact/AIP3_PV_Impact.wsdl

3. http://soap.webservice-energy.org/hydro1k_ws/service?wsdl

4. http://websky.kma.go.kr/services/SurfaceService?wsdl

5. http://climhy.lternet.edu/wambam/soap_server.pl?wsdl

6. http://graphical.weather.gov/xml/DWMLgen/wsdl/ndfdXML.wsdl

7. http://soap.webservice-energy.org/ncepforecast_ws/service?wsdl

8. http://www.weather.gov/forecasts/xml/DWMLgen/wsdl/ndfdXML.wsdl

9. http://www.restfulwebservices.net/wcf/WeatherForecastService.svc?wsdl

10. http://developer.ebay.com/webservices/finding/latest/FindingService.wsdl

11. http://soap.webservice-energy.org/shadow_ws/service?wsdl

12. http://soap.webservice-energy.org/solemi_ws/service?wsdl

13. http://soap.webservice-energy.org/srtm_ws/service?wsdl

The list of 110 weather-related Web services :

1. http://abn-markets.customers.solvians.com/services/finance-broker/?wsdl

2. http://www.banguat.gob.gt/variables/ws/TipoCambio.asmx?wsdl

3. http://webservices.lb.lt/BLiquidity/BLiquidity.asmx?wsdl

4. http://www.cbr.ru/DailyInfoWebServ/DailyInfo.asmx?wsdl

5. http://www.mosaicsoftware.co.uk/services/bankcheck/bankcheck.asmx?wsdl

6. http://indicadoreseconomicos.bccr.fi.cr/indicadoreseconomicos/WebServices/wsIndicadoresEconomicos.
asmx?wsdl

7. http://www.bgcantorondemand.com/BGCantorUSTreasuries.asmx?wsdl

8. http://ws.cdyne.com/delayedstockquote/delayedstockquote.asmx?wsdl

9. http://api.cba.am/exchangerates.asmx?wsdl

10. http://fx.cloanto.com/webservices/CloantoCurrencyServer.asmx?wsdl

11. http://www.spk.gov.tr/webservices/MutualFundsPortfolioValues/MFundsService.asmx?wsdl

12. http://www.spk.gov.tr/webservices/ProhibitedInvestors/ProhibitedInvestorsService.asmx?wsdl

13. http://ws.strikeiron.com/CorteraCreditPulse?wsdl

14. http://www.programi.net/fiskalizacija/FiskalizacijaService.wsdl

http://soap.webservice-energy.org/empclimat_ws/service?wsdl
http://toolbox.webservice-energy.org/TOOLBOX/WSDL/AIP3_PV_Impact/AIP3_PV_Impact.wsdl
http://soap.webservice-energy.org/hydro1k_ws/service?wsdl
http://websky.kma.go.kr/services/SurfaceService?wsdl
http://climhy.lternet.edu/wambam/soap_server.pl?wsdl
http://graphical.weather.gov/xml/DWMLgen/wsdl/ndfdXML.wsdl
http://soap.webservice-energy.org/ncepforecast_ws/service?wsdl
http://www.weather.gov/forecasts/xml/DWMLgen/wsdl/ndfdXML.wsdl
http://www.restfulwebservices.net/wcf/WeatherForecastService.svc?wsdl
http://developer.ebay.com/webservices/finding/latest/FindingService.wsdl
http://soap.webservice-energy.org/shadow_ws/service?wsdl
http://soap.webservice-energy.org/solemi_ws/service?wsdl
http://soap.webservice-energy.org/srtm_ws/service?wsdl
http://abn-markets.customers.solvians.com/services/finance-broker/?wsdl
http://www.banguat.gob.gt/variables/ws/TipoCambio.asmx?wsdl
http://webservices.lb.lt/BLiquidity/BLiquidity.asmx?wsdl
http://www.cbr.ru/DailyInfoWebServ/DailyInfo.asmx?wsdl
http://www.mosaicsoftware.co.uk/services/bankcheck/bankcheck.asmx?wsdl
http://indicadoreseconomicos.bccr.fi.cr/indicadoreseconomicos/WebServices/wsIndicadoresEconomicos.asmx?wsdl
http://indicadoreseconomicos.bccr.fi.cr/indicadoreseconomicos/WebServices/wsIndicadoresEconomicos.asmx?wsdl
http://www.bgcantorondemand.com/BGCantorUSTreasuries.asmx?wsdl
http://ws.cdyne.com/delayedstockquote/delayedstockquote.asmx?wsdl
http://api.cba.am/exchangerates.asmx?wsdl
http://fx.cloanto.com/webservices/CloantoCurrencyServer.asmx?wsdl
http://www.spk.gov.tr/webservices/MutualFundsPortfolioValues/MFundsService.asmx?wsdl
http://www.spk.gov.tr/webservices/ProhibitedInvestors/ProhibitedInvestorsService.asmx?wsdl
http://ws.strikeiron.com/CorteraCreditPulse?wsdl
http://www.programi.net/fiskalizacija/FiskalizacijaService.wsdl

155

15. http://www.currencyserver.de/webservice/currencyserverwebservice.asmx?wsdl

16. http://www.dfm.ae/ws/MSData.asmx?WSDL

17. http://www2.dfm.ae/ws/TickerData.asmx?WSDL

18. http://ws.strikeiron.com/DnBQuickCheck?WSDL

19. http://ebswebtest.iab.gov.tr/EBS/VYKWS?wsdl

20. http://ws.eoddata.com/data.asmx?wsdl

21. http://mifiddatabase.cesr.eu/ws/MifId.asmx?WSDL

22. http://www.findata.co.nz/Populate.asmx?WSDL

23. http://api.efxnow.com/DEMOWebServices2.8/Service.asmx?WSDL

24. http://www.gama-system.com/webservices/exchangerates.asmx?WSDL

25. http://www.gama-system.com/webservices/stockquotes.asmx?wsdl

26. http://www.thomas-bayer.com/axis2/services/BLZService?wsdl

27. http://devweb.grants.gov/techlib/ApplicantIntegrationServices-V1.0.wsdl

28. http://www.ibanbic.be/IBANBIC.asmx?WSDL

29. http://fr.iban-bic.com/soap_noarrays/index.php?wsdl

30. http://inflationinrussia.com/DesktopModules/WebServices.asmx?WSDL

31. http://www.infovalutar.ro/curs.asmx?wsdl

32. http://invoiceclarity.com/Api/invoiceclarity.asmx?WSDL

33. http://www.iaa.gov.il/Rashat/PublicWS/IAAUtilities.asmx?WSDL

34. http://62.219.95.10/TaarifWebService/TaarifCustoms.asmx?WSDL

35. http://www.mnb.hu/arfolyamok.asmx?WSDL

36. http://www.mondor.org/ces/rates.asmx?WSDL

37. http://www.msm.gov.om/ws/MarketSummaryData.asmx?WSDL

38. http://services.nexus6studio.com/StockQuoteService.asmx?WSDL

39. http://ws.homewarranty.nsw.gov.au/HWPremiumCalcService.asmx?WSDL

40. http://www.progetica.it/GetImmagesWS.asmx?WSDL

41. http://rateticker.progressive.com/SuperCREWS.asmx?WSDL

42. http://services.prosper.com/ProsperAPI/ProsperAPI.asmx?WSDL

43. http://www.quentinsagerconsulting.com/wsdl/aba.wsdl

44. http://www.quentinsagerconsulting.com/wsdl/iban.wsdl

45. http://www.restfulwebservices.net/wcf/StockQuoteService.svc?wsdl

46. http://ws2.serviceobjects.net/sq/FastQuote.asmx?WSDL

47. http://ws.strikeiron.com/ForeignExchangeRate2?WSDL

48. http://www.superfundlookup.gov.au/xmlsearch/SflXmlSearch.asmx?WSDL

49. http://www.takasbank.com.tr/tr/Documents/fplWS.wsdl

http://www.currencyserver.de/webservice/currencyserverwebservice.asmx?wsdl
http://www.dfm.ae/ws/MSData.asmx?WSDL
http://www2.dfm.ae/ws/TickerData.asmx?WSDL
http://ws.strikeiron.com/DnBQuickCheck?WSDL
http://ebswebtest.iab.gov.tr/EBS/VYKWS?wsdl
http://ws.eoddata.com/data.asmx?wsdl
http://mifiddatabase.cesr.eu/ws/MifId.asmx?WSDL
http://www.findata.co.nz/Populate.asmx?WSDL
http://api.efxnow.com/DEMOWebServices2.8/Service.asmx?WSDL
http://www.gama-system.com/webservices/exchangerates.asmx?WSDL
http://www.gama-system.com/webservices/stockquotes.asmx?wsdl
http://www.thomas-bayer.com/axis2/services/BLZService?wsdl
http://devweb.grants.gov/techlib/ApplicantIntegrationServices-V1.0.wsdl
http://www.ibanbic.be/IBANBIC.asmx?WSDL
http://fr.iban-bic.com/soap_noarrays/index.php?wsdl
http://inflationinrussia.com/DesktopModules/WebServices.asmx?WSDL
http://www.infovalutar.ro/curs.asmx?wsdl
http://invoiceclarity.com/Api/invoiceclarity.asmx?WSDL
http://www.iaa.gov.il/Rashat/PublicWS/IAAUtilities.asmx?WSDL
http://62.219.95.10/TaarifWebService/TaarifCustoms.asmx?WSDL
http://www.mnb.hu/arfolyamok.asmx?WSDL
http://www.mondor.org/ces/rates.asmx?WSDL
http://www.msm.gov.om/ws/MarketSummaryData.asmx?WSDL
http://services.nexus6studio.com/StockQuoteService.asmx?WSDL
http://ws.homewarranty.nsw.gov.au/HWPremiumCalcService.asmx?WSDL
http://www.progetica.it/GetImmagesWS.asmx?WSDL
http://rateticker.progressive.com/SuperCREWS.asmx?WSDL
http://services.prosper.com/ProsperAPI/ProsperAPI.asmx?WSDL
http://www.quentinsagerconsulting.com/wsdl/aba.wsdl
http://www.quentinsagerconsulting.com/wsdl/iban.wsdl
http://www.restfulwebservices.net/wcf/StockQuoteService.svc?wsdl
http://ws2.serviceobjects.net/sq/FastQuote.asmx?WSDL
http://ws.strikeiron.com/ForeignExchangeRate2?WSDL
http://www.superfundlookup.gov.au/xmlsearch/SflXmlSearch.asmx?WSDL
http://www.takasbank.com.tr/tr/Documents/fplWS.wsdl

156

50. http://services.taxdataservice.com/TaxEconomyService.svc?WSDL

51. http://service.taxdatasystems.net/TdsBasic.svc?WSDL

52. http://www.verifilter.com/API/VerifilterSOAP.asmx?wsdl

53. http://ec.europa.eu/taxation_customs/vies/checkVatService.wsdl

54. http://api.virwox.com/api/basic.wsdl

55. http://www.xignite.com/xBATSLastSale.asmx?WSDL

56. http://www.xignite.com/xcalendar.asmx?WSDL

57. http://www.xignite.com/xglobalhistorical.asmx?WSDL

58. http://www.xignite.com/xIndexComponents.asmx?WSDL

59. http://www.xignite.com/xRealTime.asmx?WSDL

60. http://www.xignite.com/xanalysts.asmx?WSDL

61. http://bonds.xignite.com/xBonds.asmx?WSDL

62. http://bondsrealtime.xignite.com/xBondsRealTime.asmx?WSDL

63. http://www.xignite.com/xChart.asmx?WSDL

64. http://www.xignite.com/xCompensation.asmx?WSDL

65. http://xignite.com/xCorporateActions.asmx?WSDL

66. http://www.xignite.com/xCurrencies.asmx?WSDL

67. http://xignite.com/xEarningsCalendar.asmx?WSDL

68. http://www.xignite.com/xEdgar.asmx?WSDL

69. http://www.xignite.com/xEmerging.asmx?WSDL

70. http://www.xignite.com/xEnergy.asmx?WSDL

71. http://www.xignite.com/xestimates.asmx?WSDL

72. http://www.xignite.com/xExchanges.asmx?WSDL

73. http://www.xignite.com/xfinancials.asmx?WSDL

74. http://www.xignite.com/xfundamentals.asmx?WSDL

75. http://www.xignite.com/xfunddata.asmx?WSDL

76. http://www.xignite.com/xFundHoldings.asmx?WSDL

77. http://www.xignite.com/xFunds.asmx?WSDL

78. http://www.xignite.com/xFutures.asmx?WSDL

79. http://globalbondmaster.xignite.com/xGlobalBondMaster.asmx?WSDL

80. http://xignite.com/xGlobalFundamentals.asmx?WSDL

81. http://xignite.com/xGlobalRealTime.asmx?WSDL

82. http://www.xignite.com/xHistorical.asmx?WSDL

83. http://www.xignite.com/xHoldings.asmx?WSDL

84. http://www.xignite.com/xHousing.asmx?WSDL

http://services.taxdataservice.com/TaxEconomyService.svc?WSDL
http://service.taxdatasystems.net/TdsBasic.svc?WSDL
http://www.verifilter.com/API/VerifilterSOAP.asmx?wsdl
http://ec.europa.eu/taxation_customs/vies/checkVatService.wsdl
http://api.virwox.com/api/basic.wsdl
http://www.xignite.com/xBATSLastSale.asmx?WSDL
http://www.xignite.com/xcalendar.asmx?WSDL
http://www.xignite.com/xglobalhistorical.asmx?WSDL
http://www.xignite.com/xIndexComponents.asmx?WSDL
http://www.xignite.com/xRealTime.asmx?WSDL
http://www.xignite.com/xanalysts.asmx?WSDL
http://bonds.xignite.com/xBonds.asmx?WSDL
http://bondsrealtime.xignite.com/xBondsRealTime.asmx?WSDL
http://www.xignite.com/xChart.asmx?WSDL
http://www.xignite.com/xCompensation.asmx?WSDL
http://xignite.com/xCorporateActions.asmx?WSDL
http://www.xignite.com/xCurrencies.asmx?WSDL
http://xignite.com/xEarningsCalendar.asmx?WSDL
http://www.xignite.com/xEdgar.asmx?WSDL
http://www.xignite.com/xEmerging.asmx?WSDL
http://www.xignite.com/xEnergy.asmx?WSDL
http://www.xignite.com/xestimates.asmx?WSDL
http://www.xignite.com/xExchanges.asmx?WSDL
http://www.xignite.com/xfinancials.asmx?WSDL
http://www.xignite.com/xfundamentals.asmx?WSDL
http://www.xignite.com/xfunddata.asmx?WSDL
http://www.xignite.com/xFundHoldings.asmx?WSDL
http://www.xignite.com/xFunds.asmx?WSDL
http://www.xignite.com/xFutures.asmx?WSDL
http://globalbondmaster.xignite.com/xGlobalBondMaster.asmx?WSDL
http://xignite.com/xGlobalFundamentals.asmx?WSDL
http://xignite.com/xGlobalRealTime.asmx?WSDL
http://www.xignite.com/xHistorical.asmx?WSDL
http://www.xignite.com/xHoldings.asmx?WSDL
http://www.xignite.com/xHousing.asmx?WSDL

157

85. http://www.xignite.com/xIndices.asmx?WSDL

86. http://www.xignite.com/xInsider.asmx?WSDL

87. http://www.xignite.com/xinterbanks.asmx?WSDL

88. http://www.xignite.com/xLogos.asmx?WSDL

89. http://www.xignite.com/xMaster.asmx?WSDL

90. http://www.xignite.com/xmetals.asmx?WSDL

91. http://www.xignite.com/xmoneymarkets.asmx?WSDL

92. http://www.xignite.com/xNASDAQLastSale.asmx?WSDL

93. http://www.xignite.com/xNews.asmx?WSDL

94. http://www.xignite.com/xOFAC.asmx?WSDL

95. http://www.xignite.com/xoptions.asmx?WSDL

96. http://www.xignite.com/xOutlook.asmx?WSDL

97. http://www.xignite.com/xQuotes.asmx?WSDL

98. http://www.xignite.com/xRates.asmx?WSDL

99. http://xignite.com/xRealTimeOptions.asmx?WSDL

100. http://www.xignite.com/xReleases.asmx?WSDL

101. http://xignite.com/xScreener.asmx?WSDL

102. http://www.xignite.com/xSecurity.asmx?WSDL

103. http://www.xignite.com/xStatistics.asmx?WSDL

104. http://xignite.com/xTranscripts.asmx?WSDL

105. http://www.xignite.com/xVWAP.asmx?WSDL

106. http://xignite.com/xWatchLists.asmx?WSDL

107. http://xurrency.com/api.wsdl

108. http://ws.xwebservices.com/XWebACHDirectory/V1/XWebACHDirectory.wsdl

109. http://budgetassistant.axionweb.be/service.asmx?WSDL

110. http://developer.ebay.com/webservices/finding/latest/FindingService.wsdl

http://www.xignite.com/xIndices.asmx?WSDL
http://www.xignite.com/xInsider.asmx?WSDL
http://www.xignite.com/xinterbanks.asmx?WSDL
http://www.xignite.com/xLogos.asmx?WSDL
http://www.xignite.com/xMaster.asmx?WSDL
http://www.xignite.com/xmetals.asmx?WSDL
http://www.xignite.com/xmoneymarkets.asmx?WSDL
http://www.xignite.com/xNASDAQLastSale.asmx?WSDL
http://www.xignite.com/xNews.asmx?WSDL
http://www.xignite.com/xOFAC.asmx?WSDL
http://www.xignite.com/xoptions.asmx?WSDL
http://www.xignite.com/xOutlook.asmx?WSDL
http://www.xignite.com/xQuotes.asmx?WSDL
http://www.xignite.com/xRates.asmx?WSDL
http://xignite.com/xRealTimeOptions.asmx?WSDL
http://www.xignite.com/xReleases.asmx?WSDL
http://xignite.com/xScreener.asmx?WSDL
http://www.xignite.com/xSecurity.asmx?WSDL
http://www.xignite.com/xStatistics.asmx?WSDL
http://xignite.com/xTranscripts.asmx?WSDL
http://www.xignite.com/xVWAP.asmx?WSDL
http://xignite.com/xWatchLists.asmx?WSDL
http://xurrency.com/api.wsdl
http://ws.xwebservices.com/XWebACHDirectory/V1/XWebACHDirectory.wsdl
http://budgetassistant.axionweb.be/service.asmx?WSDL
http://developer.ebay.com/webservices/finding/latest/FindingService.wsdl

	DEDICATION
	ACKNOWLEDGEMENTS
	PUBLICATIONS
	RÉSUMÉ
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ACRONYMS AND ABBREVIATIONS
	1 INTRODUCTION
	2 BACKGROUND
	3 LITERATURE REVIEW
	4 ABSTRACTION OF SBSs TECHNOLOGIES
	5 SPECIFICATION AND DETECTION OF SERVICE ANTIPATTERNS
	6 VALIDATION
	7 AN IMPACT STUDY OF SERVICE ANTIPATTERNS
	8 CONCLUSION AND RESEARCH PERSPECTIVES
	REFERENCES
	Appendices
	Appendix A
	Appendix B
	Appendix C
	Appendix D

