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Introduction

Maintenance costs during the past 
decade have reached more than 70% of 
the overall costs of object-oriented 
systems
– Changing software environments 
– Changing users’ requirements 
– Overall quality of systems 
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Introduction

Many quality models exist [Briand and 
Wust 2002]

– Boehm [1976]
– McCall et al. [1977]
– ISO 9126 [1991]
– Dromey [1995]
– Bansiya and Davis [2002]
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Introduction

Yet, the design of a system is the first 
thing that maintainers see and must 
master

Model
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Introduction

Change-proneness: changing 
classes requires effort, no 
matter the reasons of the 
changes

it’s important to identify 
them early

Fault-proneness: 
removing faults from 
systems is hard and 
costly:

it’s important to identify 
them early
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Introduction

Quality in terms of speed?
– Their designs Affect their 

aerodynamics Affect their speed
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Introduction

Quality in terms of changes/faults?
– Their designs Affect their clarity 

Affect their changeability and fault-
proneness
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Introduction

Thesis
“By considering system design; in particular 

the presence of design patterns and 
antipatterns, it is possible to build better 
quality models than simply by considering 
the internal attributes of classes”
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Introduction

To take the design into account in 
quality models, we should quantitatively 
assess their impact on quality attributes

We propose:
– A method DEQUALITE to build quality 

models systematically
– We perform three empirical studies on the 

impact of design patterns and antipatterns 
on change- and fault-proneness
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DEQUALITE                       (1/2)

Design Enhanced QUALITy Evaluation
– A method in four steps
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DEQUALITE                       (2/2)

End Result
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DEQUALITE, a method to systematically build quality models 
that take into account both the internal attributes of the systems 
and their designs

This method allows us to build quality models that outperform 
state-of-the-art models built with class metrics only



23/100

Related Work and Contributions

Change-proneness, fault-
proneness

1
Identification of quality attributes

DEQUALITE

Source code of  
systems

Refine models

Identification of quality-carrying design 
specifications

B
ui

ld
in

g 
ax

io
m

s 

Antipatterns, design 
patterns, code smells

Bayesian Belief Networks 
quality models

Ev
al

ua
tio

n

Source code,  changes, and 
faults of  systems

1

2 3 4

Quality models

Boehm [1976]
McCall et al. [1977]

ISO 9126 [1991]
Dromey [1995]

Bansiya and Davis [2002]

Design patterns
Gamma et al. [1994]

Bieman et al. [2001; 2003]
Vokac [2004]

Di Penta et al. [2008]

Antipatterns
Brown [1998]

Ignatios et al.[2003, 2004]
Du Bois et al. [2006]
Olbrich et al. [2009]



24/100

Related Work and Contributions

Change-proneness, fault-
proneness

1
Identification of quality attributes

DEQUALITE

Source code of  
systems

Refine models

Identification of quality-carrying design 
specifications

B
ui

ld
in

g 
ax

io
m

s 

Antipatterns, design 
patterns, code smells

Bayesian Belief Networks 
quality models

Ev
al

ua
tio

n

Source code,  changes, and 
faults of  systems

1

2 3 4

Quality models

Boehm [1976]
McCall et al. [1977]

ISO 9126 [1991]
Dromey [1995]

Bansiya and Davis [2002]

Design patterns
Gamma et al. [1994]

Bieman et al. [2001; 2003]
Vokac [2004]

Di Penta et al. [2008]

Antipatterns
Brown [1998]

Ignatios et al.[2003, 2004]
Du Bois et al. [2006]
Olbrich et al. [2009]

An empirical study of the impact of playing roles in a (some) 
design pattern(s) for a class, on the internal (class metrics) and 
external (change- and fault-proneness) characteristics of classes

Roles in design patterns significantly affect the structure of 
classes as well as their change- and fault-proneness
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An empirical study of the impact of antipatterns on class 
change- and fault-proneness

Classes participating in antipatterns are significantly more 
likely to be subject to changes and to be involved in fault- 
fixing issues than other classes
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An empirical study of the interaction between antipatterns
and design patterns in systems

When antipatterns and design patterns co-occur in a class, the 
negative effect of antipattern is mitigated
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Identification of Quality Attributes

Change-proneness
– It refers to whether a class underwent at 

least a change between two given releases

Fault-proneness
– It refers to whether a class underwent at 

least a fault-fixing between two given 
releases
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Design Specifications

The most popular forms of design 
implementations in systems are:
– Design patterns: “good” solutions to design 

problems
• Claim to improve the quality of systems  

– Antipatterns: “poor” solutions to design 
problems

• Claim to make object-oriented systems harder to 
maintain

– Few empirical evidences support these claims
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Research Questions

Design Patterns and Quality
– What is the impact of design patterns on the change- and 

fault-proneness of classes?

Antipatterns and Quality
– What is the impact of antipatterns on the change- and fault- 

proneness of classes?

Relation between Antipatterns and Design Patterns
– What is the interaction between antipatterns and design 

patterns and their impact on the change- and fault- 
proneness of classes?
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Method and Needs

We follow a Goal-Question-Metric 
methodology
– Define sub-research questions
– Formulate null hypotheses
– Define variables
– Perform statistical analyses

• Fisher’s exact test
• Logistic regression model
• Stepwise regression
• Wilcoxon rank-sum test
• We compute Odds ratios (OR)
• We compute sample sizes
• We compute effect sizes
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Method and Needs

Needs:
– A population of systems
– A list of design patterns
– A list of antipatterns
– Data on changes
– Data on faults
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Method and Needs

A population of systems
– Eclipse ~ 3,756,164 LOCs
– JDT Core ~ 528,522 LOCs
– ArgoUML ~ 316,971 LOCs
– Mylyn ~ 276,401 LOCs
– Xalan ~ 259,286 LOCs
– Xerces ~ 86,814 LOCs
– Azureus ~ 83,534 LOCs
– Rhino ~ 79,406 LOCs
– JHotDraw ~ 44,898 LOCs
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Method and Needs

A list of design 
patterns
– Adapter (A) 
– Command (Cmd) 
– Composite (C)
– Decorator (D) 
– Factory Method (FM)

– Observer (O)
– Prototype (P)
– State (S)
– Template Method (TM)
– Visitor (V)
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Method and Needs

A list of 
antipatterns
– AntiSingleton
– Blob 
– ClassDataShouldBe 

Private (CDSBP)
– ComplexClass
– LargeClass
– LazyClass
– LongMethod

– LongParameterList 
(LPL)

– MessageChains
– RefusedParentBequest 

(RPB)
– SpaghettiCode
– SpeculativeGenerality 

(SG)
– SwissArmyKnife
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Method and Needs

Data on changes
– We count the number of changes ci,k that a 

class underwent between two subsequent 
releases rk and rk+1

– Changes are identified, for each class in a 
system, by looking at commits in the 
control-version system (CVS or SVN); for 
each class, we counted, the number of 
commits related to that class
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Faults

Need: Data on faults
– We count the number of fault-fixing issues 

occurring to a class between two 
subsequent releases rk and rk+1

– We considered a set of manually-validated 
and publicly-available faults for Mylyn and 
Rhino
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Design Patterns

Sub-research questions:
– RQ1: What is the proportion of classes playing zero, 

one, or two roles in some design patterns?

– RQ2: What are the internal characteristics of a class 
that are the most impacted by playing one or two roles 
with respect to playing less roles?

– RQ3: What are the external characteristics (change- 
and fault-proneness) of a class that are the most 
impacted by playing one or two roles with respect to 
playing less roles? 
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Variables        (1/3)

Independent variables
– Three samples of classes playing zero, 

one, and two roles in design motifs
• We name these samples 

– 0-role sample
– 1-role sample
– 2-role sample

• We use DeMIMA to extract design patterns 
[Guéhéneuc and Antoniol, 2008]
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Variables        (2/3)
Independent variables

Set of all classes and 
interfaces belonging to the 6  
programs

Population of classes playing 
0 roles in some design motifsManually validated sample of 

0-role classes

Subset of the classes 
in the general 
population that has 
been manually 
studied to identify 0- 
role classes

We manually validated 238 classes
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Variables (3/3)

Dependent variables
– 56 different metrics from the literature

• Coupling metrics
• Complexity metrics
• Cohesion metrics
• Inheritance metrics
• Polymorphism and size

– Change proneness
– Fault proneness
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Results (1/4)

RQ1
– Classes playing 

one or two roles 
do exist in 
programs and are 
not negligible
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Results (2/4)
RQ2

Not significant (8)               Significant     29 48 26
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Results (3/4)
RQ2
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Results (4/4)

RQ3

– Playing roles do impact the number of changes 
and issues as well as the frequencies of the 
changes

– Yet, no significant difference between one/two 
roles for change- and issues-proneness
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Summary on Design Patterns

In average, 8% of the classes of the six studied 
programs played 1 role in some design pattern

In average, 18% of the classes of the six studied 
programs played 2 roles in some design patterns 

Playing 1 or 2 roles in a design pattern has a 
significant impact on the structure of classes: 
coupling, cohesion, inheritance, connectivity, 
complexity…

Playing 1 or 2 roles in a design pattern have a 
significant impact on the change- and issue-
proneness of classes
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Antipatterns

Sub-research questions
– RQ1and RQ2: What is the relation between 

antipatterns and change- and fault- proneness?

– RQ3 and R4: What is the relation between 
particular kinds of antipatterns and change- and 
fault-proneness?

– RQ5: What kind of changes are performed on 
classes participating or not in antipatterns?
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Variables (1/2)

Independent variables
– 13 kinds of antipatterns

• We counted the number of times a class i has 
an antipattern j in a release rk

• We use DECOR to extract antipatterns [Moha et 
al., 2009]
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Variables (2/2)

Dependent variables
– Class change-proneness
– Class fault-proneness
– Kinds of changes

• We counted as the number of each kind of 
changes occurring to a class participating in an 
antipattern in release k

– Structural changes: addition/removal/change 
of/to attributes, addition/removal of methods, or 
changes to the method signatures

– Non-structural changes: changes in method 
implementation
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Results                                  (1/4)
RQ1 and RQ2: antipatterns and changes/faults

Classes with antipatterns are more change/faults-prone than others, few 
exceptions for Eclipse



56/100

Results                                  (2/4)
RQ3 and RQ4: kinds of antipatterns and 
changes/faults

MessageChains are consistently and significantly 
correlated to more changes/faults
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Results                                  (3/4)
RQ5: kinds of changes and antipatterns
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Results                                  (4/4)

RQ5: kinds of changes and antipatterns

Structural changes occur more often on 
classes belonging to antipatterns than 
other kinds of changes
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Summary on Antipatterns

Classes with antipatterns are more 
change/fault-prone, with high odds ratios

MessageChains are consistently and 
significantly correlated to more 
changes/faults

Structural changes occur more often on 
classes belonging to antipatterns than other 
kinds of changes. However the effect of this 
relation is small
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Design Patterns & Antipatterns

Research questions
– RQ1: What is the number of classes participating 

in antipatterns and design patterns?

– RQ2: What is the impact on change-proneness 
for a class to participate both in some 
antipatterns and design patterns?

– RQ3: What is the impact of playing roles in 
particular kinds of antipatterns and design 
patterns with respect to change-proneness?
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Variables                                   (1/2)   

Independent variables
– 13 kinds of antipatterns

• We counted the number of times a class i has 
an antipattern j in a release rl

• We use DECOR to extract antipatterns [Moha et 
al., 2009]

– 10 kinds of design patterns
• We counted the number of times a class i has 

an antipattern j and plays a role in a design 
pattern k in a release rl

• We use DeMIMA to extract design patterns 
[Guéhéneuc and Antoniol, 2008]
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Variables                                   (2/2)

Dependent variables

– Class change-proneness
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Results                                  (1/4)

RQ1: proportion of co-occurrences
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Results                                  (2/4)

RQ2: antipatterns + design patterns and change-
proneness
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Results                                  (3/4)
RQ3: design patterns/antipatterns “love” relation
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Results                                  (4/4)
RQ3: design patterns/antipatterns “hate” relation
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Summary on AP—DP Relation

The percentages of classes that participate in co-
occurrences of antipatterns and design patterns range 
between 28% and 68%

In all systems but Eclipse-JDT, class change-
proneness odds ratios significantly decrease for 
classes participating in both antipatterns and design 
patterns with respect to classes participating in 
antipatterns only

When a class is properly designed using some design 
patterns, even if it participates in (or decays towards) 
antipatterns, the negative effect of the antipatterns is 
mitigated by the robustness from the design patterns
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Building Quality Models          (1/2)

Robustness

Modularity

Maintainability

Process metrics Model
BBNs

Structural metrics

Complex changes metrics

Fault-proneness

Change-proneness

design

Design patterns

Data collection Prediction
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Building Quality Models          (2/2)

Goal
– Obtain prediction models to help 

developers determine where to focus their 
inspection efforts in systems

– We use Bayesian Belief Networks (BBNs), 
which handle uncertainty
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BBNs (1/4)

A Bayesian Belief Network is a directed 
acyclic graph with probability distribution

Graph structure 
– Nodes = random variables
– Edges = probabilities dependencies

Each node depends only on its parents
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BBNs (2/4)

Classifier
– C1 = {change-prone, not change-prone}
– C2 = {fault-prone, not fault-prone}

Input vector describing a class
– <a1 , …, an >
– P(A|B) = P(B|A) P(A) / P(B)
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BBNs (3/4)

Building a BBN
– Define its structure
Input Nodes: 

characterizations of 
the design of a class

• Number of roles 
played in a 
design patterns

• Number of 
antipatterns

Output Nodes: 
probability that the 
class is change- 
/fault- prone
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BBNs (4/4)

Building a BBN
– Assign/learn its probability tables

Release k

Intra-system

Training
Build the model

Testing
asses the model

Release k+1

Inter-system

Training
Build the model

Testing
asses the model

System B

System A
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Evaluation                            (1/5)

Research questions
– RQ1: To what extent a BBN quality model 

built using our method is able to predict 
change/fault-prone classes in a system?

– RQ2: Are the results of a BBN built using 
our method better than state-of-the-art 
prediction models with metrics?
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Evaluation                            (2/5)
RQ1: precision/recall of BBNs (change-proneness)

Intra-system                                   (Rhino, Training: Rhino)
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Evaluation                            (3/5)

Inter-system                         (Rhino, Training: mylyn) 

RQ1: precision/recall of BBNs (change-proneness)
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Evaluation                            (4/5)

RQ2: Comparison with state-of the-art 
metrics models
– Replication of Zimmermann’s study

• Logistic regression

• A model taking into account the design of system have a 
better accuracy in predicting fault-prone classes than a 
model based on metrics solely
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Evaluation                            (5/5)

– Bansiya’s QMOOD model (Mylyn)
• Among the top 20% of classes considered less 

reusable, less flexible, and less extensible by 
QMOOD:

– 71% of them were change-prone classes ;
– 98% of them were predicted as change-prone by the 

BBN with;
– 69% of these classes being among the top 20% 

results of the BBN
• Even though the BBN was not designed to 

measure the exact same attributes as QMOOD 
it can be almost as effective as QMOOD in 
detecting problematic classes in systems
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Summary on Quality Models

BBNs built from DEQUALITE showed high precision 
and recall and a  capability to assign high probabilities
to candidate classes that are indeed change-prone

BBNs obtained from DEQUALITE are in general 
equivalent or superior to these of a state-of-the-art 
model with metrics and that when BBNs are improved 
with metrics, their accuracy increase

BBNs obtained from DEQUALITE could be as 
effective as QMOOD in detecting problematic classes
in systems
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Implementation: SQUANER

The quality models developed in this 
research are available online in our 
portal, SQUANER at: 
http://www.squaner.khomh.net/

http://www.squaner.khomh.net/
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Threats to the Validity

Construct validity: relation between theory and observation
– Manually validated instances of motifs

Internal validity: causal inferences 
– No claim of causation, only relation

Conclusion validity: relation between the treatment and the 
outcome
– Statistic tests properly used

Reliability validity: possibility of replicating this study
– Details for replication available at: 

http://khomh.net/experiments/thesis/

External validity: possibility to generalise our results
– Generalisation requires further studies



88/100

Outline

Introduction
Related Work and Contributions
Experimentations
Quality Models and Implementation
Threats to the Validity
Conclusion and Future Work



89/100

Conclusion                           (1/3)

Quality models built with DEQUALITE 
achieve high precision and recall in predicting 
change-prone classes 

Results are in general equivalent or superior 
to these of state-of-the-art models with 
metrics when predicting fault-prone classes

The accuracy of fault-proneness models built 
with DEQUALITE increases when they are 
improved with new information on systems, 
like class sizes
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Conclusion                           (2/3)

Contrary to quality models, DEQUALITE 
BBNs-based model, provides in addition 
to the probability that a class is of bad 
quality, 
– The list of design patterns on the class 
– The list of antipatterns on the class
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Conclusion                           (3/3)

“By considering system design; in particular the 
presence of design patterns and antipatterns, it is 
possible to build better quality models than simply 
by considering the internal attributes of classes”

We have provided: 
– Quantitative evidence that design patterns and 

antipatterns have an impact on the quality of systems 
– And that taking them into account improve prediction

Thus proving our thesis
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Lessons Learned                       (1/2)

Tangled implementations of design 
patterns exist and significantly affect the 
structure of classes
– A particular attention should be paid to 

classes playing roles in design motifs; in 
particular classes playing two roles
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Lessons Learned                       (2/2)

Classes participating in antipatterns are 
significantly more likely to be subject to 
changes and to be involved in fault-fixing 
changes than other classes
– MessageChains, a violation of the Law of 

Demeter, are consistently related to more 
changes and faults

A not negligible percentage of classes 
participate in co-occurrences of antipatterns
and design patterns in systems
– Design patterns have a positive effect in 

mitigating antipatterns
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Future Work                              (1/2)

Extend DEQUALITE to include new sources 
of information on systems, like source code 
identifiers

Extend DEQUALITE to assess more 
subjective quality attributes like 
understandability
– We are currently performing a series of 

controlled experiments to analyse the effect of 
various antipatterns on the understandability of 
systems
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Future Work                              (2/2)

Study the usability of a quality model in 
a software development environment

Replicate our study to build quality 
models for multi-language systems

Replicate our study to control for faults 
when studying changes, and for 
changes when studying faults
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Questions

Thank you for listening
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