Patterns and Quality of Object-
oriented Software Systems

-I B ED mamn

Foutse Khomh

Ph.D. Defense
Department of Computer Science and Operations Research
2010/08/31

Ptidej Team — OO Programs Quality Evaluation and Enhancement using Patterns
Department of Computer Science and Operations Researc h
University of Montreal, Canada. © Khomh, 2010

Context

an’[ipa’[’[ems . attributes change-proneness
~ changes classes code
deS|gn wweipers €ClIPSE faul oiowing IMPACT issues |
metrics models motifs - participating patterns |
playing quality - releases results roles |
~ smells software... StUQYy SyStems

Outline

m Introduction

m Related Work and Contributions

m Experimentations

m Quality Models and Implementation
m Threats to the Validity

m Conclusion and Future Work

Outline

m Introduction

m Related Work and Contributions

m Experimentations

m Quality Models and Implementation
m Threats to the Validity

m Conclusion and Future Work

Introduction

m Maintenance costs during the past
decade have reached more than 70% of
the overall costs of object-oriented
systems

— Changing software environments
— Changing users’ requirements
— Overall quality of systems

Introduction

= Many quality models exist [Briand and
Wust 2002]

Boehm [1976]

McCall et al. [1977]

ISO 9126 [1991]

Dromey [1995]

Bansiya and Davis [2002]

Introduction

= Many quality models exist [Briand and
Wust 2002]

Boehm [1976]

McCall et al. [1977]

1ISO 9126 [1991]

Dromey [1995]

Bansiya and Davis [2002] Robustness

Structural metrics / Maintainability
Process metrics > Model \: Fault-proneness
Complex changes metrics Change-proneness

Modularity

Introduction

m Yet, the design of a system Is the first
thing that maintainers see and must
master

Robustness
Structural metrics %’ Maintainability
Process metrics Model > Fault-proneness
mplex changes metrics \ Change-proneness

Design

Modularity

systems is hard and
costly: &)

Introduction
uIt proneness: \
removing faults from
- —— __

It’s important to identify

Qem early <

classes requires effort, no
matter the reasons of the
changes

It’s important to identify

Gange-proneness: changin?

_/

w

Introduction

m Quality In terms of speed?

— Their designs - Affect their
aerodynamics - Affect their speed

Introduction

Gy it
pethlae
tTip
gt Textiame
I
Fawmy - Prawriicie Thypes Dozt Tered
LI -
]
gt toSting
I—)' OetFaricie | petAniTex)
map f D Farrel
getDecay G ;
N PRPTGD
1 Tecavchannel
i i e [——
ol s S—— - T 1 gl wp
? [N JetFiacton
getNaTe
a gt
[F—— e
|'£—" 1 petPoan
10 petPiind
MW‘HH et | | oememe || oSceeRecter
ipetPaEr -
— AL T petScaiaf acior
o . L et Taschiame
g o Py
1111111

m Quality in terms of changes/faults?

— Their designs - Affect their clarity -
Affect their changeabillity and fault-
proneness

Introduction

m Thesis

“By considering system design; in particular
the presence of design patterns and
antipatterns, it is possible to build better
guality models than simply by considering
the internal attributes of classes”

Introduction

m To take the design into account In
quality models, we should quantitatively
assess their impact on quality attributes

m We propose:

— A method DEQUALITE to build quality
models systematically

— We perform three empirical studies on the
Impact of design patterns and antipatterns
on change- and fault-proneness

DEQUALITE (1/2)

m Design Enhanced QUALITY Evaluation
— A method In four steps

— DEQUALITE
Source code, changes,
ips - . . and faults of systems
Identification of quality attributes ” y
1
(S
Change-proneness, o g
fault-proneness] =
> o > >
Source code of = <
systems i) T
S
Identification of quality-carrying m
design specifications 2 3 4
» Antipatterns, design . Bayesian Belief
patterns, code smells Networks quality models

Refine models

> Quality models

DEQUALITE (1/2)

m Design Enhanced QUALITY Evaluation
— A method In four steps

— DEQUALITE
Source code, changes,
ips - . . and faults of systems
Identification of quality attributes ” y
1
(S
Change-proneness, o g
fault-proneness] =
> o > >
Source code of = <
systems i) T
S
Identification of quality-carrying m
design specifications 2 3 4
» Antipatterns, design . Bayesian Belief
patterns, code smells Networks quality models

Refine models

> Quality models

DEQUALITE

(1/2)

m Design Enhanced QUALITY Evaluation
— A method In four steps

— DEQUALITE

Identification of quality attributes

Source code of
systems

1
Change-proneness,

fault-proneness

Identification of quality-carrying
design specifications 2

» Antipatterns, design

patterns, code smell

h J

Building axioms

Source code, changes,
and faults of systems

-

h J

Bayesian Belief
Networks quality models

Evaluation

Refine models

Quality models

DEQUALITE (1/2)

m Design Enhanced QUALITY Evaluation
— A method In four steps

— DEQUALITE

Source code, changes,
and faults of systems

Identification of quality attributes

1
Change-proneness,

fault-proneness

Source code of
systems

Evaluation

Building axioms

Identification of quality-carrying
design specifications 2

» Antipatterns, design

patterns, code smells

Bayesian Belief
Networks quality models

Refine models

> Quality models

DEQUALITE (1/2)

m Design Enhanced QUALITY Evaluation
— A method In four steps

— DEQUALITE

Source code, changes
and faults of systems

Identification of quality attributes

1

%
(S
Change-proneness, o g
fault-proneness] =
> (@] =]
Source code of = <
systems i) T
S
Identification of quality-carrying m
design specifications 2 3
Yy . .
» Antipatterns, design Bayesian Belief
patterns, code smells Networks quality models

Refine models

> Quality models

DEQUALITE (2/2)

® End Result

SQUANER

Pubktatinn Dema

Hame of project © sguaner

Last modification ; Tha jul 15 000000 EDT 2010
Svn revision | 2779

Modified by : nhaderer

Commit message © sdd serce courrie

Element of squaner services

Description

The prediction of this element to have a fault in the next skx month

Copyright @010 SQUANER.

Outline

m Introduction

m Related Work and Contributions

m Experimentations

m Quality Models and Implementation
m Threats to the Validity

m Conclusion and Future Work

Related Work and Contributions

— DEQUALITE
Source code, changes, and
-)]) faults of systems
Identification of quality attributes
1)
Change-proneness, fault- g c
proneness % 2
]
Source code of S g
systems = I}
[, 3
Identification of quality-carrying design
specifications) 3 4

Bayesian Belief Networks
quality models

-

A
> Antipatterns, design

patterns, code smells

Design patterns Antipatterns Refine models
Gamma et al. [1994] Brown [1998]
Bieman et al. [2001; 2003] Ignatios et al.[2003, 2004]
Vokac [2004] Du Bois et al. [2006]
Di Penta et al. [2008] Olbrich et al. [2009]

Quality models

Boehm [1976]
McCall et al. [1977]
1SO 9126 [1991]
Dromey [1995]
Bansiya and Davis [2002]

DEQUALITE

Related Work and Contributions

Identification of quality attributes

1

Source code of
systems

Change-proneness, fault-
proneness

-

Identification of quality-carrying design

Source code, changes, and

specifications)

Bieman et al. [2001; 2003]

> Antipatterns, design

patterns, code smells

Design patterns
Gamma et al. [1994]

Antipatterns
Brown [1998]
Ignatios et al.[2003, 2004]
Du Bois et al. [2006]
Olbrich et al. [2009]

Vokac [2004]
Di Penta et al. [2008]

Y

Building axioms

faults of systems

.

Y
Evaluation

3 4

Bayesian Belief Networks
quality models

Refine models

DEQUALITE, a method to systematically build quality models
hat take into account both the internal attributes of the systems
nd their designs

Quality models

Boehm [1976]
McCall et al. [1977]
ISO 9126 [1991]
Dromey [1995]
Bansiya and Davis [2002]

his method allows us to build quality models that outperform
tate-of-the-art models built with class metrics only

Related Work and Contributions

— DEQUALITE
Source code, changes, and
faults of systems
Identification of quality attributes
1 %)
Ch - - £
ange-proneness, fault o c
proneness < =]
@ IS
» o > S
Source code of S S
systems = L
L Z
Identification of quality-carrying design
specifications 5 3 4
Antipatterns, design / Bayesian _Belief Networks
patterns, code smells quality models
Design patterns Antipatterns Refine models
Gamma et al. [1994] Brown [1998]
Bieman et al. [2001; 2003] Ignatios et al.[2003, 2004]
Vokac [2004] Du Bois et al. [2006]
Di Penta et al. [2008] Olbrich et al. [2009]
- Quality models

Boehm [1976]
McCall et al. [1977]
1SO 9126 [1991]
Dromey [1995]
Bansiya and Davis [2002]

Related Work and Contributions

— DEQUALITE
Source code, changes, and
o))) faults of systems
Identification of quality attributes

1 %)

IS
Change-proneness, fault- o c
proneness < =]
@ 5]
> =2 > S
Source code of = S
systems = w

g - . . . m

\—> Identification of quality-carrying design
specifications 5 3 4

4 . .
Antipatterns, design Bayesian Belief Networks

patterns, code smells quality models

Design patterns Antipatterns Refine models
Gamma et al. [1994] Brown [1998]
Bieman et al. [2001; 2003] Ignatios et al.[2003, 2004]
Vokac [2004] Du Bois et al. [2006]
Di Penta et al. [2008] Olbrich et al. [2009]

O An empirical study of the impact of playing roles ina (some) [+ ouaity models

design pattern(s) for a class, on the internal (class metrics) and Soehm [1976]
external (change- and fault-proneness) characteristics of classes o0 9120 1o91)

Dromey [1995]
Bansiya and Davis [2002]

Roles in design patterns significantly affect the structure of
classes as well as their change- and fault-proneness

Related Work and Contributions

7 DEQUALITE

Source code, changes, and
faults of systems

Identification of quality attributes

1

Change-proneness, fault-
proneness

Source code of
systems

A
Building axioms
Y
Evaluation

\—> Identification of quality-carrying design
specifications 5 3 4

4 . .
Antipatterns, design Bayesian Belief Networks

quality models

Design patterns Antipatterns Refine models
Gamma et al. [1994] Brown [1998]
Bieman et al. [2001; 2003] Ignatios et al.[2003, 2004]
Vokac [2004] Du Bois et al. [2006]
Di Penta et al. [2008] Olbrich et al. [2009]

- Quality models

Boehm [1976]
McCall et al. [1977]
1SO 9126 [1991]
Dromey [1995]
Bansiya and Davis [2002]

Related Work and Contributions

7 DEQUALITE

Identification of quality attributes

1

Change-proneness, fault-
proneness

Source code of
systems

\—> Identification of quality-carrying design

specifications)

> Antipatterns, design
e ode sme

Design patterns Antipatterns
Gamma et al. [1994] Brown [1998]
Bieman et al. [2001; 2003] Ignatios et al.[2003, 2004]
Vokac [2004] Du Bois et al. [2006]
Di Penta et al. [2008] Olbrich et al. [2009]

O An empirical study of the impact of antipatterns on class

change- and fault-proneness

Y

Building axioms

3

Source code, changes, and
faults of systems

.

Bayesian Belief Networks

quality models

Y
Evaluation

Refine models

Quality models

Classes participating in antipatterns are significantly more
likely to be subject to changes and to be involved in fault-

fixing issues than other classes

Boehm [1976]
McCall et al. [1977]
1SO 9126 [1991]
Dromey [1995]
Bansiya and Davis [2002]

Related Work and Contributions

7 DEQUALITE

Source code, changes, and
faults of systems

Identification of quality attributes

1

Change-proneness, fault-
proneness

Source code of
systems

A
Building axioms
Y
Evaluation

\—> Identification of quality-carrying design
specifications 5 3 4

4 . .
Antipatterns, design Bayesian Belief Networks
e ode sme

pattern quality models

Design patterns Antipatterns Refine models
Gamma et al. [1994] Brown [1998]
Bieman et al. [2001; 2003] Ignatios et al.[2003, 2004]
Vokac [2004] Du Bois et al. [2006]

Di Penta et al. [2008] Olbrich et al. [2009]

Quality models

O An empirical study of the interaction between antipatterns
and design patterns in systems vcall et al (1977

1SO 9126 [1991]
Dromey [1995]
Bansiya and Davis [2002]

When antipatterns and design patterns co-occur in a class, the
negative effect of antipattern is mitigated

Outline

m Introduction

m Related Work and Contributions

m Experimentations

m Quality Models and Implementation
m Threats to the Validity

m Conclusion and Future Work

DEQUALITE

Source code of

systems

Change-proneness,
fault-proneness

Source code, changes,

Building axioms

Identification of quality-carrying

design specifications 2

p Antipatterns, design

patterns, code smells

and faults of systems

Evaluation

Bayesian Belief

Networks quality models

Refine models

Quality models

|dentification of Quality Attributes

m Change-proneness

— It refers to whether a class underwent at
least a change between two given releases

m Fault-proneness

— It refers to whether a class underwent at
least a fault-fixing between two given
releases

— DEQUALITE

Source code, changes,

F e b ke o e b o s e e e e and faults of systems

IUCIutivalvliil Vi yualilty autlaivuiles 0
L £

Change-proneness, o g

fault-proneness x =

p < =

- (@) > S5

Source code of = g

systems 2 O
S
m

3 4

[

Bayesian Belief
Networks quality models

Antipatterns, design
patterns, code smells

Refine models

> Quality models

Design Specifications

= The most popular forms of design
Implementations in systems are:

— Design patterns: “good” solutions to design
problems

e Claim to improve the quality of systems

— Antipatterns: “poor” solutions to design
problems

« Claim to make object-oriented systems harder to
maintain

— Few empirical evidences support these claims

Research Questions

m Design Patterns and Quality

— What is the impact of design patterns on the change- and
fault-proneness of classes?

m Antipatterns and Quality

— What is the impact of antipatterns on the change- and fault-
proneness of classes?

B Relation between Antipatterns and Design Patterns

— What is the interaction between antipatterns and design
patterns and their impact on the change- and fault-
proneness of classes?

Method and Needs

m We follow a Goal-Question-Metric
methodology

— Define sub-research guestions
— Formulate null hypotheses

— Define variables

— Perform statistical analyses

Fisher’s exact test

Logistic regression model
Stepwise regression

Wilcoxon rank-sum test

We compute Odds ratios (OR)
We compute sample sizes
We compute effect sizes

Method and Needs

m Needs:
— A population of systems
— A list of design patterns
— A list of antipatterns
— Data on changes
— Data on faults

Method and Needs

m A population of systems
— Eclipse ~ 3,756,164 LOCs
— JDT Core ~ 528,522 LOCs
— ArgoUML ~ 316,971 LOCs
— Mylyn ~ 276,401 LOCs
— Xalan ~ 259,286 LOCs
— Xerces ~ 86,814 LOCs
— Azureus ~ 83,534 LOCs
— Rhino ~ 79,406 LOCs
— JHotDraw ~ 44,898 LOCs

Method and Needs

m A list of design

patterns
- — Adapter (A) — Observer (O)
— Command (Cmd) — Prototype (P)

— Composite (C) — State (S)
— Decorator (D) — Template Method (TM)

_ Factory Method (FM) ~ — Visitor (V)

Method and Needs

m A list of
antipatterns

- — AntiSingleton — LongParameterList
(LPL)
— Blob y -
— ClassDataShouldBe — Messagethains
Private (CDSBP) — RefusedParentBequest
(RPB)
— ComplexClass |
— LargeClass — SpaghettiCode
LazvCl — SpeculativeGenerality
- yClass (SG)
— LongMethod

— SwissArmyKnife

Method and Needs

m Data on changes

— We count the number of changes ¢;, that a
class underwent between two subsequent
releases r, and r,,,

— Changes are identified, for each class in a
system, by looking at commits in the
control-version system (CVS or SVN); for
each class, we counted, the number of
commits related to that class

Faults

m Need: Data on faults

— We count the number of fault-fixing issues
occurring to a class between two
subsequent releases r, and r,,,

— We considered a set of manually-validated
and publicly-available faults for Mylyn and
Rhino

— DEQUALITE

Source code, changes,
and faults of systems
Identification of quality attributes
Change-proneness, 17
Source code of \—’ fault-proneness g c
systems E~ o
P @ P =
_> Identification of quality-carrying design o S
specifications = o
= L
Design B
Antipatterns patterns &
Antipatterns
2 3 4
_, Antipatterns, design A _, Bayesian _BeIief
patterns, code smells Networks quality models
Refine models

L Quality models

Design Patterns

m Sub-research questions:

— RQ1: What is the proportion of classes playing zero,
one, or two roles in some design patterns?

— RQZ2: What are the internal characteristics of a class
that are the most impacted by playing one or two roles
with respect to playing less roles?

— RQ3: What are the external characteristics (change-
and fault-proneness) of a class that are the most
Impacted by playing one or two roles with respect to
playing less roles?

Variables (1/3)

m Independent variables

— Three samples of classes playing zero,
one, and two roles in design motifs

* \We name these samples
— 0-role sample
— 1-role sample
— 2-role sample

 We use DeMIMA to extract design patterns
[Guehéeneuc and Antoniol, 2008]

Variables (2/3)

m Independent variables

Manually validated sample of
0-role classes

Population of classes playing
0 roles in some design motifs

O-role population

'

O-role class subset

-role sample

studied to identify O- 1-role population 2-role population

General population

Set of all classes and
interfaces belonging to the 6
programs

e manually validated 238 classes

Variables (3/3)

m Dependent variables

— 56 different metrics from the literature
e Coupling metrics
o Complexity metrics
e Cohesion metrics
* Inheritance metrics
e Polymorphism and size

— Change proneness
— Fault proneness

Results

m RQ1

— Classes playing
one or two roles
do exist in
programs and are
not negligible

(1/4)

3

- o

~ = &

@] Q

2 = z

Prugr{llllh E D E
1.267 51 316
ArgoUML v0.18.1 1007, 1.02% | 24.94%
501 67 Th
Azureus v2.1.0.0 T00% | 11.33% B
G69 46 | 1758
JDT Core v2.1.2 1007, 6.337, [N 26.607

413 24 i
" | &

JHotDraw v5.4b2 m 5 Bl% 24.45%
- } 104
Xalan v2.7.0 14.16%,
X 1.4.4 -
erces v1.4. 18.30%
E =30
Total 1007 7.99% | 20.85%%

Results
m RQ2

(2/4)

Metric Groups | Metric Names 1 role vs. 0 role 2 role vs. O role 2 role vs. 1 role
p-values | Trends p-values | Trends p-values | Trends
CAM 0.854 0.0001996 ya 0.0003884 s
cohesionAttributes 0.6881 0.04051 P 0.0009488 S
Cohesion LCOM1 0.01313 S 6.22E-09 Vs 0.0009946 e
LCOM2 0.01087 Ry 1.41E-07 s 0.0017 s
LCOMS 0.03454 e 3.95E-06 s 0.001383 s
McCabe 0.2274 7.85E-07 ya 0.00063 e
Complexity sSIx 0.004657 s 1.41E-08 s 0.0008183 s
' ’ WMC1 2.09E-05 s 4.00E-08 s 0.0467 s
WHMC 0.01453 5.40E-07 0.001297
ACAIC 0.1733 0.03935 Vs 0.5029
ACMIC 0.234 0.002702 s 0.04961
CBO 0.5706 0.0001434 s 0.001948
CBOin 0.191 7.89E-06 s 0.0005939
CBOout 0.1055 E.OGE-07 e 0.0001025
connectivity 0.5005 0.07963 0.2603
CP 0.9802 0.2272 0.1425
Coupling DCAEC 09.37TE-06 0.003612 e 0.06724
DCC 0.4149 2.98E-05 Vs 0.002347
DCMEC 0.0001468 0.001024 s 0.595
PP 0,829 0.1382 0.1468
RFP 0.04845 0.01477 Vs 0.6074
RRFP 0.0963 0.02306 N 0.5106
RRTP 0.02637 0.03722 N 0.6952
RTP 0.2005 0.01295 s 0.3693

Not significant (8)

Significant

29

48

26

Results

RQ2

(3/4)

Metric Groups

Metric Names

1 role vs. 0 role

2 role vs. 0 role

2 role vs. 1 role

p-values | Trends

p-values

| Trends

p-values

| Trends

AlD

0.126 |

[0.0001542

J/-

0.1391

< 2.2e-10 - T.04K-11 o 0.003205
SIS L .0 5 =1 e
Inheritence NCM 0.00087 A 4.84FE-09 o 0074806
NOC 2.22E-16 o 3.55E-11 o 0.245
NOD 2.22E-16 ~ 5.20E-11 - 0.07351
NOH 0.5644 G601 09663
NOFP 0.2245 6.10E-06 A 0.007146 A
ICHClass 0.03035 o 2.03E-07 o 0.001095 o
CIs 9.22E-07 P 1.50E-08 o 0.1605
DAM 0.1285 1.94E-05 o 0.003362 P
DSC 0.1461 0.2095 0.8725
ETC 0.0002848 s 0.03E-06 o 05616
ETP 7.26E-13 - 1.43E-09 o 0.1039
MFA 0.1138 0.7105 0.243
MOA 0.0001883 s 6.44E-10 o 0.01493 o
NAD 0.1349 5.03E-06 o 0.003584 P
NADExtended 0.1514 1.14E-05 o 0.005466 7
NCP 5.39E-06 o 0.01465 P 0.1198
Polymorphism NLA 9.34E-06 P 2.30E-06 7 0.3157
and Size NMD 2.09E-05 P 4.00E-08 o 0.0467 -
NMDExtended 3.37TE-05 - 1.07E-07 o 0.05112
NI 0.1029 0.0001075 o 0.2016
NMO 0.00163 s 3.57TE-10 e 0.0005408 e
NOA 0.1868 7.35E-08 o 0.01153 P
NOM 2.00E-05 P 4.00E-08 o 0.0467 P
NOParam 7.81E-06 s 2.38E-08 o 01551
NOPM 2.80E-14 o 1.93E-10 o 0.2793
PITR 7.00E-05 s 0.01216 o 0.2846
REIP 5.94E-10 P 7.54E-08 A 0.3336
RPII 0.1436 0.08605 0.8614

Results (4/4)

m RQ3

Metric Croups | Metric Names 1 role vs. 0 role 2 role vs. O role 2 role vs. 1 role
p p-values | Trends p-values | Trends ‘alye
Frequencies of Past Changes 8.26E-07 A 1.24E-09 e 0.08794
Changeabilitv Frequencies of Future Changes | 0.0001564 P 7.44F-06 o 0.5983
' g - Numbers of Past Changes 3.54E-07 o 5.50E-10 o 0.06665
Numbers of Future Changes 0.001552 s 0.72E-05 o 0.7018
[Issues | Numbers of Issues | 0.0003619 | s | 0.0003612 | s 0.6645

— Playing roles do impact the number of changes
and issues as well as the frequencies of the
changes

— Yet, no significant difference between one/two
roles for change- and issues-proneness

Summary on Design Patterns

In average, 8% of the classes of the six studied
programs played 1 role in some design pattern

In average, 18% of the classes of the six studied
programs played 2 roles in some design patterns

Playing 1 or 2 roles in a design pattern has a
significant impact on the structure of classes:
coupling, cohesion, inheritance, connectivity,
complexity...

Playing 1 or 2 roles in a design pattern have a
significant impact on the change- and issue-
proneness of classes

— DEQUALITE

Source code, changes,
and faults of systems
Identification of quality attributes
Change-proneness, 17
Source code of \—’ fault-proneness g c
systems = o
P @ P =
_> Identification of quality-carrying design o S
specifications = o
= L
. 5
Design Design o
atterns pa?terns &
P Antipatterns
2 3 4
_, Antipatterns, design A _» Bayesian _BeIief
patterns, code smells Networks quality models
Refine models

L Quality models

Antipatterns

m Sub-research questions

— RQland RQ2: What is the relation between
antipatterns and change- and fault- proneness?

— RQ3 and R4: What is the relation between
particular kinds of antipatterns and change- and
fault-proneness?

— RQ5: What kind of changes are performed on
classes participating or not in antipatterns?

Variables (1/2)

® Independent variables
— 13 kinds of antipatterns

 We counted the number of times a class | has
an antipattern in a release r,

 We use DECOR to extract antipatterns [Moha et
al., 2009]

Variables (2/2)

m Dependent variables
— Class change-proneness
— Class fault-proneness

— Kinds of changes

* WWe counted as the number of each kind of
changes occurring to a class participating in an
antipattern in release k

— Structural changes: addition/removal/change

of/to attributes, addition/removal of methods, or
changes to the method signatures

— Non-structural changes: changes in method
Implementation

Results (1/4)

* RQI1 and RQ2: antipatterns and changes/faults

Proneness to
Changes Faults /Tssues
= =
= o .._-;’.
2 2 £ 2 2 £ 2
& : = 5 3 : E 2
<% £ = a e <% €3] = asf
g g g g g 8 g R
.| B 4| B . | 3 s E s 2 s 2 : . | 3
g s g] il a g P ¢ a 2 4 g] g a4
o 7] aq w 4 w] n % W = 73] ?'g w o 0
& = = e = = 2 = = ps| 2 = 2 e, & |
L) o [el] el [= 5] el [= 5] el [o
o] o aef @] s @] s @] a e o] o o a e o ~ Q
0.10.1 417 1.0.1 10.51 1.4R3 10.41 0.10.1 4.43 1.0 1.32 1.0.1 10.45 1.4R3 6.44
0.12 7.16 2.0M1 10.37 1.5K1 17.98 0.12 4.87 2.0 1.57 2.0M1 17.70 1.5R1 31.29
0.14 6.22 2.0M2 7.38 1.5R2 17.37 0.14 17.53 21.1 1.70 2.0M2 | >=300 1.5R2 —
0.16 15.84 2.0M3 | 206.60 1.5K3 15.71 0.16 6.58 2.1.2 | 2.00 2.0M3 — 1.5R3 13.93
0.18.1 10.00 2.0 14.17 1.5K4 16.19 0.15.1 5.33 213 | 2.03 2.0 - 1.5R4 9.06
0.20 26.54 2.1 10.89 1.5R41 30.71 0.20 4.95 3.0 2.52 21 — 1.5R41 | 30.05
0.22 5.83 2.2.0 11.10 1.5R5 15.51 0.22 9.42 3.0.1 1.95 2.2.0 — 1.5R5 10.57
0.24 15.40 2.3.0 9.83 1.6K1 24.73 0.24 2.25 3.0.2 | 1.86 230 — 1.6R1 29.26
0.26 3.98 2.31 7.66 1.6H2 12.69 0.26 5.08 3.2 2.72 231 - 1.6R2 -
0.26.2 6.75 2.3.2 24.38 1.6R3 19.95 0.26.2 9.73 3.2.1 | 2.19 232 — 1.6R3 —
3.0.0 9.45 1.6R4 33.05 3.2.2 | 2.05 3.0.0 — 1.6R4 23.00
3.0.1 09.85 1.6KH5 19.97 3.3 3.18 3.0.1 — 1.6R5 13.29
3.0.2 5.31 1.6H6 20.56 3.3.1 1.23 3.0.2 - 1.6R6 -
3.0.3 8.18 3.0.3 —
3.0.4 3.77 3.0.4 —
3.0.5 4.96 3.0.5 -
3.1.0 10.53 3.1.0 -
3.1.1 5.59 3.1.1 —

Classes with antipatterns are more change/faults-prone than others, few
exceptions for Eclipse

Results

* RQ3 and RQ4: kinds of antipatterns and
changes/faults

(2/4)

Proneness to

Changes Faults/Tssues
| —
Antipatterns = ; = .
= 7 = o (=] B =
) = = g o £ = =
b0 = b - &l = - =
< = = = < o) = =
AntiSingleton 8 (80 5 (38%) T (39%) 5 (50%) 13 (1
Blahb 2 (20%) 8 (62%) 9 (50%) 1 (10%) T (54%)
CDSBP 3 (30%) T (54%) 9 (50%) 6 (46%) 2 (20%) T (54%) 2 (66Y%) 3 (33%)
ComplexClass 2 (20%)) 2 (11%) 13 (100%) || 1 (33%)
LargeClass 2 (20%) 4 (22%) 4 (31%) 3 (30%:) 3 (33%)
LazyClass 5 (50%)) 3 1 (8%) 12 iﬂ'z%] 2 (22%)
LonghMethod 10_{1'“0%}) 5 (38%) 1 (10%) 13 (100%) 3 (33%)
=] DU 0 C 55V (JU2, ' G52 Uz
|10 (100%) | | 7 (70%) |10 (77%) || 1 (33%) | 7 (78%) |
SpaghettiCode
SG 3 (23%) G (33%) T (8%) T (31%) T (11%)
SwissArmyvKnife 6 (46%0) 1 (8%

MessageChains are consistently and significantly
correlated to more changes/faults

(3/4)
kinds of changes and antipatterns

Results
m RQ5

Aetauagaanenaads
1sanhayiualegpasniay
suley Jabessal)

JE IR il |
PSR Buo]

S5EIDAZE

sse|Dable

sse|Dxa|dwa)

JBAL 28R NaYSEIE(SSE|)
Qo3

LR IsHUY

I NYILLYATINY

Antipattern

sabuey) jo Juadiad

Alelauagasnenaads
1sanhayiualedpasnay
suley Jabessal)

JE IR il |
PaLIal Buo]

sseDA7E

sseDahlm

s5eDxa|dwa)

FBAL 28R NOYSEIESSE
Qo3

LR U ISRy

NHF L IYATINY

1004

Antipattern

sabuey) jo Juailad

(b) Mylyn

(a) ArgoUML

saBuey) Jo uaiad

saBuey) Jo Juaiad

Aelauagannenoadg

1sanbayualedpasniay
suleyabessaly
JEMUaaweleg fua
poLalbuoy

sse| DAz

55B| Jafle

s5e|Jxa|dwn)
JBALIRERINAYSEIRQSSE|D

LR |EsnUY

NH3 LLYALINY

Antipattern

AYIUHALLIYSSIMG

A sauanasnenaads
apomaybeds
1sanbagiualedpasnay
suleyabessaly
JsMUaAweled Bua
paLpakbuo]
sse|DA7e
s5B|Jxa|dwn)
JEALAERINOYSEIEQSSE| D
qoia

LR AUy

NH3 LLVATINY

Antipattern

(c) Eclipse

Results (4/4)

m RQ5: kinds of changes and antipatterns

Systems p-values | ORs
- ArgoUML < 0.01 1.22
Eclipse < 0.01 1.03
Mylyn < 0.01 1.19
Rhino

m Structural changes occur more often on
classes belonging to antipatterns than
other kinds of changes

Summary on Antipatterns

m Classes with antipatterns are more
change/fault-prone, with high odds ratios

m MessageChains are consistently and
significantly correlated to more
changes/faults

m Structural changes occur more often on
classes belonging to antipatterns than other
kinds of changes. However the effect of this
relation is small

— DEQUALITE
Source code, changes,
and faults of systems
Identification of quality attributes
Change-proneness, »
Source code of \—’ fault-proneness £ -
systems q % |9
> Identification of quality-carrying design o ‘§
specifications % S
= w
Desi a
esign .
patterns Antipatterns
2 3 4
_, Antipatterns, design A _> Bayesian Belief
patterns, code smells Networks quality models
Refine models

> Quality models

Design Patterns & Antipatterns

m Research questions

— RQ1: What is the number of classes participating
In antipatterns and design patterns?

— RQ2: What is the impact on change-proneness
for a class to participate both in some
antipatterns and design patterns?

— RQ3: What is the impact of playing roles in
particular kinds of antipatterns and design
patterns with respect to change-proneness?

Variables (1/2)

m Independent variables

— 13 kinds of antipatterns

 \WWe counted the number of times a class | has
an antipattern | in a release r,

 We use DECOR to extract antipatterns [Moha et
al., 2009]
— 10 kinds of design patterns

« We counted the number of times a class | has
an antipattern | and plays a role in a design
pattern K in a release r,

* \We use DeMIMA to extract design patterns
[Guéhéneuc and Antoniol, 2008]

Variables (2/2)

m Dependent variables

— Class change-proneness

Results (1/4)

m RQI1: proportion of co-occurrences

- Systems Classos Classes Classes Classes
APs DPs APs+DPs
ArgoUML 2,834 | 1,791 (63%) | 1,008 (71%)
Eclipse-JDT 3,144 | 2,709 (86%) | 2,495 (79%)
Mylyn 3,437 | 1,229 (36%) | 2,346 (68%)
Rhino 560 | 160 (29%) | 397 (71%)

Results (2/4)

RQ2: antipatterns + design patterns and change-

proneness
ArgoUML Eelipse-JDT Mylyn Rhino
Rel. ORs ORs Rel. ORs ORs Rel. ORs ORs Rel. ORs ORs
APs | APs+DPs APs | APs+DPs APs | APs+DPs APs | APs+DPs
0.10.1 | 14.17 1.0 1.42 1.50 || 2.0.0 | 14.17 1.4R3 | 10.41
0.12 7.16 2.0 0.72 0.62 || 2.1 10.89 1.5R1 | 17.98
0.14 5.36 2.1.1 | 2.46 2.81 || 2.2.0 | 11.10 1.5R2 | 17.37
0.15.6 | 97.44 2.1.2 | 0.89 0.98 || 2.3.0 | 9.83 1.5R3 | 15.71
0.16 15.91 2.1.3 | 1.88 1.91 || 231 | 7.66 1.5R4 | 27.04
0.17.5 | 19.81 2.3.2 | 24.38 1.5R5 | 15.51
0.18.1 8.60 3.0.0 | 9.45 1.6R1 | 24.73
0.19.8 | 11.45 3.0.1 | 9.85 1.6R2 | 12.69
0.20 26.54 3.0.2 | 531 1.6R3 | 19.95
3.0.3 | 818 1.6R4 | 33.05
3.04 | 377 1.6R5 | 19.97
3.0.5 | 4.96 1.6R6 | 20.56
3.1.0 | 10.53

Results (3/4)

m RQ3: design patterns/antipatterns “love” relation

DPs APs Int.

Rel. Design Patterns Antipatterns OR OR OR
Design Patterns “Love” Antipatterns
ArgoUML
0.14 S.Concretestate Blob 7.32 | 55.01
0.14 A.Adapter MessageChain 3.61 9.32
0.18.1 | D.Concretecomponent Antisingleton 1.29 8.68
0.18.1 | A.Adaptee LargeClass 6.54 | 25.15
0.18.1 | FM.ConcreteCreator MessageChain 9.91 | 11.12

Eclipse-JDT
2.1.1 D.Concretecomponent LongMethod 1.89 3.14
2.1.1 FM.ConcreteProduct MessageChain 1.65 3.41

2.1.2 C.Leaf LPL 1.02 1.07

2.1.3 FM.product AntiSingleton 0.63 2.20

2.1.3 Cmd.Concretecommand | LPL 1.01 2.05

2.1.3 S.Concretestate MessageChain 0.58 1.81
Mylyn

2.3.0 FM.ConcreteCreator LongMethod 4.21 | 17.58

2.3.1 Visitor.Client LPL 16.84 | 24.49

3.0.3 S.Concretestate CDSBP 3.22 5.63
3.0.3 S.Context LongMethod 3.85 | 10.91

Results

(4/4)

m RQ3: design patterns/antipatterns “hate” relation

Design Patterns “Hate” Antipatterns
ArgoUML
0.14 ‘ Cmd.Concretecommand | RPB | 3.74 ‘ 1.60 ‘ 11.02
Eclipse-JDT
1.0 S.Context LazyClass 2.70 1.17
1.0 FM.ConcreteProduct LPL 1.95 1.18
2.0 Visitor.Client MessageChain 1.04 0.59
2.1.1 S.Concretestate ComplexClass 2.29 3.86
2.1.2 C.Leaf ComplexClass 0.66 2.19
2.1.2 FM.ConcreteProduct LazyClass 1.78 0.43
2.1.2 O.subject LazyClass 3.32 0.66
2.1.2 S.Concretestate LazyClass 1.48 0.39
2.1.2 Cmd.Concretecommand | LazyClass 1.60 0.47
2.1.2 Visitor.Client LongMethod 0.84 2.01
2.1.2 O.subject LPL 2.69 0.93
2.1.2 Visitor.Client MessageChain 2.25 1.56
2.1.2 C.Leaf MessageChain 0.39 2.30
2.1.3 S.Concretestate AntiSingleton 0.78 1.66
2.1.3 FM.ConcreteCreator CDSBP 1.97 0.53
2.1.3 C.Leaf MessageChain 0.35 1.66
2.1.3 P.Concreteprototype RPB 5.92 0.42

Summary on AP—DP Relation

The percentages of classes that participate in co-
occurrences of antipatterns and design patterns range
between 28% and 68%

In all systems but Eclipse-JDT, class change-
proneness odds ratios significantly decrease for
classes participating in both antipatterns and design
patterns with respect to classes participating in
antipatterns only

When a class Is properly designed using some design
patterns, even If it participates in (or decays towards)
antipatterns, the negative effect of the antipatterns is
mitigated by the robustness from the design patterns

Outline

m Introduction

m Related Work and Contributions

m Experimentations

m Quality Models and Implementation
m Threats to the Validity

m Conclusion and Future Work

DEQUALITE

Identification of quality attributes
1

Source code of

systems

Change-proneness,
fault-proneness

Identification of quality-carrying

Source code, changes,

and faults of systems

design specifications 2

p Antipatterns, design

patterns, code smells

Evaluation

Bayesian Belief
Networks quality models

Refine models

Quality models

Building Quality Models (1/2)

Data collection Prediction
A A
[4 A J [4
Robustness

Maintainability

Structural metrics
. Model
Process metrics » Fault-proneness
BBNs
Complex changes metrics
Change-proneness
design Modularity

N

Antipatterns Design patterns

Building Quality Models (2/2)

m Goal

— ODbtain prediction models to help
developers determine where to focus their
Inspection efforts in systems

— We use Bayesian Belief Networks (BBNS),
which handle uncertainty

BBNSs (1/4)

m A Bayesian Belief Network Is a directed
acyclic graph with probabillity distribution

m Graph structure
— Nodes = random variables
— Edges = probabilities dependencies

m Each node depends only on its parents

BBNSs (2/4)

m Classifier
— C, = {change-prone, not change-prone}
— C, = {fault-prone, not fault-prone}

m [nput vector describing a class
—<ay, ..., a,>
— P(A|B) = P(B|A) P(A) / P(B)

BBNs (3/4)

= Building a BBN

— Define Its structure

Input Nodes:
characterizations of
the design of a class
* Number of roles woo®o» ow W
played in a AR TREETEIIEIEN o151 oz

-inf-1.5]' more smell onerole 0.151
in-1.5]| one smell |more role BRI

design patterns S et ok~ 01 o
e Number of T R
antipatterns
Output Nodes:
probability that the - b
class is change-
[fault- prone

- Probability Distribution Table For post E|

[

BBNSs (4/4)

= Building a BBN
— Assign/learn its probability tables

Intra-system Inter-system

Release k System A

Training
Build the model

Training
Build the model

Testing
asses the model

Testing
asses the model

Release k+1 System B

DEQUALITE

Identification of quality attributes
1

Source code of

systems

Change-proneness,
fault-proneness

Identification of quality-carrying

Source code, changes,

Building axioms

design specifications 2

p Antipatterns, design

patterns, code smells

and faults of systems

Bayesian Belief

Networks quality models

Refine models

Quality models

Evaluation (1/5)

m Research questions

— RQ1: To what extent a BBN quality model
built using our method Is able to predict
change/fault-prone classes in a system?

— RQ2: Are the results of a BBN built using
our method better than state-of-the-art
prediction models with metrics?

Evaluation (2/5)

RQ1: precision/recall of BBNs (change-proneness)

Intra-system (Rhino, Training: Rhino)

100

. \f—‘-—_g._—/—&T

80 -

"’ //

60

50 / P cision
/ L

40

Evaluation (3/5)

RQ1: precision/recall of BBNs (change-proneness)

Inter-system (Rhino, Training: mylyn)

1

W

| | =P racision
= Recal

= 2 B 8 &§ 28 8 3 8 8 B2

1/
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58
HHHHH of candidates

Evaluation (4/5)

B RQ2: Comparison with state-of the-art
metrics models

— Replication of Zimmermann’s study
» Logistic regression

Training | Testing Metrics Design Metrics+Design
= Precision | Recall Precision | Recall Precision | Recall
9.0 2.0 0.68 0.22 0.12 0.24
’ 2.1 0.42 0.25 0.13 0.26
91 2.1 0.61 0.16 0.14 0.17
) 2.0 0.60 0.11 0.13 0.12

« A model taking into account the design of system have a
better accuracy in predicting fault-prone classes than a
model based on metrics solely

Evaluation (5/5)

— Bansiya’s QMOOD model (Mylyn)

« Among the top 20% of classes considered less
reusable, less flexible, and less extensible by
QMOOD:

— 71% of them were change-prone classes ;

— 98% of them were predicted as change-prone by the
BBN with;

— 69% of these classes being among the top 20%
results of the BBN
 Even though the BBN was not designed to
measure the exact same attributes as QMOOD
It can be almost as effective as QMOOD In
detecting problematic classes in systems

Summary on Quality Models

BBNSs built from DEQUALITE showed high precision
and recall and a capability to assign high probabillities
to candidate classes that are indeed change-prone

BBNs obtained from DEQUALITE are in general
equivalent or superior to these of a state-of-the-art
model with metrics and that when BBNs are improved
with metrics, their accuracy increase

BBNSs obtained from DEQUALITE could be as
effective as QMOQOD In detecting problematic classes
In systems

DEQUALITE

Identification of quality attributes
1

Source code of

systems

Change-proneness,
fault-proneness

Identification of quality-carrying

\ 4

design specifications 2

p Antipatterns, design

patterns, code smells

Building axioms

Source code, changes,
and faults of systems

\ 4
Evaluation

Bayesian Belief
Networks quality models

Refine models

_

Implementation: SQUANER

m The quality models developed In this
research are available online in our

- portal, SQUANER at:

http://www.squaner.khomh.net/

Outline

m Introduction

m Related Work and Contributions

m Experimentations

m Quality Models and Implementation
m Threats to the Validity

m Conclusion and Future Work

Threats to the Validity

m Construct validity: relation between theory and observation
— Manually validated instances of motifs

m Internal validity: causal inferences
— No claim of causation, only relation

Conclusion validity: relation between the treatment and the
outcome

— Statistic tests properly used

Reliability validity: possibility of replicating this study
— Detalls for replication available at:
http://khomh.net/experiments/thesis/

External validity: possibility to generalise our results
— Generalisation requires further studies

Outline

B Introduction

m Related Work and Contributions

m Experimentations

m Quality Models and Implementation
m Threats to the Validity

m Conclusion and Future Work

Conclusion (1/3)

= Quality models built with DEQUALITE
achieve high precision and recall in predicting
change-prone classes

= Results are in general equivalent or superior
to these of state-of-the-art models with
metrics when predicting fault-prone classes

m The accuracy of fault-proneness models built
with DEQUALITE increases when they are
iImproved with new information on systems,
like class sizes

Conclusion (2/3)

m Contrary to quality models, DEQUALITE
BBNs-based model, provides in addition
to the probability that a class is of bad
qguality,

— The list of design patterns on the class
— The list of antipatterns on the class

Conclusion (3/3)

“By considering system design; in particular the
presence of design patterns and antipatterns, it is
possible to build better guality models than simply
oy considering the internal attributes of classes”

We have provided:

— Quantitative evidence that design patterns and
antipatterns have an impact on the quality of systems

— And that taking them into account improve prediction

Thus proving our thesis

essons Learned (1/2)

m Tangled implementations of design
patterns exist and significantly affect the
structure of classes
— A particular attention should be paid to

classes playing roles in design motifs; in
particular classes playing two roles

essons Learned (2/2)

m Classes participating in antipatterns are
significantly more likely to be subject to
changes and to be involved in fault-fixing
changes than other classes
— MessageChains, a violation of the Law of

Demeter, are consistently related to more
changes and faults

= A not negligible percentage of classes
participate in co-occurrences of antipatterns
and design patterns in systems

— Design patterns have a positive effect in
mitigating antipatterns

Future Work (1/2)

m Extend DEQUALITE to include new sources
of information on systems, like source code
identifiers

m Extend DEQUALITE to assess more
subjective quality attributes like
understandability

— We are currently performing a series of
controlled experiments to analyse the effect of
various antipatterns on the understandabillity of
systems

Future Work (2/2)

m Study the usability of a quality model In
a software development environment

m Replicate our study to build quality
models for multi-language systems

m Replicate our study to control for faults
when studying changes, and for
changes when studying faults

Publications (1/4)

m Articles in journals

1. Foutse Khomh, Massimiliano Di Penta, Yann-Gaél Guéhéneuc, and Giuliano Antoniol,
(2010) An Exploratory Study of the Impact of Antipatterns on Class Change- and Fault-
Proneness, Journal of Empirical Software Engineering (EMSE) (under revision).

2. Foutse Khomh, Stéphane Vaucher, Yann-Gaél Guéhéneuc, and Houari Sahraoui, (2010)
BDTEX: A GQM-based Bayesian Approach for the Detection of Antipatterns, Journal of
Systems and Software (JSS) (under revision).

m Book chapter

1. Foutse Khomh and Yann-Gaél Guehéneuc, (2010) Construction de modeles de qualite
prenant en compte la conception des systemes et présentation d'un tel modele de
qualité, Evolution et Rénovation des Systemes Logiciels , Hermes, (To appear)

m Conference articles

1. Nicolas Haderer, Foutse Khomh, and Giuliano Antoniol, SQUANER: A Framework for
Monitoring the Quality of Software Systems, Proceedings of the 26th IEEE International
Conference on Software Maintenance (ICSM'10), Tool Demonstrations track, September
12-18, 2010, Timisoara, Romania. IEEE Computer Society Press.

2. Salima Hassaine, Foutse Khomh, Yann-Gaél Guéhéneuc, and Sylvie Hamel (2010) IDS:
An Immunology-inspired Approach for the Detection of Software Design Smells, In
Proceedings of the Quality in Reengineering and Refactoring track at the 7th
I(nternatio)nal Conference on the Quality of Information and Communications Technology

QUATIC).

1
]
-

Publlcatlons (2/4)

Rocco Oliveto, Foutse Khomh, Giuliano Antoniol, and Yann-Gaél Guéhéneuc (2010)
Numerical Signatures of Antipatterns: An Approach based on B-Splines, In Proceedings
of the 14th European Conference on Software Maintenance and Reengineering (CSMR).

Foutse Khomh, Massimiliano Di Penta and Yann-Gaél Guéhéneuc, (2009) An
Exploratory Study of the Impact of Code Smells on Software Change-proneness, In
Proceedings of the 16th Working Conference on Reverse Engineering (WCRE), October
13-16, Lille, France. IEEE Computer Society Press.

Stéphane Vaucher, Foutse Khomh, Naouel Moha and Yann-Gaél Guéhéneuc, (2009)
Tracking Design Smells: Lessons from a Study of God Classes, In Proceedings of the
16th Working Conference on Reverse Engineering (WCRE), October 13-16, Lille, France.
IEEE Computer Society Press.

Foutse Khomh, Yann-Gaél Guéhéneuc, and Giuliano Antoniol, (2009) Playing Roles in
Design Patterns: An Empirical Descriptive and Analytic Study, In Proceedings of the 25th
IEEE International Conference on Software Maintenance (ICSM), September 20-26,
Edmonton, Alberta, Canada. IEEE Computer Society Press.

Foutse Khomh, Stéphane Vaucher, Yann-Gaél Guéhéneuc, and Houari Sahraoui, (2009)
A Bayesian Approach for the Detection of Code and Design Smells, In Proceedings of
the 9th International Conference on Quality Software (QSIC), August 24-25, Jeju, Korea.
IEEE Computer Society Press.

Foutse Khomh, Yann-Gael Gueheneuc, (2008) Do Design Patterns Impact Software
Quiality Posltlvely’> In Proceedings of the 12t European Conference on Software
Maintenance and Reengineering (CSMR), du 1-4 avril, Athénes, Grece. IEEE Computer
Society Press.

Publications (3/4)

10.

11.

12.

13.

Giuliano Antoniol, Kamel Ayari, Massimiliano Di Penta, Foutse Khomh, Yann-Gaél
Guéhéneuc, (2008) Is it a Bug or an Enhancement? A Text-based Approach to Classify
Change Requests, In Proceedings of the 18th IBM Centers for Advanced Studies
Conference (CASCON), Toronto, CA, October 27 - 30. ACM Press.

Naouel Moha, Foutse Khomh, Yann-Gaél Guéhéneuc, (2008) Génération automatique
d'algorithmes de détection des défauts de conception, In Proceedings of the 14eme
Colloque International sur les Langages et Modeles a Objet (LMO), du 2 -7 mars,
Montréal, Quebec, Canada. Editions Cépadues.

Foutse Khomh, (2009) SQUAD: Software Quality Understanding through the Analysis of
Design, Doctoral Symposium, 16th Working Conference on Reverse Engineering
(WCRE), October 13-16, Lille, France. IEEE Computer Society Press.

Foutse Khomh, Yann-Gaél Guéhéneuc, (2008) DEQUALITE: Building Design-based
Software Quality Models, In Proceedings of the 2nd PLoP Workshop on Software
Patterns and Quality (SPAQu), October 18-20, Nashville, Tennessee, USA. ACM Press.

Foutse Khomh, Yann-Gael Gueheneuc, (2007) Perception and Reality: What are Design
Patterns Good For? In Proceedings of the 11th ECOOP Workshop on Quantitative
Approaches in Object-Oriented Software Engineering (QAOOSE), July 31st, Berlin,
Germany. Springer-Verlag.

Publications (4/4)

m Posters and tools

1.

2.

Foutse Khomh, (2009) SQUAD: Software Quality Understanding through the Analysis of
Design, Consortium for Software Engineering Research (CSER), April 26-27, Montréal, Canada.

Yann-Gaél Guéhéneuc, Janice Ka-Yee Ng, Duc-Loc Huynh, Foutse Khomh, (2006) Ptidej: A
Tool Suite, IBM CASCON, Oct, 2006, Toronto, Canada.

m Technical reports

1.

Foutse Khomh, Massimiliano Di Penta and Yann-Gaél Guéhéneuc, (2009) An Exploratory
Study of the Impact of Code Smells on Software Change-proneness, Technical report, Ecole
Polytechnique de Montréal.

Foutse Khomh, Massimiliano Di Penta, Yann-Gaél Guéhéneuc and Guiliano Antoniol, (2009) An
Exploratory Study of the Impact of Antipatterns on Software Changeability, Technical report
EPM-RT-2009-02, Ecole Polytechnique de Montréal.

Foutse Khomh, Yann-Gaael Guéhéneuc and Giuliano Antoniol, (2009) Playing Roles in Design
Patterns: An Empirical Descriptive and Analytic Study, Technical report EPM-RT-2009-03,
Ecole Polytechnique de Montréal.

Foutse Khomh, Naouel Moha and Yann-Gaél Guéhéneuc, (2009) DEQUALITE : méthode de
construction de modeles de qualité prenant en compte la conception des systemes, Technical
report EPM-RT-2009-04, Ecole Polytechnique de Montréal.

Simon Denier, Foutse Khomh, and Yann-Gael Guéhéneuc, (2008) Reverse-Engineering the
Literature on Design Patterns and Reverse-Engineering, Technical report EPM-RT-2008-09,
Ecole Polytechnique de Montréal.

Foutse Khomh and Yann-Gael Guéhéneuc, (2008) An Empirical Study of Design Patterns and
Software Quality, Technical report 1315, University of Montréal.

Questions

Thank you for listening

References

n Boehm [1976] B. W. Boehm, J. R. Brown, and M. Lipow. Quantitative evaluation of software quality. In Proceedings of the 2nd international
conference on Software engineering, pages 592-605. IEEE Computer Society Press, 1976.McCall et al. [1977] J. A. McCall, P. K. Richards,
and G. F Walters. Factors in software quality. In Nat'l| Tech. Information Service, editor, Nat'l Tech. Information Service, 1, 2 and 3, 1977.

n ISO 9126 [1991] ISO 9126. Information Technology-Software Product Evaluation-Quality Characteristics and Guidelines for their Use. ISO/IEC,
December 1991. ISO/IEC 9126:1991(E)

n Prbomey [1995] R. Geoff Dromey. A model for software product quality. IEEE Transactions on Software Engineering, 21(2):146-162. IEEE,
ebruary 1995.

[Bansiya and Davis [2002] Jagdish Bansiya and Carl G. Davis. A hierarchical model for object-oriented design quality assessment. In IEEE CS
Press, editor, IEEE Trans. on Software Engineering, 28:4-17, Jan. 2002.

n [Moha et al., 2009] Naouel Moha, Yann-Gaeel Gueheneuc, Laurence Duchien, and Anne-Francoise Le Meur. DECOR: A method for the
specification and detection of code and design smells. In Mark Harman, editor, Transactions on Software Engineering (TSE). IEEE Computer
Society Press, 2009.

n [Guéhéneuc and Antoniol, 2008] Yann-Gael Guéhéneuc and Giuliano Antoniol. DeMIMA: A multi-layered framework for design pattern
identification. In Sebastian Elbaum and David S. Rosenblum, editors, Transactions on Software Engineering (TSE), 34(5):667-684. IEEE
Computer Society Press, September 2008. 18 pages.

n [Gamma et al., 1994] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns-Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1st edition, 1994. isbn: 0-201-63361-2.

n [Briand and WAust, 2002] Lionel C. Briand and JAurgen WAust. Empirical studies of quality models in object-oriented systems. In Marvin
Zelkowitz, editor, Advances in Computers. Academic Press, 2002.

u [Brown et al., 1998] William J. Brown, Raphael C. Malveau, William H. Brown, Hays W. McCormick lll, and Thomas J. Mowbray. Anti Patterns:
Refactoring Software, Architectures, and Projects in Crisis. John Wiley and Sons, 1st edition, March 1998. isbn: 0-471-19713-0.

m [Ignatios et al., 2003] Deligiannis Ignatios, Stamelos loannis, Angelis Lefteris, Roumeliotis Manos, and Shepperd Martin. A controlled
experiment investigation of an object oriented design heuristic for maintainability. In Elsevier, editor, Journal of Systems and Software, 65(2).
Elsevier, February 2003.

n [Bois et al., 2006] Bart Du Bois, Serge Demeyer, Jan Verelst, Tom Mens, and Marijn Temmerman. Does god class decomposition affect
comprehensibility? In Proceedings of the IASTED Inter national Conference on Software Engineering, pages 346{355. IASTED/ACTA
Press,2006.

	Patterns and Quality of Object-oriented Software Systems
	Context
	Outline
	Outline
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	DEQUALITE (1/2)
	DEQUALITE (1/2)
	DEQUALITE (1/2)
	DEQUALITE (1/2)
	DEQUALITE (1/2)
	DEQUALITE (2/2)
	Outline
	Related Work and Contributions
	Related Work and Contributions
	Related Work and Contributions
	Related Work and Contributions
	Related Work and Contributions
	Related Work and Contributions
	Related Work and Contributions
	Outline
	Slide Number 29
	Identification of Quality Attributes
	Slide Number 31
	Design Specifications
	Research Questions
	Method and Needs
	Method and Needs
	Method and Needs
	Method and Needs
	Method and Needs
	Method and Needs
	Faults
	Slide Number 41
	Design Patterns
	Variables 				(1/3)
	Variables 				(2/3)
	Variables				 (3/3)
	Results					 (1/4)
	Results					 (2/4)
	Results					 (3/4)
	Results					 (4/4)
	Summary on Design Patterns
	Slide Number 51
	Antipatterns
	Variables				 (1/2)
	Variables				 (2/2)
	Results (1/4)
	Results (2/4)
	Results (3/4)
	Results (4/4)
	Summary on Antipatterns
	Slide Number 60
	Design Patterns & Antipatterns
	Variables (1/2)
	Variables (2/2)
	Results (1/4)
	Results (2/4)
	Results (3/4)
	Results (4/4)
	Summary on AP—DP Relation
	Outline
	Slide Number 70
	Building Quality Models (1/2)
	Building Quality Models (2/2)
	BBNs						(1/4)
	BBNs						(2/4)
	BBNs						(3/4)
	BBNs						(4/4)
	Slide Number 77
	Evaluation (1/5)
	Evaluation (2/5)
	Evaluation (3/5)
	Evaluation (4/5)
	Evaluation (5/5)
	Summary on Quality Models
	Slide Number 84
	Implementation: SQUANER
	Outline
	Threats to the Validity
	Outline
	Conclusion (1/3)
	Conclusion (2/3)
	Conclusion (3/3)
	Lessons Learned (1/2)
	Lessons Learned (2/2)
	Future Work (1/2)
	Future Work (2/2)
	Publications (1/4)
	Publications (2/4)
	Publications (3/4)
	Publications (4/4)
	Questions
	References

