
Foutse Khomh

© Khomh, 2010

Ptidej Team – OO Programs Quality Evaluation and Enhancement using Patterns
Department of Computer Science and Operations Research
University of Montreal, Canada.

Patterns and Quality of Object-
oriented Software Systems

Ph.D. Defense
Department of Computer Science and Operations Research

2010/08/31

2/100

Context

3/100

Outline

Introduction
Related Work and Contributions
Experimentations
Quality Models and Implementation
Threats to the Validity
Conclusion and Future Work

4/100

Outline

Introduction
Related Work and Contributions
Experimentations
Quality Models and Implementation
Threats to the Validity
Conclusion and Future Work

5/100

Introduction

Maintenance costs during the past
decade have reached more than 70% of
the overall costs of object-oriented
systems
– Changing software environments
– Changing users’ requirements
– Overall quality of systems

6/100

Introduction

Many quality models exist [Briand and
Wust 2002]

– Boehm [1976]
– McCall et al. [1977]
– ISO 9126 [1991]
– Dromey [1995]
– Bansiya and Davis [2002]

7/100

Introduction

Many quality models exist [Briand and
Wust 2002]

– Boehm [1976]
– McCall et al. [1977]
– ISO 9126 [1991]
– Dromey [1995]
– Bansiya and Davis [2002]

Model

8/100

Introduction

Yet, the design of a system is the first
thing that maintainers see and must
master

Model

9/100

Introduction

Change-proneness: changing
classes requires effort, no
matter the reasons of the
changes

it’s important to identify
them early

Fault-proneness:
removing faults from
systems is hard and
costly:

it’s important to identify
them early

10/100

Introduction

Quality in terms of speed?
– Their designs Affect their

aerodynamics Affect their speed

11/100

Introduction

Quality in terms of changes/faults?
– Their designs Affect their clarity

Affect their changeability and fault-
proneness

12/100

Introduction

Thesis
“By considering system design; in particular

the presence of design patterns and
antipatterns, it is possible to build better
quality models than simply by considering
the internal attributes of classes”

13/100

Introduction

To take the design into account in
quality models, we should quantitatively
assess their impact on quality attributes

We propose:
– A method DEQUALITE to build quality

models systematically
– We perform three empirical studies on the

impact of design patterns and antipatterns
on change- and fault-proneness

14/100

DEQUALITE (1/2)

Design Enhanced QUALITy Evaluation
– A method in four steps

B
ui

ld
in

g
ax

io
m

s

Ev
al

ua
tio

n

15/100

DEQUALITE (1/2)

Design Enhanced QUALITy Evaluation
– A method in four steps

B
ui

ld
in

g
ax

io
m

s

Ev
al

ua
tio

n

16/100

DEQUALITE (1/2)

Design Enhanced QUALITy Evaluation
– A method in four steps

B
ui

ld
in

g
ax

io
m

s

Ev
al

ua
tio

n

17/100

DEQUALITE (1/2)

Design Enhanced QUALITy Evaluation
– A method in four steps

B
ui

ld
in

g
ax

io
m

s

Ev
al

ua
tio

n

18/100

DEQUALITE (1/2)

Design Enhanced QUALITy Evaluation
– A method in four steps

B
ui

ld
in

g
ax

io
m

s

Ev
al

ua
tio

n

19/100

DEQUALITE (2/2)

End Result

20/100

Outline

Introduction
Related Work and Contributions
Experimentations
Quality Models and Implementation
Threats to the Validity
Conclusion and Future Work

21/100

Related Work and Contributions

Change-proneness, fault-
proneness

1
Identification of quality attributes

DEQUALITE

Source code of
systems

Refine models

Identification of quality-carrying design
specifications

B
ui

ld
in

g
ax

io
m

s

Antipatterns, design
patterns, code smells

Bayesian Belief Networks
quality models

Ev
al

ua
tio

n

Source code, changes, and
faults of systems

1

2 3 4

Quality models

Boehm [1976]
McCall et al. [1977]

ISO 9126 [1991]
Dromey [1995]

Bansiya and Davis [2002]

Design patterns
Gamma et al. [1994]

Bieman et al. [2001; 2003]
Vokac [2004]

Di Penta et al. [2008]

Antipatterns
Brown [1998]

Ignatios et al.[2003, 2004]
Du Bois et al. [2006]
Olbrich et al. [2009]

22/100

Related Work and Contributions

Change-proneness, fault-
proneness

1
Identification of quality attributes

DEQUALITE

Source code of
systems

Refine models

Identification of quality-carrying design
specifications

B
ui

ld
in

g
ax

io
m

s

Antipatterns, design
patterns, code smells

Bayesian Belief Networks
quality models

Ev
al

ua
tio

n

Source code, changes, and
faults of systems

1

2 3 4

Quality models

Boehm [1976]
McCall et al. [1977]

ISO 9126 [1991]
Dromey [1995]

Bansiya and Davis [2002]

Design patterns
Gamma et al. [1994]

Bieman et al. [2001; 2003]
Vokac [2004]

Di Penta et al. [2008]

Antipatterns
Brown [1998]

Ignatios et al.[2003, 2004]
Du Bois et al. [2006]
Olbrich et al. [2009]

DEQUALITE, a method to systematically build quality models
that take into account both the internal attributes of the systems
and their designs

This method allows us to build quality models that outperform
state-of-the-art models built with class metrics only

23/100

Related Work and Contributions

Change-proneness, fault-
proneness

1
Identification of quality attributes

DEQUALITE

Source code of
systems

Refine models

Identification of quality-carrying design
specifications

B
ui

ld
in

g
ax

io
m

s

Antipatterns, design
patterns, code smells

Bayesian Belief Networks
quality models

Ev
al

ua
tio

n

Source code, changes, and
faults of systems

1

2 3 4

Quality models

Boehm [1976]
McCall et al. [1977]

ISO 9126 [1991]
Dromey [1995]

Bansiya and Davis [2002]

Design patterns
Gamma et al. [1994]

Bieman et al. [2001; 2003]
Vokac [2004]

Di Penta et al. [2008]

Antipatterns
Brown [1998]

Ignatios et al.[2003, 2004]
Du Bois et al. [2006]
Olbrich et al. [2009]

24/100

Related Work and Contributions

Change-proneness, fault-
proneness

1
Identification of quality attributes

DEQUALITE

Source code of
systems

Refine models

Identification of quality-carrying design
specifications

B
ui

ld
in

g
ax

io
m

s

Antipatterns, design
patterns, code smells

Bayesian Belief Networks
quality models

Ev
al

ua
tio

n

Source code, changes, and
faults of systems

1

2 3 4

Quality models

Boehm [1976]
McCall et al. [1977]

ISO 9126 [1991]
Dromey [1995]

Bansiya and Davis [2002]

Design patterns
Gamma et al. [1994]

Bieman et al. [2001; 2003]
Vokac [2004]

Di Penta et al. [2008]

Antipatterns
Brown [1998]

Ignatios et al.[2003, 2004]
Du Bois et al. [2006]
Olbrich et al. [2009]

An empirical study of the impact of playing roles in a (some)
design pattern(s) for a class, on the internal (class metrics) and
external (change- and fault-proneness) characteristics of classes

Roles in design patterns significantly affect the structure of
classes as well as their change- and fault-proneness

25/100

Related Work and Contributions

Change-proneness, fault-
proneness

1
Identification of quality attributes

DEQUALITE

Source code of
systems

Refine models

Identification of quality-carrying design
specifications

B
ui

ld
in

g
ax

io
m

s

Antipatterns, design
patterns, code smells

Bayesian Belief Networks
quality models

Ev
al

ua
tio

n

Source code, changes, and
faults of systems

1

2 3 4

Quality models

Boehm [1976]
McCall et al. [1977]

ISO 9126 [1991]
Dromey [1995]

Bansiya and Davis [2002]

Design patterns
Gamma et al. [1994]

Bieman et al. [2001; 2003]
Vokac [2004]

Di Penta et al. [2008]

Antipatterns
Brown [1998]

Ignatios et al.[2003, 2004]
Du Bois et al. [2006]
Olbrich et al. [2009]

26/100

Related Work and Contributions

Change-proneness, fault-
proneness

1
Identification of quality attributes

DEQUALITE

Source code of
systems

Refine models

Identification of quality-carrying design
specifications

B
ui

ld
in

g
ax

io
m

s

Antipatterns, design
patterns, code smells

Bayesian Belief Networks
quality models

Ev
al

ua
tio

n

Source code, changes, and
faults of systems

1

2 3 4

Quality models

Boehm [1976]
McCall et al. [1977]

ISO 9126 [1991]
Dromey [1995]

Bansiya and Davis [2002]

Design patterns
Gamma et al. [1994]

Bieman et al. [2001; 2003]
Vokac [2004]

Di Penta et al. [2008]

Antipatterns
Brown [1998]

Ignatios et al.[2003, 2004]
Du Bois et al. [2006]
Olbrich et al. [2009]

An empirical study of the impact of antipatterns on class
change- and fault-proneness

Classes participating in antipatterns are significantly more
likely to be subject to changes and to be involved in fault-
fixing issues than other classes

27/100

Related Work and Contributions

Change-proneness, fault-
proneness

1
Identification of quality attributes

DEQUALITE

Source code of
systems

Refine models

Identification of quality-carrying design
specifications

B
ui

ld
in

g
ax

io
m

s

Antipatterns, design
patterns, code smells

Bayesian Belief Networks
quality models

Ev
al

ua
tio

n

Source code, changes, and
faults of systems

1

2 3 4

Quality models

Boehm [1976]
McCall et al. [1977]

ISO 9126 [1991]
Dromey [1995]

Bansiya and Davis [2002]

Design patterns
Gamma et al. [1994]

Bieman et al. [2001; 2003]
Vokac [2004]

Di Penta et al. [2008]

Antipatterns
Brown [1998]

Ignatios et al.[2003, 2004]
Du Bois et al. [2006]
Olbrich et al. [2009]

An empirical study of the interaction between antipatterns
and design patterns in systems

When antipatterns and design patterns co-occur in a class, the
negative effect of antipattern is mitigated

28/100

Outline

Introduction
Related Work and Contributions
Experimentations
Quality Models and Implementation
Threats to the Validity
Conclusion and Future Work

29/100

Change-proneness,
fault-proneness

1
Identification of quality attributes

DEQUALITE

Source code of
systems

Refine models

Identification of quality-carrying
design specifications

B
ui

ld
in

g
ax

io
m

s

Antipatterns, design
patterns, code smells

Bayesian Belief
Networks quality models

Ev
al

ua
tio

n

Source code, changes,
and faults of systems

2 3 4

Quality models

1

30/100

Identification of Quality Attributes

Change-proneness
– It refers to whether a class underwent at

least a change between two given releases

Fault-proneness
– It refers to whether a class underwent at

least a fault-fixing between two given
releases

31/100

B
ui

ld
in

g
ax

io
m

s

Ev
al

ua
tio

n

32/100

Design Specifications

The most popular forms of design
implementations in systems are:
– Design patterns: “good” solutions to design

problems
• Claim to improve the quality of systems

– Antipatterns: “poor” solutions to design
problems

• Claim to make object-oriented systems harder to
maintain

– Few empirical evidences support these claims

33/100

Research Questions

Design Patterns and Quality
– What is the impact of design patterns on the change- and

fault-proneness of classes?

Antipatterns and Quality
– What is the impact of antipatterns on the change- and fault-

proneness of classes?

Relation between Antipatterns and Design Patterns
– What is the interaction between antipatterns and design

patterns and their impact on the change- and fault-
proneness of classes?

34/100

Method and Needs

We follow a Goal-Question-Metric
methodology
– Define sub-research questions
– Formulate null hypotheses
– Define variables
– Perform statistical analyses

• Fisher’s exact test
• Logistic regression model
• Stepwise regression
• Wilcoxon rank-sum test
• We compute Odds ratios (OR)
• We compute sample sizes
• We compute effect sizes

35/100

Method and Needs

Needs:
– A population of systems
– A list of design patterns
– A list of antipatterns
– Data on changes
– Data on faults

36/100

Method and Needs

A population of systems
– Eclipse ~ 3,756,164 LOCs
– JDT Core ~ 528,522 LOCs
– ArgoUML ~ 316,971 LOCs
– Mylyn ~ 276,401 LOCs
– Xalan ~ 259,286 LOCs
– Xerces ~ 86,814 LOCs
– Azureus ~ 83,534 LOCs
– Rhino ~ 79,406 LOCs
– JHotDraw ~ 44,898 LOCs

37/100

Method and Needs

A list of design
patterns
– Adapter (A)
– Command (Cmd)
– Composite (C)
– Decorator (D)
– Factory Method (FM)

– Observer (O)
– Prototype (P)
– State (S)
– Template Method (TM)
– Visitor (V)

38/100

Method and Needs

A list of
antipatterns
– AntiSingleton
– Blob
– ClassDataShouldBe

Private (CDSBP)
– ComplexClass
– LargeClass
– LazyClass
– LongMethod

– LongParameterList
(LPL)

– MessageChains
– RefusedParentBequest

(RPB)
– SpaghettiCode
– SpeculativeGenerality

(SG)
– SwissArmyKnife

39/100

Method and Needs

Data on changes
– We count the number of changes ci,k that a

class underwent between two subsequent
releases rk and rk+1

– Changes are identified, for each class in a
system, by looking at commits in the
control-version system (CVS or SVN); for
each class, we counted, the number of
commits related to that class

40/100

Faults

Need: Data on faults
– We count the number of fault-fixing issues

occurring to a class between two
subsequent releases rk and rk+1

– We considered a set of manually-validated
and publicly-available faults for Mylyn and
Rhino

41/100

B
ui

ld
in

g
ax

io
m

s

Ev
al

ua
tio

n

42/100

Design Patterns

Sub-research questions:
– RQ1: What is the proportion of classes playing zero,

one, or two roles in some design patterns?

– RQ2: What are the internal characteristics of a class
that are the most impacted by playing one or two roles
with respect to playing less roles?

– RQ3: What are the external characteristics (change-
and fault-proneness) of a class that are the most
impacted by playing one or two roles with respect to
playing less roles?

43/100

Variables (1/3)

Independent variables
– Three samples of classes playing zero,

one, and two roles in design motifs
• We name these samples

– 0-role sample
– 1-role sample
– 2-role sample

• We use DeMIMA to extract design patterns
[Guéhéneuc and Antoniol, 2008]

44/100

Variables (2/3)
Independent variables

Set of all classes and
interfaces belonging to the 6
programs

Population of classes playing
0 roles in some design motifsManually validated sample of

0-role classes

Subset of the classes
in the general
population that has
been manually
studied to identify 0-
role classes

We manually validated 238 classes

45/100

Variables (3/3)

Dependent variables
– 56 different metrics from the literature

• Coupling metrics
• Complexity metrics
• Cohesion metrics
• Inheritance metrics
• Polymorphism and size

– Change proneness
– Fault proneness

46/100

Results (1/4)

RQ1
– Classes playing

one or two roles
do exist in
programs and are
not negligible

47/100

Results (2/4)
RQ2

Not significant (8) Significant 29 48 26

48/100

Results (3/4)
RQ2

49/100

Results (4/4)

RQ3

– Playing roles do impact the number of changes
and issues as well as the frequencies of the
changes

– Yet, no significant difference between one/two
roles for change- and issues-proneness

50/100

Summary on Design Patterns

In average, 8% of the classes of the six studied
programs played 1 role in some design pattern

In average, 18% of the classes of the six studied
programs played 2 roles in some design patterns

Playing 1 or 2 roles in a design pattern has a
significant impact on the structure of classes:
coupling, cohesion, inheritance, connectivity,
complexity…

Playing 1 or 2 roles in a design pattern have a
significant impact on the change- and issue-
proneness of classes

51/100

B
ui

ld
in

g
ax

io
m

s

Ev
al

ua
tio

n

52/100

Antipatterns

Sub-research questions
– RQ1and RQ2: What is the relation between

antipatterns and change- and fault- proneness?

– RQ3 and R4: What is the relation between
particular kinds of antipatterns and change- and
fault-proneness?

– RQ5: What kind of changes are performed on
classes participating or not in antipatterns?

53/100

Variables (1/2)

Independent variables
– 13 kinds of antipatterns

• We counted the number of times a class i has
an antipattern j in a release rk

• We use DECOR to extract antipatterns [Moha et
al., 2009]

54/100

Variables (2/2)

Dependent variables
– Class change-proneness
– Class fault-proneness
– Kinds of changes

• We counted as the number of each kind of
changes occurring to a class participating in an
antipattern in release k

– Structural changes: addition/removal/change
of/to attributes, addition/removal of methods, or
changes to the method signatures

– Non-structural changes: changes in method
implementation

55/100

Results (1/4)
RQ1 and RQ2: antipatterns and changes/faults

Classes with antipatterns are more change/faults-prone than others, few
exceptions for Eclipse

56/100

Results (2/4)
RQ3 and RQ4: kinds of antipatterns and
changes/faults

MessageChains are consistently and significantly
correlated to more changes/faults

57/100

Results (3/4)
RQ5: kinds of changes and antipatterns

58/100

Results (4/4)

RQ5: kinds of changes and antipatterns

Structural changes occur more often on
classes belonging to antipatterns than
other kinds of changes

59/100

Summary on Antipatterns

Classes with antipatterns are more
change/fault-prone, with high odds ratios

MessageChains are consistently and
significantly correlated to more
changes/faults

Structural changes occur more often on
classes belonging to antipatterns than other
kinds of changes. However the effect of this
relation is small

60/100

B
ui

ld
in

g
ax

io
m

s

Ev
al

ua
tio

n

61/100

Design Patterns & Antipatterns

Research questions
– RQ1: What is the number of classes participating

in antipatterns and design patterns?

– RQ2: What is the impact on change-proneness
for a class to participate both in some
antipatterns and design patterns?

– RQ3: What is the impact of playing roles in
particular kinds of antipatterns and design
patterns with respect to change-proneness?

62/100

Variables (1/2)

Independent variables
– 13 kinds of antipatterns

• We counted the number of times a class i has
an antipattern j in a release rl

• We use DECOR to extract antipatterns [Moha et
al., 2009]

– 10 kinds of design patterns
• We counted the number of times a class i has

an antipattern j and plays a role in a design
pattern k in a release rl

• We use DeMIMA to extract design patterns
[Guéhéneuc and Antoniol, 2008]

63/100

Variables (2/2)

Dependent variables

– Class change-proneness

64/100

Results (1/4)

RQ1: proportion of co-occurrences

65/100

Results (2/4)

RQ2: antipatterns + design patterns and change-
proneness

66/100

Results (3/4)
RQ3: design patterns/antipatterns “love” relation

67/100

Results (4/4)
RQ3: design patterns/antipatterns “hate” relation

68/100

Summary on AP—DP Relation

The percentages of classes that participate in co-
occurrences of antipatterns and design patterns range
between 28% and 68%

In all systems but Eclipse-JDT, class change-
proneness odds ratios significantly decrease for
classes participating in both antipatterns and design
patterns with respect to classes participating in
antipatterns only

When a class is properly designed using some design
patterns, even if it participates in (or decays towards)
antipatterns, the negative effect of the antipatterns is
mitigated by the robustness from the design patterns

69/100

Outline

Introduction
Related Work and Contributions
Experimentations
Quality Models and Implementation
Threats to the Validity
Conclusion and Future Work

70/100

Change-proneness,
fault-proneness

1
Identification of quality attributes

DEQUALITE

Source code of
systems

Refine models

Identification of quality-carrying
design specifications

B
ui

ld
in

g
ax

io
m

s

Antipatterns, design
patterns, code smells

Bayesian Belief
Networks quality models

Ev
al

ua
tio

n

Source code, changes,
and faults of systems

2 3 4

Quality models

1

71/100

Building Quality Models (1/2)

Robustness

Modularity

Maintainability

Process metrics Model
BBNs

Structural metrics

Complex changes metrics

Fault-proneness

Change-proneness

design

Design patterns

Data collection Prediction

Antipatterns

72/100

Building Quality Models (2/2)

Goal
– Obtain prediction models to help

developers determine where to focus their
inspection efforts in systems

– We use Bayesian Belief Networks (BBNs),
which handle uncertainty

73/100

BBNs (1/4)

A Bayesian Belief Network is a directed
acyclic graph with probability distribution

Graph structure
– Nodes = random variables
– Edges = probabilities dependencies

Each node depends only on its parents

74/100

BBNs (2/4)

Classifier
– C1 = {change-prone, not change-prone}
– C2 = {fault-prone, not fault-prone}

Input vector describing a class
– <a1 , …, an >
– P(A|B) = P(B|A) P(A) / P(B)

75/100

BBNs (3/4)

Building a BBN
– Define its structure
Input Nodes:

characterizations of
the design of a class

• Number of roles
played in a
design patterns

• Number of
antipatterns

Output Nodes:
probability that the
class is change-
/fault- prone

76/100

BBNs (4/4)

Building a BBN
– Assign/learn its probability tables

Release k

Intra-system

Training
Build the model

Testing
asses the model

Release k+1

Inter-system

Training
Build the model

Testing
asses the model

System B

System A

77/100

Change-proneness,
fault-proneness

1
Identification of quality attributes

DEQUALITE

Source code of
systems

Refine models

Identification of quality-carrying
design specifications

B
ui

ld
in

g
ax

io
m

s

Antipatterns, design
patterns, code smells

Bayesian Belief
Networks quality models

Ev
al

ua
tio

n

Source code, changes,
and faults of systems

2 3 4

Quality models

1

78/100

Evaluation (1/5)

Research questions
– RQ1: To what extent a BBN quality model

built using our method is able to predict
change/fault-prone classes in a system?

– RQ2: Are the results of a BBN built using
our method better than state-of-the-art
prediction models with metrics?

79/100

Evaluation (2/5)
RQ1: precision/recall of BBNs (change-proneness)

Intra-system (Rhino, Training: Rhino)

80/100

Evaluation (3/5)

Inter-system (Rhino, Training: mylyn)

RQ1: precision/recall of BBNs (change-proneness)

81/100

Evaluation (4/5)

RQ2: Comparison with state-of the-art
metrics models
– Replication of Zimmermann’s study

• Logistic regression

• A model taking into account the design of system have a
better accuracy in predicting fault-prone classes than a
model based on metrics solely

82/100

Evaluation (5/5)

– Bansiya’s QMOOD model (Mylyn)
• Among the top 20% of classes considered less

reusable, less flexible, and less extensible by
QMOOD:

– 71% of them were change-prone classes ;
– 98% of them were predicted as change-prone by the

BBN with;
– 69% of these classes being among the top 20%

results of the BBN
• Even though the BBN was not designed to

measure the exact same attributes as QMOOD
it can be almost as effective as QMOOD in
detecting problematic classes in systems

83/100

Summary on Quality Models

BBNs built from DEQUALITE showed high precision
and recall and a capability to assign high probabilities
to candidate classes that are indeed change-prone

BBNs obtained from DEQUALITE are in general
equivalent or superior to these of a state-of-the-art
model with metrics and that when BBNs are improved
with metrics, their accuracy increase

BBNs obtained from DEQUALITE could be as
effective as QMOOD in detecting problematic classes
in systems

84/100

Change-proneness,
fault-proneness

1
Identification of quality attributes

DEQUALITE

Source code of
systems

Refine models

Identification of quality-carrying
design specifications

B
ui

ld
in

g
ax

io
m

s

Antipatterns, design
patterns, code smells

Bayesian Belief
Networks quality models

Ev
al

ua
tio

n

Source code, changes,
and faults of systems

2 3 4

Quality models

1

85/100

Implementation: SQUANER

The quality models developed in this
research are available online in our
portal, SQUANER at:
http://www.squaner.khomh.net/

http://www.squaner.khomh.net/

86/100

Outline

Introduction
Related Work and Contributions
Experimentations
Quality Models and Implementation
Threats to the Validity
Conclusion and Future Work

87/100

Threats to the Validity

Construct validity: relation between theory and observation
– Manually validated instances of motifs

Internal validity: causal inferences
– No claim of causation, only relation

Conclusion validity: relation between the treatment and the
outcome
– Statistic tests properly used

Reliability validity: possibility of replicating this study
– Details for replication available at:

http://khomh.net/experiments/thesis/

External validity: possibility to generalise our results
– Generalisation requires further studies

88/100

Outline

Introduction
Related Work and Contributions
Experimentations
Quality Models and Implementation
Threats to the Validity
Conclusion and Future Work

89/100

Conclusion (1/3)

Quality models built with DEQUALITE
achieve high precision and recall in predicting
change-prone classes

Results are in general equivalent or superior
to these of state-of-the-art models with
metrics when predicting fault-prone classes

The accuracy of fault-proneness models built
with DEQUALITE increases when they are
improved with new information on systems,
like class sizes

90/100

Conclusion (2/3)

Contrary to quality models, DEQUALITE
BBNs-based model, provides in addition
to the probability that a class is of bad
quality,
– The list of design patterns on the class
– The list of antipatterns on the class

91/100

Conclusion (3/3)

“By considering system design; in particular the
presence of design patterns and antipatterns, it is
possible to build better quality models than simply
by considering the internal attributes of classes”

We have provided:
– Quantitative evidence that design patterns and

antipatterns have an impact on the quality of systems
– And that taking them into account improve prediction

Thus proving our thesis

92/100

Lessons Learned (1/2)

Tangled implementations of design
patterns exist and significantly affect the
structure of classes
– A particular attention should be paid to

classes playing roles in design motifs; in
particular classes playing two roles

93/100

Lessons Learned (2/2)

Classes participating in antipatterns are
significantly more likely to be subject to
changes and to be involved in fault-fixing
changes than other classes
– MessageChains, a violation of the Law of

Demeter, are consistently related to more
changes and faults

A not negligible percentage of classes
participate in co-occurrences of antipatterns
and design patterns in systems
– Design patterns have a positive effect in

mitigating antipatterns

94/100

Future Work (1/2)

Extend DEQUALITE to include new sources
of information on systems, like source code
identifiers

Extend DEQUALITE to assess more
subjective quality attributes like
understandability
– We are currently performing a series of

controlled experiments to analyse the effect of
various antipatterns on the understandability of
systems

95/100

Future Work (2/2)

Study the usability of a quality model in
a software development environment

Replicate our study to build quality
models for multi-language systems

Replicate our study to control for faults
when studying changes, and for
changes when studying faults

96/100

Publications (1/4)

Articles in journals
1. Foutse Khomh, Massimiliano Di Penta, Yann-Gaël Guéhéneuc, and Giuliano Antoniol,

(2010) An Exploratory Study of the Impact of Antipatterns on Class Change- and Fault-
Proneness, Journal of Empirical Software Engineering (EMSE) (under revision).

2. Foutse Khomh, Stéphane Vaucher, Yann-Gaël Guéhéneuc, and Houari Sahraoui, (2010)
BDTEX: A GQM-based Bayesian Approach for the Detection of Antipatterns, Journal of
Systems and Software (JSS) (under revision).

Book chapter
1. Foutse Khomh and Yann-Gaël Guéhéneuc, (2010) Construction de modèles de qualité

prenant en compte la conception des systèmes et présentation d'un tel modèle de
qualité, Evolution et Rénovation des Systèmes Logiciels , Hermes, (To appear)

Conference articles
1. Nicolas Haderer, Foutse Khomh, and Giuliano Antoniol, SQUANER: A Framework for

Monitoring the Quality of Software Systems, Proceedings of the 26th IEEE International
Conference on Software Maintenance (ICSM'10), Tool Demonstrations track, September
12-18, 2010, Timișoara, Romania. IEEE Computer Society Press.

2. Salima Hassaine, Foutse Khomh, Yann-Gaël Guéhéneuc, and Sylvie Hamel (2010) IDS:
An Immunology-inspired Approach for the Detection of Software Design Smells, In
Proceedings of the Quality in Reengineering and Refactoring track at the 7th
International Conference on the Quality of Information and Communications Technology
(QUATIC).

97/100

Publications (2/4)
3. Rocco Oliveto, Foutse Khomh, Giuliano Antoniol, and Yann-Gaël Guéhéneuc (2010)

Numerical Signatures of Antipatterns: An Approach based on B-Splines, In Proceedings
of the 14th European Conference on Software Maintenance and Reengineering (CSMR).

4. Foutse Khomh, Massimiliano Di Penta and Yann-Gaël Guéhéneuc, (2009) An
Exploratory Study of the Impact of Code Smells on Software Change-proneness, In
Proceedings of the 16th Working Conference on Reverse Engineering (WCRE), October
13-16, Lille, France. IEEE Computer Society Press.

5. Stéphane Vaucher, Foutse Khomh, Naouel Moha and Yann-Gaël Guéhéneuc, (2009)
Tracking Design Smells: Lessons from a Study of God Classes, In Proceedings of the
16th Working Conference on Reverse Engineering (WCRE), October 13-16, Lille, France.
IEEE Computer Society Press.

6. Foutse Khomh, Yann-Gaël Guéhéneuc, and Giuliano Antoniol, (2009) Playing Roles in
Design Patterns: An Empirical Descriptive and Analytic Study, In Proceedings of the 25th
IEEE International Conference on Software Maintenance (ICSM), September 20-26,
Edmonton, Alberta, Canada. IEEE Computer Society Press.

7. Foutse Khomh, Stéphane Vaucher, Yann-Gaël Guéhéneuc, and Houari Sahraoui, (2009)
A Bayesian Approach for the Detection of Code and Design Smells, In Proceedings of
the 9th International Conference on Quality Software (QSIC), August 24-25, Jeju, Korea.
IEEE Computer Society Press.

8. Foutse Khomh, Yann-Gael Gueheneuc, (2008) Do Design Patterns Impact Software
Quality Positively?, In Proceedings of the 12th European Conference on Software
Maintenance and Reengineering (CSMR), du 1-4 avril, Athènes, Grèce. IEEE Computer
Society Press.

98/100

Publications (3/4)

9. Giuliano Antoniol, Kamel Ayari, Massimiliano Di Penta, Foutse Khomh, Yann-Gaël
Guéhéneuc, (2008) Is it a Bug or an Enhancement? A Text-based Approach to Classify
Change Requests, In Proceedings of the 18th IBM Centers for Advanced Studies
Conference (CASCON), Toronto, CA, October 27 - 30. ACM Press.

10. Naouel Moha, Foutse Khomh, Yann-Gaël Guéhéneuc, (2008) Génération automatique
d'algorithmes de détection des défauts de conception, In Proceedings of the 14ème
Colloque International sur les Langages et Modèles à Objet (LMO), du 2 -7 mars,
Montréal, Quebec, Canada. Éditions Cépaduès.

11. Foutse Khomh, (2009) SQUAD: Software Quality Understanding through the Analysis of
Design, Doctoral Symposium, 16th Working Conference on Reverse Engineering
(WCRE), October 13-16, Lille, France. IEEE Computer Society Press.

12. Foutse Khomh, Yann-Gaël Guéhéneuc, (2008) DEQUALITE: Building Design-based
Software Quality Models, In Proceedings of the 2nd PLoP Workshop on Software
Patterns and Quality (SPAQu), October 18-20, Nashville, Tennessee, USA. ACM Press.

13. Foutse Khomh, Yann-Gael Gueheneuc, (2007) Perception and Reality: What are Design
Patterns Good For? In Proceedings of the 11th ECOOP Workshop on Quantitative
Approaches in Object-Oriented Software Engineering (QAOOSE), July 31st, Berlin,
Germany. Springer-Verlag.

99/100

Publications (4/4)
Posters and tools

1. Foutse Khomh, (2009) SQUAD: Software Quality Understanding through the Analysis of
Design, Consortium for Software Engineering Research (CSER), April 26-27, Montréal, Canada.

2. Yann-Gaël Guéhéneuc, Janice Ka-Yee Ng, Duc-Loc Huynh, Foutse Khomh, (2006) Ptidej: A
Tool Suite, IBM CASCON, Oct, 2006, Toronto, Canada.

Technical reports
1. Foutse Khomh, Massimiliano Di Penta and Yann-Gaël Guéhéneuc, (2009) An Exploratory

Study of the Impact of Code Smells on Software Change-proneness,Technical report, Ecole
Polytechnique de Montréal.

2. Foutse Khomh, Massimiliano Di Penta, Yann-Gaël Guéhéneuc and Guiliano Antoniol, (2009) An
Exploratory Study of the Impact of Antipatterns on Software Changeability, Technical report
EPM-RT-2009-02, Ecole Polytechnique de Montréal.

3. Foutse Khomh, Yann-Gaäel Guéhéneuc and Giuliano Antoniol, (2009) Playing Roles in Design
Patterns: An Empirical Descriptive and Analytic Study, Technical report EPM-RT-2009-03,
Ecole Polytechnique de Montréal.

4. Foutse Khomh, Naouel Moha and Yann-Gaël Guéhéneuc, (2009) DEQUALITE : méthode de
construction de modèles de qualité prenant en compte la conception des systèmes, Technical
report EPM-RT-2009-04, Ecole Polytechnique de Montréal.

5. Simon Denier, Foutse Khomh, and Yann-Gael Guéhéneuc, (2008) Reverse-Engineering the
Literature on Design Patterns and Reverse-Engineering, Technical report EPM-RT-2008-09,
Ecole Polytechnique de Montréal.

6. Foutse Khomh and Yann-Gael Guéhéneuc, (2008) An Empirical Study of Design Patterns and
Software Quality, Technical report 1315, University of Montréal.

100/100

Questions

Thank you for listening

101/100

References
Boehm [1976] B. W. Boehm, J. R. Brown, and M. Lipow. Quantitative evaluation of software quality. In Proceedings of the 2nd international
conference on Software engineering, pages 592-605. IEEE Computer Society Press, 1976.McCall et al. [1977] J. A. McCall, P. K. Richards,
and G. F Walters. Factors in software quality. In Nat'l Tech. Information Service, editor, Nat'l Tech. Information Service, 1, 2 and 3, 1977.

ISO 9126 [1991] ISO 9126. Information Technology-Software Product Evaluation-Quality Characteristics and Guidelines for their Use. ISO/IEC,
December 1991. ISO/IEC 9126:1991(E)

Dromey [1995] R. Geoff Dromey. A model for software product quality. IEEE Transactions on Software Engineering, 21(2):146-162. IEEE,
february 1995.

Bansiya and Davis [2002] Jagdish Bansiya and Carl G. Davis. A hierarchical model for object-oriented design quality assessment. In IEEE CS
Press, editor, IEEE Trans. on Software Engineering, 28:4-17, Jan. 2002.

[Moha et al., 2009] Naouel Moha, Yann-Gaeel Gueheneuc, Laurence Duchien, and Anne-Francoise Le Meur. DECOR: A method for the
specification and detection of code and design smells. In Mark Harman, editor, Transactions on Software Engineering (TSE). IEEE Computer
Society Press, 2009.

[Guéhéneuc and Antoniol, 2008] Yann-Gael Guéhéneuc and Giuliano Antoniol. DeMIMA: A multi-layered framework for design pattern
identification. In Sebastian Elbaum and David S. Rosenblum, editors, Transactions on Software Engineering (TSE), 34(5):667-684. IEEE
Computer Society Press, September 2008. 18 pages.

[Gamma et al., 1994] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns-Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1st edition, 1994. isbn: 0-201-63361-2.

[Briand and WÄust, 2002] Lionel C. Briand and JÄurgen WÄust. Empirical studies of quality models in object-oriented systems. In Marvin
Zelkowitz, editor, Advances in Computers. Academic Press, 2002.

[Brown et al., 1998] William J. Brown, Raphael C. Malveau, William H. Brown, Hays W. McCormick III, and Thomas J. Mowbray. Anti Patterns:
Refactoring Software, Architectures, and Projects in Crisis. John Wiley and Sons, 1st edition, March 1998. isbn: 0-471-19713-0.

[Ignatios et al., 2003] Deligiannis Ignatios, Stamelos Ioannis, Angelis Lefteris, Roumeliotis Manos, and Shepperd Martin. A controlled
experiment investigation of an object oriented design heuristic for maintainability. In Elsevier, editor, Journal of Systems and Software, 65(2).
Elsevier, February 2003.

[Bois et al., 2006] Bart Du Bois, Serge Demeyer, Jan Verelst, Tom Mens, and Marijn Temmerman. Does god class decomposition affect
comprehensibility? In Proceedings of the IASTED Inter national Conference on Software Engineering, pages 346{355. IASTED/ACTA
Press,2006.

	Patterns and Quality of Object-oriented Software Systems
	Context
	Outline
	Outline
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	DEQUALITE (1/2)
	DEQUALITE (1/2)
	DEQUALITE (1/2)
	DEQUALITE (1/2)
	DEQUALITE (1/2)
	DEQUALITE (2/2)
	Outline
	Related Work and Contributions
	Related Work and Contributions
	Related Work and Contributions
	Related Work and Contributions
	Related Work and Contributions
	Related Work and Contributions
	Related Work and Contributions
	Outline
	Slide Number 29
	Identification of Quality Attributes
	Slide Number 31
	Design Specifications
	Research Questions
	Method and Needs
	Method and Needs
	Method and Needs
	Method and Needs
	Method and Needs
	Method and Needs
	Faults
	Slide Number 41
	Design Patterns
	Variables 				(1/3)
	Variables 				(2/3)
	Variables				 (3/3)
	Results					 (1/4)
	Results					 (2/4)
	Results					 (3/4)
	Results					 (4/4)
	Summary on Design Patterns
	Slide Number 51
	Antipatterns
	Variables				 (1/2)
	Variables				 (2/2)
	Results (1/4)
	Results (2/4)
	Results (3/4)
	Results (4/4)
	Summary on Antipatterns
	Slide Number 60
	Design Patterns & Antipatterns
	Variables (1/2)
	Variables (2/2)
	Results (1/4)
	Results (2/4)
	Results (3/4)
	Results (4/4)
	Summary on AP—DP Relation
	Outline
	Slide Number 70
	Building Quality Models (1/2)
	Building Quality Models (2/2)
	BBNs						(1/4)
	BBNs						(2/4)
	BBNs						(3/4)
	BBNs						(4/4)
	Slide Number 77
	Evaluation (1/5)
	Evaluation (2/5)
	Evaluation (3/5)
	Evaluation (4/5)
	Evaluation (5/5)
	Summary on Quality Models
	Slide Number 84
	Implementation: SQUANER
	Outline
	Threats to the Validity
	Outline
	Conclusion (1/3)
	Conclusion (2/3)
	Conclusion (3/3)
	Lessons Learned (1/2)
	Lessons Learned (2/2)
	Future Work (1/2)
	Future Work (2/2)
	Publications (1/4)
	Publications (2/4)
	Publications (3/4)
	Publications (4/4)
	Questions
	References

