UNIVERSITE DE MONTREAL

SOURCE CODE AND LICENSE STATEMENT CO-EVOLUTION

FERDAOUS BOUGHANMI
DEPARTEMENT DE GENIE INFORMATIQUE ET GENIE LOGICIEL
ECOLE POLYTECHNIQUE DE MONTREAL

MEMOIRE PRESENTE EN VUE DE L’OBTENTION DU DIPLOME DE
MAITRISE ES SCIENCES APPLIQUEES
(GENIE INFORMATIQUE ET GENIE LOGICIEL)
NOVEMBRE 2012

(© Ferdaous Boughanmi, 2012.



UNIVERSITE DE MONTREAL

ECOLE POLYTECHNIQUE DE MONTREAL

Ce mémoire intitulé :

SOURCE CODE AND LICENSE STATEMENT CO-EVOLUTION

présenté
par : Mme BOUGHANMI Ferdaous

en vue de I'obtention du diplome de : Maitrise és Sciences Appliquées

a été dument accepté par le jury constitué de :

M. ADAMS Bram, Doct., président.

M. ANTONIOL Giuliano, Ph.D., membre et directeur de recherche.

M. GUEHENEUC Yann-Gaél, Ph.D., membre et directeur de recherche.
M. C. DESMARAIS Michel, Ph.D.; membre.




Eﬂzl.\'sln iii
c vs . . “s' s
[ d p 4 —
Résumé rers o

r la réutilisation de composants logi-
(e.g., Apache, BSD, GPL, ou LGPL)

Différentes licenses imposent des limitations et des conditions différentes sur la réutilisfption

Les logiciels libres reposent largement

ciels disponibles sous une variété de lic

d’un programme et sa redistribution ce qui rend difficile la compréhension des con
traintes juridiques imposées au systeme final. La license d’un fichier est spécifié par
une déclaration de license. Les déclarations de licence sont des snippets de texte
insérées en haut du code source ou de tout autre fichier qui spécifie la license sous
laquelle le fichier peut étre réutilisé, ainsi que les contributeurs qui possédentées
droits d’auteur sur le fichier. Les déclarations de license ne sont pas un concept sta-
tique, car les projets peuvent mettre a jour leur licenses (version ou type) ou ajouter
des contributeurs. Comme ces changements peuvent avoir un impact majeur sur un
systeme en terme de sa distribution etsﬁcilisa‘cion, il est important de comprendre
quand ils se produisent au cours du développement relativement a l’évolution du
source code,de changement des licenses peut étre pendant d’importantes modifica-
tions ou indépendamment de I’évolution des modifications du syst\emé combien de
fois ils se produisent (rare @curan‘cs)@ et qui les effectue (experts vg{d¥veloppeurs

réguliers). Nous proposons donc’ un méta&modele pour effectuer des analyses qui per-

mettent la detection des problemes d? license et pxé ation
: e <lleckver dos = . .
structuree qui peut etre utiisé—dans 1es études reliées aux licenses. Ensuite, nous

présentons une étude sur la co-évolution des déclarations de license et le code source
dans sept systemes OSS : JFreeChart, Jitsi, PHP, Rhino, Tomcat, XalanJ et XercesJ.
Notre étude montre que ce n’est que dans quelques cas, dans PHP, que é‘é:';olutioﬁ des
déclarations de licenses et celle du logiciel sont soigneusement planifiéS et géréS en-
semble juste avant les versions majeures. Dans tous les systemes, les développeurs qui
effectuent plus de changement de code sourceg sont aussi les plus actifs mainteneurs
de license. Notre travail permet de comprendre quand les déclarations de license
sont changées et permet d’identifier les développeurs qui effectuent ces changementsg,
(r\llatre travail est un travail préliminaire afin de mieux controler I'impact de ces change-
ments sur le systeme, i.e., éviter 'introduction des inconsistences en proposant wae
réthodetogtepourTa—gestion des changement de license& basées sor autce
Aes &Sta Le veaficaWon Meatamasz(a



v

Abstract

Open-source software (OSS) systems heavily rely on the reuse of software compo-
nents made available under a variety of software licenses (e.g., Apache, BSD, GPL,
or LGPL). Different licenses impose different limitations and conditions on program
reuse and redistribution thus making it difficult to understand the legal constraints
for the final system. The file license is specified using a license statement. License
statements are snippets of text near the top of a source code or other files that specify
the software license under which the file can be used g as well as which contributors
own copyrights over the file. Such license statements are not static because projects
might update the licenses (version or type) or add contributors. Such changes can
have a major impact on a software system, so it is important to understand when they
happen during development (with major souce code changes vs.independently), how
often they happen rare V’urrlng and who performs them (experts V@gular

developers).

meta-model could help analyse to detect license issues in

studies related to licens% In this thesis, we propose a meta—modelebased on previous

. . . Stztemenb @nd tex

work and/on information gathered from license tzzt. Then, we perform a study on the
co-evofution of license statements and source code in seven OSS systems: JFreeChart,
Jit

atement and software evolutiog are carefully planned and managed together just

, PHP, Rhino, Tomcat, XalanJ, and XercesJ. Only in a few cases in PHP, license

before major releases. In all systems, the developers performing most of the commits,
are also the most active license maintainers. Thus, we are able to u@@@stand when
license statements are changed and we identified the developers that perform thizse
changes, Ghr finding are thetrestdtved preliminary wtk to permit better control on

license change impact on the system, i.e., avoid the risk of introducing inconsistencies

by pre

\/su\‘(/ ing litense ol/:wgv , U“ﬂg roles based oa

o e -model,

TnAezA/ we shas hat e,



Contents

Résumé . . . . . .
Abstract . . . . . .
Contents . . . . . . . . e
Chapitre 1 INTRODUCTION . . . . ... . . . . ...
1.1 Context . . . . . .
1.1.1  System Meta-model for . . Licgnse 9".‘4«.(79.55 .........

1.1.2  Co-evolution of License Statements and Source Code . . . . .

1.2 Background . . . . . ...
1.2.1  Open Source Software . . . . . . ... .. ... ... .....

1.2.2  Collective and derivative works . . . . . .. ... .. ... ..

1.2.3 Typesof Licenses . . . . . . . .. ... ... ... ...

1.2.4 Example of licenses: GPL, BSD, and Apache . . . . . . . . ..

1.2.5 License compatibility and constraints . . . . . . . .. ... ..

1.3 Thesis Plan . . . . . . . . . ... . .
Chapitre 2 STATE OF THE ART . . . . . . ... ... ... .. ... ....
2.¢.1 Meta-model and Software License Analysis . . . . . .. .. ..

2.8.2 License Change Analysis . . . . . .. ... ... ... .....

2.48.3 License Identification Tools . . . . . . ... ... ... ... ..
Chapitre 3 SYSTEM META-MODEL FOR LICENSE ANALYSIS . . . . ..
3.1 Meta-model Design . . . . . . ... ..o
3.2 Definitions of Meta-model Constituents . . . . . . . .. ... .. ...
Chapitre 4 SADYASEPYHP Litense A’.“‘.IY.C." S e C° " .C.‘“’.(".('%?". .
4.1 Definition of Our Study . . . . . .. .. ...
4.2 Context . . . . . .
4.3 Setup of the Study . . . . . . .. ..o

4.4 Analysis Methods . . . . . . . . ...

© 00 N1 1~ CU s e



femour talic

vi
4.4.1 RQ1: Do licenses co-evolv¢ with source code at the
system level? . . . . ... /0oL 28
4.4.2 RQ2: What types of license changes are performed? . 30
4.4.3 RQ3: Who performs license changes? . . . . . . . . . .. 30
Chapitre 5 RESULTS AND DISCUSSION \ . . . ... .. ... ... .... 32
5.1 Study Results . . . .. ... .. o\ Lo 32
5.1.1 RQ1: Do licenses co-evglve with source code at the
system level? . . . . . /.. ... ). ... 32

5.1.2 RQ2: What types of license chfanges are performed? 40
5.1.3 RQ3: Who performs lrsense-changes? . . . . . . . . .. 43
5.2 Discussions and Threats to validity . . . . . .. .. ... .. ... .. 48

6.1 T arteetare Overview /. . . ..o 51
6.2 Example of GPLv3 License/Rules . . . . . . . .. .. . .. ... ... 51
Chapitre 7 [CONCLUSION . . . [ . . ... . . ... 55
Références | . . . . . . . 57

Need
Uarff}iag L(CU\SK L’EUA(Q(’)'LV! CL‘MZ&;



Chapter 1

INTRODUCTION

and i\'s

1.1 Context Lo €les [ components

A software license governs the legal use and redistribution of a system and its com-
ponents by dictating what can and cannot be done with the system; e.g., if the users
can access the artifacts?®, if they can modify or enhance # and, more importantly, if
they are allowed to re-distribute the original source code as well as any improvements" !
In open source software (OSS) systems, license information is included in each source
code file as a textual license statement or as a notice file for the whole system or for
each component. Such a statement also includes copyright information: the names of
contributors to the source code file and the copyright owner. The copyright owner of a
software system has exclusive rights to make copies of the system, prepare derivative
works based on it, and distribute copies.&he uses a license to grant permission to the
licensees to use and exploit her intellectual property by granting rights. Each grant
is given provided a set of conditions are satisfied (German et Hassan (2009)).

The availability of OSS systems mainly because of the advent of Free/Open Source
Software (FOSS) and a&woproprietary systems with open APIs and the need for more
rapid product development encourageff creating systems through integration of pre-
existing components. In fact, developers tend to assemble different components in-
stead of writing all the system by themself. This practice leads to systems composed of
heterogenously licensed components, i.e., package, libraries, framework...glrfere each
component, aoutd Tave a different license and the whole system eewtd be licensed

ca
differently from its components. "

Yﬁ@W&QMM{@M@ue to the various rights/obligations
of each license, the large number of licenses, i.e., more than 70 OSS licenses ex-
ist today, and their different Versions/ Hem, it becomes difficult to follow all the

rights/obligation of each license and thgis ‘combination thereof, which increases the

1. In this thesis, we are interested 4z source code Coibhout boss of ?wg,l ;ly .
n



and

(’LLL fiSa(Q a(

ComecHOn

2
Caen

complexity to manage licenses. In addition, the kind of reuse could even |add addi-
tional problems, because the reuse of existing components ki lead to twjo types of

works, i.e., derivative works or collective works. A derivative work is a work based

upon one or more preexisting works in which a work may be recast, transformed, or

adapted’“z, in contrast a collective work is an assembled independent work ghat could

be distributed independently. In general, the case of the creation of deri

poses more constraints ipsametcess. Thus, it is important to know if the cfeated work

is derivative by deterlrnining(t‘:L}fl‘eS gonnectors used to connect % each co
=L

when we connect to GPLe4d componenﬁ wiingy by 1nstan01at1ng a class,

onent, e.g.,

is considered e

derivative Wohthus it is required that th&ﬁ&&»@pkvm licensed under /\ Hee

In fact, one of the major challenge is the reuse of software licensed under reciprocal
licenses e.g., GPL license, to create derivative work becausg gb\re{dﬁzﬁ that the whole
work vl be licensed under the same version of the reciprocal license.

The license of an OSS system aouiCovolve like any other software artifact. Such,
license evolution is driven by many factors, e.g., to make the license more restrictive
by the addition of new terms, or to allow derivative works by adding exceptions. In
fact, a license can either be changed pervasively throughout a software system (e.g.,
the switch GPLv24 to GPLv3), or only locally (e.g., contributor name added to
one file). Furthermore, a license statement evolution can be coarse-grained (switch

to a different license), fine-grained (copyright yearNipdated) or anything in between

((Dl Penta et al. (2010), Checle & g comule teasis

This evolution introduces — se terms violation. Many software systems

(clause added or remove

~—

are composed of different libraries and components; if one component changes ®s
license, then it might no longer be possible to use it because of incompatibility.” We

provide now some examples that show the possible consequencé of license evolution

the author of

implementation.

A second example is the\EJava lasspath exceptipn”: the Java JDK was dis-

L\A()( \\n ?o\(l’i CUlaf

of
( (CCAS('A}
i by
oty

fcated 1t 1s to reuse GPL-licensed program3~Uhe first example is e Coagonads



Vs, skkwace

Vs. a 1149»(’\'04 vs. ¢ Q{CM _—:) &Z.
« >(‘m the t.)(naLzB\—La.(?;

Consist ent

tributed until recently under the £ommon Development and Distribution License
(CDDL). Sun then decided to chAnge the license of the JDK to GPLv2 to encourage
the use of Java. A problem reJated to license compatibility appeared: any program
that runs under the JVM dyfiamically links to the runtime library that is4 part of
the JVM. Hence, this p
hence should be licensed under the GPLv2. Consequently, Sun added the Classpath
exception to the GPL2 to resolve this issue. This exception states that linking to the

m is considered to be derivative work of the JVM, and

provided library is not considered a derivative work. becaose ... ®
A third example is the case of MySQL client libraries, which werf licensed under
the terms of the LGPLv2. The LGPL license allows the reuse of a] system licensed

under its terms to create and distribute software under any license. Jn 2004, MySQL-

, Tel
ange license of the MySQL client librairies to GPLv2 deat %h{ey wanted
to allow some eALi I oOurc systems to still use

(>S5  their libraries, even though their licenses are not compatible with GPLv2, e.g., the
PHP run-time engine. MySQL-AB resolved this issue by adding to its license the
\\MySQL FLOSS License Exception”, which permits to create a derivative work based
on MySQL client libraries to be licensed under any of 24 licenses, e.g., BSD, MIT,
Mozilla Public v1.0, PPEJThe two p:"((e\v&é)nlga examples show how ‘Eo create non-GPL
compatible programs based on GPLad programs/we‘ﬂimelm@az& multi-licensing
in which the user chooses the license from two or more licenses. An example of
this practice is the Mozilla Foundation, which makes Mozilla, Firefox, and Thunder-
bird available under three different licenses: the Mozilla Public License version 1.1
(MPLv1.1), the GPLv2 or later, or the LGPL v2.1 or later. meosk Q\mIGCa\(y

Consequently, developers should be aware of licens

anges and theiy’possible ef-

fects. Also, OSS systems are developped/maintaified by many developgrs that could

m license of a file without being a

\5,\,_ Thus, to study license evolution, we look at changes to license statpments. These

Te of the consequences of this evolution.

changes could produce some license incompatiblity in a system. Therefore, we must

analyse the existing licenses of a software system before modifying it pr adding more

components under different licenses. However, developers are not y trained to
deal with licenses. In addition, manually detecting various licenses and their inter-
action is a laborious task. Thus, this problem raises the need for some saplristieatead
license evolution management techniques to assit developers to organise their software

licenses in a better way.



bt s N\
\
AT o 4
Cdﬂsq—ol‘)u‘(7 ! =%
edise

P Jicense statements are changing frequently, but not necessarily coevolve with

source code and’managed by a minority of developers that are probably experts.

A\}

e will follow two research steps to confirm our thesis:

Step;: First, we will study all entities/data involved in licenses and their evolution,

as well as their relations, to design a system meta-model. Our meta-model m"mvi\des&mdx

ferrative data needed to study license evolution.
Step2 .
Then—this—+l Xtracted INto a meta=modemstarce to be processed—#After,

we-wiH analyze license statement and source-code co-evolution and license committers

to answer our thesis and understand license evolution Aftheyevolve according source

cede evglutior, or IMdependerntly, or every project has his propercutture-efevohrtion,
and if re-Trrodified by munority that could be probably group of experts. Our

results-eertd-beused for future work to develop better licensing tools amdtectmiues.

data described by our m: t be also the support to develop

evolution, culture will be informative to define the requirements of this tool.

Bl | Collocing Hhon cerlls Ll"" dvd/(:j biad on <20
- o roles cev
System Meta-model .., (. V:‘(‘;/ (reanse choogs.-

To fully understand license evolution and all related entities, we first build a
meta-model for license evolution. Such meta-models have been proposed to help in
using OSS sysem to avoid license inconsistencies. These meta-models represent some
license aspects, e.g., grant and their conditions (German et Hassan (2009); Alspaugh
et al. (2009)). Yet, the data presented in previous models is not sufficient to cover
many entities that are important in resolve license issues. Hence, we expand previous
meta-models and provide a complete meta-model. Using our meta-model, we will
locate which aspects of licensing should be explored in detail in our work about
license evolution. To build a complete license evolution meta-model, we first perform
a literature review to find pertlnent license related data to design our meta-model.

(ag] mo,
Then, we extend this d,esi,g?l by analysing additional elements that we found while

studying license text of some popular licenses like GPL.




Ges

VV\d>" QAA'

ov S\7 r QC(’! ences 5

Qe

1.1.2 /Co-evolution of License Staflements and Source Code

they focug‘%n the evolution of

and of documentation, because

more restrictive license GPLv2.0 to prevent % commercial abuse’| However, this
change also prevented FOSS applications from including MySQL Client Librarj
and could only be resolved by adding a license exceptioﬁ«‘r’ for OSS system:s] For
another, license statement changes are not trivial because they are written in “legal”
Englishy and do not necessarily follow strict formatting; the volunteers developing
open-source systems may or may not be legal experts or have the proper training to
fully understand the impact of a license statement. charge—

To confirm our thesis about’co-evolution of software licenses and source code, we

investigate the following research questions:

— RQ1: Do licenses co-evolve with source code at the system level?
We want to relate license statement changes and software evolution to un-
derstand whether developers change license statements when they change the
source code of systems, i.e., whether the peaks of license statement changes are
synchronized with peaks in source code changes or instead shifted in time. The
distribution of license statement changes (dispersed or grouped-by period) and
their evolution relative to source code evolution will help us\éél) understand
whether the process of license statement changes is a planned and organised
activity relatively to SLOC Changes,éb know how to design/develop a tool
tpimprove the process of license management and avoid license inconsistencies,

and (3) to decide if licenses should be managed together with source code or4t

can be W@pﬁﬁm ;ﬂAQ(«Aanuy
7

5. http://www.mysql.com/about/legal /licensing /foss-exception



\\

W\

' 6
'\‘/\L (Q‘N(\'S OC o0 Sl’\fb\y y‘/\M ‘((/‘qk.\\

Rasswdt:

License statement changes gatatd occur as needed when a substantial contribution

is made (addition of contributors) or whenever the legal team advises so (update

of license version or type):

U We find that license statements are changing frequently and continuously but

~ not necessarily together with source code.

//RQ2: What types of license changes are performed?
We want to refine the analysis of RQ1 and distinguish between different change
types to link our analysis closer to practice. Hetlbig, We 2o first identify
different types of license statement changes, then study the co-evolution of
SLOC and the number of license statements per change type. The answer

to this questlon wiaither shoﬁ that certain license statemert change types
hat their evolution depends on

Rresult: \\

Different kinds of license statement changes can evolve differently. We identil?d
three main types of license changes: license type change, license version change
and contributor change. We fesnd that license type and version changes co-occur

more often with SLOC changes than other license change types do.

>RQ3' Who performs license changes?

lck
There are two major groups of stackeholders related 0 sougce code changes:

authors and committers. The author of a change ig/the contributor who physi-

cally changes a set of files, whereas the committer/is the gatekeeper who decides
whether those changes will be made available tp the whole project by commit-
ting them into the source control system. Applied to software licenses, the
author of a change might propose a change in a license, however it is the com-
mitter who has the authority to accept or this proposal. License statement
changes could introduce inconsistencies and cause legal violations, thus it is im-
portant to know who is responsible for this risky task. For this reason, we study
the committers of #ag seven projects to understand whi s are responsible
for accepting license statements, and what their role is in fhe project.

Our SMY s\noos Wacek - \\ whose (7)



/ e
License statement changes corldde limited to a minority of specialised & com-

ieg. We observe that the most

active committers (in the CVS or SVN repository) performing license statement

changes are also the project members with a leading role.

1.2 Background

In this section, we define and clarify some concepts that we will use in our thesis.

1.2.1 Open Source Software
O}[)}Q/somge\sefm‘a'ﬂez{OSS/ developme

the widespread reuse of components and lic

(a5
has some typical chlaracteristics, suchas

ses. This widespread’ of various and dif-

cess outputs have been studied t s, for example in

Wo
Capiluppi et al. (2003)2, t&z;y analyzed asample®f around 400 projects from a pop-
. Lsas . .

ular OS project repository. ject & charaet 18 her—of attributes.
According this study, the most used languages were C, C++, Perl, and Java. Despite Haueuer
hetarge nu of OS jects, developments effort have focused on a few large

Capiluppi

projects such as Linux, Mozilla, and Apache.
o\c amd al. confirmed that few projects are capable of attracting a meaningful commu-
nity of developers. The majority of projects is made by few (in many cases one)
person with a very slow pace of evolution. We think that the analysis of licenses will
be more useful in project with ,g/ma:g (;:g(;mmunity and in constant evolution because
the evolution of the systems increaséthe threat of license violation and the large
number of components and licenses increases the constraints to respect inter-licenses

compatibility.

1.2.2 Collective and @erivative %rks

Distinguishing between collective work and derivative work is fundamental for uUl

analysis of legal issues of componesed software systeﬁ, because constraints



imposed by licens different for collective and derivative work.

A collective work is:
QA work in which a number of contributions, constitutzing separate and inde-

pendent works in themselves, are asg sembled into a collective whole. (17 U.S. C.

101.)
. . . /
WQ@
A work based upon one or more preexisting works, such as a translation or any

other form in which a work may be r%cast, transformed, or adapted. (17 U.S.C. A§

101.)

— reca\| {*I/LQ 2 x WQQ of Y a 1_«_./4 daS}("-('(’\ axcaqbw” o
(Nogkca the Si(leonee brbveen
1.2.3 Types of Licenses Collpekive and daduative eoorks

Licenses can be categorised into four Categories<\' 2dd e € b (Q“@ LZ@Q\\

1. Academic Licensesg “so named because such licenses were originally created by
academic institutions to distribute their software to the public, allow the software
to be used for any purpose whats sofever with no obligation on the part of the
licensee to distribute the source code of derivative works. The Berkeley Software
Distribution (BSD) license used by the University of California to distribute its
software is the archetypal academic license. Academic licenses create a public
commons of free software, and anyone can take such software for any purpose

including for creating proprietary collective and derivative works without having
to add anything back to that commons.” RosaaZ2004)—

2. Reciprocal Licenses, ‘@llow software to be used for any purpose whatsoever,
but they require the distributors of derivative works to distribute those works
under the same license, including the requirement that the source code of those
derivative works be published. The GPL license, written by Richard Stallman
and Eben Moglen at the Free Software Foundation, is the archetypal reciprocal
license. Anyone who creates and distributes a derivative work of a work licensed
under a reciprocal license must, in turn, license that deriwative work under the
same license. Reciprocal licenses, like academic licenses, contribute software

into a public commons of free software, but they mandate that derivative work

also be placed in that same commons.” Rogent2008)

3. Standards Licenses,’ “are designed primarily for ensuring that industry standard

software and documentation be available to all for implementation of standard



products. These licenses sometimes require that any differences from the indus-

try standard be published as a reference implementation so that the standard

may evolve if necessary.” Rospr(R004)

4. Content Licenses, “ensure that copyrightable subject matter other than soft-
ware, such as music, art, film, literary works, and the like, be available to all
for any purpose whatsoever. These licenses are discussed more fully on the Cre-
ative Commons website at www%c'r'eat'zlvecommons .507‘9. While the C'reative
Commons goals are not directly related to software freedom, there are many
similarities of objective. A few of the software licenses MM@@@&C}
in particular the Academic Free License (AFL) and the Open Software License
(OSL), are appropriate for use with content as well as software, sk _be_cz-
plosrsdsndue-cawrse.” RbseuA2004 L3

1.2.4 Example of Egenses: GPL, BSD, and Apache

Mos’Y add a el
In this subection, we present the naost use2 licenses® : GPL, BSD, and Apache. ‘
__,—’) k()‘/\q(ﬂj'\'la

e~
p@ a: 1. BSD: Academic License, ocdy
(res m Berkeley Software Distribution license (BSD) al-

lows anyone to redistribute the work or any derivative work without any source.

e % BSD d&Trot cause incompatibility problem%: th 1 of program under BSD

license can use any license. USRS /w(w

2. GPL: Reciprocal License, Tha
GNU Public License (GPL) is Mmmon license for ope@urce packages

GPL is known for having strict reuse constraints. So-it

GPL is reciprocal license because

atx
S

any software that reuses code licensed under@ Wicensed under the
same version of the GPLZ Herethe CiRbhsayiitoy the mak be

G;)u must cause any work that you distribute or publish, that in whole or in part

contains or is derived from the Program or any part thereof, to be licensed as
a whole at no charge to all third parties under the terms of this license. ”,Q@HL)
Bafion2)

They are strong conditions on how a caller can use GPL package. The GPL

requires to analyse the software based not gt upon how it is linked but also

6. http://www.opensource.org/licenses/category 6 ﬂ\/



10

upon how it is distributedy, “These requirement apply to the modified work as
whole. if identifiable sections of that work are not derived from the Program, and
can be reasonably considered independent and separate works in themselves, then
this license, and its terms, do not apply to those sections when you distribute
them as separate works. But when you distribute the same sections as part of
a whole which is a work based on the Program, the distribution of the must be
whole on the terms of this License, whose permissions for other licenses extend
to the entire whole, and thus to each and every part regardless of who wrote it”.
NERL-section2)
(chording to the first sentences, the GPL is applied to "modified work as whole”.
A modified work is—flerivative work (17 U,S.C). There is nghint ghat linking
makes a difference. /The second sentexCes fefers to portidns of the work that
are not dgérived frogm the program(have their own copyright oxmers and theji
own liense). A pvork must bg/independent and géparate wgrks are ligked/in
sonde way to the¢ GPL progrdm. Such works repgain ”indepefdent and’sepArate

works,” at leagt ”When you distribute theny/as separate works,” and theeGPL

(\0\( 0}> cannot possihly applyto them withowt#heir copyright ownk#s consent.
t\”u} e GPL, \verlist analyse the software on how it is distributed. But,| we

could guess gvery gonnector type correspond to which type of work (derivative

or collectixe). Her¢g we give the list of con hat must

caller of/GPLed program:

fhe caller upes called compongnts as a plugin then the Zaller cain have

the same version of GPI/
The program licensed upder academic open s

wto GPL-licenged sgffware but the inverse is not always t

WSome licenses are not compatible at all WithéPL, we will limit these
list to the different versio§ of the differguiversterrst BSD, and Apache licenses:

— Apache License, version 1.1,

¢ licenses can be\ncorporated

C This is a permissive non-copyleft free software license. It has a few require-
ments that render it incompatible with the GNU GPL, such as strong prohi-

bitions on the use of Apache-related names.



11

— Apache License, version 1.0
This is a simple, permissiv —copyleft free software license with an adver-

tising clause. This creates practical problems like those of the original BSD
license, including incompatibility with the GNU GPL.

t patible version v en licenses > g

\

— Apache License, versi e
This is a free software license, compatible with version 3 of the GPL. This li-

cense is not compatible with GPL version 2, because it has scmeTequizaments ( )
that are not in the older version. i ones = add
. theen n (. W
— Nloditied BSD license,,

—_— s waleoon lhble u‘\“/\@'b(fel’ ber ass2 - ..
Thiis fhe original BSD license,mg_djﬁ@gfwgwuse_

[t—4s—a—simplespermissive nen Aeftfree—software license compatibic with

3. Apache license,yerdpn24): Academic license,

(”l:he Apache license is a free software license authored by the Apache Software
Foundation (ASF). The Apache license requires preservation of the copyright
notice and disclaimer, but it is not a copyleft license, it allows use of the source
code for the development of proprietary software as well as freeand-opermsource OSS
software.

All software produced by the ASF or any of its projects or subjects is licensed
according to the terms of the Apache License. Some non-ASF software is li-

censed using the Apache License as well. As of July 2009, over 5,000 non-ASF



12

projects located at SourceForge.net are available under the terms of the Apache
License. In a blog post from May 2008;, Google mentioned that 25% of the
100,000 projects t#za hosted on Google Code were using the Apache 1icense."5

Like any free software license, the Apache license allows the user of the software

he freedom to use the software for any purpose, to distribute it, to modify it, and
to distribute modified versions of the software, under the terms of the license. The
Apache license, like BSD licenses, does not require modified versions of the software

o be distributed using the same license (in contrast to copyleft licenses)) In every

licensed file, any original copyright, patent, trademark, and attribution notices in
redistributed code must be preserved (excluding notices that do not pertain to any
part of the derivative works); and, in every licensed file changed, a notification must

be added stating that changesLllave been made to that file.
thae

1.2.5 License @mpatibility and gnstraints

v
The igtellectual property(IP) aaaa\ﬁexpressed in terms of the licenses, rights, and
obligations. They include: the right to use, distribute, sublicense, interoperatiéh
WA & ghthe system with specific IP regimes. This IP can have conflicts with other li-
censes)obligations. So, the combination of different licenses in a smgle system is not
U simple because each license introduces constraints on thewag«vaf use (distribution,
copy’ ) that can be incompatible ahd_mmw/}m;e—
ine-it. We hafve-tokknow the IP o-be-able to

identify the possible legal combinations of licenses in one system.

rrosk
For example, when programmers want to develop a system S undep/a license L

that reuses an open-source component C, they must verify whether tidy respect the
restrictions of the graré‘ given by the license of C. In fact, a compongnt ¢an be reused

to create from it a derivative work mainly by using white-box that permits to

use one or more files of C, either in te original or modified form. It cAn be also used
as part of collective work that is usually realized via blatk=bpx fi for example by
calling components as executables. Bt Qetermining whether a work is derivative or
collective work for a bla@x reuse is difficult because it depends on the nature of
the use and the interconnection type.

Consider the following scenario: suppose we want to distribute a system S under

a proprietary license P and one of the component C; of S is licensed under the terms



13
Braa

of GPL,. Cis interconnected to S via black-box linking, aé S is a derivative work of
C. GPLs imposes that all derivative work S made from component under G P Ly must
be also licensed under GP L. In contrast, if we modify the interconnection type, and
that bla@ox forking is used instead of black-box linking, then, according to the
FSF, S is not a derivative work of C. In this case GPLy gives grant to distribute
S under a proprljtary hcense(German et Hassan (2009)'Rosen (20019 This example
show M@wvwn the interconnections type constralnm/re@p@et the IP and # Hat
depandson the licenses used and their versiohs amdAtis~evmpliaate to verify tkis
respectwf the IP of g large softwaze. m‘,"fi

can

ptems i (lieelt
1.3 Thesis Plan

This thesis is organised as follows: Chapter 2 summarises work related to license

analysisy atghte Chapter 3 presents a
presents our study setup, while Chaptej

tacmodel for license analysis, Chapter 4

4 /addresses our research questions and

discusses our results. The Chapter 6 presents a pueksy 1nary step for a tool that helps

to avoid license i ! ies. Finally, Chaptd u@

future work.

pncludes the thesis and presents

(R



14

Chapter 2

STATE OF THE ART

Previous research mostly targets technical problems of software development and
maintenance, without much attention for the legal complexity of software systems
(German et al. (2010b)). We discuss related work on (1) license analysis, (2) license
evolution, and (3) license identification tools. Overall, no previous work considered
the relation, if any, between code change and license modification or between source
code committers and developers performing license evolution, except for some work
that analysed license statements independently of source code. Some work proposed
amsystamn meta-model\that is-eoncentrated on license modeling and did not consider
other related data. focosed o nsisben a}/

German et al. (German et Hassan (2009)) defined a license as of grants, each

of which has a set of conditions necessary for the grant tehe given. They analysed

German et al. (German et al. (2010b)) propdsed a method to understand sev-
eral licensing incompatibility issues, concerning mismatches between the license of a
librarieg, that can arise from chang-
open distributioé? They carried a

ing issues in the entire Linux-based

system and that of its source code files, or its
ing, combining, and re-distributing packages i
large empirical study aimed at analyzing lice
Fedora-12 operating system. They considered [constraints imposed by OSS licenses,
relied on these constraints to mine netes, and identified the licenses and
dependencies of all files using RPM package descriptions. They concluded that there

exist many nuances in determining the license of a binary package from its source



15

code, for example, many packages could contain source code under different licenses.
Moreover, they found many cases in which the license of a package changed, and this
created problems, e.g., the package still declared the old license, making the package
use potentially incompatible. Such mismatches are common in modern open-source
systems (German et al. (2010Db)), wmts our claim that license maintenance
must be carefully managed. Hence, we are looking when licenses evolve and who
changes them. ak \ror fewhen

Alspaugh et al. (Alspaugh et al. (2009)) used a semantic parameterisation of nine
OSS licenses and the patterns and models established by German et al. & (German et
Hassan (2009)) to derive a meta-model for license}shown inﬁgure 2%.1. This license

siders semantic connections between obligations and rights. The goal of this

developed a tool that supports intellectual property requirements management.

License |—=  Right . Obligation

J L [£]

b

Tuple

e

et
e e U,
Actor ||Modality || Action || Object || License

I 7
| | Lieensor Copyright
Licensee Action

Figure 2.1 The meta-model for licenses ( g c\f)méua,d Crm ( \\ o

(o .
(& E\
(\,\o\”’ o
V\i\& (].
A



16

Tuunanen et al. (Tuunanen et al. (2009)) also tackled license mismatches in OSS
systems. They implemented a tool, ASLA, to identify licenses in source code and
to identify mismatches using compiling information from GCC, ar (an archive tool),
and ld (a linker). They achieved license identification using templates and regular
expressions. Their license identification does not work well with real source code files
because of many reasons, e.g., comments and various kinds of white space characters
prevent an exact matching, many developers modify predefined licenses, there are

then

sed on identifying license violation in third-
ANAAAA

different published versions of licenses.
Hemel et al. (Hemel et al. (2011)) fo

party packages distributed in binary/releases of several systems. They developed a

tool, Binary Analysis Tool, that compares a given binary against a large repository of

packages using clone detection dnd provides as output a list of third-party packages

likely used in the binar%f; tites the compatibility of their licensé and the license of

the whole system must be checked. They did not study whether license mismatches
. ANt

L&()D - w‘f\\'b\“ D'\L’?

oy (2011)) proposed DebCheck, a clone detec-

ne detection. It is based on the NiCad clone

occurred between packages
(Cordy et

tion tool to perform cross-package cl

Similarly, Cordy et al.
detection tools developed by the and was used to verify whether GPL
or other OSS-licensed code has been copied into other systems. the

Di Penta et al. @enta et German (2009}studiedmames of copyright
owners. They found that contributor names are added to a license statement upon
changes that are significantly larger than usual (in terms of numbers of lines of code
changed). They also found that the most frequent committers are not necessarily the
copyright owners.

The above cited works focused on license modeling and license violation doteetien.
@, we want to investigate another direction in the same field: the evolution

of license statements and its relation with source code changes.

2.@2 License Change Analysis

Hindle et al. (Hindle et al. (2008)) studied large commits in OSS systems. Among
other things, they identified license statement changes as one of the reasons for bulk
file changes and large commits.

Di Penta et al. (Di Penta et al. (2010)) studied license evolution. They proposed



St
Vs
= 'uS’dFY \¢\4,1

nlu-“"\‘]

17

code files. An empirical study on license\evolution of siy OSS systems showed that
i, i ‘ to study
these changes in more detaif Furthermore, Di found that the changes
occurring to the copyright ye%depend on the amount of changes made by developers
during the yezﬁ However, they did not relate the license changes to system evolution
or identify committers of license changes. In our thesis, we 4 propose a meta-model
for license evolution. Then, we study t#e license statement evolution, in addition we
relate them to software evolution, we will identify the license statement committers.
Manabe et al. (Manabe et al. (2010)) studied how and why ArgoUML, Eclipse,
FreeBSD, and OpenBSD switched licenses. They found that: (1) the number of
licenses used in operating systems are larger than those in other open source sys-
tems; (2) projects sometimes choose radically different licenses; and, (3) the usage
of different licenses in the kernel files of operating systems is similar to each other.
Their study did not consider software evolution. In contrast, in our work, we focus
on license statement and source code co-evolution to understand if license statemery

evolve according software evolution z#d they have their ppoper evolution pattern.
oc € owin

2.@3 License Identification Tools

A license statement is a comment block on top of a source code or other file
that contains the terms under which the file is licensed. The elements of a license
statement are the license or licenses that cover the file, a list of copyright owners, a
list of contributors, warranty and liability statements. However, the format of license
statements is not strict and can be customized. As such, detecting and identifying

licenses is not trivial, and specialized tools are needed.
s: FOSSology (Gobeille (2008)), OSLC!, and Ninka (Ger-

010a)) Athese-dreTha-state-ofart. FOSSology automatically identifies

license statemen§ using a Binary Symbolic Alignment Matrix pattern

licenses in

matching dlgorithm. Its negative points are the complexity of setup, the need of a

td

1. http:/foslc.sourceforge.net/ @ *

\s A8
We W 0
o QS\‘M (-“W\“ \}J@

Y\e\ v A



18

to the previous tools, Ninka is the most accurate one (German et al. (2010a)). Each
license statement corresponds to a sequence of one or more sentence-tokens. Ninka
extracts the license statements from files, splits them into textual sentences that are
normalized, and tries to find a match for each of these sentences with the license
sentence-tokens. The list of the matched sentences determines if a file contains one

or more licenses. Due to its high accuracy, we used Ninka in the rest of this work.



19

Chapter 3

SYSTEM META-MODEL FOR
LICENSE ANALYSIS

In this chapter, we propose a system meta-model for license evolution analysis.
Phien. We show an example of use of our meta-model combined with logical expressions

to express constraints imposed by a license/ in Chapter €,

3.1 Meta-model Design tnelode

Imthis~section—we prosent—eur meta=-mbdet.  We co

information to model data that we include in our meta-

ined different sourcé of
odel. We used previous
work about license analysis, some of them (German et Hagsan (2009); Alspaugh et al.
(2009)) propo meta-model that are in general limitdd, i.e., the meta-model es-
tablished in (German et Hassan (2009))) did not
e.g., interconnection between different component is not presented, which iwe\ a.

system architecture,

tant to find license W, and in (Alspaugh et al. (2009))/Alspaug derived
a meta-model for licenses from the meta-model of German where & added a seman-
tic connections between obligations and rights but Z did not algo consider in the
meta-model atzalt the system architecture representation. Bes, W|pecfezo assemble
all needed data: license meta-data afld architecure in one meta-mpdel with sem@ntic
links between them.

pextinent data.
We show our meta-model in Figure 3.1. \A,g7




DerivativeWorkNotice | [ NoWarrantyNotice| [LicenseNotice Right Notice ExceptionsNotice| | Exception
1
represent | Statement
T
F 1 Alhoe. .+
Notice
B..* |1
Distribution Constraints y
include
B..* Ve
— - - refresente in in
Condition | belong to  impose|Right| belofg to provide|License |5, * @mv 9..* 9..*
1..* 8..* B..* I 1..* 1 = = + = |
1 9...*|Version LicenseText || Copyright Year || Contributor
Technical Constraints R :
Author| write
8].*
.
licensed under
1..%[ oo | writen - licensed under contain  licpnsed under
Binary || 1 File 5’m 9. 1..% et
» S contain|SubSystem| in contain |System]| 1 1..*|Owner
| '|in“ 1..% B..* belong to have
generdte | Source Code l = I
0..* 2
involve
Connection > Connector
1
+Connector Type
lcause
1 1

Derivative work

Collective work

Figure 3.1 System MotaModcl.

0¢




21

As shown in #z Figure 3.1, a System can be composed of zero or many packageC
denoted Sub-System and Files. A Sub-System can be composed also of zero or many
Sub-Systems and Files. The System, Sub—Systen}; an%Files may have zero or many
Licenses. The files of the same sub-system can have different licenses as well as the
Sub-Systems. W ¢ AS(‘*-’&‘C‘ o ,w&c

[ otar
We present #n examp § & two concrete 03 *“Z

s
is package containif\ programs to find files under linux. The
gfstem% io™indUtils”. findUtils contains XARGS, LIB, M4,.. ¢4 AARCE, 23
hb~MA-axre Sub-systems % findUtils ateptemal contains also: README,
ChangeLog, AUTHORS/ da/which are Fl les 49 and they do not belong to the
XARGS or LIB or M4 subsystems Pihe_nlwf.bereeg"be%pmmgeevnw&en
A t dUtil e e -

— Case of fileUtils v3.16, The ﬁle@cﬂs package includes a number of GNU ver-
sions of common file management utilities. 611eﬁjtlls includes #&e many tools:
mv, chown, chmod, mv, du, olg.. G4 In the case of ﬁleUtll theSystem? is
nadapd “ﬁleUtlls” and it contains two Sul(ystem first level) lib and M4 .axe

S‘mbbﬁystems fileUtils at~tep-tewel contains, filess README, ChangeLO% and

3.2 Definitions f/l\/Ieta-model Constituents

In our meta-model, we have a set of entities and relations between them. We

define each entity as follows.

— System @) syatppass the collection of all files and s@tems—"aﬁ%@@&i‘&\s@ﬁw&@m
systeny e Sofimare. —— (Qf\ c\q)\r\y

— Sub-System {4%): a set of ﬁl§ with an organization such as to d/c{nstitute an
independent component that can be distributed separately andfor reused in
other system.

— File @): s a collection of bytes stored in same format, it can be an ASCII or
binary #file?.

1. http://www.linuxfromscratch.org/1fs/view/development /chapter06/findutils.html



22

ASCIL

— Binary @) an executable, library, stored object no in a plain aswii format aka
(English Tralidh DetsTot)— o

— Source code zf%) wip a text written using the format and syntax of }ahfg‘g}g—
gramming language o

— Sotewart teernsdficense %) #4s a legal instrument (written into a text file) to
govern the use and distribution of a software,]zt is a set of terms (explanations
and conditions), exceptions, warranties, version, statements, notices.

— Version g): ##s unique identifierf attributed to unique states of the license,
the version number is generally assigned in increasing order and corresponéto
new feature in the license. For example, GPLv2 (version 2 of GPL license),

BSD-3 (version 3 of BSD license) st .. 4 Cle

— Statement ##24¢: for a given license, #z& a summary text of the license térms
to be inserted at a beginning of a file to climethrefle Baing licensefl "utder

— Term @% M%W*WW@&&W@) an explanatlon of a word used in
the license, e.g., “convey” »awy Kind of propagation that exablessotherparties

towrake-OMreceivevonies, or fcottdrhedd) a right and its conditions that must
be satisfied. (L>

— Exception @) a modification or addition to the standard license conditions.

— Notice (%) Uimpperithan information i.e., license text, by which a part;lf i.e., the
user of the program concerned by this notice, is made aware of a legal process
affecting their different rights, obligation; or duties? (creation of derivative
work, Warranties/...)'ﬁ could also indicates an exception.

— NoWarranty Notice : it is a notice that make the user aware that there is no
warranty given. A warranty is an assurance by the licensor to the other party
that specific facts or conditions are true or will happer}' it is an insurance of
good quality and functioning; the other party relf on that assurance and seek S
some type of remedy if it is not respectec%‘3 <5

— Author Qﬁ%ﬁ): “the person who originates or gives existence to a files. Holding
the title of ®author” over a file givé rights to this person, the owner of the

copyright, exclusive right to do or authorize any copy or distribution of this file.

2. http://en.wikipedia.org/wiki/Notice
3. http://en.wikipedia.org/wiki/Warranty



23

e

Any person or entity wishing to use/intellectual property held under copyright
must receive permission from the copyright holder to-asethizsork.

— Contributor @ % a person that contnbuted@w@n,gﬁlmddﬁﬂ%wmf a file

— Owner Z2): “The programmer who writes software or the company that hires
that person to write software is deemed to be the first owner of intellectual
property embodied in that software. That owner may exercise dominion over
that intellectual property. He can give it away, sell it, or license others to use
it. That owner has the prerogative to create copies of the intellectual property,
and he or she may prevent others from making, using, or selling those copies. f*

— Right #%): an open software license provides its licensee with a grant to one or

more of the exclusive rights owned & by the copyright owner of that component.

— Condition: (A _future and uncertain event upon the happening of which certain
rights or obligations will be either enlarged, created, or destroyed}’ o
— Technical constraints or distriblétai‘(:n q-constraints: the conditions that must be
satisfied to have a right egadedse technical constraints, e.g., architecture style,
or distribution constraints, e.g., notice of no warranty ntustbedistributed with
selrCetode:
— Collective work : a work in which a number of contributions, constituting sepa-
rate and independent works in themselves are assembled into a collective work
7 as whole.
A= _ Derivative work(: “a work based upon one or more preexisting works in which
a work may be recast, transformed, or adapted;<— ~+ neqd « (<f / Fepk neke
— Interconnection #: between two entities (file, susbsystem, system) in any use
of an entity by the other so I(el, e2) means el uses some data, services, func-

O~
tionality provided by e2. The interconnection neeég)nnector to realize it.

— Connector (Zgty): @ glue that links several files s#id required physteahlinking

betweemseverahemsitiesfites - to realize an interconnection. be of
— Connector Type (e UAkIAY: can cheSHythe tomrectorsiimnto four typesé |
yp \/Z ypesg S L= Y

Link, fork/exec, IPC, Plugin,
— Link (LK): any kind of function call, global data usage, method call made
to statically or dynamicallyﬁlinkedq‘ artifact. Examplel . if we have an OO

4. http://rosenlaw.com
5. http://legal-dictionary.thefreedictionary.com/condition



24

framework and we extend a class or call a method, it is considered a Link
connector.
- fork/execm): a child process is created and a new executable loaded and
run.
— IPC: any kind of Inter Process Communicati09 such as pipe, shared memory
%, queue, sockey...
- Plugin/&%): dynamically loaded component adding/extending specific func-

tionality via an APlg

As, we explained before, 1t IS important to determine it the work is derivative
or collective work to be able to judge if any sub-system or file can be used in

the final system. The cerfmector used in the program ar e key to decide if

eciprocal licenses

a
&pe of connectors can be distributed under any license

To automate the process of deciding if the system is derivative of one &s compo-

nent (sub-system or file), we need a function Derivative that takes a parameter
two systems and a connector type and % returns True 0@ o~ ks
Let Sx be the whole systemg
Let S, be the set of sub-systems/files used by SD

Cﬁr each s € .S,

Ptagan, Derivative(s, ConnType(Sy, s)) F“\%

Derivative(s, ConnType(Sn, s)) € {0,1} T\
if Sy is derivative work of s then Dersidative(s, ConnType(Sy,s)) = % else

Derivative(s, ConnType(Sy, s)) =
or nc(_depends on I(Sn,s) and L(s)e
CFor example, if Sy contains a Sub-System s, L(s) = GPLv2 and ConnType(Sy, s) =

7 The fact that Sy is(derivative work of s
X

. thus Sy is considered a derivative work of s and Derivative(s, ConnType(Sy, s)) =
LinX

(UQ/O



25

Chapter 4

STUDY SETUP

Wé performed an empirical study to answer our three research questions presented
in t4e @apter 1. In this chapter, we define our study, then we present the context
of the study by giving the objects that we considered. Next, we describe the steps
of our approach and we explain how we used the proposed meta—model/. Finally, for
each research question we explain the analysis method that we will use to analyse our

data and interpret the result.

4.1 Definition of Our Study

Following GQM Basili et Weiss (1984), our goal is to perform an exploratory
analysis of the co-evolution of license statements and source code, to observe license
statements evolution and to analyze who performs license statement changes. Our
purpose is to better understand when developers change license statements, who per-
forms such changes, and how license statements are changed. Such an understanding
could help improve license change management. The quality focus is the consistency
of license changes. The perspective is of both researchers and practitioners who are
interested in understanding license statement change activities in software projects.
The context of our study are the CVS/SVN repositories of seven OSS: JFreeChart,
Jitsi, PHP, Rhino, Tomcat, XalanJ, and XercesJ.

4.2 Context

The objects of our study consist of seven OSS systems, i.e, JFreeChart, Jitsi, PHP,

Rhino, Tomcat, XalanJ, and XercesJ ®. Table 4.1 presents some descriptive statistics

8. http://www.jfree.org/jfreechart/, http://jitsi.org/, http://www.php.net/, http:
//www.mozilla.org/rhino/, http://tomcat.apache.org/, http://xml.apache.org/xalan-j/,
http://xerces.apache.org/



26

Object Systems #Files #Releases | License of last release Considered History

JFrecChart 1,335 - 9,105 51 | LGPLV2.1+ T 25/11,/2000 - 20/04/2009
PHP 2,615 - 15,021 63 | PHP License v3.012 12/07/1999 - 18/05/2011
XercesJ 5,100 - 12,585 39 | Apache License v2.1° 05/11/1999 - 01/01/2010
Rhino 104 - 695 17 | MPL L.1/GPL 2.0% 10/04/1999 - 16/09,/2010
Tomcat 2,565 - 7,426 70 | Apache License v2° 08/10/1999 - 14/09/2011
Jitsi 5,653 - 15,954 8 | LGPL® 21/07/2005 - 12/09/2011
XalanJ 832 - 1,433 14 | Apache License v2.07 09/11/1999 - 11/12/2009

Table 4.1 Statistics of our seven subject systems.

of these systems. JFreeChart is a free Java chart library to display professional quality
charts. Jitsi (previously SIP Communicator) is an audio/video and chat communica-
tor. PHP is a widely-used general-purpose scripting language that is especially suited
for Web development and can be embedded into HTML. Rhino is an open-source im-
plementation of a JavaScript interpreter in Java. Tomcat is an open-source software
implementation of the Java Servlet and JavaServer Pages technologies. Xalan-J is an
XSLT processor for transforming XML documents. XercesJ is an open-source family
of packages for parsing and manipulating XML. We chose also these systems because
they are medium-sized OSS, yet small enough to manually verify our observations
on license statement and source-code co-evolution using external information, such
as bug reports. We chose these systems also because their evolution history is long

enough to contain substantial license statement evolution.

4.3 Setup of the Study

Our approach is illustrated in Figure 4.1 and consists of 5 steps.

Step 0: Using our meta-model, we determined which entities must be considered
in our study to track the evolution of license and source code. According to our
meta-model, a license of file is indicated in the license statement which is composed
of license text (version, terms,...), copyright year, contributor list. Thus to find license
changes we have to find change in license text, copyright year, and contributor list.

Step 1: First, to improve performance, a local copy of the CVS/SVN repository
of each studied system is downloaded.

Step 2: We then use Ibdoos, our group’s framework for the analysis of source con-
trol systems, Ibdoos parses change-log files (both CVS/SVN) to extract the following

change factp: commit date, revision number, author, filename and log comment. This

i imglements g0 ks -mobel @nd Eide o



27

License
and SLOC
changes

1. swnfcvs
repository

a\léy”

Changelogl y,| 2. Get change facts

.,____,,...-""_""h-
Local copy 3. Count S5LOC
(SLOCCount tool)
4. identify license
(MNinka tool)

z,\'a mo CLQI

Figure 4.1 Approach overview. C Thdso S)
\ sbel
an (NG R ol v "‘f‘f‘ QV“NJG(M%

information is stored in #d@AGmL datkdbase for later processing and computation.
As we are interested in the source code and license evolution, we only analyzed source
code files , i.e., .java files for Java systems, .c for C systems, and .c and .cpp files for
C++ systems. Note that other files such as READMES, configure scripts or Makefiles
can be analyzed as well, but fell outside the scope of this paper.

Step 3: Once all revisions of all the files are available, we compute the Source
Lines of Code (SLOC) count of each file at each revision using the SLOCCount tool .
SLOCCount counts just source code lines and excludes whitespace and comments
(and hence license statements). As we want to relate maintenance effort evolution to
license statement evolution, we decided to use the evolution of SLOC because it is
correlated to maintenance effort Hayes et al. (2004, 2003). Alternatively, one could
use churn as a measure of effort.

Step 4: At this step, our goal is to extract the value of license statement that
we identified in theStep 0 which is composed of license text (version, term%..),
copyright year, contributor list. Thus, we invoke Ninka German et al. (2010b) to

identify the licenses of each file. Ninka provides the license of the file, the license

of which are fed into the

W\

unmagtched sentences”.

version (e.g., GPLv3) and the list of file contributors, &

Ibdoos databases. Ninka also generates a list of so-called

9. http://www.dwheeler.com/sloccount/

(

4Jc1701/\4 ez ..



N
2%

Indeed, it may happen that a file contains bne or more licenses that have not been
identified by Ninka oy extra text such as cophments about the code. In this case, Ninka
will report the list gf sentences that it wag not able to match with any sentences of
a known license. Tp reduce the risk of inissing important license information, we
decided to also look| inside the unmatchéd sentences for license information. We
did this by manually §canning the unmatclied sentences for license information, then
using regular expressiqn patterns to mine\this information in an automated way.
Once licenses have been\dentified for a file, s licenses are compared for each pair of
consecutive revisions. If the comparison detedts a textual difference, we consider this

to be a license statement change. License statement changes and all related data,

Ibdoos’

/stowd according our meta-model
in green, see Figure 3.1). b

once available, are then stored\
(Fhe part of the meta-model

Step 5: Finally, we query the Ibdoos to analyse the co-evolution of
license statements and source code. The nex{ subsection explains the analyses we

had to perform. Lnskonces

4.4 Analysis Methods

4.4.1 RQ1: Do licenses co-evolve with source code at the

system level?
],\Q\(ﬂ(&%’ OF ot
Using the dgha in the Ibdoos databased, we compute the number of license state-

ma"?ﬂ, —m o&\

ment changes performed in different periods of time—discretised on a 15-day basis.
We do this analysis twice, once with and once without the initial introduction of
a license. This allows us to isolate of the effect of the initial introduction of a li-
cense. We also compute the difference in SLOC between successive versions in each
object system—again discretised on a 15-day basis. Note that we discretised the col-
lected data because the data would be too sparse otherwise and hard to compare.
We adopt a sampling granularity of 15 days as a compromise, as argued by Kenmei
et al. W (2008): fine-grained data such as a daily-based discretisation is
likely to be too detailed (many events at which no license statement change happens),
while 2 week-or longer discretisation may average out interesting facts. In Eshkevari

et al. (2011), our colleagues confirmed that 15-days is a sufficient granularity to track

changes.



29

\1\9)4

Rl On this data, we perform both a quantitative and a qualitative study:.
J

Juantitative study, We compute the cross-correlation between two time series,

time series describing the number of all license statement changes and the
time series describing the evolution of SLOC for all the files in a system. We also
compute the cross-correlation between two other time series, i.e., the time series
describing the number of all license statement changes excluding the initial addition
of a license and the time series describing the number SLOC changes for all the files
in a system. Cross-correlations are computed automatically for different lags between
the two series. The maximum lag is 10 X log 10(N/m) where N is the number of
observations and m the number of series. These cross-correlations will permit to
check whether the license statement changes are correlated with major events in the
evolution of a software system. Cross-correlation r can take on any value in between
the following extreme values: perfect positive correlation (r = +1), where, as the
number of SLOC changes increases, the number of license changes are predicted
to increase at a similar rate; zero (r = 0) or no correlation; and, perfect negative
correlation (r = —1), where, as the number of SLOC changes increases, the number
of license statement changes decreases. We note that the r value takes into account
lags. We assume that a positive or negative correlation indicates that the license
and source code co-evolve. The case of zero correlation indicates that the license

statement changes are not planned together with source code changes.

Qualitative Study, The cross-correlation will reflect whether there is a general
tendency of co-evolution of license and source code, but this general trend could
hide some particular cases. The complementary qualitative study will focus on such
particular cases where there is some correlation between the evolution of SLOC and
license statement changes. We start the analysis by plotting the three time serie
(1) the number of license statement changes performed in different periods excluding
the initial addition of a license, (2) including all license changes, and (3) the number
of added/removed lines of code. We analyse these curves to assess whether there is
a relation between license changes and the evolution of SLOC. We locate the peaks
in the license statement changes relatively to peaks in SLOC changes to understand
whether the license changes are planned relatively to the maintenance cycle or major

events during development, whether it is a continuous process, or whether it has no



30

special distribution throughout time. We use external sources of information like

mailing lists, change logs and release notes to interpret our observations.

4.4.2 RQ2: What types of license changes are performed?

Previous studies have suggested that there are different kinds of license statement
changes, a finding that can be used to refine the result of RQ1. Hence, we analyzed
Ninka’s output to distinguish different types of changes. Ninka reports data about
four elements: license name, license version, unmatched sentences, and the number
of contributors (in some systems), because of project-specific coding conventions, it
could not identify all the elements for all the systems. For example, in some cases
the license name is not identified. For that reason, we used the information in the
unmatched sentences. We parsed Ninka’s output to compute the occurrences of each
type of license statement change.

Using a histogram, we get information about how changes are distributed different
types of changes. Once these types are identified, we compute the cross-correlation
for each type of license statement change between two time series, i.e, the number of
license statement changes discretised on a 15-days basis and the evolution of SLOC.
As in RQ1, the cross-correlation ranges from perfect negative correlation, over no
correlation to perfect positive correlation results. The cross-correlation results of
RQ2 are more refined than the ones of RQ1, because we are considering each type
of license statement changes seperately instead of aggregating all types of changes
together. Hence, the correlation could be positive/negative/zero for specific types of

license statement change and not for others.

4.4.3 RQ3: Who performs license changes?

We compute the number of commits performed by each developer in the three
systems using the Ibdoos databases. Then, we identify the top seven committers
that changed license statements. We select the top seven, since that number covers
the most active committers in most of analysed systems Eshkevari et al. (2011).
We ranked the committers using their total number of performed SLOC changes
to measure their activities. This data allows to find how many committers modify
licenses and the relatin between license statement change activity and developement

activity. If the committers changing the licenses are a minority and their activities



31

are mainly changing licenses, we can say that there is a core of license experts in the

project.



32

Chapter 5

RESULTS AND DISCUSSION

AQ( l (\&d

questions i in Mapte

the threa§@{ validity.
\o

5.1 Study Results

This chapter iy’ composed of two sections. First, we answer the three research
r( \)A hen, we discuss our results and we present
Q7

This section presents the results of the three RQs. (\ -

5.1.1 RQ1: Do licenses co-evolve with scode at the

system level?

Quantitative Study, Figure 5.1 plots the results of the cross-correlations of three

sys}n_sb

Frawr thé maerolevel study, !vé'g cannot observe systematic large-scale license
changes accompanying large restructurings of the system, Except for Tomcat, where
cross-correlation reaches 80% (discussed later). The cross-correlation values® are
almost zero for the non-zero lags between the time series. For example, PHP cross-
correlation values vary between -5% and +5%, while those for XalanJ vary between
-10% and 50%, and those for Tomcat vary between -40% and 80%. Other projects

have similar ranges.

1. Detailed results are available in the annexe



ALEF

ACF

ACF

00 02 04 06 08 1.0

pe 02 04 06 048 1.0
|

v2ev Vi&v2
e a 4
| w0 |
L=
— © |
(=]
. -+ |
(=3
4 o |
————————————————————————————— (=] e —
— — o
= T T
I_ ______ — — T __----_I_ T = T __I- = T Sl I_
Gl R S g 0 5 O -
Lag Lag
(a) PHP.
vVZaw Viavz
&2 e
w | =
(=] (-]
e e
= z
o o |
. A T Py [ R SRS e Ao |
= A i = el L P
(=] LIELEL L] LI LA I ) LR [ -] T T
— T 1 — T T 3 — 7
20 ST 5 o 0 'l 10 15 20
Lag Lag
(b) XalanJ.
vzaw Vigva
- (=1
- = —
a
= | ot -
-]
; -
& -
e | L - I P ey e e e S e SN
_:__'___I_I_Z__I_l_l ______ . ___|_I_|__I__ - M e ! M
T T T T T |- ______ S — T __--___|_
-20 -15 -10 8 a Q LY 10 i 20
Lag Lag

(c¢) XercesJ.

33

Figure 5.1 Cross-correlation values between license and SLOC changes in all files.



34

Vpeee™
However, 4i##¢ the cross-correlations value are different from zero and reach up

to 80% in some cases, it is possible that the license changes are performed during
intensive maintenance periods. To understand this phenomenon in more detail, we

conduct the qualitative study.

Qualitative Study We performed our qualitative study on three systems out of
the seven analysed systems, i.e., JEreeChart, PHP, and XercesJ, we chose these three
systems because they have different licenses (LGPLv2.14+, PHP, Apache) and sizes.
Figures 5.2, 5.3, and 5.4 plot the corresponding evolution of the number of SLOC
and license changes performed. Figures 5.2(a), 5.3(a), and 5.4(a) show the number of
license changes excluding the initial addition of a license to new files, while Figures
5.2(b), 5.3(b), and 5.4(b) show the number of all license statement changes. Figures
5.2(c), 5.3(c), and 5.4(c) show the evolution of the SLOC. The red dots are the peaks
in the number of license statements that correspond to peaks in SLOC evolution.
We observe that license statement changes are relatively frequent, for example PHP
reaches an average of 14 changes per two weeks. This observation is not surprising
and confirms previous observations by Manabe et al. m%dt (2010) and Di
Penta et al. YAREAA G . (2010). We also observe that license statement changes
are in general dispersed over time with only some specific limited time frames in which
license statement changes are concentrated (red dots). In the following, we will give

more details about such changes.

JFreeChart: We can see several red-dotted peaks for license statement changes (see
Figure 5.2(b)), for example September 1%, 2008 (206 changes), June 22"¢ 2009 (161
changes) and July 7", 2009 (81 changes). These peaks correspond exactly to three
peaks in SLOC evolution (see Figure 5.2(c)), i.e., September 1%,2008 (3319), June
224 2009 (2323) and June 7%*,2009 (1556). The most frequent license statement
changes on these dates are: (1) adding new contributor(s) to the license statements
and (2) adding a license to a newly created file. We looked manually to changes
corresponding to these peaks, and also checked the comments corresponding to the
commits on these dates. We found that the majority of the red-dotted peaks indeed
can be explained by developers updating the names of contributors during large source

code modifications. These findings confirm earlier findings of Di Penta et al. Pkt

At (2009).



35

o -
orEsior L4ar = el e o) I BT 7 O O oLz e DE/a0s 10

(a) License changes excluding the introduction of licenses to newly created files.

Dl ZRIOT 11714807 DEDLIDE 12M18/05 oTialon 0LZH10 OB/ 10/10

(b) License changes including the introduction of licenses to newly created files.

oufzalioT 11714807 DEOLIDE 1LN1AIDE TN oLz OO0

(¢) SLOC evolution.

Figure 5.2 Evolution of SLOC and license statement changes over time in JFreeChart.



36

In PHPgp The licenses are generally changed to upgrade their version number, for
example from PHP license v2.02 to PHP license v3.0. We can see several peaks in
license statement changes that correspond to the release dates? of PHP (see Figure
5.3(b)), for example:

1. On May 227 2000: PHP v4.0.0 is released. We observe that, just before this
date, there are many license changes in the ”Zend” package. On May 18", 2000,
the committers updated the PHP license v2.01 to PHP license v2.02 by adding
the new clause 6 (Revision 24539). On May 19", 2000, committer “Zeev” cor-
rected the URL in the license of the “Zend” package three times. This was
not straightforward, since each time he made a change, he introduced another
error, for example he did not mention the URL in the correct place in the li-
cense statement. Finally, on May 22°¢ 2000 he logged his final change with
7 Sigh, that should be the last one”. Even though this license statement change
problem was harmless, it shows how committers can easily make errors while

changing a license statement.

2. On July 22", 2002, PHP v4.2.2 is released. We see that, just before this date,
two major license statement changes were performed. On July 215, 2002: the
committers removed the clause and the license of all the files in the “Zend”
package and they replaced them by a notice at the end of the license file. On
the same day, they updated the PHP license v2.02 to PHP license v3.0al.

3. On August 25,2003, PHP v4.3.3 is released. The committers updated the
PHP license v2.02 to PHP license v3.0 just before this date.

We mined the change log of PHP to find information about these license changes.
We noticed that the copyright year changed periodically at the end or the beginning
of the year (January 1%,2009, January 1°¢,2007, January 15,2006 and December
31°%,2002). This type of change is not detected by Ninka, but instead we it
by mining the change log file of PHP using grep for specific expressions lmp
year”, (Cwpdate year”,é@arjtjt”, “Apdate copyright year”, &pyright year”, and

others.

2. http://php.net/releases/index.php



atEgEEE

a -

T4 12069 0811901 L=n bt 011404 032841 1071008 02208 0Fmaas 1111840 04112

(a) Evolution of the number of license changes excluding the introduction of license state-
ments to newly created files.

180 -y
160 -
140 -
120 -4

100 =

aTr24ma 1200 TS 0413801 [ak: nh o el 011404 203 101005 o208 aTAEATE 111ana 0Aau12

(b) Evolution of the number of license changes including the introduction of license state-
ment to newly created files.

E2as ¥ 10408 o0 OTRaAE 11130 an1na

arz4ma 1oaea 0419401 mauae QLA

(¢) SLOC evolution.

Figure 5.3 Evolution of the SLOC and license changes over time in PHP.



38

In XercesJy We can see several red-dotted peaks in license statement changes (see
Figure 5.4(b)), for example for October 2006, for which we analysed the change log
comments and find that there wasa major : “Update to the latest ASF license header?
(ASF stands for the Apache Software Foundation). We also find some comments in

45,6 which seems to be an organized

the mailing lists that illustrate this change
change of license statements.

These peaks do not have corresponding peaks in SLOC (see Figures 5.4(b) and
5.4(c)), since they only involve changes to license statement (SLOC does not count
license statement). Instead, the changes are performed in a calm period without
regular code changes by one committer (“mrglavas”). In fact, this committer only
becomes active around the period of the license changes (period 2). Before this
period (period 1), many small license statement changes were performed by different
developers. For example, on 2001-09-12, “sandygao” changed a license statement by
adding missing terms and the log message: “Forgot to put license information in.” .

We observe some red-dotted peaks in Figure 5.4(a) corresponding to red-dotted
peaks in Figure 5.4(b)). These peaks also correspond to peaks in SLOC evolution
(Figure 5.4(c)). We can explain these by two type of license statement changes: (1)
the introduction of licenses to existing files due to a missing license and, (2) the
addition of new contributors while implementing new functionality. The peaks that
exist only on Figure 5.4(b) are explained by the addition of licenses to newly created
files.

2\ Lln)g; e (a( r\ok)
> }e;ﬁ‘(ljt

http://www.apache.org/legal/src/headers.html [/‘
http://goo.gl/UPbVc
http://goo.gl/Bb7gh
http://goo.gl/yTJIUP

S Ot



39

fa ] 125067 DA1843) 0801402 0114504 oa2an 1010400 Ll ] aroads 11518740

(a) Evolution of the number of license changes excluding the introduction of licenses to

newly created files.

Period 1 | Pericd 2

o - . v . i =
an24ms 120639 0413401 aoamLu oz 0371404 2800 10710900 Q208 (i 111ana

(b) Evolution of the number of license changes including the introduction of license state-

ment to newly created files.

-

SELLAREEEL

Period 1 | Period 2

L 120873 04/ 13701 090102 11404 T2 1011008 0y 2ane Ll i) 1114810

(¢) SLOC evolution.

[=]
=

Figure 5.4 Evolution of the SLOC and license statement changes over time in XercesJ.
(Red dots represent peaks, where as the green seperate two periods)



40

5.1.2 RQ2: What types of licen performed?

We found three main types of license statement changes: license type change,
license version change and contributor addition. Their popularity is different from
one project to the other. It seems to depend on each project’s guidelines or culture
towards software licenses. We found also that the cross-correlation between license
type change or license version change with SLOC evolution is higher that one found

in RQ1 when all type of license changes are mixed together.

100 -
gu ]
> 2 tl
07 u JFreechart
. 60 B PHP
& Tomcat
= 50
= W Xalan]
& 40 B Xerces]
30 | - jitsi
20|
ol i -I
ol ‘-

Version miscellaneous Contributor

Figure 5.5 Number of license statement changes per type.



41

The qualitative study of RQ1 allowed us to identify the most popular types of

license statement changes:

Addition of contributors: The license statement contains a list of names of
all contributors who have developed the file. This list is updated by adding the
name of a new contributor if (s)he helped to add a functionality or fix a bug.
For example, in Nov 13" 2003 Tim Bardzil is added as a contributor in the file
org/jfree/chart /renderer/category /BoxAndWhiskerRenderer.java because he added

drawHorizontalltem() method.

Updating the version of the license: The version number of a license is the
unique identifier attributed to a particular version of a license. A license version
number is generally assigned in increasing order and corresponds to new features in
the license. For example, PHP updated from PHP license v2.01 to PHP license v2.02
on May 18, 2000.

Change of the license type: A project switches from a license to another for some
reason, such as to be compatible with other software. For example, PHP changed the
license of php4/main/output.c from php License V3.01 to LGPLv2+.

Miscellaneous changes: These are the remaining changes, which are smaller in
nature and hence harder to identify automatically. Most of them are buried inside
unmatched sentence changes, i.e., those sentences that Ninka cannot match with the

sentences of a known license, because they typically are due to customization of license

text.

Cﬁis‘cogram in Figure 5.5 shows the distribution of license statement change
types per system. The cross-correlation between license statement changes and SLOC
changes per type of license statement change are available in the annexe. We find the

following;:

JFreeChart: Almost all license statement change types in JFreechart are contrib-
utor changes. This confirms what we observed manually in the qualitative study of

RQ1. The cross-correlation value of RQ1 is dominated by this kind of change.



42

PHP: The most popular kind of change are by far the miscellaneous changes, fol-
lowed by license version changes and the license type changes. The cross-correlation
is high for miscellaneous sentences (close to 1), while the cross-correlation of license
type change and license version change is near 60%.

The majority of changes belong to the miscellaneous category, because licenses
in PHP files do not include the full license text. Instead, they only contain a short
summary for the full license (to avoid cloning the full license everywhere) and refer
to the file php/php — src/trunk/LICENSE. Hence, Ninka is not able to detect
the exact name of the license. To refine our analysis, we mined to the unmatched
sentences for more detailed information. We found that the unmatched sentence
tokens include the actual name of the licenses and their version number in the url to
the license text. By parsing these links, we found out that all changes classified as

miscellanous either correspond to license version changes or license type changes.

Tomcat: Although all Tomcat’s license statement changes are classified @pe
change”, these changes mainly correspond to the addition of the apache clause” and a
link to the integral apache license text, and hence are not really license type changes.
The cross-correlation increases until 55% if all change kinds are seperated contrary to
RQ1 (license type change and initial addition of license to a file —this type of change

is not considered here).

XalanJ: About 90% of the license statement changes are license version changes and
9% are license type changes seperately changes. We computed the cross-correlation
for these types of changes. We found that the cross-correlation between either license
type or version changes with SLOC evolution is almost 1, which is much higher than

the global cross-correlation from RQ1.

XercesJ: The license type and version changes are the most frequent changes. The
cross-correlation between license type changes and SLOC evolution (reaching 70%) is
much higher than the one between all license statement changes and SLOC evolution
of RQ1 (reaching 20%), The same is found for version license version change. Thus,

version and type changes co-occur often with large code changes.

7.(}6ght and its CODdlthDS.

X



43

Jitsi: There is just one license type change from GPLv2 to LGPL. The remain-
ing changes are miscellaneous changes. Hence, we did not obtain a higher cross-
correlation than the cross-correlation in RQ1, because Ninka did not provide an ac-
curate classification of change. The cross-correlation is near to zero but reaches 65%
for one lag of time.

We mined the unmatched sentences of Ninka output to improve the classification.
Contrary to PHP, this mining did not provide license-related data, but rather license-
unrelated code comments (i.e., false positives of Ninka).

We did not present the result of Rhino in this RQ due to the low number of

changes per type. So, the cross-correlation is not significant in this case.

5.1.3 RQ3: Who performs license changes?

Table 5.1 presents the number of committers involved in license statement changes.
We see that 24 committers out of 28 (86%) for XercesJ and 2 out of 2 (100%) for
JFreeChart are involved in license statement changes. In contrast to XercesJ, only

10 committers out of 222 (4.50%) of PHP are involved in license changes.



44

XercesJ | JFreeChart PHP
Total # of found license statement changes 3116 162774 27
# (percentage) of committers involved 4 (86%) 100 (%) | 10 (4.50%)

Table 5.1 Overview of the license statement changes and the committers involved.

% license statement changes top 7

( N ( ‘(5
olton
XercesJ JFreeChart PHP

1D # of license statement changes 1D # of license statement changes IL) @M statement changes
mrglavas 1536 (4‘)%) mungal 849 (99.53%) zeev 8 (29.62%)
lehors 275 (9%) tagyh 4 (0.47%) ssb 5 (18.51%)
elena 247 ( %) - |andi 5 (18.51%)
no author 188 (6‘7) - -
andyc 178 (6% -
sandygao 178 (G -
arkin 110 ‘/) - - - -
Total top 7 712 Total top 7 853 Totaf top 7 18
Total license statement changes 3,116 Total license statement changes 853 Topfal license statement changes 27

87% % license statement changes top 7 100% Y license statement changes top 47 66.66

Table 5.2 Top seven committers involved in license stateme

we show the % of licenses c

nged per committer.

changes. in parentheses

Jitsi Tomecat
ID # of license changes 1D # of license changes
yanas 822 (25.60%) markt 741 (31.89%
lubomir_m 820 (25.54%) mturk 571 (24.58%)
damencho 506 (15.76%) kkolinko 406 (17.47%
s_vincent 442 (13.76%) remm 404 (17.39%)
emcho 339 (10.56%) fhanik 144 (6.19%
wernerd 143 (4.45%) rjung 38 (1.6%
ibauersachs 38 (1.18%) kfujino 7(0.3%
Total top 7 3.110 Total top 7 2311
Total license changes 3.210 Total License changes 232
% license changes top 7 96.88% % License changes top 7 99.48%)

Table 5.3 Top seven committers involved in license changes.

Values in parentheses

indicate the percentages of licenses changed per committer.

o




ﬂ\(é&td‘\/ Qc,(

XalanJ Rhino /
ID # of license changes 1D # of license changep
minchau 1593 (50.14%) nboyd 326 (27.76%
mkwan 488 (15.36%) szegedia 269 (22.91%
jycli 320 (10.07%) igor 205 (17.46%
sboag 192 (6.04%) gerv 126 (10.73%
ZONZaro 154 (4.84%) inonit 100 (8.51%
menamara 148 (4.65%) noris 86 (7.32%
santiagopg 61 (1.92%) hannes 34 (2.89%)
Total top 7 2956 Total top 7 114
Total License changes 3177 Total License changes 117
% License changes top 7 93.04 % License changes top 7 97.61

Table 5.4 Top seven committers involved in license changes. Values in parenthese
indicate the percentages of licenses changed per committer.

XercesJ JFreeChart PHP
1D # of changes 1D # of changes 1D # of changes
mrglavas 4070 (29.62%) mungaby 3446 (99.94%) zeev 4655 (9.19%)
elena 2253 (16.39%) taqua 2 (0.058%) helly 3502 (6.91%)
no author 1841 (13.40%) - - iliaa 2999 (5.92%)
lehors 1583 (11.52%) - - dmitry 2799 (5.53%)
neilg 1234 (8.98%) - - andi 2792 (5.51%)
jeffreyr 503 (3.66%) - - sebastian 2752 (5.43%)
andyc 425 (3.09%) | - - | sniper 2145 (5.23%)
Total top 7 11909 Total top 7 3448 Total top 7 18
% changes top 7 86.68% % changes top 2 100% % changes top 7 42.76

Table 5.5 The most active committers. Values in parentheses indicate the percentages

of files changed per committer.

Jitsi Tomcat

ID # of changes 1D # of changgs
yanas 4992 (36.01%) markt 1629 (46.51%
lubomir_m 2753 (19.86%) kkolinko 582 (16.61
emcho 2385 (17.20%) remm 566 (5.92%
s_vincent 1945 (14.03%) fhanik 389 (11.10%
damencho 772 (5.56%) mturk 122 (3.48%
wernerd 358 (2.58%) rjung 92 (2.629
sympho 156 (1.12%) | pero 28 (0.79%
Total top 7 13361 Total top 7 34(’
% changes top 7 96.38% % changes top 7 97.3%

Table 5.6 The most active committers. Values in parentheses indicate the percentages

of files changed per committer.



46

XalanJ Rhino I
ID # of changes 1D # of change
sboag 1738 (26.56%) | igor 2000 (45.85%
mkwan 967 (14.77%) nboyd 1164 (26.56%
norten 796 (12.16%) norTis 286 (6.52%|
minchau 512 (7.82%) gerv 181 (4.13%)
santiagopg 383 (5.85%) nboyd 168 (3.83%
mmidy 367 (5.60%) | inonit 110 (2.51%)
minchau 343 (5.24%) szegedia 34 (2.89%
Total top 7 5106 Total top 7 402
% changes top 7 78.03 % changes top 7 91.94

Table 5.7 The most active committers. Values in parentheses indicate thgpercentages
of files changed per committer.



47

Table 5.2 shows the list of the top seven committers involved in license statement
changes. In XercesJ, 7 committers out of 28 performed 87% of the license statement
changes while in JFreechart, 2 out of 2 committers performed 100% of all license
statement changes. = W

EspeciallyM@cesJ , most of the license statement changes have been performed
by a small subset of the committers. As can be seen in the tables, the percentages of
commits related to license statement changes is more or less similar for all XercesJ
committers in the top seven, i.e., ranging between 4% and 9%. One committer has
a higher percentage of changes (mrglavas), with 49% of commits involving a license
statement change. In JFreeChart, 1 committer performed 99.53% of license statement
changes, while the other one hardly made any change.

In PHP, to extract the committers who changed licenses, we counted just the
number of changes in the file php/php — src/trunk/LIC ENSE and not the numbers
of source code files for which licenses were changed, given PHP’s specific license
convention. Thus, the number of license statement changes in PHP is much lower
than the one in JFreeChart and XercesJ. However, the results show the same trend
as for JFreechart and XercesJ: a minority of committers performed the majority of
license changes. Three committers performed 66.66% of all license statement changes.

Mfiﬁﬂ; better understand the role of license statement change committers,
Table 5.5 identifies the most active committers based on the number of commits
(any commit that involves SLOC change) for JFreeChart, PHP, and XercesJ. We find
that many committers in the top seven for license statement changes are also active
committers. In XercesJ, the top seven active committers who also perform license

P13

statement changes are: “mrglavas”, “lehors”, "“elena”, “no author”, “andyc” (5 out
of 7). In JFreeChart, the committer who commits the majority of license statement
changes (99.43%) is also the most active one (99.94%). In PHP, 2 top committers
out of the 3 that commit license statement changes are also the most active.

We found similar results in the remaining systems as shown in the Table 5.3,
i.e., Jitsi, Rhino, Tomcat, and XalanJ, where the top seven committers for license
statement changes performs respectively 96.88%, 99.48%, 93.04%, and 97.61% of the
source code changes. Thus, a minority of committers perform the majority of license
statement changes. Moreover, these committers are the most active developers.

To summarize, the most active developers accepting changes to license statement

are the main contributors to software projects. This seems reasonable, since they (1)



48

often are amongst the leaders of a project, having the actual power to decide about
license Changey and (2) presumably have a very good insight into and experience with
the software system, being able to clearly understand the repercussions of software
license changes. For example, “mrglavas” in XercesJ is the primary contributor to
the Apache Xerces2 project since 2003. “Zeev” in PHP is a PHP developer and
co-founder of Zend Technologies. Together with a fellow student “andi” (also an
important committer), he created PHP3 in 1997.

5.2 Discussions arfdiThreatg orvalidity

In previous work, researchers studied license statement changes independently
from software maintenance tasks. In our work, we study license statement evolution
in the context of source code evolution. Based on our findings in RQ1 (no systematic
large-scale license changes and dispersed license statements), we can suggest improve-
ments to the license statement change process. First, there is a need for tools that
help track licenses and license statement changes to ensure systematic changes of all
the licenses of files consistently to the wanted license if the team decided so. For
example, this tool should allow visualising licenses at different levels of granularity,
from files to systems (some package has different license of the system license like
zend package in PHP). Moreover, during a change period, it could be used to auto-
matically update files to their “future license”. After the change is performed, this
tool should check that the license statement changes are propagated throughout the
system (consistency check), the current licenses are not violated in any way and if the
right persons are changing the licenses (we observed some errors in license statement
changes like the one zend package). There are quite some challenges involved with
developing such a tool, in particular the textual nature of license statements, which
encourages customizations. Furthermore, the fact that different change types do not
have the same popularity or even formatting style across all projects, suggests that

this tool must be adapted to the specific culture of license statement changes in a

particular project. //A
Second, instead of tool support, one could change the concept U@ ense state-

ment” to be more effective. This is basically what we saw in PHP, where instead of
having license statements that are (possibly customized) clones of the original license

text, the base license text is centralized. Less license statement changes occurred in



49

%type right, con thI]t ye} théy did not consider other thatvwtegetiddaed for more
effective analy817 as autorySystem architecture. Our study shows the importance to
include other information in the models, for example it is important to know who is
the committer that changed @e license and the contributor of the file covered by a
license. We already designed an initial model that could be refined to include possibly
more informations and add layer to help in license evolution managment.

Our study has some threats to validity, which we now discuss in more detail
(Wohlin et al. (2000)).

Construct validity:
Construct validity concerns the relation between theory and observations. The

later can be due to our measurements, i.e., the way we extracted licenses and identified
their changes. We extracted licenses using an existing license identification tool,
Ninka German et al. (2010Db). Although Ninka has a high accuracy, it also outputs
unmatched sentences in licenses @ sentences that it cannot parse. Although we
manually scanned these sentences for patterns, there is a risk that the unmatched
sentences might change some of the results. Moreover, Ninka does not detect the
copyright year. Thus, to answer our qualitative study, we mined change logs using
grep for specific expressions like: ”Bump year”, "update year”, "year+-+", "update
copyright year”, ”copyright year”, and others. Consequently, there is a risk that we
did not detect all copyrlght year changes.

lidity:

The internal validity of a study is the extent to which a treatment impacts the

Internal and

dependent variable. Conclusion validity threats concern the relation between the
treatment and the outcome. Threats to internal validity do not affect this study,
being an exploratory study Yin (2002). Conclusion validity is not threatened because
we used cross-correlations and made sure that the conditions for their application
held.

FExternal Validity:
The external validity of a study is the extent to which we can generalise its re-



50

sults. The main threat to the external validity of our study relates to the analysed
system ) four medium-sized systems (JFreeChart, Rhino, XalanJ, and, XercesJ),
and three large system (PHP, Tomcat and, Jitsi). All of these are open source, but
from different domains and with four different licenses: Apache, LGPL, MPL/GPL,

and PHP. Future work includes replicating our study on more systems, licensed under
her licenses to confirm our results.

e/ &



In this chapter, we present a preliminary step for a tool that helps to avoid license

inconsistencies in a system.

6.1 Tool Architecture Overvie R cold then

The result of the license statement evolution study presentéd in the chaptey/shows
there is need of tool to manage license statemgént changes. /This tool musy/ensure a
systematic changes of all the licenses of filey consistently % the wanted ficense, and
also pepmitsto mak§developers aware of tl{e constraints imposed by the/used licenses.
The meta-model proposed in zhe@apter could be extended by addi/g another layer
to represent license constralntS/mwydemt,@f»be’wzbie to check licenge constraints for
a given instance. %/fﬂ@'f&he tool wd

extract all the required system data according,our meta-model 4

transform the constraints and license terms to rules using a formal languagg using the

meta-model entities, finally check if the rules ate respected on the system
instance (see Figure %1\‘)\

and ko and Mz
6.2 Example of GPLv3 License Rules

eta-model

In this section, we present some example of GPLv3! terms, that we t#zzze
formalize using logic expression using the entities thaf we defined in our meta-model. s

We extracted the terms of GPLv3 license. Then, we transformed them into rules

using the entities defined in our meta-model.

1. http://www.gnu.org/copyleff/gpl.htm u(l(/




52

Meta-model instance

Rules le— Licenses |

Figure 6.1 License constraints checking.

Rule 1

@ you distribute copies of a program licensed under GPLv3, you must pass to the
recipients the same freedom that you received. You must be sure that they receive or
can get the source code. And you must show them this terms.”

if L(S) = GPLv3 A distribute(S) = show(S,T(L(S))) A accessible(Source(S))
List of fact used :

— distribute : distribute a copies of a system S

— show(S, T(L(S)) : show the terms of the system license

— accessible(Source(S)) : make the source code of S accessible

Rule 2

@ he GPL requires that modified versions be marked as changed (so that thelrr\
problems will not be attributed erroneously to the author)” j
ifderivative( P, ConnType(Sn, s))ANL(P) = GPLv3 = L(S) = GPLv3Acontain(S$
List of fact used :
— contain(S, N(Modif)) : S contain a Notice of modification

|

Rule 3

@you convey a program under GPLv3, an interactive users interface must show
to the user: 1) displays an appropriate copyright notice, an@lls the user that
there is no warranty for the work, that licensees may convey the work under this

License, and how to view a copy of this License.”

N(Modif))



93

if L(S) = GPLv3 A convey(S)

= show(S, N(L))Ashow(S, N(NW))Ashow(S, N(R(L(S), Convey)))Ashow(S, N(L(S)))
List of fact used :

— N(NW) : Notice of no warranty

Rule 4

@‘he output from running a covered work is covered by this license only if the
output, given its content, constitutes a covered work. (example of exception is the
output of gee, compiled source code, is not covered by GPL)”

ifL(S) = GPLv3 = L(Output(S)) = GPLv3
List of fact used :
— Output(S) : output from running a system S

Rule
)o/ay convey verbatim copies of the program’s source code as you receive it, in
any medium provided that you publish in each copy an appropriate copyright notice;

keep intact all notices stating that this license and any non permissive terms added
in accord with section 7 apply to the code; keep intact all notices of the absence of
any warranty; and give all recipients a copy of this license along with the Program.”
ifL(S) = GPLv3Aconvey(S) = W (S) = W (copy(S))Acontain(copy(S), Notice(Ll{ S)))A
NW(S) = NW (copy(S)) N Exception(W) N\ Exception(PreservationSpecN otice) N
Exception(Prohibit MisRepresentOrigin) A Exception(Limit Pub) A Exception(Decling) A
Exception(requirelndemini fication)
List of fact used :
— Exception(W) : exception of the warranty.
— FException(PreservationSpecNotice) : exception of requiring preservation of
specified reasonable legal notices or author attributions.
— Exception(ProhibitMisRepresentOrigin) : exception of prohibiting misrepre-
sentation of the origin of that material.
— FException(Limit Pub) : Limiting the use for publicity purposes of names of
licensors or authors of the material.
— Exception(Decline) : exception of declining to grant rights under trademark

law for use of some trade names, trademarks, or service marks.



¢ 54

]

— Exzception(requirelndemini ficationff@xception of requiring indemnification of
licensors and authors of that material by anyone who conveys the material (or
modified versions of 1}

Rule 6

@u may convey a work based on th

in the form of source code under the t

rogram or a modification of the Program
Arms of rule 4 and under these conditions: a)
contains notice that states that you mjodified it and indicates a relevant dates, b) the
work must contain notice stating thiat is released under This license (GPLv3) and
any conditions added under section[7. This requirement modifies the requirement in
Rule 5 to keep intact all the notices.c) You must license the work as whole under this
License to anyone comes into possession. P contains user interface = the user
interface of the program must display Appropriate Legal Notice.”

if L(S) = GPLv3A\Derivative(P, S, (P, S))Aconvey(S) = contain(copy(P), N (N
contain(copy(P), N(L(S)))A(copy(P).contain(UI) = show(copy(P), N(L)))\Except

[odif))A
ion(W)A

Exception(PreservationSpecNotice) N Exception(Prohibit MisRepresentOrigin) A
Exception(Limit Pub) A Exception(Decline) \ Exception(requireIndemini fication)
List of fact used :
— N(Modif) : Notice which indicates that the program is modified version of the

original one

Rule 7

@‘ he combination of a covered work in a compilation of independent work doesn’t

cause this license to apply to the other parts of the aggregate.”

if L(S) = GPLv3A!Derivative( P, S, ConnType(P, S)) = Vf € S, L(f) = anyLicense



; ,LMS“M?{)
yese @5 \ Chapter 7
o)
RV
Co CONCLUSION
5\/\)&«,5 \ W\}

Several issuesofticanse dne todipense evohution suggest th%ce e changes ‘ﬁuld

have negqtive impacts. Thus, we think that license £volution' woyth tette studs
the sizé)of

manual chegking. Existing approaches for license statement cliange analysis do not

help in adfomatic license changefl tracking, stems M@t prevent

focus on the \relation between license statement changes and tke software develop-
. %@M@kj’ﬁ is

the license

ment cycle, i.e\ the co-evolution between licenses and source co

important to relate source code evolution and license evolution to

evolution is a systemstic changes or depends on software evolution and also to find

ich type of developers\are changing licenses, i.e., the sa modlfylng the source SWQA
cod

q it as first step % prop system meta-m fjél
that pertinent informations. As a second step, we

license management is correlated with source code changes. Knowing how and when
licenses change, we could propose a methodology to improve the process of license

management to help developers in changing licenses without introducing inconsisten-
cies ard-TioTdtinptietnses using the outcome of our study and information from the
meta-model. (Ve \odirated o A baed 00 ot mata -mote to Vmé}' e GO,
We began by doing a litterature review about previous system metenmodel for
license analysis, studieg”around license analysi$, and license terms,/..etc[to gather
license data that mugt be pfesented in a metd-model. Then, we ideatified rflation be-
tween them and défined eglch element in the meta~model. After fhat, to study source
code and licens¢ co-evolytion, we used gur systenf meta-mode) to identify which data
we must track and storgd them in Ihfoos datalpase using within meta/model. Using
this data, ye performed a quantifative and g qualitatiyé study on geven systemy,
and we fgund that ligenses are fhanging frequently as/other softwafe artefacts/are

changing.

However, these chajges to a large¢ degree Seem independent from Source
)
code ¢hanges, i.e., thdy are ot necessarily aligned Avith massive codle chaxges. Fur-

thepmore, we distinguish€d three main type§ of/license statement changes: license



o6

type change, license version change and contributor addition. The popularity of

these change types is % uniform across all projects, but seems t¢/dd¢pend on eag¢h

commercial damage to the organization.
As future work, we propose to extend our automatic approach to track license
evolution by adding license compatiblity checking. As we did in our preliminary
study in Chapter 6, we could formalize rules of each license. Then, we could check

their rules are verified in the respected in the concerned system.

ek I A



o7

Références

ALSPAUGH, T. A., ASUNCION, H. U. et SCACCHI, W. (2009). Intellectual prop-
erty rights requirements for heterogeneously-licensed systems. RFE '09: Proceedings
of the 2009 17th IEEE International Requirements Engineering Conference, RE.
IEEE Computer Society, Washington, DC, USA, 24-33.

BASILI, V. R. et WEISS, D. M. (1984). A methodology for collecting valid software
engineering data. IEEFE Trans. Software Eng., 10, 728-738.

CAPILUPPI, A., LAGO, P. et MORISIO, M. (2003). Characteristics of open source
projects. CSMR ’03: Proceedings of the Seventh European Conference on Software
Maintenance and Reengineering. IEEE Computer Society, Washington, DC, USA,
317.

CORDY, J. R. et ROY, C. K. (2011). Debcheck: Efficeient checking for open source
code clones in software systems. Proceedings of the International Conference on
Program Comprehension, ICPC 2011. IEEE Computer Society.

DA CRUZ, D. C. (2008). Methods and techniques to analyze multi-level code to
explore software components. These de doctorat, Universidade do minho.

DI PENTA, M., GERMAN, D. M., GUEHENEUC, Y .-G. et ANTONIOL, G. (2010).
An exploratory study of the evolution of software licensing. Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering - Volume 1. ACM,
New York, NY, USA, ICSE ’10, 145-154.

ESHKEVARI, L. M., ARNAOUDOVA, V., PENTA, M. D., OLIVETO, R.,
GUEHENEUC, Y.-G. et ANTONIOL, G. (2011). An exploratory study of iden-
tifier renamings. MSR. 33-42.

GERMAN, D. M. et HASSAN, A. E. (2009). License integration patterns: Address-
ing license mismatches in component-based development. ICSE °09: Proceedings of

the 31st International Conference on Software Engineering. IEEE Computer Society,
Washington, DC, USA, 188-198.

GERMAN, D. M., MANABE, Y. et INOUE, K. (2010a). A sentence-matching
method for automatic license identification of source code files. Proceedings of
the IEEE/ACM international conference on Automated software engineering. ACM,
New York, NY, USA, ASE ’10, 437-446.



o8

GERMAN, D. M., PENTA, M. D. et DAVIES, J. (2010b). Understanding and
auditing the licensing of open source software distributions. ICPC ’10: Proceedings
of the 18th International Conference on Program Comprehension. IEEE Computer
Society, Los Alamitos, CA, USA, vol. 0, 84-93.

GOBEILLE, R. (2008). The fossology project. Proceedings of the 2008 international
working conference on Mining software repositories. ACM, New York, NY, USA,
MSR, 08, 47-50.

HAYES, J. H., MOHAMED, N. et GAO, T. H. (2003). Observe-mine-adopt (oma):
an agile way to enhance software maintainability. Journal of Software Maintenance,
15, 297-323.

HAYES, J. H., PATEL, S. C. et ZHAO, L. (2004). A metrics-based software mainte-
nance effort model. Software Maintenance and Reengineering, European Conference
on, 0, 254.

HEMEL, A., KALLEBERG, K. T., VERMAAS, R. et DOLSTRA, E. (2011). Find-
ing software license violations through binary code clone detection. Proceedings of
the 8th international conference on Mining software repositories. ACM, MSR 11,
63-72.

HINDLE, A., GERMAN, D. M. et HOLT, R. (2008). What do large commits tell
us?: a taxonomical study of large commits. Proceedings of the 2008 international
working conference on Mining software repositories. ACM, New York, NY, USA,
MSR 08, 99-108.

KENMEI, B., ANTONIOL, G. et DI PENTA, M. (2008). Trend analysis and issue
prediction in large-scale open source systems. Proceedings of the 2008 12th Furopean

Conference on Software Maintenance and Reengineering. IEEE Computer Society,
Washington, DC, USA, 73-82.

KULLBACH, B., WINTER, A., DAHM, P. et EBERT, J. (1998). Program compre-
hension in multi-language systems. WCRE '98: Proceedings of the Working Con-
ference on Reverse Engineering (WCRE’98). IEEE Computer Society, Washington,
DC, USA, 135.

MANABE, Y., HAYASE, Y. et INOUE, K. (2010). Evolutional analysis of licenses
in foss. Proceedings of the Joint ERCIM Workshop on Software Evolution (EVOL)
and International Workshop on Principles of Software Evolution (IWPSE). ACM,
New York, NY, USA, IWPSE-EVOL 10, 83-87.



99

PENTA, M. D. et GERMAN, D. M. (2009). Who are source code contributors
and how do they change. Proceedings of the 16th Working Conference on Reverse
Engineering, WCRE 2009. IEEE Computer Society, 13-16.

ROSEN, L. (2004). Open Source Licensing Software Freedom and Intellectual Prop-
erty Law. Prentice Hall.

TUUNANEN, T., KOSKINEN, J. et KARKKAINEN, T. (2009). Automated soft-
ware license analysis. Automated Software Eng., 16, 455-490.

WOHLIN, C., RUNESON, P., HOST, M., OHLSSON, M. C., REGNELL, B. et
WESSLEN, A. (2000). Experimentation in software engineering: an introduction.
Kluwer Academic Publishers, Norwell, MA, USA.

YIN, R. K. (2002). Case Study Research: Design and Methods. Sage Publications,

Inc, third edition édition.



