
UNIVERSITÉ DE MONTRÉAL

SOURCE CODE AND LICENSE STATEMENT CO-EVOLUTION

FERDAOUS BOUGHANMI

DÉPARTEMENT DE GÉNIE INFORMATIQUE ET GÉNIE LOGICIEL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

MÉMOIRE PRÉSENTÉ EN VUE DE L’OBTENTION DU DIPLÔME DE

MAÎTRISE ÈS SCIENCES APPLIQUÉES

(GÉNIE INFORMATIQUE ET GÉNIE LOGICIEL)

NOVEMBRE 2012

c© Ferdaous Boughanmi, 2012.

UNIVERSITÉ DE MONTRÉAL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

Ce mémoire intitulé :

SOURCE CODE AND LICENSE STATEMENT CO-EVOLUTION

présenté

par : Mme BOUGHANMI Ferdaous

en vue de l’obtention du diplôme de : Mâıtrise ès Sciences Appliquées

a été dûment accepté par le jury constitué de :

M. ADAMS Bram, Doct., président.

M. ANTONIOL Giuliano, Ph.D., membre et directeur de recherche.

M. GUÉHÉNEUC Yann-Gaël, Ph.D., membre et directeur de recherche.

M. C. DESMARAIS Michel, Ph.D., membre.

iii

Résumé

Les logiciels libres reposent largement sur la réutilisation de composants logi-

ciels disponibles sous une variété de licenses (e.g., Apache, BSD, GPL, ou LGPL).

Différentes licenses imposent des limitations et des conditions différentes sur la réutilisation

d’un programme et sa redistribution ce qui rend difficile la compréhension des con-

traintes juridiques imposées au système final. La license d’un fichier est spécifié par

une déclaration de license. Les déclarations de licence sont des snippets de texte

insérées en haut du code source ou de tout autre fichier qui spécifie la license sous

laquelle le fichier peut être réutilisé, ainsi que les contributeurs qui possédent les

droits d’auteur sur le fichier. Les déclarations de license ne sont pas un concept sta-

tique, car les projets peuvent mettre à jour leur licenses (version ou type) ou ajouter

des contributeurs. Comme ces changements peuvent avoir un impact majeur sur un

système en terme de sa distribution et utilisation, il est important de comprendre

quand ils se produisent au cours du développement relativement à l’évolution du

source code, le changement des licenses peut être pendant d’importantes modifica-

tions ou indépendamment de l’évolution des modifications du système, combien de

fois ils se produisent (rare vs.récurants), et qui les effectue (experts vs.développeurs

réguliers). Nous proposons donc, un méta-modèle pour effectuer des analyses qui per-

mettent la detection des problèmes de license et présente une source d’information

structurée qui peut être utilisé dans les études reliées aux licenses. Ensuite, nous

présentons une étude sur la co-évolution des déclarations de license et le code source

dans sept systèmes OSS : JFreeChart, Jitsi, PHP, Rhino, Tomcat, XalanJ et XercesJ.

Notre étude montre que ce n’est que dans quelques cas, dans PHP, que l’évolution des

déclarations de licenses et celle du logiciel sont soigneusement planifiés et gérés en-

semble juste avant les versions majeures. Dans tous les systèmes, les développeurs qui

effectuent plus de changement de code source, sont aussi les plus actifs mainteneurs

de license. Notre travail permet de comprendre quand les déclarations de license

sont changées et permet d’identifier les développeurs qui effectuent ces changements,

notre travail est un travail préliminaire afin de mieux contrôler l’impact de ces change-

ments sur le système, i.e., éviter l’introduction des inconsistences en proposant une

méthodologie pour la gestion des changement de licenses.

iv

Abstract

Open-source software (OSS) systems heavily rely on the reuse of software compo-

nents made available under a variety of software licenses (e.g., Apache, BSD, GPL,

or LGPL). Different licenses impose different limitations and conditions on program

reuse and redistribution thus making it difficult to understand the legal constraints

for the final system. The file license is specified using a license statement. License

statements are snippets of text near the top of a source code or other files that specify

the software license under which the file can be used , as well as which contributors

own copyrights over the file. Such license statements are not static because projects

might update the licenses (version or type) or add contributors. Such changes can

have a major impact on a software system, so it is important to understand when they

happen during development (with major souce code changes vs.independently), how

often they happen (rare vs.recurring), and who performs them (experts vs.regular

developers). In addition, a meta-model could help analyse to detect license issues in

studies related to licenses. In this thesis, we propose a meta-model based on previous

work and on information gathered from license text. Then, we perform a study on the

co-evolution of license statements and source code in seven OSS systems: JFreeChart,

Jitsi, PHP, Rhino, Tomcat, XalanJ, and XercesJ. Only in a few cases in PHP, license

statement and software evolution are carefully planned and managed together just

before major releases. In all systems, the developers performing most of the commits,

are also the most active license maintainers. Thus, we are able to unerstand when

license statements are changed and we identified the developers that perform this

changes, our finding are the result of preliminary work to permit better control on

license change impact on the system, i.e., avoid the risk of introducing inconsistencies

by proposing a methodology to manage the process of license changes.

v

Contents

Résumé . iii

Abstract . iv

Contents . v

Chapitre 1 INTRODUCTION . 1

1.1 Context . 1

1.1.1 System Meta-model . 4

1.1.2 Co-evolution of License Statements and Source Code 5

1.2 Background . 7

1.2.1 Open Source Software . 7

1.2.2 Collective and derivative works 7

1.2.3 Types of Licenses . 8

1.2.4 Example of licenses: GPL, BSD, and Apache 9

1.2.5 License compatibility and constraints 12

1.3 Thesis Plan . 13

Chapitre 2 STATE OF THE ART . 14

2.0.1 Meta-model and Software License Analysis 14

2.0.2 License Change Analysis . 16

2.0.3 License Identification Tools 17

Chapitre 3 SYSTEM META-MODEL FOR LICENSE ANALYSIS 19

3.1 Meta-model Design . 19

3.2 Definitions of Meta-model Constituents 21

Chapitre 4 STUDY SETUP . 25

4.1 Definition of Our Study . 25

4.2 Context . 25

4.3 Setup of the Study . 26

4.4 Analysis Methods . 28

vi

4.4.1 RQ1: Do licenses co-evolve with source code at the

system level? . 28

4.4.2 RQ2: What types of license changes are performed? . 30

4.4.3 RQ3: Who performs license changes? 30

Chapitre 5 RESULTS AND DISCUSSION 32

5.1 Study Results . 32

5.1.1 RQ1: Do licenses co-evolve with source code at the

system level? . 32

5.1.2 RQ2: What types of license changes are performed? 40

5.1.3 RQ3: Who performs license changes? 43

5.2 Discussions and Threats to validity 48

Chapitre 6 PRELIMINARY FOR LICENSE VIOLATION DETECTION TOOL 51

6.1 Tool Architecture Overview . 51

6.2 Example of GPLv3 License Rules . 51

Chapitre 7 CONCLUSION . 55

Références . 57

1

Chapter 1

INTRODUCTION

1.1 Context

A software license governs the legal use and redistribution of a system and its com-

ponents by dictating what can and cannot be done with the system, e.g., if the users

can access the artifacts 1, if they can modify or enhance it and, more importantly, if

they are allowed to re-distribute the original source code as well as any improvements.

In open source software (OSS) systems, license information is included in each source

code file as a textual license statement or as a notice file for the whole system or for

each component. Such a statement also includes copyright information: the names of

contributors to the source code file and the copyright owner. The copyright owner of a

software system has exclusive rights to make copies of the system, prepare derivative

works based on it, and distribute copies. she uses a license to grant permission to the

licensees to use and exploit her intellectual property by granting rights. Each grant

is given provided a set of conditions are satisfied (German et Hassan (2009)).

The availability of OSS systems mainly because of the advent of Free/Open Source

Software (FOSS) and also proprietary systems with open APIs and the need for more

rapid product development encourages creating systems through integration of pre-

existing components. In fact, developers tend to assemble different components in-

stead of writing all the system by themself. This practice leads to systems composed of

heterogenously licensed components, i.e., package, libraries, framework...where each

component could have a different license and the whole system could be licensed

differently from its components.

Yet, it could introduce another type of problem due to the various rights/obligations

of each license, the large number of licenses, i.e., more than 70 OSS licenses ex-

ist today, and their different versions. Thus, it becomes difficult to follow all the

rights/obligation of each license and their combination thereof, which increases the

1. In this thesis, we are interested to source code

2

complexity to manage licenses. In addition, the kind of reuse could even add addi-

tional problems, because the reuse of existing components could lead to two types of

works, i.e., derivative works or collective works. A derivative work is a work based

upon one or more preexisting works in which a work may be recast, transformed, or

adapted” 2, in contrast a collective work is an assembled independent work that could

be distributed independently. In general, the case of the creation of derivative work

poses more constraints in some case. Thus, it is important to know if the created work

is derivative by determining the connectors used to connect to each component, e.g.,

when we connect to GPLed component using by instanciating a class, it is considered

derivative work. thus it is required that the final work must be licensed under GPL.

In fact, one of the major challenge is the reuse of software licensed under reciprocal

licenses e.g., GPL license, to create derivative work because it requires that the whole

work will be licensed under the same version of the reciprocal license.

The license of an OSS system could evolve like any other software artifact. Such,

license evolution is driven by many factors, e.g., to make the license more restrictive

by the addition of new terms, or to allow derivative works by adding exceptions. In

fact, a license can either be changed pervasively throughout a software system (e.g.,

the switch GPLv2.0 to GPLv3), or only locally (e.g., contributor name added to

one file). Furthermore, a license statement evolution can be coarse-grained (switch

to a different license), fine-grained (copyright year updated) or anything in between

(clause added or removed) Di Penta et al. (2010).

This evolution introduces a risk of license terms violation. Many software systems

are composed of different libraries and components; if one component changes its

license, then it might no longer be possible to use it because of incompatibility. We

provide now some examples that show the possible consequence of license evolution

and how complicated it is to reuse GPL-licensed programs. The first example is the

IPFilter 3 that is a component used by the OpenBSD 4 system, but the author of

IPFilter added new terms to its license, which were not compatible with the existing

license of OpenBSD. Thus, openBSD replaced IPFilter by its own OpenBSD-based

implementation.

A second example is the ”Java Classpath exception”: the Java JDK was dis-

2. add ref
3. add ref to ipfilter
4. write something about openBSD

3

tributed until recently under the Common Development and Distribution License

(CDDL). Sun then decided to change the license of the JDK to GPLv2 to encourage

the use of Java. A problem related to license compatibility appeared: any program

that runs under the JVM dynamically links to the runtime library that is a part of

the JVM. Hence, this program is considered to be derivative work of the JVM, and

hence should be licensed under the GPLv2. Consequently, Sun added the Classpath

exception to the GPL2 to resolve this issue. This exception states that linking to the

provided library is not considered a derivative work.

A third example is the case of MySQL client libraries, which were licensed under

the terms of the LGPLv2. The LGPL license allows the reuse of a system licensed

under its terms to create and distribute software under any license. In 2004, MySQL-

AB changed the license of the MySQL client librairies to GPLv2 but they wanted

to allow some Free/Libre and Open Source Software (FLOSS) systems to still use

their libraries, even though their licenses are not compatible with GPLv2, e.g., the

PHP run-time engine. MySQL-AB resolved this issue by adding to its license the

”MySQL FLOSS License Exception”, which permits to create a derivative work based

on MySQL client libraries to be licensed under any of 24 licenses, e.g., BSD, MIT,

Mozilla Public v1.0, PHP. The two previous examples show how to create non-GPL

compatible programs based on GPLed programs, another solution is multi-licensing

in which the user chooses the license from two or more licenses. An example of

this practice is the Mozilla Foundation, which makes Mozilla, Firefox, and Thunder-

bird available under three different licenses: the Mozilla Public License version 1.1

(MPLv1.1), the GPLv2 or later, or the LGPL v2.1 or later.

Consequently, developers should be aware of license changes and their possible ef-

fects. Also, OSS systems are developped/maintained by many developers that could

change a license of a file without being aware of the consequences of this evolution.

Thus, to study license evolution, we will look at changes to license statements. These

changes could produce some license incompatiblity in a system. Therefore, we must

analyse the existing licenses of a software system before modifying it or adding more

components under different licenses. However, developers are not specially trained to

deal with licenses. In addition, manually detecting various licenses and their inter-

action is a laborious task. Thus, this problem raises the need for some sophisticated

license evolution management techniques to assit developers to organise their software

licenses in a better way.

4

Thesis :
The license statements are changing frequently, but not necessarily coevolve with

source code and managed by a minority of developers that are probably experts.

We will follow two research steps to confirm our thesis:

Step1: First, we will study all entities/data involved in licenses and their evolution,

as well as their relations, to design a system meta-model. Our meta-model provides

informative data needed to study license evolution.

Step2: Our meta-model indicates to us which data are related to license evolution.

Then, this data will be extracted into a meta-model instance to be processed. After,

we will analyze license statement and source-code co-evolution and license committers

to answer our thesis and understand license evolution; if they evolve according source

code evolution, or independently, or every project has his proper culture of evolution,

and if they are modified by minority that could be probably group of experts. Our

results could be used for future work to develop better licensing tools and techniques.

=⇒ The data described by our meta-model might be also the support to develop

a tool for license evolution management and the identification of different license

evolution culture will be informative to define the requirements of this tool.

1.1.1 System Meta-model

To fully understand license evolution and all related entities, we first build a

meta-model for license evolution. Such meta-models have been proposed to help in

using OSS sysem to avoid license inconsistencies. These meta-models represent some

license aspects, e.g., grant and their conditions (German et Hassan (2009); Alspaugh

et al. (2009)). Yet, the data presented in previous models is not sufficient to cover

many entities that are important in resolve license issues. Hence, we expand previous

meta-models and provide a complete meta-model. Using our meta-model, we will

locate which aspects of licensing should be explored in detail in our work about

license evolution. To build a complete license evolution meta-model, we first perform

a literature review to find pertinent license related data to design our meta-model.

Then, we extend this design by analysing additional elements that we found while

studying license text of some popular licenses like GPL.

We think that there is need of a meta-model and tool to help maintaining system

licenses and improving license changes process. Such help sustaining open source

adoption in practice.

5

1.1.2 Co-evolution of License Statements and Source Code

Usually, when researchers study system evolution, they focus on the evolution of

source code (different artifacts like class, method...) and of documentation, because

they think that there evolution is important and could impact software quality. Thus,

they try to find method to preserve this quality during the evolution of the system.

Since the license statements specify which license applies to which file and who

owns copyrights, understanding the frequency and kinds of license statement changes

and their risks is essential for a number of reasons. For one, license or copyright

infringements can completely outweigh the financial gain of reusing OSS systems,

which is why many companies are extremely cautious when reusing OSS components

in their proprietary systems ????. For example, MySQL changed its license to the

more restrictive license GPLv2.0 to prevent the commercial abuse. However, this

change also prevented FOSS applications from including MySQL Client Libraries

and could only be resolved by adding a license exception 5 for OSS systems. For

another, license statement changes are not trivial because they are written in “legal”

English, and do not necessarily follow strict formatting, the volunteers developing

open-source systems may or may not be legal experts or have the proper training to

fully understand the impact of a license statement change.

To confirm our thesis about co-evolution of software licenses and source code, we

investigate the following research questions:

– RQ1: Do licenses co-evolve with source code at the system level?

We want to relate license statement changes and software evolution to un-

derstand whether developers change license statements when they change the

source code of systems, i.e., whether the peaks of license statement changes are

synchronized with peaks in source code changes or instead shifted in time. The

distribution of license statement changes (dispersed or grouped by period) and

their evolution relative to source code evolution will help us to (1) understand

whether the process of license statement changes is a planned and organised

activity relatively to SLOC changes, to (2) know how to design/develop a tool

tp improve the process of license management and avoid license inconsistencies,

and (3) to decide if licenses should be managed together with source code or it

can be an independent process.

5. http://www.mysql.com/about/legal/licensing/foss-exception/

6

Result:
License statement changes could occur as needed when a substantial contribution

is made (addition of contributors) or whenever the legal team advises so (update

of license version or type).

We find that license statements are changing frequently and continuously, but

not necessarily together with source code.

– RQ2: What types of license changes are performed?

We want to refine the analysis of RQ1 and distinguish between different change

types to link our analysis closer to practice. For this, we will first identify

different types of license statement changes, then study the co-evolution of

SLOC and the number of license statements per change type. The answer

to this question will either show that certain license statement change types

accur in a similar degree across all systems, or that their evolution depends on

the specific licensing policies or guidelines of an open source project.

Result:
Different kinds of license statement changes can evolve differently. We identified

three main types of license changes: license type change, license version change

and contributor change. We found that license type and version changes co-occur

more often with SLOC changes than other license change types do.

– RQ3: Who performs license changes?

There are two major groups of stackeholders related to source code changes:

authors and committers. The author of a change is the contributor who physi-

cally changes a set of files, whereas the committer is the gatekeeper who decides

whether those changes will be made available to the whole project by commit-

ting them into the source control system. Applied to software licenses, the

author of a change might propose a change in a license, however it is the com-

mitter who has the authority to accept or deny this proposal. License statement

changes could introduce inconsistencies and cause legal violations, thus it is im-

portant to know who is responsible for this risky task. For this reason, we study

the committers of the seven projects to understand which ones are responsible

for accepting license statements, and what their role is in the project.

Result:

7

License statement changes could be limited to a minority of specialised of com-

mitters, because they require thorough knowledge of dealing with legal issues.

Alternatively, it could be left up to individual committers because open source

developpers are sufficiently familiar with licensing. We observe that the most

active committers (in the CVS or SVN repository) performing license statement

changes are also the project members with a leading role.

1.2 Background

In this section, we define and clarify some concepts that we will use in our thesis.

1.2.1 Open Source Software

Open source software (OSS) development has some typical characteristics, such

the widespread reuse of components and licenses. This widespread of various and dif-

ferent licenses increases the difficulty to understand their constraints. Consequently,

new re-engineering tool must consider the licenses analysis. OSS development pro-

cess outputs have been studied to study many aspects of programs, for example in

Capiluppi et al. (2003) , they analyzed a sample of around 400 projects from a pop-

ular OS project repository. Each project is characterized by a number of attributes.

According this study, the most used languages were C, C++, Perl, and Java. Despite

the large number of OSS projects, developments effort have focused on a few large

projects such as Linux, Mozilla, and Apache. In Capiluppi et al. (2003), Capiluppi

and al. confirmed that few projects are capable of attracting a meaningful commu-

nity of developers. The majority of projects is made by few (in many cases one)

person with a very slow pace of evolution. We think that the analysis of licenses will

be more useful in project with great community and in constant evolution because

the evolution of the systems increase the threat of license violation and the large

number of components and licenses increases the constraints to respect inter-licenses

compatibility.

1.2.2 Collective and derivative works

Distinguishing between collective work and derivative work is fundamental for

analysis of legal issues of components based software system, because constraints

8

imposed by license could be different for collective and derivative work.

A collective work is:

A work in which a number of contributions, constitut- ing separate and inde-

pendent works in themselves, are as- sembled into a collective whole. (17 U.S.C. Â§

101.)

And a derivative work is:

A work based upon one or more preexisting works, such as a translation or any

other form in which a work may be re- cast, transformed, or adapted. (17 U.S.C. Â§

101.)

1.2.3 Types of Licenses

Licenses can be categorised into four categories:

1. Academic Licenses, “so named because such licenses were originally created by

academic institutions to distribute their software to the public, allow the software

to be used for any purpose what so ever with no obligation on the part of the

licensee to distribute the source code of derivative works. The Berkeley Software

Distribution (BSD) license used by the University of California to distribute its

software is the archetypal academic license. Academic licenses create a public

commons of free software, and anyone can take such software for any purpose

including for creating proprietary collective and derivative works without having

to add anything back to that commons.” Rosen (2004)

2. Reciprocal Licenses, “Allow software to be used for any purpose whatsoever,

but they require the distributors of derivative works to distribute those works

under the same license, including the requirement that the source code of those

derivative works be published. The GPL license, written by Richard Stallman

and Eben Moglen at the Free Software Foundation, is the archetypal reciprocal

license. Anyone who creates and distributes a derivative work of a work licensed

under a reciprocal license must, in turn, license that derivative work under the

same license. Reciprocal licenses, like academic licenses, contribute software

into a public commons of free software, but they mandate that derivative work

also be placed in that same commons.” Rosen (2004)

3. Standards Licenses, “are designed primarily for ensuring that industry standard

software and documentation be available to all for implementation of standard

9

products. These licenses sometimes require that any differences from the indus-

try standard be published as a reference implementation so that the standard

may evolve if necessary.” Rosen (2004)

4. Content Licenses, “ensure that copyrightable subject matter other than soft-

ware, such as music, art, film, literary works, and the like, be available to all

for any purpose whatsoever. These licenses are discussed more fully on the Cre-

ative Commons website at www. creativecommons. org . While the Creative

Commons goals are not directly related to software freedom, there are many

similarities of objective. A few of the software licenses discussed in this book,

in particular the Academic Free License (AFL) and the Open Software License

(OSL), are appropriate for use with content as well as software, as will be ex-

plained in due course.” Rosen (2004)

1.2.4 Example of licenses: GPL, BSD, and Apache

In this subection, we present the most used licenses 6 : GPL, BSD, and Apache.

1. BSD: Academic License

Contrary to the GPL License, Berkeley Software Distribution license (BSD) al-

lows anyone to redistribute the work or any derivative work without any source.

So BSD do not cause incompatibility problem : the caller of program under BSD

license can use any license.

2. GPL: Reciprocal License

GNU Public License (GPL) is very common license for open source packages.

GPL is known for having strict reuse constraints. So it is important to focus on

incompatibility issues involving GPL license. GPL is reciprocal license because

any software that reuses code licensed under GPL should be licensed under the

same version of the GPL. Here the GPL say it:

“You must cause any work that you distribute or publish, that in whole or in part

contains or is derived from the Program or any part thereof, to be licensed as

a whole at no charge to all third parties under the terms of this license.”(GPL,

Section2)

They are strong conditions on how a caller can use GPL package. The GPL

requires to analyse the software based not kust upon how it is linked but also

6. http://www.opensource.org/licenses/category

10

upon how it is distributed. “These requirement apply to the modified work as

whole. if identifiable sections of that work are not derived from the Program, and

can be reasonably considered independent and separate works in themselves, then

this license, and its terms, do not apply to those sections when you distribute

them as separate works. But when you distribute the same sections as part of

a whole which is a work based on the Program, the distribution of the must be

whole on the terms of this License, whose permissions for other licenses extend

to the entire whole, and thus to each and every part regardless of who wrote it”.

(GPL section 2)

According to the first sentences, the GPL is applied to ”modified work as whole”.

A modified work is derivative work (17 U.S.C). There is no hint that linking

makes a difference. The second sentences refers to portions of the work that

are not derived from the program (have their own copyright owners and their

own license). A work must be independent and separate works are linked in

some way to the GPL program. Such works remain ”independent and separate

works,” at least ”When you distribute them as separate works,” and the GPL

cannot possibly apply to them without their copyright owner’s consent.

In the GPL, we must analyse the software on how it is distributed. But, we

could guess every connector type correspond to which type of work (derivative

or collective). Here we give the list of connector type and the license that must

have the caller of GPLed program:

– if the caller uses via fork/exec then the caller can have any license.

– if the caller uses called components as a plugin then the caller can have any

license.

– if the caller uses linking as types of connexion so it must be licenses under

the same version of GPL.

The program licensed under academic open source licenses can be incorporated

into GPL-licensed software but the inverse is not always true.

There is some licenses are not compatible at all with GPL, we will limit these

list to the different version of the different version of BSD, and Apache licenses:

– Apache License, version 1.1

This is a permissive non-copyleft free software license. It has a few require-

ments that render it incompatible with the GNU GPL, such as strong prohi-

bitions on the use of Apache-related names.

11

– Apache License, version 1.0

This is a simple, permissive non-copyleft free software license with an adver-

tising clause. This creates practical problems like those of the original BSD

license, including incompatibility with the GNU GPL.

And the compatible version of our chosen licenses (BSD, Apache) are:

– Apache License, version 2.0

This is a free software license, compatible with version 3 of the GPL. This li-

cense is not compatible with GPL version 2, because it has some requirements

that are not in the older version.

– Modified BSD license

This is the original BSD license, modified by removal of the advertising clause.

It is a simple, permissive non-copyleft free software license, compatible with

the GNU GPL.

Case of plugin : The legality depends on how the program invokes its plugins. If

the program uses only simple fork and exec to invoke plugins, then the plugins

are considered separate programs, so the license of the plugin imposes n con-

straints on the whole program. If the program dynamically links plugins, and

they make function calls to each other and share data structures, thus they form

a single program. To use the GPL-covered plugins, the main program must be

released under the GPL or a GPL-compatible license, and that the terms of

the GPL must be followed when the main program is distributed for use with

these plugins. If the program dynamically links plugins, but the communica-

tion between them is limited to invoking the main function of the plugin, that

is a borderline case. Using shared memory to communicate with complex data

structures is equivalent to dynamic linking.

3. Apache license, version 2.0: Academic license

The Apache license is a free software license authored by the Apache Software

Foundation (ASF). The Apache license requires preservation of the copyright

notice and disclaimer, but it is not a copyleft license, it allows use of the source

code for the development of proprietary software as well as free and open source

software.

All software produced by the ASF or any of its projects or subjects is licensed

according to the terms of the Apache License. Some non-ASF software is li-

censed using the Apache License as well. As of July 2009, over 5,000 non-ASF

12

projects located at SourceForge.net are available under the terms of the Apache

License. In a blog post from May 2008 , Google mentioned that 25% of the

100,000 projects then hosted on Google Code were using the Apache license.

Like any free software license, the Apache license allows the user of the software

the freedom to use the software for any purpose, to distribute it, to modify it, and

to distribute modified versions of the software, under the terms of the license. The

Apache license, like BSD licenses, does not require modified versions of the software

to be distributed using the same license (in contrast to copyleft licenses). In every

licensed file, any original copyright, patent, trademark, and attribution notices in

redistributed code must be preserved (excluding notices that do not pertain to any

part of the derivative works); and, in every licensed file changed, a notification must

be added stating that changes have been made to that file.

1.2.5 License compatibility and constraints

The Intellectual property(IP) are expressed in terms of the licenses, rights, and

obligations. They include: the right to use, distribute, sublicense, interoperation

of the system with specific IP regimes. This IP can have conflicts with other li-

censes’obligations. So, the combination of different licenses in a single system is not

simple because each license introduces constraints on the way of use (distribution,

copy,...) that can be incompatible and also how we can reuse a program by inte-

grating it to another system or modifying it. We have to know the IP to be able to

identify the possible legal combinations of licenses in one system.

For example, when programmers want to develop a system S under a license L

that reuses an open-source component C, they must verify whether they respect the

restrictions of the grant given by the license of C. In fact, a component can be reused

to create from it a derivative work mainly by using white-box form that permits to

use one or more files of C, either in the original or modified form. It can be also used

as part of collective work that is usually realized via black box form for example by

calling components as executables. But determining whether a work is derivative or

collective work for a black box reuse is difficult because it depends on the nature of

the use and the interconnection type.

Consider the following scenario: suppose we want to distribute a system S under

a proprietary license P and one of the component Ci of S is licensed under the terms

13

of GPL2. C is interconnected to S via black-box linking, so S is a derivative work of

C. GPL2 imposes that all derivative work S made from component under GPL2 must

be also licensed under GPL2. In contrast, if we modify the interconnection type, and

that black box forking is used instead of black-box linking, then, according to the

FSF, S is not a derivative work of C. In this case GPL2 gives grant to distribute

S under a proprietary license German et Hassan (2009)Rosen (2004). This example

show us how can the interconnections type be a constraint to respect the IP and it

depends on the licenses used and their versions and it is complicate to verify this

respect of the IP of a large software.

1.3 Thesis Plan

This thesis is organised as follows: Chapter 2 summarises work related to license

analysis, and the Chapter 3 presents a meta-model for license analysis Chapter 4

presents our study setup, while Chapter 6.1 addresses our research questions and

discusses our results. The Chapter 6 presents a preliminary step for a tool that helps

to avoid license inconsistencies. Finally, Chapter ?? concludes the thesis and presents

future work.

14

Chapter 2

STATE OF THE ART

Previous research mostly targets technical problems of software development and

maintenance, without much attention for the legal complexity of software systems

(German et al. (2010b)). We discuss related work on (1) license analysis, (2) license

evolution, and (3) license identification tools. Overall, no previous work considered

the relation, if any, between code change and license modification or between source

code committers and developers performing license evolution, except for some work

that analysed license statements independently of source code. Some work proposed

a system meta-model that is concentrated on license modeling and did not consider

other related data.

2.0.1 Meta-model and Software License Analysis

German et al. (German et Hassan (2009)) defined a license as a set of grants, each

of which has a set of conditions necessary for the grant to be given. They analysed

the interactions between pairs of licenses in the context of five types of component

interconnections: linking, forking, subclassing, IPC, and plugins. German et al. also

identified and discussed 12 patterns to avoid license mismatches caused by license

changes, found in a large group of OSS systems. They described patterns commonly

used to solve license mismatches in practice.

German et al. (German et al. (2010b)) proposed a method to understand sev-

eral licensing incompatibility issues, concerning mismatches between the license of a

system and that of its source code files, or its libraries that can arise from chang-

ing, combining, and re-distributing packages in open distribution. They carried a

large empirical study aimed at analyzing licensing issues in the entire Linux-based

Fedora-12 operating system. They considered constraints imposed by OSS licenses,

relied on these constraints to mine inconsistencies, and identified the licenses and

dependencies of all files using RPM package descriptions. They concluded that there

exist many nuances in determining the license of a binary package from its source

15

code, for example, many packages could contain source code under different licenses.

Moreover, they found many cases in which the license of a package changed, and this

created problems, e.g., the package still declared the old license, making the package

use potentially incompatible. Such mismatches are common in modern open-source

systems (German et al. (2010b)), which supports our claim that license maintenance

must be carefully managed. Hence, we are looking when licenses evolve and who

changes them.

Alspaugh et al. (Alspaugh et al. (2009)) used a semantic parameterisation of nine

OSS licenses and the patterns and models established by German et al. in (German et

Hassan (2009)) to derive a meta-model for licenses shown in figure 2.0.1. This license

model considers semantic connections between obligations and rights. The goal of this

metamodel is to support analysis and management of the license constraints. They

developed a tool that supports intellectual property requirements management.

Figure 2.1 The meta-model for licenses

16

Tuunanen et al. (Tuunanen et al. (2009)) also tackled license mismatches in OSS

systems. They implemented a tool, ASLA, to identify licenses in source code and

to identify mismatches using compiling information from GCC, ar (an archive tool),

and ld (a linker). They achieved license identification using templates and regular

expressions. Their license identification does not work well with real source code files

because of many reasons, e.g., comments and various kinds of white space characters

prevent an exact matching, many developers modify predefined licenses, there are

different published versions of licenses.

Hemel et al. (Hemel et al. (2011)) focused on identifying license violation in third-

party packages distributed in binary releases of several systems. They developed a

tool, Binary Analysis Tool, that compares a given binary against a large repository of

packages using clone detection and provides as output a list of third-party packages

likely used in the binary, thus the compatibility of their license and the license of

the whole system must be checked. They did not study whether license mismatches

occurred between packages.

Similarly, Cordy et al. (Cordy et Roy (2011)) proposed DebCheck, a clone detec-

tion tool to perform cross-package clone detection. It is based on the NiCad clone

detection tools developed by the same author and was used to verify whether GPL

or other OSS-licensed code has been copied into other systems.

Di Penta et al. Penta et German (2009) studied changes of the names of copyright

owners. They found that contributor names are added to a license statement upon

changes that are significantly larger than usual (in terms of numbers of lines of code

changed). They also found that the most frequent committers are not necessarily the

copyright owners.

The above cited works focused on license modeling and license violation detection.

In this paper, we want to investigate another direction in the same field: the evolution

of license statements and its relation with source code changes.

2.0.2 License Change Analysis

Hindle et al. (Hindle et al. (2008)) studied large commits in OSS systems. Among

other things, they identified license statement changes as one of the reasons for bulk

file changes and large commits.

Di Penta et al. (Di Penta et al. (2010)) studied license evolution. They proposed

17

an approach to automatically track changes across the license statements of source

code files. An empirical study on license evolution of six OSS systems showed that

license statements change frequently and, thus, that is why it is necessary to study

these changes in more detail. Furthermore, Di Penta et al. found that the changes

occurring to the copyright year depend on the amount of changes made by developers

during the year. However, they did not relate the license changes to system evolution

or identify committers of license changes. In our thesis, we will propose a meta-model

for license evolution. Then, we study the license statement evolution, in addition we

relate them to software evolution, we will identify the license statement committers.

Manabe et al. (Manabe et al. (2010)) studied how and why ArgoUML, Eclipse,

FreeBSD, and OpenBSD switched licenses. They found that: (1) the number of

licenses used in operating systems are larger than those in other open source sys-

tems; (2) projects sometimes choose radically different licenses; and, (3) the usage

of different licenses in the kernel files of operating systems is similar to each other.

Their study did not consider software evolution. In contrast, in our work, we focus

on license statement and source code co-evolution to understand if license statement

evolve according software evolution and they have their proper evolution pattern.

2.0.3 License Identification Tools

A license statement is a comment block on top of a source code or other file

that contains the terms under which the file is licensed. The elements of a license

statement are the license or licenses that cover the file, a list of copyright owners, a

list of contributors, warranty and liability statements. However, the format of license

statements is not strict and can be customized. As such, detecting and identifying

licenses is not trivial, and specialized tools are needed.

We focus on three tools: FOSSology (Gobeille (2008)), OSLC 1, and Ninka (Ger-

man et al. (2010a)), these are the state-of-art. FOSSology automatically identifies

licenses in a license statement using a Binary Symbolic Alignment Matrix pattern

matching algorithm. Its negative points are the complexity of setup, the need of a

running database, and its low speed. OSLC is more simple, because it uses regular

expressions. However, it is prone to false positives. For example, a file is reported to

be using the GPL when it finds: “This file is not licensed under the GPL”. Compared

1. http://oslc.sourceforge.net/

18

to the previous tools, Ninka is the most accurate one (German et al. (2010a)). Each

license statement corresponds to a sequence of one or more sentence-tokens. Ninka

extracts the license statements from files, splits them into textual sentences that are

normalized, and tries to find a match for each of these sentences with the license

sentence-tokens. The list of the matched sentences determines if a file contains one

or more licenses. Due to its high accuracy, we used Ninka in the rest of this work.

19

Chapter 3

SYSTEM META-MODEL FOR

LICENSE ANALYSIS

In this chapter, we propose a system meta-model for license evolution analysis.

Then, we show an example of use of our meta-model combined with logical expressions

to express constraints imposed by a license.

3.1 Meta-model Design

In this section, we present our meta-model. We combined different source of

information to model data that we include in our meta-model. We used previous

work about license analysis, some of them (German et Hassan (2009); Alspaugh et al.

(2009)) propose a meta-model that are in general limited, i.e., the meta-model es-

tablished in (German et Hassan (2009))) did not design well the system architecture,

e.g., interconnection between different component is not presented, which is impor-

tant to find license inconsistencies, and in (Alspaugh et al. (2009)) Alspaugh derived

a meta-model for licenses from the meta-model of German where he added a seman-

tic connections between obligations and rights but he did not also consider in the

meta-model at all the system architecture representation. But, we prefer to assemble

all needed data: license meta-data amd architecure in one meta-model with sementic

links between them. In addition, we analysed the content of license terms to collect

pertinent data.

We show our meta-model in Figure 3.1.

20

Figure 3.1 System Meta-Model.

21

As shown in the Figure 3.1, a System can be composed of zero or many package

denoted Sub-System and Files. A Sub-System can be composed also of zero or many

Sub-Systems and Files. The System, Sub-Systems and, Files may have zero or many

Licenses. The files of the same sub-system can have different licenses as well as the

Sub-Systems.

To Ferdaous ◮instanciate your metamodel◭ We present an example of two concrete

systems using our meta-model.

– Case of findUtils V4.4.2

The Findutils 1 is package contains programs to find files under linux. The

system S is ”findUtils”. findUtils contains XARGS, LIB, M4,...etc. XARGS,

lib, M4 are Sub-systems (SS). findUtils at top level contains also: README,

ChangeLog, AUTHORS,...etc which are files (f) and they do not belong to

XARGS or LIB or M4 subsystems. File may belong to a package or not. When

we compile findUtils V4.4.2, the binary find is generated.

– Case of fileUtils v3.16 The fileutils package includes a number of GNU ver-

sions of common file management utilities. Fileutils includes the many tools:

mv, chown, chmod, mv, du, old,...etc. In the case of fileUtils the system S is

named ”fileUtils” and it contains two SubSystem (first level) lib and M4 are

Sub-Systems. fileUtils at top level contains files: README, ChangeLog and

Config.in. If we compile fileutils v3.16, the binaries that we obtain are chmod,

chown, mv, rm, old, du are generated.

3.2 Definitions of Meta-model Constituents

In our meta-model, we have a set of entities and relations between them. We

define each entity as follows.

– System (S): system is the collection of all files and sub systems-also said software

system or software.

– Sub-System (SS): a set of file with an organization such as to constitute an

independent component that can be distributed separately and/or reused in

other system.

– File (f): it is a collection of bytes stored in same format, it can be an ASCII or

binary “file”.

1. http://www.linuxfromscratch.org/lfs/view/development/chapter06/findutils.html

22

– Binary (B): an executable, library, stored object no in a plain ascii format aka

(English/Italian/Deutsch Text)

– Source code (SC): it is a text written using the format and syntax of the pro-

gramming language

– Software license/license (L): it is a legal instrument (written into a text file) to

govern the use and distribution of a software- it is a set of terms (explanations

and conditions), exceptions, warranties, version, statements, notices.

– Version (V): it is unique identifiers attributed to unique states of the license,

the version number is generally assigned in increasing order and correspond to

new feature in the license. For example, GPLv2 (version 2 of GPL license),

BSD-3 (version 3 of BSD license), etc...

– Statement (ST) : for a given license, it is a summary text of the license terms

to be inserted at a beginning of a file to claim the file being licensed under

the specified license. And It contains always the name of contributors and the

copyright year and it indicates the version of the license.

– Term (T) : it has two semantics, it could be i) an explanation of a word used in

the license, e.g., “convey” : any kind of propagation that enables other parties

to make or receive copies, or it could be ii) a right and its conditions that must

be satisfied.

– Exception (E): a modification or addition to the standard license conditions.

– Notice (N): It is written information i.e., license text, by which a party i.e., the

user of the program concerned by this notice, is made aware of a legal process

affecting their different rights, obligations or duties 2 (creation of derivative

work, warranties,...), it could also indicates an exception.

– NoWarranty Notice : it is a notice that make the user aware that there is no

warranty given. A warranty is an assurance by the licensor to the other party

that specific facts or conditions are true or will happen, it is an insurance of

good quality and functioning; the other party rely on that assurance and seek

some type of remedy if it is not respected 3.

– Author (Auth): “the person who originates or gives existence to a file”. Holding

the title of ”author” over a file give rights to this person, the owner of the

copyright, exclusive right to do or authorize any copy or distribution of this file.

2. http://en.wikipedia.org/wiki/Notice
3. http://en.wikipedia.org/wiki/Warranty

23

Any person or entity wishing to use intellectual property held under copyright

must receive permission from the copyright holder to use this work.

– Contributor (C): is a person that contributed in writing/modification of a file

– Owner (O): “The programmer who writes software or the company that hires

that person to write software is deemed to be the first owner of intellectual

property embodied in that software. That owner may exercise dominion over

that intellectual property. He can give it away, sell it, or license others to use

it. That owner has the prerogative to create copies of the intellectual property,

and he or she may prevent others from making, using, or selling those copies.” 4

– Right (R): an open software license provides its licensee with a grant to one or

more of the exclusive rights owned of by the copyright owner of that component.

Each grant is given provided a set of conditions are satisfied.

– Condition: A future and uncertain event upon the happening of which certain

rights or obligations will be either enlarged, created, or destroyed. 5

– Technical constraints or distribution constraints: the conditions that must be

satisfied to have a right could be technical constraints, e.g., architecture style,

or distribution constraints, e.g., notice of no warranty must be distributed with

source code.

– Collective work : a work in which a number of contributions, constituting sepa-

rate and independent works in themselves are assembled into a collective work

as whole.

– Derivative work : “a work based upon one or more preexisting works in which

a work may be recast, transformed, or adapted”

– Interconnection (I) : between two entities (file, susbsystem, system) in any use

of an entity by the other so I(e1, e2) means e1 uses some data, services, func-

tionality provided by e2. The interconnection need connector to realize it.

– Connector (Conn): is glue that links several files, is the required physical linking

between several entities, files, to realize an interconnection.

– Connector Type (ConnType): we can classify the connectors in to four types:

Link, fork/exec, IPC, Plugin

– Link (LK): any kind of function call, global data usage, method call made

to statically or dynamically ”linked” artifact. Example : if we have an OO

4. http://rosenlaw.com

5. http://legal-dictionary.thefreedictionary.com/condition

24

framework and we extend a class or call a method, it is considered a Link

connector.

– fork/exec (FE): a child process is created and a new executable loaded and

run.

– IPC: any kind of Inter Process Communication such as pipe, shared memory

,queue, socket,...

– Plugin (PL): dynamically loaded component adding/extending specific func-

tionality via an API

As, we explained before, it is important to determine if the work is derivative

or collective work to be able to judge if any sub-system or file can be used in

the final system. The connector used in the program are the key to decide if

the system is derivative work of one of its sub-system or file. Reciprocal licenses

(GPL for example) consider the system that use LK and some PL connector

to use a component (sub-system or file) c as derivative work, thus the system

must be distributed under the same reciprocal license of the component c. The

FE and IPC are not problematic for reciprocal license, the system that use

a component (sub-system or file) licensed under reciprocal license using these

type of connectors can be distributed under any license.

To automate the process of deciding if the system is derivative of one his compo-

nent (sub-system or file), we need a function Derivative that takes as parameter

two systems and a connector type and it returns True or False.

Let SN be the whole system

Let Sw be the set of sub-systems/files used by SN

for each s ∈ Sw

print s,Derivative(s, ConnType(SN , s))

Derivative(s, ConnType(SN , s)) ∈ {0, 1}

if SN is derivative work of s then Derivative(s, ConnType(SN , s)) = 1 else

Derivative(s, ConnType(SN , s)) = 0. The fact that SN is derivative work of s

or no depends on I(SN , s) and L(s)

For example, if SN contains a Sub-System s, L(s) = GPLv2 and ConnType(SN , s) =

LK, thus SN is considered a derivative work of s andDerivative(s, ConnType(SN , s)) =

1

25

Chapter 4

STUDY SETUP

We performed an empirical study to answer our three research questions presented

in the chapter 1. In this chapter, we define our study, then we present the context

of the study by giving the objects that we considered. Next, we describe the steps

of our approach and we explain how we used the proposed meta-model . Finally, for

each research question we explain the analysis method that we will use to analyse our

data and interpret the result.

4.1 Definition of Our Study

Following GQM Basili et Weiss (1984), our goal is to perform an exploratory

analysis of the co-evolution of license statements and source code, to observe license

statements evolution and to analyze who performs license statement changes. Our

purpose is to better understand when developers change license statements, who per-

forms such changes, and how license statements are changed. Such an understanding

could help improve license change management. The quality focus is the consistency

of license changes. The perspective is of both researchers and practitioners who are

interested in understanding license statement change activities in software projects.

The context of our study are the CVS/SVN repositories of seven OSS: JFreeChart,

Jitsi, PHP, Rhino, Tomcat, XalanJ, and XercesJ.

4.2 Context

The objects of our study consist of seven OSS systems, i.e, JFreeChart, Jitsi, PHP,

Rhino, Tomcat, XalanJ, and XercesJ 8. Table 4.1 presents some descriptive statistics

8. http://www.jfree.org/jfreechart/, http://jitsi.org/, http://www.php.net/, http:
//www.mozilla.org/rhino/, http://tomcat.apache.org/, http://xml.apache.org/xalan-j/,
http://xerces.apache.org/

26

Object Systems #Files #Releases License of last release Considered History

JFreeChart 1,335 - 9,105 51 LGPLV2.1+ 1 25/11/2000 - 20/04/2009
PHP 2,615 - 15,021 63 PHP License v3.01 2 12/07/1999 - 18/05/2011
XercesJ 5,100 - 12,585 39 Apache License v2.1 3 05/11/1999 - 01/01/2010
Rhino 104 - 695 17 MPL 1.1/GPL 2.0 4 19/04/1999 - 16/09/2010
Tomcat 2,565 - 7,426 70 Apache License v2 5 08/10/1999 - 14/09/2011
Jitsi 5,653 - 15,954 8 LGPL 6 21/07/2005 - 12/09/2011
XalanJ 832 - 1,433 14 Apache License v2.0 7 09/11/1999 - 11/12/2009

Table 4.1 Statistics of our seven subject systems.

of these systems. JFreeChart is a free Java chart library to display professional quality

charts. Jitsi (previously SIP Communicator) is an audio/video and chat communica-

tor. PHP is a widely-used general-purpose scripting language that is especially suited

for Web development and can be embedded into HTML. Rhino is an open-source im-

plementation of a JavaScript interpreter in Java. Tomcat is an open-source software

implementation of the Java Servlet and JavaServer Pages technologies. Xalan-J is an

XSLT processor for transforming XML documents. XercesJ is an open-source family

of packages for parsing and manipulating XML. We chose also these systems because

they are medium-sized OSS, yet small enough to manually verify our observations

on license statement and source-code co-evolution using external information, such

as bug reports. We chose these systems also because their evolution history is long

enough to contain substantial license statement evolution.

4.3 Setup of the Study

Our approach is illustrated in Figure 4.1 and consists of 5 steps.

Step 0: Using our meta-model, we determined which entities must be considered

in our study to track the evolution of license and source code. According to our

meta-model, a license of file is indicated in the license statement which is composed

of license text (version, terms,...), copyright year, contributor list. Thus to find license

changes we have to find change in license text, copyright year, and contributor list.

Step 1: First, to improve performance, a local copy of the CVS/SVN repository

of each studied system is downloaded.

Step 2: We then use Ibdoos, our group’s framework for the analysis of source con-

trol systems. Ibdoos parses change-log files (both CVS/SVN) to extract the following

change facts: commit date, revision number, author, filename and log comment. This

27

Figure 4.1 Approach overview.

information is stored in a relational database for later processing and computation.

As we are interested in the source code and license evolution, we only analyzed source

code files , i.e., .java files for Java systems, .c for C systems, and .c and .cpp files for

C++ systems. Note that other files such as READMEs, configure scripts or Makefiles

can be analyzed as well, but fell outside the scope of this paper.

Step 3: Once all revisions of all the files are available, we compute the Source

Lines of Code (SLOC) count of each file at each revision using the SLOCCount tool 9.

SLOCCount counts just source code lines and excludes whitespace and comments

(and hence license statements). As we want to relate maintenance effort evolution to

license statement evolution, we decided to use the evolution of SLOC because it is

correlated to maintenance effort Hayes et al. (2004, 2003). Alternatively, one could

use churn as a measure of effort.

Step 4: At this step, our goal is to extract the value of license statement that

we identified in the step 0 which is composed of license text (version, terms,...),

copyright year, contributor list. Thus, we invoke Ninka German et al. (2010b) to

identify the licenses of each file. Ninka provides the license of the file, the license

version (e.g., GPLv3) and the list of file contributors, all of which are fed into the

Ibdoos databases. Ninka also generates a list of so-called ”unmatched sentences”.

9. http://www.dwheeler.com/sloccount/

28

Indeed, it may happen that a file contains one or more licenses that have not been

identified by Ninka or extra text such as comments about the code. In this case, Ninka

will report the list of sentences that it was not able to match with any sentences of

a known license. To reduce the risk of missing important license information, we

decided to also look inside the unmatched sentences for license information. We

did this by manually scanning the unmatched sentences for license information, then

using regular expression patterns to mine this information in an automated way.

Once licenses have been identified for a file, its licenses are compared for each pair of

consecutive revisions. If the comparison detects a textual difference, we consider this

to be a license statement change. License statement changes and all related data,

once available, are then stored in Ibdoos’ databases stored according our meta-model

(The part of the meta-model framed in green, see Figure 3.1).

Step 5: Finally, we query the Ibdoos databases to analyse the co-evolution of

license statements and source code. The next subsection explains the analyses we

had to perform.

4.4 Analysis Methods

4.4.1 RQ1: Do licenses co-evolve with source code at the

system level?

Using the data in the Ibdoos databases, we compute the number of license state-

ment changes performed in different periods of time—discretised on a 15-day basis.

We do this analysis twice, once with and once without the initial introduction of

a license. This allows us to isolate of the effect of the initial introduction of a li-

cense. We also compute the difference in SLOC between successive versions in each

object system—again discretised on a 15-day basis. Note that we discretised the col-

lected data because the data would be too sparse otherwise and hard to compare.

We adopt a sampling granularity of 15 days as a compromise, as argued by Kenmei

et al. Kenmei et al. (2008): fine-grained data such as a daily-based discretisation is

likely to be too detailed (many events at which no license statement change happens),

while 2 week-or longer discretisation may average out interesting facts. In Eshkevari

et al. (2011), our colleagues confirmed that 15-days is a sufficient granularity to track

changes.

29

On this data, we perform both a quantitative and a qualitative study.

Quantitative study We compute the cross-correlation between two time series,

i.e, the time series describing the number of all license statement changes and the

time series describing the evolution of SLOC for all the files in a system. We also

compute the cross-correlation between two other time series, i.e., the time series

describing the number of all license statement changes excluding the initial addition

of a license and the time series describing the number SLOC changes for all the files

in a system. Cross-correlations are computed automatically for different lags between

the two series. The maximum lag is 10 × log 10(N/m) where N is the number of

observations and m the number of series. These cross-correlations will permit to

check whether the license statement changes are correlated with major events in the

evolution of a software system. Cross-correlation r can take on any value in between

the following extreme values: perfect positive correlation (r = +1), where, as the

number of SLOC changes increases, the number of license changes are predicted

to increase at a similar rate; zero (r = 0) or no correlation; and, perfect negative

correlation (r = −1), where, as the number of SLOC changes increases, the number

of license statement changes decreases. We note that the r value takes into account

lags. We assume that a positive or negative correlation indicates that the license

and source code co-evolve. The case of zero correlation indicates that the license

statement changes are not planned together with source code changes.

Qualitative Study The cross-correlation will reflect whether there is a general

tendency of co-evolution of license and source code, but this general trend could

hide some particular cases. The complementary qualitative study will focus on such

particular cases where there is some correlation between the evolution of SLOC and

license statement changes. We start the analysis by plotting the three time series, i.e,

(1) the number of license statement changes performed in different periods excluding

the initial addition of a license, (2) including all license changes, and (3) the number

of added/removed lines of code. We analyse these curves to assess whether there is

a relation between license changes and the evolution of SLOC. We locate the peaks

in the license statement changes relatively to peaks in SLOC changes to understand

whether the license changes are planned relatively to the maintenance cycle or major

events during development, whether it is a continuous process, or whether it has no

30

special distribution throughout time. We use external sources of information like

mailing lists, change logs and release notes to interpret our observations.

4.4.2 RQ2: What types of license changes are performed?

Previous studies have suggested that there are different kinds of license statement

changes, a finding that can be used to refine the result of RQ1. Hence, we analyzed

Ninka’s output to distinguish different types of changes. Ninka reports data about

four elements: license name, license version, unmatched sentences, and the number

of contributors (in some systems), because of project-specific coding conventions, it

could not identify all the elements for all the systems. For example, in some cases

the license name is not identified. For that reason, we used the information in the

unmatched sentences. We parsed Ninka’s output to compute the occurrences of each

type of license statement change.

Using a histogram, we get information about how changes are distributed different

types of changes. Once these types are identified, we compute the cross-correlation

for each type of license statement change between two time series, i.e, the number of

license statement changes discretised on a 15-days basis and the evolution of SLOC.

As in RQ1, the cross-correlation ranges from perfect negative correlation, over no

correlation to perfect positive correlation results. The cross-correlation results of

RQ2 are more refined than the ones of RQ1, because we are considering each type

of license statement changes seperately instead of aggregating all types of changes

together. Hence, the correlation could be positive/negative/zero for specific types of

license statement change and not for others.

4.4.3 RQ3: Who performs license changes?

We compute the number of commits performed by each developer in the three

systems using the Ibdoos databases. Then, we identify the top seven committers

that changed license statements. We select the top seven, since that number covers

the most active committers in most of analysed systems Eshkevari et al. (2011).

We ranked the committers using their total number of performed SLOC changes

to measure their activities. This data allows to find how many committers modify

licenses and the relatin between license statement change activity and developement

activity. If the committers changing the licenses are a minority and their activities

31

are mainly changing licenses, we can say that there is a core of license experts in the

project.

32

Chapter 5

RESULTS AND DISCUSSION

This chapter is composed of two sections. First, we answer the three research

questions established in the chapter ??. Then, we discuss our results and we present

the threat of validity.

5.1 Study Results

This section presents the results of the three RQs.

5.1.1 RQ1: Do licenses co-evolve with source code at the

system level?

Quantitative Study Figure 5.1 plots the results of the cross-correlations of three

systems.

From the macro-level study, we cannot observe systematic large-scale license

changes accompanying large restructurings of the system, Except for Tomcat, where

cross-correlation reaches 80% (discussed later). The cross-correlation values 1 are

almost zero for the non-zero lags between the time series. For example, PHP cross-

correlation values vary between -5% and +5%, while those for XalanJ vary between

-10% and 50%, and those for Tomcat vary between -40% and 80%. Other projects

have similar ranges.

1. Detailed results are available in the annexe

33

(a) PHP.

(b) XalanJ.

(c) XercesJ.

Figure 5.1 Cross-correlation values between license and SLOC changes in all files.

34

However, since the cross-correlations value are different from zero and reach up

to 80% in some cases, it is possible that the license changes are performed during

intensive maintenance periods. To understand this phenomenon in more detail, we

conduct the qualitative study.

Qualitative Study We performed our qualitative study on three systems out of

the seven analysed systems, i.e., JFreeChart, PHP, and XercesJ, we chose these three

systems because they have different licenses (LGPLv2.1+, PHP, Apache) and sizes.

Figures 5.2, 5.3, and 5.4 plot the corresponding evolution of the number of SLOC

and license changes performed. Figures 5.2(a), 5.3(a), and 5.4(a) show the number of

license changes excluding the initial addition of a license to new files, while Figures

5.2(b), 5.3(b), and 5.4(b) show the number of all license statement changes. Figures

5.2(c), 5.3(c), and 5.4(c) show the evolution of the SLOC. The red dots are the peaks

in the number of license statements that correspond to peaks in SLOC evolution.

We observe that license statement changes are relatively frequent, for example PHP

reaches an average of 14 changes per two weeks. This observation is not surprising

and confirms previous observations by Manabe et al. Manabe et al. (2010) and Di

Penta et al. Di Penta et al. (2010). We also observe that license statement changes

are in general dispersed over time with only some specific limited time frames in which

license statement changes are concentrated (red dots). In the following, we will give

more details about such changes.

JFreeChart: We can see several red-dotted peaks for license statement changes (see

Figure 5.2(b)), for example September 1st, 2008 (206 changes), June 22nd, 2009 (161

changes) and July 7th, 2009 (81 changes). These peaks correspond exactly to three

peaks in SLOC evolution (see Figure 5.2(c)), i.e., September 1st, 2008 (3319), June

22nd, 2009 (2323) and June 7th, 2009 (1556). The most frequent license statement

changes on these dates are: (1) adding new contributor(s) to the license statements

and (2) adding a license to a newly created file. We looked manually to changes

corresponding to these peaks, and also checked the comments corresponding to the

commits on these dates. We found that the majority of the red-dotted peaks indeed

can be explained by developers updating the names of contributors during large source

code modifications. These findings confirm earlier findings of Di Penta et al. Penta

et German (2009).

35

(a) License changes excluding the introduction of licenses to newly created files.

(b) License changes including the introduction of licenses to newly created files.

(c) SLOC evolution.

Figure 5.2 Evolution of SLOC and license statement changes over time in JFreeChart.

36

In PHP: The licenses are generally changed to upgrade their version number, for

example from PHP license v2.02 to PHP license v3.0. We can see several peaks in

license statement changes that correspond to the release dates 2 of PHP (see Figure

5.3(b)), for example:

1. On May 22nd, 2000: PHP v4.0.0 is released. We observe that, just before this

date, there are many license changes in the ”Zend” package. On May 18th, 2000,

the committers updated the PHP license v2.01 to PHP license v2.02 by adding

the new clause 6 (Revision 24539). On May 19th, 2000, committer “Zeev” cor-

rected the URL in the license of the “Zend” package three times. This was

not straightforward, since each time he made a change, he introduced another

error, for example he did not mention the URL in the correct place in the li-

cense statement. Finally, on May 22sd, 2000 he logged his final change with

”Sigh, that should be the last one”. Even though this license statement change

problem was harmless, it shows how committers can easily make errors while

changing a license statement.

2. On July 22nd, 2002, PHP v4.2.2 is released. We see that, just before this date,

two major license statement changes were performed. On July 21st, 2002: the

committers removed the clause and the license of all the files in the “Zend”

package and they replaced them by a notice at the end of the license file. On

the same day, they updated the PHP license v2.02 to PHP license v3.0a1.

3. On August 25th, 2003, PHP v4.3.3 is released. The committers updated the

PHP license v2.02 to PHP license v3.0 just before this date.

We mined the change log of PHP to find information about these license changes.

We noticed that the copyright year changed periodically at the end or the beginning

of the year (January 1st, 2009, January 1st, 2007, January 1st, 2006 and December

31st, 2002). This type of change is not detected by Ninka, but instead we found it

by mining the change log file of PHP using grep for specific expressions like: ”Bump

year”, ”update year”, ”year++”, ”update copyright year”, ”copyright year”, and

others.

2. http://php.net/releases/index.php

37

(a) Evolution of the number of license changes excluding the introduction of license state-
ments to newly created files.

(b) Evolution of the number of license changes including the introduction of license state-
ment to newly created files.

(c) SLOC evolution.

Figure 5.3 Evolution of the SLOC and license changes over time in PHP.

38

In XercesJ: We can see several red-dotted peaks in license statement changes (see

Figure 5.4(b)), for example for October 2006, for which we analysed the change log

comments and find that there wasa major : “Update to the latest ASF license header 3

(ASF stands for the Apache Software Foundation). We also find some comments in

the mailing lists that illustrate this change 4, 5, 6, which seems to be an organized

change of license statements.

These peaks do not have corresponding peaks in SLOC (see Figures 5.4(b) and

5.4(c)), since they only involve changes to license statement (SLOC does not count

license statement). Instead, the changes are performed in a calm period without

regular code changes by one committer (“mrglavas”). In fact, this committer only

becomes active around the period of the license changes (period 2). Before this

period (period 1), many small license statement changes were performed by different

developers. For example, on 2001-09-12, “sandygao” changed a license statement by

adding missing terms and the log message: “Forgot to put license information in.”.

We observe some red-dotted peaks in Figure 5.4(a) corresponding to red-dotted

peaks in Figure 5.4(b)). These peaks also correspond to peaks in SLOC evolution

(Figure 5.4(c)). We can explain these by two type of license statement changes: (1)

the introduction of licenses to existing files due to a missing license and, (2) the

addition of new contributors while implementing new functionality. The peaks that

exist only on Figure 5.4(b) are explained by the addition of licenses to newly created

files.

3. http://www.apache.org/legal/src-headers.html

4. http://goo.gl/UPbVc

5. http://goo.gl/Bb7qh

6. http://goo.gl/yTJUP

39

(a) Evolution of the number of license changes excluding the introduction of licenses to
newly created files.

(b) Evolution of the number of license changes including the introduction of license state-
ment to newly created files.

(c) SLOC evolution.

Figure 5.4 Evolution of the SLOC and license statement changes over time in XercesJ.
(Red dots represent peaks, where as the green seperate two periods)

40

5.1.2 RQ2: What types of license changes are performed?

We found three main types of license statement changes: license type change,

license version change and contributor addition. Their popularity is different from

one project to the other. It seems to depend on each project’s guidelines or culture

towards software licenses. We found also that the cross-correlation between license

type change or license version change with SLOC evolution is higher that one found

in RQ1 when all type of license changes are mixed together.

Figure 5.5 Number of license statement changes per type.

41

The qualitative study of RQ1 allowed us to identify the most popular types of

license statement changes:

Addition of contributors: The license statement contains a list of names of

all contributors who have developed the file. This list is updated by adding the

name of a new contributor if (s)he helped to add a functionality or fix a bug.

For example, in Nov 13rd 2003 Tim Bardzil is added as a contributor in the file

org/jfree/chart/renderer/category/BoxAndWhiskerRenderer.java because he added

drawHorizontalItem() method.

Updating the version of the license: The version number of a license is the

unique identifier attributed to a particular version of a license. A license version

number is generally assigned in increasing order and corresponds to new features in

the license. For example, PHP updated from PHP license v2.01 to PHP license v2.02

on May 18th, 2000.

Change of the license type: A project switches from a license to another for some

reason, such as to be compatible with other software. For example, PHP changed the

license of php4/main/output.c from php License V3.01 to LGPLv2+.

Miscellaneous changes: These are the remaining changes, which are smaller in

nature and hence harder to identify automatically. Most of them are buried inside

unmatched sentence changes, i.e., those sentences that Ninka cannot match with the

sentences of a known license, because they typically are due to customization of license

text.

The histogram in Figure 5.5 shows the distribution of license statement change

types per system. The cross-correlation between license statement changes and SLOC

changes per type of license statement change are available in the annexe. We find the

following:

JFreeChart: Almost all license statement change types in JFreechart are contrib-

utor changes. This confirms what we observed manually in the qualitative study of

RQ1. The cross-correlation value of RQ1 is dominated by this kind of change.

42

PHP: The most popular kind of change are by far the miscellaneous changes, fol-

lowed by license version changes and the license type changes. The cross-correlation

is high for miscellaneous sentences (close to 1), while the cross-correlation of license

type change and license version change is near 60%.

The majority of changes belong to the miscellaneous category, because licenses

in PHP files do not include the full license text. Instead, they only contain a short

summary for the full license (to avoid cloning the full license everywhere) and refer

to the file php/php − src/trunk/LICENSE. Hence, Ninka is not able to detect

the exact name of the license. To refine our analysis, we mined to the unmatched

sentences for more detailed information. We found that the unmatched sentence

tokens include the actual name of the licenses and their version number in the url to

the license text. By parsing these links, we found out that all changes classified as

miscellanous either correspond to license version changes or license type changes.

Tomcat: Although all Tomcat’s license statement changes are classified as ”type

change”, these changes mainly correspond to the addition of the apache clause 7 and a

link to the integral apache license text, and hence are not really license type changes.

The cross-correlation increases until 55% if all change kinds are seperated contrary to

RQ1 (license type change and initial addition of license to a file –this type of change

is not considered here).

XalanJ: About 90% of the license statement changes are license version changes and

9% are license type changes seperately changes. We computed the cross-correlation

for these types of changes. We found that the cross-correlation between either license

type or version changes with SLOC evolution is almost 1, which is much higher than

the global cross-correlation from RQ1.

XercesJ: The license type and version changes are the most frequent changes. The

cross-correlation between license type changes and SLOC evolution (reaching 70%) is

much higher than the one between all license statement changes and SLOC evolution

of RQ1 (reaching 20%), The same is found for version license version change. Thus,

version and type changes co-occur often with large code changes.

7. Right and its conditions

43

Jitsi: There is just one license type change from GPLv2 to LGPL. The remain-

ing changes are miscellaneous changes. Hence, we did not obtain a higher cross-

correlation than the cross-correlation in RQ1, because Ninka did not provide an ac-

curate classification of change. The cross-correlation is near to zero but reaches 65%

for one lag of time.

We mined the unmatched sentences of Ninka output to improve the classification.

Contrary to PHP, this mining did not provide license-related data, but rather license-

unrelated code comments (i.e., false positives of Ninka).

We did not present the result of Rhino in this RQ due to the low number of

changes per type. So, the cross-correlation is not significant in this case.

5.1.3 RQ3: Who performs license changes?

Table 5.1 presents the number of committers involved in license statement changes.

We see that 24 committers out of 28 (86%) for XercesJ and 2 out of 2 (100%) for

JFreeChart are involved in license statement changes. In contrast to XercesJ, only

10 committers out of 222 (4.50%) of PHP are involved in license changes.

44

XercesJ JFreeChart PHP
Total # of found license statement changes 3116 162774 27
(percentage) of committers involved 24 (86%) 100 (%) 10 (4.50%)

Table 5.1 Overview of the license statement changes and the committers involved.

XercesJ JFreeChart PHP
ID # of license statement changes ID # of license statement changes ID # of license statement changes
mrglavas 1536 (49%) mungaby 849 (99.53%) zeev 8 (29.62%)
lehors 275 (9%) taqua 4 (0.47%) ssb 5 (18.51%)
elena 247 (8%) - - andi 5 (18.51%)
no author 188 (6%) - - - -
andyc 178 (6%) - - - -
sandygao 178 (6%) - - - -
arkin 110 (4%) - - - -
Total top 7 2,712 Total top 7 853 Total top 7 18
Total license statement changes 3,116 Total license statement changes 853 Total license statement changes 27
% license statement changes top 7 87% % license statement changes top 7 100% % license statement changes top 47 66.66

Table 5.2 Top seven committers involved in license statement changes. in parentheses
we show the % of licenses changed per committer.

Jitsi Tomcat
ID # of license changes ID # of license changes
yanas 822 (25.60%) markt 741 (31.89%)
lubomir m 820 (25.54%) mturk 571 (24.58%)
damencho 506 (15.76%) kkolinko 406 (17.47%)
s vincent 442 (13.76%) remm 404 (17.39%)
emcho 339 (10.56%) fhanik 144 (6.19%)
wernerd 143 (4.45%) rjung 38 (1.6%)
ibauersachs 38 (1.18%) kfujino 7 (0.3%)
Total top 7 3.110 Total top 7 2311
Total license changes 3.210 Total License changes 2323
% license changes top 7 96.88% % License changes top 7 99.48%

Table 5.3 Top seven committers involved in license changes. Values in parentheses
indicate the percentages of licenses changed per committer.

45

XalanJ Rhino
ID # of license changes ID # of license changes
minchau 1593 (50.14%) nboyd 326 (27.76%)
mkwan 488 (15.36%) szegedia 269 (22.91%)
jycli 320 (10.07%) igor 205 (17.46%)
sboag 192 (6.04%) gerv 126 (10.73%)
zongaro 154 (4.84%) inonit 100 (8.51%)
mcnamara 148 (4.65%) noris 86 (7.32%)
santiagopg 61 (1.92%) hannes 34 (2.89%)
Total top 7 2956 Total top 7 1146
Total License changes 3177 Total License changes 1174
% License changes top 7 93.04 % License changes top 7 97.61

Table 5.4 Top seven committers involved in license changes. Values in parentheses
indicate the percentages of licenses changed per committer.

XercesJ JFreeChart PHP
ID # of changes ID # of changes ID # of changes
mrglavas 4070 (29.62%) mungaby 3446 (99.94%) zeev 4655 (9.19%)
elena 2253 (16.39%) taqua 2 (0.058%) helly 3502 (6.91%)
no author 1841 (13.40%) - - iliaa 2999 (5.92%)
lehors 1583 (11.52%) - - dmitry 2799 (5.53%)
neilg 1234 (8.98%) - - andi 2792 (5.51%)
jeffreyr 503 (3.66%) - - sebastian 2752 (5.43%)
andyc 425 (3.09%) - - sniper 2145 (5.23%)
Total top 7 11909 Total top 7 3448 Total top 7 18
% changes top 7 86.68% % changes top 2 100% % changes top 7 42.76

Table 5.5 The most active committers. Values in parentheses indicate the percentages
of files changed per committer.

Jitsi Tomcat
ID # of changes ID # of changes
yanas 4992 (36.01%) markt 1629 (46.51%)
lubomir m 2753 (19.86%) kkolinko 582 (16.61%)
emcho 2385 (17.20%) remm 566 (5.92%)
s vincent 1945 (14.03%) fhanik 389 (11.10%)
damencho 772 (5.56%) mturk 122 (3.48%)
wernerd 358 (2.58%) rjung 92 (2.62%)
sympho 156 (1.12%) pero 28 (0.79%)
Total top 7 13361 Total top 7 3408
% changes top 7 96.38% % changes top 7 97.3%

Table 5.6 The most active committers. Values in parentheses indicate the percentages
of files changed per committer.

46

XalanJ Rhino
ID # of changes ID # of changes
sboag 1738 (26.56%) igor 2009 (45.85%)
mkwan 967 (14.77%) nboyd 1164 (26.56%)
norten 796 (12.16%) norris 286 (6.52%)
minchau 512 (7.82%) gerv 181 (4.13%)
santiagopg 383 (5.85%) nboyd 168 (3.83%)
mmidy 367 (5.60%) inonit 110 (2.51%)
minchau 343 (5.24%) szegedia 34 (2.89%)
Total top 7 5106 Total top 7 4028
% changes top 7 78.03 % changes top 7 91.94

Table 5.7 The most active committers. Values in parentheses indicate the percentages
of files changed per committer.

47

Table 5.2 shows the list of the top seven committers involved in license statement

changes. In XercesJ, 7 committers out of 28 performed 87% of the license statement

changes while in JFreechart, 2 out of 2 committers performed 100% of all license

statement changes.

Especially for XercesJ, most of the license statement changes have been performed

by a small subset of the committers. As can be seen in the tables, the percentages of

commits related to license statement changes is more or less similar for all XercesJ

committers in the top seven, i.e., ranging between 4% and 9%. One committer has

a higher percentage of changes (mrglavas), with 49% of commits involving a license

statement change. In JFreeChart, 1 committer performed 99.53% of license statement

changes, while the other one hardly made any change.

In PHP, to extract the committers who changed licenses, we counted just the

number of changes in the file php/php−src/trunk/LICENSE and not the numbers

of source code files for which licenses were changed, given PHP’s specific license

convention. Thus, the number of license statement changes in PHP is much lower

than the one in JFreeChart and XercesJ. However, the results show the same trend

as for JFreechart and XercesJ: a minority of committers performed the majority of

license changes. Three committers performed 66.66% of all license statement changes.

In order to better understand the role of license statement change committers,

Table 5.5 identifies the most active committers based on the number of commits

(any commit that involves SLOC change) for JFreeChart, PHP, and XercesJ. We find

that many committers in the top seven for license statement changes are also active

committers. In XercesJ, the top seven active committers who also perform license

statement changes are: “mrglavas”, “lehors”, ’“elena”, “no author”, “andyc” (5 out

of 7). In JFreeChart, the committer who commits the majority of license statement

changes (99.43%) is also the most active one (99.94%). In PHP, 2 top committers

out of the 3 that commit license statement changes are also the most active.

We found similar results in the remaining systems as shown in the Table 5.3,

i.e., Jitsi, Rhino, Tomcat, and XalanJ, where the top seven committers for license

statement changes performs respectively 96.88%, 99.48%, 93.04%, and 97.61% of the

source code changes. Thus, a minority of committers perform the majority of license

statement changes. Moreover, these committers are the most active developers.

To summarize, the most active developers accepting changes to license statement

are the main contributors to software projects. This seems reasonable, since they (1)

48

often are amongst the leaders of a project, having the actual power to decide about

license changes, and (2) presumably have a very good insight into and experience with

the software system, being able to clearly understand the repercussions of software

license changes. For example, “mrglavas” in XercesJ is the primary contributor to

the Apache Xerces2 project since 2003. “Zeev” in PHP is a PHP developer and

co-founder of Zend Technologies. Together with a fellow student “andi” (also an

important committer), he created PHP3 in 1997.

5.2 Discussions and Threats to validity

In previous work, researchers studied license statement changes independently

from software maintenance tasks. In our work, we study license statement evolution

in the context of source code evolution. Based on our findings in RQ1 (no systematic

large-scale license changes and dispersed license statements), we can suggest improve-

ments to the license statement change process. First, there is a need for tools that

help track licenses and license statement changes to ensure systematic changes of all

the licenses of files consistently to the wanted license if the team decided so. For

example, this tool should allow visualising licenses at different levels of granularity,

from files to systems (some package has different license of the system license like

zend package in PHP). Moreover, during a change period, it could be used to auto-

matically update files to their “future license”. After the change is performed, this

tool should check that the license statement changes are propagated throughout the

system (consistency check), the current licenses are not violated in any way and if the

right persons are changing the licenses (we observed some errors in license statement

changes like the one zend package). There are quite some challenges involved with

developing such a tool, in particular the textual nature of license statements, which

encourages customizations. Furthermore, the fact that different change types do not

have the same popularity or even formatting style across all projects, suggests that

this tool must be adapted to the specific culture of license statement changes in a

particular project.

Second, instead of tool support, one could change the concept of ”license state-

ment” to be more effective. This is basically what we saw in PHP, where instead of

having license statements that are (possibly customized) clones of the original license

text, the base license text is centralized. Less license statement changes occurred in

49

PHP compared to the other projects, yet more research on systems with a similar

mechanism is needed to determine whether the low number of changes is really due

to the centralized concept of license statements or due to some other factor.

For the two alternative, we need necessarly a meta-model that presents entities

required for analysis. Previous work established models that are centralised on license

: type, right, condition, yet they did not consider other that we could need for more

effective analysis as autor, system architecture. Our study shows the importance to

include other information in the models, for example it is important to know who is

the committer that changed the license and the contributor of the file covered by a

license. We already designed an initial model that could be refined to include possibly

more informations and add layer to help in license evolution managment.

Our study has some threats to validity, which we now discuss in more detail

(Wohlin et al. (2000)).

Construct validity:

Construct validity concerns the relation between theory and observations. The

later can be due to our measurements, i.e., the way we extracted licenses and identified

their changes. We extracted licenses using an existing license identification tool,

Ninka German et al. (2010b). Although Ninka has a high accuracy, it also outputs

unmatched sentences in licenses, i.e, sentences that it cannot parse. Although we

manually scanned these sentences for patterns, there is a risk that the unmatched

sentences might change some of the results. Moreover, Ninka does not detect the

copyright year. Thus, to answer our qualitative study, we mined change logs using

grep for specific expressions like: ”Bump year”, ”update year”, ”year++”, ”update

copyright year”, ”copyright year”, and others. Consequently, there is a risk that we

did not detect all copyright year changes.

Internal and Conclusion Validity:

The internal validity of a study is the extent to which a treatment impacts the

dependent variable. Conclusion validity threats concern the relation between the

treatment and the outcome. Threats to internal validity do not affect this study,

being an exploratory study Yin (2002). Conclusion validity is not threatened because

we used cross-correlations and made sure that the conditions for their application

held.

External Validity:

The external validity of a study is the extent to which we can generalise its re-

50

sults. The main threat to the external validity of our study relates to the analysed

systems, i.e., four medium-sized systems (JFreeChart, Rhino, XalanJ, and, XercesJ),

and three large system (PHP, Tomcat and, Jitsi). All of these are open source, but

from different domains and with four different licenses: Apache, LGPL, MPL/GPL,

and PHP. Future work includes replicating our study on more systems, licensed under

other licenses to confirm our results.

51

Chapter 6

PRELIMINARY FOR LICENSE

VIOLATION DETECTION TOOL

In this chapter, we present a preliminary step for a tool that helps to avoid license

inconsistencies in a system.

6.1 Tool Architecture Overview

The result of the license statement evolution study presented in the chapter shows

there is need of tool to manage license statement changes. This tool must ensure a

systematic changes of all the licenses of files consistently to the wanted license, and

also permits to make developers aware of the constraints imposed by the used licenses.

The meta-model proposed in the chapter could be extended by adding another layer

to represent license constraints in order to be able to check license constraints for

a given instance. In fact, the tool will process in two main steps, first step is to

extract all the required system data according our meta-model, the second step is to

transform the constraints and license terms to rules using a formal language using the

meta-model entities, finally check if the rules are respected on the system meta-model

instance (see Figure 6.1).

6.2 Example of GPLv3 License Rules

In this section, we present some example of GPLv3 1 terms, that we tried to

formalize using logic expression using the entities that we defined in our meta-model.

We extracted the terms of GPLv3 license. Then, we transformed them into rules

using the entities defined in our meta-model.

1. http://www.gnu.org/copyleft/gpl.html

52

Figure 6.1 License constraints checking.

Rule 1

”If you distribute copies of a program licensed under GPLv3, you must pass to the

recipients the same freedom that you received. You must be sure that they receive or

can get the source code. And you must show them this terms.”

ifL(S) = GPLv3 ∧ distribute(S) ⇒ show(S, T (L(S))) ∧ accessible(Source(S))

List of fact used :

– distribute : distribute a copies of a system S

– show(S, T (L(S)) : show the terms of the system license

– accessible(Source(S)) : make the source code of S accessible

Rule 2

”The GPL requires that modified versions be marked as changed (so that their

problems will not be attributed erroneously to the author)”

ifderivative(P,ConnType(SN , s))∧L(P) = GPLv3 ⇒ L(S) = GPLv3∧contain(S,N(Modif))

List of fact used :

– contain(S,N(Modif)) : S contain a Notice of modification

Rule 3

”If you convey a program under GPLv3, an interactive users interface must show

to the user: 1) displays an appropriate copyright notice, and 2)tells the user that

there is no warranty for the work, that licensees may convey the work under this

License, and how to view a copy of this License.”

53

ifL(S) = GPLv3 ∧ convey(S)

⇒ show(S,N(L))∧show(S,N(NW))∧show(S,N(R(L(S), Convey)))∧show(S,N(L(S)))

List of fact used :

– N(NW) : Notice of no warranty

Rule 4

”The output from running a covered work is covered by this license only if the

output, given its content, constitutes a covered work. (example of exception is the

output of gcc, compiled source code, is not covered by GPL)”

ifL(S) = GPLv3 ⇒ L(Output(S)) = GPLv3

List of fact used :

– Output(S) : output from running a system S

Rule 5

”you may convey verbatim copies of the program’s source code as you receive it, in

any medium provided that you publish in each copy an appropriate copyright notice;

keep intact all notices stating that this license and any non permissive terms added

in accord with section 7 apply to the code; keep intact all notices of the absence of

any warranty; and give all recipients a copy of this license along with the Program.”

ifL(S) = GPLv3∧convey(S) ⇒ W (S) = W (copy(S))∧contain(copy(S), Notice(L(S)))∧

NW (S) = NW (copy(S)) ∧ Exception(W) ∧ Exception(PreservationSpecNotice) ∧

Exception(ProhibitMisRepresentOrigin)∧Exception(LimitPub)∧Exception(Decline)∧

Exception(requireIndeminification)

List of fact used :

– Exception(W) : exception of the warranty.

– Exception(PreservationSpecNotice) : exception of requiring preservation of

specified reasonable legal notices or author attributions.

– Exception(ProhibitMisRepresentOrigin) : exception of prohibiting misrepre-

sentation of the origin of that material.

– Exception(LimitPub) : Limiting the use for publicity purposes of names of

licensors or authors of the material.

– Exception(Decline) : exception of declining to grant rights under trademark

law for use of some trade names, trademarks, or service marks.

54

– Exception(requireIndeminification) :exception of requiring indemnification of

licensors and authors of that material by anyone who conveys the material (or

modified versions of it.

Rule 6

”You may convey a work based on the Program or a modification of the Program

in the form of source code under the terms of rule 4 and under these conditions: a)

contains notice that states that you modified it and indicates a relevant dates, b) the

work must contain notice stating that is released under This license (GPLv3) and

any conditions added under section 7. This requirement modifies the requirement in

Rule 5 to keep intact all the notices.c) You must license the work as whole under this

License to anyone comes into possession. d)If P contains user interface ⇒ the user

interface of the program must display Appropriate Legal Notice.”

ifL(S) = GPLv3∧Derivative(P, S, I(P, S))∧convey(S) ⇒ contain(copy(P), N(Modif))∧

contain(copy(P), N(L(S)))∧(copy(P).contain(UI) ⇒ show(copy(P), N(L)))∧Exception(W)∧

Exception(PreservationSpecNotice) ∧Exception(ProhibitMisRepresentOrigin) ∧

Exception(LimitPub)∧Exception(Decline)∧Exception(requireIndeminification)

List of fact used :

– N(Modif) : Notice which indicates that the program is modified version of the

original one

Rule 7

”The combination of a covered work in a compilation of independent work doesn’t

cause this license to apply to the other parts of the aggregate.”

ifL(S) = GPLv3∧!Derivative(P, S, ConnType(P, S)) ⇒ ∀f ∈ S, L(f) = anyLicense

55

Chapter 7

CONCLUSION

Several issues of license due to license evolution suggest that license changes could

have negative impacts. Thus, we think that license evolution worth to be studied to

help in automatic license changes tracking due to the size of systems that prevent

manual checking. Existing approaches for license statement change analysis do not

focus on the relation between license statement changes and the software develop-

ment cycle, i.e., the co-evolution between licenses and source code. We think it is

important to relate source code evolution and license evolution to find the license

evolution is a systematic changes or depends on software evolution and also to find

which type of developers are changing licenses, i.e., the same modifying the source

code. We think that it is important as first step to propose a system meta-model

that assemble pertinent informations. As a second step, we want to understand if

license management is correlated with source code changes. Knowing how and when

licenses change, we could propose a methodology to improve the process of license

management to help developers in changing licenses without introducing inconsisten-

cies and violating licenses using the outcome of our study and information from the

meta-model.

We began by doing a litterature review about previous system meta-model for

license analysis, studies around license analysis, and license terms, ...etc to gather

license data that must be presented in a meta-model. Then, we identified relation be-

tween them and defined each element in the meta-model. After that, to study source

code and license co-evolution, we used our system meta-model to identify which data

we must track and stored them in Ibdoos database using within meta-model. Using

this data, we performed a quantitative and a qualitative study on seven systems,

and we found that licenses are changing frequently as other software artefacts are

changing. However, these changes to a large degree seem independent from source

code changes, i.e., they are not necessarily aligned with massive code changes. Fur-

thermore, we distinguished three main types of license statement changes: license

56

type change, license version change and contributor addition. The popularity of

these change types is not uniform across all projects, but seems to depend on each

project’s guidelines or culture towards software licenses. Hence, different strategies

are required to manage license evolution. Finally, we found that the committers that

change the licenses are also the most active committers to the projects and the main

contributors in some projects. This means that they have a leadership role in the

project, as well as a good insight into the system.

Based on our findings, we believe that to improve the license statement change

process, practitioners either need a dedicated methodology and tools to support them,

or need to rethink the concept of license statements. This should help ensure that

license statement changes do not introduce inconsistencies, and hence prevent legal

or commercial damage to the organization.

As future work, we propose to extend our automatic approach to track license

evolution by adding license compatiblity checking. As we did in our preliminary

study in Chapter 6, we could formalize rules of each license. Then, we could check

their rules are verified in the respected in the concerned system.

57

Références

ALSPAUGH, T. A., ASUNCION, H. U. et SCACCHI, W. (2009). Intellectual prop-

erty rights requirements for heterogeneously-licensed systems. RE ’09: Proceedings

of the 2009 17th IEEE International Requirements Engineering Conference, RE.

IEEE Computer Society, Washington, DC, USA, 24–33.

BASILI, V. R. et WEISS, D. M. (1984). A methodology for collecting valid software

engineering data. IEEE Trans. Software Eng., 10, 728–738.

CAPILUPPI, A., LAGO, P. et MORISIO, M. (2003). Characteristics of open source

projects. CSMR ’03: Proceedings of the Seventh European Conference on Software

Maintenance and Reengineering. IEEE Computer Society, Washington, DC, USA,

317.

CORDY, J. R. et ROY, C. K. (2011). Debcheck: Efficeient checking for open source

code clones in software systems. Proceedings of the International Conference on

Program Comprehension, ICPC 2011. IEEE Computer Society.

DA CRUZ, D. C. (2008). Methods and techniques to analyze multi-level code to

explore software components. Thèse de doctorat, Universidade do minho.

DI PENTA, M., GERMAN, D. M., GUÉHÉNEUC, Y.-G. et ANTONIOL, G. (2010).

An exploratory study of the evolution of software licensing. Proceedings of the 32nd

ACM/IEEE International Conference on Software Engineering - Volume 1. ACM,

New York, NY, USA, ICSE ’10, 145–154.

ESHKEVARI, L. M., ARNAOUDOVA, V., PENTA, M. D., OLIVETO, R.,

GUÉHÉNEUC, Y.-G. et ANTONIOL, G. (2011). An exploratory study of iden-

tifier renamings. MSR. 33–42.

GERMAN, D. M. et HASSAN, A. E. (2009). License integration patterns: Address-

ing license mismatches in component-based development. ICSE ’09: Proceedings of

the 31st International Conference on Software Engineering. IEEE Computer Society,

Washington, DC, USA, 188–198.

GERMAN, D. M., MANABE, Y. et INOUE, K. (2010a). A sentence-matching

method for automatic license identification of source code files. Proceedings of

the IEEE/ACM international conference on Automated software engineering. ACM,

New York, NY, USA, ASE ’10, 437–446.

58

GERMAN, D. M., PENTA, M. D. et DAVIES, J. (2010b). Understanding and

auditing the licensing of open source software distributions. ICPC ’10: Proceedings

of the 18th International Conference on Program Comprehension. IEEE Computer

Society, Los Alamitos, CA, USA, vol. 0, 84–93.

GOBEILLE, R. (2008). The fossology project. Proceedings of the 2008 international

working conference on Mining software repositories. ACM, New York, NY, USA,

MSR ’08, 47–50.

HAYES, J. H., MOHAMED, N. et GAO, T. H. (2003). Observe-mine-adopt (oma):

an agile way to enhance software maintainability. Journal of Software Maintenance,

15, 297–323.

HAYES, J. H., PATEL, S. C. et ZHAO, L. (2004). A metrics-based software mainte-

nance effort model. Software Maintenance and Reengineering, European Conference

on, 0, 254.

HEMEL, A., KALLEBERG, K. T., VERMAAS, R. et DOLSTRA, E. (2011). Find-

ing software license violations through binary code clone detection. Proceedings of

the 8th international conference on Mining software repositories. ACM, MSR ’11,

63–72.

HINDLE, A., GERMAN, D. M. et HOLT, R. (2008). What do large commits tell

us?: a taxonomical study of large commits. Proceedings of the 2008 international

working conference on Mining software repositories. ACM, New York, NY, USA,

MSR ’08, 99–108.

KENMEI, B., ANTONIOL, G. et DI PENTA, M. (2008). Trend analysis and issue

prediction in large-scale open source systems. Proceedings of the 2008 12th European

Conference on Software Maintenance and Reengineering. IEEE Computer Society,

Washington, DC, USA, 73–82.

KULLBACH, B., WINTER, A., DAHM, P. et EBERT, J. (1998). Program compre-

hension in multi-language systems. WCRE ’98: Proceedings of the Working Con-

ference on Reverse Engineering (WCRE’98). IEEE Computer Society, Washington,

DC, USA, 135.

MANABE, Y., HAYASE, Y. et INOUE, K. (2010). Evolutional analysis of licenses

in foss. Proceedings of the Joint ERCIM Workshop on Software Evolution (EVOL)

and International Workshop on Principles of Software Evolution (IWPSE). ACM,

New York, NY, USA, IWPSE-EVOL ’10, 83–87.

59

PENTA, M. D. et GERMAN, D. M. (2009). Who are source code contributors

and how do they change. Proceedings of the 16th Working Conference on Reverse

Engineering, WCRE 2009. IEEE Computer Society, 13–16.

ROSEN, L. (2004). Open Source Licensing Software Freedom and Intellectual Prop-

erty Law. Prentice Hall.

TUUNANEN, T., KOSKINEN, J. et KÄRKKÄINEN, T. (2009). Automated soft-

ware license analysis. Automated Software Eng., 16, 455–490.

WOHLIN, C., RUNESON, P., HÖST, M., OHLSSON, M. C., REGNELL, B. et

WESSLÉN, A. (2000). Experimentation in software engineering: an introduction.

Kluwer Academic Publishers, Norwell, MA, USA.

YIN, R. K. (2002). Case Study Research: Design and Methods. Sage Publications,

Inc, third edition édition.

