On the Analysis of
Artifact Evolution;

An Aggregated View and
Lessons Learned

Université r”\

de Montréal

Content

Introduction

Problem Statement

Change Pattern

Evolution Pattern

Evolution and Defects

Conclusion and Perspectives

2/50

Software has become omnipresent and vital
In our information-based society.

So all software producers should
assume responsibility for its reliability.

3/50

Maintenance and Evolution

Under maintenance

Fred Brooks, in the Mythical Man-Month, states that over 90% of the
costs of a typical system arise in the maintenance phase!

100% = Total cost of software

100%

E“ wal | 50%

Maintenance costs

15970 2009

Development of Software maintenance costs as percentage of total cost

4/50

Software Evolution Impacts

Lehman's Laws:

Continuing Change: Systems must continually be adapted to the
changing environment, otherwise their utility will progressively decline.

Increasing Complexity: The accidental and essential complexity
grows as the system is evolved.

Declining Quality: The quality of the system declines unless
dedicated countermeasures are taken.

5/50

Software Evolution Impacts

As Software systems evolved, their designs become
more complex over time and harder to change.

[

Ir Iy 14
LI)

77/,
111 7
/// /////

In absence of knowledge on the artefacts’ dependencies,
developers could introduce design defects and faults.

6/50

Motivation

< Quality

A Speed

A Efficiency
& Cost

7/50

Problems

How to detect hidden evolution relationships
among artifacts?

How to analyse program evolution effect?

8/50

Previous Work

1 - Co-change Pattern

2 - Co-evolution Pattern

9/50

Synchrony Change Pattern

The development and maintenance of a system involves handling a
large number of artifacts.

A change to one artifact may imply a large %
number of changes to various other artifacts. | J

Yann-Gaél Guéhéneuc Salah Bouktif and Giuliano Antoniol. Extracting
change-patterns from cvs repositories. Working Conference on Reverse
Engineering. 2006.

10/50

Co-change

Two artefacts are co-changing if they are changed by the same author
and with the same log message in a time-window of some ms.

Date

Author

Comment

Fri Sep 24 11:34:29 E domwass

Thu Sep 23 18:08:20 mortenalver
Sun Sep 19 18:21:52 mortenalver
Sun Sep 19 12:51:47 mortenalver
Sat Sep1818:58:11

mortenalver

added German translations

Further work on the new ContentSelectorDialog2. Almost done.

Started on new ContentSelectorDialog with a better interface.
Added a new panel for abstract in entry editor,
Added possibility to validate prefs before closing dialog.

Thomas Zimmermann, Peter Weisgerber, Stephan Diehl, and Andreas Zeller.
Mining version histories to guide software changes. In Proceedings of the
26th International Conference on Software Engineering, 2004.

11/50

Example

In ArgoUML, developers maintained in the same time
NotationUtilityJava and ModelElementNameNotationUml.
The bug ID 29265 confirms that the two files have dependencies.

In the Bugzilla of ArgoUML, the bug ID 53783 relates ArgoDiagram

with ModeCreateAssociationClass.
Their changes were committed by the same developer but always

separated by a few hours.

12/50

I Commutl in 20-12-2010 / 00h.00mn by devl |
| FileFl |
I Commit2 in 20-12-2010 / 05h.05mn by devl |
I FileF2 |

Period 1

- 1
| Commit3 in 25-12-2010 / 01h.00mn by devl I
I Commitd in 25-12-2010 / 05h.05mn by devl |
I File F2 I

Period 2

Commit5 in 30-12-2010 / 05h.00mn by devl |
File F1

Commit6 in 30-12-2010 / 06h.05mn by dev]
File F2

Period 3

Missing Dependencies

Time

| Commitl in 20-12-2010 / 00h.00mn by devl |
I File F1

1
| Commit2 in 22-12-2010 / 00h.05mn by dev2 |
I FileF2 I

Period 1

1
| Commit3 in 25-12-2010/ 01h.00mn by devl
I File F1 I
| Commitd in 26-12-2010 / 01h.05mn by dev2 |
| FileF2 I

I—.-————.—.-——-—.-——J

Period 2

I Commit5 in 30-12-2010/ 06h.00mn by devl |
| FileFl

|
b Commité in 31-12-2010 / 06h.05mn by dev2 |
File F2 |

Period 3

13/50

Goal 1: A New Model of Co-change

The Asynchrony change pattern describes a set of files that always
change together in the same change periods.

A change period is a period of time during which several commits to
different files occurred without “interruption”.

14/50

Approach: Macocha

cvs ‘\ / SVN
{, Change Analysis)
\"‘“‘«h.____,._/‘/d
(1) Change
/"fﬂ_ T

F 4

s
&

Change Period

(2)

e

\

FileName :
Analysis

f

(4) Idle file
File group
Changed file
(5) Asynchrony
Change Pattern
™,
Dephase

Fehmi Jaafar, Yann-Gaél Guéhéneuc, Sylvie Hamel, and
Giuliano Antoniol. An exploratory study of macro co-
changes. In Proceedings of the 18th Working Conference
on Reverse Engineering. 2011.

Fehmi Jaafar, Yann-Gaél Guéhéneuc, Sylvie Hamel, and
Giuliano Antoniol. Detecting Asynchrony and Dephase
Change Patterns by Mining Software Repositories. Journal
of Software Maintenance and Evolution: Research and

Practice. 2013. 15/50

Approach: Macocha

KNN Algorithm

[N & & F B R R B

0 a— i--lil - 4 illlillllllil-.-l-l.lll e, B

Bit Vector

F1 0100011010111100111
F2 0100011010111100111

16/50

Approach: Macocha
Approximate Asynchrony Change Pattern

F1 0100001110101100111

F2 0101001110100100111
F3 0101001110100101011

01010100110101
10101001101011

Dephase Change Pattern

—F1 00110101110011011111110101000000011101011
|I |I |I |I |I |I

1 I| I| sas I| I| I| I| ree
| | o1

——F2 10011010111001101111111010100000001110101

2

=—_F3 001001101011100110111111101010000000111010

The Dephase change pattern describes a set of files that always

change together with some shift in time in their periods of changes.
17/50

Research Questions

RQ1: Does Asynchrony and Dephase change
patterns really exist in practice?

RQ2: How can they be useful?

18/50

Subjects

Languages Java C Java Java
Versions 9 11 5 5 16 13 14
Files 1,621 500 1,106 383 1,693 390 396
Commits 6,943 50,145 1,752 5960 6,100 3,621 3,971
Developers 11 114 4 35 16 11 26
]
o b L L 1

FreeBSD JFreeChart Openser Sip XlanC Xerces 19/50

Analysis Methods

Quantitatively, we compare the findings of Macocha with that
of the previous co-change analysis.

Qualitatively, we use external information provided by bugs
reports, mailing lists, and requirement descriptions to
validate the novel change patterns.

Fehmi Jaafar, Yann-Gaél Guéhéneuc, Sylvie Hamel, and Giuliano Antoniol. An
exploratory study of macro co-changes. In Proceedings of the 18th Working
Conference on Reverse Engineering. 2011.

Fehmi Jaafar, Yann-Gaél Guéhéneuc, Sylvie Hamel, and Giuliano Antoniol.
Detecting Asynchrony and Dephase Change Patterns by Mining Software
Repositories. Journal of Software Maintenance and Evolution: Research and
Practice. 2013.

20/50

Results

RQ1: Does Asynchrony and Dephase change
patterns really exist in practice? / YES

JChange Propagation

RQ2: How can they be useful? J Fault Undrestanding

J Team Management

We could detect change patterns in long
time intervals, performed by different
developers and with different log
messages.

21/50

Software Evolution Impacts?

S a\

B on
® w
-
e g
%
% wu

WoOWE WuR
BERR Ban
BREHNHRBANRSA
HEATARRARRS

Prediction

| Secondary f‘ﬂﬂm—:‘ Patlern "3"

: | predictions

by (i

Ohserved

Hypotheses on | -
| Parameters + processes Patiern

Processes Parameter | |
I 2 e S <

Field investigations

22/50

Motivation

e\
A\
(ea\\svuue metrics: complex or larger

Ostrand et al. found that 20% of classes contains 80% of faults.

Not all classes are there to last forever, some are meant for
experimentation, so it could be expected that they have more faults.

23/50

Goal 2: Relating Software
Evolution and Fault-proneness

Classes that exhibit similar evolution profiles may have
Interdependencies among them.

However, it IS not clear how classes with similar evolution behavior are
linked with faults.

How we can relate the evolution of classes in object-oriented

i _ ?
programs with fault-proneness” 1150

Example

In JFreeChart, we find that ChartPanel and
CombinedDomainXYPIlot were introduced, changed, and renamed in
the same versions but in different periods and by different developers.

The bug ID 195003710 reported “a bug either in ChartPanel or
CombinedDomainXYPlot when trying to zoom in/out on the range
axis”.

25/50

Approach: Profilo

Pre-processing

I

' Program Versions Program models :
1' » PADL :
i (Source Code) (UML-like Class Diagrams) i
1 |

Class Renaming Detection

S — e
b I .
: Textual Renamed |
i StrS CamelS ND »| Combination |
I | Similaritie Classes :
[Structural T I
[} |
[G gEe G [
> Similarity :
Class Profile Creation

i S A l

Class Profile Creation

Existence Evolution
Class Profiles Class Profiles

Mining Mining

]]
|
i Co-evolution Class Lifetime |
]
i |
[] |

Fehmi Jaafar, Salima Hassaine, Yann-Gaél Guéhéneuc, Sylvie Hamel,
and Bram Adams. On the Relationship Between Program Evolution
and Faultproneness: An Empirical Study. WCRE 2013, Genova, ltaly. 26/50

Approach: Profilo

Short-lived classes: They have a very short lifetime.
Persistent classes: They never disappear after their first introduction
Transient classes: They appear and disappear many times.

Co-evolved classes: They have the same evolution profile and are
related by static relationships.

27/50

Subjects

]
~ JFreeChart '

Versions 18 46 36

Start study 2002-10-09 2000-12-01 2003-10-13
End study 2011-04-03 2011-11-20 2006-11-23

Classes 2011 1938 892

28/50

Research Questions

RQ1: What Is the relation between class lifetime
and fault-proneness?

RQ?2: What Is the relation between class co-
evolution and fault-proneness?

29/50

Analysis Methods

We use Fisher’s exact test and the Chi-
Square test to check two hypothesis.

Hro1: There is no statistically significant difference between
proportions of faults carried by Persistent, Shortlived, and
Transient classes in systems.

Hroo: There is no statistically significant difference between
proportions of faults involving co-evolved classes or not co-
evolved classes.

30/50

Results

Transient 645 313
Persistent 1241 1293 537
Short-lived 80 324 42
Co-evolution 42 11 23
ArgoUML JFreeChart Xerces)
M Persistent M Short-lived ™ Persisten M Persistent M Short-lived ™ Persistent M Persistent MW Short-lived ™ Persistent

4% . . .
5%

31/50

Results

Persistent classes are significantly less fault-prone than Short-lived

and Transient classes? / YES

Faults fixed by maintaining co-evolved classes are significantly more
than faults fixed using not co-evolved classes? , YES

Special attention must be given to these entities to keep
the design intact during program evolution because they
could have a negative impact on the fault-proneness of

the program.

32/50

Software Evolution Impacts

" : w0
® -3
=
Ba g
g
= @

®OEE Wun
BERR Ban
BREDEBRBARA
HERTRERARAS

Prediction

: Secomdary {*ﬂng—} Pattern "}'

Hypotheses on | _ Ohserved
| Parameters + processes € Patiern

Processes Parameter | |
v T % ar

Figll investigations

33/50

Design D ects .Antl -patterns

Patterns

HElal 1 0w
d F'| m.LlJ in Crisis

Anti-patterns describe poor solutions to

plementation
problems...

Instead, they indicate weaknesses i

{ sign':'fh, e slowing down
development or increasing the risk' o

Me’s’ in the future.

William H. Brown Raphael L. Malvead

Hays W.5Skig" McCormick Il Thomas |, Mowhr,

34/50

Examples of Anti-patterns

Blob

Library_Main_Control

Item H

Do_Inventory Title H I
Check_Out_Item(item) / ISBN 1 |

Check In_Item(item) Author
Add_Iten(item) Publisher
Delete_Item(item) Cost
Print_Catalog Date_In

Sort_Catalog Qty
Search_Catalog(Param s)

Person Find_Item =

Name Print

User_ID Open_Library
Items_QOut §
Fines Issue_Library Card

Current_Catalog Catalog
Current_ltem Topic
User_ID Inventory
Fine_Amount

Large controller class, low cohesion,
associated with simple, data-object
classes...

Spaghetti Code

Process oriented methods, object methods with no
parameters, class or global variables utilization, flow
of execution dictated by object implementation, not
by the clients of the objects. 35/50

Related Work

Many studies have investigated the impact of anti-patterns on

* Maintenance [Yamashita, 2013]
» Fault-proneness [Khomh, 2012]

* Change-proneness [Romano, 2012]

Library_Main_Control

Person

Name
User_ID
Items_Out
Fines

Do_Inventory
Check_Out_Item(item)
Check_In_Item(item)
Add_lIten(item)
Delete_Item(item)
Print_Catalog

Sort Catalog
Search_Catalog(Param s)

Find_Item
Print
Open_Library

Issue_Library Card

Title = e
/ ISBN 1

Current_Catalog
Current_Item
User_ID
Fine_Amount

Item B

Author
Publisher
Cost
Date_In
Qty

hm—

—

Catalog

Topic
Inventory

36/50

Related Work

Yet, classes sharing dependencies with anti-patterns have been mostly

ignored.

Chient

Library_Main_Control

Person

Name
User_ID
Items_Out
Fines

Do_Inventory
Check_Out_Item(item)
Check_In_Item(item)
Add_lIten(item)
Delete_Item(item)
Print_Catalog

Sort Catalog
Search_Catalog(Param s)

Find_Item
Print
Open_Library

Issue_Library Card

Title
/ ISBN

Current_Catalog
Current_Item
User_ID
Fine_Amount

Item

Author
Publisher
Cost
Date_In
Qty

1
e

fmaintains
1

Cache

37/50

Goal 3: Relating Evolution,
Dependencies, and Anti-patterns

Static and evolution dependencies with anti-patterns can
Impact the fault-proneness of classes without anti-
patterns.

38/50

Approach: Antimpact

Source code
repository Bugzilla

Antipatterns Co-changes Bug information
detection retrieval Ibdoos

Fehmi Jaafar, Yann-Gaél Guéhéneuc, Sylvie Hamel , and Foutse Khomh.
Mining the Relationship Between Anti-patterns Dependencies and Fault
proneness. WCRE 2013.

Fehmi Jaafar, Yann-Gaél Guéhéneuc, Sylvie Hamel, and Foutse Khomh.
Analysing Anti-patterns Static Relationships with Design Patterns. Journal of
Electronic Communications of the European Association of Software Science
and Technology. 2014.

39/50

Subjects

]
~ JFreeChart ,

Classes 3,325 1,615 1,191
Snapshots 4,480 2,010 159,196

Anti-patterns detected with DECOR:

» MessageChain « Antisingleton

» RefusedParameterBequest * Blob

» SpaghettiCode » ClassDataShouldBePrivate (CDSBP)
» SpeculativeGenerality » ComplexClass

» SwissArmyKnife LazyClass

» LongParameterList » LongMethod

40/50

Research Questions

RQ1: Are classes that co-change with anti-patterns
more fault-prone?

RQ2: Are classes that have static relationships with
anti-patterns more fault-prone?

41/50

Analysis Methods

We divide classes In the systems based
on their static relationships (respectively
co-changes) with anti-patterns.

We use Fisher's exact test and Odds
ratios to test the hypothesis.

Hro: The proportions of faults carried by classes having static
relationships (respectively co-changes) with anti-patterns and
other classes are the same.

42/50

Results

- Antipatterns Systems #ofCC #ofSR. Antipattems Systems #ofCC #ofSR.
13 152 a8 244
-?érreeChart

Anti singleton

Blob

CDSBP

ComplexClass

LongMethod

LongParameterList

FreeChart

W

_JFreeChart

reeChart

-_ FreeChart

Yerces

FreeChart

5|
o

20
18
51

201
188
304
164
93
167
82
113
192
146
96
282
314
266
344
276
309

MessageChains 196
Yeross 183
47 326
RefusedParentBequest 6 183
25 93
-
Spaghetti Code 0
Yerces
128
SpeculativeGenerality 139
p 201
20 69
SwissArmyKnife 9 142
I 18 108

43/50

RQ1: Static relationships and anti-

patterns on fault-proneness?

Total of classes related to AP 1939 1350
Classes with S.R with AP and that are not AP. 945 778
Total of other classes 1117 1725

Classes with S.R with AP and that are not AP

Other classes

JFreeChart _---

& Classes with S.R with AP and that are not AP.
Other classes 310 647

Classes with S.R with AP and that are not AP.
Other classes 126 499

vYES

44/50

RQ2: Co-changes and anti-patterns

on fault-proneness?
- Faits NoFauits |OddRatios |

Total of classes co-changing with AP 346 149 2.5
Classes co-changing with AP and that are not AP 173 81 2.3
Total of other classes 2710 2926

Classes co-changing with AP and that are not AP

Other classes 1502 1480

Classes co-changing with AP and that are not AP

Other classes

Classes co-changing with AP and that are not AP
9

Other classes 534

45/50

Some Observations

We found no class having a static dependency (i.e., use,
association, aggregation, and composition relationships)
or that co-changed with a SpaghettiCode.

Many anti-patterns relationships were with classes playing roles in
design patterns.

Classes having static relationships with Blob, ComplexClass, and
SwissArmyKnife are significantly more fault prone than other classes
with similar complexity, change history, and code size.

Classes that are co-changing with anti-patterns classes are
significantly more fault prone than other classes with similar
complexity, change history, and code size.

Fehmi Jaafar, Yann-Gaél Guéhéneuc, Sylvie Hamel , and Foutse Khomh.
Mining the Relationship Between Anti-patterns and Design Patterns. PPAP
2013.

46/50

Software Evolution Impacts Approach: Macocha

As Software systems evolved, their designs become - s
. N 4 Idle file
more complex over time and harder to change. E N/
2 = o . File group
4 Change Analysis ‘ V_\ —_— Changed file
s i
v
(s) Asynchrony
(1) Change
* — Change Pattern
In absence of knowledge on the artefacts’ dependencies, P J as - S
developers could introduce design defects and faults. i n i
* 2 \ * (3) Fehmi Jaafar, Yann-Gaél Guéhéneuc, Sylvie Hamel, and
* e Giuliano Antoniol. An exploratory study of macro co-
Change Period | FileName | P> Profile changes. In Proceedings of the 18th Working Conference
\i"’i"s/ J on Reverse Engineering. 2011.

Fehmi Jaafar, Yann-Gagl Guéhéneuc, Sylvie Hamel, and
Giuliano Antoniol. Detecting Asynchrony and Dephase
Change Patterns by Mining Software Repositories. Journal
of Software Maintenance and Evolution: Research and
Practice. 2013.

Approach: Profilo Approach: Antimpact

Pre-processing

1 Program Versions Program models i

' — | PADL 1 Source code

! ok .

! (Source Code) (UML-like Class Diagrams) : repository Bugzilla
' 1

Structural DECOR Macocha

1
1
l‘ ¢ Textual Renamed |
nelS H ND Combination 1 Antipatterns Co-changes Bug information
Similaritie Classes : detection retrieval Ibdoos
|
1
|
i

Similarity

Analyses

Class Profile Creation

Existence Evolution
Class Profiles Class Profiles

Fehmi Jaafar, Yann-Gaél Guéhéneuc, Sylvie Hamel , and Foutse Khomh.
Mining the Relationship Between Anti-patterns Dependencies and Fault
proneness. WCRE 2013.

Mining Mining

1
: Co-evolution Class Lifetime
1
1
1

Fehmi Jaafar, Yann-Gaél Guéhéneuc, Sylvie Hamel, and Foutse Khomh.
Analysing Anti-patterns Static Relationships with Design Patterns. Journal of
Electronic Communications of the European Association of Software Science
and Technology. 2014,

Fehmi Jaafar, Salima Hassaine, Yann-Gaél Guéhéneuc, Sylvie Hamel,
and Bram Adams. On the Relationship Between Program Evolution
and Faultproneness: An Empirical Study. WCRE 2013, Genova, Italy.

Perspectives

Co-change and co-evolution
patterns in other contexts

Design defects evolution

