
1/50

Fehmi JaafarFehmi Jaafar

On the Analysis of On the Analysis of
Artifact Evolution:Artifact Evolution:

An Aggregated View and An Aggregated View and
Lessons LearnedLessons Learned

2/50

ContentContent

3/50

Software has become omnipresent and vital
in our information-based society.

So all software producers should
assume responsibility for its reliability.

4/50

Maintenance and EvolutionMaintenance and Evolution

Fred Brooks, in the Mythical Man-Month, states that over 90% of the
costs of a typical system arise in the maintenance phase!

5/50

Lehman's Laws:

Continuing Change: Systems must continually be adapted to the
changing environment, otherwise their utility will progressively decline.

Increasing Complexity: The accidental and essential complexity
grows as the system is evolved.

Declining Quality: The quality of the system declines unless
dedicated countermeasures are taken.

Software Evolution ImpactsSoftware Evolution Impacts

6/50

As Software systems evolved, their designs become
more complex over time and harder to change.

In absence of knowledge on the artefacts’ dependencies,
developers could introduce design defects and faults.

Software Evolution ImpactsSoftware Evolution Impacts

7/50

MotivationMotivation

 Quality
 Speed
 Efficiency
 Cost

8/50

How to detect hidden evolution relationships
among artifacts?

How to analyse program evolution effect?

ProblemProblemss

9/50

1 - Co-change Pattern

2 - Co-evolution Pattern

Previous WorkPrevious Work

10/50

The development and maintenance of a system involves handling a
large number of artifacts.

A change to one artifact may imply a large
number of changes to various other artifacts.

Synchrony Change PatternSynchrony Change Pattern

Yann-Gaël Guéhéneuc Salah Bouktif and Giuliano Antoniol. Extracting
change-patterns from cvs repositories. Working Conference on Reverse
Engineering. 2006.

11/50

Two artefacts are co-changing if they are changed by the same author
and with the same log message in a time-window of some ms.

Thomas Zimmermann, Peter Weisgerber, Stephan Diehl, and Andreas Zeller.
Mining version histories to guide software changes. In Proceedings of the
26th International Conference on Software Engineering, 2004.

CoCo--changechange

12/50

ExampleExample

In ArgoUML, developers maintained in the same time
NotationUtilityJava and ModelElementNameNotationUml.
The bug ID 29265 confirms that the two files have dependencies.

In the Bugzilla of ArgoUML, the bug ID 53783 relates ArgoDiagram
with ModeCreateAssociationClass.
Their changes were committed by the same developer but always
separated by a few hours.

13/50

Missing DependenciesMissing Dependencies

14/50

Goal 1: A Goal 1: A New New Model of CoModel of Co--changechange

The Asynchrony change pattern describes a set of files that always
change together in the same change periods.

A change period is a period of time during which several commits to
different files occurred without “interruption”.

15/50

Approach: MacochaApproach: Macocha

Fehmi Jaafar, Yann-Gaël Guéhéneuc, Sylvie Hamel, and
Giuliano Antoniol. An exploratory study of macro co-
changes. In Proceedings of the 18th Working Conference
on Reverse Engineering. 2011.

Fehmi Jaafar, Yann-Gaël Guéhéneuc, Sylvie Hamel, and
Giuliano Antoniol. Detecting Asynchrony and Dephase
Change Patterns by Mining Software Repositories. Journal
of Software Maintenance and Evolution: Research and
Practice. 2013.

16/50

KNN Algorithm

Bit Vector

Approach: MacochaApproach: Macocha

17/50

Approximate Asynchrony Change Pattern

Dephase Change Pattern

The Dephase change pattern describes a set of files that always
change together with some shift in time in their periods of changes.

01010100110101
10101001101011

Approach: MacochaApproach: Macocha

18/50

Research QuestionsResearch Questions

RQ1: Does Asynchrony and Dephase change
patterns really exist in practice?

RQ2: How can they be useful?

19/50

SubjectsSubjects
Systems

Languages Java C Java C Java C++ C++

Versions 9 11 5 5 16 13 14

Files 1,621 500 1,106 383 1,693 390 396

Commits 6,943 50,145 1,752 5,960 6,100 3,621 3,971

Developers 11 114 4 35 16 11 26

20/50

Quantitatively, we compare the findings of Macocha with that
of the previous co-change analysis.

Qualitatively, we use external information provided by bugs
reports, mailing lists, and requirement descriptions to
validate the novel change patterns.

Analysis MethodsAnalysis Methods

Fehmi Jaafar, Yann-Gaël Guéhéneuc, Sylvie Hamel, and Giuliano Antoniol. An
exploratory study of macro co-changes. In Proceedings of the 18th Working
Conference on Reverse Engineering. 2011.

Fehmi Jaafar, Yann-Gaël Guéhéneuc, Sylvie Hamel, and Giuliano Antoniol.
Detecting Asynchrony and Dephase Change Patterns by Mining Software
Repositories. Journal of Software Maintenance and Evolution: Research and
Practice. 2013.

21/50

We could detect change patterns in long
time intervals, performed by different
developers and with different log
messages.

RQ1: Does Asynchrony and Dephase change
patterns really exist in practice?

RQ2: How can they be useful?

Change Propagation

Team Management

Fault Undrestanding

ResultsResults

22/50

Software Evolution Impacts?Software Evolution Impacts?

23/50

Ostrand et al. found that 20% of classes contains 80% of faults.

Not all classes are there to last forever, some are meant for
experimentation, so it could be expected that they have more faults.

Change-Log Approaches use process metrics extracted from the
versioning system: recently or frequently changed classes are the
most probable source of faults.

Code-Metrics approaches use source code metrics: complex or larger
classes are more fault-prone.
Assuming that all classes are considered

to have the same likelihood for fault-

proneness is not realistic!

MotivationMotivation

24/50

Classes that exhibit similar evolution profiles may have
interdependencies among them.

However, it is not clear how classes with similar evolution behavior are
linked with faults.

How we can relate the evolution of classes in object-oriented
programs with fault-proneness?

Goal 2: Relating Software Goal 2: Relating Software
Evolution and FaultEvolution and Fault--pronenessproneness

25/50

ExampleExample

In JFreeChart, we find that ChartPanel and
CombinedDomainXYPlot were introduced, changed, and renamed in
the same versions but in different periods and by different developers.

The bug ID 195003710 reported “a bug either in ChartPanel or
CombinedDomainXYPlot when trying to zoom in/out on the range
axis”.

26/50

Approach: ProfiloApproach: Profilo

Fehmi Jaafar, Salima Hassaine, Yann-Gaël Guéhéneuc, Sylvie Hamel,
and Bram Adams. On the Relationship Between Program Evolution
and Faultproneness: An Empirical Study. WCRE 2013, Genova, Italy.

27/50

Approach: ProfiloApproach: Profilo

Short-lived classes: They have a very short lifetime.

Persistent classes: They never disappear after their first introduction

Transient classes: They appear and disappear many times.

Co-evolved classes: They have the same evolution profile and are
related by static relationships.

28/50

SubjectsSubjects

Systems

Versions 18 46 36
Start study 2002-10-09 2000-12-01 2003-10-13
End study 2011-04-03 2011-11-20 2006-11-23
Classes 2011 1938 892

29/50

Research QuestionsResearch Questions

RQ1: What is the relation between class lifetime
and fault-proneness?

RQ2: What is the relation between class co-
evolution and fault-proneness?

30/50

HRQ2: There is no statistically significant difference between
proportions of faults involving co-evolved classes or not co-
evolved classes.

HRQ1: There is no statistically significant difference between
proportions of faults carried by Persistent, Shortlived, and
Transient classes in systems.

We use Fisher’s exact test and the Chi-
Square test to check two hypothesis.

Analysis MethodsAnalysis Methods

31/50

ResultsResults
Systems

Transient 690 645 313
Persistent 1241 1293 537
Short-lived 80 324 42
Co-evolution 42 11 23

32/50

ResultsResults
Persistent classes are significantly less fault-prone than Short-lived
and Transient classes?

Faults fixed by maintaining co-evolved classes are significantly more
than faults fixed using not co-evolved classes?

Special attention must be given to these entities to keep
the design intact during program evolution because they
could have a negative impact on the fault-proneness of
the program.

33/50

Software Evolution ImpactsSoftware Evolution Impacts

34/50

Anti-patterns describe poor solutions to design and implementation
problems…

Instead, they indicate weaknesses in design that may be slowing down
development or increasing the risk of bugs or failures in the future.

Design Defects: AntiDesign Defects: Anti--patternspatterns

35/50

Examples of AntiExamples of Anti--patternspatterns

Large controller class, low cohesion,
associated with simple, data-object
classes…

Blob
Spaghetti Code

Process oriented methods, object methods with no
parameters, class or global variables utilization, flow
of execution dictated by object implementation, not
by the clients of the objects.

36/50

Related WorkRelated Work

Many studies have investigated the impact of anti-patterns on

• Maintenance [Yamashita, 2013]

• Fault-proneness [Khomh, 2012]

• Change-proneness [Romano, 2012]

• …

37/50

Related WorkRelated Work

Yet, classes sharing dependencies with anti-patterns have been mostly
ignored.

38/50

Goal 3: Relating Evolution, Goal 3: Relating Evolution,
Dependencies, and AntiDependencies, and Anti--patternspatterns

Static and evolution dependencies with anti-patterns can
impact the fault-proneness of classes without anti-
patterns.

39/50

Source code
repository

Source code
repository

Antipatterns
detection

DECOR

Antipatterns
detection

DECOR

Co-changes
retrieval
Macocha

Co-changes
retrieval
Macocha

AnalysesAnalyses

BugzillaBugzilla

Bug information
Ibdoos

Bug information
Ibdoos

Approach: AntImpactApproach: AntImpact

Fehmi Jaafar, Yann-Gaël Guéhéneuc, Sylvie Hamel , and Foutse Khomh.
Mining the Relationship Between Anti-patterns Dependencies and Fault
proneness. WCRE 2013.

Fehmi Jaafar, Yann-Gaël Guéhéneuc, Sylvie Hamel, and Foutse Khomh.
Analysing Anti-patterns Static Relationships with Design Patterns. Journal of
Electronic Communications of the European Association of Software Science
and Technology. 2014.

40/50

Systems

Classes 3,325 1,615 1,191
Snapshots 4,480 2,010 159,196

• Antisingleton

• Blob

• ClassDataShouldBePrivate (CDSBP)

• ComplexClass

• LazyClass

• LongMethod

• MessageChain

• RefusedParameterBequest

• SpaghettiCode

• SpeculativeGenerality

• SwissArmyKnife

• LongParameterList

Anti-patterns detected with DECOR:

SubjectsSubjects

41/50

RQ1: Are classes that co-change with anti-patterns
more fault-prone?

RQ2: Are classes that have static relationships with
anti-patterns more fault-prone?

Research QuestionsResearch Questions

42/50

Analysis MethodsAnalysis Methods

HRQ: The proportions of faults carried by classes having static
relationships (respectively co-changes) with anti-patterns and
other classes are the same.

We divide classes in the systems based
on their static relationships (respectively
co-changes) with anti-patterns.

We use Fisher’s exact test and Odds
ratios to test the hypothesis.

43/50

Anti-patterns Systems # of CC # of S.R.

13 152

Anti singleton 20 201

18 188

51 304

Blob 36 164

24 93

4 167

CDSBP 0 82

0 113

2 192

ComplexClass 0 146

0 96

42 282

LongMethod 51 314

0 266

12 344

LongParameterList 0 276

0 309

Anti-patterns Systems # of CC # of S.R.

48 244

MessageChains 8 196

16 183

47 326

RefusedParentBequest 6 183

25 93

0 0

Spaghetti Code 0 0

0 0

13 128

SpeculativeGenerality 4 139

8 201

20 69

SwissArmyKnife 9 142

18 108

ResultsResults

44/50

RQ1: Static relationships and antiRQ1: Static relationships and anti--
patterns on faultpatterns on fault--proneness? proneness?

Classes with S.R. with AP 1062 1003

Classes with S.R with AP and that are not AP 402 600

Other classes 681 579

Classes with S.R. with AP 432 226

Classes with S.R with AP and that are not AP. 281 103

Other classes 310 647

Classes with S.R. with AP 445 121

Classes with S.R with AP and that are not AP. 262 75

Other classes 126 499

Faults No-Faults Odd Ratios

Total of classes related to AP 1939 1350 2.22

Classes with S.R with AP and that are not AP. 945 778 1.88

Total of other classes 1117 1725 1

45/50

RQ2: CoRQ2: Co--changes and antichanges and anti--patterns patterns
on faulton fault--proneness?proneness?

Classes co-changing with AP 241 102

Classes co-changing with AP and that are not AP 120 59

Other classes 1502 1480

Classes co-changing with AP 68 26

Classes co-changing with AP and that are not AP 33 10

Other classes 674 847

Classes co-changing with AP 37 21

Classes co-changing with AP and that are not AP 20 12

Other classes 534 599

Faults No-Faults Odd Ratios

Total of classes co-changing with AP 346 149 2.5

Classes co-changing with AP and that are not AP 173 81 2.3

Total of other classes 2710 2926 1

46/50

We found no class having a static dependency (i.e., use,
association, aggregation, and composition relationships)
or that co-changed with a SpaghettiCode.

Many anti-patterns relationships were with classes playing roles in
design patterns.

Classes having static relationships with Blob, ComplexClass, and
SwissArmyKnife are significantly more fault prone than other classes
with similar complexity, change history, and code size.

Classes that are co-changing with anti-patterns classes are
significantly more fault prone than other classes with similar
complexity, change history, and code size.

Some ObservationsSome Observations

Fehmi Jaafar, Yann-Gaël Guéhéneuc, Sylvie Hamel , and Foutse Khomh.
Mining the Relationship Between Anti-patterns and Design Patterns. PPAP
2013.

47/50

48/50

PerspectivesPerspectives

Co-change and co-evolution
patterns in other contexts

Design defects evolution

