
Université de Montréal

Analysing Artefacts Dependencies to Evolving Software
Systems

par
Fehmi Jaafar

Département d’informatique et de recherche opérationnelle
Faculté des arts et des sciences

Thèse présentée à la Faculté des arts et des sciences
en vue de l’obtention du grade de Philosophiæ Doctor (Ph.D.)

en Informatique

Août, 2013

c⃝ JAAFAR, 2013

Université de Montréal
Faculté des arts et des sciences

Cette thèse intitulée:

Analysing Artefacts Dependencies to Evolving Software
Systems

présentée par :

Fehmi Jaafar

a été évaluée par un jury composé des personnes suivantes :

Président-rapporteur : Nadia El-Mabrouk

Directeur de recherche : Yann-Gaël Guéhéneuc

Codirectrice : Sylvie Hamel

Membre du jury : Giovanni Beltrame

Examinateur externe : Martin Pinzger

Représentant du doyen de la FAS : Nadia El-Mabrouk

RÉSUMÉ

Les logiciels sont en constante évolution, nécessitant une maintenance et un

développement continus. Ils subissent des changements tout au long de leur vie,

que ce soit pendant l’ajout de nouvelles fonctionnalités ou la correction de bogues.

Lorsque les logiciels évoluent, leurs architectures ont tendance à se dégrader et

deviennent moins adaptables aux nouvelles spécifications des utilisateurs. En ef-

fet, les architectures de ces logiciels deviennent plus complexes et plus difficiles à

maintenir à cause des nombreuses dépendences entre les artefacts. Par conséquent,

les développeurs doivent comprendre les dépendences entre les artefacts des logi-

ciels pour prendre des mesures proactives qui facilitent les futurs changements et

ralentissent la dégradation des architectures des logiciels.

D’une part, le maintien d’un logiciel sans la compréhension des les dépendences

entre ses artefacts peut conduire à l’introduction de défauts. D’autre part, lorsque

les développeurs manquent de connaissances sur l’impact de leurs activités de main-

tenance, ils peuvent introduire des défauts de conception, qui ont un impact négatif

sur l’évolution du logiciel. Ainsi, les développeurs ont besoin de mécanismes pour

comprendre comment le changement d’un artefact impacte le reste du logiciel.

Dans cette thèse, nous proposons trois contributions principales :

• La spécification de deux nouveaux patrons de changement et leurs utilisa-

tions pour fournir aux développeurs des informations utiles concernant les

dépendences de co-changement.

• La spécification de la relation entre les patrons d’évolutions des artefacts et

les fautes.

• La découverte de la relation entre les dépendances des anti-patrons et la

prédisposition des différentes composantes d’un logiciel aux fautes.

ABSTRACT

Program maintenance accounts for the largest part of the costs of any program.

During maintenance activities, developers implement changes (sometimes simul-

taneously) on artefacts to fix bugs and to implement new requirements. Thus,

developers need knowledge to identify hidden dependencies among programs arte-

facts and detect correlated artefacts.

As programs evolved, their designs become more complex over time and harder

to change. In the absence of the necessary knowledge on artefacts dependencies,

developers could introduce design defects and faults that causes development and

maintenance costs to rise. Therefore, developers must understand the dependen-

cies among program artefacts and take proactive steps to facilitate future changes

and minimize fault proneness. On the one hand, maintaining a program with-

out understanding the different dependencies between their artefacts may lead to

the introduction of faults. On the other hand, when developers lack knowledge

about the impact of their maintenance activities, they may introduce design de-

fects, which have a negative impact on program evolution. Thus, developers need

mechanisms to understand how a change to an artefact will impact the rest of the

programs artefacts and tools to detect design defects impact.

In this thesis, we propose three principal contributions. The first contribution

is two novel change patterns to model new co-change and change propagation

scenarios. We introduce the Asynchrony change pattern, corresponding to macro

co-changes, i.e., of files that co-change within a large time interval (change periods),

and the Dephase change pattern, corresponding to dephase macro co-changes, i.e.,

macro co-changes that always happen with the same shifts in time. We present our

approach, named Macocha, and we show that such new change patterns provide

interesting information to developers.

The second contribution is proposing a novel approach to analyse the evolution

of different classes in object-oriented programs and to link different evolution be-

havior to faults. In particular, we define an evolution model for each class to study

the evolution and the co-evolution dependencies among classes and to relate such

dependencies with fault-proneness.

iv

The third contribution concerns design defect dependencies impact. We propose

a study to mine the link between design defect dependencies, such as co-change

dependencies and static relationships, and fault proneness. We found that the

negative impact of design defects propagate through their dependencies.

The three contributions are evaluated on open-source programs and the ob-

tained results enable us to draw the following conclusions:

• The new change patterns, Asynchrony and Dephase change patterns, pro-

vide developers useful insights regarding hidden co-change dependencies and

improve precision and recall of co-change analysis.

• Two major kinds of class evolution dependencies, i.e., class lifetime and class

co-evolution, inform us about fault-proneness. Indeed, Persistent classes are

significantly less fault-prone than other classes and faults fixed to maintain

co-evolved classes are significantly more frequent than faults fixed using not

co-evolved classes.

• Dependencies with anti-patterns have a negative impact on fault-proneness.

We show that classes having static relationships with anti-patterns or co-

changing with anti-patterns are significantly more fault-prone than other

classes.

CONTENTS

CHAPTER 1: INTRODUCTION . 2

1.1 Research Context . 2

1.2 Problem Statement and Contributions 4

1.3 Roadmap . 7

CHAPTER 2: RELATED WORK . 8

2.1 Software Design Evolution . 8

2.2 File Stability . 10

2.3 Co-change: Definition and Detection 11

2.4 Faults-proneness: Definition and Detection 15

2.5 Anti-patterns: Definition and Detection 16

CHAPTER 3: IMPROVEMENT OF CO-CHANGE ANALYSIS . 19

3.1 Introduction . 19

3.2 Approach: Macocha . 23

3.2.1 Definitions . 23

3.2.2 Data Model, Implementation, and Outputs 31

3.3 Empirical Study . 32

3.3.1 Research Questions . 33

3.3.2 Objects . 33

3.3.3 Analyses . 35

3.4 Study Results . 36

3.4.1 RQ1: How does Macocha compare to previous work in terms

of number of changed files found? 37

3.4.2 RQ2: How does Macocha compare to previous work (associ-

ation rules) in terms of precision and recall? 40

3.4.3 RQ3: What is the precision and recall of Macocha when de-

tecting occurrences of the Asynchrony change pattern? . . . 42

3.4.4 RQ4: How many occurrences of Dephase change patterns are

in programs and how can they be useful for developers? . . . 46

3.5 Discussions . 52

3.5.1 Observations . 52

3.5.2 Threats to Validity . 53

vi

3.6 Summary and Lessons Learned . 55

CHAPTER 4: RELATIONS BETWEEN EVOLUTION AND CO-

EVOLUTIONDEPENDENCIES AND FAULT-PRONENESS 57

4.1 Introduction . 57

4.2 Approach: Profilo . 58

4.3 Empirical Study . 64

4.3.1 Objects . 64

4.4 Exploratory Study Analyses . 65

4.4.1 Research Questions . 68

4.5 Study Results . 68

4.5.1 RQ5: What is the relation between class lifetime and fault-

proneness? . 69

4.5.2 RQ6: What is the relation between co-evolution dependencies

and fault-proneness? . 71

4.6 Discussions . 72

4.6.1 Class Lifetime and Fault-proneness 72

4.6.2 Similarities in Classes Evolution Profiles 73

4.6.3 Threats to Validity . 73

4.7 Summary and Lessons Learned . 74

CHAPTER 5: RELATIONS BETWEENANTI-PATTERNS DEPEN-

DENCIES AND FAULT-PRONENESS 76

5.1 Introduction . 76

5.2 Approach: AntImpacts . 78

5.3 Empirical Study . 82

5.3.1 Research Questions . 83

5.3.2 Objects . 83

5.3.3 Analyses . 84

5.4 Study Results . 84

5.4.1 RQ7: Are classes that have static relationships with anti-

patterns more fault-prone than other classes? 84

5.4.2 RQ8: Are classes that co-change with anti-patterns more

fault-prone than other classes? 87

5.5 Discussions . 89

5.5.1 Exploratory Findings . 90

vii

5.5.2 Threats to Validity . 91

5.6 Summary and Lessons Learned . 93

CHAPTER 6: CONCLUSION . 95

6.1 Summary . 95

6.2 Opportunities . 97

6.2.1 Using Change Patterns to Predict Changes 97

6.2.2 Identifying Risky Parts of Programmes and “Buggy” Changes 98

6.2.3 Extending the Approaches Presented in this Thesis 99

BIBLIOGRAPHY . 102

APPENDIX A:DEFINITIONS OF METRICS AND QUALITY AT-

TRIBUTES . 113

A.1 Metrics . 113

A.2 Quality Attributes . 113

APPENDIX B:DEFINITIONS OF CODE SMELLS AND ANTI-

PATTERNS . 115

B.1 Code Smells . 115

B.2 Anti-patterns . 117

LIST OF FIGURES

3.1 F1 and F2 follow an Asynchrony change pattern 20

3.2 F1 and F2 follow a Dephase change pattern 20

3.3 Illustration of the KNN-based algorithm’s steps to identify the change

periods in a program history . 25

3.4 The distribution of change period durations in ArgoUML detected

by the KNN algorithm . 26

3.5 Profiles for change periods of length n = 10 showing the changes

committed in two different files . 27

3.6 Files F1 and F2 follow the Asynchrony change pattern 27

3.7 Three different profiles showing an example of the Dephase change

pattern . 27

3.8 Three different bit vectors showing approximate Asynchrony change

pattern . 28

3.9 The mean of precision and recall achieved by Macocha with different

values of DH for the seven programs 30

3.10 Analysis-process . 31

3.11 Change period durations in different programs detected by the KNN

algorithm . 37

3.12 The variation of precision and recall using other values for the initial

duration of the change period . 37

4.1 Profilo Overview . 59

4.2 Types of class evolution considered in this study 62

4.3 Distribution of class lifetimes detected by Profilo 66

LIST OF TABLES

3.1 Number of approximate Asynchrony change patterns detected using

different values of the Hamming distance 30

3.2 Descriptive statistics of the object programs 33

3.3 Cardinalities of the sets of Idle files, Changed files and (approximate)

Asynchrony change pattern occurrences obtained in the empirical

study . 38

3.4 Cardinality of Macocha sets (idle groups and changed groups) in

accordance with UMLDiff clusters [106] 39

3.5 Internal evaluation of Macocha (CPs: Change periods; T: Transac-

tions) . 41

3.6 Internal evaluation of Macocha in comparison to an approach based

on Association Rules [115] . 41

3.7 Evaluation of Macocha when using the results of an approach based

on Association Rules [115] as oracle (*: number of cases that Ma-

cocha said were true/false, that also Association Rules said were

true/false; **: number of cases that Association Rules found, that

also Macocha found) . 44

3.8 Adjusted precision of Macocha when using the results of an approach

based on Association Rules [115] as oracle and after manual vali-

dation using external information and static analysis (V.S.A: Val-

idation by static analysis; SMCCH : The set of approximate macro

co-changing files with similar profiles in a program by using the

Hamming distance; SAR: The set of co-changed files found by an

approach based on Association Rules) 45

3.9 Adjusted Recall of Macocha when using the results of an approach

based on Association Rules [115] as oracle and after manual vali-

dation using external information and static analysis (V.S.A: Val-

idation by static analysis SMCCH : The set of approximate macro

co-changing files with similar profiles in a program by using the

Hamming distance; SAR: The set of co-changed files found by an

approach based on Association Rules) 45

x

3.10 Evolution of the number of occurrences of (Approximate) Dephase

change patterns, DC, detected and manually confirmed by static

analysis for different values of shift s 48

4.1 Descriptive statistics of the object programs 65

4.2 Cardinalities of the sets obtained in the study 66

4.3 Contingency table and Fisher test results in ArgoUML, JFreeChart

and XercesJ for Persistent, Non-Persistent classes (Short-lived and

Transient classes) with at least one fault 71

4.4 Contingency table and Chi-Square test results in ArgoUML, JFreeChart

and XercesJ for faults fixed by co-evolved (CC)or not co-evolved

classes (NCC) . 72

5.1 Descriptive statistics of the object systems 82

5.2 Contingency table and Fisher test results in ArgoUML, JFreeChart

and XercesJ for classes with at least one fault (S.R.: Static Rela-

tionships, AP: Anti-pattern . 87

5.3 Contingency table and Fisher test results in ArgoUML, JFreeChart

and XercesJ for classes with at least one fault (AP: Anti-patterns) . 88

5.4 Proportion of the anti-patterns dependencies (CC: co-changing situ-

ations of anti-patterns with other classes; S.R.: Anti-patterns static

relationships) . 89

LIST OF ACRONYMS

Macocha Macro Co-change Identification

OO Object Oriented

MCC Macro co-change

DMCC Dephase Macro co-change

SMCC The set of macro co-changing files with identical profiles in a program

SDMCC The set of dephase macro co-changing files identified when shifting profiles

SMCCH The set of approximate macro co-changing files with similar profiles in a program by using the Hamming distance

SDMCCH The set of approximate dephase macro co-changing files identified by using the Hamming distance

SAR The set of co-changed files found by an approach based on Association Rules

Profilo Evolution Profile detection and analysis

ADvISE Architectural Decay In Software Evolution

CVS Concurrent Versions System

DECOR Defect dEtection for CORrection

KNN k-Nearest Neighbor Algorithm

PADL Pattern and Abstract-level Description Language

POM Primitives, Operations, Metrics

Ptidej Pattern Trace Identification, Detection, and Enhancement in Java

SVN Apache SubVersioN

UML Unified Modeling Language

To my parents

To my wife

To my brothers and sisters

To my friends

ACKNOWLEDGEMENTS

Feeling gratitude and not expressing it is like

wrapping a present and not giving it.

William Arthur Ward (1921–1994).

Many people accompanied me during the endeavor of my doctoral studies. I am

deeply grateful for their support. First of all, I would like to thank my supervisor,

Yann-Gaël Guéhéneuc, for giving me a chance to select research problems and

pursue them. He taught me how to assess the research value of each proposal

and how to be selective. He is a patient and thoughtful mentor; he listens to his

students, not only what they are saying but also what they are not saying. I am

proud to be one of his students. I would also like to thank my co-supervisor, Sylvie

Hamel, for her support and advocacy. Her advice as a bioinformatic researcher was

very valuable to this thesis.

My thankful admiration goes to Prof. Bram Adams, for his advice. He always

made time to listen to my research ideas. A great thanks goes also to Prof. Foutse

Khomh for his insightful discussions and his valuable comments.

Great thanks to my fellow doctoral students from the Ptidej and Soccer labs for

creating an enjoyable working environment. Special thanks go to Salima Hassaine

and Darine Ameyed. I always enjoy discussing and brainstorming research ideas

with you. I would also like to thank all my friends who made the long experience

of graduate school more manageable.

Special gratitude to my parents Amor Jaafar and Miriam Elmonsor, and my

wife Wided, for their unconditional love and support, and for believing in me–

whenever and wherever. They taught me the importance of passion and persistence

in everything I do.

This research was partially supported by FQRNT, NSERC, the Research Chairs

in Software Patterns and Patterns of Software and the Tunisian Ministry of Higher

Education and Scientific Research.

— Fehmi Jaafar

CHAPTER 1

INTRODUCTION

1.1 Research Context

Programs evolve continuously, requiring constant maintenance and development

[66]. Maintenance has been recognized as the most costly and difficult phase in the

software life cycle [10, 94]. Maintenance effort has been estimated to be frequently

more than 70% of the overall software development cost [81]; an increase due in part

to design decay. Design decay is the deviation of an actual software design from its

originally planned design, i.e., the violation of design choices during evolution [45,

79, 103]. This design decay can be detected by measuring the instability of the

program artefacts1 [40], high fault rates [98], and poor code quality [26, 98].

For example, Ostrand et al. [77] found that 20% of artefacts contains 80% of

faults. At the same time, these 20% of artefacts accounted for 50% of the source

code. Assuming that all artefacts are considered to have the same likelihood for

fault-proneness is not realistic, because, for example, not all artefacts are there to

last forever, some are meant for experimentation, so it could be expected that they

have more faults.

Developers must continually adapt programs to meet new requirements and

user needs. Thus, they need knowledge to identify hidden dependencies among

programs artefacts and to detect critical parts of source code. This knowledge

will help to improve the speed [115] and accuracy of maintenance tasks [87] while

reducing the risk of introducing faults in the source code.

At a low level, detecting and understanding dependencies among different arte-

facts is important from the points of views of both researchers and programmers.

For researchers, it gives useful knowledge about the impact of such dependencies on

program quality. For programmers, it provides knowledge concerning co-evolved

classes: clusters of classes exhibiting similar evolution profiles, due to hidden inter-

dependencies among them, not necessarily visible when examining their relations

1Artefacts can be source code files, classes in object-oriented programs, specifications...

3

at the code level [106]. It could help them to realise their maintenance tasks more

simply and systematically [38]. At a high level, studying the dependencies between

some motifs, such as anti-patterns, and the rest of the program artefacts, provide

programmers with a simplified but accurate picture of the programs in time to

understand their full complexity.

Previous literature describes several approaches to extract and analyse depen-

dencies among artefacts and to infer the patterns that describe their changes [9, 53].

Several of these approaches identify co-changes among artefacts, e.g. [111, 115],

which represent the (often implicit) dependencies or logical couplings among arte-

facts that have been observed to frequently change together [31]. Ying et al. [111]

and Zimmermann et al. [115] applied association rules to identify co-changing files.

Their hypothesis is that past co-changed files can be used to recommend source

code files potentially relevant to a change request. An association-rule algorithm

extracts frequently co-changing files in a transaction and categorizes them into sets

that are regarded as change patterns to guide future changes. Such algorithm uses

co-change history and avoids the source code dependency parsing process. How-

ever, it only computes the frequency of co-changed files in the past and omits many

other cases, e.g. files that co-changed with always the same period of time between

changes. In Chapter 3, we show that theses approaches miss interesting occurrences

of co-changes, so called macro co-change because, by their very definition, they do

not integrate the analysis of artefacts that are maintained by different developers

and–or with some shifts in time.

In addition, artefacts that exhibit similar evolution profiles, due to interdepen-

dencies among them, are considered as co-evolved artefacts [106]. Thus, co-change

is only one aspect of co-evolution. Indeed, if two artefacts co-changed then they

co-evolved. But if two artefacts co-evolved, they not necessarily co-changed. Xing

et al. [106] analysed the evolution profiles of classes. Class-evolution profiles report

the complete history of changes made to an individual class in each subsequent ver-

sion. Such approach identifies co-evolved classes but does not analyse the relations

between class evolution profiles and architectural decay. Indeed, some of these

classes are added, renamed, and changed in the same versions of the program. In

Chapter 4, we found that these classes have similar evolution trends and that many

of them are involved in the same faults. Indeed, we detect dependencies among

4

these classes and we analyse the impact of such dependencies on maintenance tasks

such as change propagation.

Another factor affecting the effort required for maintenance is the design quality

of programs [109]. Design quality deterioration manifests itself in the form of design

defects, which are “poor” solutions to recurring software design and implementa-

tion problems, such as code smells [28] and anti-patterns [17]. Design defects occur

generally in object-oriented programs when developers lack knowledge and–or expe-

rience in solving a design problem or when applying some design patterns: “some-

thing that looks like a good idea, but which backfires badly when applied” [21].

They have a negative impact on the quality characteristics (e.g. change-proneness

and fault-proneness [54, 95]) and the evolution of programs [17, 28]. Classes in

anti-patterns have dependencies with other classes, such as static relationships,

that may propagate potential problems to these other classes. In Chapter 5, we

show that, in almost all releases of three programs, classes having dependencies

with anti-patterns are more fault-prone than others. We also report other obser-

vations about these dependencies, such as their impact on fault prediction.

1.2 Problem Statement and Contributions

The above section leads us to formulate our thesis:

Software maintenance and evolution is negatively impacted by un-

controlled changes, hidden artefacts dependencies, and design de-

fects.

To show our thesis, we propose to address three main problems:

co-change analysis, evolution analysis, and design-defects dependencies

analysis. To confirm our findings and to improve the precision and recall

of used tools, we generally use external information, such as bug reports

and mailing lists.

Contribution 1: Improvement of Co-change Analysis

5

Two artefacts are co-changing if they were changed by the same author and with

the same log message in a time-window of less than 200 ms. [115]. Mockus et al.

[72] defined the proximity in time of check-ins by the check-in time of adjacent files

that differ by less than three minutes. Other studies (e.g. [27] and [33]) described

issues about identifying atomic change sets and reported that, in all cases, they

differed by few minutes.

Previous co-changes are intrinsically limited in time. They cannot express pat-

terns of changes between long time intervals and–or committed by different devel-

opers. In Chapter 3 we present typical examples of co-changes not detected by any

previous approach. We present, the first approach to detect and to report such

co-changes.

We compare the results of our approach on different programs developed with

three different programming languages, C, C++, and Java. We also use external

information provided by bug reports, mailing lists, and requirement descriptions

to validate co-changes not found using previous approaches and to show that they

explain real evolution phenomena.

Therefore, our first contribution [47] is a novel approach, called Macocha,

that introduces the novel concepts of macro co-change and dephase macro co-

change, inspired from co-changes and using the concept of change periods. The

macro co-change describes a set of files that always change together in the same

periods of time. The dephase macro co-change describes a set of files that always

change together with some shift in time in their periods of change.

We find that Macocha has a better precision and recall than association rules

and can find novel occurrences of change patterns.

Contribution 2: Spotting the Relation Between Program Evolution and

Fault-proneness

We find in the literature different approaches to analyse the evolution of soft-

ware designs [56, 58, 106]. Most of these previous approaches aim at finding design

changes and class evolution occurring in object-oriented programs. Identifying co-

evolution dependencies is useful to study the relation between the evolution of

6

artefacts, their dependencies, and fault-proneness. However, existing approaches

thus far did not link the evolution of classes to faults. Because (1) some classes

evolve independently, other classes have to do it together with others (co-evolution);

and (2) not all classes are meant to last forever, but some are meant for experi-

mentation or to try out an idea that was then dropped or modified. Then, in our

second contribution [48], we group classes based on their evolution to infer their

lifetime models and co-evolution trends. Then, we link each group’s evolution to

faults.

We find that (1) classes with specific lifetime models are significantly less fault-

prone than other classes and (2) faults fixed by maintaining co-evolved classes are

significantly more frequent than faults fixed using other classes.

Contribution 3: Analysing the Impact of Anti-patterns Dependencies

Without proper knowledge, developers may introduce anti-patterns in pro-

grams. In theory, anti-patterns [102] are “poor” solutions to recurring problems. In

practice, an anti-pattern is a literary form that describes a bad solution to recurring

design problems that leads to negative effects on code quality [17].

Most previous work agree that anti-patterns render the maintenance of pro-

grams more difficult [1, 54]. However, there are only few previous work about

the dependencies (static relationships and co-change dependencies) between anti-

patterns and other artefacts in programs. Yet, understanding the impact of such

dependencies, in particular on fault-proneness, help developers to better under-

stand and maintain programs.

No empirical study has been conducted so far to detect and to analyse the fault

proneness of classes that have static or co-change relationships with anti-patterns

and to adjust the possibility of introducing faults during the maintenance of such

classes.

Therefore, our third contribution [49] is the detection of the impact of design

defects dependencies. We conduct an empirical study, performed on three object-

oriented programs, which provides empirical evidence of the negative impact of

7

dependencies with anti-patterns on fault-proneness. Indeed, we find that having

dependencies with anti-patterns can significantly increase fault-proneness.

1.3 Roadmap

The remainder of this thesis provides the following content: Chapter 2 reviews

related work on evolution and co-evolution analysis, co-change analysis, and design

defects impact. Chapter 3 reports our first contribution, improving co-change

analysis. Chapter 4 reports our second contribution, studying the relation between

the evolution and co-evolution of artefacts and fault-proneness.Chapter 5 reports

our third contribution, which concerns anti-patterns dependencies impact on fault-

proneness. Chapter 6 presents the conclusions of this thesis and outlines some

directions of future research. Appendix A presents the definitions of metrics and

quality attributes considered in this thesis. Appendix B presents the complete list

of anti-patterns considered in this thesis with their definitions.

CHAPTER 2

RELATED WORK

This chapter provides a survey of work related to this thesis. The structure of

the chapter is as follows: Section 2.1 recapitulates related work on software evo-

lution. Section 2.2 provides a description of leading work on file stability. Section

2.3 discusses the state of the art on co-change dependencies analysis. Section 2.4

reviews earlier work on fault-proneness. Section 2.5 summarises exiting work on

design defect detection and impact.

2.1 Software Design Evolution

Antoniol et al. [4] proposed an automatic approach, based on cosine similar-

ity of class identifiers to automatically identify links between classes (obtained

from refactoring) of two subsequent releases. In particular, the approach aimed

at identifying cases of class replacement, split, merge, as well as feature migration

from/to other classes. They represented classes of different releases as documents

and queries. Then, they applied a vector space model that treats these documents

and queries as vectors [29]. The documents was ranked against queries to compute

a similarity function between the corresponding vectors. Their approach does not

take into account the relations between classes.

The phenomenon of software aging is the result of software evolution. Parnas

[78] suggested that programs suffer from various aging problems such as increasing

complexity, faults, unstructured code, feature overloading, etc. Eick et al. [26]

suggested that a code is decayed if it is more difficult to maintain than it used to

be. We believe, like the above cited authors, that code decay is essentially the re-

sult of program evolution. The design of a program deviates from its planned form

with every new version of program to incorporate new features by implementing

new classes and–or deleting, refactoring and changing old classes. We relate the

evolution of classes in object-oriented programs and fault-proneness to emphasize

program evolution consequences. Fraser [30] presented DiffTree to infer a phylo-

9

genetic tree from related programs. It described the retrospective computation of

version trees for a set of programs, without mining source code control systems.

Gagandeep and Hardeep Singh [92] reported that that software tends to be-

come more complex over the series of releases and maintaining them becomes a

difficult task. The authors also investigated the applicability of Lehman’s Law of

Software Evolution using different metrics and found that Lehman’s laws related to

increasing complexity and continuous growth are supported by computed metrics.

DiffTree compared set of codes with one another, and presents a parsimonious

phylogenetic tree for them. It can also help to identify cases where a repair made

to one version was missed in others. We share with the author the idea that it is

interesting to identify commonalities and divergences among versions to acknowl-

edge the contributions of each version relative to one another. Karim et al. [52]

described a method for constructing phylogeny models that used n-perms to match

possibly permuted code and to discover malicious programs, such as viruses and

worms, frequently related to previous programs through evolutionary relationships.

Demeyer et al. [25] presented an approach to understand how object-oriented

programs have evolved by discovering which refactoring operations have been ap-

plied from one version of the software to the next.

Discussion

Previous approaches were useful to identify some replacement, merge and refac-

toring during the evolution of programs but they cannot relate program evolution

with faults proneness.

Indeed, existing approaches for design evolution compare two versions of a soft-

ware design to study its evolution. They adopted techniques to automatically

identify evolution discontinuities when analyzing the evolution of object-oriented

source code at class level. In this thesis, we will present approaches to analyse

programs artefacts according to their evolutionary history to recognize and to un-

derstand co-evolution situations among them in the goal to relate these situations

with faults.

10

2.2 File Stability

Many approaches exist to group files based on their relative stability through-

out the software development life cycle. For example, UMLDiff [106] compares and

detects the differences between the contents of two object-oriented program ver-

sions. A fact extractor parses each version to extract models of their design. Next,

a differencing algorithm, UMLDiff, extracts the history of the program evolution,

in terms of the additions, removals, moves, renamings, and signature-changes of

design entities, such as packages, classes, interfaces, and their fields and methods.

UMLDiff then assigns a stability to each class: short-lived classes (that exist only

in a few versions of the program and then disappear), idle classes (that rarely un-

dergo changes after their introduction in the program), and active classes (that

keep being modified over their whole lifespan).

Kpodjedo et al. in [60] and [58] proposed to identify all files that do not change

in the history of a program, using an Error Tolerant Graph Matching algorithm.

They studied the evolution of the program class diagram by collecting program

source code over several years, reverse-engineering their class diagrams, and re-

covering traceability links between subsequent class diagrams. Their approach

identified evolving classes that maintain a stable structure of relations (associa-

tion, inheritance, and aggregation) and so on, which likely constitute the stable

backbone of a program.

Lanza et al. [62] presented an evolution matrix to display the evolution of

the files of a program. Each column of the matrix represents a version of the

program, while each row represents the different versions of the same file. Within

the columns, the files are sorted alphabetically. Then, the authors presented a

categorisation of files based on the visualisation of different versions of a file: a

pulsar file grows and shrinks repeatedly during its lifetime, a supernova file suddenly

explodes in size, a white dwarf is a file that used to be of a certain size, but lost

its functionality, a red giant file tends to implement too many functionalities and

is quite difficult to refactor, and an idle file does not change over several versions.

Discussion

The Error Tolerant Graph Matching algorithm and UMLDiff require parsing

and comparing AST-like representations of the programs before performing their

11

analysis. We propose to compute stability in a more simple way by using the

version control systems, wich keeps track of all work and all changes in each file in

the program.

Our work differs in the level of granularity and on the aspects considered. In-

deed, Lanza et al. [62] considered only file implementation to identify stability

in different versions without considering information coming from version-control

systems. Therefore, idle classes, for example, are those that did not change too

much after their introduction in terms of source code and not in terms of commits.

Thus, if a file changes frequently but without majors modifications in it implemen-

tation during the observation period, it will be identified as an “idle file”, which is

contradictory to its category name (idle files). We propose to identify file stability

by mining program history. In the context of change analysis, if a file changes

frequently, it will be identified as a “changed file”.

2.3 Co-change: Definition and Detection

Ying et al. [111] and Zimmermann et al. [115] applied association rules to

identify co-changing files. Their hypothesis is that past co-changed files can be

used to recommend source code files potentially relevant to a change request. An

association-rule algorithm extracts frequently co-changing files of a transaction

into sets that are regarded as change patterns to guide future changes. Such an

algorithm uses co-change history in CVS and avoids the source code dependency

parsing process.

Ceccarelli et al. [20] and Canfora et al. [19] proposed the use of a vector auto-

regression model, a generalisation of univariate auto-regression models, to capture

the evolution and the inter-dependencies between multiple time series representing

changes to files. They used the bivariate Granger causality test to identify if

the changes to some files are useful for forecasting changes to other files. They

concluded that the Granger test is a viable approach to change-impact analysis

and that it complements existing approaches like association rules.

Antoniol et al. [5] presented an approach to detect similarities in the evolution of

files starting from past maintenance. They applied the LPC/Cepstrum technique,

which models a time evolving signal as an ordered set of coefficients representing

12

the signal spectral envelope, to identify in version-control systems the files that

evolved in the same or similar ways. Their approach used cepstral distance to

assess series similarity (if two cepstra series are “close”, the original signals have a

similar evolution in time).

Bouktif et al. [16] defined the general concept of change patterns and described

one such pattern, Synchrony, that highlights co-changing groups of artefacts. Their

approach used a sliding window algorithm as in [115] to build Synchrony change

pattern occurrences. They also used the technique of Dynamic Time Warping

developed in pattern recognition and adopted in speech recognition systems, to

identify groups of co-changing files. Yet, the authors reported that their approach

has an average precision and recall that could be significantly improved by using

clustering techniques in addition to Dynamic Time Warping.

Discussion

Approaches based on association rules [111], [115], compute only the frequency

of co-changed files in the past and they omit many other cases, e.g. files that

co-change with some shifts among change periods. In Section 3.4, we showed that

approaches based on association rules cannot detect all occurrences of co-change

because, by their very definition, they do not integrate the analysis of files that

are maintained by different developers and–or with some shift in time, which could

lead to missed co-changing files.

Indeed, previous approaches could find files having very similar maintenance

evolution history, but they did not present a tool to detect co-changed files main-

tained by different developers in periods of time of more than a few minutes. We

were inspired by [16] to name the Asynchrony change pattern presented in this

thesis. We also introduced a novel change pattern inspired from co-changes, the

Dephase change pattern, that describes co-change among files with the some shifts

in time.

Change propagation analyses how changes made to one file propagate to oth-

ers. Law and Rothermel [64] presented an approach for change propagation analysis

based on whole-path profiling. Path profiling is a technique to capture and rep-

resent a program dynamic control flow. Unlike other path-profiling techniques,

which record intra-procedural or acyclic paths, whole-path profiling produces a

13

single, compact description of a program’s control flow, including loops iteration

and inter-procedural paths. Law et al.’s approach builds a representation of a pro-

gram’s behavior and estimates change propagation using three dependency-based

change-propagation analysis techniques: call graph-based analysis, static program

slicing, and dynamic program slicing.

Zhang et al. [112] conducted a case study in an industry project to investigate

whether the dependency between individual requirements are useful in practise, in

particular for change propagation analysis. They found that change propagation

analysis is affected by a practitioner’s viewpoint and experiences. The participant

with project management experiences may emphasize the changes that happen at

the business and high-level design level. The participants with requirements engi-

neering experiences pay special attention on the changes at the level of requirements

description and business. The participant with development experiences care more

about the changes happening at the implementation level.

Hassan and Holt [42] investigated several heuristics to predict change propa-

gation among source code files. They defined change propagation as the changes

that a file must undergo to ensure the consistency of the program when another

file changed. They proposed a model of change propagation and several heuristics

to generate the set of files that must change in response to a changed file. Their

approach uses: (1) frequency techniques to return the most frequently related files;

(2) recency techniques to return files that were related in the recent past; and, (3)

hybrid (frequency + recency) techniques.

Zhou et al. [113] presented a change propagation analysis based on Bayesian

networks that incorporates static source code dependencies as well as different

features extracted from the history of a program, such as change comments and

author information. They used the Evolizer system that retrieves all modification

reports from a CVS and uses a sliding window algorithm to group them.

Canfora and Cerulo [18] proposed an approach to derive the set of files impacted

by a proposed change request. A user submits a new change request to a Bugzilla

database. The new change request is then assigned to a developer for resolution,

who must understand the request and determine the files of the source code that

will be impacted by the requested change. Their approach exploits information

14

retrieval algorithms to link the change request descriptions and the set of historical

source file revisions impacted by similar past change requests.

D’Ambros et al. [22] presented the Evolution Radar, an approach to integrate

and visualise module-level and file-level logical couplings, which is useful to answer

questions about the evolution of a program, the impact of changes at different levels

of abstraction, and the need for restructuring. German [33] used the information

in the CVS to visualize what files are changed at the same time and who are the

people who tend to modify certain files. He presented SoftChange, a tool that

uses a heuristic based on a sliding window algorithm to rebuild the Modification

Record (MRs) based on file revisions. In Softchange, a file revision is included

in a given MR if all the file revisions in the MR and the candidate file revision

were created by the same author and have the same log. Beyer and Hassan [12]

introduced the evolution story-board, a new concept for animated visualisations

of historical information about the program structure, and the story-board panel,

which highlights structural differences between two versions of a program. They

also formulated guidelines for the usage of their visualisation by non-experts and

to make their evaluations repeatable on other programs.

Discussion

We share with all the above authors the idea that change propagation iden-

tification into existing source code is a powerful mechanism to assess code main-

tainability. Their change-propagation models can be used to predict future change

couplings, but they do not allow differentiation between different change patterns.

All of these approaches grouped change couplings created by the same author and

have the same log message; consequently, they cannot detect typical situation of

co-changed file such as file maintained by different developers.

In addition, Xing and Stroulia [108], reported that visualisations approaches

are limited in their applicability, because they assume a substantial interpretation

effort by their users and they do not scale well: they become unreadable for large

programs with numerous components.

15

2.4 Faults-proneness: Definition and Detection

Shah and Morisio [89] analysed the relationship of different complexity metrics

with the faults for three categories of software projects i.e. large, medium and

small. They observed that for some complexity metrics high complexity results

in higher defects. They called these metrics as effective indicators of defects. For

example, they reported that in the small category of projects, they found LCOM

metrics, i.e. Lack of Cohesion of Methods which measures the correlation between

the methods and the local instance variables of a class, as effective indicator in the

medium category of project. They reported that complexity metrics relation to

defects also varies with the size of projects.

Nagappan and Ball [74] performed a study on the influence of code churn [41],

i.e. which measures the changes made to a component over a period of time, quan-

tifies the extent of this change, on the fault density. They found that relative code

churn was a better predictor than absolute churn. Moser et al. [73] used metrics

(e.g. code churn, past faults and refactorings, etc.) to predict the presence/absence

of faults in files of Eclipse. Hassan and Holt [43] proposed heuristics to analyse

fault proneness and they found that recently modified and fixed classes were the

most fault-prone. Ostrand et al. [77] predict faults on two industrial programs,

using change and fault data. Bernstein et al. [11] used fault and change infor-

mation in non-linear prediction models. Zimmermann and Nagappan [114] used

dependencies between binaries in Windows server 2003 to predict faults. Marcus et

al. [70] used a cohesion measurement based on LSI for fault prediction. Neuhaus et

al. [75] used a variety of features of Mozilla, such as past faults, package imports,

call structure, to determine fault vulnerabilities.

Discussion

Previous approach on fault-proneness did not link artefact dependencies and

artefacts evolution behaviors to faults. In this thesis, we link between (1) specific

change patterns and fault-proneness, (2) artefact evolution and co-evolution trends

and fault-proneness and, (3) and anti-patterns dependencies and fault-proneness.

16

2.5 Anti-patterns: Definition and Detection

The first book on “anti-patterns” in object-oriented development was written

in 1995 by Webster [102]. In this book, the author reported that an anti-pattern

describes a frequently used solution to a problem that generates ineffective or de-

cidedly negative consequences. Brown et al. [17] described 40 anti-patterns, which

are often described in terms of lower-level code smells. These books provide in-

depth views on heuristics, code smells, and anti-patterns aimed at a wide academic

audience. They are the basis of all the approaches to detect anti-patterns.

The study presented in this thesis relies on the anti-patterns detection approach

proposed in [96]. However several other approaches have been proposed. For

example, Van Emden et al. [97] developed the JCosmo tool. This tool parses source

code into an abstract model (similar to the Famix meta-model). It used primitive

and rules to detect the presence of smells and anti-patterns. The JCosmo tool can

visualize the code layout and anti-patterns locations. The goal of this tool is to

help developers assess code quality and perform refactorings. The main difference

compared with other detection tools is that JCosmo tries to visualize problems by

visualizing the design. Marinescu et al. developed a set of detection strategies to

detect anti-patterns based on metrics [82]. Settas et al. explored the ways in which

an anti-pattern ontology can be enhanced using Bayesian networks [88]. Their

approach allowed developers to quantify the existence of an anti-pattern using

Bayesian networks, based on probabilistic knowledge contained in an ontology.

The Integrated Platform for Software Modeling and Analysis (iPlasma) de-

scribed in [63] can be used for anti-patterns detection. This platform calculates

metrics from C++ or Java source code and applies rules to detect anti-patterns.

The rules combine the metrics and are used to find code fragments that exceed

some thresholds.

There are few papers analyzing empirically the anti-patterns relationships:

Binkley et al. [13] defined the dependence anti-pattern as a dependence struc-

ture that may indicate potential problems for ongoing software maintenance and

evolution. Dependence anti-patterns are not structures that must always be avoided.

Rather, they denote warnings that should be investigated. Typically these prob-

lems will take the form of difficulties in comprehension, testing, reverse engineering,

17

re-use, and maintenance. The authors showed how these anti-patterns can be iden-

tified using techniques for dependence analysis and visualization.

Vokac [101] analyzed the corrective maintenance of a large commercial program,

comparing the defect rates of classes participating in design motifs against those

that did not. Their approach showed correlation between some design patterns

and smells like LargeClass but do not report an exhaustive investigation of possi-

ble correlations between these patterns and anti-patterns. Pietrzak and Walter [80]

defined and analysed the different relationships that exist among smells and provide

tips how they could be exploited to alleviate detection of anti-patterns. They pro-

posed six coarse relations that describe dependencies between smells: plain support,

mutual support, rejection aggregate support, transitive support, and inclusion.

Despite the above studies on design defects, only a few studies empirically anal-

ysed the impact of design defects on source code-related phenomena, in particular

class change- and fault-proneness.

Bois et al. [14] showed that the decomposition of God Classes into a number

of collaborating classes using well-known refactorings can improve comprehension.

They did not consider source code evolution.

Wei and Shatnawi [69] investigated the relation between the probability of a

class being faulty and some anti-patterns based on three versions of Eclipse, showed

that classes with the anti-patterns God Class, Shotgun Surgery, and Long Method

have a higher probability to be faulty than other classes. They concluded that

there was a need for broader studies to validate their results.

Olbrich et al. [76] analysed the historical data of Lucene and Xerces over several

years and concluded that God Classes and Shotgun Surgery have a higher change

frequency than other classes; with God Classes featuring more changes. They

neither performed an analysis to control the effect of the size on their results nor

studied the kinds of changes affecting these anti-patterns.

Khomh et al. [54, 95] studied the impact of classes with design defects (code

smells and anti-patterns) on change proneness and fault proneness. They showed

that classes participating in design defects are more change- and fault-prone than

classes not participating in design defects.

Discussion

18

Previous approaches advanced the state-of-the-art in the specification and analysing

of design defects and their relation with fault-proneness. In this thesis, we focus

on detecting anti-patterns relationships with others classes to report the impact of

such relationships on the fault-proneness of programs.

Indeed, we share with all the above authors the idea that anti-patterns detection

is a powerful mechanism to asses code quality, in particular indicating whether the

existence of anti-patterns and the growth of their relationships makes the source

code more difficult to maintain.

Rather than focusing on the relationships among code smells and anti-patterns,

our study focuses on analysing anti-patterns dependencies and their impact on

fault-proneness.

While it is hard to define what a “bad” dependence structure should look like,

we believe that it is comparatively easy to identify dependence between anti-patens

and others classes in the programs that denote potential problems.

CHAPTER 3

IMPROVEMENT OF CO-CHANGE ANALYSIS

3.1 Introduction

As discussed in Chapter 2, several of the previous approaches identify co-

changes among files, e.g., [111], and [115], which represent the dependencies be-

tween files that have been observed to frequently change together. In the same

context, Change patterns [16] are described as motifs that highlight co-changing

groups of files [16] and that report the (often implicit) dependencies or logical

couplings among files that have been observed to frequently change together [31].

In [47], we showed that previous approaches could not detect change patterns

between files in long time intervals and–or performed by different developers and

with different log messages, so they miss these varieties of co-changed files. Yet,

we also showed that such new change patterns provide interesting information to

developers. For example, in the Bugzilla of ArgoUML, the bug ID 53781 states,

in relation to ArgoDiagram.java, that an “ArgoDiagram should provide construc-

tor arguments for the concrete classes to create”, which relates to ModeCreate-

AssociationClass.java. The bug report confirms that these two files have a re-

lationship, which is hidden because we could not detect dependencies between these

two files by static analysis. However, no previous approach can detect that these

files co-changed because they were maintained by the same developer bobtarling,

but their changes were always separated by a few hours. Knowing the dependency

among these files is useful to a new developer that must change ArgoDiagram-

.java: she must, also, assess ModeCreateAssociationClass.java for change. In-

deed, Vanya et al. [100] found that, depending on the commit practices used, a

suitable time intervals between check-in timestamps of files has to be determined

and leveraged to reliably approximate change sets.

Let F1 and F2 be two files of the same program, the scenario illustrated with

ArgoUML could happen when a developer is in charge of a subset of a large program

1http://argouml.tigris.org/issues/show_bug.cgi?id=4604

20

Figure 3.1 – F1 and F2 follow an
Asynchrony change pattern.

Figure 3.2 – F1 and F2 follow a
Dephase change pattern.

composed of, among others, files F1 and F2. She may change and commit these

two files in the same day but with a few hours between each commit, as illustrated

in Figure 3.1. This scenario may repeat for years and would be undetected by

previous approaches, which use sliding windows of a few minutes to group changes

committed by the same developer and with the same log message. Yet, such co-

change situations contains important information both for the developer and her

colleagues: to avoid introducing bugs into programs, changes to F1 must likely

propagate to F2, because these two files have a, possibly hidden, dependency.

As another example in ArgoUML, we found that the developers mvw and tfmorris

contributed with some patches that contain NotationUtilityJava.java and Model-

21

ElementNameNotationUml.java2 and the bug ID 29263 confirms that the two files

have dependencies (see Section 3.4 for details). No previous approach can detect

that these files co-changed because, during the development and the maintenance

of ArgoUML, these two files were never changed by the same developer at the same

time but were always changed by developers mvw and tfmorris in two consecu-

tive times: first NotationUtilityJava.java and, subsequently, after some hours,

ModelElementNameNotationUml.java, pointing out dependency among these files.

This previous scenario from ArgoUML happens when a developer D2 is re-

minded to change file F2 to correct a bug after some time by developer D1, when-

ever D1 changed file F1, as illustrated in Figure 3.2. Previous work, e.g. [111],

[115], [19], does not consider co-changed files if they were changed by two dif-

ferent developers in the same period even though knowing the, possibly hidden,

dependency among such co-changed files could prevent developers from releasing a

program with a bug because of a mismatch between files F1 and F2.

In this thesis, we describe Macocha, an approach for detecting two novel change

patterns [47] detailed in Section 3.2. Macocha, inspired from a previous work [16],

defines and detects the Asynchrony change pattern, macro co-changes (MCC),

and the Dephase change pattern, dephase macro co-changes (DMCC). It builds

on previous work on co-changes and uses the concept of change periods, detailed

in Section 3.2. It is defined as a set of changes committed by developers in a

continuous period of time. In particular, we use the k-nearest neighbor algorithm

[24] to group changes into their change periods.

The Asynchrony change pattern (MCC) describes a set of files that always

change together in the same change periods. The Dephase change pattern (DMCC)

describes a set of files that always change together with some shift in time in their

periods of changes. We also consider approximate MCC and DMCC using the

Hamming distance.

We formulate four research questions:

• RQ1: How does Macocha compare to previous work in terms of number of

changed files found?

2http://argouml.tigris.org/issues/showattachment.cgi/2118/

20101116-patch-notation.txt
3http://argouml.tigris.org/issues/show_bug.cgi?id=2926

22

• RQ2: How does Macocha compare to previous work (association rules) in

terms of precision and recall?

• RQ3: What is the precision and recall of Macocha when detecting occurrences

of the Asynchrony change pattern?

• RQ4: How many occurrences of Dephase change patterns are in programs

and how can they be useful for developers?

We perform two types of empirical studies. Quantitatively, we compare the

findings of Macocha with that of UMLDiff [106] and the co-change analysis of Ma-

cocha with the state-of-the-art association rules [111, 115] in term of precision and

recall. Qualitatively, we use external information provided by bugs reports, mailing

lists, and requirement descriptions to validate the Asynchrony and Dephase change

patterns not found using previous approaches and to show that these novel change

patterns explain real evolution phenomena and thus could help reduce mainte-

nance costs. We apply our approach on seven programs: ArgoUML, FreeBSD,

JFreeChart, Openser, SIP, XalanC, and XercesC, developed with three different

programming languages, C, C++, and Java.

In this chapter, we describe our approach, Macocha, in more detail and we show

how we use the k-nearest neighbor algorithm (KNN) to group changes into change

periods and therefore to determine automatically the different duration of change

periods. Then, we study the variations in precision and recall of our approach

when using different values of its parameters and we perform a static analysis to

validate the occurrences of new change patterns. Finally, we provide evidence on

the relevance of the Dephase change patterns detected with different shifts in time.

This chapter is organised as follows: Section 3.2 presents Macocha. Section

3.3 describes our empirical study, while Sections 3.4 and 3.5 report and discuss its

results as well as threats to validity. Section 3.6 concludes with future work.

23

3.2 Approach: Macocha

We now present the concepts of our approach using examples from ArgoUML.

Macocha mines version-control systems (Concurrent Versions System named CVS4

and Apache Subversion System named SVN5), to identify the change periods in

a program, to group source files according to their stability through the change

periods, and to identify the Asynchrony and the Dephase change patterns, i.e., are

macro co-changing or dephase macro co-changing.

3.2.1 Definitions

3.2.1.1 Change Period

A change period is a period of time during which several commits to different

files occurred without “interruption”, i.e., these commits are separated by a few

seconds or minutes. We conducted a case study to detect the duration of change

periods for each subject. We need the concept of change period because the change

periods (beginning dates and durations) differ across programs.

Consequently, we want to identify the change periods in a program by grouping

all the changes committed closely together in time, independent of the developers

who committed them and of their log messages. To identify changes occurring

close to one another, i.e., belonging to a same change period, we use the k-nearest

neighbor algorithm (KNN). The KNN is a non-parametric learning algorithm[57]

that does not make any assumptions on the underlying data distribution.

Hatton [44] presented an empirical study to estimate the time for the handling

of a particular maintenance request (also known as change request) and showed

that the largest duration of a change period to implement a maintenance request is

not more than 40 hours. Therefore, we set the initial duration of the change period

to 40 hours. However, as we noted earlier: these durations could change across

subjects. Thus, we also report the variation of precision and recall using other

values for the initial duration of the change period in Section 3.4. This variation

4http://cvs.nongnu.org/
5http://subversion.apache.org/

24

shows us, that for the seven subjects in this study, the 40 hours period yields the

best results.

Our KNN-based algorithm to identify the change periods in a program history

is illustrated in Figure 3.3 and consists of four separate phases:

• First, we divide the whole maintenance period, from first to last of the consid-

ered changes, of a given program, into equal sub-periods. Therefore, following

Hatton, we divide the history of the program into change periods of equal

duration of 40 hours.

• Second, to each change period, we assign the first change committed at a

date nearest to, but no later than, the beginning date of the change period.

• Third, we use the KNN algorithm with k = 2 (we start the execution with k =

2 before testing other values of k) to assign the rest of the changes into their

appropriate change periods: each change is assigned to the change period

including its k nearest neighbors in terms of date of commit, whatever their

developers and their log messages regardless of commit author and commit

log message, and even if its change date is earlier than the beginning date of

the change period.

• Fourth, when the KNN algorithm has assigned all changes into change peri-

ods, we recompute the beginning and end dates of each change period based

on the dates of their earliest and latest changes. If there exists one or more

change periods of duration greater than 40 hours, we reapply the KNN algo-

rithm with an increased value of k, else we stop.

In Section 3.4, we show that using this algorithm to group changes into change

periods allows us to improve precision and recall over the state-of-the-art associa-

tion rules approach [115].

In ArgoUML. We find 290 change periods in two years of development. In

Figure 3.4, we present the durations of all the different change periods detected in

ArgoUML using the KNN algorithm. The mean duration of these change periods is

around 27 hours 8 minutes, the standard deviation is around 12 hours 6 minutes. In

addition, in Figure 3.4, we use box plots to display differences between the durations

25

Figure 3.3 – Illustration of the KNN-based algorithm’s steps to
identify the change periods in a program history.

26

Figure 3.4 – The distribution of change period durations in Ar-
goUML detected by the KNN algorithm.

of change periods in ArgoUML without making any assumptions concerning the

underlying statistical distribution. The spacings between the different parts of the

box help indicate the degree of dispersion (spread) and skewness in the data, and

identify outliers. Figure 3.4 is a box plot that summaries: the smallest observation

(one millisecond), lower quartile (20 hours and 13 minutes), median (29 hours and

16 minutes), upper quartile (35 hours and 17 minutes), and largest observation (39

hours and 58 minutes).

3.2.1.2 Profile

We define a profile as a bit vector that describes whether a file is changed, or

not, during each of the change periods of a program.

For each file in a program, its profile is defined as a vector x = x1...xn, where

n represents the number of change periods determined by the KNN algorithm

described above. The value of xi indicates whether the file F is changed or not at

the ith change period:

xi =

{
1 if file is changed in the change period i

0 otherwise.

27

Figure 3.5 – Profiles for change periods of length n = 10 showing
the changes committed in two different files.

Figure 3.6 – Files F1 and F2 follow the Asynchrony change pattern.

We use bit vectors to model profiles because they allow efficient operations:

setting a bit is constant in time, O(1); computing the union, the intersection of

two bit vectors, or the complement of a bit vector, is linear in time, O(n).

3.2.1.3 File Stability

Macocha groups files according to their stability: idle and changed, as shown

in Figure 3.5. Each group is a set of profiles with similar stability. Idle files do

not change after their introduction into the program, while changed files are files

that changed after their introduction into the program. Macocha uses this group

to identify which changed files follow the Asynchrony or Dephase change patterns.

In ArgoUML. Macocha identifies 1,143 changed files from 1,621 files analyzed

in two years of evolution of this program.

Figure 3.7 – Three different profiles showing an example of the
Dephase change pattern.

28

Figure 3.8 – Three different bit vectors showing approximate Asyn-
chrony change pattern.

3.2.1.4 Change Patterns

Similar profiles grouped together represent occurrences of the Asynchrony and

Dephase change patterns. Idles files do not change in any change period after their

introduction into the program. Therefore, we do not consider this group of files

because they are not useful for the co-change analysis due to their non-evolution.

Macocha returns the following sets of occurrences of change patterns:

• SMCC , the set of macro co-changing files with identical profiles in a program;

• SDMCC , the set of dephase macro co-changing files identified when shifting

profiles by s change periods with s ∈ [0, 5];

• SMCCH , the set of approximate macro co-changing files with similar profiles

in a program by using the Hamming distance with DH ∈]0, 3[;

• SDMCCH , the set of approximate dephase macro co-changing files identified

when shifting profiles by s change periods and by using the Hamming distance

with DH ∈]0, 3[.

A SMCC is two or more changed files that exactly change together with long

time intervals between their changes and–or performed by different developers and

with different log messages, i.e., that have identical profiles during the life of a

program, as illustrated in Figure 3.6. Given a file F1, a SDMCC is the set composed

of F1 and one or more files, F2...FM, such that F2...FM always macro co-change with

the same shift in time s ∈ [0, n − 1] with respect to F1 during the evolution of a

program. Thus, a Synchrony change pattern is a Dephase change pattern where

s = 0.

29

Figure 3.7 illustrates that F1 and F2 are in dephase macro co-change with s = 1;

F2 and F3 are in a DMCC with s = 2; and, F1 and F3 are in a DMCC with s = 3.

In ArgoUML. Macocha reports that ProgressEvent.java and TestAction-

AddEnumerationLiteral.java followed a Dephase change pattern with s = 2;

and, ProgressEvent.java and IConfigurationFactory.java followed a Dephase

change pattern with s = 3. Previous approaches could not detect that these files

follow such change patterns.

Macocha considers both identical and similar profiles (with or without shifts in

time) to account for cases where the files did not change exactly in the same change

periods. We use the Hamming distance [39] DH to measure the amount of difference

between two profiles, i.e., the number of positions at which the corresponding bits

are different. For a fixed length n, the Hamming distance is a metric on the vector

space of the bit vectors of that length, as it fulfills the conditions of non-negativity

and symmetry. The Hamming distance between two profiles a and b is equal to the

number of ones in the the vector a⊕ b.

To determine the value of the appropriate Hamming distance for the detection of

change pattern occurrences, we conduct a comparative study based on the evolution

of the precision and recall when we use different values of DH . In information

retrieval contexts, precision and recall are defined in terms of a set of retrieved

documents (e.g. the list of co-changed files produced by a query) and a set of

relevant documents. Precision is the fraction of co-changed files that are relevant.

Recall is the fraction of the co-changed files that are relevant to the query that

are successfully retrieved. We also use the F-measure [85] to test accuracy. This

measure considers both the precision and the recall of the test to compute the

score. The traditional F-measure or balanced F-score (F1 score) is the harmonic

mean of precision and recall:

F −measure = 2.
P recision×Recall

Precision+Recall

The F-measure score can be interpreted as a weighted average of the precision and

recall, where an F-measure score reaches its best value at 1 and worst score at 0.

We use the F-measure score when we compare the results of Macocha approach

and the co-change detection approach based on association rules. We provide more

30

The Hamming distance DH = 1 DH = 2 DH = 3 DH = 4 DH = 5 DH = 6
ArgoUML 44 353 439 499 528 621
FreeBSD 19 98 119 140 239 326
JFreeChart 116 425 502 533 647 801
Openser 7 41 50 82 128 166
SIP 102 570 598 652 703 788
XalanC 8 69 79 133 142 186
XercesC 11 125 158 196 206 290

Table 3.1 – Number of approximate Asynchrony change patterns
detected using different values of the Hamming distance.

Figure 3.9 – The mean of precision and recall achieved by Macocha
with different values of DH for the seven programs.

details about the evaluation of our method in Section 3.4. After analysing several

values of DH between two profiles in different programs, we found that DH = 2 is

the best trade-off between precision and recall (as shown in Figure 3.9). Based on

this finding, we will consider that two profiles are similar if the Hamming distance

between them is equal to 1 or 2.

Table 3.1 reports the number of occurrences of approximate Asynchrony change

pattern detected by Macocha with some values of Hamming distance DH . For ex-

ample, we find that with DH = 4, Macocha reports 499 occurrences of approximate

Asynchrony change pattern in ArgoUML. However, the precision and recall of Ma-

cocha with this value of DH were less than 40%.

31

Figure 3.10 – Analysis-process.

Figure 3.8 illustrates that F1 and F2 are in approximate macro co-change with

DH = 2; F2 and F3 are in approximate MCC with DH = 2; and, F1 and F3 are in

a approximate MCC with DH = 4.

In ArgoUML.Macocha reports that ProgressEvent.java and ProgressLis-

tener.java follow the Asynchrony change pattern (they have exactly the same

profile), and ProgressEvent.java and HelpListener.java are in approximate

MCC with DH < 2.

3.2.2 Data Model, Implementation, and Outputs

A change contains several attributes: the changed file names, the dates of

changes, the developers having committed the changes. Using this data, Figure 3.10

illustrates the concrete process of Macocha. This process takes as input a CVS or

SVN change log. First, Macocha calculates the duration of different change periods

using the KNN algorithm (1). Second, it groups changes in change periods (2).

Third, it creates a profile that describes the evolution of each file in each change

period (3). Fourth, it uses these profiles to compute the stability of the files (4)

and, then, to identify changed files. Finally, Macocha detects and outputs macro

co-changing files, i.e. changed files that follow the Asynchrony change pattern, and

dephase macro co-changing files, i.e. changed files that follow the Dephase change

pattern (5).

32

Macocha also weighs changes according to their distance in time because files

co-changing frequently in the past, but not in recent times, may be less interesting

than files having recently changed together. To do so, Macocha converts the bit

vectors of files following an occurrence of a change pattern to a decimal number.

Then, Macocha compares these decimals numbers to report the set of occurrences

of change patterns including the most recently changed files (for files changed more

recently, the conversion will naturally lead to greater decimal numbers). Ranking

occurrences of the Asynchrony and Dephase change patterns allows us to detect

the most recent occurrence of change patterns maintained in programs without

having any impact on the precision and recall of results. Indeed, for practitioners,

the consideration regarding the recency order is weighting changes according to

their distance in time: files co-changing frequently in the past but not in recent

times are not as interesting as files recently changing together, thus the time should

be weighted. Previous work [22] already pointed this problem out and proposed

techniques to deal with it. Thus, in this thesis, the analysis of change pattern

recency does not have any impact on the results in terms of precision, recall and

F-measure. The concrete examples reported in this empirical study include the

most recently changed files.

3.3 Empirical Study

We use the Goal-Question-Metric (GQM) Approach [8] to define our empirical

study. This approach is an approach on software metrics that defines a measure-

ment model on three levels: conceptual level (goal), operational level (question) and

quantitative level (metric). The approach is based upon the assumption that for

an organization to measure in a purposeful way one must first specify the goals for

itself and its projects, then one must trace those goals to the data that are intended

to define those goals operationally, and, finally, one must provide a framework for

interpreting the data with respect to the stated goals.

Following this approach, the goal of our study is to show that Macocha can

identify occurrences of the Asynchrony and Dephase change patterns and that

these occurrences describe file evolution and change propagation. Our purpose

is to bring generalisable, quantitative evidence on the existence of these change

33

ArgoUML FreeBSD JFreeChart Openser Sip XalanC XercesC
Languages Java C Java C Java C++ C++
of Versions 9 11 5 5 16 13 14
of Files 1,621 500 1,106 383 1,693 390 396
of Commits 6,943 50,145 1,752 5,960 6,100 3,621 3,971
of Developers 11 114 4 35 16 11 26

Table 3.2 – Descriptive statistics of the object programs.

patterns. The perspective is that both researchers and practitioners should be

aware of the hidden dependencies among files to make informed changes. The

context of our study is the maintenance of programs.

3.3.1 Research Questions

We formulate four research questions:

• RQ1: How does Macocha compare to previous work in terms of number of

changed files found?

• RQ2: How does Macocha compare to previous work (association rules) in

terms of precision and recall?

• RQ3: What is the precision and recall of Macocha when detecting occurrences

of the Asynchrony change pattern?

• RQ4: How many occurrences of Dephase change patterns are in programs

and how can they be useful for developers?

3.3.2 Objects

We choose seven programs developed with three different programming lan-

guages: ArgoUML, JFreeChart and Sip developed with java; FreeBSD and Openser

developed with C; XalanC and XercesC developed with C++. Table 3.2 sum-

marises program statistics. We use these programs because they are open source,

have been used in previous work [19] [116], are of different domains and in different

programming languages, span several years and versions, and underwent between

thousands and tens of thousands of changes.

34

ArgoUML6 is an UML diagramming program written in Java and released under

the open-source BSD License. We analyse the evolution of this program for a period

of two years, from 2007-02-19 to 2009-02-19. In this period, ArgoUML has gone

through nine major versions. 11 developers participated in the maintenance of this

program by committing 6,943 commits.

FreeBSD7 is a free Unix operating system written in C and released under the

open-source BSD License. We analyse the evolution of this program for a period

of two years, from 2007-11-08 to 2009-11-08. In this period, FreeBSD has gone

through 11 major versions. We notice that FreeBSD is the program that with the

largest number of developers (114) and the largest number of commits (50,145) in

this study.

JFreeChart8 is a Java open-source framework to create complex charts in a

simple way. We analyse the evolution of this program from 2008-02-13 to 2010-02-

09. In this period, JFreeChart has gone through five versions. and 4 developers

maintained its 1,106 files by committing 1,752 commits.

Openser9 is an open source implementation of a SIP server, licensed under the

GNU General Public License. This program can be used as a SIP registrar server,

SIP router, SIP redirect server, etc. In addition, it can be used in small programs,

for example in embedded programs like DSL routers, but also for large installations

at Internet service providers with several million customers. The Openser project

was created on 14 June 2005. We detect Asynchrony and Dephase change patterns

in this program from this date to March 2007. In this period, Openser has gone

through five versions and 35 developers maintained its 383 files by committing

5,960 commits.

SIP Communicator10 is an audio/video Internet phone and instant messenger

that supports some of the most popular VoIP and instant messaging protocols, such

as SIP, Jabber, AIM/ICQ, MSN. SIP is open source and freely available under the

GNU Lesser General Public License. It is written in Java. We analyse the evolution

6http://argouml.tigris.org/
7http://www.freebsd.org/
8http://www.jfree.org/
9http://www.opensips.org/

10http://www.sip-communicator.org/

35

of this program among 16 versions, from 2006-12-11 to 2008-12-08. 16 developers

worked to maintained its 1,693 files by committing 6100 commits.

XalanC11 is an open-source software library from the Apache Software Founda-

tion written in C++. We analyse the evolution of this library for a period of two

years, from 1999-02-21 to 2001-12-20. In this period, XalanC has gone through

over 13 major versions and 11 developers maintained its 390 files by committing

3,621 commits.

XercesC12 is a collection of software libraries written in C++ for parsing, val-

idating, serialising, and manipulating XML. We analyse the evolution of this pro-

gram from its publishing in 99-11-09 to 2001-11-09. In this period, XercesC has

gone through 14 versions and 26 developers maintained its 396 files by committing

3,971 commits.

3.3.3 Analyses

To answer our research questions, we apply Macocha to the different subject

programs and we collect all the occurrences of the Asynchrony and Dephase change

patterns. We then perform two types of empirical studies. Quantitatively, we first

compare in RQ1 the results of Macocha with those of UMLDiff for file stability

and we show that Macocha can identify the same idle and changed files as UMLDiff

using only data from change logs. It does not produce as detailed information as

UMLDiff but we can perform co-change analysis with data deducted from change

logs. Second, we compare in RQ2 the results of Macocha for detecting co-changing

files with those of a state-of-the-art approach [115], that uses Association Rules.

We also show that the set of macro co-changing files produced by Macocha includes

the same co-changing files reported by Association Rules plus new co-changing files.

Qualitatively, we confirm in RQ3, that each of Macro co-change found by

Macocha but not by the Association Rules-based approach [115] is indeed a depen-

dency link, using external information from static analysis, bug reports, require-

ment descriptions, and mailing lists.

11http://xml.apache.org/xalan-c/
12http://xerces.apache.org/xerces-c/

36

We also validate in RQ3 each occurrence Macro co-change patterns found by

Macocha in the analysed programs by studying their static relationships (such as

use relations, inheritance relations, and so on). For programs written in Java (Ar-

goUML, JFreeChart, and SIP), we use an existing tool, PADL [35], to automatically

reverse-engineer class diagrams from the source code of object-oriented programs.

A model of a program is a graph whose nodes are classes and edges are relationships

among classes, such as: associations, use relations, inheritance relations, creations,

aggregations, and container-aggregations (special case of aggregations [34]). As

of today, PADL can only handle all static relations for programs written in Java.

For programs considered in this study and written with other languages (FreeBSD,

Openser, XalanC, and XercesC), we investigate static relationships among files

following the Asynchrony and Dephase change patterns by manual verification.

Indeed, for each (approximate) occurrence of the change pattern, we confirmed

in RQ3 and RQ4 the dependencies among their files by detecting their static

relationships. If we could not detect such static relationships, we checked for other

external information from bug reports and mailing lists. For static analysis, we

use automatic tool detection of static relationships among files (Padl). For bug

reports and mailing lists, we verify if these files are involving on bugs and mailing

list between developers and we discuss the consistency of the external information

before confirming the dependencies between these files.

We report a quantitative analysis in accordance with the state of the art, i.e.,

we compare the findings of Macocha with that of UMLDiff [106] and the co-change

analysis of Macocha with the state-of-the-art Association Rules [111, 115] in terms

of precision and recall. We also report a qualitative analysis in accordance with

external information and a static analysis, i.e., we use external information pro-

vided by bugs reports, mailing lists, and requirement descriptions to validate the

(approximate) Asynchrony and Dephase change patterns not found using previous

approaches.

3.4 Study Results

We now present the results of our empirical study. Table 3.3 summarises the

cardinalities of the sets obtained by applying Macocha.

37

Figure 3.11 – Change period durations in different programs de-
tected by the KNN algorithm.

Figure 3.12 – The variation of precision and recall using other
values for the initial duration of the change period.

3.4.1 RQ1: How does Macocha compare to previous work in terms of

number of changed files found?

Macocha groups different commits in programs into change periods detected by

the KNN algorithm. First, we observe that for the same duration of maintenance

(two years for each program), the number of change periods detected by the KNN

algorithm varies between 85 change periods, detected in FreeBSD, and 290 change

periods in ArgoUML. Then, we use box plots (illustrated in Figure 3.11) to display

differences between the durations of change periods in the seven analysed programs.

We observe that, in each program, change periods detected by the KNN algorithm

38

ArgoUML FreeBSD JFreeChart Openser SIP XalanC XercesC
Idle files 478 302 398 71 314 66 40
Changed files 1,143 198 708 312 1,379 324 356
of SMCC 192 45 281 21 350 41 68
of SMCCH 353 98 425 41 570 69 125

Table 3.3 – Cardinalities of the sets of Idle files, Changed files and
(approximate) Asynchrony change pattern occurrences obtained
in the empirical study.

do not have the same duration. For example, the duration of the change periods

detected in JFreeChart varies between 1 millisecond (it is a single commit not

clustered with any other commits) and 39 hours 57 minutes. In contrast, Figure

3.11 shows the distribution of different change periods detected in seven programs.

Approximately 75% of the duration of change periods are shorter than 30 hours, so

maintenance activities are dominated by small changes measured either by number

or total time. We perform an analysis with varying values of the initial duration of

change period using by the KNN algorithm to verify if we can prove empirically

that, for t=40, we get the better precision/recall, and thus, confirm Hatton [44]

observation. The variation of precision and recall using other values of the initial

duration of the change period is illustrated in Figure 3.12. A higher value of the

initial duration would yield a higher recall but a lower precision. While a smaller

value of the initial duration would yield a higher precision but a lower recall.

By analysing each file that was changed or not during different change periods

in programs, Macocha creates the set of profiles describing the evolution of different

files in the whole life of the program. This analysis involves also eliminating idle

files because they do not change in any change period after their introduction into

the program. Therefore, they cannot participate in change patterns.

We distinguish idle from changed files by grouping together the files identified

as short-lived and active by UMLDiff. Then, we compare the sets provided by

UMLDiff and by Macocha and find that they are identical. For example, as shown

in Table 3.4, Macocha finds 1,143 changed files in ArgoUML, identical to UMLDiff

414+ 729 = 1, 143 short-lived and active files. We note that the finer classification

in three clusters of ArgoUML does not have any impact on the co-change analysis.

39

Idle (Macocha) Changed (Macocha)

ArgoUML
Idle Clusters (UMLDiff) 478 0
Short-lived Clusters (UMLDiff) 0 414
Active Clusters (UMLDiff) 0 729

JFreeChart
Idle Clusters (UMLDiff) 398 0
Short-lived Clusters (UMLDiff) 0 43
Active Clusters (UMLDiff) 0 665

SIP
Idle Clusters (UMLDiff) 314 0
Short-lived Clusters (UMLDiff) 0 742
Active Clusters (UMLDiff) 0 637

XalanC
Idle Clusters (UMLDiff) 66 0
Short-lived Clusters (UMLDiff) 0 122
Active Clusters (UMLDiff) 0 202

XercesC
Idle Clusters (UMLDiff) 40 0
Short-lived Clusters (UMLDiff) 0 170
Active Clusters (UMLDiff) 0 186

Table 3.4 – Cardinality of Macocha sets (idle groups and changed
groups) in accordance with UMLDiff clusters [106].

Table 3.4 reports the number of idle, short-lived, and active files found by

UMLDiff in the object-oriented subject programs (ArgoUML, JFreeChart, SIP,

XalanC and XercesC) and their categorisation by Macocha. The main limitation for

using UMLDiff is that it cannot detect idle, short-lived, and active files in programs

developed with non object-oriented programming languages (FreeBSD and Openser

developed in C), because it cannot create their UML-like representations. Machoca

improves on UMLDiff in this respect and is able to analyse file stability for any

program, providing that their CVS/SVN repositories are available.

Finally, Macocha computes file stability in a few minutes (unlike UMLDiff,

which takes a few hours [107]), because it must create UML-like representations

of the programs before performing evolution analysis. In the following, we present

some examples from the object programs.

In JFreeChart For two years of maintenance, as shown in Table 3.5, Macocha

found 131 change periods. In these periods, we detect 398 idle files. For example,

the file ColumnArrangement.java was modified in only one change period. Using

UMLDiff, we confirmed that this file belongs to an idle cluster.

We also detected 708 changed files. For example, the file BarRenderer.java

was modified 17 times during the evolution of JFreeChart. Thus, this file belongs

40

to the changed group. Using UMLDiff, we confirmed that this file belongs to an

active cluster.

In FreeBSD We found 302 idle files. For example, kvmproc.c was modified

in one change period in two years.

We also detected 198 changed files. The file ufsvnops.c was modified in 15

change periods during the evolution of FreeBSD. We cannot use UMLDiff to verify

this result, because it cannot analyse file stability in programs in C.

We answer RQ1: How does Macocha compare to previous work in terms of

number of changed files found? as follows: Macocha detects the same number of

changed files as UMLDiff, in the seven analysed systems, based on a CVS/SVN

change log.

3.4.2 RQ2: How does Macocha compare to previous work (association

rules) in terms of precision and recall?

For each program, Macocha detects files that have identical or similar profiles

(the Macro co-change sets) and reports them in Table 3.3. For example, in Ar-

goUML, we detect 192 Asynchrony change pattern.

We compare the change patterns found by Macocha with the co-changing files

found by an approach based on Association Rules [115] (see also [19]), which uses

the Apriori algorithm [2] to compute Association Rules. The Apriori algorithm

takes a minimum support and a minimum confidence and then computes the set of

all Association Rules. To obtain a comprehensive set of rules, we consider as valid

rules those achieving a minimum confidence of 0.9 as in previous work [115]. In

this paper, Zimmermann et al. reported that with this value of confidence, their

approach has the best precision and recall. We chose a minimum support of two to

compare Association Rules and our approach (because in Macocha, changed files

have at least two commits).

We denote the set of co-changing files found by an approach based on Asso-

ciation Rules [115] as SAR and we compare the approximate macro co-changing

files found by Macocha with the co-changing files found by an approach based on

Association Rules to evaluate the performance of Macocha.

41

Training Set Testing Set
Start End # T # CPs Start End # T # CPs

ArgoUML 07-02-19 09-02-19 4,718 290 09-02-22 11-02-21 2,225 191
FreeBSD 07-11-08 09-09-22 23,944 85 09-12-21 11-10-31 26,201 73
JFreeChart 08-02-13 10-02-09 1,555 131 10-02-16 12-02-13 197 24
Openser 05-06-14 07-06-04 2,321 247 07-06-05 09-06-15 3,639 281
SIP 06-12-11 08-12-08 2,870 261 08-12-09 10-12-09 3,230 307
XalanC 99-12-21 01-12-20 2,242 219 01-12-20 03-12-28 1,379 165
XercesC 99-11-09 01-11-09 1,820 204 01-11-12 03-11-08 2,151 227

Table 3.5 – Internal evaluation of Macocha (CPs: Change periods;
T: Transactions).

Macocha Association Rules
Precision Recall F-measure Precision Recall F-measure

ArgoUML 49% 30% 0.37 28% 29% 0.28
FreeBSD 19% 40% 0.45 11% 40% 0.17
JFreeChart 16% 33% 0.21 15% 33% 0.20
Openser 51% 32% 0.39 50% 32% 0,39
SIP 50% 55% 0.52 50% 52% 0.50
XalanC 82% 34% 0.48 79% 33% 0.46
XercesC 72% 56% 0.63 58% 46% 0.51
All programs 49% 48% 0.48 42% 38% 0.39

Table 3.6 – Internal evaluation of Macocha in comparison to an
approach based on Association Rules [115].

In the context of the evaluation of co-change analysis methods, in an internal

evaluation, we compare groups of co-changing files change-patterns extracted from

a testing set of data that are not involved in the grouping process. An external eval-

uation is the evaluation of the accuracy of one approach by comparing their results

with the result of other approaches or the observation of an expert. We perform an

internal evaluation similar to that of Zimmermann et al.’s [115]. Given snapshots

Si, i ∈ [1, ..., n], we build two sets Ttrain = {S1...St} and Ttest = {St+1...Sn}, as
shown in Table 3.5. We use Ttrain to build Association Rules and macro co-change

dependencies and we compare the co-changing files in Ttrain with those in Ttest.

Indeed, Macocha checks if files with similar (or same) profiles in Ttrain have similar

(or same) profiles in the Ttest.

For the seven programs, we observe that Macocha improves precision and recall

over Zimmermann’s approach based on Association Rules, as shown in Table 3.6.

42

For example, for ArgoUML, results indicate that the precision and the recall of

Macocha, respectively 49% and 30%, are better than those of Association Rules,

respectively 28% and 29%. For the sum of the objects considered in this study, the

improvement in precision is larger than that for recall. Indeed, Macocha has +7%

precision and +10% recall over Association Rules, i.e., the precision and the recall

of Macocha, respectively 49% and 48%, are better than those of Association Rules,

respectively 42% and 38%. Thus, the F-measure value of Macocha, 0.48 is better

than the F-measure value of Association Rules, 0.39.

We observed that the Apriori algorithm generates high support sets of rules

that are later checked for high confidence. Therefore, high confidence rules with

low support are not generated [2], which could lead to missed co-changing files.

We answer RQ2: How does Macocha compare to previous work (association

rules) in terms of precision and recall? as follows: Macocha improves the identified

co-changes over an approach based on Association Rules in terms of precision and

recall, i.e. Macocha has +7% precision, and +10% recall over Association Rules.

3.4.3 RQ3: What is the precision and recall of Macocha when detect-

ing occurrences of the Asynchrony change pattern?

The rationale for an internal evaluation is that no expert, no oracle and no pre-

existing groups of co-changing files are available. Precision and recall are measured

for the testing sets by considering, for each file, the groups resulting from the

training sets as oracles. Such an internal validation has some limits [99] [22]: (1)

Files co-changing frequently in the past (training set) but not recently (test set) will

be considered wrongly as false negatives; (2) Files co-changing frequently recently

(test set) but not in the past (training set) will be considered wrongly as false

positives; (3) If the training set contains false positives or negatives, they cannot

be detected using the testing set. In fact, that explain the somewhat low values of

precision, recall and F-measure reported in Table 3.6.

To overcome the limits of an internal validation and to validate change pat-

terns not found using Association Rules, we also performed an external evaluation

of Macocha by considering the results of the Association Rules as an oracle and

by manually validating the sets for differences between Macocha and Association

43

Rules. Because no expert and no pre-existing groups of co-changing files are avail-

able as an oracle, and because the high number of co-changed files detected in the

seven subject programs, we chose, first of all, to compare Macocha findings and As-

sociation Rules findings. Second, we applied a static analysis to validate the MCCs

not detected by the approach based on Association Rules because co-change anal-

ysis is known to be more useful when combined with static analysis [42]. For each

(approximate) occurrence of the Asynchrony change pattern, we confirmed the de-

pendencies among their files by detecting their static relationships. If we could not

detect such static relationships, we checked for other external information from bug

reports, mailing lists, and so on to validate the MCCs detected by Macocha.

For each set returned by the Association Rules-base approach, if an identical

set was returned by Macocha, it was considered a true positive. If the two sets

were not identical, we used external information to validate missing files and to

decide if they presented a true positive, a false negative, or a false positive. For

example, in JFreeChart, all the sets detected using Association Rules were detected

by Macocha except nine sets. We detected static relationships among files of seven

sets from the nine missed sets and we confirmed the dependencies among the files

of the last two sets using bug reports in the Bugzilla of JFreeChart.

For Xerces, Table 3.6 describes the internal validation, it says that Macocha has

+14% in precision, and +10% in recall over Association Rules. It means, for the

testing set, Macocha has less false negatives and false positives than Association

Rules. In Table 3.7, Maccocha has 100% precision and recall versus Association

Rules. It means that Macocha and Association Rules detected exactly the same sets

in the training set. Table 3.7 also reports, under the Association Rules header, the

precision and recall of Macocha with respect to the approach based on Association

Rules [115]. The precision and recall presented in Table 3.7 are measured relative

to another method. So, precision really means “number of cases that Macocha said

were true/false, that also Association Rules said were true/false”, and recall really

means “number of cases that Association Rules found, that also Macocha found”.

Table 3.7 shows that Macocha detects the majority of co-changing files detected

using Association Rules in the seven object programs. In addition, Macocha detects

other occurrences of change patterns not detected using Association Rules.

44

Macocha vs. Association Rules
Precision (*) Recall(**)

ArgoUML 94% 98%
FreeBSD 82% 100%
JFreeChart 65% 96%
Openser 95% 89%
SIP 98% 100%
XalanC 100% 99%
XercesC 100% 100%

Table 3.7 – Evaluation of Macocha when using the results of an
approach based on Association Rules [115] as oracle (*: number
of cases that Macocha said were true/false, that also Association
Rules said were true/false; **: number of cases that Association
Rules found, that also Macocha found).

Table 3.8 and Table 3.9 report, the adjusted precision and recall values of Ma-

cocha after manual validation, which show that Macocha detects occurrences of

change patterns missed or wrongly reported using Association Rules. For example,

in Openser, 89% of co-changing files found by Macocha were detected by Associ-

ation Rules. While 95% of co-changing files detected by Association Rules were

detected by Macocha. This comparison gives us 14 cases of false positives and 5

cases of false negatives, as shown in Table 3.8 and Table 3.9. We confirmed all

of these cases by a static analysis of source code of these files performed manu-

ally. Indeed, a smaller value of change period duration would yield a higher recall

but without detecting novel change patterns such as Asynchrony change patterns

because we do not integrate the analysis of files that are maintained by different

developers and–or with some delay in time, which could lead to missed co-changing

files and change propagation scenarios.

In the following, we describe some occurrences of the Asynchrony change pat-

tern that are missed by the previous approach and justify why they are missed

and why it is important to detect them. We chose these examples from the most-

recently changed files following the (approximate) Asynchrony change pattern.

In ArgoUML SelectionActionState.java and SelectionState.java fol-

lowed the same occurrence of an Asynchrony change pattern. On the one hand, by

using PADL [35] to automatically reverse-engineer class diagrams from the source

45

External Validation of SMCCH - SAR

False positives V.S.A Bugs Mails Precision
ArgoUML 11 3 4 4 100%
FreeBSD 16 10 0 4 88%
JFreeChart 13 3 6 4 93%
Openser 14 5 0 0 100%
Sip 12 4 6 2 100%
XalanC 0 0 0 0 100%
XercesC 0 0 0 0 100%

Table 3.8 – Adjusted precision of Macocha when using the results
of an approach based on Association Rules [115] as oracle and after
manual validation using external information and static analysis
(V.S.A: Validation by static analysis; SMCCH : The set of approx-
imate macro co-changing files with similar profiles in a program
by using the Hamming distance; SAR: The set of co-changed files
found by an approach based on Association Rules).

External Validation of SMCCH - SAR

False negatives V.S.A Bugs Mails Recall
ArgoUML 56 49 2 4 99%
FreeBSD 0 0 0 0 100%
JFreeChart 10 6 2 2 100%
Openser 5 5 0 0 100%
Sip 0 0 0 0 100%
XalanC 2 0 1 1 100%
XercesC 0 0 0 0 100%

Table 3.9 – Adjusted Recall of Macocha when using the results of
an approach based on Association Rules [115] as oracle and after
manual validation using external information and static analysis
(V.S.A: Validation by static analysis SMCCH : The set of approx-
imate macro co-changing files with similar profiles in a program
by using the Hamming distance; SAR: The set of co-changed files
found by an approach based on Association Rules).

46

code of ArgoUML, we detected a static dependency among these two files. On the

other hand, in the Bugzilla of ArgoUML, the bug ID 255213 states that “we should

use 3 state [...] this model could simply be the Action” in relation with these two

files. By applying the co-change analysis for “Error Prevention” described in [115],

we could not find co-change dependencies among them. Thus, we could not explain

and–or predict bugs in relation to these two files.

JFreeChart AbstractXYDataset.java and RenderAttributes.java were

in MCC. This is confirmed in the Bugzilla of JFreeChart by the bug ID 165421514

relating these two files. In fact, this bug reports that “Adding renderer with no

dataset causes exception” and confirms static dependencies detected after analysing

JFreeChart source code by PADL. These two files were changed by the same de-

veloper in a time-window of more than a few minutes. Therefore, by applying the

Association Rules-based approach described in [115], we could not not find that

these files were co-changing. Consequently, we could not give to the developer the

knowledge about dependencies among these two files to maintain them properly,

as described in [111, 115].

We answer RQ3: What is the precision and recall of Macocha when detect-

ing occurrences of the Asynchrony change pattern? as follows: Macocha detects

change patterns missed or wrongly reported using Association Rules. Macocha has

a mean precision of 97% and a mean recall of 99% for Asynchrony change patterns

detection.

3.4.4 RQ4: How many occurrences of Dephase change patterns are

in programs and how can they be useful for developers?

No previous approach could detect files maintained with similar trends and some

given shifts in time. Indeed, the Dephase change pattern is the main contribution

of the thesis in term of novelty. We confirmed the existence of occurrences of the

(approximate) Dephase change patterns by detecting static relationships among

their files. We also confirmed these occurrences using external information. Table

3.10 illustrates the number of occurrences of the (approximate) Dephase change

13http://argouml.tigris.org/issues/show_bug.cgi?id=2552
14http://sourceforge.net/tracker/index.php?func=detail&aid=1654215&group_id=

15494&atid=115494

47

pattern detected and confirmed using external information and static analysis, in

each program. We recall that an Asynchrony change pattern is a Dephase change

pattern with s = 0.

Macocha can detect occurrences of the Dephase change pattern with several

values of shift s. After analysing different sets of Dephase macro co-changing files

detected in the seven object programs, we observed that the number of occurrences

of the Dephase change pattern detected by Macocha and confirmed by external

information in the majority of subjects decreased from s = 3 and is close to 0 from

s = 5, as shown in Table 3.10. In our case study, we detected Dephase macro

co-changes for s ∈ [1, 5] to obtain an accurate set of results. In Table 3.10 we note

that, for example, out of the 27 occurrences of Dephase change patterns detected

in ArgoUML with a shift s=2, 24 occurrences were confirmed by static analysis. In

our case study, the precision was 88%. As other examples derived from Table 3.10,

we note the small number of (approximate) Dephase change pattern occurrences

detected in programs developed in C or C++ (less than six occurrences for each

value of the shift s).

We now report some typical occurrences of the (approximate) Dephase change

pattern from different programs with different values of shift s. We chose these

examples from the most-recently changed files following the (approximate) Dephase

change patterns.

In FreeBSD We find that ip-fw2.c and sysv-msg.c follow the same occur-

rence of a Dephase change pattern with a shift s = 2. After manually investiga-

tion of the source code of these two files we do not find any static relationships

among them. However, in the mailing list of FreeBSD, the Message-ID: <201-

20107201823.H3704@sola.nimnet.asn.au> states that the two files were used to

implement the same requirement of “ruleset sequence” in a lengthy message from a

developer about “IPFW transparent VS dummynet rules”. Our case study confirms

dependencies among these two files by external information.

In SIPWe find that Html2Text.java and FileTransfReceiveListener.java

were changed systematically with five shift periods in two years. Therefore, they

followed the Dephase change pattern with a shift s = 5. These two files implement

48

Shift s = 1 s = 2 s = 3 s = 4 s = 5
ArgoUML Approximate DC 46 27 39 51 20

Approximate DC confirmed 32 24 30 39 2
DC 3 5 5 3 1
DC confirmed 3 5 4 2 0

FreeBSD Approximate DC 1 3 1 5 6
Approximate DC confirmed 1 3 1 4 2
DC 0 1 0 1 0
DC confirmed 0 1 0 1 0

JFreeChart Approximate DC 46 14 9 10 9
Approximate DC confirmed 43 14 8 7 5
DC 6 1 3 0 0
DC confirmed 5 1 1 0 0

Openser Approximate DC 1 8 6 7 6
Approximate DC confirmed 1 6 6 5 2
DC 1 1 0 1 1
DC confirmed 1 0 0 1 0

Sip Approximate DC 43 68 89 83 96
Approximate DC confirmed 43 66 80 62 44
DC 6 4 4 6 9
DC confirmed 5 3 4 5 7

XalanC Approximate DC 1 0 2 0 0
Approximate DC confirmed 1 0 0 0 0
DC 0 1 0 1 0
DC confirmed 0 0 0 1 0

XercesC Approximate DC 1 1 1 0 0
Approximate DC confirmed 1 1 1 0 0
DC 1 0 1 0 0
DC confirmed 1 0 0 0 0

Table 3.10 – Evolution of the number of occurrences of (Approxi-
mate) Dephase change patterns, DC, detected and manually con-
firmed by static analysis for different values of shift s.

49

the same feature15: “Instant Messaging”. By performing a static analysis, we

detected a static dependency among these two files. Therefore, we confirmed the

occurrence of the Dephase change pattern formed by these two files.

In XercesC We found that XercesXPath.cpp and XMLDateTime.cpp follow

the same occurrence of an approximate Dephase change pattern with shift s = 1.

This change dependency is confirmed by multiple static relationships detected when

we examine the source code of these two files. In addition, in the mailing list of

XercesC, a message16 on April 1, 2009 about “a legitimate bug with the time of

day” states that these two files are related.

Indeed, our approach guides programmers based on the program history. Sup-

pose the developer changed a file F1 in the program. Macocha then suggests to

change the file F2 because in the past, both items always have been changed to-

gether with same shift in time. All Macocha needs is a CVS/SVN repository. The

benefit of Macocha is that it points out item coupling that is undetectable by pre-

vious co-change analysis such as between files maintained by different developers

or–and with some shift in time. In the following, we show how Dephase macro

co-changing files detected using Macocha support the following three scenarios:

3.4.4.1 Scenario 1: Management of Development Teams

We think that if two files follow the same occurrence of a Dephase change

pattern, they probably should be maintained by the same team of developers to

minimise the risks of introducing bugs in the future. Otherwise, if it is obligatory

to have different teams to maintain files that they follow the same occurrence of

a Dephase change pattern, i.g. in the case of a feature that it is developed by

a product team and its tests are developed by the test team, these teams should

exchange information about these files after each change.

We notice that they might probably send each other private emails notifying

the other party of a change. In our context, it is neither possible to conclude

that developers are sending each other private emails notifying the other party,

nor is the opposite true. We decide to perform, as future work, an empirical

15http://www.jitsi.org/index.php/Main/Features
16http://markmail.org/message/a5secbiwkgxtegxb

50

study to verify such fact by asking developers of these programs. The team of

developers most likely possesses a wealth of unwritten knowledge about the design

and implementation choices that they made for these files, which would help them

to prevent introducing bugs [83].

Consequently, a team leader could redefine the organisation of the maintenance

team according to the Dephase macro co-changes links among files, so that her

team does not introduce bugs because of the absence of information or lack of

communication among developers. For example, in ArgoUML, when we analysed

changes made in three Dephase macro co-changing files that have generated bugs

(BugID 1957 BugID 2926, and BugID 4604), we found that these changes have been

made with one shift in time in their periods of change and by different developers.

These co-changes cannot be detected by previous co-change analysis approaches.

Thanks to Dephase macro co-change, a team leader could ensure that the team

who will maintain these files in each change period has the necessary knowledge to

maintain the dependency among these files.

3.4.4.2 Scenario 2: Bug and Change Propagation

If co-change dependencies are not properly maintained, developers could in-

troduce bugs to a program [23]. Knowing that two files are in Dephase macro

co-change implies the existence of (hidden) co-change dependencies between these

two files. With our approach, for each program studied, we detected files in Dephase

macro co-changes. By using external information, we confirmed our observation

and that some of these files indeed participate to bugs. For example, in SIP, we

detected seven bugs in relation with Dephase macro co-changing files. By apply-

ing the association rule approach described in [115], we could not find that these

files are co-changing. A full list of defects belonged to Asynchrony and Dephase

change patterns detected in the seven analysed programs is available on-line at

http://www.ptidej.net/downloads/experiments/jsme12/. Therefore, by knowing

files that are in DMMC s, Macocha provides the list of files that developers should

be carefully considered by developers to ensure the change propagation and the

proper maintainability.

51

3.4.4.3 Scenario 3: Traceability Analysis

The change history represents one of sources of information available for recov-

ering traceability links that are manually created and maintained by developers

[50]. The version history may reveal hidden links that relate files and would be

sufficient to attract the developers’ attention [51]. For example, in SIP, we detect

traceability links between four approximate Dephase macro co-changing files. By

applying the association rule approach described in [115], we could not find that

these files are co-changing.

Due to the distributed collaborative nature of open-source development, version-

control systems are the primary location of files and the primary means of coor-

dination and archival [51]. The requirements of open-source programs are typi-

cally implied by communication among project participants and through test cases.

However, such traces of requirements are lost in time. In a previous work [3], Ali

et al. presented an approach, Histrace, that used CVS/SVN change logs to build

traceability links between high-level documentation and source code entities, ob-

serving that log messages are tied to changed entities and, thus, can be used to

infer traceability links. Histrace improved with statistical significance the precision

of the traceability links, while also improving recall but without statistical signifi-

cance. The authors thus showed that their trust-based approach indeed improves

precision and recall and also that CVS/SVN change logs are useful in the trace-

ability recovery process. Ongoing work includes using the (approximate) Dephase

macro co-change to improve traceability links between files in the same system.

We answer RQ4: How many occurrences of Dephase change patterns are in

programs and how can they be useful for developers? as follows: in all object pro-

grams, Macocha detects occurrences of the (approximate) Dephase change pattern,

e.g., 183 occurrences were detected in ArgoUML, while these occurrences specify

change propagation as well as they can help to reorganize maintenance tasks by

spotting hidden dependencies among files.

52

3.5 Discussions

3.5.1 Observations

In RQ1,we reported that Macocha can identify changed files before performing

the co-change analysis. On the one hand, we showed that Macocha was able to

analyse file stability for any program, providing that their CVS/SVN repositories

are available. On the other hand, Macocha computed file stability in a few minutes

(unlike UMLDiff, which takes few hours [107]). It could be true that a baseline

approach (a file is idle if it never changes 40 hours after its introduction) could

perform pretty well and report similar results without needing the additional com-

plexity. However, with a baseline approach, we could not apply the other steps

of our approach that allow for the detection of new change patterns: Asynchrony

and Dephase change patterns. Indeed, we performed the first step to eliminate files

that do not correspond to a meaningful modification task.

A major application for co-change detection approaches is to guide users through

source code. The user changes some entity and these approaches recommend pos-

sible future changes in a view. To evaluate the predictive power of a co-change

detection approach in this situation, the authors of a previous approach based

on association rules [115] tested the capability of their approach to predict future

changes. For each transaction T, and each entity e belong to entities(T), they

queried Q = e, and checked whether the approach would predict E = entities(T) -

e. For each transaction, they thus tested entities(T) queries, each with one element.

We repeat the same analysis in RQ2. In fact, Zimmermann et al. [115] applied as-

sociation rules to identify co-changing files and showed that increasing the support

threshold also increases the precision, but decreases the recall as their approach

gets more cautious. However, using the highest possible thresholds does not always

yield the best precision and recall values. If they increased the confidence threshold

above 0.80, both precision and recall decrease. Furthermore, Zimmermann et al.

showed that a high support and confidence threshold is required for high precision.

Still, such values result in a very low recall, indicating a trade-off between precision

and recall. In our study conducted in this chapter, we showed that their approach

can predict 38% of all entities changed later in the same transaction. While, Ma-

cocha can predict 48% of all entities changed later in the same transaction for the

53

same programs. Approaches based on association rules compute only the frequency

of co-changed files on individual commits and omit many other cases, e.g. files that

co-change with some shifts among change periods.

In RQ3 and RQ4, we showed some gains of our approach compared to previ-

ous co-change analysis approaches. For example, approaches based on association

rules cannot detect all occurrences of co-change and any occurrences of DMCCs

because, by their very definition, they do not integrate the analysis of files that

are maintained by different developers and–or with some shift in time, which could

lead to missed co-changing files and change propagation scenarios.

The main contribution in this chapter is detecting several occurrences of the

(approximate) Asynchrony and Dephase change patterns (two novel change pat-

terns) in different programs belonging to different domains and with different sizes,

histories, and programming languages. We do not detect MCCs and DMCCs with

the same proportions in each program. We observe that the proportion of MCCs

and DMCCs found in the programs developed in Java (ArgoUML, JFreeChart, and

SIP) are greater than the proportion of MCCs and DMCCs found in programs de-

veloped in C or C++ (see Table 3.3 and Table 3.10). We explain this observation

by the fact that, on the one hand, the majority of FreeBSD files are idle, FreeBSD

is the largest system in term of the number of commits (50,145 commits) and the

number of developers (114 developers), and that may have an impact on the non-

organization of maintenance tasks. On the other hand, Openser, XalanC, XercesC

are the smallest object programs (having less than 400 files). We also apply our

approach to detect (Dephase) macro co-changes on fewer C and C++ files than

Java files, which could explain the lower number of MCCs and DMCCs.

3.5.2 Threats to Validity

Some threats limit the validity of the results of our empirical study.

Construct Validity

Construct validity threats concern the relation between theory and observations.

In this study, they could be due to implementation errors. They could also be

due to a mistaken relation between changed files. We believe that this threat is

mitigated by the facts that many authors discussed this relation, that this relation

54

seems rational, and that the results of our analysis shows that, indeed, MCCs and

DMCCs exist and are corroborated by external sources of information (bug reports

and others). In addition, our results can still be affected by the presence of false

negatives, i.e., by a low recall exhibited by the co-change detection approach. As

previous work detected co-changes committed by the same author in a short time

window, relaxing these constraints may also lead to false positives. The results of

our empirical study show that Macocha improves precision and recall with respect

to the state of the art in seven different programs. However, we cannot claim that

our approach will give similar results for any program.

Internal Validity

Internal validity is the validity of causal inferences in studies based on exper-

iments. The internal validity of our study is not threatened because we have not

manipulated a variable (the independent variable) to see its effect on a second

variable (the dependent variable).

Reliability Validity

Reliability validity threats concern the possibility of replicating this study. We

attempted to provide all the necessary details to re-implement our approach and

replicate our empirical study. Moreover, both ArgoUML, FreeBSD, JFreeChart,

Openser, Sip, XalanC, and XercesC source code repositories are publicly available.

the way our analysis were performed is described in detail in Section 3.2. The

change logs, the list of bugs and the changed files of the seven programs analysed

with their profiles to obtain our observations are available on-line at http://www.

ptidej.net/downloads/experiments/jsme12/.

External Validity

We performed our study on seven different real programs belonging to differ-

ent domains and with different sizes, histories, and programming languages. Yet,

we cannot assert that our results and observations are generalisable to any other

programs, and the fact that all the analysed programs are open-source may reduce

this generability. Nevertheless, it would be desirable to analyze further systems,

also developed in different programming languages, to draw more general conclu-

sions. Future work includes replicating our study in other contexts and with other

programs.

55

3.6 Summary and Lessons Learned

The development and maintenance of a program involves handling large num-

bers of files. These files are logically related to each other and a change to one file

may imply a large number of changes to various other files. Many previous works

try to reduce program maintenance costs by detecting and using co-changing files.

For example, the authors in [16] defined the Synchrony change pattern as common

and recurring modifications of programs’ files in time.

In this chapter, we introduced the Asynchrony change pattern and the Dephase

change pattern, as well as their approximate versions, to explain other scenarios of

co-change and change propagation, which could help developers to maintain a pro-

gram’s files appropriately. We proposed an approach, Macocha, which mines soft-

ware repositories and uses several algorithms and techniques (k-nearest neighbor

algorithm, the Hamming distance, and a bit vector model) to discover occurrences

of the (approximate) Asynchrony and Dephase change patterns.

Macocha relates to file stability and co-changes. We therefore performed two

types of empirical studies. Quantitatively, we compared Macocha with UMLD-

iff [106] and an association rules-based approach [115] by applying and compar-

ing the results of the three approaches on seven programs: ArgoUML, FreeBSD,

JFreeChart, Openser, SIP, XalanC, and XercesC, and we showed that Macocha

has better precision and recall than the state-of-the-art approaches based on as-

sociation rules [111, 115]. Qualitatively, we used external information and static

analysis to show that detected MCC s and DMCC s explain real, important evolu-

tion phenomena. We also showed that occurrences of Dephase change patterns do

exist and help in explaining bugs, managing development teams, and performing

traceability analysis.

We propose Macocha to mine version-control systems in order to detect nov-

els change patterns. We used the k-nearest neighbor algorithm (KNN) to group

changes into change periods and therefore to determine automatically the duration

of the different change periods in each program. Then, we performed validations

of Macocha on seven programs developed with three different languages: C, C++,

and Java. We studied the variations in precision and recall of our approach when

using different values of its parameters (the Hamming distance, the number s of

56

shifting profiles, and the start change periods). Finally, we provided evidence on

the relevance of the Asynchrony and Dephase change patterns.

We are currently (1) relating change patterns with design patterns, (2) iden-

tifying other scenarios in which Asynchrony and Dephase change patterns help

in reducing maintenance costs, (3) evaluating the consistency and the usefulness

of change patterns’ occurrences, including files recently changed over other occur-

rences, (4) relating Asynchrony and Dephase change patterns to program quality

and external software characteristics, such as change proneness. Future work also

includes empirical studies of the usefulness for developers of ranking occurrences

of the Asynchrony and Dephase change patterns as well as applying Macocha to

different C/C++ programs.

In next chapters, we will use Macocha to analyse the evolution and the co-

evolution dependencies in programs and to conduct a study in order to detect the

impact of the anti-patterns dependencies. Thus, we will focus on classes and on

anti-patterns in object-oriented programs.

CHAPTER 4

RELATIONS BETWEEN EVOLUTION AND CO-EVOLUTION

DEPENDENCIES AND FAULT-PRONENESS

4.1 Introduction

Several fault prediction approaches were proposed to analyse fault-proneness.

While some approaches predict the presence or absence of faults for each compo-

nent (the classification scenario), others predict the amount of faults affecting each

component in the future, producing a ranked list of components. On the one hand,

Change-Log Approaches [43] use process metrics extracted from the versioning sys-

tem, assuming that recently or frequently changed classes are the most probable

source of faults. On the other hand, Code-Metrics approaches [73] use source code

metrics, assuming that complex or larger classes are more fault-prone. However,

it is not clear how classes with different evolution behavior are linked with faults.

Indeed, evolution studies did not link different evolution behavior to faults.

Two major kinds of class evolution dependencies are class lifetime and class

co-evolution. For example, in ArgoUML, we spotted that hundreds of classes ex-

isted only during some program versions. We found that some of these classes,

such as GoModelToCollaboration and UMLInstanceClassifierListModel, were

created by developers to examine a feature which was later abandoned. We differ-

entiate between classes that appear and disappear many times during the program

lifetime, (Transient classes) and classes that appear only during one version of the

program (Short-lived classes). Similarly, distinguishing between co-evolving classes

(classes which exhibit similar evolution profiles, due to interdependencies among

them [105]) and independently evolving classes could make a difference. For ex-

ample, in XercesJ, we found that the class DocumentBuilder co-evolved with the

class SAXParser.java from Xerces1.0.1 to Xerces2.0.0. Indeed, these two classes

are related to the same fault fixed on 26th September 2002.

We present a novel approach, Profilo, to (1) group classes in an object-oriented

programs according to their evolutionary histories, (2) spot their co-evolution de-

pendencies, and (3) relate their evolution and co-evolution dependencies with fault-

58

proneness. Our goal is to spot the impact of maintenance activities and evolution

dependencies on fault-proneness.

We apply our approach on three open-source programs: ArgoUML, JFreeChart,

and XercesJ to answer the following research questions:

• RQ5: RQ5: What is the relation between class lifetime and fault-proneness?

We decided to consider three types of class evolution: Persistent (classes that

never disappear after their first introduction into the program), Short-lived

(classes that appear only during one version of the program), and Transient

classes (classes that appear and disappear many times during the program

lifetime). We showed that Persistent classes are significantly less fault-prone

than Short-lived and Transient classes.

• RQ6: RQ6: What is the relation between co-evolution dependencies and

fault-proneness?

We found that, in most cases, fixing faults in class A requires changing the

co-evolved classes of A.

This chapter is organised as follows: Section 4.2 presents our approach Profilo.

Section 4.3 describes our empirical study. Section 4.5 and Section 4.6 report and

discuss its results as well as threats to its validity. Section 4.7 concludes with

lessons learned and future work.

4.2 Approach: Profilo

This section presents our approach, Profilo, to analyse the link between program

evolution and fault proneness. We will describe each step of the approach in details

below as shown in Figure 4.1. Given several versions of an object-oriented program,

Profilo extracts their class diagrams using an existing tool PADL1 and creates the

set of version-profiles that spots for each version all of its classes. Profilo identifies

class renamings, class changes, and fault fixing using two approaches: ADvISE [40]

and Macocha (Chapter 3). Profilo creates the set of class-profiles that describes

1http://www.ptidej.net/tool/

59

the evolution of each class in the program. Based on this set, it groups classes

according to their co-evolution relations.

Figure 4.1 – Profilo Overview.

Step 1: Pre-processing

Profilo use PADL [35] to automatically reverse-engineer class diagrams from

the source code of object-oriented programs2. PADL creates a meta-model to

specify the source code and parses this meta model to detect all of the constituents

found in any object-oriented system: class, interface, member class and interface,

2We consider six types of static relationships among classes: associations, use relations, inher-
itance relations, creations, aggregations, and container-aggregations [34]

60

method, field, inheritance and implementation. The PADL tool is associated with

several parsers to build models of software from AOL, C++, C#, and Java. Profilo

also uses Macocha to identify the set of changes performed on each class by mining

version-control systems. We compute the fault-proneness of a class by relating

fault reports and commits to the class. Fault fixing changes are documented in

text reports that describe different kinds of problems in a program. Thus, we trace

faults/issues to changes by matching their IDs and their dates in the commits

and in the bug reports. For example, we detect around three thousands classes in

JFreeChart and we trace 420 faults.

Step 2: Class Renaming Detection

ADvISE identifies class renamings using the structure-based and the text-based

metrics, which assess the similarities between original and renamed classes, as

follows:

Step 2.1: Structural Similarity

ADvISE defines a structure-based similarity, StrS, between a candidate original

class CA (in version Vi) and a candidate renamed class CB (in version Vi+1), as the

percentage of their common methods, attribute types, and relations. We assume

that two methods M1 and M2 are common in CA and CB if they have the same

signatures (return types, names, modifiers, and parameter list).

Let S(CA) and S(CB) be the set of methods, attribute types3, and relations

of CA (respectively, CB). The structural similarity of CA and CB is computed by

comparing S(CA) to S(CB) as

StrS(CA, CB) =
2× |S(CA) ∩ S(CB)|
|S(CA)|+ |S(CB)|

∈ [0, 1]

If StrS(CA, CB) = 0, then classes CA and CB do not have any common methods,

attribute types, or relations. If StrS(CA, CB) = 1, then S(CA) and S(CB) are

equal, i.e., classes CA and CB have the same sets of methods, attribute types, and

relations. Given, a class CA, ADvISE reports the class CB with the highest StrS

similarity as the best candidate renamed from CA.

3For the sake of simplicity, we are interested in attribute types instead of attribute names.
Because, attribute names could change between two versions (Vi and Vi+1).

61

ADvISE method is inspired by the Jaccard coefficient to quantify similarity

between the sample sets S(CA) and S(CB). The Jaccard coefficient is a measure

that provides a percentage of similarity of two sample sets, defined as the size of

the intersection divided by the size of the union of the sample sets. As a set-based

similarity measure, the Jaccard similarity coefficient does not discriminate between

the set items. Justification for its use is primarily empirical rather than theoretical.

On the one hand, instead of dividing the size of the intersection by the size of the

union, ADvISE divides it by the size of the merge. That is, the items shared by

two sample sets appear twice in our resulting set Merge(X, Y) = {a, a, b}. On the

other hand, ADvISE similarity ranges between zero and one, like Jaccard.

Step 2.2: Textual Similarity

Given an original class CA, ADvISE reports a set of best candidate renamed

classes {CB1 , ..., CBn} that have the highest StrS similarity. We want to select the

best candidate renamed class, i.e., the one whose name is the most similar to CA

in addition to having the greater number of common attribute types, methods and

relations. To reinforce StrS, ADvISE computes the textual similarity between the

name of the original class CA and the name of each of the candidate renamed classes

CBi
i ∈ [1, n], using a Camel-Case-based Similarity (CamelS) and the Normalised

Edit Distance (ND).

ADvISE computes CamelS similarity between CA and CB as the percentage

of common tokens between the name of CA and the name of CB. Let T (CA)

(respectively, T (CB)) be the set of tokens in the name of CA (respectively, name of

CB). ADvISE computes the CamelS similarity between CA and CB by comparing

T (CA) to T (CB) as

CamelS(CA, CB) =
2× |T (CA) ∩ T (CB)|
|T (CA)|+ |T (CB)|

∈ [0, 1]

If CamelS(CA, CB) = 0, then the names of CA and CB do not have common tokens.

If CamelS(CA, CB) = 1, then the names of CA and CB have the same set of tokens.

The Levenshtein Distance[68] between the names of CA and CB returns the

number of edit operations (insertions, deletions, and substitutions) of characters

required to transform the name of CA into that of CB. For example, the Lev-

62

enshtein distance between Saturday and Sunday is 3, because Sunday is obtained

from Saturday by removing two characters at and substituting one from r to n. To

have comparable Levenshtein distances, ADvISE uses the normalised edit distance

(ND), given by

ND(CA, CB) =
Levenshtein(CA, CB)

length(CA) + length(CB)
∈ [0, 1]

Step 2.3: Combination of Similarities

ADvISE combines ND and CamelS to compare the textual similarity between

names of an original class CA and some candidate renamed classes CBi
i ∈ [1, n],

because ND and CamelS assess different aspects of string comparison: ND is

concerned with the difference between strings but cannot tell if they have something

in common, while CamelS focuses on their common tokens but cannot tell how

different the other tokens are. Our algorithm reports the CBj
j ∈ [1, n], with the

highest CamelS and the lowest ND scores as the class renamed from CA. If CBj

has ND lower than the 0.40 threshold and CamelS higher than the 0.50 threshold.

Figure 4.2 – Types of class evolution considered in this study.

Step 3: Class-profiles Creation

Profilo mines source code and version control systems to create a class-profile

for each class. Then, we use this class-profile to extract the co-evolution relations

among classes. It is defined as a vector y = y1...ym, where m represents the number

of versions. The value of yi indicates whether the class C is present, renamed,

63

changed, or deleted in the ith version.

yi =

{
1 if class is present at version i

0 otherwise.

Step 4: Class-profiles Mining

Mining Class Lifetime: We classify classes according to their class-profiles.

Then, Profilo reports three types of class evolution as shown in Figure 4.2.

Short-lived classes: They have a very short lifetime, i.e., they exist only during

one version of the program. Such classes may have been created to try out an idea

that was then dropped or modified.

Persistent classes: These classes are never deleted after their first introduction.

On the one hand, Persistent classes should be examined, as they may represent

cases of dead code that no developer dares to remove as there is no one being able

to explain the purpose of these classes. On the other hand, Persistent classes may

be considered to be part of a tunnel [59], the backbone part of the program, as they

have not been removed since their first appearance in a given version of a program.

Hence, we also mine version control systems to assess whether a Persistent class is

dead code or not.

Transient classes: They appear and disappear many times during the program

lifetime. Such classes may have been involved in many design choices and should

be analysed, as they represent cases of design decision changes.

Mining Co-evolution Dependencies: We group classes that have the same

Evolution Class-profile and are related by static relationships. Such classes are

added, renamed, changed, and could be deleted in the same versions. They are

related, also, by static relationships (use, association, aggregation, and composition

relationships). Detecting co-evolution among numerous classes in the program help

developers in assessing their effort to implement change requests and in performing

the most adequate changes.

For example, in JFreeChart, we found that the period with the highest number

of faults found and fixed for this project was before the publication of the version34

(jfreechart-1.0.2) in August 2006 and in the period of publication of the version37

(jfreechart-1.0.5) in March 2007.

64

On the other hand, the majority of Transient and Short-lived classes in JFreeChart

were added in this period (more than 70% of Transient and Short-lived classes on

this program). We suspect a correlation, between the introducing of these classes

in the program and the increasing number of faults on this period. At the same

time, some of this classes are added, renamed, and changed on the same version

over their whole lifespan. We found that these classes have similar evolution trends

and that many of them are involved in the same faults. Detecting dependencies of

evolution of these classes could explain and possibly prevent faults by being sure

that changes are propagated adequately by developers among them.

4.3 Empirical Study

Following the Goal Question Metric (GQM) [8], the goal of this study is (1) to

detect interesting observations on the relationship between the evolution of object-

oriented source code at class level and fault-proneness, (2) to detect co-evolution

dependencies to explain and possibly prevent faults, and (3) to confirm these ob-

servations statistically. The quality focus is the reduction of comprehension cost

and maintenance effort. The perspective is of both researchers, who want to study

the relationship between program evolution and fault-proneness, and practitioners,

who analyse software evolution to estimate the effort required for future mainte-

nance tasks. The context of our experiment is three open-source Java programs:

ArgoUML, JFreeChart, and XercesJ.

4.3.1 Objects

We apply our approach on three Java programs: ArgoUML4, JFreeChart5, and

XercesJ6. We use these programs because they are open source, have been used

in previous work, are of different domains, span several years and versions, and

underwent between thousands and hundreds of classes. Table 4.1 summarises some

statistics about these programs.

4http://argouml.tigris.org/
5http://www.jfree.org/
6http://xerces.apache.org/xerces-j/

65

We analyse the evolution of ArgoUML program for a period of nine years, from

2002-10-09 to 2011-04-03. In this period, ArgoUML has gone through over 18

major versions, from the version 0.10.1, to the version 0.32.2.

We analyse the evolution of JFreeChart for a period of 10 years. In this period,

JFreeChart has gone through 46 major versions, from the first published version

on December 2000 to version 1.0.14 on November 2011.

We analyse the evolution of XercesJ for a period of three years, from 2003-10-13

to 2006-11-23. In this period, XercesJ has gone through 36 major versions.

ArgoUML JFreeChart XercesJ
Versions 18 46 36
Start study 02-10-09 00-12-01 03-10-13
End study 11-04-03 11-11-20 06-11-23
From Version 0.10.1 0.5.6 1.0.1
To Version 0.32.2 1.0.13 2.9.0
of classes 2011 1938 892
of Faults fixed 218 130 34

Table 4.1 – Descriptive statistics of the object programs.

As in previous work [55], fault-proneness refers to whether a class underwent

at least a fault fixing change during the study periods. Fault fixing changes are

documented in text reports that describe different kinds of problems in a program.

They are usually posted in issue-tracking systems e.g., Bugzilla, for the three stud-

ied programs by users and developers to warn their community of pending issues

with its functionalities; issues in these systems deal with different kinds of change

requests: fixing faults, restructuring, and so on. We trace faults/issues to changes

by matching their IDs in the commits and by manual validation.

4.4 Exploratory Study Analyses

In essence exploratory studies are undertaken to better comprehend the link

between program evolution and fault-proneness since very few studies might have

been considered in that area.

We use data collected in the three programs and from externals information to

discuss typical examples as follows:

66

Figure 4.3 – Distribution of class lifetimes detected by Profilo.

ArgoUML JFreeChart XercesJ
Transient 690 645 313
Persistent 1241 1293 537
Short-lived 80 324 42
of Co-Evolution 42 11 23

Table 4.2 – Cardinalities of the sets obtained in the study.

Persistent classes. In Figure 4.3, we note that most classes in ArgoUML,

JFreeChat, and XercesJ are Persistent (more than 60% of classes). On the one

67

hand, these classes represent the stable backbone (tunnel) of the program such as

org.argouml.uml.generator.ui.ClassGenerationDialog in ArgoUML. In fact,

this class implements the java code generator in this program and was maintained

82 times by several developers (tfmorris, penyaskito, mvw, etc.). On the other

hand, Persistent classes could represent also dead code, such as SDNotationSet-

tings. Indeed, this class was never changed after its introduction in ArgoUML on

March 1999 by tfmorris. We noted that in ArgoUML, more than 80% of classes

were maintained three times at most. On the other hand, less than 1% of classes

were maintained 50 times at least. We observed also 218 fault fixes in this system

from 2002-10-09 to 2011-04-03.

Transient classes. We detect classes that appear and disappear many times

during the maintenance of the three programs. For example, the class Overlaid-

CategoryPlot, appeared in JFreeChart in the version 0.9.9 in June 2003, and

was deleted in the version 0.20.0 before reappeared in the next version. In fact,

developers detect faults in this class, and that explain the Nonpersistence of this

class. For example, in the Bugzilla of JFreeChart, the bug ID5767607 reported in

relation with this class that “No outline for overlaid category plot” when developers

used category plots in one application.

Short-lived classes. They represent the smallest group of classes in the three

analysed programs. Such classes were created to try out an idea that was then

dropped or modified, or to test some program behavior. For example, the class org-

.jfree.chart.demo.TimePeriodToStringTest was created in JFreeChart0.9.9 pub-

lished in July 2003 to test information encapsulated in TimePeriod in order to fix

a fault8 related to this class. After this version, this class was deleted.

Co-evolution. The development and maintenance of a program involves han-

dling a large number of classes. Knowing that two or more classes follow the same

co-evolution pattern helps developers to maintain properly the dependencies be-

tween these classes in the program. Otherwise, they lead to faults in the program.

For example, in JFreeChart, we find that ChartPanel and CombinedDomainXYPlot.

were introduced, changed and renamed in the same versions but in different periods

7http://sourceforge.net/tracker/index.php?func=detail&aid=576760&group_id=

15494&atid=115494
8http://sourceforge.net/tracker/index.php?func=detail&aid=814424&group_id=

15494&atid=365494

68

and by different developers. Thus, co-change analysis cannot report their depen-

dency. Profilo reports that these two classes co-evolved and the bug ID19500379

reported “a bug either in ChartPanel or CombinedDomainXYPlot when trying to

zoom in/out on the range axis” and confirmed the dependency between these two

classes.

4.4.1 Research Questions

We break down our study into two steps and we seek answers to the following

two research questions:

• RQ5: What is the relation between class lifetime and fault-proneness?

• RQ6: What is the relation between co-evolution dependencies and

fault-proneness?

These questions investigate the impact of the evolution of different artefacts of

a program on fault-proneness.

4.5 Study Results

Table 4.2 summarises the results obtained by applying Profilo. We validated

Profilo results manually and checked external sources of information provided by

bugs reports, mailing lists, and requirement descriptions to confirm and to discuss

results. The analysis reported in this section have been performed using the R

statistical environment10. We use the contingency tables to assess the direction of

the difference of fault proneness across different groups of classes. In statistics, a

contingency table is a table in a matrix format that displays the frequency distri-

bution of the variables. Although in practice it is employed when sample sizes are

small, it is valid for all sample sizes.

9http://sourceforge.net/tracker/index.php?func=detail&aid=1950037&group_id=

15494&atid=115494
10http://www.r-project.org

69

4.5.1 RQ5: What is the relation between class lifetime and fault-

proneness?

4.5.1.1 Motivation

We group classes according to their profiles through the program lifespan, taking

into consideration the renaming, refactoring, and structural changes of classes, to

determine how class lifetime models are related to fault-proneness.

4.5.1.2 Method

We use Fisher’s exact test [90] to check whether the difference is significant in

order to assess the direction of the difference of fault proneness across different

groups of classes.

Fisher’s exact test [90] is a statistical significant test used in the analysis of

contingency tables.

The test is useful for categorical data that result from classifying objects in

two different ways. It is used to examine the significance of the association (con-

tingency) between the two kinds of classification, in our study: Faulty classes and

clean classes.

To compute the p-value of the test, the contingency tables must then be or-

dered by some criterion that measures dependence and those tables, that represent

equal or greater deviation from independence than the observed table, are the

ones whose probabilities are added together. The contingency tables tested in this

study contain the total numbers of faulty and clean classes identified in ArgoUML,

JFreeChart, and XercesJ.

We also compute the odds ratio [90] that indicates the likelihood for an event

to occur. The odds ratio is defined as the ratio of the odds p of an event occurring

in one sample, i.e., the odds that Short-lived and Transient classes are identified

as fault-prone, to the odds q of the same event occurring in the other sample, i.e.,

the odds that Persistent classes are identified as fault-prone. An odds ratio greater

than 1 indicates that the event is more likely in the first sample, while an odds ratio

less than 1 that it is more likely in the second sample. An odds ratio OR = p/(1−p)
q/(1−q)

.

70

OR > 1 indicates that fault-prone entities have high term entropy and high context

coverage. We expect OR > 1 and a statistically significant p-value.

We verify the null hypothesis that we state as:

• HRQ50 : There is no statistically significant difference between proportions of

faults carried by Persistent, Short-lived, and Transient classes in ArgoUML,

JFreeChart, and XercesJ.

If we reject the null hypothesis HRQ50 , then we explain the rejection either as:

• HRQ51 : There is a statistically significant difference between proportions of

faults carried by Persistent, Short-lived and Transient classes.

To attempt rejecting HRQ50 , we test whether the proportion of classes in Ar-

goUML, JFreeChart, and XercesJ that compose Short-lived and Transient (respec-

tively Persistent) classes take part (or not) in significantly more faults than those

in Persistent (respectively Short-lived and Transient) classes. We merged Short-

lived and Transient classes because our goal is to help developers to prevent faults

and, for future releases, a Short-lived class could became a Transient class and a

Transient class could became Short-lived.

4.5.1.3 Results

Table 4.3 presents a contingency table for ArgoUML, JFreeChart and XercesJ

that reports the number of (1) Short-lived and Transient classes that are identified

as fault-prone; (2) Short-lived and Transient classes that are identified as clean;

(3) Persistent classes that are identified as fault-prone; and, (4) Persistent classes

that are identified as clean. The result of Fisher’s exact test and odds ratios when

testing HRQ50 are significant. In Table 4.3, the p-value is less then 0.05 and the

odds ratio for fault-prone Short-lived and Transient classes is two times higher than

for fault-prone Persistent classes.

We can answer to RQ5 as follows: we showed that Persistent classes are sig-

nificantly less fault-prone than Short-lived and Transient classes.

71

Faulty Clean

ArgoUML’s Non-Persistent classes 400 370
ArgoUML’s Persistent classes 326 915

JFreeChart’s Non-Persistent classes 312 657
JFreeChart’s Persistent classes 366 927

XercesJ’s Non-Persistent classes 268 277
XercesJ’s Persistent classes 170 508

The Sum of Non-Persistent classes 980 1304
The Sum of Persistent classes 862 2350

Fisher’s test 2.2e-16
Odd-ratio 2.048582

Table 4.3 – Contingency table and Fisher test results in Ar-
goUML, JFreeChart and XercesJ for Persistent, Non-Persistent
classes (Short-lived and Transient classes) with at least one fault.

4.5.2 RQ6: What is the relation between co-evolution dependencies

and fault-proneness?

4.5.2.1 Motivation

The goal of analysing dependencies among co-evolved classes (clusters of classes

exhibit similar evolution profiles) is to check if the proportion of faults fixed by

maintaining co-evolved classes are significantly more than faults fixed using not

co-evolved classes.

4.5.2.2 Method

The Chi-Square test is used to test the different proportions of faults fixed for

co-evolved and not co-evolved classes. Indeed, the Chi-Square statistic is used to

investigate whether distributions of categorical variables differ from one another.

We test for statistical significance to verify the null hypothesis that we state as:

• HRQ60 : There are no statistically significant between proportions of faults

involving co-evolved classes or not co-evolved classes in the three programs.

If we reject the null hypothesis HRQ60 , then we explain the rejection either as:

72

• HRQ61 : The proportion of faults carried by co-evolved classes is not the same

as the proportion of faults carried by not co-evolved classes.

To attempt rejecting HRQ60 we test whether the proportion of co-evolved classes

in ArgoUML, JFreeChart and XercesJ take part (or not) in significantly more faults

than other classes.

4.5.2.3 Results

We use in this test the contingency Table 4.4, where rows represent the number

of faults involving co-evolved classes and the number of faults involving non co-

evolved classes. The result of Chi-Square test and odds ratios when testing HRQ60

are significant. The p-value is less then 0.05 and we can reject the null hypothesis.

Faults involving CC Faults involving NCC

ArgoUML 126 92
JFreeChart 69 61
XercesJ 19 15

The p-value of Chi-Square 0.01859

Table 4.4 – Contingency table and Chi-Square test results in Ar-
goUML, JFreeChart and XercesJ for faults fixed by co-evolved
(CC)or not co-evolved classes (NCC).

We can answer toRQ6 as follows: faults fixed by maintaining co-evolved classes

are significantly more than faults fixed using not co-evolved classes.

4.6 Discussions

4.6.1 Class Lifetime and Fault-proneness

In this thesis, we combine information obtained from class evolutionary history

and from bug reports to obtain a clearer picture of the evolution of object-oriented

program. This is a key knowledge for a maintenance activity, because it allows

us to detect the critical parts of the program that represent the starting point for

a maintenance process. We found that Non-Persistent classes should be spotted

73

and well-understood before maintaining the programs as these classes are more

fault-prone. Special attention must be given to these entities to keep the design

intact during program evolution because the instability of these classes could have

a negative impact on the fault-proneness of the program.

4.6.2 Similarities in Classes Evolution Profiles

While co-change dependencies analysis reports the sets of classes that are often

changed together, our approach reports the sets of classes that evolve in parallel

ways and not necessarily at the same time. To the best of our knowledge, previous

co-change approaches did not use method such as structure-based and text-based

similarities to identify class renamings and, therefore, they could not report co-

change or co-evolution relations among renamed classes. In this thesis, we noted

that such relations describe implicit design dependencies and source code evolution.

Thus, special attention must be given to these relations to keep the design intact

during program maintenance activity. If numerous co-evolution relations exist,

Profilo sorts the sets of results depending on the number of static relationships

among co-evolved classes in order to help the developers to focus on those that

potentially led to a design flaw or to mistakes in maintaining classes together.

4.6.3 Threats to Validity

Some threats limit the validity of our empirical study.

Construct Validity. Construct validity threats concern the relation between

theory and observations. In this study, they could be due to the errors of the

implementation. They could also be due to an imprecision of our measurements

of the distance between different couples of class-profile and–or different couples

of version-profile. We believe that this threat is mitigated by the facts that we

validated Profilo results using external sources of information (bug reports and

others).

Conclusion validity. Threats concern the relation between the treatment and

the outcome. We paid attention not to violate assumptions of the statistical tests

that we used, in RQ5 and in RQ6. We cannot claim causation, but our discussion

tries to explain why some classes could have been subject to faults.

74

Reliability Validity. Reliability validity threats concern the possibility of

replicating this study. We attempted to provide all the necessary details to re-

implement our approach and replicate our empirical study. The programs, change

logs, and raw data to obtain our observations are available online at http://www.

ptidej.net/downloads/experiments/csmr13a/.

External Validity. External Validity concern the generalisation of our find-

ings. Although we performed our analyses on three different programs, belonging

to different domains and with different sizes, we are aware that further empirical

validations on a larger set of programs would be beneficial to better support our

findings. We cannot assert that our results and observations are generalisable to

any other program and the fact that all the analysed programs are open source and

are developed with Java may reduce this generability.

4.7 Summary and Lessons Learned

In this chapter, we described a novel approach to analyse evolution and co-

evolution dependencies and to trace fault-proneness. One of the goals addressed in

this thesis is how we can relate dependencies of classes in object-oriented programs

with fault-proneness. The concepts of class lifetime and co-evolution helped us

to describe and to identify the reasons that have driven the programs’ codes to

their current states. We showed that Persistent classes are significantly less fault-

prone than other classes and that faults fixed by maintaining co-evolved classes

are significantly more than faults fixed using not co-evolved classes. Profilo draws,

also, informed conclusions about the relation between maintenance tasks and fault-

proneness in order to help developers to understand evolution trends and to main-

tain the programs correctly.

Future work aims at (1) analysing further co-evolution relations by replicating

our study with other larger programs, (2) performing a comprehensive study of the

relationships between class lifetime and change-proneness, and (3) identifying the

lifetime followed by design motifs such as design patterns and anti-patterns.

In the next chapter, we describe an empirical study, performed on three object-

oriented systems, to analyse the impact of anti-patterns dependencies on fault-

75

proneness. We also use Padl tool to detect anti-patterns static relationships and

Macocha anti-patterns co-changes dependencies.

CHAPTER 5

RELATIONS BETWEEN ANTI-PATTERNS DEPENDENCIES AND

FAULT-PRONENESS

5.1 Introduction

Software systems are never complete and evolve continuously [67]. As they

evolve, their complexity grows. Prior work has shown that software complexity is

an obstacle to introducing changes and that complex modules tend to be fault-

prone [61, 65]. Developers often introduce bad solutions, anti-patterns [102], to

recurring design problems in their systems and these anti-patterns lead to negative

effects on code quality.

In the same context, anti-patterns are known as motifs that are usually thought

to be good solutions to some design or implementation problems, but back-fires

badly when applied.

While existing work has shown that anti-patterns are problematic ([96], [86],

and [55]), we believe that more attention should be focus on static and co-change

relationships between anti-patterns classes and other classes without anti-patterns.

We conjecture that, static and co-change relationships with anti-patterns can im-

pact the fault-proneness classes without anti-patterns. A recent finding by Radu

and Cristina Marinescu [71] that clients of classes with Identity Disharmonies are

more fault-prone than other classes, supports this conjecture. The static relation-

ships between anti-patterns classes and other classes (and vice versa) are typically

use, association, aggregation, and composition relationships [34]. Also, classes

participating in anti-patterns may have “hidden”, temporal dependencies. These

dependencies occur when developers know that, when changing a class, they must

also change another. The literature describes many approaches to extract and

analyse such hidden dependencies and to infer the patterns that describe these

changes to help developers to maintain their systems. For example, some previous

work [15, 115] detected motifs that highlight co-changing groups of classes and

that describe the (often implicit) dependencies or logical couplings among classes

that have been observed to frequently change together [31]. Two classes are co-

77

changing if they were changed by the same author and with the same log message

in a time-window between some milliseconds and some minutes at the most [31],

[115]. Recently, we introduced the novel concept of macro co-change1 and proposed

detection algorithms to identify various co-change situations among the classes of

a software system[47].

In this Chapter, we analyze static and temporal relationships (i.e., co-changes)

between anti-pattern and (non)anti-pattern classes from three Java open source

software systems: ArgoUML, JFreeChart, and XercesJ.

Research Problem

On one hand, previous work agree that anti-patterns are commonly introduced

by developers but they are more fault prone and counterproductive in program

development and maintenance [86]. On the other hand, static relationships and

co-change dependencies can be “channels” propagating faults among classes in

software systems. However, there is no much information available in the literature

about the fault proneness of classes having static or co-change dependencies with

classes infected by anti-patterns. In this study, we are looking for evidence that

practitioners should pay attention to systems with a high number of classes related

to classes infected by anti-patterns, because these classes are likely to be the subject

of their change efforts.

As in previous work [6], we assume that a class C co-changes with the anti-

pattern A if C co-changes at least with one class belonging to A. We also assume

that a class S has a static relationships with the anti-pattern A if S has a use, asso-

ciation, aggregation, or composition relationships with at least one class belonging

to A in one of the versions of the analysed systems.

We analyse dependencies with anti-patterns in two ways: first, we investigate

whether classes having static relationships (use, association, aggregation, and com-

position relationships) with anti-patterns classes are more fault-prone than others.

Second, we investigate whether classes co-changing with anti-patterns classes are

more fault-prone than others. We formulate the following research questions:

1two or more changed files that exactly change together with long time intervals between their
changes and–or performed by different developers and with different log messages

78

• RQ7: RQ7: Are classes that have static relationships with anti-patterns

more fault-prone than other classes?

• RQ8: RQ8: Are classes that co-change with anti-patterns more fault-prone

than other classes?

We found that, in ArgoUML, JFreeChart, and XercesJ, classes having static

or co-change dependencies with anti-patterns are more fault prone. We also found

that such dependencies can be used to predict fault and–or improve fault prediction

models.

Organisation

Section 5.2 presents our approach. Section 5.3 describes our empirical study.

Section 5.4 presents the study results while Section 5.5 discusses them along with

threats to their validity. Finally, Section 5.6 concludes the study and outlines future

work.

5.2 Approach: AntImpacts

This section describes the steps necessary to extract and analyse the data re-

quired to perform this study.

Step 1: Extracting Anti-patterns From the Source Code

We use the DEtection for CORrection approach DECOR [96], to specify and de-

tect anti-patterns. DECOR is based on a thorough domain analysis of anti-patterns

defined in the literature and provides a domain-specific language to specify code

smells and anti-patterns and methods to detect their occurrences automatically. It

can be applied on any object-oriented system through the use of the PADL [35]

meta-model and POM framework [36]. PADL describes the structure of systems

and a subset of their behavior, i.e. classes and their relationships. POM is a

PADL-based framework that implements more than 60 structural metrics.

Indeed, DECOR proposes a domain-specific language to specify and generate

automatically design defect detection algorithms. A domain-specific language offers

greater flexibility than ad hoc algorithms because the domain experts, the software

engineers, can specify and modify manually the detection rules using high-level

79

abstractions, taking into account the context, environment, and characteristics of

the analysed systems. Moreover, the language allows specifying defect detection

algorithms at a high-level of abstraction using key concepts found in their text-

based descriptions.

We use seven of these metrics to verify if we find differences in fault-proneness

between classes having dependencies with anti-patterns and other classes with sim-

ilar complexity or size. These metrics measure : (1) the total lines of code per class;

(2) the number of method calls of a class; (3) the nested block depth of the methods

in a class; (4) the number of parameters of the methods in class; (5) the McCabe

cyclomatic complexity of the methods in a class; (6) the number of fields of a

classes; and (7) the number of methods of a classes. We choose these seven metrics

because they have been successfully used to predict post-release faults [74].

We parse the CVS change logs of our subject systems and apply the heuristics

by Sliwersky et al. [93] to identify fault fix locations. Precisely, we parse commit

log messages using a Perl script and extract bug IDs and specific keywords, such

as “fixed” or “bug” to identify fault fixing commits. For each fault fixing commit,

we extract the list of files that were changed to fix the fault.

Step 2: Detecting Anti-patterns Static Relationships

We use the Ptidej tool suite [35] to detect anti-patterns static relationships.

Ptidej characterizes the constituents of class diagrams and proposes algorithms

to identify these constituents in source code. Ptidej distinguishes use, creation,

association, aggregation, and composition relationships because such relationships

exist in most notations used to model systems. This approach uses the PADL [35]

meta-model and parses the source code of systems to detect models that include all

of the constituents found in any object-oriented system: class, interface, member

class and interface, method, field, inheritance and implementation relationships,

and rules controlling their interactions. Ptidej depends on a set of definitions for

unidirectional binary class relationships that they are proposed and formalized in

a previous work [35].

The formalizations define the relationships in terms of four language-independent

properties that are derivable from static and dynamic analyses of systems: exclu-

sivity, type of message receiver, lifetime, and multiplicity.

80

Step 3: Detecting Anti-pattern Temporal Dependencies

We use our approach Macocha [47] to mine software repositories and identify

classes that are co-changing with anti-patterns. Macocha mines version-control

systems (CVS or SVN) to identify, among changed classes, those that are co-

changing with anti-patterns.

Macocha also calculates the following process metrics, defined and successfully

used in previous work [114] to predict software faults. These metrics are used to

verify if we find a difference in fault-proneness between classes having dependen-

cies with anti-patterns and other classes. Thus, process metrics are used to check

if classes having similar change histories are more or less fault-prone than classes

having dependencies with anti-patterns. Indeed, Macocha identifies fixes, for ex-

ample, in version archives as follow: within the messages that describe changes,

Macocha search for references to bug reports such as “fixed” or “bug” or matches

patterns like “ # and a number”. Macocha match faults/issues with changes by

matching their IDs in the commits. Here are the process metrics calculated with

the Macocha approach as defined in [114]:

1. Total Prior Changes: measures the total number of changes to a class in the

6 months period before the release.

2. Prior Fault Fixing Changes: the number of fault fixing changes done to a

class in the 6 months period before the release.

3. Pre-release faults: the number of pre-release faults in a class in the 6 months

period before the release (these are faults observed during development and

testing of a program).

4. Post-release faults: the number of post-release faults in a class in the 6 months

period after the release (these faults are observed after the program has been

deployed to the users).

Step 4: Analysing Anti-patterns Dependencies

Table 5.3 provides some statistics about the anti-patterns found in the subject

systems considered in this Chapter. To perform the empirical study, we choose

to analyse the relationships of well known anti-patterns. We choose these anti-

patterns because they are representative of problems with data, complexity, size,

81

and the features provided by classes [55]. We also use these anti-patterns because

they have been used and analysed in previous work [55], [96].

Fault-proneness refers to whether a class underwent at least one fault fixing in

the system life cycle [55]. Fault fixings are documented in bug reports that describe

different kinds of problems in a system. They are usually posted in issue-tracking

systems, e.g., Bugzilla for the three studied systems, by users and developers to

warn their community of pending issues with its functionalities.

In RQ1, we test whether the proportion of classes in ArgoUML, JFreeChart,

and XercesJ that have static relationships with anti-patterns classes have (or do

not have) significantly more faults than those that do not have static relationships

with anti-patterns classes.

InRQ2, we test whether the proportion of co-changed classes with anti-patterns

in ArgoUML, JFreeChart, and XercesJ have (or do not have) significantly more

faults than the other classes.

Because previous studies [41, 114] have found size, complexity and process met-

rics to be good predictors of faults in software systems. We perform an experiment

to verify if static relationships and–or co-change relations can provide additional

information over these traditional fault prediction metrics. Precisely, our exper-

iment consists in building two models for predicting the presence or absence of

faults in classes: (1) one using only change and code metrics and (2) one using

change metrics, code metrics, and anti-pattern dependencies information. In our

experiment, the independent variables are the collection of code and process met-

rics and the dependent variable is a two value variable that represents whether or

not a class has one or more post-release fault. There are various machine learn-

ing methods available to build such models. We use Support Vector Machines to

build the prediction models because this machine learning method has been widely

used in literature and has shown good results [77], [73]. The models output the

likelihood of a class to have one or more post release faults. We use statistical

tests to examine (the significance of) the difference between the performance of the

two models when predicting faults. More specifically, we use off-the-shelf methods

82

from the R2 statical package to analyze the statistical significance and collinearity

attributes of the independent variables used in our experiment.

Classes belonging to an anti-pattern can have dependencies (static relation-

ships and–or co-change dependencies) with classes belonging to other anti-patterns.

Thus, the tests reported in this Chapter cover classes that have a dependency with

an anti-pattern, regardless of the fact that these classes could belong to other anti-

patterns. Nevertheless, we present in Section 5.4 the result of our analysis of the

impact of anti–patterns dependencies, for classes belonging to anti-patterns and

other classes separately.

5.3 Empirical Study

The goal of our study is to assess whether classes having dependencies with

anti-patterns have a higher likelihood than other classes to be involved in issues

documenting faults. The quality focus is the improving of program comprehension

and the reducing of maintenance effort by detecting and using anti-patterns static

or co-change dependencies. The context of our study is both the comprehension

and the maintenance of systems.

ArgoUML JFreeChart XercesJ
of classes 3,325 1,615 1,191
of snapshots 4,480 2,010 159,196
of AntiSingleton 3 38 24
of Blob 100 49 12
of ClassDataShouldBePrivate 51 3 6
of ComplexClass 158 52 7
of LongMethod 336 75 7
of LongParameterList 281 76 4
of MessageChains 162 59 8
of RefusedParentBequest 123 5 7
of SpaghettiCode 1 2 6
of SpeculativeGenerality 22 3 29
of SwissArmyKnife 13 26 29

Table 5.1 – Descriptive statistics of the object systems.

2http://www.r-project.org/

83

5.3.1 Research Questions

We break down our study into two steps:

• RQ7: RQ7: Are classes that have static relationships with anti-patterns

more fault-prone than other classes?

First, we check if classes having static relationships (use, association, aggregation,

and composition relationships) with anti-patterns classes are more fault-prone than

others classes in the three analysed programs.

• RQ8: RQ8: Are classes that co-change with anti-patterns more fault-prone

than other classes?

Second, we investigate whether classes that are co-changing with anti-patterns

classes are more fault-prone than others classes.

We test the two null hypotheses state:

• HRQ70 : The proportions of faults carried by classes having static relationships

with anti-patterns and other classes are the same in the programs.

• HRQ80 : The proportions of faults involving classes having co-change depen-

dencies with anti-patterns and other classes are the same in the programs.

If we reject the null hypothese HRQ70 , it could mean that the proportions of

faults carried by classes having static relationships with anti-patterns and faults

carried by other classes in the analysed programs are not the same.

If we reject the null hypothese HRQ80 , we explain the rejection as that the pro-

portion of faults carried by classes co-changing with anti-patterns is not the same

as the proportion of faults carried by classes not co-changing with anti-patterns.

5.3.2 Objects

We apply our approach on three Java programs: ArgoUML3, JFreeChart4, and

XercesJ5. We use these programs because they are open source, have been used in

3http://argouml.tigris.org/
4http://www.jfree.org/
5http://xerces.apache.org/xerces-j/

84

previous work, are of different domains, span several years and versions, and have

between hundreds and thousands of classes. Table 5.3 summarises some statistics

about these programs.

For anti-patterns dependencies analysis in ArgoUML, we extracted a total num-

ber of 4,480 snapshots in the time interval between September 27th, 2008 and

December 15th, 2011.

For JFreeChart, we considered an interval of observation ranging from June

15th, 2007 (release 1.0.6) to November 20th, 2009 (release 1.0.13 ALPHA). In such

interval we extracted 2,010 snapshots.

For anti-patterns dependencies analysis in XercesJ, we extracted a total number

of 159,196 snapshots from release 1.0.4 to release 2.9.0 in the time interval between

October 14th, 2003 and November 23th, 2006.

5.3.3 Analyses

The analysis reported in Section 5.4 have been performed using the R statistical

environment6. We use Fisher’s exact test [90] to check whether the difference is

significant. We also compute the odds ratio [90] that indicates the likelihood for an

event to occur. In this study, the odds ratio is defined as the ratio of the odds that

classes having static relationships with anti-patterns are identified as fault-prone

to the odds that the rest of classes are identified as fault-prone.

5.4 Study Results

We now present the results of our empirical study. Tables 5.4.2, 5.4.1 and 5.4.2

summarise our findings.

5.4.1 RQ7: Are classes that have static relationships with anti-patterns

more fault-prone than other classes?

Table 5.4.1 reports for ArgoUML, JFreeChart, and XercesJ the numbers of (1)

classes having static relationships with anti-patterns and identified as fault-prone;

6http://www.r-project.org

85

(2) classes having static relationships with anti-patterns and identified as clean;

(3) classes without static relationships with anti-patterns and identified as fault-

prone; and, (4) classes without static relationships with anti-patterns and identified

as clean. The result of Fisher’s exact test and odds ratios when testing HRQ70 are

significant for all three programs. The p-value is less then 0.05 and the odds ratio

for fault-prone classes related to anti-patterns by static dependencies is two times

higher for fault-prone than other classes in the three programs.

We can answer positively to RQ7: we showed that classes having static rela-

tionships with anti-patterns are significantly more fault-prone than other classes.

But: Two observations limit the results of RQ7: First, in the three programs,

as showed in Table 5.4.2, we do not detect any class having static dependencies

(use, association, aggregation, and composition relationships) with SpaghettiCode.

In this case, we can not relate the impact of using this anti-pattern and the fault-

proneness of other classes in the programs. Second, based on complexity metrics

and change metrics analysis, it is neither possible to conclude that other classes

having the same complexity, change history, and code size are less fault-prone than

classes having static relationships with anti-patterns nor is the opposite true. In

fact, we take as input the list of code and change metrics described in Section 5.2

and check if there are a significant statistical difference on fault proneness between

a model based on only these metrics and a model based on these metrics plus anti-

patterns static relationships. If all anti-patterns are considered in this comparison,

it is impossible to definitely exclude the possibility that there is no statistically

differences in fault-proneness between classes related to anti-patterns and other

classes with the same complexity, change history, and code size. However, If we

group the results according to distinct anti-patterns, we observe that classes having

static relationships with Blob, ComplexClass, and SwissArmyKnife are significantly

more fault prone than other classes with the same complexity, change history, and

code size. Future work include the categorisation of anti-patterns according to the

impact of their dependencies on fault proneness.

Other observations: Many anti-patterns static relationships were with classes

playing roles in design patterns. Opposite to anti-patterns, design patterns [32]

are “good” solutions to recurring design problems, conceived to increase reuse,

code quality, code readability and, above all, maintainability and resilience to

86

changes. As a consequence, these classes, playing roles in design patterns and

having static relationships with anti-patterns, can bias the results. Indeed, our

finding shows cases that developers wrapped anti-patterns using design patterns

to facilitate maintenance tasks and reduce comprehension effort. For example,

in XercesJ v1.0.4, the class org.apache.xerces.validators.common.XMLVali-

dator.java is an excessively complex class interface. The developer attempted to

provide for all possible uses of this class. In her attempt, she added a large number

of interface signatures to meet all possible needs. The developer may not have

a clear abstraction or purpose for org.apache.xerces.validators.common.XML-

Validator.java, which is represented by the lack of focus in its interface. Thus, we

claim that this class belongs to a SwissArmyKnife anti-pattern. This anti-pattern

is problematic because the complicated interface is difficult for other developers

to understand and obscures how the class is intended to be used, even in simple

cases. Other consequences of this complexity include the difficulties of debugging,

documentation, and maintenance. We detect that this class has a use-relationship

with the class org.apache.xerces.validators.dtd.DTDImporter.java, which

belongs to the Command design pattern. Using Command classes makes it easier

to construct general components that delegate sequence or execute method calls

at a time of their choosing without the need to know the owner of the method

or the method parameters. Thus, developer can correct org.apache.xerces.va-

lidators.common.XMLValidator.java, by using the related Command pattern,

to represent and encapsulate all the information needed to call a method at a

later time. This information includes the method name, the object that owns the

method, and values for the method parameters. Thus, by using the relationships

of an anti-pattern with a specific design pattern, we could help developers to main-

tain the anti-pattern classes while reducing its influence on the system by benefiting

from its relationships with other design pattern so that, in the long term, devel-

opers could eliminate this anti-pattern while propagating changes adequately. We

plan to study in future work the effect of knowing and using the relationships of

anti-patterns and design patterns in maintenance tasks and comprehension effort.

87

Faulty Clean

Classes having S.R. with AP in ArgoUML 1062 1003
Other classes in ArgoUML 681 579
Classes having S.R. with AP in JFreeChart 432 226
Other classes in JFreeChart 310 647
Classes having S.R. with AP in XercesJ 445 121
Other classes in XercesJ 126 499

Total of classes related to AP 1939 1350
Total of other classes 1117 1725

The p-value of Fisher’s test 2.2e− 16
Odd-ratio 2.21802

Table 5.2 – Contingency table and Fisher test results in ArgoUML,
JFreeChart and XercesJ for classes with at least one fault (S.R.:
Static Relationships, AP: Anti-pattern.

5.4.2 RQ8: Are classes that co-change with anti-patterns more fault-

prone than other classes?

Table 5.4.2 presents a contingency table for ArgoUML, JFreeChart, and XercesJ

that reports the number of (1) classes co-changing with anti-patterns and identified

as fault-prone; (2) classes co-changing with anti-patterns and identified as clean; (3)

other classes identified as fault-prone; and, (4) other classes identified as clean. The

result of Fisher’s exact test and odds ratios when testing HRQ80 are significant.

The p-value is less then 0.05 and the odds ratio for fault-prone classes co-changing

with anti-patterns is two and half times higher than for fault-prone other classes

in the three programs.

We can answer positively to RQ8: we showed that classes co-changing with

anti-patterns are significantly more fault-prone than other classes.

Indeed, in the three programs, we detect co-change situations with the majority

of anti-patterns. In ArgoUML, Blob, LongMethod, and RefusedParentBequest co-

change with other classes more than the rest of anti-patterns. During the evolution

of JFreeChart and XercesJ, Blob is the anti-pattern that co-change the most with

other classes.

But: We observe in Table 5.4.2, in the three analysed programs, that if a class

belongs to the SpaghettiCode anti-pattern, it does not co-change with any other

88

Faulty Clean

Classes co-changing with AP in ArgoUML 241 102
Other classes in ArgoUML 1502 1480
Classes co-changing with AP in JFreeChart 68 26
Other classes in JFreeChart 674 847
Classes co-changing with AP in XercesJ 37 21
Other classes in in XercesJ 534 599

Total of classes co-changing with AP 346 149
Total of other classes 2710 2926

The p-value of Fisher’s test 2.2e− 16
Odd-ratio 2.50723

Table 5.3 – Contingency table and Fisher test results in ArgoUML,
JFreeChart and XercesJ for classes with at least one fault (AP:
Anti-patterns).

class in the system. In ArgoUML, we detect some occurrences of ClassDataShould-

BePrivate, ComplexClass, and LongParameterList that co-changed with other classes.

However, we do not detect any class playing role in these anti-patterns and that is

co-changing with other classes in JFreeChart and XercesJ. We do not detect, also,

classes that are co-changing with LongMethod classes in XercesJ. Finally, we found

that classes that are co-changing with anti-patterns classes are significantly more

fault prone than other classes with the same complexity, change history, and code

size. However, it is impossible to exclude the possibility that there is no impact

on fault-proneness for classes co-changed with SpaghettiCode, ClassDataShould-

BePrivate, ComplexClass, and LongParameterList.

Other observations: Knowing that anti-pattern classes follow a change pat-

tern implies the existence of (hidden) dependencies between the classes of this

anti-pattern and other classes in the system. If these dependencies are not prop-

erly maintained, they lead to faults in the system. For example, the class Go-

ClassToNavigableClass.java belong to a Blob anti-pattern in ArgoUML0.26.

Concurrently, this class is co-changed with the class GoClassToAssociatedClass-

.java. Thus, these two classes must always be maintained together. Yet, in the

Bugzilla of ArgoUML, the bug ID55057 confirms that the two classes are related

but were not maintained together, leading to a fault.

7http://argouml.tigris.org/issues/show_bug.cgi?id=5505

89

Anti-patterns Programs # of CC # of S.R.
AntiSingleton ArgoUml 13 152

JFreeChart 20 201
XercesJ 18 188

Blob ArgoUml 51 304
JFreeChart 36 164
XercesJ 24 93

ClassDataShouldBePrivate ArgoUml 4 167
JFreeChart 0 82
XercesJ 0 113

ComplexClass ArgoUml 2 192
JFreeChart 0 146
XercesJ 0 96

LongMethod ArgoUml 42 282
JFreeChart 51 314
XercesJ 0 266

LongParameterList ArgoUml 12 344
JFreeChart 0 276
XercesJ 0 309

MessageChains ArgoUml 48 244
JFreeChart 8 196
XercesJ 16 183

RefusedParentBequest ArgoUml 47 326
JFreeChart 6 183
XercesJ 25 93

SpaghettiCode ArgoUml 0 0
JFreeChart 0 0
XercesJ 0 0

SpeculativeGenerality ArgoUml 13 128
JFreeChart 4 139
XercesJ 8 201

SwissArmyKnife ArgoUml 20 69
JFreeChart 9 142
XercesJ 18 108

Table 5.4 – Proportion of the anti-patterns dependencies (CC: co-
changing situations of anti-patterns with other classes; S.R.: Anti-
patterns static relationships).

5.5 Discussions

This section discusses the results reported in Section 5.4 as well as the threats

to their validity.

90

5.5.1 Exploratory Findings

From Table 5.4.2, we note that many anti-patterns in ArgoUML, JFreechart,

and XercesJ have static relationships and–or have been co-changed with other

classes. To the best of our knowledge, we are the first to report these dependencies

and to analyse their impact on fault proneness.

We do not consider that an anti-pattern is necessarily the result of a “bad”

implementation or design choice; only the concerned developers can make such a

judgement. We do not exclude that, in a particular context, an anti-pattern can be

the best way to actually implement and–or design a (part of a) class. For example,

automatically-generated parsers are often very large and complex classes. Only

developers can evaluate their impact according to the context: it can be perfectly

sensible to have these large and complex classes if they come from a well-defined

grammar.

From Table 5.4.2, we report that different anti-patterns have different propor-

tion of static relationships with other classes in programs. This difference is not

surprising because these programs have been developed in three unrelated contexts,

under different processes. It highlights the interest of analysing and reporting the

anti-patterns dependencies when assessing finely the quality of programs.

SpaghettiCodes do not co-change and have no static relationships (use, asso-

ciation, aggregation, and composition) with other classes in the three analysed

programs. First of all, we noted that we detect less SpaghettiCode occurrences

than other anti-patterns occurrences in the different analyzed systems. Then, the

nonexistence of SpaghettiCodes co-change and static relationshipsis is not surpris-

ing because a SpaghettiCode is revealed by classes with no structure, declaring long

methods with no parameters and use global variables for processing. A Spaghet-

tiCode does not exploit and prevents the use of object-orientation mechanisms:

polymorphism and inheritance. With a SpaghettiCode, minimal relationships ex-

ist between objects. Many object methods have no parameters, and utilise classes

or global variables for processing. Thus, a SpaghettiCode is difficult to reuse and

to maintain, and when it is, it is often through cloning. In many cases, however,

code is never considered for reuse.

91

We found that classes that have dependencies with numerous anti-patterns

(such as Blob and ComplexClass) are significantly more fault prone than other

classes with the same complexity, change history, and code size. However, it is

impossible to get significant statistical difference on fault proneness for some anti-

patterns such as SpaghettiCode.

We also observe that many anti-patterns dependencies were with other motifs

in programs such as design patterns. Design patterns are recurring solutions to

common software design problems [32]. We noted that developers use design pat-

terns, possibly unintentionally, as proven solutions to recurring design problems

[46], e.g., when there is a proliferation of similar methods and–or the user-interface

code becomes difficult to maintain.

Last but not least, we confirmed that knowing that two classes are co-changing

implies the existence of (hidden) dependencies between these two classes. If these

dependencies are not properly maintained, they can introduce faults in a program

[117]. We found that classes that co-changed with anti-patterns are more fault-

prone than other co-changed classes in ArgoUML, JFreechart, and XercesJ. Thus,

by knowing the sets of classes that co-changed with anti-patterns, we could explain

and possibly prevent faults, thus lessening the anti-patterns negative impact. In-

deed, team managers can guide programmers based on the program history and

point out risky item coupling such as classes that are co-changing with anti-patterns

classes. In addition, with the availability of such information, a tester could decide

to focus on classes having dependencies with anti-patterns, because she knows that

such classes are likely to contain faults.

5.5.2 Threats to Validity

We now discuss in details the threats to the validity of our results, following

the guidelines provided in [110].

Construct validity. Threats concern the relation between theory and obser-

vation. In our context, they are mainly due to errors introduced in measurements.

We are aware that the detection technique used includes some subjective under-

standing of the definitions of the anti-patterns. However, as discussed, we are

interested to relate anti-patterns as they are defined in DECOR [96] with other

92

classes by static relationships as they are defined in PADL [35]. For this reason,

the precision of the anti-patterns detection is a concern that we agree to accept.

Moha et al. [96] reported that the DECOR current detection algorithms for anti-

patterns ensure 100% recall and have a precision greater than 31% in the worst

case, with an average precision greater than 60%. Macocha approach detection for

macro co-change ensures 96% recall and have a precision greater than 85% [47].

While, for the detection of relationships among classes, the used approach ensures

100% recall and precision. We preprocessed the inconsistent anti-patterns to elimi-

nate false positives. However, this preprocessing reduces the chances that we could

answer our research questions wrongly. In addition, our results can still be affected

by the presence of false negatives, i.e., by a low recall exhibited by the anti-pattern

detection tool. Nevertheless, in case that the anti-pattern specifications are variants

of the specification used in DECOR, some anti-patterns may be missed during the

detection phase. Although the sample of detected anti-patterns can be considered

large enough to claim our conclusions, further investigations aimed at assessing to

what extent the detection tool performance assess our results are needed.

Conclusion validity. These threats concern the relation between the treat-

ment and the outcome. We paid attention not to violate assumptions of the statisti-

cal test that we used, Fisher’s exact test, which is a non-parametric test. A possible

threat to the conclusion validity is our particular choice for complexity and change

metrics as representatives for the defect information contained in source code re-

spective its change history. Although those metrics are widely used and accepted

by other researchers there is no consensus as concerns their universality. We do

not yet understand the complex mechanism of why and how defects are generated

during the software development process. Thus, in theory there could be other,

much more complex metrics hidden in source code, which are very powerful defect

indicators but nobody discovered them yet.

Reliability validity. These threats concern the possibility of replicating this

study. We attempted here to provide all the necessary details to replicate our

study. Moreover, both ArgoUML, JFreeChart, and XercesJ source code repositories

publicly available, as well as the anti-pattern detection tool; the way our analysis

93

were performed is described in detail in Section 5.2. Finally, the data sets on which

we computed our statistics are available on the Web8.

Threats to external validity. These threats concern the possibility to gener-

alise our observations. First, although we performed our study on three different,

real programs belonging to different domains and with different sizes and histories,

we cannot assert that our results and observations are generalisable to any other

programs and the facts that all the analysed programs are in Java and open-source

may reduce this generability. Nevertheless, it would be desirable to analyze further

programs, also developed in different programming languages, to draw more gen-

eral conclusions. Future work includes replicating our study with other programs.

Second, we used particular, yet representative, sets of anti-patterns. Different anti-

patterns could have lead to different results, which are part of our future work. In

addition, the list of metrics used in our study is by no means complete. There-

fore, using other metrics may yield different results. However, we believe that the

same approach can be applied on any list of metrics. The odds ratio and p-value

thresholds used in our study were chosen because they proved to be successful in

previous studies [55].

5.6 Summary and Lessons Learned

A large amount of effort has been put into analysis models to explain and

forecast faults in software programs. As this area of research grows, a greater

number of metrics is being used to predict faults. In this chapter, we reported

the results of an empirical study, performed on three object-oriented programs,

which provides empirical evidence of the negative impact of dependencies with

anti-patterns on fault-proneness. Through our two research questions:

• RQ7: RQ7: Are classes that have static relationships with anti-patterns

more fault-prone than other classes?

• RQ8: RQ8: Are classes that co-change with anti-patterns more fault-prone

than other classes?

we found that:
8http://www.ptidej.net/download/experiments/msr12/

94

• Having static relationships with anti-patterns can significantly increase fault-

proneness.

• Classes having co-change dependencies with anti-patterns are more fault

prone than others.

This empirical study confirms, within the limits of the threats to its validity,

the conjecture in the literature that anti-patterns have a negative impact on sys-

tem architecture. It also suggests to use the knowledge about the anti-patterns

dependencies to maintain a system correctly, to eliminate design defects, and to

propagate changes adequately.

Future work includes (1) replicating our study on other programs to assess the

generality of our results, (2) studying the effect of the anti-patterns dependencies on

change-proneness, and (3) analysing further the relationships among anti-patterns

and design patterns not only through static analysis but also through co-change

analysis.

CHAPTER 6

CONCLUSION

In this chapter, we summarise the results and conclusions of this thesis. We

also discuss opportunities for extending our work.

6.1 Summary

Over the years, many researchers have studied the evolution and maintenance

of object-oriented source code to understand the costly decay of the programs in

general and of their designs in particular.

Faults can occur when changes are made to a program by developers who do

not and cannot fully understand artefacts dependencies among its artefacts and

the original design [78]. Thus, in this thesis, we presented a set of novel approaches

to improve the detection of co-change and co-evolution among program artefacts

and to analyse the impact of the artefacts dependencies in terms of fault-proneness.

We introduced the Asynchrony change pattern and the Dephase change pattern,

as well as their approximate versions, to explain real scenarios of co-change and

change propagation, which could help developers to maintain a program artefacts

appropriately. We proposed an approach, Macocha, which mines software reposi-

tories and uses several algorithms and techniques, such as the k-nearest neighbor

algorithm, the Hamming distance, and a bit vector model, to discover occurrences

of the (approximate) Asynchrony and Dephase change patterns.

Macocha relates to file stability and co-changes. We therefore performed two

types of empirical studies. Quantitatively, we compared Macocha with UML-

Diff [106] and an association rules-based approach [115] by applying and compar-

ing the results of the three approaches on seven programs: ArgoUML, FreeBSD,

JFreeChart, Openser, SIP, XalanC, and XercesC. We showed that Macocha has

better precision and recall than the state-of-the-art approaches based on associ-

ation rules [115]. Qualitatively, we used external information and static analysis

to show that detected MCCs and DMCCs explain real, important evolution phe-

96

nomena. We also showed that occurrences of Dephase change patterns exist and

help in explaining bugs, managing development teams, and performing traceability

analysis.

We use Macocha to analyse the impact of the evolution of object-oriented pro-

grams and to precise the impact of design defect on fault-proneness. Therefore,

we proposed a second approach, Profilo, to study the evolution of classes to detect

the impact of this evolution on fault-proneness. We mined source code and version

control programs to create class-profiles for classes and detect similar evolution

class-profiles, which represent a co-evolution profile, i.e., two or more classes that

evolve together and whose structures have been modified in the same versions over

the whole lifespan of the program. By applying Profilo on three Java programs,

we found that faults fixed by maintaining co-evolved classes are significantly more

than faults fixed using not co-evolved classes. We also showed that classes that

have not been removed since their first appearance in a given version of a program,

i.e., Persistent classes, are significantly less fault-prone than other classes.

Finally, we performed a series of experiments aimed at understanding and as-

sessing the impact of anti-patterns dependencies on classes fault-proneness. From

these experiments, we drew the following conclusions: classes having static rela-

tionships or that have been co-changed with anti-patterns are significantly more

likely to be involved in fault-fixing commits than other classes. Thus, developers

should pay attention to programs with a high number of such classes, because they

are more likely to be the subject of their maintenance efforts. Thus, we answer our

thesis by drawing the following conclusions and contributions:

1. The ability to analyse file stability for any program, providing that their

CVS/SVN repositories are available.

2. The detection of several occurrences of the (approximate) Asynchrony and

Dephase change patterns (two novel change patterns) in different programs

belonging to different domains and with different sizes, histories, and pro-

gramming languages.

3. The scope of macro co-change could improve the identified co-changes over

an approach based on association rules in terms of precision and recall.

97

4. The combination of structural and textual similarities for class renamings

detection provides the possibility to analyse the evolution of classes among

different versions of a program.

5. The bit-vector algorithm, which was effectively adapted to class diagram

matching, gives valuable insight about a program evolution.

6. Persistent classes are less fault-prone than Short-lived, and Transient classes.

7. Faults fixed by maintaining co-evolved classes are more frequent than faults

fixed using not co-evolved classes.

8. Anti-patterns have, through their dependencies, a negative impact on pro-

gram architecture in term of fault-proneness.

9. The detection of design defects dependencies in general: although we train

our approach on only eleven kinds of design defects, it can detect any static

relationship and co-change dependency for any kind of design defects.

6.2 Opportunities

We showed our thesis by considering the presence external information, statis-

tics analysis, and some metrics such as precision and recall. This thesis opens new

directions of research including: using change patterns to predict changes, identify-

ing risky parts of programmes and “buggy” changes, and the extension of different

approaches presented in this thesis as follow:

6.2.1 Using Change Patterns to Predict Changes

Estimation of the change-proneness of different artefacts is an active research

topic in the area of software engineering. Such estimation can be used to predict

changes to different artefacts of a program from one release to the next. It can also

be used to estimate and possibly reduce the effort required during the development

and maintenance phase by balancing the amount of developers time assigned to

each part of a program.

98

We could adapt Asynchrony and Dephase change patterns to predict changes

to classes. We will study the possibility of using the data about previous changes

to forecast future changes that could occur in a program, their potential damages,

and the factors influencing their propagations.

We are currently (1) relating Asynchrony and Dephase change patterns to pro-

gram quality and external software characteristics, such as change proneness(2)

identifying other scenarios in which Asynchrony and Dephase change patterns help

in reducing maintenance costs, and (3) evaluating the consistency and usefulness

of change patterns occurrences, including files recently changed.

6.2.2 Identifying Risky Parts of Programmes and “Buggy” Changes

In this thesis, we highlighted that software evolution is related with fault-

proneness. Therefore, we could propose to improve the maintenance of a program

by identifying refactoring opportunities, which resolve design defects existing in

source code. Thus, we could provide solutions to help developers in improving

design quality by appropriate refactorings.

Change classification learns from the change history of a program to classify

any future change as clean or buggy. Indeed, changes can be classified as either

buggy or clean by using a trained classifier model. In this manner, the change

classification predicts whether a new change is more similar to prior “buggy” or

clean changes.

However, very few studies investigated the use of knowledge deducted from co-

change dependencies to classify changes as “buggy” or clean. It would be interesting

to understand how co-changes dependencies affect developers’ behaviors as well as

their ability to write good code. We could provide feedback to developers on the

quality of their code each time a new co-change pattern is detected through series

of experiments assessing the usability of a quality model using change classification

and co-change dependencies.

99

6.2.3 Extending the Approaches Presented in this Thesis

Although we have proved in this thesis that dependencies among artefacts

and motifs, such as change patterns and anti-patterns, significantly impact fault-

proneness, it would be interesting to assess their impact on more subjective quality

attributes like understandability. We could perform a series of controlled experi-

ments to understand the effect of various anti-patterns and change patterns on the

understandability of programs. In the near future, we could I plan to investigate

new sources of information in software repositories, such as mailing lists.

Indeed, a mailing list allows for widespread distribution of information to many

developers. Recent studies [91] have found that mailing list activity is closely

related to source code activity and mailing list discussions are good indicators of

the types of source code changes being carried out on a program. It would be

interesting to investigate whether a combination of software evolution analysis and

mailing lists mining improves fault proneness detection.

PUBLICATIONS

The following is a list of our publications related to this dissertation.

6.2.3.0.1 Articles in journal

1. Fehmi Jaafar, Yann-Gaël Guéhéneuc, Sylvie Hamel, and Giuliano Antoniol.
Detecting Asynchrony and Dephase Change Patterns by Mining Software
Repositories. Journal of Software Maintenance and Evolution: Research and
Practice (accepted).

2. Fehmi Jaafar, Yann-Gaël Guéhéneuc, Sylvie Hamel, and Foutse Khomh.
Analysing Anti-patterns Static Relationships with Design Patterns. Jour-
nal of Electronic Communications of the European Association of Software
Science and Technology (under revision).

6.2.3.0.2 Conference articles

1. Fehmi Jaafar, Yann-Gaël Guéhéneuc, Sylvie Hamel , and Foutse Khomh.
Mining the Relationship Between Anti-patterns Dependencies and Fault-
proneness. 20th edition of the Working Conference on Reverse Engineering.
October 14-17, 2013, Koblenz-Landau, Germany.

2. Nasir Ali, Ahmed E. Hassan, and Fehmi Jaafar. Leveraging Historical
Co-Change Information for Requirements Traceability. 20th edition of the
Working Conference on Reverse Engineering. October 14-17, 2013, Koblenz-
Landau, Germany.

3. Fehmi Jaafar, Salima Hassaine, Yann-Gaël Guéhéneuc, Sylvie Hamel, and
Bram Adams. On the Relationship Between Program Evolution and Fault-
proneness: An Empirical Study. 17th European Conference on Software
Maintenance and Reengineering March 58, 2013, Genova, Italy.

4. Fehmi Jaafar, Yann-Gaël Guéhéneuc, and Sylvie Hamel. Analysing Anti-
patterns Static Relationships with Design Patterns. First Workshop on Pat-
terns Promotion and Anti-patterns Prevention (PPAP). March 2013, Italy.

5. Fehmi Jaafar On the analysis of evolution of software artefacts and pro-
grams. 34th International Conference on Software Engineering (ICSE Ph.D.
symposium). June 2012, Switzerland.

6. Fehmi Jaafar, Yann-Gaël Guéhéneuc, Giuliano Antoniol, and Sylvie Hamel.
An Exploratory Study of Macro Co-changes. 18th Working Conference on

101

Reverse Engineering (WCRE). October 2011, Ireland. (Invited to the Journal
of Software Maintenance and Evolution: Research and Practice)

BIBLIOGRAPHY

[1] Marwen Abbes, Foutse Khomh, Yann-Gael Gueheneuc, and Giuliano Anto-
niol. An empirical study of the impact of two antipatterns, blob and spaghetti
code, on program comprehension. In Proceedings of the 2011 15th Euro-
pean Conference on Software Maintenance and Reengineering, pages 181–190,
Washington, DC, USA, 2011. IEEE Computer Society.

[2] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining as-
sociation rules in large databases. In Proceedings of the 20th International
Conference on Very Large Data Bases, pages 487–499, San Francisco, CA,
USA, 1994. Morgan Kaufmann Publishers Inc.

[3] Nasir Ali, Yann-Gaël Gueheneuc, and Giuliano Antoniol. Trust-based re-
quirements traceability. In Proceedings of the IEEE 19th International Con-
ference on Program Comprehension, pages 111–120. IEEE Computer Society,
2011.

[4] Giuliano Antoniol, Massimiliano Di Penta, and Ettore Merlo. An automatic
approach to identify class evolution discontinuities. Principles of Software
Evolution, International Workshop on, pages 31–40, 2004.

[5] Giuliano Antoniol, Vincenzo Fabio Rollo, and Gabriele Venturi. Linear pre-
dictive coding and cepstrum coefficients for mining time variant information
from software repositories. In Proceedings of the International Workshop on
Mining software repositories, pages 1–5. ACM Press, 2005.

[6] Lerina Aversano, Gerardo Canfora, Luigi Cerulo, Concettina Del Grosso,
and Massimiliano Di Penta. An empirical study on the evolution of design
patterns. In Foundations of Software Engineering, pages 385–394, New York,
NY, USA, 2007. ACM Press.

[7] Jagdish Bansiya and Carl G. Davis. A hierarchical model for object-oriented
design quality assessment. IEEE Transactions on Software Engineering,
pages 4–17, 2002.

[8] Victor R. Basili and David M. Weiss. A methodology for collecting valid
software engineering data. Software, pages 728–738, 1984.

[9] Andrew Begel, Yit Phang Khoo, and Thomas Zimmermann. Codebook: dis-
covering and exploiting relationships in software repositories. In Proceedings
of the 32nd ACM/IEEE International Conference on Software Engineering,
pages 125–134. ACM, 2010.

103

[10] Douglas Bell. Software Engineering, A Programming Approach. Addison-
Wesley, 2000.

[11] Abraham Bernstein, Jayalath Ekanayake, and Martin Pinzger. Improving
defect prediction using temporal features and non linear models. In Ninth
International Workshop on Principles of Software Evolution, pages 11–18.
ACM, 2007.

[12] Dirk Beyer and Ahmed E. Hassan. Animated visualization of software history
using evolution storyboards. In Proceedings of the 13th Working Conference
on Reverse Engineering, pages 199–210. IEEE Computer Society Press, 2006.

[13] David Binkley, Nicolas Gold, Mark Harman, Zheng Li, Kiarash Mahdavi, and
Joachim Wegener. Dependence anti patterns. In 4th International ERCIM
Workshop on Software Evolution and Evolvability, pages 25–34, 2008.

[14] Bart Du Bois, Serge Demeyer, Jan Verelst, Tom Mens, and Marijn Tem-
merman. Does god class decomposition affect comprehensibility? In Peter
Kokol, editor, IASTED Conference on Software Engineering, pages 346–355.
IASTED/ACTA Press, 2006.

[15] Salah Bouktif, Yann-Gaël Guéhéneuc, and Giuliano Antoniol. Extracting
change-patterns from cvs repositories. In Proceedings of the 13th Working
Conference on Reverse Engineering, pages 221–230, Washington, DC, USA,
2006. IEEE Computer Society.

[16] Salah Bouktif, Yann-Gael Gueheneuc, and Giuliano Antoniol. Extracting
change-patterns from cvs repositories. In WCRE ’06: Proceedings of the 13th
Working Conference on Reverse Engineering, pages 221–230, Los Alamitos
CA USA, 2006. IEEE Computer Society. ISBN 1095-1350.

[17] W.J. Brown, H.W. McCormick, T.J. Mowbray, and R.C. Malveau. AntiPat-
terns: refactoring software, architectures, and projects in crisis. Wiley, 1998.

[18] Gerardo Canfora and Luigi Cerulo. Impact analysis by mining software and
change request repositories. In Proceedings of the 11th IEEE International
Software Metrics Symposium, pages 29–38. IEEE Computer Society Press,
2005.

[19] Gerardo Canfora, Michele Ceccarelli, Luigi Cerulo, and Massimiliano
Di Penta. Using multivariate time series and association rules to detect
logical change coupling: An empirical study. In Proceedings of the IEEE In-
ternational Conference on Software Maintenance, pages 1–10, Washington,
DC, USA, 2010. IEEE Computer Society Press.

104

[20] Michele Ceccarelli, Luigi Cerulo, Gerardo Canfora, and Massimiliano
Di Penta. An eclectic approach for change impact analysis. In Proceedings of
the 32nd International Conference on Software Engineering, pages 163–166.
ACM Press, 2010.

[21] James O. Coplien and Neil B. Harrison. Organizational Patterns of Agile
Software Development. Prentice-Hall, Upper Saddle River, NJ (2005), 1st

edition, 2005.

[22] Marco D’Ambros, Michele Lanza, and Mircea Lungu. Visualizing co-change
information with the evolution radar. Transactions on Software Engineering,
pages 720–735, 2009.

[23] Marco D’Ambros, Michele Lanza, and Romain Robbes. On the relationship
between change coupling and software defects. In Proceedings of the 16th
Working Conference on Reverse Engineering, pages 135–144. IEEE Com-
puter Society, 2009.

[24] B.V. Dasarathy. Nearest Neighbor (NN) Norms:NN Pattern Classification
Techniques. IEEE Computer Society Press, 1991.

[25] Serge Demeyer, Stéphane Ducasse, and Oscar Nierstrasz. Finding refactor-
ings via change metrics. In Proceedings of the 15th ACM SIGPLAN confer-
ence on Object-oriented programming, systems, languages, and applications,
OOPSLA ’00, pages 166–177, New York, NY, USA, 2000. ACM.

[26] Stephen G. Eick, Todd L. Graves, Alan F. Karr, J. S. Marron, and Audris
Mockus. Does code decay? assessing the evidence from change management
data. IEEE Transaction Software Engineering, pages 1–12, 2001.

[27] Michael Fischer, Martin Pinzger, and Harald Gall. Populating a release his-
tory database from version control and bug tracking systems. In Proceedings
of the International Conference on Software Maintenance, pages 23–33. IEEE
Computer Society, 2003.

[28] Martin Fowler. Refactoring – Improving the Design of Existing Code.
Addison-Wesley, 1st edition, June 1999.

[29] William B. Frakes and Ricardo A. Baeza-Yates. Information Retrieval: Data
Structures & Algorithms. Prentice-Hall, 1992.

[30] Christopher Fraser. Difftree: Inferring phylogenies for evolving software.
Technical report, Microsoft Research, 2005.

105

[31] Harald Gall, Karin Hajek, and Mehdi Jazayeri. Detection of logical coupling
based on product release history. In Proceedings of the International Con-
ference on Software Maintenance, pages 190–200. IEEE Computer Society,
1998.

[32] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns – Elements of Reusable Object-Oriented Software. Addison-Wesley,
1st edition, 1994.

[33] Daniel M. German. An empirical study of fine-grained software modifications.
Empirical Software Engineering, pages 369–393, 2006.

[34] Yann-Gaël Guéhéneuc and Hervé Albin-Amiot. Recovering binary class re-
lationships: Putting icing on the UML cake. In Doug C. Schmidt, editor,
Proceedings of the 19th Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA), pages 301–314. ACM Press,
October 2004.

[35] Yann-Gaël Guéhéneuc and Giuliano Antoniol. DeMIMA: A multi-layered
framework for design pattern identification. Transactions on Software Engi-
neering (TSE), pages 667–684, 2008.

[36] Yann-Gaël Guéhéneuc, Houari Sahraoui, and Farouk Zaidi. Fingerprinting
design patterns. In Proceedings of the 11th Working Conference on Reverse
Engineering, pages 172–181, Washington, DC, USA, 2004. IEEE Computer
Society.

[37] Yann-Gaël Guéhéneuc, Jean-Yves Guyomarc’h, Khashayar Khosravi, and
Houari Sahraoui. Design patterns as laws of quality. In Object-Oriented
Design Knowledge: Principles, Heuristics and Best Practices, pages 1–35.
University of Montreal, 2005.

[38] Maen Hammad, Michael L. Collard, and Jonathan I. Maletic. Measuring class
importance in the context of design evolution. In Proceedings of the IEEE
18th International Conference on Program Comprehension, pages 148–151.
IEEE Computer Society, 2010.

[39] Richard Hamming. Error detecting and error correcting codes. BELL system
technical journal, pages 147–160, 1950. ISSN 0005-8580.

[40] Salima Hassaine, Yann-Gaël Guéhéneuc, Sylvie Hamel, and Giuliano Anto-
niol. Advise: Architectural decay in software evolution. In Proceedings of
the 16th European Conference on Software Maintenance and Reengineering,
pages 267–276. IEEE Computer Society, 2012.

106

[41] Ahmed E. Hassan. Predicting faults using the complexity of code changes.
In Proceedings of the 31st International Conference on Software Engineering,
pages 78–88, Washington, DC, USA, 2009. IEEE Computer Society.

[42] Ahmed E. Hassan and Richard C. Holt. Predicting change propagation in
software systems. In Proceedings of the 20th IEEE International Conference
on Software Maintenance, pages 284–293. IEEE Computer Society, 2004.

[43] Ahmed E. Hassan and Richard C. Holt. The top ten list: Dynamic fault
prediction. In Proceedings of the 21st IEEE International Conference on
Software Maintenance, pages 263–272. IEEE Computer Society, 2005.

[44] Les Hatton. How accurately do engineers predict software maintenance tasks?
Computer, pages 64–69, 2007.

[45] Lorin Hochstein and Mikael Lindvall. Combating architectural degeneration:
a survey. Information Software Technology, pages 643–656, 2005.

[46] Claudia Iacob. A design pattern mining method for interaction design. In
Proceedings of the 3rd ACM SIGCHI symposium on Engineering interactive
computing systems, EICS ’11, pages 217–222. ACM, 2011.

[47] Fehmi Jaafar, Guéhéneuc Yann-Gaël, Sylvie Hamel, and Antoniol Antoniol.
An exploratory study of macro co-changes. In Proceedings of the 18th Work-
ing Conference on Reverse Engineering (WCRE), pages 325–334. ACM, 2011.

[48] Fehmi Jaafar, Salima Hassaine, Yann-Gael Gueheneuc, Sylvie Hamel, and
Bram Adams. On the relationship between program evolution and fault-
proneness: An empirical study. In Proceedings of the 17th European Confer-
ence on Software Maintenance and Reengineering, pages 15–24, Washington,
DC, USA, 2013. IEEE Computer Society.

[49] Fehmi Jaafar, Guéhéneuc Yann-Gaël, Sylvie Hamel, and Foutse Khomh. Min-
ing the relationship between anti-patterns dependencies and fault-proneness.
In Proceedings of the Working Conference on Reverse Engineering (WCRE).
ACM, 2013.

[50] Huzefa Kagdi and Jonathan I. Maletic. Software repositories: A source for
traceability links. In in Proceedings of 4th ACM International Workshop on
Traceability in Emerging Forms of Software Engineering, pages 22–23. IEEE
Computer Society, 2007.

[51] Huzefa Kagdi, Jonathan I. Maletic, and Bonita Sharif. Mining software repos-
itories for traceability links. In Proceedings of the 15th IEEE International
Conference on Program Comprehension, pages 145–154. IEEE Computer So-
ciety, 2007.

107

[52] Md Enamul Karim, Andrew Walenstein, Arun Lakhotia, and Laxmi Parida.
Malware phylogeny generation using permutations of code. Journal in Com-
puter Virology, pages 13–23, 2005.

[53] David Kawrykow and Martin P. Robillard. Non-essential changes in version
histories. In Proceeding of the 33rd International Conference on Software
Engineering, pages 351–360. ACM, 2011.

[54] Foutse Khomh, Massimiliano Di Penta, Yann-Gaël Guéhéneuc, and Giuliano
Antoniol. An exploratory study of the impact of antipatterns on class change-
and fault-proneness. Empirical Softw. Engg., 17(3):243–275, 2012.

[55] Foutse Khomh, Massimiliano Di Penta, Yann-Gaël Guéhéneuc, and Guiliano
Antoniol. An exploratory study of the impact of antipatterns on class change-
and fault-proneness. Empirical Software Engineering, pages 243–275, 2012.

[56] Doug Kimelman, Marsha Kimelman, David Mandelin, and Daniel M. Yellin.
Bayesian approaches to matching architectural diagrams. Software Engineer-
ing, IEEE Transactions on, pages 248–274, 2010.

[57] SB Kotsiantis, ID Zaharakis, and PE Pintelas. Supervised machine learning:
A review of classification techniques. Frontiers in artificiel intelligence and
applications, pages 3–24, 2007.

[58] Segla Kpodjedo, Filippo Ricca, Philippe Galinier, and Giuliano Antoniol.
Recovering the evolution stable part using an ecgm algorithm: Is there a
tunnel in mozilla? In European Conference on Software Maintenance and
Reengineering, pages 179–188, 2009.

[59] Segla Kpodjedo, Filippo Ricca, Philippe Galinier, Yann-Gaël Guéhéneuc, and
Giuliano Antoniol. Design evolution metrics for defect prediction in object
oriented systems. Empirical Software Engineering, 16(1):141–175, 2011.

[60] Segla Kpodjedo, Filippo Ricca, Philippe Galinier, Giuliano Antoniol, and
Yann-Gaël Guéhéneuc. Studying software evolution of large object-oriented
software systems using an etgm algorithm. Journal of Software Maintenance
and Evolution: Research and Practice, pages 139–163, 2013.

[61] D. L. Lanning and T. M. Khoshgoftar. Canonical modelling of software
complexity and fault correction activity. In Proceedings of IEEE International
Conference on Software Maintenance, pages 374–381, Victoria, 1994.

[62] Michele Lanza and Stéphane Ducasse. Understanding software evolution
using a combination of software visualization and software metrics. In Pro-
ceedings of LMO 2002 (Languages and Models with Objets, pages 135–149.
Lavoisier, 2002.

108

[63] Michele Lanza and Radu Marinescu. Object-Oriented Metrics in Practice.
Springer-Verlag, 2006.

[64] James Law and Gregg Rothermel. Whole program path-based dynamic im-
pact analysis. In Proceedings of the 25th International Conference on Software
Engineering, pages 308–318. IEEE Computer Society, 2003.

[65] M. M. Lehman. Laws of software evolution revisited. In Proceedings of the 5th
European Workshop on Software Process Technology, pages 108–124, 1996.

[66] M. M. Lehman. Feedback in the software evolution process. Information and
Software Technology, pages 681–686, November 1996.

[67] M. M. Lehman and L. A. Belady. Software Evolution - Processes of Software
Change. Academic Press London, 1985.

[68] Vladimir I. Levenshtein. Binary codes capable of correcting deletions, inser-
tions, and reversals. Cybernetics and Control Theory, 10(8):707–710, 1966.

[69] Wei Li and Raed Shatnawi. An empirical study of the bad smells and class
error probability in the post-release object-oriented system evolution. Journal
of Systems and Software, 80(7):1120–1128, 2007.

[70] Andrian Marcus, Denys Poshyvanyk, and Rudolf Ferenc. Using the con-
ceptual cohesion of classes for fault prediction in object-oriented systems.
Software Engineering, IEEE Transactions on, pages 287–300, 2008.

[71] Radu Marinescu and Cristina Marinescu. Are the clients of flawed classes
(also) defect prone? In Proceedings of the IEEE 11th International Working
Conference on Source Code Analysis and Manipulation, pages 65–74, Wash-
ington, DC, USA, 2011. IEEE Computer Society.

[72] Audris Mockus, Roy T. Fielding, and James D. Herbsleb. Two case studies
of open source software development: Apache and mozilla. ACM Trans. on
Software Engineering and Methodology, 11(3):309–346, 2002.

[73] Raimund Moser, Witold Pedrycz, and Giancarlo Succi. A comparative anal-
ysis of the efficiency of change metrics and static code attributes for defect
prediction. In Proceedings of the 30th international conference on Software
engineering, pages 181–190, New York, NY, USA, 2008. ACM.

[74] Nachiappan Nagappan and Thomas Ball. Use of relative code churn measures
to predict system defect density. In Proceedings of the 27th international
conference on Software engineering, pages 284–292. ACM, 2005.

109

[75] Stephan Neuhaus, Thomas Zimmermann, Christian Holler, and Andreas
Zeller. Predicting vulnerable software components. In Proceedings of the 14th
ACM conference on Computer and communications security, pages 529–540.
ACM, 2007.

[76] Steffen Olbrich, Daniela S. Cruzes, Victor Basili, and Nico Zazworka. The
evolution and impact of code smells: A case study of two open source systems.
In Proceedings of the 3rd International Symposium on Empirical Software
Engineering and Measurement, pages 390–400, Washington, DC, USA, 2009.
IEEE Computer Society.

[77] Thomas J. Ostrand, Elaine J. Weyuker, and Robert M. Bell. Predicting the
location and number of faults in large software systems. IEEE Transaction
on Software Engineering, pages 340–355, 2005.

[78] David Lorge Parnas. Software aging. In Proceedings of the 16th International
Conference on Software Engineering, pages 279–287, Los Alamitos, CA, USA,
1994. IEEE Computer Society Press.

[79] Dewayne E. Perry and Alexander L. Wolf. Foundations for the study of
software architecture. SIGSOFT Software Engineering Notes, pages 40–52,
1992.

[80] B. Pietrzak and B. Walter. Leveraging code smell detection with inter-smell
relations. Extreme Programming and Agile Processes in Software Engineer-
ing, pages 75–84, 2006.

[81] Roger S. Pressman. Software Engineering – A Practitioner’s Approach.
McGraw-Hill Higher Education, November 2001.

[82] Daniel Ratiu, Stéphane Ducasse, Tudor Gı̂rba, and Radu Marinescu. Us-
ing history information to improve design flaws detection. In Proceedings
of the Eighth Euromicro Working Conference on Software Maintenance and
Reengineering, pages 223–233. IEEE Computer Society, 2004.

[83] Brian Wilkerson Rebecca Wirfs-Brock and Lauren Wiener, editors. Designing
Object-Oriented Software. Academic Press Professional, Inc., 1990.

[84] Arthur J. Riel. Object-Oriented Design Heuristics. Addison-Wesley, 1996.

[85] C. J. Van Rijsbergen. Information Retrieval. Butterworth-Heinemann, New-
ton, MA, USA, 2nd edition, 1979.

[86] Daniele Romano, Paulius Raila, Martin Pinzger, and Foutse Khomh. Analyz-
ing the impact of antipatterns on change-proneness using fine-grained source

110

code changes. Working Conference on Reverse Engineering, pages 437–446,
2012.

[87] Joseph R. Ruthruff, John Penix, J. David Morgenthaler, Sebastian Elbaum,
and Gregg Rothermel. Predicting accurate and actionable static analysis
warnings: an experimental approach. In Proceedings of the 30th international
conference on Software engineering, pages 341–350, New York, NY, USA,
2008. ACM.

[88] Dimitrios Settas, Antonio Cerone, and Stefan Fenz. Enhancing ontology-
based antipattern detection using bayesian networks. Expert Systems with
Applications, pages 9041–9053, 2012.

[89] SyedMuhammadAli Shah and Maurizio Morisio. Complexity metrics signifi-
cance for defects: An empirical view. In Proceedings of the 2012 International
Conference on Information Technology and Software Engineering, pages 29–
37. Springer Berlin Heidelberg, 2013.

[90] David J. Sheskin. Handbook of Parametric and Nonparametric Statistical
Procedures. Chapman & Hall/CRC, 2007.

[91] Emad Shihab, Nicolas Bettenburg, Bram Adams, and Ahmed E. Hassan. On
the central role of mailing lists in open source projects: an exploratory study.
In Proceedings of the international conference on New frontiers in artificial
intelligence, pages 91–103, Berlin, Heidelberg, 2010. Springer-Verlag.

[92] Gagandeep Singh and Hardeep Singh. Effect of software evolution on metrics
and applicability of lehman’s laws of software evolution. SIGSOFT Software
Enggineering Notes, pages 1–7, 2013.

[93] Jacek Sliwerski, Thomas Zimmermann, and Andreas Zeller. When do changes
induce fixes? In Proceedings of the 2005 International Workshop on Mining
Software Repositories MSR 2005 Saint Louis Missouri USA, May 17 2005.

[94] Ian Sommerville. Software Engineering. Addison-Wesley, sixth edition, 2000.

[95] Foutse Khomh, Yann-Gaël Guéhéneuc, and Giuliano Antoniol. Playing roles
in design patterns: An empirical descriptive and analytic study. In Kostas
Kontogiannis and Tao Xie, editors, Proceedings of the 25th International Con-
ference on Software Maintenance (ICSM), pages 83–92. IEEE Computer So-
ciety Press, September 2009.

[96] Naouel Moha, Yann-Gaël Guéhéneuc, Laurence Duchien, and Anne-
Françoise Le Meur. DECOR: A method for the specification and detection of
code and design smells. Transactions on Software Engineering (TSE), pages
1–17 pages, 2009.

111

[97] E. Van Emden and L. Moonen. Java quality assurance by detecting code
smells. In Proceedings of the Ninth Working Conference on Reverse En-
gineering (WCRE’02), pages 97–106, Washington, DC, USA, 2002. IEEE
Computer Society.

[98] Jilles van Gurp, Sjaak Brinkkemper, and Jan Bosch. Design preservation over
subsequent releases of a software product: a case study of baan erp: Practice
articles. J. Software Maintenance and Evolution, pages 277–306, 2005.

[99] Adam Vanya, Steven Klusener, Nico van Rooijen, and Hans van Vliet. Char-
acterizing evolutionary clusters. In Proceedings of the 16th Working Confer-
ence on Reverse Engineering, pages 227–236. IEEE Computer Society, 2009.

[100] Adam Vanya, Rahul Premraj, and Hans van Vliet. Approximating change
sets at philips healthcare: A case study. In Proceedings of the 15th Euro-
pean Conference on Software Maintenance and Reengineering, pages 121–130.
IEEE Computer Society, 2011.

[101] Marek Vokavc. Defect frequency and design patterns: An empirical study of
industrial code. IEEE Trans. Software Eng., 30:904–917, 2004.

[102] Bruce F. Webster. Pitfalls of Object Oriented Development. M & T Books,
1st edition, 1995.

[103] B.J. Williams and J.C. Carver. Characterizing software architecture changes:
An initial study. In Empirical Software Engineering and Measurement, 2007.
ESEM 2007. First International Symposium on, pages 410 –419, 2007.

[104] Rebecca Wirfs-Brock and Alan McKean. Object Design: Roles, Responsibil-
ities and Collaborations. Addison-Wesley Professional, 2002.

[105] Zhenchang Xing and Eleni Stroulia. Data-mining in support of detecting
class co-evolution. In 16th Internatioanl Conferance on Software Engineering
and Knowledge Engineering, pages 123–128. Citeseer, 2004.

[106] Zhenchang Xing and Eleni Stroulia. Analyzing the evolutionary history of
the logical design of object-oriented software. Transactions on Software En-
gineering, 31:850–868, 2005.

[107] Zhenchang Xing and Eleni Stroulia. Umldiff: an algorithm for object-oriented
design differencing. In Proceedings of the 20th International Conference on
Automated Software Engineering, pages 54–65. ACM Press, 2005.

[108] Zhenchang Xing and Eleni Stroulia. Bottom-up design evolution concern
discovery and analysis. Technical report, University of Alberta, 2007.

112

[109] Aiko Yamashita and Leon Moonen. Do code smells reflect important main-
tainability aspects? In International Conference on Software Maintenance
(ICSM), pages 306–315. IEEE, 2012.

[110] Robert K. Yin. Case Study Research: Design and Methods - Third Edition.
SAGE Publications, London, 2002.

[111] Annie T. T. Ying, Gail C. Murphy, Raymond Ng, and Mark C. Chu-Carroll.
Predicting source code changes by mining change history. Transactions on
Software Engineering, pages 574–586, 2004.

[112] He (Jason) Zhang, Juan Li, Liming Zhu, Ross Jeffery, Jenny Liu, and Qing
Wang. Investigating dependencies in software requirements for change prop-
agation analysis. Information and Software Technology, pages 1–18, 2013.

[113] Yu Zhou, Michael Würsch, Emanuel Giger, Harald C. Gall, and Jian Lü. A
bayesian network based approach for change coupling prediction. In Proceed-
ings of the 15th Working Conference on Reverse Engineering, pages 27–36.
IEEE Computer Society, 2008.

[114] Thomas Zimmermann and Nachiappan Nagappan. Predicting defects using
network analysis on dependency graphs. In Proceedings of the 30th Interna-
tional Conference on Software Engineering, pages 531–540. ACM, 2008.

[115] Thomas Zimmermann, Peter Weisgerber, Stephan Diehl, and Andreas Zeller.
Mining version histories to guide software changes. In Proceedings of the
26th International Conference on Software Engineering, pages 563–572. IEEE
Computer Society, 2004.

[116] Thomas Zimmermann, Silvia Breu, Christian Lindig, and Benjamin Livshits.
Mining additions of method calls in argouml. In Proceedings of the Inter-
national Workshop on Mining Software Repositories, pages 169–170. ACM
Press, 2006.

[117] Thomas Zimmermann, Rahul Premraj, and Andreas Zeller. Predicting de-
fects for eclipse. In Proceedings of the Third International Workshop on Pre-
dictor Models in Software Engineering, pages 9–16, Washington, DC, USA,
2007. IEEE Computer Society.

APPENDIX A

DEFINITIONS OF METRICS AND QUALITY ATTRIBUTES

This Appendix presents the definitions of the quality attributes [7, 32, 37], and
all the metrics used in this dissertation.

A.1 Metrics

Total Lines of Code (TLOC): Measures the total number lines of code of class.

Fan out (FOUT): Measures the number of method calls of a class.

Nested Block Depth (NBD): Measures the nested block depth of the methods in
a class.

Number of Parameters (PAR): Measures the number of parameters of the methods
in class.

McCabe Cyclomatic Complexity (VG): Measures the McCabe cyclomatic com-
plexity of the methods in a class.

Number of Fields (NOF): Measures the number of fields of the classes.

Number of Methods (NOM): Measures the number of methods of the classes.

Total Prior Changes (TPC): Measures the total number of changes to a class in
the 6 months before the release.

Prior Bug Fixing Changes (BFC): The number of bug fixing changes done to a
class in the 6 months before the release.

Pre-release faults (PRE): The number of pre-release faults in a class in the 6
months before the release.

Post-release defects (POST): The number of post-release defects in a class in the
6 months after the release.

A.2 Quality Attributes

• Attributes related to design:

− Expandability: The degree to which the design of a system can be
extended.

114

− Simplicity: The degree to which the design of a system can be under-
stood easily.

− Reusability: The degree to which a piece of design can be reused in
another design.

• Attributes related to implementation:

− Learnability: The degree to which the code source of a system is easy
to learn.

− Understandability: The degree to which the code source can be un-
derstood easily.

− Modularity: The degree to which the implementation of the functions
of a system are independent from one another.

• Attributes related to runtime:

− Generality: The degree to which a system provides a wide range of
functions at runtime.

− Modularity at runtime: The degree to which the functions of a sys-
tem are independent from one another at runtime.

− Scalability: The degree to which the system can cope with large amount
of data and computation at runtime.

− Robustness: The degree to which a system continues to function prop-
erly under abnormal conditions or circumstances.

APPENDIX B

DEFINITIONS OF CODE SMELLS AND ANTI-PATTERNS

This Appendix presents the definitions of code smells and anti-patterns studied
in this dissertation.

B.1 Code Smells

In this dissertation we focused on the following code smells:

AbstractClass: this code smell is characteristic of the Speculative Generality
Anti-pattern. This odor exists when we have generic or abstract code that
isn’t actually needed today. Such code often exists to support future behavior,
which may or may not be necessary in the future.

ChildClass: this code smell occurs when the number of methods declared in a
class and the number of it’s declared attributes is very high. It is a symptom of
poor object decomposition. The public interface of the class differing greatly
from the one of its super-class. This code smell characterises the Tradition
Breaker antippatern.

ClassGlobalVariable: this code smell occurs when a class declares public class
variable that are used as “global variable” in procedural programming.

ClassOneMethod: this code smell occurs when a class has only one method.

ComplexClassOnly: this code smell is present when a class both declares many
fields and methods and which methods realise complex treatments, using
many if and switch instructions. Such a class is probably providing lots of
services while being difficult to maintain and fragile due to its complexity.

ControllerClass: this odor is present when a class monopolises most of the
processing done by a system, takes most of the decisions, and closely directs
the processing of other classes.

DataClass: this code smell is present when a class contains only data and per-
forms no processing on these data. It is composed of highly cohesive fields
and accessors.

FewMethod: this code smell characterise Lazy classes that declare few methods.

FieldPrivate: this code smell is present when many private fields are declared.
It’s generally symptomatic of the Functional Decomposition antipattern.

116

FieldPublic: this code smell is symptomatic of the Class Data Should Be Pri-
vate antippatern. It occurs when the data encapsulated by a class is public,
thus allowing client classes to change this data without the knowledge of the
declaring class.

LargeClass: this odor concerns classes that are trying to do too much. These
classes do not follow the good practice of divide-and-conquer which consists
of decomposing a complex problem into smaller problems. These classes also
have low cohesion.

LargeClassOnly: this code smell concerns classes with a very high number of
attributes and/or methods defined.

LongMethod: this odor is a method with a high number of lines of code. A lot
of variables and parameters are used. Generally, this kind of method does
more than its name suggests it.

LongParameterListClass: this odor corresponds to a method with high num-
ber of parameters. This smell occurs when the method has more than four
parameters. Long lists of parameters in a method, though common in proce-
dural code, are difficult to understand and likely to be volatile.

LowCohesionOnly: this code smell characterises the lack of cohesion in a class.

ManyAttributes: this code smell occurs when the number of attributes declared
in a class is too high.

MessageChainsClass: this code smell is present when you see a long sequence
of method calls or temporary variables to get some data. This chain makes
the code dependent on the relationships between many potentially unrelated
objects.

MethodNoParameter: this code smell occurs when a class declares methods
with no parameter.

MultipleInterface: this code smell occurs when a class implements a high num-
ber of interfaces. It is generally symptomatic of the Swiss Army Knife an-
tipattern.

NoInheritance: this odor is present when inheritance is scarcely used.

NoPolymorphism: this odor is present when polymorphism is scarcely used.

NotAbstract: this odor occurs when a developer haven’t yet seen how a higher-
level abstraction can clarify or simplify his code.

117

NotClassGlobalVariable: this odor manifest itself in the anipattern Anti-Singleton
when a class declares public class variable that are used as “global variable”
in procedural programming. It reveals procedural thinking in object-oriented
programming and may increase the difficulty to maintain the system.

NotComplex: this code smell characterises classes performing “atomic” func-
tionality, with little complexity.

OneChildClass: this code smell occurs when a class does not have child class.

ParentClassProvidesProtected: this code smell occurs when a subclass does
not use attributes and/or methods protected inherited by a parent.

RareOverriding: this code smell occurs when a class rarely overrides inherited
attributes and/or methods.

TwoInheritance: this odor characterises a hierarchy with a depth greater than
two.

B.2 Anti-patterns

This dissertation focused on the following anti-patterns:

Anti-Singleton: it is a class that declares public class variable that are used as
“global variable” in procedural programming. It reveals procedural thinking
in object-oriented programming and may increase the difficulty to maintain
the system.

Blob: (called also God class [84]) corresponds to a large controller class that
depends on data stored in surrounded data classes. A large class declares
many fields and methods with a low cohesion. A controller class monopolises
most of the processing done by a system, takes most of the decisions, and
closely directs the processing of other classes [104].

Class Data Should Be Private: it occurs when the data encapsulated by a
class is public, thus allowing client classes to change this data without the
knowledge of the declaring class.

Complex Class: it is a class that both declares many fields and methods and
which methods realise complex treatments, using many if and switch instruc-
tions. Such a class is probably providing lots of services while being difficult
to maintain and fragile due to its complexity.

Large Class: it is a class with too many responsibilities. This kind of class
declares a high number of usually unrelated methods and attributes.

118

Lazy Class: it is a class that does not do enough. The few methods declared by
this class have a low complexity.

Long Method: it is a method with a high number of lines of code. A lot of
variables and parameters are used.Generally, this kind of method does more
than its name suggests it.

Long Parameter List: it corresponds to a method with high number of param-
eters. This smell occurs when the method has more than four parameters.

MessageChains: it Occurs when you have a long sequence of method calls or
temporary variables to get some data. This chain makes the code dependent
on the relationships between many potentially unrelated objects [28].

Speculative Generality: it is an abstract class without child classes. It was
added in the system for future uses and this entity pollutes the system un-
necessarily.

Swiss Army Knife: it refers to a tool fulfilling a wide range of needs. The
Swiss Army Knife design smell is a complex class that offers a high number
of services, for example, a complex class implementing a high number of
interfaces. A Swiss Army Knife is different from a Blob, because it exposes
a high complexity to address all foreseeable needs of a part of a system,
whereas the Blob is a singleton monopolising all processing and data of a
system. Thus, several Swiss Army Knives may exist in a system, for example
utility classes.

The Refused Parent Bequest: it appears when a subclass does not use at-
tributes and/or methods public and/or protected inherited by a parent. Typ-
ically, this means that the class hierarchy is wrong or badly organized.

The Spaghetti Code: it is an anti-pattern that is characteristic of procedu-
ral thinking in object-oriented programming. Spaghetti Code is revealed
by classes with no structure, declaring long methods with no parameters,
and utilising global variables for processing. Names of classes and meth-
ods may suggest procedural programming. Spaghetti Code does not exploit
and prevents the use of object-orientation mechanisms, polymorphism and
inheritance.

