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INTRODUCTION |

1.Introduction

91% of the Software Projects used SOAP and REST Protocols Used In Google Map APIs
web services

2%

m REST
SOAP W REST
M JavaScript W SOAP
m XML -RPC W POST
Java Script

M Other

Source : programableweb.com 4
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Removing Flaws and Improving Source Code Quality

e Design Pattern is a general , reusable solution - Antipatterns are commonly generated
to a commonly occurring problem with in a Solution of design/ code problems that may
given context in software design [32] . have negative impact [1].
Abstraction Deprecated statement usage — ;m%;g ;}isjszr/‘ecated statement
T Encapsulation Incomplete task K (app-studio o Inconsistent naming convention
Polymorphism * A P Complex expression
| $source_config = 'config.source' /

1

LOﬂg statement —*1 if $version == '44' or $version == '4.2' or $version != '4.5' or $version == '477.9'7{7J
9 case § operahngsystem {

“Tdebian' : {
apt: source{ 'packages.dotdeb.org-repo.app':
location => 'http://repo.app.com/dotdeb/"',
] -' : release =z S:{ll.sbdistcodename,
< 14 repos => 'all',
i —_— Missing default case A HCLUATRTE > Hrae
1 include_src => true \ Duplicate entity
}
nce 18 ; }
}

Missing conditional e elsif $version in ['33', '3.3'] {
}

if $::kernelversion =~ /A(2.2)/ {
$appversion = '3.5'

} elsif $::kernelversion =~ /"(2 1)/ {
exec {"download_app_studio"

command => ["wget Surl™,[

Class Improper quote usage

Object [einewst 5 0 e
) . / Unguarded variable
Improper alignment }
$version = '3.4' ? {undef => $primary_config_file, default => $source_config}
file { "/root/.app" - Invalid property value
_mode =3 '644', | ™ = 644
. (7507 5 Present | qgumm . Misplaced attribute
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Benefits of Detecting Antipatterns from SOA
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Catalogs of Antipatterns for SOA
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Relationship between Software Architecture and Programming
Paradigm

Software
Architecture

Involves

Involves

. Relies on
Relies on

Object-Oriented Service Oriented Service-Oriented

OO (Java, C++, Software Architecture
C#) Engineering SOA (SOAP, REST)
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Software Evolution
OOSE vs SOA

Change Request

Object Oriented / \

Software

System Release Impact Analysis ' '
engineering _ Y Software P VEL Se;\\:lce Srlsp;ed
[10,11,12,13,19, Evolution CQ

22,26,29,31] [21,2 i ,30]
System update Release Planning
w

First Published papers on SOA Antipatterns reported in 2013 by Moha [2].

Palma, F., Nayrolles, M., Moha, N., Guéhéneuc, Y. G., Baudry, B., & Jézéquel, J. M. (2013). Soa Antipatterns: An approach for
their specification and detection. International Journal of Cooperative Information Systems, 22(04), 1341004.
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Systematic Literature Review for Problem Identification

|Sn:ienn:e Darect -

@ 2,665 Articles
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[ B eview Abstracts ]
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Eeferenice Check for Additionall ‘
Important Articles (TnchisionExclusion Criteria |

R 2

FQua]it}' Aszessment Criteria |

.

Study Selection Based on
kevwords, Abstract, and Title

A

5

[ Unique Articles {300)

b,

{78 Final Studies Selected |  Step 3: 75 Studies |
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RQ1: What are the Classifications of the State-of-the-Art Techniques Employed in

the Detection of Bad Smells?

RQ2: How the State-of-the-art Approaches Evolved across Different Domains

Starting from Object Oriented to Service-based Systems?

RQ3: What are the Smells that are Reported for a Specific Domain?

RQ4: What is the Correlation between Smells across Domains?

RQ5: What are the Trends in Research for Bad Smells from the Year 2000 to 20177

12
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Finding of RQ1: Classification of State-of-the-Art Techniques

Studies Under
Review

(78 Studies)

Static source code Dynamic source code
Analysis analysis
(70 Studies) (8 Studies)
I I I I
Algorithm -based Methdoloaical source L . Empirical source Behavioral source
analysis code ar?alysis (9 Linguistic aInaIyS|s code analysis code analysis
(16 Studies) Studies) (5 studies) (23 studies) (17 studies
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Findings RQ2:Evolution of State of the Art Approaches

a) Source Code Metrics
b) Mining the Source Code using

SVN
: ] Bad Smell
C) Genetic Algorlthm Source Code Metrics | :> Detector
" 11 based on
d) Domain Specific Language P

e) PE-A (a) to (e)
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b)Smells Reported for SOA

Frequency

10

B God Object Web Service
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B Chatty Service

H Data Web Service

6 - B Duplicated Web Service
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4 B Whatever Types
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m Service Chain
0 - : : : : : : . .
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c) Smells Reported First time in Literature
= lOJN0) U - < U a
O o =
v O A A Voo v v

6] v Y N o4 v N O A N oA N

HvNHN
LDFINT
LSDASI
LFCWSDL
UCFISM

Z
[+ 2
-
O
>
O

LFEBAOD

\/

[5] v

*BSD (Breaking Self Descriptiveness), CN (Content Negotiation), CvCLRN (Contextualized vs. Contextless Resource Name), IMT (Ignoring Mime Type), IC (Ignoring
Cache), ISC (Ignoring Self Descriptiveness), FH (Forgetting Hypermedia), HYNHN (Hierarchal vs. Non-Hierarchical Node), TTG (Tunneling Through Get), TTP (Tunneling
Through Post), SPN (Singularized vs. Pluralized Nodes), MC (Misusing Cookies).
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RQ4: What is the Correlation between Smells across the

Paradigms?

Mapping Between SOA and OOSE
OOSE (Classes/Interface ) maps SOA ( service Interface)

Example | ‘

GOD Class maps God Object web Service

vV

Example 2

Data Class Maps Data Web Service

18
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RQ5: What are the Research Trends in the Domain of
Bad Smells?

Bad Smells Research ‘

Detection Approaches Trends ‘ Correction Impact of Bad Smell
— Image Processing — Development History ~{ Maintainance
— Execution Traces — Genentic Algorithm — Change-proneness
= Linguistic Analysis — System Performance
— Versioning Histoy - Code Quality
~{ Machine Learning — Evolution

19
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Findings from SLR

18
16 A 16
14

—ill— O 0OSWE SOA / \

10 -/.(/ \\ A"
0N/ O\
ahiuki s\

—r‘{-‘ﬂi" m,"!/; ﬁht{-}
(o]

o N B O ©

{1}."‘./{1}

Year
2001
2002
200

2004
2005
2006
2007
2008
2009
2011
2012
2013
2014
2015
2016
2017

Sabir, F., Palma, F., Rasool, G., Guéhéneuc, Y. G., & Moha, N. (2019). A systematic literature review on the detection
of smells and their evolution in object-oriented and service-oriented systems. Software: Practice and Experience,

49(1), 3-39. Impact Factor 1.33
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3. Research Gaps

-
OQOSE

* 98% studies
reported

\

-
SOAP Web Services

* Smells reported for SOAP
takes less attention

[3][4][1€]

e

SOA

9 Studies reported for
SOA

. [2,3,4,5,6,14,15,16,21]

.

rREST Web services

* Smells reported for REST
takes less attention [5][6]

21
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4. Problem Statement

Specification, Detection, Evolution and Correction of Antipatterns for Web Services

Problem | Variable threshold adaptation for multiple services

Problem 2 Evolution of Services

Problem 3 Correction of REST Antipatterns

Problem 4 Correction of REST Linguistic Antipatterns

23
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5. Proposed Methodology

SODAR for
Evolution

Variable
Threshold Use Trace

Correction of

ALL REST Apply NLP to

History correct URI

Adaptation

Antipatterns

Evaluation

from Industry Accuracy 76%
Accuracy 94%

Applied based Use Version
on Industry Number for
standards Changes

SWAD (Specification of Web Service Antipatterns Detection), SOCAR (Service Oriented Correction of Antipatterns for REST APIs), COLAR (Correction of REST Linguistic Antipatterns)

Available on SOFA.UQAM.CA
Available on PTIDEJ 25
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Problem 1. Variable Threshold Adaptation from Multiple
Technologies.

26
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Specification and Detection from SOAP Web Services
Antipatterns .

Web Service Architecture

WS DL
- — Crocummeaent —
— T,
- e,

-~ ",
& Ty
ra LY
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' LY
i %

g L LY i

f Request \
I L
.i. 1

Clissnk Vieh Service
Application Prowvider

\ SOAaAP
Response
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State of the Art Approaches
Antipatterns Detection from SOAP Web Services

4 )
SODA-W « WSDL Antipatterns Detection

[ICSOC 2015] [ 6Antipatterns Reported
 Publically Available
B3

J

4 \' WSDL Antipatterns Detection
PE-A « OOSE Antipatterns Detection

: « 7 Antipatterns Detected
[IEEETransactlon ZOIS] * Not Available Publically

[4] « Manual Detection Procedure

\_ N
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SWAD(Specification of Web Service Antipatterns Detection )

-

L
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Detection Engine
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' Hrrp

‘ Consume data \
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Example of God Object Web Service

Client Client Client Client Client Client

Invoke

’ Invoke
Service Contract

getClimateAnatysisDay()

Il Web service getCommonValueMonth()
! getClimateExtremeValueDay()
ATT TN, XML/JSON/HTTP gelRainfallAnalysisHour()
e * re getCurrentWeather()
\ guest

J \ ” getSnowCover()

! ] = |

= {Q}: """ v Many Methods

' Y — v Very Low Cohesion

v High Response Time

p "
. API ’ XML/JSON/HTTP Internal / Low Availability

- - response system

APl requests H APl response

=Sd=

Server/Data Source

Antipatterns
Detection Engine

!

Antipatterns Detection based
on rules
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SWAD Key Features

» Variable threshold adaptation

» Multilingual analysis of Code-First and Contract-First

» Adaptability for NLP techniques for Chinese ,Korean and French Dialect.
- Industrial usage for Code-First and Contract-First

- Precision 89% and Recall 85%

- One new Antipattern reported in already existing Catalog.

Fatima Sabir, Ghulam Rasool, Maria Yousaf (2017), "A Lightweight Approach for Specification and Detection of SOAP Anti-
Patterns ", International Journal of Advanced Computer Science and Applications, pp: 455-467, Vol: 8, Issue: 5, Standard:
2156-5570 31
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Problem 2. Evolution of Antipatterns with Evolution of
Services .

32
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Forgetting Hypermedia Antipattern

DropBox Server Response 1-

Header: |
x—Trame—options= | SAME EIH‘[G]‘\_ .

x—dropbox—request—id=b9a25269beh2eT5faTdTe2 1 1638bb9d ],

Ii-*“:rnl'nn.r.t]-c’u'n—“-.s_i,p—enl 1we -\{-_
Server=[nginx], _
pragma=|no—cac he . \G\ﬂ

cache—control=[no—cac I1r*%

x—server—response—time=[G4]

\.—dln-phn:-'. http—protocol=| '\.-’JmJ 10
set—cookie=| gve=M iExODUyMTE -

ﬁ_erHr_'-:. =Tue, 26 Mar 2019 18: 3414 GMT],

Transfer—FEncoding=[chunked

Date=[Thu, 27 Mar 2014 18: 31 14 GMT],

Content—Tyvpe=[application/j son],
X—Requestld=[c64da98881e565a00abdd9acceadf049]

Body: |
]"]d"-\.vl"l. : Fﬂ'drﬂﬂl_ TE55Ted43261 bddefeca92hab™
r"i_'-. ision + 2,
I:"'L". : :"ll_-_cl:udlﬂ'
1_hL|mh exists”: f..-ll'L.-'l'_"
“"bvtes : 'f} .
modified”: "Tue, 28 Jan 2014 21:45:31 +00007,

:THlli Z# "'1(51
15_dly - Lrua,ﬂ
“icon”: Tfolder”, '{!H"‘% .
sroot”: “dropbox”, n\\ 0\3\"
-:_ul'll'.r_tﬂ_'a ? ‘& ‘;\
rev ]-.-II':-I:'l :oa. RD
“rev”: fa]{-t-ﬁ':m]‘»] 10'
“thumb_exists": False,
|.:-‘_|-1{""-. Do .
JrltJd]FILcl Tue, 28 Jan 2014 21:46:30 CICICICI
l'_|.]LI'I|'_ m1_1m|_ o Tue, 28 Jan 2004 Z1:46: an”

"path”: “/test/test. txt
wls dir : false,

it e T u-'l-\. 1t e

Header: |

DropBox Server Response 2:

x—fFrame—options=[SAMEORIGIN],
'—drr‘.-phn:-: request—id=[cdl12e]1e844327464485842b11b53007 1]
Connection=|keep—alive],
Server= I:nf_,lrn-.J
pragma= | no—cache |,
cache—control=no—c e—]l.'hrfi[
x—server—response—time=[ 1107
x—dropbox—http—protocol=[None],

set—cookie=[gvc 'k]waNTk\.E}JK;.-""-. |l'ﬁ}'-.- ......
expires=Sat, 06 Apr 2019 22° t47 {".1T
TransTer—Encoding=| chunke {]

Date=[Maon, 07 Apr 2014 22: AT GMT],

Cont I:'[l'I._T_.-[]E"—[ applications 'I*'-.I2:lI!]
¥—Requestld= I—-:].JDEHEJS‘HC' 1dad22450335Fd3¢71d309]

-,

: _1 |'nl-;Jr
:ui:i : 11hh'—?ﬂ3{:|1

country’ f'-'l. u{\ o
aquota infa™: '.-.. DK
Ldatastgres”: 0, '

. — PPRy——
Lohttps://db. L/ AaW jPOH . ]

“share d 293074019,
Tquota’ EldrdHdeH,
) norma l LB6R1304356
3 [‘HI'I_'I”__:‘. null, . .
email *francis. polymt lidyvahoo, ca
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Evolution of Antipatterns in REST APIs

 Detection of Antipatterns from REST APIs already reported in
literature

 As per the findings of SLR no study reported for the evolution of
Antipatterns across different REST APIs.

e There is a need to identify that how Antipatterns are evolved
w.r.t time .

 How major REST API providers refactor them ?

34
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Evolution History for Antipatterns ldentification

RQ1 :When Antipatterns are introduced ?
RQ2: How Antipatterns are evolved from 2015 to 2017 ?
RQ3:How Major Service providers remove Antipatterns?

35
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Characteristics of Ecosystem Under Analysis

St.No REST API Name Available version Monthly Active User
1 Facebook.com version 2.3 to version 2.10 1.94 billion
2 Youtube.com Revision history from 2013 to 2017 1 billion
3 Alchemy.com version 1 Not Available
4 Bitly.com version 3 is available 13,530
5 Charlieharvey.com \ersion 1 Not Avaialble
6 Ohloh.com Version 1.0 669,601
7 musicgraph.com version 2 1 billion
8 Dropbox.com version 1 and version 2 500 million
9 Instagram.com version 2 is available with changelog 319 million
10 Twittet.com version 1 with complete changelog 600 million
1 Teamviewer.com complete complete change log 300 million
Stackaexchange version 2.0,2.1,2.2 is available 345 million Wge(:hangehg

3= Achemyar” @8R bitly MINANNINATN 22 I EZ2XE=aErr2 Ohloh

| T 8 == =
[‘3 Team\VVievwer f;, YD u Tllhe Za PPOos = G% '9"“‘“9"‘““‘ StackExchan ge
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Research Methodology used for REST Antipatterns Evolution

Antipatterns
SODA—R Detection |
2015/2017 Antipatterns
Instances
Trace History —I—’ Change History
2015/2017
Stepl | RQ1: When Antipatterns Are Introduced?

Extracting Data
from Change History

Corrected Antipatterns

Traces
Request/ Response

Analysis of Request
/Response

Step2 RQ2:How Antipatterns are evolved ?
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RESULTS

When Antipatterns are Introduced?
Step 1

Breaking ing '9noring Ignoring | Ignoring| Misusing | xeelive
APl Name Sl [DEsE - MIme | giatus Code| Cache | Cookie | Unnelin Change
tiveness Type C2)

(=]

Alchemy 2015

2017
Music Graph | 2015

2017
Bitly 2015

2017
DropBox 2015

2017
Twitter 2015

2017
Youtube 2015

2017
CharliHavery| 2015

2017

2017

i
.

O OO O|hd Ol Ol DMD|Oo o1|o o

\[o]
Applicable

.
=OOOOOOOOOOOOOO
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How Antipatterns are Evolved?
Step 2

StackEx 2.0 53 0 0 0 1
change

s 2.1 0 53 0 0 0 1

53 0 0 0 1

2.2 0
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Real Time Traces for Antipatterns Evolution

Service name: ca.ugam.sofa.alchemy.api.”Alchemy
Method name: URLGetRankedNamedEntities
Path: /ecalls/url/URLGetRankedNamedEntities

Response:
Status Code : 301

Header: {x—frame—-options=[DENY], content—-type=[text/html], connection=[keep—-alive],
etag=["595ebaa0-303"], location=[https://gateway—
a.watsonplatform.net/calls/url /URLGetRankedNamedEntities

Body: <PRE>Dear AlchemyAPI User,This is an important reminder about critical action that
needs to be taken before June 28th. To increase the security of our service, we are
discontinuing HTTP support for all AlchemyAPI endpoints.

This update requires vyvou to migrate all HTTP AlchemyAPI regquests to HTTPS.

To ensure your AlchemyAPI code continues to work properly, @
replace all instances of "http://access.alchemyapi.com" with "https://gateway-
a.watsonplatform.net". To give you another chance to migrate your AlchemyAPI requests,

since our February notification, we have pushed this action deadline back to June 28th at
12:00pm MDT. If you have any guestions or concerns, please contact the Alchemy support team
at support@alchemyapi .com.Regards, IBM Watson</PRE>

Request:

Header: {cache—control=[no—-cache], content—-type=[application/xml], connection=[keep—alive],
host=laccess.alchemyapi.com], accept=[application/xzml], get
Jcalls/url/urlgetrankednamedentities?url=http%3a%2f$2fwww.cnn.com32f2011%2f09%2f28%2fuss2fma

ssachusetts—pentagon—plot—
arrest2findex.html 33 fhpt$3dhp tl&apikey=01deB8l1f6011725a4d2880dabaedel 43b6%4ce973&outputmode
=json http/l.l=[null], user—agent=[Apache CXF 2.7.5], pragma=[no—cache]}
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RESULTS

Antipatterns Evolution for Youtube API
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Antipatterns Evolution for Alchemy API
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Antipatterns Evolution for Bitly API
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Findings

- Antipatterns are not removed by major service providers.

- Most of the Antipatterns are increased w.r.t time

- Correction of tunneling antipattern definition collected for Bitly.
- Correction of Mime type Antipatterns collected from Alchemy .

- Correction of Misusing Cookie and Breaking Self
Descriptiveness from INFO Q.

Real time traces will help to maintain request, response and
body of the REST API..
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Problem 3. Correction of Antipatterns for REST web
Services.
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How Antipatterns are Corrected for REST APIs?
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Evolution of Ignoring MIME Type Antipattern in Alchemy

Service name:

Ignoring Mime
ca.ugam.sofa.alchemy.api.Alchemy _lgn Dg d
Method name: URLGetText ype etecte

Path: fcalls/url/URLGetText (2015)

Requested Content content- /]
type=[application/xml] Service name: ) )
Response Returned content- | ca_ugam.sofa.alchemy.api.Alchem / ITgnoring Mime
type=[application/json ] v Type detected

Method name: URLGetText / (2016)
Path: /calls/url/URLGetText

Requested Content content-
type=[application/json]
Response Returned content-
type=[application/xmil ]

Ignoring Mime
Service name: Type Removed
zz:eu:,:m' sofa.alchemy.api.Al (2017) Extracting metadata
Method name: URLGetText / and providing correct

Trace History

Path: /calls/url/URLGetText mime type requested
Requested Content content- by Client

type=[application/xml] if(lIresponseMetaData.get("content-

Response Returned content-

type=[application/xmi | type").toLowerCase().contains(toDetect)) {

if(toDetect.equals("xml")){
responseMetaData.put("content-type",
"application/xml");

lelse if(toDetect.equals("json")){
responseMetaData.put('"content-type",
"application/json");

} 48
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SOCAR
Service Oriented Correction for Antipatterns for RESTful APIs

. . Client . . .-
Dynamic Invocation YW Correction Heuristic Algorithm

of
Client Request IplsllEntEhielifly] - = Service Oriented

»

Design Pattern

Possible Evolution Instances

Correction for
Antipatterns

Refactoring History of
Operations Antipatterns

Service
Metadata

Antipatterns
removal
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Refactoring Operations Performed for Antipatterns Correction

Ignoring Mime
Type Accept,Content Type Add Content-Type
Add Cache Control, Generate
Ignoring Cache Cache-Control,ETag _
Unique E-Tag for Request
Forgetting http-methods,entity _ _
Hypermedia location add links,metadata info, status code
i Request-header .
BreakingSelf- field,response-header Remove non standardized Header from
descriptiveness field Response
_ http method, status, Status code number and description
Ignoring Status - 1 4o 4 ceatus code de. change, replace method for code description
Sl scription, and number
o _ _ . Remove set-Cookie, cookie from
Misusing Cookie Cookie ,Set Cookie response metadata
Tunneling . remove access,update and delete
Through post http-method,request-uri from resource uri
Tunneling http-method,request- remove access,update and delete

. Through get uri from resource uri Antipattern remove 0
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Correction Algorithm For Forgetting Hypermedia Antipattern

Input: Ffrepe merhrod enrdevlinks formar, ernriry focariorn
(Cuatput: ey ik Desien Parrern
ey merhrod «— Ger, Pur, Pose, IDrelere;
ernriry links forrmrcoar arred, fsorr, predif, rddf, 1 ernwriny
firnkc «— Iimke, loocearior
il response. perstarusi )= THKTT O respronse. oelsStarts| =
TSK T themn
| remowve from detectiron and correction
el
iff response. gcerBod v ) arnd response. germeradaral ) == Nwull
Tthen
ifr checkliinksBodvl )«——xml _gsor, padlf rdf them
it cfreckd infMferaldraral j«—— locariorn, fink thwemn

=
-

ik derecred

it
clhreck l inkderal darel ). cornfains=2=kcaricorn, lirnk
e my
| rrreradara. addiAdd URE. dvrearmicalliv)

el

el
(el L |

el

T Forgerting Hyperrmedia Amnriparrerr Correciior
Aclding link in response mera dara’™”
TEntity Llink Patterm detected™
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Contributions

» Real time traces of two years that provide information of different
attributes used by REST API providers.

» A complete list of error code with Description available online.

» Content description of each REST API providers is also available
online.

e Mining of trace history will be available on Github that can be
used by industry/ academia.
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RESULTS
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Accuracy of SOCA-R
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Breaking Self Ignoring Mime  Forgetting  Ignoring status  Tunneling Ignoring Cache  Misusing
Descriptiviness Type HyperMedia Code Cookie

M Precision ™ Recall

Average Precision 100%
Average Recall 94% 54
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Problem 4. Correction of Linguistic Antipatterns
for REST Web Services
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Linguistic Antipatterns Problem

 Linguistic Antipatterns Detection and Correction Is reported In
literature for OOSE[7,8,9].

 Linguistic Antipatterns detection is Reported by Palma with a tool
support DOLAR for REST APIs [6].

 Linguistic Antipatterns Correction is not reported for REST APIs.
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Research Methodology Used for Correction

Analysis of nodes

Detecion e in Request URI
E— Algorithm ij}alyﬁlipf Tokenization ™ Cortecton Correction of
) Linguistic { . L
DOLAR At of URI 3 Haludlell fm E Lluglllstlc |
i paaete N Linguistic Antipatterns for
" | Defimtion | | Antipatterns | REST API
nterrace Correction }
Implémentation Algorithm

| Y |

Stepll Step? Step 3
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Linguistic Antipatterns for REST APIs

 Definition of Linguistic Antipatterns
- Singularized vs. Pluralized Nodes

» Example of Linguistic Antipatterns
o https://www.abcexample.com/university/faculty/profile
o Corrected URI Example
o https://www.abcexample.com/university/faculty/profiles
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Corrected Trace of Linguistic Antipatterns for Youtube

https://www.googleapis.com/youtube/v3" /videos/rates

Refactoring operation “replace ” performed l

https://www.googleapis.com/youtube/v3"
/videos/rate
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Tidy vs Amorphous URI Example

Amorphous URI Antipattern
https:// www.abcexample.com/University/Faculty/pic.jpg

Replace and Remove Refactoring l

Operations Performed _ _
Tidy URI Design pattern

https:////www.abcexample.com/university/faculty/profile/biodata
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Amorphous Antipattern Correction Algorithm

Input: Uipaorameters
Output: Tidy Design Matiern

1 Uit iparameters+«— Hyphenated URT UpperCase U, Trawling Slash
i, FKrtension URT

z if URtiparamiers "contaitns”™ Hyphen then

3 corrected U= path.replace(_ .-) else

4 if DUitiparamelers contains UpperCase URT then

5 corrected U I= corrected URT toL.owerCase

& it Uitlfporameters contatns Tratling slash URT then
corrected R TI= corrected U R remove [ \N)

if OUhiiparameters contarns Erfension URT then

o if corrected U contatnsextension. toLowercasef) (MR

|

ertension. touppercase( ) ) then

10 corrvected R T=corrected UL remove (extension)
11 end

12 end

13 end

14 end

15 end

16 @ Amorphows Antipatierns removed ™
17 U Tidy Design pattern detected™
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Accuracy of SOCAR
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Average Precision 79%
Average Recall 75% 62
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6. Conclusion

1. SWAD detect Antipatterns for industry both for code-first and
contract-first.

2. A new antipattern introduced in the list of already defined
Antipatterns

3. Evolution History is covered for REST APIs versions .

4. This history reports original traces and logs that can further be
used in the field of Data mining.

5. SOCA-R iIs available that correct all famous REST API
providers problems dynamically.
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6. Standardized list of Request and Response codes available in
XML form at University of Qubic Montreal web site.

7. SOCAR tool is open source and can easily be used by the new
researchers for implementation of text mining techniques for
improved URI .

8. SOCAR use dynamic source code analysis so services can be
analyzed at any time incase user find problem to access
specific services.

9. SWAD helps to detect the location of errors in services . This
will inform developers to find bugs at early stages.

10. COLAR tool helps to improve the URI of REST APIs for
better analysis.
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(. Future Directions

 We have real time traces till end of the year 2017. This trace
history may be extended and can be used for the identification
of error prone services.

e The clients of REST API providers can be improved by
removing the falws from major service providers. If the
services are error prone then are the clients too?

e We are planning to extend SOFA(service Oriented Framework
for Analysis ) to compare the maintenance cost of effected
services as compare to those that are not effected.

» We are planning to use SWAD tool for cross cultural analysis
amongst SOAP API providers.
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