Detection of Antipatterns from SOA

Presented By: Fatima Sabir
SP14-PCS-003

Supervisor: Dr. Ghulam Rasool

Co-Supervisor : Dr. Farooq Ahmad

External Co-SuperVisors

Dr. Yaan-Gael
(Head of Canadian Research Chair of Software Engineering and PTIDE] Lab
Head of Canadian Research Chair on IOT Tierl
Professor at University of Concordia and University of Montreal)
Dr. Naouel Moha
(Head of LATECE Lab , Associate Professor University of Qubic Montreal)

INTRODUCTION | RELATED WORK | PROPOSED METHODOLOGY | CONTRIBUTION | RESULTS | CONCLUSION
Background | Motivation and Problem Statement

Qutline

Introduction

* Background
* Motivation and Problem statement

Related Work

Research Gaps

Proposed Methodologies

« Specification of Web Service Antipatterns Detection

« Evolution of Web Services Antipatterns .

« Correction of REST Antipatterns for Web Services .

» Correction of REST Linguistic Antipatterns for Web Services

Contributions

Experiments and Results
Conclusion and Future Directions
List of Publications

References

Introduction

INTRODUCTION |

1.Introduction

91% of the Software Projects used SOAP and REST Protocols Used In Google Map APIs
web services

2%

m REST
SOAP W REST
M JavaScript W SOAP
m XML -RPC W POST
Java Script

M Other

Source : programableweb.com 4

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROPOSED METHODOLOGY | CONTRIBUTION

| RESULTS | CONCLUSION

Removing Flaws and Improving Source Code Quality

e Design Pattern is a general , reusable solution - Antipatterns are commonly generated
to a commonly occurring problem with in a Solution of design/ code problems that may
given context in software design [32] . have negative impact [1].
Abstraction Deprecated statement usage — ;m%;g ;}isjszr/‘ecated statement
T Encapsulation Incomplete task K (app-studio o Inconsistent naming convention
Polymorphism * A P Complex expression
| $source_config = 'config.source' /

1

LOﬂg statement —*1 if $version == '44' or $version == '4.2' or $version != '4.5' or $version == '477.9'7{7J
9 case § operahngsystem {

“Tdebian' : {
apt: source{ 'packages.dotdeb.org-repo.app':
location => 'http://repo.app.com/dotdeb/"',
] -' : release =z S:{ll.sbdistcodename,
< 14 repos => 'all',
i —_— Missing default case A HCLUATRTE > Hrae
1 include_src => true \ Duplicate entity
}
nce 18 ; }
}

Missing conditional e elsif $version in ['33', '3.3'] {
}

if $::kernelversion =~ /A(2.2)/ {
$appversion = '3.5'

} elsif $::kernelversion =~ /"(2 1)/ {
exec {"download_app_studio"

command => ["wget Surl™,[

Class Improper quote usage

Object [einewst 5 0 e
) . / Unguarded variable
Improper alignment }
$version = '3.4' ? {undef => $primary_config_file, default => $source_config}
file { "/root/.app" - Invalid property value
_mode =3 '644', | ™ = 644
. (7507 5 Present | qgumm . Misplaced attribute

38}

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROPOSED METHODOLOGY | CONTRIBUTION
| RESULTS | CONCLUSION

Benefits of Detecting Antipatterns from SOA

Rent Car Service
checkAvallability()] }-
resarveCar()
cancelCar|

Service-based System

Service Requester

Fligh
v checkDateg®
s resarveFlight{)

Travel Seryice

1\i‘l
B+ bookTrip()
—]
|Z:‘]

Client

* cancelFlight{)

HTTP, SOAP, WSDL, UDDI, \ -
WS-Technologies b Service Provider

Hotel Service

+ checkHolel)

+ reserveHolé
+ canceiHolel

Follow the Link

http://sofa.uqam.ca/soda-w/

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROPOSED METHODOLOGY | CONTRIBUTION
| RESULTS | CONCLUSION

Catalogs of Antipatterns for SOA

SWILEY . IR bovve

« ' SERVICE
Antlpatterns ' : DESIGN PATTERNS

\/\r\

SOA 4

PATTERNS/ ﬁ

e N

%
foe B

i
—
O With EST'
ciples, P s & Constraints
dutians with REST

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROPOSED METHODOLOGY | CONTRIBUTION
| RESULTS | CONCLUSION

Relationship between Software Architecture and Programming
Paradigm

Software
Architecture

Involves

Involves

. Relies on
Relies on

Object-Oriented Service Oriented Service-Oriented

OO (Java, C++, Software Architecture
C#) Engineering SOA (SOAP, REST)

Related Work

| RELATED WORK | RESEARCH GAPS |[PROPOSED METHODOLOGY | CONTRIBUTION | RESULTS
| CONCLUSION

Software Evolution
OOSE vs SOA

Change Request

Object Oriented / \

Software

System Release Impact Analysis ' '
engineering _ Y Software P VEL Se;\\:lce Srlsp;ed
[10,11,12,13,19, Evolution CQ

22,26,29,31] [21,2 i ,30]
System update Release Planning
w

First Published papers on SOA Antipatterns reported in 2013 by Moha [2].

Palma, F., Nayrolles, M., Moha, N., Guéhéneuc, Y. G., Baudry, B., & Jézéquel, J. M. (2013). Soa Antipatterns: An approach for
their specification and detection. International Journal of Cooperative Information Systems, 22(04), 1341004.

10

INTRODUCTION | RELATED WORK | RESEARCH GAPS |[PROPOSED METHODOLOGY | CONTRIBUTION |

RESULTS | CONCLUSION

Systematic Literature Review for Problem Identification

|Sn:ienn:e Darect -

@ 2,665 Articles
‘ ACM

Stepl

e —— 5 Step 1 : : :

ﬁ E----r‘_a_u-t-g:!:!:-l-a!:ic""--j E----[:".I.;a.:!.!'-.l'.l'.;a.lﬁh--j

[B eview Abstracts]

I_I
Eeferenice Check for Additionall ‘
Important Articles (TnchisionExclusion Criteria |

R 2

FQua]it}' Aszessment Criteria |

.

Study Selection Based on
kevwords, Abstract, and Title

A

5

[Unique Articles {300)

b,

{78 Final Studies Selected | Step 3: 75 Studies |
: (Manual) (Manual) 11

INTRODUCTION | RELATED WORK | RESEARCH GAPS [PROPOSED METHODOLOGY | CONTRIBUTION
| RESULTS | CONCLUSION

RQ1: What are the Classifications of the State-of-the-Art Techniques Employed in

the Detection of Bad Smells?

RQ2: How the State-of-the-art Approaches Evolved across Different Domains

Starting from Object Oriented to Service-based Systems?

RQ3: What are the Smells that are Reported for a Specific Domain?

RQ4: What is the Correlation between Smells across Domains?

RQ5: What are the Trends in Research for Bad Smells from the Year 2000 to 20177

12

INTRODUCTION | RELATED WORK | RESEARCH GAPS |[PROPOSED METHODOLOGY | CONTRIBUTION | RESULTS
| CONCLUSION

Finding of RQ1: Classification of State-of-the-Art Techniques

Studies Under
Review

(78 Studies)

Static source code Dynamic source code
Analysis analysis
(70 Studies) (8 Studies)
I I I I
Algorithm -based Methdoloaical source L . Empirical source Behavioral source
analysis code ar?alysis (9 Linguistic aInaIyS|s code analysis code analysis
(16 Studies) Studies) (5 studies) (23 studies) (17 studies

13

INTRODUCTION | RELATED WORK | RESEARCH GAPS |[PROPOSED METHODOLOGY | CONTRIBUTION | RESULTS
| CONCLUSION

Findings RQ2:Evolution of State of the Art Approaches

a) Source Code Metrics
b) Mining the Source Code using

SVN
:] Bad Smell
C) Genetic Algorlthm Source Code Metrics | :> Detector
" 11 based on
d) Domain Specific Language P

e) PE-A (a) to (e)

14

B Feature Envy

B God Class

m Blob

B Data Class

B Long Parameter List

B Spaghetti Code

B Shotgun Surgery

B Duplicated Code

B Large Class

B Long Method

B Speculative Generality
m Lazy Class

B Refused Parent Bequest
B Functional Decomposition

[worqoid ofox

| Surdnon) peweu-upn

| AyoreIarp] sourILIOYUT 100
| 3043950

| sse[D) uoneossy SuISSIy
| Jeo[q QovIoIUT

| povedop g

| £ouopuada(o1ppLH

| oouwimoyuy o1pkn)

" ouo[) apon)

" sadepy

| 1o3werq reUOmIpEI]

| 3uI0g 1IN JUTpUNpoy

" Surdnon) aatsuuT

' 2u10d 10 I[PI

" wonvondn(q reuseixy

Literature

p Surdnon) aarsuaixyy

o *SUIQIS UL SPOYIRT LOWWON)
" poyoy uresg

" sse[n) ampaooig

111111111111 1111111

Ime In

| wsydrowdjog oN

| SO[qeEA [eqO[D)
" 70387009(]

90BJFAIUT WANSASqNG IPIA\
J5exde poo

sse[D) oruasydoziyog
SPIPI d1qnd

SB[UTeIy

UBIN 9[PPIAL
sse[) xordwon)

Frequency

2222227272

U0IR[BUIg-NUY

POURIN POO

18198791[0

91BALI 9q P[NOYS IB(] SST[D)

sse[7) paserdsiy
20UBILIOYUT [O[[EFe

JUAWWOY)
JUDUWIIEIG YOIIMG
98uey) 1U9SIAAI(]
OJTUS] AWFY SSTMG
dwnp) e
urey) 98eSSI

uvonsodwoda(] [EUonIun,
1sonboag 1udTEJ pasnyoy
sse) Aze

Anrerouany sanemoadg
poyaoy SuoT

SB[98¥e|

opon) pareardn
£328Img undroyg

opo7) maySedg

ISTT Jo10wese Suo|
sse[D) wie(

qord

SSTD POO

AAug] ormies]

Smells Reported most of the T

1515151515

90)
O
o

a)OOSE

)
5
)
n
LLI
4
Z
O
_I
)
o0
e
_I
Z
O
O
>
©)
O
—l
@)
|
@)
T
—
LL
=
0O
LL
)
@)
o
®)
e
o
n
al
<
O
T
@)
e
<
LLI
n
LLI
4
X
g
@)
=
|
-
<
—l
LL
o
Z
O
=
O
-
Q
®)
a4
-
Z

Z
O
%)
D
-l
O
Z
O
O

15

INTRODUCTION | RELATED WORK | RESEARCH GAPS |[PROPOSED METHODOLOGY | CONTRIBUTION | RESULTS

| CONCLUSION
b)Smells Reported for SOA

Frequency

10

B God Object Web Service

B Low Cohesive Operation

B Ambiguous Names

B Chatty Service

H Data Web Service

6 - B Duplicated Web Service

m Enclosed Data Model
> ® Redundant Data Model
4 B Whatever Types

3 3 3 3 3 B Empty Messages
3 B Bloated Service
2 2 Bottleneck Service

2 Nobody Home
1 __ mSand Pile

m Service Chain
0 - : : : : : : . .

\06 \06

B Stovepipe

< N o & J & &
& '3’ e“’ & @ 0 é\o é\o &* %‘3’ e c «2»0 bQ & &Q \LS\ @é& & The Knor
S ¢ % % S > > A z? S S RN 3
Q\NO QOQ & q&é Qkao $%o Q‘T;V > & & g & \oob 2 & < < ﬁ\ QQ%O CRUDy Interface
& 6"’\4 \0\03 & P & & & $\va &Q <b\'o &60 ‘%O o (é\l)o Q> .) .
Ob\@ R v& Q = 005 Oogv <3 <8 S @\Q Fine-grained Web Service
> & K ¥ & e

SN N ¥ S

16

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROBLEM STATEMENTS | PROPOSED METHODOLOGY
| CONTRIBUTION | RESULTS | CONCLUSION

c) Smells Reported First time in Literature
= lOJN0) U - < U a
O o =
v O A A Voo v v

6] v Y N o4 v N O A N oA N

HvNHN
LDFINT
LSDASI
LFCWSDL
UCFISM

Z
[+ 2
-
O
>
O

LFEBAOD

\/

[5] v

*BSD (Breaking Self Descriptiveness), CN (Content Negotiation), CvCLRN (Contextualized vs. Contextless Resource Name), IMT (Ignoring Mime Type), IC (Ignoring
Cache), ISC (Ignoring Self Descriptiveness), FH (Forgetting Hypermedia), HYNHN (Hierarchal vs. Non-Hierarchical Node), TTG (Tunneling Through Get), TTP (Tunneling
Through Post), SPN (Singularized vs. Pluralized Nodes), MC (Misusing Cookies).

17

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROBLEM STATEMENTS | PROPOSED METHODOLOGY

| CONTRIBUTION | RESULTS | CONCLUSION
RQ4: What is the Correlation between Smells across the

Paradigms?

Mapping Between SOA and OOSE
OOSE (Classes/Interface) maps SOA (service Interface)

Example | ‘

GOD Class maps God Object web Service

vV

Example 2

Data Class Maps Data Web Service

18

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROBLEM STATEMENTS | PROPOSED METHODOLOGY
| CONTRIBUTION | RESULTS | CONCLUSION

RQ5: What are the Research Trends in the Domain of
Bad Smells?

Bad Smells Research ‘

Detection Approaches Trends ‘ Correction Impact of Bad Smell
— Image Processing — Development History ~{ Maintainance
— Execution Traces — Genentic Algorithm — Change-proneness
= Linguistic Analysis — System Performance
— Versioning Histoy - Code Quality
~{ Machine Learning — Evolution

19

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROBLEM STATEMENTS | PROPOSED METHODOLOGY
| CONTRIBUTION | RESULTS | CONCLUSION

Findings from SLR

18
16 A 16
14

—ill— O 0OSWE SOA / \

10 -/.(/ \\ A"
0N/ O\
ahiuki s\

—r‘{-‘ﬂi" m,"!/; ﬁht{-}
(o]

o N B O ©

{1}."‘./{1}

Year
2001
2002
200

2004
2005
2006
2007
2008
2009
2011
2012
2013
2014
2015
2016
2017

Sabir, F., Palma, F., Rasool, G., Guéhéneuc, Y. G., & Moha, N. (2019). A systematic literature review on the detection
of smells and their evolution in object-oriented and service-oriented systems. Software: Practice and Experience,

49(1), 3-39. Impact Factor 1.33
20

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROBLEM STATEMENTS |[PROPOSED METHODOLOGY |

CONTRIBUTION | RESULTS | CONCLUSION

3. Research Gaps

-
OQOSE

* 98% studies
reported

\

-
SOAP Web Services

* Smells reported for SOAP
takes less attention

[3][4][1€]

e

SOA

9 Studies reported for
SOA

. [2,3,4,5,6,14,15,16,21]

.

rREST Web services

* Smells reported for REST
takes less attention [5][6]

21

Problem Statement

22

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROBLEM STATEMENT | PROPOSED METHODOLOGY |
CONTRIBUTION | RESULTS | CONCLUSION

4. Problem Statement

Specification, Detection, Evolution and Correction of Antipatterns for Web Services

Problem | Variable threshold adaptation for multiple services

Problem 2 Evolution of Services

Problem 3 Correction of REST Antipatterns

Problem 4 Correction of REST Linguistic Antipatterns

23

Proposed Methodology

24

INTRODUCTION | RELATED WORK | RESEARCH GAPS |[PROBLEM STATEMENT | PROPOSED METHODOLOGY |
CONTRIBUTION | RESULTS | CONCLUSION
5. Proposed Methodology

SODAR for
Evolution

Variable
Threshold Use Trace

Correction of

ALL REST Apply NLP to

History correct URI

Adaptation

Antipatterns

Evaluation

from Industry Accuracy 76%
Accuracy 94%

Applied based Use Version
on Industry Number for
standards Changes

SWAD (Specification of Web Service Antipatterns Detection), SOCAR (Service Oriented Correction of Antipatterns for REST APIs), COLAR (Correction of REST Linguistic Antipatterns)

Available on SOFA.UQAM.CA
Available on PTIDEJ 25

Pa Yo W Val . U ul N . Yl of NN, | L . Y s ™S . .. e

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROBLEM STATEMENT | PROPOSED METHODOLOGY1 |
CONTRIBUTION | RESULTS | CONCLUSION

Problem 1. Variable Threshold Adaptation from Multiple
Technologies.

26

CONTRIBUTION | RESULTS | CONCLUSION
Specification and Detection from SOAP Web Services
Antipatterns .

Web Service Architecture

WS DL
- — Crocummeaent —
— T,
- e,

-~ ",
& Ty
ra LY
s L
' LY
i %

g L LY i

f Request \
I L
.i. 1

Clissnk Vieh Service
Application Prowvider

\ SOAaAP
Response

27

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROBLEM STATEMENT | PROPOSED METHODOLOGY1 |

CONTRIBUTION | RESULTS | CONCLUSION

State of the Art Approaches
Antipatterns Detection from SOAP Web Services

4)
SODA-W « WSDL Antipatterns Detection

[ICSOC 2015] [6Antipatterns Reported
 Publically Available
B3

J

4 \' WSDL Antipatterns Detection
PE-A « OOSE Antipatterns Detection

: « 7 Antipatterns Detected
[IEEETransactlon ZOIS] * Not Available Publically

[4] « Manual Detection Procedure

_ N

28

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROBLEM STATEMENT | PROPOSED METHODOLOGY1 |
CONTRIBUTION | RESULTS | CONCLUSION

SWAD(Specification of Web Service Antipatterns Detection)

-

L

Antipatterns
Detection Engine

N

Q%

0
. —_
%ty Web server Hosting the
B Various Web Services
' Hrrp

‘ Consume data \
., _— HTTP
HTTP
— < :
l Y e Intermediate
& representation of
e
D goo‘”& Internet Source Code
Database

29

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROBLEM STATEMENT | PROPOSED METHODOLOGY1 |
CONTRIBUTION | RESULTS | CONCLUSION
Example of God Object Web Service

Client Client Client Client Client Client

Invoke

’ Invoke
Service Contract

getClimateAnatysisDay()

Il Web service getCommonValueMonth()
! getClimateExtremeValueDay()
ATT TN, XML/JSON/HTTP gelRainfallAnalysisHour()
e * re getCurrentWeather()
\ guest

J \ ” getSnowCover()

!] = |

= {Q}: """ v Many Methods

' Y — v Very Low Cohesion

v High Response Time

p "
. API ’ XML/JSON/HTTP Internal / Low Availability

- - response system

APl requests H APl response

=Sd=

Server/Data Source

Antipatterns
Detection Engine

!

Antipatterns Detection based
on rules

30

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROBLEM STATEMENT | PROPOSED METHODOLOGY1 |
CONTRIBUTION | RESULTS | CONCLUSION
SWAD Key Features

» Variable threshold adaptation

» Multilingual analysis of Code-First and Contract-First

» Adaptability for NLP techniques for Chinese ,Korean and French Dialect.
- Industrial usage for Code-First and Contract-First

- Precision 89% and Recall 85%

- One new Antipattern reported in already existing Catalog.

Fatima Sabir, Ghulam Rasool, Maria Yousaf (2017), "A Lightweight Approach for Specification and Detection of SOAP Anti-
Patterns ", International Journal of Advanced Computer Science and Applications, pp: 455-467, Vol: 8, Issue: 5, Standard:
2156-5570 31

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROBLEM STATEMENT | PROPOSED METHODOLOGY?2 |
CONTRIBUTION | RESULTS | CONCLUSION

Problem 2. Evolution of Antipatterns with Evolution of
Services .

32

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROBLEM STATEMENT | PROPOSED METHODOLOGY?2 |

CONTRIBUTION | RESULTS | CONCLUSION

Forgetting Hypermedia Antipattern

DropBox Server Response 1-

Header: |
x—Trame—options= | SAME EIH‘[G]‘_ .

x—dropbox—request—id=b9a25269beh2eT5faTdTe2 1 1638bb9d],

Ii-*“:rnl'nn.r.t]-c’u'n—“-.s_i,p—enl 1we -\{-_
Server=[nginx], _
pragma=|no—cac he . \G\ﬂ

cache—control=[no—cac I1r*%

x—server—response—time=[G4]

\.—dln-phn:-'. http—protocol=| '\.-’JmJ 10
set—cookie=| gve=M iExODUyMTE -

ﬁ_erHr_'-:. =Tue, 26 Mar 2019 18: 3414 GMT],

Transfer—FEncoding=[chunked

Date=[Thu, 27 Mar 2014 18: 31 14 GMT],

Content—Tyvpe=[application/j son],
X—Requestld=[c64da98881e565a00abdd9acceadf049]

Body: |
]"]d"-\.vl"l. : Fﬂ'drﬂﬂl_ TE55Ted43261 bddefeca92hab™
r"i_'-. ision + 2,
I:"'L". : :"ll_-_cl:udlﬂ'
1_hL|mh exists”: f..-ll'L.-'l'_"
“"bvtes : 'f} .
modified”: "Tue, 28 Jan 2014 21:45:31 +00007,

:THlli Z# "'1(51
15_dly - Lrua,ﬂ
“icon”: Tfolder”, '{!H"‘% .
sroot”: “dropbox”, n\\ 0\3\"
-:_ul'll'.r_tﬂ_'a ? ‘& ‘;\
rev]-.-II':-I:'l :oa. RD
“rev”: fa]{-t-ﬁ':m]‘»] 10'
“thumb_exists": False,
|.:-‘_|-1{""-. Do .
JrltJd]FILcl Tue, 28 Jan 2014 21:46:30 CICICICI
l'_|.]LI'I|'_ m1_1m|_ o Tue, 28 Jan 2004 Z1:46: an”

"path”: “/test/test. txt
wls dir : false,

it e T u-'l-\. 1t e

Header: |

DropBox Server Response 2:

x—fFrame—options=[SAMEORIGIN],
'—drr‘.-phn:-: request—id=[cdl12e]1e844327464485842b11b53007 1]
Connection=|keep—alive],
Server= I:nf_,lrn-.J
pragma= | no—cache |,
cache—control=no—c e—]l.'hrfi[
x—server—response—time=[1107
x—dropbox—http—protocol=[None],

set—cookie=[gvc 'k]waNTk\.E}JK;.-""-. |l'ﬁ}'-.-
expires=Sat, 06 Apr 2019 22° t47 {".1T
TransTer—Encoding=| chunke {]

Date=[Maon, 07 Apr 2014 22: AT GMT],

Cont I:'[l'I._T_.-[]E"—[applications 'I*'-.I2:lI!]
¥—Requestld= I—-:].JDEHEJS‘HC' 1dad22450335Fd3¢71d309]

-,

: _1 |'nl-;Jr
:ui:i : 11hh'—?ﬂ3{:|1

country’ f'-'l. u{\ o
aquota infa™: '.-.. DK
Ldatastgres”: 0, '

. — PPRy——
Lohttps://db. L/ AaW jPOH .]

“share d 293074019,
Tquota’ EldrdHdeH,
) norma l LB6R1304356
3 [‘HI'I_'I”__:‘. null, . .
email *francis. polymt lidyvahoo, ca

33

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROBLEM STATEMENT | PROPOSED METHODOLOGY 2 |

CONTRIBUTION | RESULTS | CONCLUSION

Evolution of Antipatterns in REST APIs

 Detection of Antipatterns from REST APIs already reported in
literature

 As per the findings of SLR no study reported for the evolution of
Antipatterns across different REST APIs.

e There is a need to identify that how Antipatterns are evolved
w.r.t time .

 How major REST API providers refactor them ?

34

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROBLEM STATEMENT | PROPOSED METHODOLOGY?2 |
CONTRIBUTION | RESULTS | CONCLUSION

Evolution History for Antipatterns ldentification

RQ1 :When Antipatterns are introduced ?
RQ2: How Antipatterns are evolved from 2015 to 2017 ?
RQ3:How Major Service providers remove Antipatterns?

35

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROBLEM STATEMENT | PROPOSED METHODOLOGY 2|
CONTRIBUTION | RESULTS | CONCLUSION

Characteristics of Ecosystem Under Analysis

St.No REST API Name Available version Monthly Active User
1 Facebook.com version 2.3 to version 2.10 1.94 billion
2 Youtube.com Revision history from 2013 to 2017 1 billion
3 Alchemy.com version 1 Not Available
4 Bitly.com version 3 is available 13,530
5 Charlieharvey.com \ersion 1 Not Avaialble
6 Ohloh.com Version 1.0 669,601
7 musicgraph.com version 2 1 billion
8 Dropbox.com version 1 and version 2 500 million
9 Instagram.com version 2 is available with changelog 319 million
10 Twittet.com version 1 with complete changelog 600 million
1 Teamviewer.com complete complete change log 300 million
Stackaexchange version 2.0,2.1,2.2 is available 345 million Wge(:hangehg

3= Achemyar” @8R bitly MINANNINATN 22 I EZ2XE=aErr2 Ohloh

| T 8 == =
[‘3 Team\VVievwer f;, YD u Tllhe Za PPOos = G% '9"“‘“9"‘““‘ StackExchan ge

36

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROBLEM STATEMENT | PROPOSED METHODOLOGY?2 |
CONTRIBUTION | RESULTS | CONCLUSION

Research Methodology used for REST Antipatterns Evolution

Antipatterns
SODA—R Detection |
2015/2017 Antipatterns
Instances
Trace History —I—’ Change History
2015/2017
Stepl | RQ1: When Antipatterns Are Introduced?

Extracting Data
from Change History

Corrected Antipatterns

Traces
Request/ Response

Analysis of Request
/Response

Step2 RQ2:How Antipatterns are evolved ?

37

INTRODUCTION | RELATED WORK PROBLEM STATEMENT | PROPOSED METHODOLOGY?2

RESULTS

When Antipatterns are Introduced?
Step 1

Breaking ing '9noring Ignoring | Ignoring| Misusing | xeelive
APl Name Sl [DEsE - MIme | giatus Code| Cache | Cookie | Unnelin Change
tiveness Type C2)

(=]

Alchemy 2015

2017
Music Graph | 2015

2017
Bitly 2015

2017
DropBox 2015

2017
Twitter 2015

2017
Youtube 2015

2017
CharliHavery| 2015

2017

2017

i
.

O OO O|hd Ol Ol DMD|Oo o1|o o

\[o]
Applicable

.
=OOOOOOOOOOOOOO

38

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROBLEM STATEMENT | PROPOSED METHODOLOGY 2|

CONTRIBUTION | RESULTS | CONCLUSION

How Antipatterns are Evolved?
Step 2

StackEx 2.0 53 0 0 0 1
change

s 2.1 0 53 0 0 0 1

53 0 0 0 1

2.2 0

39

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROBLEM STATEMENT | PROPOSED METHODOLOGY 2|

CONTRIBUTION | RESULTS | CONCLUSION

Real Time Traces for Antipatterns Evolution

Service name: ca.ugam.sofa.alchemy.api.”Alchemy
Method name: URLGetRankedNamedEntities
Path: /ecalls/url/URLGetRankedNamedEntities

Response:
Status Code : 301

Header: {x—frame—-options=[DENY], content—-type=[text/html], connection=[keep—-alive],
etag=["595ebaa0-303"], location=[https://gateway—
a.watsonplatform.net/calls/url /URLGetRankedNamedEntities

Body: <PRE>Dear AlchemyAPI User,This is an important reminder about critical action that
needs to be taken before June 28th. To increase the security of our service, we are
discontinuing HTTP support for all AlchemyAPI endpoints.

This update requires vyvou to migrate all HTTP AlchemyAPI regquests to HTTPS.

To ensure your AlchemyAPI code continues to work properly, @
replace all instances of "http://access.alchemyapi.com" with "https://gateway-
a.watsonplatform.net". To give you another chance to migrate your AlchemyAPI requests,

since our February notification, we have pushed this action deadline back to June 28th at
12:00pm MDT. If you have any guestions or concerns, please contact the Alchemy support team
at support@alchemyapi .com.Regards, IBM Watson</PRE>

Request:

Header: {cache—control=[no—-cache], content—-type=[application/xml], connection=[keep—alive],
host=laccess.alchemyapi.com], accept=[application/xzml], get
Jcalls/url/urlgetrankednamedentities?url=http%3a%2f$2fwww.cnn.com32f2011%2f09%2f28%2fuss2fma

ssachusetts—pentagon—plot—
arrest2findex.html 33 fhpt$3dhp tl&apikey=01deB8l1f6011725a4d2880dabaedel 43b6%4ce973&outputmode
=json http/l.l=[null], user—agent=[Apache CXF 2.7.5], pragma=[no—cache]}

40

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROBLEM STATEMENT | PROPOSED METHODOLOGY 2|

CONTRIBUTION | RESULTS | CONCLUSION

0.8 -

0.6 -

0.4 -

0.2 -

Operations Performed in Evolution

Response Status
Change

API Change its Version
or Domain

API has Additional
Functionality

Correction of Response
via Deletion or Addition

M Response

Request

® Body

Fixing error Code

Enhancement

New Feature

Refactoring

41

INTRODUCTION | RELATED WORK PROBLEM STATEMENT | PROPOSED METHODOLOGY 2

RESULTS

Antipatterns Evolution for Youtube API

%1 17 17 17 17
16 -
14

o 14
g
8 12 -
:
2 10 -
_g.. u [AP] Breaking Self Descriptiviness
E 8 1 u [AP] Forgetting Hypermedia
2 6 = [AP] Ignoring MIME Type
g 61
8
:
S 3 3 3

2 -

0
0 -

|7-06-15 17-07-13_02-06 17-07-07_16-22 17-07-07_16-09
Traces w.r.t Date and Time

42

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROBLEM STATEMENT | PROPOSED METHODOLOGY 2|
CONTRIBUTION | RESULTS | CONCLUSION
Antipatterns Evolution for Alchemy API

10
9 9

9 9 9
2 2 2 2
1p1 1§1 181 181 11 11 181 11
IO IO IO IO IO O§ 000

17-06-16 17-06-30 17-07-01 17-07-03 17-07-04 17-07-05(1) 17-07-06 17-07-05(2) 17-07-05(3) 17-07-09 17-07-12
Detection Result in 2017

N o0 ©o

(o)}

Changesin REST API Antipattern
[N w N Ul

o

[AP] Breaking Self Descriptiviness [AP] Forgetting Hypermedia B [AP] Ignoring MIME Type
H [AP] Ignoring Status Code ® [AP] Ignoring caching B [AP] Misusing Cookies
¥ [AP] Tunneling

43

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROBLEM STATEMENT | PROPOSED METHODOLOGY 2|

CONTRIBUTION | RESULTS | CONCLUSION

Antipatterns Evolution for Bitly API

[ERN
()}

15 15 15 15

Total number of REST API Antj_patterns

o

17-07-13_00-39 17-06-13_19-16 17-06-13_19-03 17-07-07_15-32

Changes inAntipatterns Detection Resultw.r.t Evolution

B [AP] Breaking Self Descriptiviness [AP] Forgetting Hypermedia
[AP] Ignoring MIME Type [AP] Ignoring Status Code
M [AP] Ignoring caching H [AP] Misusing Cookies

M [AP] Tunnelin
[AP] g 44

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROBLEM STATEMENT | PROPOSED METHODOLOGY 2 |

CONTRIBUTION | RESULTS | CONCLUSION
Findings

- Antipatterns are not removed by major service providers.

- Most of the Antipatterns are increased w.r.t time

- Correction of tunneling antipattern definition collected for Bitly.
- Correction of Mime type Antipatterns collected from Alchemy .

- Correction of Misusing Cookie and Breaking Self
Descriptiveness from INFO Q.

Real time traces will help to maintain request, response and
body of the REST API..

45

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROBLEM STATEMENT | PROPOSED METHODOLOGY 3|
CONTRIBUTION | RESULTS | CONCLUSION

Problem 3. Correction of Antipatterns for REST web
Services.

46

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROBLEM STATEMENT | PROPOSED METHODOLOGY 3 |
CONTRIBUTION | RESULTS | CONCLUSION

How Antipatterns are Corrected for REST APIs?

47

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROBLEM STATEMENT | PROPOSED METHODOLOGY 3 |

CONTRIBUTION | RESULTS | CONCLUSION

Evolution of Ignoring MIME Type Antipattern in Alchemy

Service name:

Ignoring Mime
ca.ugam.sofa.alchemy.api.Alchemy _lgn Dg d
Method name: URLGetText ype etecte

Path: fcalls/url/URLGetText (2015)

Requested Content content- /]
type=[application/xml] Service name:))
Response Returned content- | ca_ugam.sofa.alchemy.api.Alchem / ITgnoring Mime
type=[application/json] v Type detected

Method name: URLGetText / (2016)
Path: /calls/url/URLGetText

Requested Content content-
type=[application/json]
Response Returned content-
type=[application/xmil]

Ignoring Mime
Service name: Type Removed
zz:eu:,:m' sofa.alchemy.api.Al (2017) Extracting metadata
Method name: URLGetText / and providing correct

Trace History

Path: /calls/url/URLGetText mime type requested
Requested Content content- by Client

type=[application/xml] if(lIresponseMetaData.get("content-

Response Returned content-

type=[application/xmi | type").toLowerCase().contains(toDetect)) {

if(toDetect.equals("xml")){
responseMetaData.put("content-type",
"application/xml");

lelse if(toDetect.equals("json")){
responseMetaData.put('"content-type",
"application/json");

} 48

INTRODUCTION | RELATED WORK PROBLEM STATEMENT | PROPOSED METHODOLOGY 3

SOCAR
Service Oriented Correction for Antipatterns for RESTful APIs

. . Client . . .-
Dynamic Invocation YW Correction Heuristic Algorithm

of
Client Request IplsllEntEhielifly] - = Service Oriented

»

Design Pattern

Possible Evolution Instances

Correction for
Antipatterns

Refactoring History of
Operations Antipatterns

Service
Metadata

Antipatterns
removal

49

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PiOBLEM STATEMENT | PROPOSED METHODOLOGY 3 |

CONTRIBUTION | RESULTS | CONCLUSION
Refactoring Operations Performed for Antipatterns Correction

Ignoring Mime
Type Accept,Content Type Add Content-Type
Add Cache Control, Generate
Ignoring Cache Cache-Control,ETag _
Unique E-Tag for Request
Forgetting http-methods,entity _ _
Hypermedia location add links,metadata info, status code
i Request-header .
BreakingSelf- field,response-header Remove non standardized Header from
descriptiveness field Response
_ http method, status, Status code number and description
Ignoring Status - 1 4o 4 ceatus code de. change, replace method for code description
Sl scription, and number
o _ _ . Remove set-Cookie, cookie from
Misusing Cookie Cookie ,Set Cookie response metadata
Tunneling . remove access,update and delete
Through post http-method,request-uri from resource uri
Tunneling http-method,request- remove access,update and delete

. Through get uri from resource uri Antipattern remove 0

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROBLEM STATEMENT | PROPOSED METHODOLOGY 3 |

CONTRIBUTION | RESULTS | CONCLUSION

Correction Algorithm For Forgetting Hypermedia Antipattern

Input: Ffrepe merhrod enrdevlinks formar, ernriry focariorn
(Cuatput: ey ik Desien Parrern
ey merhrod «— Ger, Pur, Pose, IDrelere;
ernriry links forrmrcoar arred, fsorr, predif, rddf, 1 ernwriny
firnkc «— Iimke, loocearior
il response. perstarusi)= THKTT O respronse. oelsStarts| =
TSK T themn
| remowve from detectiron and correction
el
iff response. gcerBod v) arnd response. germeradaral) == Nwull
Tthen
ifr checkliinksBodvl)«——xml _gsor, padlf rdf them
it cfreckd infMferaldraral j«—— locariorn, fink thwemn

=
-

ik derecred

it
clhreck l inkderal darel). cornfains=2=kcaricorn, lirnk
e my
| rrreradara. addiAdd URE. dvrearmicalliv)

el

el
(el L |

el

T Forgerting Hyperrmedia Amnriparrerr Correciior
Aclding link in response mera dara’™”
TEntity Llink Patterm detected™

51

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROBLEM STATEMENT | PROPOSED METHODOLOGY 3 |

CONTRIBUTION | RESULTS | CONCLUSION

Contributions

» Real time traces of two years that provide information of different
attributes used by REST API providers.

» A complete list of error code with Description available online.

» Content description of each REST API providers is also available
online.

e Mining of trace history will be available on Github that can be
used by industry/ academia.

52

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROBLEM STATEMENT | PROPOSED METHODOLOGY 3|

CONTRIBUTION | RESULTS | CONCLUSION

RESULTS
\r‘Alr'z'mr‘nw,fAPl '@;biﬂ% CHARLIEHARVEY g n WM D’hloh
@ Team\Viewel \:'} & YOU Zappos:g &""“9‘““ Sta CkEXChangeg

53

INTRODUCTION | RELATED WORK | PROBLEM STATEMENT | PROPOSED METHODOLOGY

CONTRIBUTION | RESULTS

Accuracy of SOCA-R

102

100 100 100 100 100 100 100
100
98
Cjﬁ> 96
(@)
S o
= 92 92
< 92
<
90
o 88
C 88
D
“ g6
84
82

Breaking Self Ignoring Mime Forgetting Ignoring status Tunneling Ignoring Cache Misusing
Descriptiviness Type HyperMedia Code Cookie

M Precision ™ Recall

Average Precision 100%
Average Recall 94% 54

INTRODUCTION | RELATED WORK | PROBLEM STATEMENT | PROPOSED METHODOLOGY 4|
CONTRIBUTION | RESULTS | CONCLUSION

Problem 4. Correction of Linguistic Antipatterns
for REST Web Services

55

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROBLEM STATEMENT | PROPOSED METHODOLOGY 4|

CONTRIBUTION | RESULTS | CONCLUSION

Linguistic Antipatterns Problem

 Linguistic Antipatterns Detection and Correction Is reported In
literature for OOSE[7,8,9].

 Linguistic Antipatterns detection is Reported by Palma with a tool
support DOLAR for REST APIs [6].

 Linguistic Antipatterns Correction is not reported for REST APIs.

56

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROBLEM STATEMENT | PROPOSED METHODOLOGY 4]

CONTRIBUTION | RESULTS | CONCLUSION

Research Methodology Used for Correction

Analysis of nodes

Detecion e in Request URI
E— Algorithm ij}alyﬁlipf Tokenization ™ Cortecton Correction of
) Linguistic { . L
DOLAR At of URI 3 Haludlell fm E Lluglllstlc |
i paaete N Linguistic Antipatterns for
" | Defimtion | | Antipatterns | REST API
nterrace Correction }
Implémentation Algorithm

| Y |

Stepll Step? Step 3

57

INTRODUCTION | RELATED WORK | PROBLEM STATEMENT | PROPOSED METHODOLOGY |

CONTRIBUTION | RESULTS | CONCLUSION

Linguistic Antipatterns for REST APIs

 Definition of Linguistic Antipatterns
- Singularized vs. Pluralized Nodes

» Example of Linguistic Antipatterns
o https://www.abcexample.com/university/faculty/profile
o Corrected URI Example
o https://www.abcexample.com/university/faculty/profiles

58

INTRODUCTION | RELATED WORK | PROBLEM STATEMENT | PROPOSED METHODOLOGY 4 |
CONTRIBUTION | RESULTS | CONCLUSION

Corrected Trace of Linguistic Antipatterns for Youtube

https://www.googleapis.com/youtube/v3" /videos/rates

Refactoring operation “replace ” performed l

https://www.googleapis.com/youtube/v3"
/videos/rate

59

Tidy vs Amorphous URI Example

Amorphous URI Antipattern
https:// www.abcexample.com/University/Faculty/pic.jpg

Replace and Remove Refactoring l

Operations Performed _ _
Tidy URI Design pattern

https:////www.abcexample.com/university/faculty/profile/biodata

60

INTRODUCTION | RELATED WORK | PROBLEM STATEMENT | PROPOSED METHODOLOGY 4 |
CONTRIBUTION | RESULTS | CONCLUSION
Amorphous Antipattern Correction Algorithm

Input: Uipaorameters
Output: Tidy Design Matiern

1 Uit iparameters+«— Hyphenated URT UpperCase U, Trawling Slash
i, FKrtension URT

z if URtiparamiers "contaitns”™ Hyphen then

3 corrected U= path.replace(_ .-) else

4 if DUitiparamelers contains UpperCase URT then

5 corrected U I= corrected URT toL.owerCase

& it Uitlfporameters contatns Tratling slash URT then
corrected R TI= corrected U R remove [\N)

if OUhiiparameters contarns Erfension URT then

o if corrected U contatnsextension. toLowercasef) (MR

|

ertension. touppercase()) then

10 corrvected R T=corrected UL remove (extension)
11 end

12 end

13 end

14 end

15 end

16 @ Amorphows Antipatierns removed ™
17 U Tidy Design pattern detected™

61

INTRODUCTION | RELATED WORK | PROBLEM STATEMENT | PROPOSED METHODOLOGY 4 |
CONTRIBUTION | RESULTS | CONCLUSION

Accuracy of SOCAR

120
100 100 100 100 100 100 100 100 100 100 100 100 100 100
83
80 75
60
50 50 50 50 50 50 50
40
20
0
&306 & S ‘ {\@ R & & Q)o'*' § 8
OQ- %0 \60 &Qx . Q\‘b @% (':Q‘b O\Q &'Q "\}"Q 0@
“\ Q‘b' ?" \‘z‘ \QJ er Q -\Q
S < X &
CJQ (;D\rbo @
B Precision Recall

Average Precision 79%
Average Recall 75% 62

INTRODUCTION | RELATED WORK | PROBLEM STATEMENT | PROPOSED METHODOLOGY |
CONTRIBUTION | RESULTS | CONCLUSION

6. Conclusion

1. SWAD detect Antipatterns for industry both for code-first and
contract-first.

2. A new antipattern introduced in the list of already defined
Antipatterns

3. Evolution History is covered for REST APIs versions .

4. This history reports original traces and logs that can further be
used in the field of Data mining.

5. SOCA-R iIs available that correct all famous REST API
providers problems dynamically.

63

INTRODUCTION | RELATED WORK | PROBLEM STATEMENT | PROPOSED METHODOLOGY |
CONTRIBUTION | RESULTS | CONCLUSION

6. Standardized list of Request and Response codes available in
XML form at University of Qubic Montreal web site.

7. SOCAR tool is open source and can easily be used by the new
researchers for implementation of text mining techniques for
improved URI .

8. SOCAR use dynamic source code analysis so services can be
analyzed at any time incase user find problem to access
specific services.

9. SWAD helps to detect the location of errors in services . This
will inform developers to find bugs at early stages.

10. COLAR tool helps to improve the URI of REST APIs for
better analysis.

64

INTRODUCTION | RELATED WORK | PROBLEM STATEMENT | PROPOSED METHODOLOGY |
CONTRIBUTION | RESULTS | CONCLUSION| FUTURE DIRECTIONS
(. Future Directions

 We have real time traces till end of the year 2017. This trace
history may be extended and can be used for the identification
of error prone services.

e The clients of REST API providers can be improved by
removing the falws from major service providers. If the
services are error prone then are the clients too?

e We are planning to extend SOFA(service Oriented Framework
for Analysis) to compare the maintenance cost of effected
services as compare to those that are not effected.

» We are planning to use SWAD tool for cross cultural analysis
amongst SOAP API providers.

65

8. List of Publications

1. Fatima Sabir, Ghulam Rasool, Maria Yousaf (2017), "A Lightweight Approach for Specification and Detection
of SOAP Anti-Patterns ", International Journal of Advanced Computer Science and Applications, pp: 455-467,
\ol: 8, Issue: 5, Standard: 2156-5570 . (I1SI Index).

2. Fatima Sabir, Francis Palma, Ghulam Rasool, Yann-Gaél Guéehéneuc, Naouel Moha (2018), "A systematic
literature review on the detection of smells and their evolution in object-oriented and service-oriented
systems", Software: Practice and Experience, pp: 1-37, Standard: 1097-024X, Impact Factor: 1.33

3. Fatima Sabir,Ghulam Rasool, ,Francis Palma, Yann-Gaél Guéhéneuc, Naouel Moha, Hassan Akhtar (2019).
Correction of REST Antipatterns using Evolution History. Submitted in Journal of Empirical Software
Engineering .Impact Factor 2.933 (under review).

66

References

1. Fowler, M. (1999). Refactoring: improving the design of existing code. Pearson Education India.

2. F. Palma, M. Nayrolles, N. Moha, Y.-G. Guéhéneuc, B. Baudry, and J.-M. Jézéquel, "SOA Antipatterns: An
Approach for Their Specification and Detection” International Journal of Cooperative Information Systems, vol. 22,
p. 1341004, 2013.

3. A. Ouni, M. Kessentini, K. Inoue, and M. O. Cinnéide, "Search-Based Web Service Antipatterns Detection” |EEE
Transactions on Services Computing, 2015.

4. F. Palma, N. Moha, G. Tremblay, and Y.-G. Guéhéneuc, "Specification and Detection of SOA Antipatterns In Web
Services” in European Conference on Software Architecture 2014, pp. 58-73.

5. F. Palma, J. Dubois, N. Moha, and Y.-G. Guehéneuc, "Detection of REST Patterns and Antipatterns: A Heuristics-
Based Approach” in International Conference on Service-Oriented Computing, 2014, pp. 230-244.

6. F. Palma, J. Gonzalez-Huerta, N. Moha, Y.-G. Guéhéneuc, and G. Tremblay, "Are Restful APls Well-Designed?
Detection of Their Linguistic (Anti) Patterns” in International Conference on Service-Oriented Computing, 2015,
pp. 171-187.

7. V. Arnaoudova, M. Di Penta, G. Antoniol, and Y.-G. Gueheneuc, "A New Family of Software Antipatterns:
Linguistic Antipatterns” in Software Maintenance and Reengineering (CSMR), 2013 17th European Conference on,
2013, pp. 187-196.

8. V. Arnaoudova, M. Di Penta, G. Antoniol, and Y.-G. Gueheneuc, Repent: Analyzing the nature of identifier
renamings, |IEEE Transactions on Software Engineering, 40(5), pp.502-532.2016

9. V. Arnaoudova, M. Di Penta, G. Antoniol, and Y.-G. Gueheneuc, "Linguistic antipatterns: What they are and how
developers perceive them." Empirical Software Engineering21.1 (2016): 104-158. 67

10.

11.

12,

13.

14,

15.

16.

17.

F. Khomh, M. Di Penta, Y.-G. Guéhéneuc, and G. Antoniol, "An Exploratory Study of The Impact of
Antipatterns On Class Change-And Fault-Proneness” Empirical Software Engineering, vol. 17, pp. 243-275,
2012.

T. Hall, M. Zhang, D. Bowes, and Y. Sun, "Some Code Smells Have A Significant But Small Effect On Faults"
ACM Transactions on Software Engineering and Methodology (TOSEM), vol. 23, p. 33, 2014.

H. Liu, Q. Liu, Z. Niu, and Y. Liu, "Dynamic And Automatic Feedback-Based Threshold Adaptation For Code
Smell Detection” IEEE Transactions on Software Engineering, vol. 42, pp. 544-558, 2016.

_Jaafar, Fehmi, Angela Lozano, Yann-Gaél Guéehéneuc, and Kim Mens. "Analyzing software evolution and
quality by extracting Asynchrony change patterns."” Journal of Systems and Software 131 ,pp. 311-322,2017.

Petrillo, F., Merle, P., Moha, N., & Guéhéneuc, Y.-G. "Are REST APIs for cloud computing well-designed? An
exploratory study". In International Conference on Service-Oriented Computing, pp. 157-170. Springer, Cham,
2016.

Wang, Hanzhang, Marouane Kessentini, and Ali Ouni. "Prediction of Web Services Evolution." In International
Conference on Service-Oriented Computing, pp. 282-297. Springer, Cham, 2016.

Baghdadi, Y. Service-oriented software engineering: a guidance framework for service engineering
methods. International Journal of Systems and Service-Oriented Engineering (IJSSOE), 2015, 5(2), 1-19.

M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta, A. De Lucia, et al., "When and Why Your Code
Starts to Smell Bad" in Proceedings of the 37th International Conference on Software Engineering-Volume 1,
2015, pp. 403-414.

68

18.

19.

20.

21,

22,

23.

24,

25,

26.

Lehnert, S. (2011, September). A taxonomy for software change impact analysis. In Proceedings of the 12th
International Workshop on Principles of Software Evolution and the 7th annual ERCIM Workshop on Software
Evolution(pp. 41-50). ACM.

Mantyla, Mika V., and Casper Lassenius. "Subjective evaluation of software evolvability using code smells: An
empirical study." Empirical Software Engineering 11, no. 3: 395-431,2006.

Kaur, H., & Kaur, P. J.. A Study on Detection of Antipatterns in Object-Oriented Systems. International Journal of
Computer Applications,93(5),2014.

F. Petrillo, P. Merle, N. Moha, and Y.-G. Gueh’eneuc,” “Towards a rest cloud computing lexicon,” in 7th
International Conference on Cloud Computing and Services Science, CLOSER , 2017.

M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta, A. De Lucia, and D. Poshyvanyk, “When and why
your code starts to smell bad (and whether the smells go away),” IEEE Transactions on Software Engineering,
2017.

F. Haupt, F. Leymann, A. Scherer, and K. Vukojevic-Haupt, “A frame-work for the structural analysis of rest apis,”
in Software Architecture (ICSA),IEEE International Conference on. IEEE, 2017, pp. 55— 58.

M. Athanasopoulos and K. Kontogiannis, “Extracting rest resource models from procedure-oriented service
interfaces,” Journal of Systems and Software, vol. 100, pp. 149-166, 2015.

G. Bavota, R. Oliveto, M. Gethers, D. Poshyvanyk, and A. De Lucia, “Methodbook: Recommending move method
refactorings via relational topic models,” IEEE Transactions on Software Engineering, vol. 40, no. 7, pp. 671-694,
2014,

B. F. dos Santos Neto, M. Ribeiro, V. T. da Silva, C. Braga, C. J. P. de Lucena, and E. de Barros Costa,
“Autorefactoring: A platform to build refactoring agents,” Expert Systems with Applications, vol. 42, no. 3, pp.
1652—-1664 2015.

69

217,

28.

29,

30.

31.

32,

T. Espinha, A. Zaidman, and H.-G. Gross, “Web api growing pains: Loosely coupled yet strongly tied,” Journal
of Systems and Software, vol. 100, pp. 27-43, 2015.

G. Salvatierra, C. Mateos, M. Crasso, and A. Zunino, “Towards a computer assisted approach for migrating
legacy systems to soa,” Computational Science and Its Applications—ICCSA 2012, pp. 484-497, 2012.

F. Jaafar, Y.-G. Gueh’eneuc,” S. Hamel, F. Khomh, and M. Zulkernine, “Evaluating the impact of design pattern

and antipattern dependencies on changes and faults,” Empirical Software Engineering, vol. 21, no. 3,896-931,
2016.

B. Costa, P. F. Pires, F. C. Delicato, and P. Merson, “Evaluating rest architectures—approach, tooling and
guidelines,” Journal of Systems and Software, vol. 112, pp. 156180, 2016.

Kuttal, S. K., Sarma, A., & Rothermel, G. “On the benefits of providing versioning support for end users: an
empirical study”. ACM Transactions on Computer-Human Interaction (TOCHI), 21(2), 9,2014.

Jézéquel, Jean-Marc, Michel Train, and Christine Mingins. Design Patterns with Contracts. Addison-Wesley
Longman Publishing Co., Inc., 1999.

70

Questions ?

