
Detection of Antipatterns from SOA

Presented By: Fatima Sabir

SP14-PCS-003

Supervisor: Dr. Ghulam Rasool

Co-Supervisor : Dr. Farooq Ahmad

External Co-SuperVisors

Dr. Yaan-Gael

(Head of Canadian Research Chair of Software Engineering and PTIDEJ Lab

Head of Canadian Research Chair on IOT Tier1

Professor at University of Concordia and University of Montreal)

Dr. Naouel Moha

(Head of LATECE Lab , Associate Professor University of Qubic Montreal)

Outline

INTRODUCTION | RELATED WORK | PROPOSED METHODOLOGY | CONTRIBUTION | RESULTS | CONCLUSION
Background | Motivation and Problem Statement

Introduction

• Background

• Motivation and Problem statement

Related Work

Research Gaps

Proposed Methodologies

• Specification of Web Service Antipatterns Detection

• Evolution of Web Services Antipatterns .

• Correction of REST Antipatterns for Web Services .

• Correction of REST Linguistic Antipatterns for Web Services

Contributions

Experiments and Results

Conclusion and Future Directions

List of Publications

References

2/54

Introduction

3

1.Introduction

280

96

43

70
15

REST

SOAP

POST

Java Script

Other

Source : programableweb.com 4

91% of the Software Projects used SOAP and REST

web services

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROPOSED METHODOLOGY | CONTRIBUTION

| RESULTS | CONCLUSION

Protocols Used In Google Map APIs

 Design Pattern is a general , reusable solution

to a commonly occurring problem with in a

given context in software design [32] .

• Antipatterns are commonly generated

Solution of design/ code problems that may

have negative impact [1].

5

Removing Flaws and Improving Source Code Quality

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROPOSED METHODOLOGY | CONTRIBUTION

| RESULTS | CONCLUSION

Benefits of Detecting Antipatterns from SOA

6
Follow the Link http://sofa.uqam.ca/soda-w/

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROPOSED METHODOLOGY | CONTRIBUTION

| RESULTS | CONCLUSION

http://sofa.uqam.ca/soda-w/

Catalogs of Antipatterns for SOA

7

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROPOSED METHODOLOGY | CONTRIBUTION

| RESULTS | CONCLUSION

Relationship between Software Architecture and Programming

Paradigm

8

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROPOSED METHODOLOGY | CONTRIBUTION

| RESULTS | CONCLUSION

Software

Architecture

Service Oriented

Software

Engineering

Service-Oriented

Architecture

SOA (SOAP, REST)

Object-Oriented

OO (Java, C++,

C#)

Involves
Involves

Relies on
Relies on

Related Work

9

Software Evolution

OOSE vs SOA

First Published papers on SOA Antipatterns reported in 2013 by Moha [2].

Palma, F., Nayrolles, M., Moha, N., Guéhéneuc, Y. G., Baudry, B., & Jézéquel, J. M. (2013). Soa Antipatterns: An approach for

their specification and detection. International Journal of Cooperative Information Systems, 22(04), 1341004.

10

Object Oriented

Software

engineering

[10,11,12,13,19,

22,26,29,31]

Service Oriented

Architecture

[21,23,25,30]

INTRODUCTION | RELATED WORK | RESEARCH GAPS |PROPOSED METHODOLOGY | CONTRIBUTION | RESULTS

| CONCLUSION

?

Systematic Literature Review for Problem Identification

11

INTRODUCTION | RELATED WORK | RESEARCH GAPS |PROPOSED METHODOLOGY | CONTRIBUTION |

RESULTS | CONCLUSION

RQ1: What are the Classifications of the State-of-the-Art Techniques Employed in

the Detection of Bad Smells?

RQ2: How the State-of-the-art Approaches Evolved across Different Domains

Starting from Object Oriented to Service-based Systems?

RQ3: What are the Smells that are Reported for a Specific Domain?

RQ4: What is the Correlation between Smells across Domains?

RQ5: What are the Trends in Research for Bad Smells from the Year 2000 to 2017?

12

INTRODUCTION | RELATED WORK | RESEARCH GAPS |PROPOSED METHODOLOGY | CONTRIBUTION

| RESULTS | CONCLUSION

Finding of RQ1: Classification of State-of-the-Art Techniques

Studies Under
Review

(78 Studies)

Algorithm -based
analysis

(16 Studies)

Methdological source
code analysis (9

Studies)

Linguistic analysis

(5 studies)

Empirical source
code analysis

(23 studies)

Behavioral source
code analysis

(17 studies

Static source code
Analysis

(70 Studies)

Dynamic source code
analysis

(8 Studies)

13

INTRODUCTION | RELATED WORK | RESEARCH GAPS |PROPOSED METHODOLOGY | CONTRIBUTION | RESULTS

| CONCLUSION

Findings RQ2:Evolution of State of the Art Approaches

a) Source Code Metrics

b) Mining the Source Code using
SVN

c) Genetic Algorithm

d) Domain Specific Language

e) PE-A

Source Code Metrics

Bad Smell

Detector

based on

Approaches

(a) to (e)

14

INTRODUCTION | RELATED WORK | RESEARCH GAPS |PROPOSED METHODOLOGY | CONTRIBUTION | RESULTS

| CONCLUSION

RQ3: Smells Reported most of the Time in Literature

a)OOSE

25

19 18 18 17
15 15 15 15 15

13 12 11 11
9 8 7 6 6 5 4 4 4 4 3 3 3 4 3 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0

5

10

15

20

25

30

F
ea

tu
re

 E
n

v
y

G
o

d
 C

la
ss

B
lo

b

D
at

a
C

la
ss

L
o

n
g

P
ar

am
et

er
 L

is
t

S
p

ag
h

et
ti

 C
o

d
e

S
h

o
tg

u
n

 S
u
rg

er
y

D
u
p

lic
at

ed
 C

o
d

e

L
ar

ge
 C

la
ss

L
o

n
g

M
et

h
o

d

S
p

ec
u
la

ti
v
e

G
en

er
al

it
y

L
az

y
C

la
ss

R
ef

u
se

d
 P

ar
en

t
B

eq
u
es

t

F
u
n

ct
io

n
al

 D
ec

o
m

p
o

si
ti

o
n

M
es

sa
ge

 C
h

ai
n

D
at

a
C

lu
m

p

S
w

is
s

A
rm

y
K

n
if

e

D
iv

er
ge

n
t

C
h

an
ge

S
w

it
ch

 S
ta

te
m

en
t

C
o

m
m

en
t

P
ar

al
le

l
In

h
er

it
an

ce

M
is

p
la

ce
d

 C
la

ss

C
la

ss
 D

at
a

S
h

o
u
ld

 b
e

P
ri

v
at

e

P
o

lt
er

ge
is

t

G
o

d
 M

et
h

o
d

A
n

ti
-S

in
gl

et
o

n

C
o

m
p

le
x

C
la

ss

M
id

d
le

 M
an

B
ra

in
 C

la
ss

P
u
b

lic
 F

ie
ld

s

S
ch

iz
o

p
h

re
n

ic
 C

la
ss

G
o

d
 P

ac
k
ag

e

W
id

e
S
u
b

sy
st

em
 I

n
te

rf
ac

e

D
ec

o
ra

to
r

G
lo

b
al

 V
ar

ia
b

le
s

N
o

 P
o

ly
m

o
rp

h
is

m

P
ro

ce
d
u
re

 C
la

ss

B
ra

in
 M

et
h

o
d

C
o

m
m

o
n

 M
et

h
o

d
s

in
 S

ib
li
n

g…

E
xt

en
si

v
e

C
o

u
p

li
n

g

E
xt

er
n

al
 D

u
p

lic
at

io
n

Id
le

 C
u
t

P
o

in
t

In
te

n
si

v
e

C
o

u
p

lin
g

R
ed

u
n

d
an

t
C

u
t

P
o

in
t

T
ra

d
it

io
n

al
 B

re
ak

er

A
d

ap
te

r

C
o

d
e

C
lo

n
e

C
yc

li
c

In
h

er
it

an
ce

C
yc

li
c

D
ep

en
d

en
cy

D
el

eg
at

ed

In
te

rf
ac

e
B

lo
at

M
is

si
n

g
A

ss
o

ci
at

io
n

 C
la

ss

O
b

se
rv

er

P
o

o
r

In
h

er
it

an
ce

 H
ie

ra
rc

h
y

U
n

-n
am

ed
 C

o
u
p

li
n

g

Y
o

yo
 P

ro
b

le
m

Frequency

Feature Envy

God Class

Blob

Data Class

Long Parameter List

Spaghetti Code

Shotgun Surgery

Duplicated Code

Large Class

Long Method

Speculative Generality

Lazy Class

Refused Parent Bequest

Functional Decomposition

15

INTRODUCTION | RELATED WORK | RESEARCH GAPS |PROPOSED METHODOLOGY | CONTRIBUTION | RESULTS

| CONCLUSION

b)Smells Reported for SOA

9

7

6 6 6

5 5 5 5

4

3 3 3 3 3 3 3

2 2

0

1

2

3

4

5

6

7

8

9

10

Frequency

God Object Web Service

Low Cohesive Operation

Ambiguous Names

Chatty Service

Data Web Service

Duplicated Web Service

Enclosed Data Model

Redundant Data Model

Whatever Types

Empty Messages

Bloated Service

Bottleneck Service

Nobody Home

Sand Pile

Service Chain

Stovepipe

The Knot

CRUDy Interface

Fine-grained Web Service

16

INTRODUCTION | RELATED WORK | RESEARCH GAPS |PROPOSED METHODOLOGY | CONTRIBUTION | RESULTS

| CONCLUSION

c) Smells Reported First time in Literature

17

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROBLEM STATEMENTS | PROPOSED METHODOLOGY

| CONTRIBUTION | RESULTS | CONCLUSION

*BSD (Breaking Self Descriptiveness), CN (Content Negotiation), CvCLRN (Contextualized vs. Contextless Resource Name), IMT (Ignoring Mime Type), IC (Ignoring

Cache), ISC (Ignoring Self Descriptiveness), FH (Forgetting Hypermedia), HvNHN (Hierarchal vs. Non-Hierarchical Node), TTG (Tunneling Through Get), TTP (Tunneling

Through Post), SPN (Singularized vs. Pluralized Nodes), MC (Misusing Cookies).

Ref

B
S

D

C
N

C
v
C

L
R

N

D
N

U

D
O

R

D
S

S
S

F
H

H
v
N

H
N

IC IM
T

IS
C

IL
C

L
D

F
IN

T

L
F

D
S

L
F

E
B

A
O

D

L
F

R
D

D

L
S

D
A

S
I

L
F

C
W

S
D

L

M
C

M
S

N
S

R
P

T

R
C

S
IN

S

S
P

N

T
V

A

T
T

G

T
T

P

U
C

F
IS

M

V
C

U

[5] √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

[6] √ √ √ √ √ √ √ √ √ √ √ √ √

RQ4: What is the Correlation between Smells across the

Paradigms?

Example 2

Data Class Data Web Service

Example 1

GOD Class God Object web Service

Mapping Between SOA and OOSE

OOSE (Classes/Interface) SOA (service Interface)Maps

Maps

Maps

18

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROBLEM STATEMENTS | PROPOSED METHODOLOGY

| CONTRIBUTION | RESULTS | CONCLUSION

RQ5: What are the Research Trends in the Domain of

Bad Smells?

19

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROBLEM STATEMENTS | PROPOSED METHODOLOGY

| CONTRIBUTION | RESULTS | CONCLUSION

Findings from SLR

Sabir, F., Palma, F., Rasool, G., Guéhéneuc, Y. G., & Moha, N. (2019). A systematic literature review on the detection

of smells and their evolution in object‐oriented and service‐oriented systems. Software: Practice and Experience,

49(1), 3-39. Impact Factor 1.33

20

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROBLEM STATEMENTS | PROPOSED METHODOLOGY

| CONTRIBUTION | RESULTS | CONCLUSION

3. Research Gaps

21

OOSE

• 98% studies
reported

SOA

• 9 Studies reported for
SOA

• [2,3,4,5,6,14,15,16,21]

REST Web services

• Smells reported for REST
takes less attention [5][6]

SOAP Web Services

• Smells reported for SOAP
takes less attention
[3][4][16]

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROBLEM STATEMENTS |PROPOSED METHODOLOGY |

CONTRIBUTION | RESULTS | CONCLUSION

Problem Statement

22

4. Problem Statement

Specification, Detection, Evolution and Correction of Antipatterns for Web Services

23

Problem 1 Variable threshold adaptation for multiple services

Problem 2 Evolution of Services

Problem 3 Correction of REST Antipatterns

Problem 4 Correction of REST Linguistic Antipatterns

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROBLEM STATEMENT | PROPOSED METHODOLOGY |

CONTRIBUTION | RESULTS | CONCLUSION

Proposed Methodology

24

5. Proposed Methodology

25

SWAD

Variable
Threshold
Adaptation

Applied based
on Industry
standards

SODAR for

Evolution

Use Trace
History

Use Version
Number for

Changes

SOCAR

Correction of
ALL REST

Antipatterns

Evaluation
from Industry
Accuracy 94%

COLAR

Apply NLP to
correct URI

Accuracy 76%

Available on SOFA.UQAM.CA

Available on PTIDEJ

COMSATS Software Engineering Research Group

INTRODUCTION | RELATED WORK | RESEARCH GAPS |PROBLEM STATEMENT | PROPOSED METHODOLOGY |

CONTRIBUTION | RESULTS | CONCLUSION

SWAD (Specification of Web Service Antipatterns Detection), SOCAR (Service Oriented Correction of Antipatterns for REST APIs), COLAR (Correction of REST Linguistic Antipatterns)

Problem 1. Variable Threshold Adaptation from Multiple

Technologies.

26

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROBLEM STATEMENT | PROPOSED METHODOLOGY1 |

CONTRIBUTION | RESULTS | CONCLUSION

Specification and Detection from SOAP Web Services

Antipatterns .

27

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROBLEM STATEMENT | PROPOSED METHODOLOGY1 |

CONTRIBUTION | RESULTS | CONCLUSION

State of the Art Approaches

Antipatterns Detection from SOAP Web Services
•

• WSDL Antipatterns Detection

• 6 Antipatterns Reported

• Publically Available

SODA-W

[ICSOC 2015]

[3]

• WSDL Antipatterns Detection

• OOSE Antipatterns Detection

• 7 Antipatterns Detected

• Not Available Publically

• Manual Detection Procedure

PE-A

[IEEE Transaction 2015]

[4]

28

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROBLEM STATEMENT | PROPOSED METHODOLOGY1 |

CONTRIBUTION | RESULTS | CONCLUSION

SWAD(Specification of Web Service Antipatterns Detection)

29

Intermediate

representation of

Source Code

Database

Antipatterns

Detection Engine

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROBLEM STATEMENT | PROPOSED METHODOLOGY1 |

CONTRIBUTION | RESULTS | CONCLUSION

Example of God Object Web Service

30

Antipatterns

Detection Engine

Antipatterns Detection based

on rules

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROBLEM STATEMENT | PROPOSED METHODOLOGY1 |

CONTRIBUTION | RESULTS | CONCLUSION

SWAD Key Features

 Variable threshold adaptation

 Multilingual analysis of Code-First and Contract-First

 Adaptability for NLP techniques for Chinese ,Korean and French Dialect.

• Industrial usage for Code-First and Contract-First

• Precision 89% and Recall 85%

• One new Antipattern reported in already existing Catalog.

31

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROBLEM STATEMENT | PROPOSED METHODOLOGY1 |

CONTRIBUTION | RESULTS | CONCLUSION

Fatima Sabir, Ghulam Rasool, Maria Yousaf (2017), "A Lightweight Approach for Specification and Detection of SOAP Anti-

Patterns ", International Journal of Advanced Computer Science and Applications, pp: 455-467, Vol: 8, Issue: 5, Standard:

2156-5570

Problem 2. Evolution of Antipatterns with Evolution of

Services .

32

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROBLEM STATEMENT | PROPOSED METHODOLOGY2 |

CONTRIBUTION | RESULTS | CONCLUSION

Forgetting Hypermedia Antipattern

33

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROBLEM STATEMENT | PROPOSED METHODOLOGY2 |

CONTRIBUTION | RESULTS | CONCLUSION

Evolution of Antipatterns in REST APIs

 Detection of Antipatterns from REST APIs already reported in

literature

 As per the findings of SLR no study reported for the evolution of

Antipatterns across different REST APIs.

 There is a need to identify that how Antipatterns are evolved

w.r.t time .

 How major REST API providers refactor them ?

34

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROBLEM STATEMENT | PROPOSED METHODOLOGY 2 |

CONTRIBUTION | RESULTS | CONCLUSION

Evolution History for Antipatterns Identification

RQ1 :When Antipatterns are introduced ?

RQ2: How Antipatterns are evolved from 2015 to 2017 ?

RQ3:How Major Service providers remove Antipatterns?

35

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROBLEM STATEMENT | PROPOSED METHODOLOGY2 |

CONTRIBUTION | RESULTS | CONCLUSION

Characteristics of Ecosystem Under Analysis

Sr.No REST API Name Available version Monthly Active User Online Changelog

1 Facebook.com version 2.3 to version 2.10 1.94 billion Facebook Changelog

2 Youtube.com Revision history from 2013 to 2017 1 billion youtube change history

3 Alchemy.com version 1 Not Available Alchemy API documentation

4 Bitly.com version 3 is available 13,530 Bitly Documentation

5 Charlieharvey.com Version 1 Not Avaialble Charlihavery documentation

6 Ohloh.com Version 1.0 669,601 Openhub documentation

7 musicgraph.com version 2 1 billion Music graph documentation

8 Dropbox.com version 1 and version 2 500 million Drop box change log

9 Instagram.com version 2 is available with changelog 319 million Insta gram changelog

10 Twitter.com version 1 with complete changelog 600 million Twitter Changelog

11 Teamviewer.com complete complete change log 300 million Team Viewer

12 Stackaexchange version 2.0,2.1,2.2 is available 345 million Stack Exchange Changelog

36

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROBLEM STATEMENT | PROPOSED METHODOLOGY 2|

CONTRIBUTION | RESULTS | CONCLUSION

Research Methodology used for REST Antipatterns Evolution

37

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROBLEM STATEMENT | PROPOSED METHODOLOGY2 |

CONTRIBUTION | RESULTS | CONCLUSION

When Antipatterns are Introduced?
Step 1

Sr.No API Name Year

Breaking
Self Descrip-

tiveness

Forgetting

Hyper-

media

Ignoring

Mime

Type

Ignoring

Status Code

Ignoring

Cache

Misusing

Cookie
Tunnelin

g

Relative

Change

(%)

1

Alchemy 2015

2017

0

9

1

1

2

2

1

1

7

9

0

0

5

9

94

2

Music Graph 2015

2017

0

9

1

1

2

2

1

1

7

9

0

0

5

9

94

3

Bitly 2015

2017

0

0

2

5

3

15

0

0

0

0

0

0

2

4

243

4

DropBox 2015

2017

12

17

9

14

0

0

0

0

12

8

0

0

5

6

18

5

Twitter 2015

2017

10

25

3

6

9

25

0

6

0

14

0

0

0

2

225

6

Youtube 2015

2017

9

17

3

3

9

14

0

0

0

3

0

0

0

0

76

7

CharliHavery 2015

2017

4

12

0

0

4

0

0

0

0

0

0

0

0

0

50

8

Facebook 2015

2017

67

21

29

21

8

12

2

2

0

4

0

4

0

0

Not

Applicable
38

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROBLEM STATEMENT | PROPOSED METHODOLOGY2 |

CONTRIBUTION | RESULTS | CONCLUSION

How Antipatterns are Evolved?

Step 2

API Name

Version

Number

Breaking
Self Descrip-

tivenes

S

Forgettin

g Hyper-

media

Ignoring

Mime

Type

Ignoring

Status

Code

Ignoring

Cache

Misusing

Cookie Tunneling

StackEx

change
2.0

2.1

2.2

0

0

0

19

24

26

53

53

53

0

0

0

0

0

0

0

0

0

1

1

1

39

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROBLEM STATEMENT | PROPOSED METHODOLOGY 2|

CONTRIBUTION | RESULTS | CONCLUSION

Real Time Traces for Antipatterns Evolution

40

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROBLEM STATEMENT | PROPOSED METHODOLOGY 2|

CONTRIBUTION | RESULTS | CONCLUSION

Operations Performed in Evolution

41

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROBLEM STATEMENT | PROPOSED METHODOLOGY 2|

CONTRIBUTION | RESULTS | CONCLUSION

0

0.2

0.4

0.6

0.8

1

1.2

Fixing error Code Enhancement New Feature Refactoring

Response

Request

Body

Response Status

Change

API Change its Version

or Domain

API has Additional

Functionality

Correction of Response

via Deletion or Addition

Antipatterns Evolution for Youtube API

42

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROBLEM STATEMENT | PROPOSED METHODOLOGY 2|

CONTRIBUTION | RESULTS | CONCLUSION

Antipatterns Evolution for Alchemy API

43

1 1 1 1 1 1 1 1 1 1

0

2 2 2 2 2

7 7 7 7 7

9

1 1 1 1 1 1 1 1 1 1

0

9 9 9 9 9 9 9 9 9 9

00 0 0 0 0 0 0 0 0 0 0
0

1

2

3

4

5

6

7

8

9

10

17-06-16 17-06-30 17-07-01 17-07-03 17-07-04 17-07-05(1) 17-07-06 17-07-05(2) 17-07-05(3) 17-07-09 17-07-12

C
h

an
ge

s
in

 R
ES

T
A

P
I A

n
ti

p
at

te
rn

Detection Result in 2017

[AP] Breaking Self Descriptiviness [AP] Forgetting Hypermedia [AP] Ignoring MIME Type

[AP] Ignoring Status Code [AP] Ignoring caching [AP] Misusing Cookies

[AP] Tunneling

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROBLEM STATEMENT | PROPOSED METHODOLOGY 2|

CONTRIBUTION | RESULTS | CONCLUSION

Antipatterns Evolution for Bitly API

44

6

5 5

6

15 15 15 15

4 4 4 4

0

2

4

6

8

10

12

14

16

17-07-13_00-39 17-06-13_19-16 17-06-13_19-03 17-07-07_15-32

T
o

ta
l n

u
m

b
e
r

o
f

 R
E

S
T

 A
P

I
A

n
ti

p
a

tt
e
rn

s

Changes in Antipatterns Detection Result w.r.t Evolution

[AP] Breaking Self Descriptiviness [AP] Forgetting Hypermedia
[AP] Ignoring MIME Type [AP] Ignoring Status Code
[AP] Ignoring caching [AP] Misusing Cookies
[AP] Tunneling

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROBLEM STATEMENT | PROPOSED METHODOLOGY 2|

CONTRIBUTION | RESULTS | CONCLUSION

Findings

• Antipatterns are not removed by major service providers.

• Most of the Antipatterns are increased w.r.t time

• Correction of tunneling antipattern definition collected for Bitly.

• Correction of Mime type Antipatterns collected from Alchemy .

• Correction of Misusing Cookie and Breaking Self

Descriptiveness from INFO Q.

• Real time traces will help to maintain request, response and

body of the REST API..

45

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROBLEM STATEMENT | PROPOSED METHODOLOGY 2 |

CONTRIBUTION | RESULTS | CONCLUSION

Problem 3. Correction of Antipatterns for REST web

Services.

46

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROBLEM STATEMENT | PROPOSED METHODOLOGY 3|

CONTRIBUTION | RESULTS | CONCLUSION

How Antipatterns are Corrected for REST APIs?

47

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROBLEM STATEMENT | PROPOSED METHODOLOGY 3 |

CONTRIBUTION | RESULTS | CONCLUSION

Evolution of Ignoring MIME Type Antipattern in Alchemy

48

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROBLEM STATEMENT | PROPOSED METHODOLOGY 3 |

CONTRIBUTION | RESULTS | CONCLUSION

SOCAR
Service Oriented Correction for Antipatterns for RESTful APIs

49

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROBLEM STATEMENT | PROPOSED METHODOLOGY 3 |

CONTRIBUTION | RESULTS | CONCLUSION

SODA-R
Service Oriented

Correction for

Antipatterns

Possible

Refactoring

Operations

Evolution

History of

Antipatterns

Dynamic Invocation

of

Client Request

Antipatterns

removal

Service

Metadata

Algorithm

Implementation
Design Pattern

Instances

Client

Metadata Correction Heuristic

Sr.No
Antipattern

Name
Properties Refactoring Operations Effect

1
Ignoring Mime

Type Accept,Content Type Add Content-Type
Content Negotation

Pattern

2 Ignoring Cache Cache-Control,ETag

Add Cache Control, Generate

Unique E-Tag for Request

Response

Pattern

3
Forgetting

Hypermedia

http-methods,entity
link,

location
add links,metadata info, status code Entity Link Pattern

4
BreakingSelf-

descriptiveness

Request-header
field,response-header

field

Remove non standardized Header from

Response
Antipattern Remove

5
Ignoring Status

Code

http method, status,
stan-

dardized status code de-

scription,

Status code number and description
change, replace method for code description

and number
Antipattern Remove

6 Misusing Cookie Cookie ,Set Cookie
Remove set-Cookie, cookie from

response metadata Antipattern Remove

7
Tunneling

Through post http-method,request-uri
remove access,update and delete

from resource uri Antipattern remove

8
Tunneling

Through get
http-method,request-

uri

remove access,update and delete

from resource uri Antipattern remove

Refactoring Operations Performed for Antipatterns Correction

50

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROBLEM STATEMENT | PROPOSED METHODOLOGY 3 |

CONTRIBUTION | RESULTS | CONCLUSION

Correction Algorithm For Forgetting Hypermedia Antipattern

51

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROBLEM STATEMENT | PROPOSED METHODOLOGY 3 |

CONTRIBUTION | RESULTS | CONCLUSION

Contributions

 Real time traces of two years that provide information of different

attributes used by REST API providers.

 A complete list of error code with Description available online.

 Content description of each REST API providers is also available

online.

 Mining of trace history will be available on Github that can be

used by industry/ academia.

52

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROBLEM STATEMENT | PROPOSED METHODOLOGY 3 |

CONTRIBUTION | RESULTS | CONCLUSION

RESULTS

53

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROBLEM STATEMENT | PROPOSED METHODOLOGY 3|

CONTRIBUTION | RESULTS | CONCLUSION

Accuracy of SOCA-R

Average Precision 100%

Average Recall 94% 54

INTRODUCTION | RELATED WORK | PROBLEM STATEMENT | PROPOSED METHODOLOGY |

CONTRIBUTION | RESULTS | CONCLUSION

100 100 100 100 100 100 100

96

92

100 100

92 92

88

82

84

86

88

90

92

94

96

98

100

102

Breaking Self
Descriptiviness

Ignoring Mime
Type

Forgetting
HyperMedia

Ignoring status
Code

Tunneling Ignoring Cache Misusing
Cookie

Precision Recall

A
ccu

racy
 M

easu
res

Problem 4. Correction of Linguistic Antipatterns

for REST Web Services

55

INTRODUCTION | RELATED WORK | PROBLEM STATEMENT | PROPOSED METHODOLOGY 4|

CONTRIBUTION | RESULTS | CONCLUSION

Linguistic Antipatterns Problem

 Linguistic Antipatterns Detection and Correction is reported in

literature for OOSE[7,8,9].

 Linguistic Antipatterns detection is Reported by Palma with a tool

support DOLAR for REST APIs [6].

 Linguistic Antipatterns Correction is not reported for REST APIs.

56

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROBLEM STATEMENT | PROPOSED METHODOLOGY 4|

CONTRIBUTION | RESULTS | CONCLUSION

Research Methodology Used for Correction

57

INTRODUCTION | RELATED WORK | RESEARCH GAPS | PROBLEM STATEMENT | PROPOSED METHODOLOGY 4|

CONTRIBUTION | RESULTS | CONCLUSION

Linguistic Antipatterns for REST APIs

 Definition of Linguistic Antipatterns

◦ Singularized vs. Pluralized Nodes

 Example of Linguistic Antipatterns

◦ https://www.abcexample.com/university/faculty/profile

◦ Corrected URI Example

◦ https://www.abcexample.com/university/faculty/profiles

58

INTRODUCTION | RELATED WORK | PROBLEM STATEMENT | PROPOSED METHODOLOGY |

CONTRIBUTION | RESULTS | CONCLUSION

Corrected Trace of Linguistic Antipatterns for Youtube

https://www.googleapis.com/youtube/v3"

/videos/rate

https://www.googleapis.com/youtube/v3" /videos/rates

Refactoring operation “replace ” performed

59

INTRODUCTION | RELATED WORK | PROBLEM STATEMENT | PROPOSED METHODOLOGY 4 |

CONTRIBUTION | RESULTS | CONCLUSION

Tidy vs Amorphous URI Example

60

https:////www.abcexample.com/university/faculty/profile/biodata

https:// www.abcexample.com/University/Faculty/pic.jpg

Amorphous URI Antipattern

Tidy URI Design pattern

Replace and Remove Refactoring

Operations Performed

61

Amorphous Antipattern Correction Algorithm

INTRODUCTION | RELATED WORK | PROBLEM STATEMENT | PROPOSED METHODOLOGY 4 |

CONTRIBUTION | RESULTS | CONCLUSION

Accuracy of SOCAR

Average Precision 79%

Average Recall 75% 62

INTRODUCTION | RELATED WORK | PROBLEM STATEMENT | PROPOSED METHODOLOGY 4 |

CONTRIBUTION | RESULTS | CONCLUSION

6. Conclusion

1. SWAD detect Antipatterns for industry both for code-first and

contract-first.

2. A new antipattern introduced in the list of already defined

Antipatterns

3. Evolution History is covered for REST APIs versions .

4. This history reports original traces and logs that can further be

used in the field of Data mining.

5. SOCA-R is available that correct all famous REST API

providers problems dynamically.

63

INTRODUCTION | RELATED WORK | PROBLEM STATEMENT | PROPOSED METHODOLOGY |

CONTRIBUTION | RESULTS | CONCLUSION

6. Standardized list of Request and Response codes available in
XML form at University of Qubic Montreal web site.

7. SOCAR tool is open source and can easily be used by the new
researchers for implementation of text mining techniques for
improved URI .

8. SOCAR use dynamic source code analysis so services can be
analyzed at any time incase user find problem to access
specific services.

9. SWAD helps to detect the location of errors in services . This
will inform developers to find bugs at early stages.

10. COLAR tool helps to improve the URI of REST APIs for
better analysis.

64

INTRODUCTION | RELATED WORK | PROBLEM STATEMENT | PROPOSED METHODOLOGY |

CONTRIBUTION | RESULTS | CONCLUSION

7. Future Directions

 We have real time traces till end of the year 2017. This trace

history may be extended and can be used for the identification

of error prone services.

 The clients of REST API providers can be improved by

removing the falws from major service providers. If the

services are error prone then are the clients too?

 We are planning to extend SOFA(service Oriented Framework

for Analysis) to compare the maintenance cost of effected

services as compare to those that are not effected.

 We are planning to use SWAD tool for cross cultural analysis

amongst SOAP API providers.
65

INTRODUCTION | RELATED WORK | PROBLEM STATEMENT | PROPOSED METHODOLOGY |

CONTRIBUTION | RESULTS | CONCLUSION| FUTURE DIRECTIONS

8. List of Publications
1. Fatima Sabir, Ghulam Rasool, Maria Yousaf (2017), "A Lightweight Approach for Specification and Detection

of SOAP Anti-Patterns ", International Journal of Advanced Computer Science and Applications, pp: 455-467,

Vol: 8, Issue: 5, Standard: 2156-5570 . (ISI Index).

2. Fatima Sabir, Francis Palma, Ghulam Rasool, Yann-Gaël Guéhéneuc, Naouel Moha (2018), "A systematic

literature review on the detection of smells and their evolution in object-oriented and service-oriented

systems", Software: Practice and Experience, pp: 1-37, Standard: 1097-024X, Impact Factor: 1.33

3. Fatima Sabir,Ghulam Rasool, ,Francis Palma, Yann-Gaël Guéhéneuc, Naouel Moha, Hassan Akhtar (2019).

Correction of REST Antipatterns using Evolution History. Submitted in Journal of Empirical Software

Engineering .Impact Factor 2.933 (under review).

66

References

1. Fowler, M. (1999). Refactoring: improving the design of existing code. Pearson Education India.

2. F. Palma, M. Nayrolles, N. Moha, Y.-G. Guéhéneuc, B. Baudry, and J.-M. Jézéquel, "SOA Antipatterns: An

Approach for Their Specification and Detection” International Journal of Cooperative Information Systems, vol. 22,

p. 1341004, 2013.

3. A. Ouni, M. Kessentini, K. Inoue, and M. O. Cinnéide, "Search-Based Web Service Antipatterns Detection” IEEE

Transactions on Services Computing, 2015.

4. F. Palma, N. Moha, G. Tremblay, and Y.-G. Guéhéneuc, "Specification and Detection of SOA Antipatterns In Web

Services” in European Conference on Software Architecture 2014, pp. 58-73.

5. F. Palma, J. Dubois, N. Moha, and Y.-G. Guéhéneuc, "Detection of REST Patterns and Antipatterns: A Heuristics-

Based Approach” in International Conference on Service-Oriented Computing, 2014, pp. 230-244.

6. F. Palma, J. Gonzalez-Huerta, N. Moha, Y.-G. Guéhéneuc, and G. Tremblay, "Are Restful APIs Well-Designed?

Detection of Their Linguistic (Anti) Patterns” in International Conference on Service-Oriented Computing, 2015,

pp. 171-187.

7. V. Arnaoudova, M. Di Penta, G. Antoniol, and Y.-G. Gueheneuc, "A New Family of Software Antipatterns:

Linguistic Antipatterns” in Software Maintenance and Reengineering (CSMR), 2013 17th European Conference on,

2013, pp. 187-196.

8. V. Arnaoudova, M. Di Penta, G. Antoniol, and Y.-G. Gueheneuc, Repent: Analyzing the nature of identifier

renamings, IEEE Transactions on Software Engineering, 40(5), pp.502-532.2016

9. V. Arnaoudova, M. Di Penta, G. Antoniol, and Y.-G. Gueheneuc, "Linguistic antipatterns: What they are and how

developers perceive them." Empirical Software Engineering21.1 (2016): 104-158.
67

References

10. F. Khomh, M. Di Penta, Y.-G. Guéhéneuc, and G. Antoniol, "An Exploratory Study of The Impact of

Antipatterns On Class Change-And Fault-Proneness” Empirical Software Engineering, vol. 17, pp. 243-275,

2012.

11. T. Hall, M. Zhang, D. Bowes, and Y. Sun, "Some Code Smells Have A Significant But Small Effect On Faults"

ACM Transactions on Software Engineering and Methodology (TOSEM), vol. 23, p. 33, 2014.

12. H. Liu, Q. Liu, Z. Niu, and Y. Liu, "Dynamic And Automatic Feedback-Based Threshold Adaptation For Code

Smell Detection” IEEE Transactions on Software Engineering, vol. 42, pp. 544-558, 2016.

13. Jaafar, Fehmi, Angela Lozano, Yann-Gaël Guéhéneuc, and Kim Mens. "Analyzing software evolution and

quality by extracting Asynchrony change patterns." Journal of Systems and Software 131 ,pp. 311-322,2017.

14. Petrillo, F., Merle, P., Moha, N., & Guéhéneuc, Y.-G. "Are REST APIs for cloud computing well-designed? An

exploratory study". In International Conference on Service-Oriented Computing, pp. 157-170. Springer, Cham,

2016.

15. Wang, Hanzhang, Marouane Kessentini, and Ali Ouni. "Prediction of Web Services Evolution." In International

Conference on Service-Oriented Computing, pp. 282-297. Springer, Cham, 2016.

16. Baghdadi, Y. Service-oriented software engineering: a guidance framework for service engineering

methods. International Journal of Systems and Service-Oriented Engineering (IJSSOE), 2015, 5(2), 1-19.

17. M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta, A. De Lucia, et al., "When and Why Your Code

Starts to Smell Bad" in Proceedings of the 37th International Conference on Software Engineering-Volume 1,

2015, pp. 403-414.

68

18. Lehnert, S. (2011, September). A taxonomy for software change impact analysis. In Proceedings of the 12th

International Workshop on Principles of Software Evolution and the 7th annual ERCIM Workshop on Software

Evolution(pp. 41-50). ACM.

19. Mäntylä, Mika V., and Casper Lassenius. "Subjective evaluation of software evolvability using code smells: An

empirical study." Empirical Software Engineering 11, no. 3: 395-431,2006.

20. Kaur, H., & Kaur, P. J.. A Study on Detection of Antipatterns in Object-Oriented Systems. International Journal of

Computer Applications,93(5),2014.

21. F. Petrillo, P. Merle, N. Moha, and Y.-G. Gueh´eneuc,´ “Towards a rest cloud computing lexicon,” in 7th

International Conference on Cloud Computing and Services Science, CLOSER , 2017.

22. M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta, A. De Lucia, and D. Poshyvanyk, “When and why

your code starts to smell bad (and whether the smells go away),” IEEE Transactions on Software Engineering,

2017.

23. F. Haupt, F. Leymann, A. Scherer, and K. Vukojevic-Haupt, “A frame-work for the structural analysis of rest apis,”

in Software Architecture (ICSA),IEEE International Conference on. IEEE, 2017, pp. 55– 58.

24. M. Athanasopoulos and K. Kontogiannis, “Extracting rest resource models from procedure-oriented service

interfaces,” Journal of Systems and Software, vol. 100, pp. 149–166, 2015.

25. G. Bavota, R. Oliveto, M. Gethers, D. Poshyvanyk, and A. De Lucia, “Methodbook: Recommending move method

refactorings via relational topic models,” IEEE Transactions on Software Engineering, vol. 40, no. 7, pp. 671–694,

2014.

26. B. F. dos Santos Neto, M. Ribeiro, V. T. da Silva, C. Braga, C. J. P. de Lucena, and E. de Barros Costa,

“Autorefactoring: A platform to build refactoring agents,” Expert Systems with Applications, vol. 42, no. 3, pp.

1652–1664, 2015.
69

27. T. Espinha, A. Zaidman, and H.-G. Gross, “Web api growing pains: Loosely coupled yet strongly tied,” Journal

of Systems and Software, vol. 100, pp. 27–43, 2015.

28. G. Salvatierra, C. Mateos, M. Crasso, and A. Zunino, “Towards a computer assisted approach for migrating

legacy systems to soa,” Computational Science and Its Applications–ICCSA 2012, pp. 484–497, 2012.

29. F. Jaafar, Y.-G. Gueh´eneuc,´ S. Hamel, F. Khomh, and M. Zulkernine, “Evaluating the impact of design pattern

and antipattern dependencies on changes and faults,” Empirical Software Engineering, vol. 21, no. 3,896–931,

2016.

30. B. Costa, P. F. Pires, F. C. Delicato, and P. Merson, “Evaluating rest architectures—approach, tooling and

guidelines,” Journal of Systems and Software, vol. 112, pp. 156–180, 2016.

31. Kuttal, S. K., Sarma, A., & Rothermel, G. “On the benefits of providing versioning support for end users: an

empirical study”. ACM Transactions on Computer-Human Interaction (TOCHI), 21(2), 9,2014.

32. Jézéquel, Jean-Marc, Michel Train, and Christine Mingins. Design Patterns with Contracts. Addison-Wesley

Longman Publishing Co., Inc., 1999.

70

Questions ?

71

