
i

Detection of Antipatterns from Service Oriented

Architecture

By

Fatima Sabir

CIIT/SP14-PCS-003/LHR

PhD Thesis

In

Computer Science

COMSATS University Islamabad,

Lahore Campus - Pakistan

Spring, 2018

ii

COMSATS University Islamabad,

Lahore Campus

Detection of Antipatterns from Service

Oriented Architecture

A Thesis Presented to

COMSATS University Islamabad,

Lahore Campus

In partial fulfillment

of the requirements for the degree of

PhD (Computer Science)

By

Fatima Sabir

CIIT/SP14-PCS-003/LHR

Spring, 2018

iii

Detection of Antipatterns from Service Oriented

Architecture

A Post Graduate Thesis submitted to the Department of Computer Science as

partial fulfillment of the requirements for the award of Degree of PhD in

Computer Science.

Supervisor

Dr. Ghulam Rasool

Associate Professor, Department of Computer Science

COMSATS Univeristy Islamabad,

Lahore Campus.

Co-Supervisor

Dr. Farooq Ahmad

Associate Professor, Department of Computer Science

COMSATS University Islamabad,

Lahore Campus.

Name Registration Number

Fatima Sabir CIIT/SP14-PCS-003/LHR

iv

Certificate of Approval

This is to certify that research work presented in this thesis, entitled ―Detection of

Antipatterns from Service Oriented Architecture‖ was conducted by Ms. Fatima

Sabir, Registration No: CIIT/SP14-PCS-003/LHR, under the supervision Dr. Ghulam

Rasool. No part of the thesis has been submitted anywhere else for any other degree.

This thesis is submitted to the Department of Computer Science, COMSATS

University Islamabad, Lahore Campus, in the partial fulfillment of the requirement

for the degree of Doctor of Philosophy in the field of Computer Science.

Fatima Sabir Signature:

Examination Committee

External Examiner 1: Name External Examiner 2: Name

(Designation& Office Address) (Designation& Office Address)

Dr. Ghulam Rasool

Supervisor

Department of Computer Science,

COMSATS University Islamabad, Lahore

Campus

HOD,

Department of Computer Science

COMSATS University Islamabad,

Lahore Campus

Chairman,

Department of Computer Science,

COMSATS University Islamabad

Dean,

Faculty of Information Sciences

and Technology

COMSATS University Islamabad

v

Author’s Declaration

I Fatima Sabir, Registration # CIIT/SP14-PCS-003/LHR, hereby state that my Ph.D.

thesis titled ―Detection of Antipatterns from Service Oriented Architecture‖ is my

own work and has not been submitted previously by me for taking any degree from

this University i.e. COMSATS University Islamabad or anywhere else in the

country/world.

At any time if my statement is found to be incorrect even after I graduate the

University has the right to withdraw my PhD degree.

Date: March 4, 2019

 Singature of the Student

 Fatima Sabir

 CIIT/SP14-PCS-003/LHR

vi

Plagiarism Undertaking

1 solemnly declares that research work presented in the thesis titled ―Detection of

Antipatterns from Service Oriented Architecture‖ is solely my research work with no

significant contribution from any other person. Small contribution/help wherever

taken has been duly acknowledged and that complete thesis has been written by me.

I understand the zerotolerance policy of HEC and COMSATS University Islamabd

towards plagiarism. Therefore, I as an author of the above-titled thesis declare that no

portion of my thesis has been plagiarized and any material used as areference is

properly referred/cited.

I undertake if I am found guilty of any formal plagiarism in the above titled thesis

even after award of PhD Degree, the University reserves the right to withdraw/revoke

my PhD degree and that HEC and the university has the right to publish my name on

the HEC/university website on which names of students are placed who submitted

plagiarized thesis.

Date: March 4, 2019

 Singature of the Student

 Fatima Sabir

 CIIT/SP14-PCS-003/LHR

vii

Certificate

It is certified that Fatima Sabir (CIIT/SP14-PCS-003/LHR) has carried out all the

work related to this thesis under my supervision at the Department of Computer

Science, COMSATS University Islamabad, Lahore Campus, and the work fulfills the

requirement for the award of the PhD degree.

Date: March 4, 2019

 Supervisor:

Dr. Ghulam Rasool

 Associate Professor

Head of Department:

Department of Computer Science

COMSATS University Islamabad,

Lahore Campus

viii

Dedication

My Supervisor

&

My Husband

ix

ACKNOWLEDGEMENT

I am thankful to my Creator Allah Subhana-Watala who guided me throughout the

journey of my Ph.D research and the blessings of my beloved Holy Prophet peace be

upon him that enlighten my path in this journey

I am especially thankful to my supervisors, Dr. Ghulam Rasool, for continuous

support, guidance and encouragement throughout out my research. I am really

honored for his guidance, patience, suggestions to improve my work. This journey

will not be possible without his support. I am thankful for my co-supervisor for the

feedback on tool and paper. I want to show my gratitude and unconditional support

and external supervision by Dr. Yann-Gaël Guéhéneuc and Dr. Naouel Moha, for

everything they did across the border. They guide me thorough out my research.

A special thanks message for Higher Education Commission of Pakistan for the IRSIP

award granted to work under the supervision of Dr. Yann-Gaël Guéhéneuc at PTDIEJ

lab and Dr. Naouel Moha for LATECE lab. I also want to thanks Dr. Francis Palma

for his valuable feedback on tool and the suggestion for the improvement.

I am really thankful for the support of software engineering research group at

COMSATS Lahore for testing and prototype guidance. A special thanks to Mr.Hassan

Akhtar and our MS Students Mr.Umer Farooq and Ms. Maria for participating in

research and verification of results. I would also like to thank for post graduate

student of LATECE and PTDIEJ lab for conducting the case study.

My special thanks to Professor Dr. Syed Asad Hussain, Dean Faculty of Information

Sciences and Technology, and Dr. Zulfiqr Habib, Chairman Department of Computer

Science for their guidance and administrative support. I am really thankful to Dr

Mudassar Naseer and Dr Waqas Anwar for helping me to follow the roadmap of

doctorate degree.

In the end, I am really overwhelmed for the support of my husband for thorough out

my degree especially when I was in Canada for research fellowship. He is the one

who take care my parents too even I was not in Pakistan. In the last, I want to say

thanks to my colleagues and my friends for their prayers and support.

Fatima Sabir

 CIIT/ SP14-PCS-003/LHR

x

ABSTRACT

Detection of Antipatterns from Service Oriented Architecture

Web-services have become a governing technology for Service Oriented

Architectures due to reusability of services and their dependence on other services.

The evolution in service based systems demand frequent changes to provide quality of

service to customers. It is realized by different authors that evolution in service based

systems may degrade design and quality of service and may generate poor solutions

known as antipatterns. The detection of antipatterns from web services is an important

research realm and it is continuously getting attention of researchers. There are a

number of techniques and tools presented for detection of antipatterns from object

oriented software applications but only few approaches are presented for detection of

antipatterns from SOA. The state of the art antipattern detection approaches presented

for detection of antipatterns from SOA are not flexible.

We present a flexible approach supplemented with a tool support named as

SWAD(Specification of Web service Antipatterns Detection) to detect antipatterns

from different SOAP based applications. Service-based systems, in particular,

RESTful APIs, need to meet both service consumers‘ and providers‘ requirements.

Similar to other software systems, RESTful APIs face continuous maintenance and

evolution. Applying poor design principles called antipatterns, may hinder the

maintenance and evolution of RESTful APIs, as compared to the good design

principles, i.e., design patterns that facilitate maintenance and evolution. Antipatterns

may also affect the usability of RESTful APIs. Major market players like Facebook

and YouTube are already using REST architecture and their APIs are frequently

evolving to meet the end users‘ requirements. Although, a number of antipatterns are

defined in the literature and researchers performed their automatic detection but the

evolution of RESTful APIs did not receive much attention. There is a need to track

the evolution of antipatterns in the RESTful APIs that could assist service providers

publishing well-designed and easy to consume RESTful APIs for their clients. In this

dissertation, we present the correction of eight REST antipatterns in RESTful APIs

with a tool support called SOCAR (Service Oriented Correction of Antipatterns in

REST) after analyzing their evolution history for two years. Our correction heuristics

are validated by practitioners with an average precision of 100% and an average recall

of 94%. Moreover, we propose a methodology for the correction of linguistic

xi

antipatterns with a tool support COLAR(Correction of Linguistic Antipatterns for

RESTAPIs).

xii

Table of Contents

Chapter 1 Introduction... 2

1.1 Research Context... 2

1.2 Problem Statement and Thesis .. 6

1.3 Specification, detection, evolution and correction of antipatterns 8

1.4 Contributions ... 8

1.5 Organization of the Dissertation ... 9

Chapter 2 Building Blocks of SOA .. 11

2.1 Services ... 12

2.2 Roles of Services ... 12

2.3 Effective use of services .. 13

2.4 Composition of Services ... 14

2.5 Implementation approaches for SOA .. 14

2.5.1 WSDL ... 15

2.5.2 SOAP .. 16

2.5.3 OPC UA .. 17

2.5.4 REST full Services ... 17

2.5.6Apache Thrift ... 18

2.5.7 Message Oriented Middleware ... 18

2.6 SOA technologies and Quality of Service issues .. 19

2.7 Antipatterns as a quality indicator for SOA technologies 22

2.8 Discussion ... 23

Chapter 3 Systematic Literature Review .. 25

3.1 Introduction ... 26

3.2 Research Methodology for SLR .. 30

3.3 Classifications of the State-of-the-art Techniques Employed in the Detection of

Smells .. 43

xiii

3.3.1 Static Source Code Analysis .. 44

3.3.2 Dynamic Source Code Analysis ... 53

3.4 Evolution of State-of-the-art Approaches ... 54

3.4.1 Source Code Metrics .. 54

3.4.2 Mining the Source Code using SVN or CVS ... 55

3.4.3 Domain Specific Language .. 56

3.4.4 Genetic Algorithm .. 57

3.4.5 Parallel Evolutionary Algorithm (PE-A) .. 58

3.5 Bad Smells that are studied for a specific Paradigm ... 59

3.5.1 Smells Reported in OO ... 59

3.5.2 Smells Reported in SO Systems ... 65

3.6 Correlation between Smells across the Paradigms .. 68

3.7 Trends in Research on Smells from January 2000 to December 2017 72

3.8 DISCUSSION AND OPEN ISSUES ... 74

3.9 Summary of Literature Review ... 77

Chapter 4 Specification of Web Services Antipatterns Detection 80

4.1 Introduction ... 81

4.2 State of the Art for Web services .. 83

4.3 SWAD Approach ... 88

4.3.1 Specification of SOAP Antipatterns ... 88

4.3.2 Detection Approach for SOAP Antipatterns .. 91

4.4 Experimental Results... 96

4.4.1 Results of Antipattern Detection using Code –first Approach 99

4.4.2Results of Antipattern detectionat interface level using Contract first

Approach ... 102

4.4.3 Comparison of Results ... 108

4.4.4 Comparison of Results with P.E Algorithm ... 110

xiv

4.5Conclusion .. 113

Chapter 5 Service Oriented Correction of Antipatterns for RESUTful APIs 114

5.1 Introduction ... 115

5.2 Related work ... 118

5.3 Study Design ... 124

5.3.1 Data Extraction and Analysis ... 126

5.3.2 Correction of Antipatterns using Evolution History....................................... 131

5.4 SOCA-R(SERVICE ORIENTED CORRECTION OF ANTIPATTERNS for

REST APIs) ... 136

5.5 Analysis of Results .. 140

5.5.1 RQ1: When antipatterns are introduced?.. 140

5.5.2 RQ2: How antipatterns are evolved? .. 146

5.5.3 How antipatterns are removed? .. 148

5.6 Threats to Validity ... 149

5.6.1Construct Validity: .. 150

5.6.2 Internal Validity:... 152

5.5.3 External Validity... 152

5.6 Conclusion ... 153

Chapter 6 Correction of Linguistic Antipatterns for RESTful API 155

6.1 Introduction ... 156

6.2 Related Work... 157

6.2.1 Analysis for Web services ... 157

6.2.2Analyses for OOSE. .. 159

6.3 Correction of Linguistic Antipatterns in REST APIs. .. 160

6.3.1 Definition Analysis for RESTful Linguistic Patterns and Antipatterns 161

6.3.2 Implementation of Correction Algorithms ... 167

6.4Analysis of Results ... 167

xv

6.4 Discussion on Results ... 170

6.5 Validity: ... 171

Threats to Validity ... 173

6.6 Conclusion ... 174

Chapter 7 Conclusion ... 175

7.1 Conclusion .. 176

7.2 Implications of Research.. 177

Chapter 8 References .. 179

Appendices ... 201

Appendix I: Primary studies used for SLR ... 202

Appendix II: Evaluation of REST API ... 206

Appendix III: Correction Algorithm for REST Antipatterns 212

xvi

List of Tables

Table 2.1 Quality Attributes for SOAP and REST 19

Table 3.1: Overview of Existing Reviews 29

Table 3.2: Research Questions 32

Table 3.3: Number of Studies Found in Selected Digital Libraries after General Term

Search. 33

Table 3.4: Data Extraction Sheet. 37

Table 3.5: Techniques for Continuous Studies. 39

Table 3.6: Frequency of Smells Terms in Studies 40

Table 3.7: Studies Used Behavioral Source Code Analysis 45

Table 3.8: Empirical Source Code Analysis Techniques. 46

Table 3.9: Algorithm-based Source Code Analysis. 49

Table 3.10: Methodological Source Code Analysis. 51

Table 3.11: Linguistic Source Code Analysis. 52

Table 3.12: Dynamic Source Code Analysis Techniques 53

Table 3.13: Smells Reported in the Literature from the OO Paradigm 63

Table 3.14: Smells that are Reported Repeatedly in the Services Literature 66

Table 3.15: Smells Reported for the First Time in the Services Literature. 67

Table 3.16: Smells Reported for the First Time in the Services Literature. 67

Table 3.17: Smells Evolved in OO and SO. 69

Table 3.18: Source Code Metrics used for the Detection of Services Smells. 70

Table 3.19: Trends in Research from the year 2000 to 2017. 73

Table 4.1 :Summarized Information about SOA Antipattern Detection Techniques 85

Table 4.2 : Mapping of SOAP interface with SOAML Model 95

Table 4.3 : Statistics of Examined Systems 97

Table 4.4 Results for Finance related Web-services 99

Table 4.5 Results for Weather-related Web-services 101

Table 4.6 Results for Finance related Web-services 103

Table 4.7 Results for Weather-related Web-services 107

Table 4.8 Description of Detection Tools 108

Table 4.9 Comparison of Results for Weather Related Services 108

Table 4.10 Comparison of Results for Finance Related Services 109

Table 4.11 Comparison of Results Generated by SWAD 112

Table 5.1 List of RESTful APIs under Analysis 128

Table 5.2 Operations Performed in Evolution 130

Table 5.3 Refactoring Operations Performed for each Antipattern 139

Table 5.4 Evolution History of REST APIs 144

Table 5.5Antipattern Detection for Stack Exchange and Facebook Version History 145

Table 5.6 Correction of Antipatterns by SOCA-R 149

Table 5.7 Accuracy of SOCA-R(Service Oriented Correction for Antipatterns for

REST API 151

Table 6.1 Online documentation of Services Analysed 168

Table 6.2 Results of correction of Linguistic Antipatterns 169

Table 6.3 Relative Accuracy Measures of COLAR Tool 173

xvii

List of Figures

Figure 2.1 Interaction of Services in SOA [118] 12

Figure 2.2 Interaction among Service Components[118] 13

Figure 2.3 Implementation view of SOA [118] 15

Figure 2.4 Communication between WSDL Document Components [118] 16

Figure 2.5 SOA Technology used by Industry [228] 20

Figure 2.6 SOAP and REST Architectural Difference [228] 22

Figure 3.1: Software Architecture with Various Domains 26

Figure 3.2: Steps Followed for Systematic Literature Review. 31

Figure 3.3: Study Selection Criteria 36

Figure 3.4: Distribution of Studies w.r.t. the Data Analysis Techniques 40

Figure 3.5: Data Source Used for the State-of-the-Art Research on Smells 41

Figure 3.6: Year Wise Distribution of Studies. 42

Figure 3.7: Year Wise Distribution of Studies w.r.t. Different Paradigms. 43

Figure 3.8: Distribution of Primary Studies based on Source code analysis 45

Figure 4.1 Antipatterns Detection Approach For SOAP Services 96

Figure 4.2 Interface of Prototype Tool 96

Figure 5.1 Research Methodology 129

Figure 5.2 Migration Traces of Alchemy RESTful API 133

Figure 5.3 Migration Traces of Alchemy API 134

Figure 5.4 Correction Heuristic of Mime Type Antipatterns 135

Figure 5.5 Correction Heuristic of Forgetting Hypermedia Antipattern 135

Figure 5.6 Antipatterns Evolution for Alchemy API 146

Figure 5.7 Antipatterns Evolution for Bitly API 147

Figure 5.8 Antipatterns Evolution for YouTube API 148

Figure 6.1 Correction of Linguistic Antipatterns 161

Figure 6.2 Correction Heuristics for CRUDY Antipatterns 162

Figure 6.3 Correction Heuristics for Hierarchical Nodes Antipatterns 163

Figure 6.4Correction Heuristics for Amorphous Antipattern 165

Figure 6.5 Correction Heuristics for Pluralised Antipatterns 166

Figure 6.6 Traces of Antipattern Correction for Twitter 171

Figure 6.7.Traces of antipattern correction for YouTube 171

xviii

LIST OF ABBREVIATIONS

JSON JavaScript Object Notation

OMG Object Management Group

OOP Object-Oriented Programming

QoD Quality of Design

QoS Quality of Service

REST REpresentational State Transfer

ROI Return On Investment

SBSs Service-based Systems

SCA Service Component Architecture

SOA Service-Oriented Architecture

SOAP Simple Object Access Protocol

SODA Service Oriented Detection for Antipatterns

SOFA Service Oriented Framework for Antipatterns

UDDI Universal Description, Discovery, and Integration

URIs Uniform Resource Identifiers

WSDL Web Service Description Language

XML eXtensible Markup Language

SOCA-R Service Oriented Correction of Antipatterns for REST

COLAR Correction of Linguistic Antipatterns for REST

OO Object Oriented

SO Service Oriented

SBS Service Base System

xix

List of Publications

1. Sabir, F., Rasool, G. and Yousaf, M. (2017). A Lightweight Approach for

Specification and Detection of SOAP Anti-Patterns. International Journal of

Advanced Computer Science and Applications, 8(5): 455-467.

2. Sabir, F., Rasool, G., Palma, F., Moha, N., and Guéhéneuc, Y. (2019). A

Systematic Literature Review on the Detection of Smells and their Evolution

in Object-Oriented and Service-Oriented Systems. Journal of Software

practice and experience, 49(1), pp.3-39.

3. Sabir, F., Rasool, G., Palma, F., Moha, N., Guéhéneuc, Y., and Akhtar, H.

(2018). Correction of Antipatterns in RESTfull APIs using evolution history.

Submitted to possible publication to Empirical Software Engineering (ESE).

4. Sabir, F., Rasool, G., Farooq, U., Francis, P., Moha, M. Guéhéneuc, Y. (2018).

Correction of Linguistic Antipatterns in RESTfull APIs, submitted for possible

publication to International Journal of Cooperative Information Systems

(IJCIS).

1

Chapter 1

Introduction

2

Chapter 1 Introduction

1.1 Research Context

Service-Oriented Architecture a building block for Service Oriented

Programming

Service Oriented Architecture (SOA) is an architectural style for building solutions in

the form of services for enterprise applications. SOA is specifically used for the

construction of independent business intelligence services which can be combined

into meaningful, higher business processes and solutions within the framework of an

enterprise. The real essence of SOA is the use of integrated reusable, agile and

flexible business processes. Each business process performs separate tasks in the

organization and the world of e-business provides information to automate different

business processes across the organization; which in short elevates the need of

standardized protocol and web service composition languages which can be

understood across the industry. The most modern trend in business process

management is the use of information technology. Organizations use different

software and web services to run these business processes.

As per the definition of IEEE systems, software engineering is defined as ―the

systematic application of scientific and technological knowledge, methods, and

experience to the design, implementation, testing, and documentation of software‖.

The major key principal of software engineering is to address poor quality of

software, keep track of project deadlines and ensure that software is built

systematically as per the specification and requirements of client. One of the earlier

software development is the procedural development which follows the sequential

execution of the program. However, there are several drawbacks behind the functional

programming practices: (1) it is difficult to implement real world concept

programmatically; (2) systems are more complex as code grows; (3) Data is

centralized and hence not secured i.e. publically available. These problems are

addressed in the form of Object –Oriented Programming which promotes reusability

and avoids exposing the inner detail as per the user requirement and improves the

software performance. As an organization grows and internet came into existence,

organizations want to grow their businesses across the internet as well as transactions

done over the web. It introduces the new software development dimension known as

3

Service Oriented Programming which promotes the remote access and platform

independent functional units also known as services. Service oriented programming

introduces an additional layer of software abstraction named as service layer.

Internet is used as a bridge which helps SOA to provide a large number of simple

services that can be integrated with the help of different protocols to develop new and

complex services. Service oriented programming helps to integrate services but these

services use complex architecture which creates problem for clients who use these

services due to the many reasons: 1) Services are mostly deployed and developed

independently. 2) Encapsulation is the key principle which prevents external users to

access the internal structure of the services. 3) Interfaces are available for the users

which are the major attraction for software industry. Recent standards of WSDL

(Web Service Description language) and WIDL (Web Interface Definition Language)

are emerging and play the same role as IDL (Interface Description Language) in

different component technologies.

Integration of services using Service Oriented Programming (SOP) helps the services

to integrate components easily. Integration of components with services can be

performed using a specific service handler which uses specific protocols and converts

request from one communication protocols into another one. Services are not platform

dependent: The suitable platform can be chosen based on the application type and

complexity.

 Services are grouped together based on the needs of the users in service based

systems and use SOA as an architecture style[2]. Service based system uses services

as its building blocks [118][3]. SOA is gaining popularity and strongly supported by

the major software vendors like SAP, Sun, IBM which provide different development

tools. SBS (Service Based Systems) is designed and developed with the help of SOA

design patterns, principles [118] and different technologies like SCA (Service

Component Architecture) [5], SOAP[4] and REST (REpresentational State Transfer)

[6]. In this dissertation, we mainly focus on REST and SOAP based web services

which are widely used by financial, educational and telecom industries.

4

Maintenance of Web services and their evolution

Maintenance and evolution of the service base systems is a new term as compared to

software system evolution, as most of the web services have been introduced after

1999. Tracking the evolution of service oriented systems is quite complex due to the

distributed nature of services, whose multiple parts are available on different servers

which also help the multinational companies to monitor their business globally.

However, as the design of these services is expressed in terms of the interface

specification, there is a need to identify the changes which may impact these interface

specifications. Frequently, service implementation is totally unknown to the clients

who use these services, while the service providers have no idea about the users of

these services. Service providers may change their service at any time; however, users

of these services must be aware of these changes. The changes in Service Oriented

(SO) systems suffered by the problems due to the multiple service consumers and

providers, iteration at irregular bases due to the change in business needs and

migration from one SOA technology to another technology.

Quality of Service (QoS) is suffered due to the rapid change in service interface to

meet current user requirements. There is a need to adopt controlled mechanism in

message technology (REST, SOAP) between client and servers which maintain QoS.

However, there are wide ranges of tools used in OOSE (Object Oriented Software

engineering) to support analysis and maintenance of legacy systems. But, specialized

methods and tools which may assist developers to keep track of services for the

maintenance and evolution are still in its infancy. Migration of legacy systems

towards SOA is still a big challenge as there is no automated process which keeps

track of each phase and assists software maintenance team during migration.

Antipatterns to track Software Quality

Antipatterns are normally described the commonly generated solution of a problem

which may generate negative results [8] as compared to the design patterns which

improve the software quality and decrease maintenance cost. They also degrade the

system performance and may increase the maintenance time. There is a need of real

world experience and common vocabulary to identify the Antipatterns [40]. These

Antipatterns are another form of code smells introduced by Brown et al. [40]. There

are number of studies which assess the software quality by investigating the impact of

5

design patterns and antipatterns [112][10][77]. Different researchers investigated the

effect of antipatterns on system maintenance [10][77] as well as their effect on

program understandability which provides a reason for antipatterns evolution from

one version to another.

It is also very important to evaluate the performance of the classes which have

antipatterns as compared to the classes which are free from antipatterns. ABS

(Antipatterns identification using B-Splines) is the technique which focuses towards

the detection of antipatterns in broad line classes [78]. OOSE (Object Oriented

Software Engineering) antipatterns are also presented in [87, 143] which have little

variation of other design principles. Antipatterns detection with model queries and

formal concept analysis are other common approaches as well [142,139].

The major focus of the previously published research was antipatterns and code

smells detection in OOS (Object Oriented Systems), while only limited work is done

on Service Oriented Architecture (SOA) Antipatterns.

Antipatterns detection from Service based systems was introduced by Palma with a

framework support called SOFA (Service Oriented Framework for Antipatterns) [66]

[68]. The effect of services which are detected as antipatterns needs more

maintenance as compared to those services which are not detected as antipatterns

[68]. SOA antipatterns may reduce maintainability and reusability in Service based

systems [67]. SOMAD (Service Oriented Mining for Antipatterns Detection)

improves the previously mentioned SODA(Service Oriented Detection for

Antipatterns) approach and improves its precision by introducing some new suites of

dedicated metrics [67]. This approach used mining rules from the field of data mining

and detect strong association among sequence of services/ method call and then filter

them using the metric suite. Antipatterns also evolve not only in the OOSE but also in

web services which need serious consideration.

From the aforementioned studies, it is clear that keeping track of antipatterns

detection along with evolution is necessary to maintain the services since only few

studies reported antipatterns detection for SOAP and REST web services, and the

evolution of these antipatterns varies for each SOA technology like SOAP and REST.

Detection of antipatterns from services using different SOA technologies like SOAP

and REST is challenging because architectural style of SOA technologies is different.

6

1.2 Problem Statement and Thesis

Antipatterns detection affects the service availability and maintenance. Pressman[144]

focused on the detection and correction of design problems which helps developers to

reduce the future maintenance cost and efforts.

There are different approaches which report the detection of antipatterns from

services [66][68][56][57][5][47] but detection of the antipatterns depends upon the

technology being used by the service providers. Evolution of antipatterns is reported

for SOAP based services [121] but not for REST based services yet. Moreover,

correction of these antipatterns is not taking much attention and only subjective

assessment is reported without the tool support which prevents service system

providers like Facebook, YouTube or Google to keep track of their antipatterns

evolution and automatically detect (and correct) those antipatterns.

There is need to provide antipatterns detection technique for SOAP web services free

from any dependency of platform as reported in literature and correction of

antipatterns for RESTful APIs that still not get much attention along with evolution

history .

Problem 1. No generic approach is available for the detection of antipatterns

using variable threshold adaptation from multiple technologies:

There is not a single publically available tool for the detection of antipatterns based on

automated threshold adaptation both from industry standard code-first as well as

contract first approach used for SOAP web services. Despite the commonalities of

two approaches used by SOAP web services; there is a need of generic approach

which can be used by both techniques.

Problem 2. Evolution of Services:

Services are growing continuously due to the rapid change in user requirements.

There is a need to assess the evolution of antipatterns along the evolution of services

to prepare a catalog that helps the industry to maintain services. The present

information is not documented and is available in textual format without clear facts

and figures.

7

Problem 3. No single approach is available that reports the correction of

antipatterns for REST web services:

Despite the availability of multiple services for OOSE which report the correction of

antipatterns for OOSE, there is not a single approach which deals with the antipatterns

correction for web services for different SBSs systems that operation the Internet-

based dynamic environment.

Problem 4. No single approach is available that reports the correction of

linguistic antipatterns for REST web services:

 There are number of approaches available that report the detection and correction of

linguistic antipatterns for OOSE. However, the correction of linguistic antipatterns for

RESTful web services is still not available that will help the developers to maintain

the URI of RESTful APIs.

In the existing literature, above four problems are not addressed which provides a

baseline for this thesis statement as following:

Thesis: ―Specification, detection, evolution and correction of antipatterns for web

services ―.

Above thesis statement is further supported by research questions as given below:

RQ1 – What type of customizable approach that can be used by both academia and

industry for the detection of antipatterns for SOAP web services?

RQ1 is answered after testing our technique generically for SOAP based web

services. As SOAP based web services used either code-first or contract-first

approach, so our framework is applicable for any technique used for managing SOAP

based services.

Solution to Problem 1: A simple lightweight approach is reported that can be used

by any industry standards for creating the SOAP based services.

8

RQ2– How antipatterns are evolved for REST APIs?

Research question 2 is answered after covering evolution history for REST API over

the past three years. To conclude with RQ2, we investigate the following:

Keeping track of antipatterns detection traces along with their version history over the

past three years to know the reason of antipatterns evolution.

RQ3 – How antipatterns for REST services are corrected?

Solution to Problem 2,3 and 4 : A generic approach that helps to correct the REST

antipatterns dynamically. We apply correction algorithm with the help of trace

history. We also implemented the correction algorithms for linguistic antipatterns for

REST APIs to improve the REST APIs URIs.

1.3 Specification, detection, evolution and correction of antipatterns

Step 1: To answer RQ1, which deals with the detection of antipatterns from SOAP

web services, we firstly analyze the different approaches being used by the

industryfor designing SOAP web services and then propose a generic approach that

can detect antipatterns from web services based on the industry standards. This

approach is tested on the publically available datasets. SQL (Structured Query

Language) and regular expressions are used with dynamic threshold adaptation set by

the users. The SWAD (Specification of Web service Antipatterns Detection) tool also

usesWordNet [11] and Stanford CoreNLP [13] for checking the similarity of web

operations used by SOAP web services.

Step 2: We use SODA-R proposed by the Palma et al. [56] to check the evolution

history of web services over 2015-2017 to instigate the effect of antipatterns on major

REST API service providers. Finally, we collect the real time traces of REST API

detection to investigate the major changes adopted by the famous REST API

providers to mine the antipatterns as well as design patterns along the version history.

1.4 Contributions

This dissertation provides a novel approach for the specification, detection, evolution

and correction of SOA antipatterns. The main contributions are as follows:

 A lightweight approach easily customizable for different SOA technologies

for the detection of antipatterns. We implemented our approach for SOAP web

9

services and evaluated our approach for two industry standards. (Addresses

the Problem 1)

 An empirical evidence after mining the trace history of REST API header,

body, status code and other parameters over the past two years. The changes in

request, response are collected from real time traces (solving Problem 2);

 Using the real time definition of corrected parameters of request and response

used by the REST API providers to prepare a tool which automatically

corrects the antipatterns (solving Problem 3);

 An extensive validation of the SWAD and SOCA-R tool by the industry and

academia to calculate precision and recall metrics. (solving Problem 2 and 3);

 SOFA framework is extended for the correction of REST linguistic

antipatterns (solving Problem 4)

1.5 Organization of the Dissertation

The remainder of this dissertation provides the following content:

Chapter 2: Background provides a background on Service Oriented Architecture

especially two important technologies used by the SOA. It discusses the different

technologies lying under this umbrella and how these technologies are used by major

SOA service providers with the help of discussion, commonalities and comparisons

among those technologies. We also discuss the feature type of design issues and how

these technologies evolve with poor design practices called as antipatterns.

Chapter 3: Literature Review performs a systematic literature review on the

existing methodologies and discusses the various issues or source code problems

evolving from an OOSE to SOA. Finally, we report the existing gaps in the literature

that provides the base for this thesis.

Chapter 4: Specification and Detection of SOAP Antipatterns presents the

lightweight approach which covers two industry standards used to make SOAP web

services. The specifications of SOAP antipatterns are reported.

Chapter 5: Correction and detection of REST Service Antipatterns using

Evolution History presents extensive mining of trace history of REST antipatterns

evolving across various versions of REST APIs or from one version to other versions.

Mining of evolution history will help to investigate the changes committed by each

10

REST API provider and prepare a catalog which helps to know REST service

provider‘s industry trends. Results of evolution are discussed and findings are

reported.

Chapter 6: Correction of REST Linguistic Antipatterns reports the technique used

for the correction of linguistic antipatterns as well as impact of correction being

further evaluated by the industry.

Chapter 7: Conclusion presents the conclusion of this dissertation and outlines

some directions for future research.

Appendix A: Primary studies use for systematic literature review

presents the list of primary studies used in SLR for problem overview.

Appendix B: Validation of REST Antipatterns

Presents the questionnaire used for the validation of REST antipatterns.

11

Chapter 2 Building Blocks of SOA

12

2.1 Services

A service is a software component used by a network which helps to fulfill the request

of client users by authentication of service providers. Services can be used

individually and helpful like Yahoo weather forecasting or can be integrated with

other services to provide more complete information: i.e. use of weather forecasting

for the prediction of a live cricket match. Integration of services is possible with the

help of exchanging messages between multiple services and collecting response of

these messages. Internal and external communications via services are possible due to

the hierarchy followed by sent and receive messages. These messages affect the

results of the operations used by services defined as ―service choreography‖. Services

are either independent or dependent like a currency conversion service might depend

on an online service since currency exchange rates vary dynamically.

Figure 2.1 explains the way services interact: A client which may or may not be

another service can request the registry to search for a particular need and the registry

replies with the list of suitable services. The client can select any service as per one‘s

requirement with the help of mutually agreed protocols. Service responds either with

the desired results or with the default message.

Figure 2.1 Interaction of Services in SOA [118]

2.2 Roles of Services

There are different ways to describe the services, however, some different terms are

associated with the services especially for web services which are discussed below

[118]:

Service provider is a software entity which helps to apply service specification in

multiple ways as either internal, shared or external service provider.

Registry Service

Client

Inter

act

Respond

Advertise

Discover

13

Service requestor is software entity which requests from service provider in the form

of client or it can be an external service as well.

Service locator is also a service provider which provides specific services and works

as a registry for communication between service provider interfaces and service

location.

Service broker is another form of service provider which can transfer request to one

or more service providers.

The roles of aforementioned indicators are also described in Figure 2.2

Figure 2.2 Interaction among Service Components[118]

2.3 Effective use of services

The description of services, and the context of their use imposed a series of

constraints. Furthermore, efficient use of services suggests a few high-level best

practices. Here are some key characteristics for effective use of services [3]:

Coarse-grained — Operations on services are frequently implemented to encompass

more functionality and operate on larger datasets, compared with component-interface

design.

Interface-based design — The implementation of services defines interfaces

separately. The benefits of interface-based design are that multiple services can

implement a common interface and a service can implement multiple interfaces.

 Discoverable — Services need to be found at both design time and run time, not only

by unique identity but also by interface identity and by service kind.

Service

Requestor

Service

Locator

Service

Broker

Service Provider

Application or Services
Services

14

Single instance — Unlike component-based development, which instantiates

components as needed, each service is a single, always running instance that a number

of clients communicate with.

Loosely coupled — Services are connected to other services and clients using

standard, dependency-reducing, decoupled message-based methods such as XML

document exchanges.

2.4 Composition of Services

Service composition is the design element of SOA which promotes the design of

services in a way that can be further reused in the multiple solutions. Service

composition will be at its maximum ease if the services are independent of their size

and composition of service must fulfill the service loose coupling principle.

The softwares are developed using existing components promoting the concept of

composition. This is the key principles of object oriented software engineering where

resultant product is composed of relevant interlinked objects which provide solution

of multiple problems. The same concept is applied in SOA where focus is to build

services that can be reused by using multiple solutions fulfilling the criteria of agility.

Service composition principles prepare the services in a way that helps to implement

any change in future design of service composition.

2.5 Implementation approaches for SOA

Service Oriented Architecture is applied in an application with the help of web

services. Implementation of SOA is possible with the use of standard internet

protocols which can be used without restriction of any programming language and

platform [118] [3]. These services can be used as a new application or wrapper of

existing legacy applications which continuously evolve with respect to time. Service

system designer or programmers mostly build services by using web service

standards. These standards also follow the principal properties of SOA mentioned in

first section of this chapter. Architecture can work independent of any specific

technology and therefore can be implemented with the help of technologies as

described in Figure 2.3.

15

Figure 2.3 Implementation view of SOA [118]

2.5.1 WSDL

Web Service Description Language (WSDL) is an XML (Extensible Markup

Language) which helps service providers to design the functionality of their services

as a combined set of operations with inputs and outputs. These set of operations also

help defining the inputs and outputs which helps the consumers to benefit from the

operations. Every input and output have different forms of data types written in

schema definition (XSD) of XML. The service providers used specific techniques to

make their WSDL document publicly available in service registries known as

Universal Description, Discovery and Integration (UDDI). UDDI is used to represent

meta-data about web services. UDDI registries are further classified as a semantic

based registry which helps customers to search for a specific service based on their

functionality. These type of registries use semantic annotation language like ontology

web language. Another type of UDDI is information retrieval which can broadcast

service without any specification and helps WSDL document to collect different

terms. These terms helped todescribe the association among services and match

specific services with the queries of service consumers. WSDL document has several

version and currently used version is 2.0 because version 1.1 is no more accepted by

the W3C. WSDL 2.0 is the alternative form of WSDL 1.1.

WSDL

REST full services

Service

Oriented View

Message Oriented

Middle Ware

Apache-Thrift

SOAP

OPC -UA

16

Figure 2.4 Communication between WSDL Document Components [118]

A WSDL use services as a combination of endpoints used in networks or in port.

WSDL separates the definition of message from its network deployment or binding

used to format the data. WSDL defines messages for data definition and port-types as

collection of operations. The term port is used to bind the network address and service

as a collection of endpoint.

2.5.2 SOAP

The architecture used by RPC is based on static typing of IDL

(Interface Description Language) which focused on tight coupling. The threshold

level of coupling is due to IDL. The backbone of web services is to use low coupling

due to the use of open standards. Web services mostly use XML document which

encapsulates the distribution of shared objects among different interfaces with the

help of loose coupling. SOAP (Simple Object Access Protocol) is the technology that

Interface

types

binding

Service

Input

Output

17

also relies loose coupling and shows communication along messages using XML

document.

The WS-* is an extended version of SOAP based webservice which supports

communication with improved reliability, security and communication among various

business processes. The coupling between SOAP based web services is loose due to

the support of XML and communication between messages and interfaces is in

WSDL format. As per the definition of WSDL 2.0, an interface is defined as a set of

operations and binding of operation is supported by HTTPS service which

implements the interface at the service endpoints. XSD is used to define the message

format for communication between interfaces with the help of input and output

operations for incoming and outgoing communication. An endpoint defines the

accessible address of URL (Uniform Resource Locator) which helps to consume the

service with its concrete binding. The formation of SOAP services must follow the

schema used for WSDL message type and encapsulates data in XML compatible text.

2.5.3 OPC UA

 It‘s a communication protocol used by industry for automation and helps to establish

communication between machines. OPC UA is mostly used by industrial equipment

and systems for data collection. The OPC UA is available under the GPL 2.0 license.

It can be used by any operating system or utilized with the help of any programming

language which can shift it under the umbrella of SOA. The best feature of OPC UA

is the support of redundancy, bidirectional communication even in the case of

interruption between client and server and buffering of data along with its

acknowledgement. The protocol supported by OPC UA is binary i.e.

http://Server and opc.tcp://Server .

2.5.4 REST full Services

REpresentational State Transfer (REST) was first time introduced by Fielder in the

year 2000. REST originally introduced an architectural style which was specifically

used for large scale distributed systems. Its major component is the use of abstract

entity with high scalability. REST has these basic properties:

Identification of resource through URI: Resource and service finding resource

identifiers provide space globally available for resource and service discovery.

18

Uniform interface: Four different type of operations manipulate the resources using

PUT, GET, DELETE and POST operations. Messages can be encrypted in multiple

formats (PDF, JPEG, XML, JSON). Complete metadata information is available for

multiple uses like transmission issues detection and resource availability.

Statelessness: Messages are delivered in request are self-contained.

RESTful Web services are following simple architecture followed by IETF/W3C .

Their services and the users of these services are available in all major programming

languages. Furthermore, web resources are discovered due to the URI and hyperlinks

without the registration to a centralized repository.

2.5.6Apache Thrift

The Apache thrift is framework used for scalable multi language service development

with the help of software layers which enable the code generation to build services.

These services are supported by multi languages like Javascript, C++, Python, Ruby,

Perl, Cocoa, Erlang, OCaml, Delphi and many more. Apache Thrift allows user to

define multiple data types and different service interfaces in a definition file. The

definition file is used as input and compiler automatically generates the code. The

code is sent to build RPC (Remote Procedural Clients) that communicates logically

with all types of programming languages. The user can now directly communicate

with business layer instead of overlapping with multiple code properties or class files

to invoke objects and call methods. Thrift uses multiple procedures as a default like

binary format or in JSON and transfers from one layer to another using TCP or HTTP.

The best example of the framework used by thrift is Twitter Finagle[217]. The

Finagle is enhanced sing multiplexing; a technique used for transferring multiple

signal across one link. A protocol used by Twitter is Mux lies between TCP and Thrift

[217]. The parallel thrift connection runs between client and service with the help of

single connection [217].

2.5.7 Message Oriented Middleware

Message-Oriented Middleware (MOM) is a communication layer which provides

support for sending and receiving to/from distributed systems using software or

hardware infrastructure. The applications using MOM can be distributed across

multiple platforms and decrease the complexity level for applications using multiple

19

operating systems and communicate with each other using multiple protocols. APIs

available at multiple platforms and networks mostly use MOM. A major reason of

using MOM is its ability to transfer, save and route messages during sender and

receiver conversations. Another benefit is that, by adding the administrative interface,

one can check and adjust the performance. This will help the client to not care about

any issue regarding application state management and enjoy its communication via

sending and receiving message with server.

2.6 SOA technologies and Quality of Service issues

SOA uses multiple technologies and is covered by different types of protocols for

sending and receiving messages between client and server. We mainly focused on

SOAP and REST web services due to its usage by the companies. Table 2.1 highlights

the key points for a comparison between SOAP and REST quality of service features

collected from [118][3][5][6].

Table 2.1 Quality Attributes for SOAP and REST

Sr.

No

Quality Attributes
REST

SOAP

1 Architecture Style

Client-Server

(Architecture

Driven)

Client –Server(Protocol)

2 Protocols HTTP HTTP,SMT,TCP

3 Processing Not required
Extensive Processing due to

WSDL

4 Security
SSL at transport

layer

HTTPS

5
Message Content

Format

XMl,JSON object

Small Format

RPC, WSDL

Long Format

6 Response Format RSS ,CSV,JSON XML

7
Bandwidth

Requirement
Low

High

8 Cache Control Cached Not Cached

9 Web Service Message
Just retry in case of

message failure

Retry logic already build

20

10 Code on Demand Available Not Available

11 Data Payload Uses HTTP,JSON Uses XML

12 Usability

Interaction with

REST API is User

independent

User must know about API for

communication

13 Data Availability
Availability of data

as resource (‗noun‘)

Availability of data as Service

(‗getuser‘,‘Payinvoice‘)

14 Best Use for
Entertainment ,social

industry

Payment, Financial, Transaction

15 Famous Users
Facebook, Twitter,

YouTube

PayPall, Salesforce, Clickatell

According to the statistics collected from survey by InfoQ in 2011 [228], REST is

widely adopted architecture style by industry followed by SOAP. Figure 2.5

highlights some important statistics of SOA technology used by the industry as well

as format of data adopted by video APIs.

Figure 2.5 SOA Technology used by Industry [228]

Figure 2.5 highlights the statistics collected from programableweb.com regarding

maximum SOA technologies used: 90 percent belongs to SOAP and REST and the

other technologies portion is still 10%. The widely adopted SOA technology and it‘s

industry use motivated us to work in SOA technologies and focus specifically for the

SOAP and REST web services.

21

REST and SOAP services can also be differentiating with not only the architectural

style but also the way each service used different components and provide end user

operation This can also be differentiate with the help of diagram 2.6

22

Figure 2.6 SOAP and REST Architectural Difference [228]

2.7 Antipatterns as a quality indicator for SOA technologies

Current and future business requirements change day by day and it is important to

meet these requirements and improve the technology for better services.Software

architecture is the gateway between business goals and software systems. Quality

attributes always related to the designing and developing functional as well as non-

functional requirements for end users. Industry is shifting from OOSE to SOA and

similarly the quality of SOA system is under consideration.

Antipatterns are used to assess the quality of software and there are multiple

approaches and studies reported for OOSE to assess the quality of software by

detecting or removing antipatterns from OOSE. Steve Jones published an article on

IINFOQ [196] that highlights the SOA antipatterns by providing their description,

causes and their effect on the SOA systems. A similar effort is done by different

authors which also relate the antipatterns detection for the improvement in various

SOA technologies like SOAP and REST.

RPC Style

REST

Accessing

Resources (Data

Get users)

JAXWS

(e.g Apache CXF)

JAXRS

Jersy, REST Easy

SOAP

Document

Style

XML based formats over

http(s) ,JMS,SMTP protocol

JSON/XML/RSS/ATOM

formats over

http(s) protocol

23

The antipatterns for SOAP and REST web services are reported in the literature and

different techniques are used for the detection of antipatterns, some are publically

available and some are not. Moreover, WSDL antipatterns detection also reported that

they are the part of SOA technology but still there is no widely adopted technique

which can be used as per the industry standards i.e., code -first or contract first.

There is a huge gap of real time correction definitions available for SOA antipatterns

as compared to OOSE. Since we are focusing for REST and SOAP, so still there is no

tool publicly available for the correction of antipatterns for REST APIs (which are

capturing 70% of the market as per the Figure 2.5).

In this dissertation, we are focusing only on SOAP antipatterns detection based on

industry standards as well as REST antipatterns correction with the support of

antipatterns evolution history from 2015-2017.

2.8 Discussion

Service-Oriented Architecture (SOA) is widely used by software industry but facing

real challenges due to violation of design principals. The SOA uses many different

protocols used by various technologies that must fulfill the design and composition

attributes defined by SOA governing body. In this chapter , we discussed the quality

attributes for SOAP and REST services.

There is too much emphasis on the best practices of SOA technologies, but what

about the bad practices and their correction? This problem provides a base for this

thesis and motivates us to move forward for the detection and correction of SOA

antipatterns specifically for SOAP and REST services.

24

25

Chapter 3 Systematic Literature Review

26

3.1 Introduction

Software systems are becoming increasingly complex due to the frequent changes in

user requirements. A number of approaches were adopted in the past to address the

complexity of software systems and to implement user requirements using structured

and object-oriented software development. Object-oriented (OO) software

development focuses on the principles of modularity and reusability. Flexibility is

obtained via good quality OO design and standardized solutions, such as design

patterns [1]. Design patterns are implemented according to the software requirements

that are part of software architecture. A software architecture describes software

elements and their relationship [19] at different levels of abstraction and with various

forms, like classes and methods (OO) or services and servers [123], [124]. Figure 3.1

shows the relationship of software architecture with the OO and SOA.

Figure 3.1: Software Architecture with Various Domains

SOA deals with and composes services while the OO paradigm helps the developers

to complete the architectural requirements of distributed software [125]. SOA is a

software engineering paradigm that provides the foundation for the development of

low-cost, rapid, and simple components for distributed environment [18], [125]. SOA

relies on different types of services and may depend on OO code to build complex

applications [18]. The static behavior of OO code and dynamic nature of SOA is a

challenge when maintaining the quality of service (QoS) of SO systems [18].

Software requirements can be functional and non-functional. Although, software

developers are usually well-aware of functional and non-functional requirements, they

tend to ignore proper design guidelines during the various stages of software

development under time pressure. This may lead to the introduction of smells in their

systems. Software smells are poor solutions to coding and design problems. Smells

are most likely being introduced in software systems because the developers have

Involves Involves

Relies on
Object-Oriented

OO (Java, C++, C#)

Relies on

Software

Architecture

Service Oriented

Software Engineering
Service-Oriented

Architecture
SOA (SOAP, REST, SCA)

27

little to no idea of the system under design or they have very limited time to

implement good design and coding practices. As the system grows, smells may lead

to serious problems related to maintenance and technical debts [128]. Fowler and

Beck defined 22 code smells in OO and their various refactoring solutions [129].

A recent study explains well the trade-off between delivering acceptable, but

immature systems under the constraint of shorter time to delivery [130]. This study

also investigates why and when the code starts to ―smell bad‖. Releasing immature

systems may lead to maintenance problems for the systems [134]. A high-quality

documentation is also recommended to achieve and maintain design principles that

may prevent and–or remove smells [136]. Other studies report experiments performed

to assess the impact of good design on code comprehension [137], the effect of team

size on source code quality [138], and human judgments on source code [96], while

studies classify smells into code smells, design smells, architectural smells, and

antipatterns. Smells are often reported as antipatterns [26, 27] or as code/design

smells [24], which opens a debate for researchers to have a consensus on the

categorization of smells.

A number of studies reported antipatterns and code smells in different types of

services, e.g., antipatterns in SOAP services and WSDL (Web Service Description

Language) interfaces [47], [48], [49], in REST [56], [57], and in SCA (Service

Component Architecture) [66]. The datasets used by these studies for their

experimental validations relied on OO code. In addition, the studies performed by

Mateos et al. [48], [49] use contract-first and code-first techniques for the detection of

smells from the Web service registries.

To the best of our knowledge and from our search in different scientific databases, no

previous study classified and compared all the approaches for smells detection across

various paradigms, like OO and SOA. As the approaches used for the identification of

smells in SO systems are also based on static and dynamic source code analyses and,

thus, they may use approaches associated with OO smells identification. A detailed

discussion on all the existing approaches is redundant here and out of the scope of this

paper because reviews and comparisons of various detection approaches already exist

in the literature [28, 29, 30, 61]. We are interested in the evolution of the OO

approaches used for the identification of antipatterns for SOA systems. We want to

28

show the connection between the two paradigms to provide research directions for the

reuse of OO approaches for the identification of smells in SO systems.

However, previous studies selected smells based on a single term query, like ‗code

smell‘ (e.g., [29, 30]) or refactoring opportunities for code smells (e.g., [28, 61]).

Therefore, an exhaustive discussion of all types of smell is missing in the literature.

We want to provide a complete and exhaustive state of the research on smells. Thus, it

is essential to cover all terms associated with smells like ‗code‘, ‗design‘,

'architecture', and ‗antipatterns‘. Eliminating any terms for the selection of primary

studies may not fulfill our criteria, as we define in research string, regarding the

catalogs of smells reported by researchers in previous studies. Consequently, we carry

and report a systematic literature review that focuses on the smells and their evolution

in OO and SOA and on the research trends that are well covered in OO approaches

but received less attention in SOA. We also report existing research gaps both for OO

and SOA smells. We gather and analyzed a set of 78 highly relevant studies

addressing six state-of-the-art approaches for the detection of smells.

We extend the scope of this review for OO and SO systems by also including

correction approaches after the year 2014, thus complementing a previous systematic

literature review (SLR) that reported on the correction of OO smells until the year

2014 [61]. Studies that focus on the refactored pieces of code are out of the scope of

our SLR [9, 22] because in this study, we only consider the research works that deal

with the identification/detection of smells. This SLR assists researchers and

practitioners investigating the issues that received less attention in the literature

regarding OO and SOA code smells and may lead to a new research trend by shifting

research direction for undiscovered smells that can be detected applying various

existing techniques to smells that may require techniques novel for both OO and

SOA.This SLR will also help new researchers comprehend the smells and the various

techniques reported on their detection.

29

Table 3.1 summarises the existing systematic literature review for OO and SO

paradigms.

Table 3.1: Overview of Existing Reviews

Ref

Time

Span

Covered

BS Domain

(General)

BS Domain

Specific

Studies

Reported

Review

Method
Focus

[30] 1999-2015 CS OO 46 SLR
Tools, techniques,

language used by tools

[33] Up to 2011 CC OO 213 SLR
Method, Tools for clone

detection

[34] Up to 2007 CC OO/SPL/AOS

Exact

Studies not

reported

Literature

Survey

Taxonomy of clone

detection techniques and

tools

[35] 2000-2010 SWF OO 36 SLR
Fault prediction in units

of software systems

[41] 2010-2012 SPL Smells SPL 74 SLR
Proposed techniques for

SPL

[42] 1996-2003 BS OO

Exact

studies not

reported

Literature

Survey

Refactoring activities

and their roles are

discussed

[43] 2000-2009 CS/DS OO 46 SLR

Methodological,

empirical contribution of

code smell w.r.t. the

refactoring

[44] 2001-2012 BS/DS/AP OO 94 SLR

Model-driven

approaches to smells and

their effects on model

quality

[61] 2001-2013 BS OO 47 SLR
Refactoring activities

and opportunities

This

Study
2000-2017

BS/CS/AP/

DS/AS

OO/SO/REST/

SOAP
78 SLR

Focus on smell‘s

evolution, state-of-the-

art approaches and

research trends in OO

and SO

*Code Smells (CS), Design Smells (DS), Architectural Smells (AS), Antipatterns (AP), SPL (Software Product

Line), SWF (Software Fault)

As Table 3.1 shows, existing reviews discuss either refactoring approaches or

detection approaches. The search terms associated with these approaches mostly

30

based on code smells. No such review discussed detection techniques and their

evolution that help novice researchers investigate smells for SO systems. Moreover,

refactoring approaches also focus either techniques used for refactoring [61] or

modelling techniques used for refactoring. Furthermore, research regarding the impact

of smells on different issues like maintenance, fault-proneness, and lexical impact of

code is uncovered. All these areas are comparatively new and mostly reported after

the year 2013 for OO and SO systems. Most of these reviews focus code smells, and

do not consider the state-of-the-art techniques for architectural smells and

antipatterns. This may give the reader an incomplete review that discovered some

smells reported as architectural smells or antipatterns. We are unable to find any

review that focuses on SO systems and techniques used for those that also evolve in

OO and SO paradigms. Previous studies have focused on classifications, but do not

discuss research trends that may help new researchers to initiate investigations on

these smells.

3.2 Research Methodology for SLR

This SLR reports the existing state-of-the-art approaches on smells from different

software engineering paradigms. Kitchenham suggested software engineering

researchers apply evidence-based software engineering [45]. The evidence-

basedresearch was primarily introduced in the medical domain because expert

opinion-based medical service is not as reliable as compared to advice-based health

care services. In addition, to collect all relevant facts on research questions,

performing an SLR may also help practitioners to find existing research gaps. We

follow the guidelines proposed by Kitchenham [45] to perform this SLR in three main

steps: planning, conducting, and reporting as shown in Figure 3.2.

This section describes the protocol we follow to perform this review. We also ensure

to reduce the chances of search bias. The protocol includes the selection of most

appropriate research questions, rules for the study selection criteria, identification of

different studies, classification of studies, classification of dimensions for the

attributes, and, finally the results of data extraction and analysis.

31

Figure 3.2: Steps Followed for Systematic Literature Review.

Planning the SLR

The main goal of evidence-based software engineering is to collect the most relevant

evidence from research and investigate the findings of evidence to evaluate research

problems. The state-of-the-art smells techniques are evolved in OO and SO

paradigms. However, none of the previously published reviews are similar to the

review presented in this study. Most of the reviews were based on code smells from

the OO paradigm. In this SLR, we used the following terms to search the primary

studies.

((‗smells‘ OR ‗code smells‘ OR ‗design smells‘ OR ‗architectural smells‘

OR ‗antipatterns‘ OR ‗antipattern‘ OR ‗Antipattern‘ OR ‗Antipatterns‘)

AND (‗OO‘ OR ‗services‘ OR ‗SOC‘ OR ‗SBS‘ OR ‗SOA‘))

The search string is searched from keywords, abstract, and title of each study from the

year 2000 until December 2017. Table 3.3 reports the results of our search.

Review Protocol:In the following, we show the general criteria followed in this study

to provide more consistent and focused review. We specify the research questions

with the help of PICOC criteria [114]:

32

 Population: Object-oriented software engineering, service-oriented

computing, service-oriented systems, services, REST, SOAP, WSDL;

 Interventions: smells, design smells, architectural smells, code smells,

antipatterns, antipattern, antipatterns;

 Comparison: A holistic comparison of the population to analyse the impact of

recent research on smells, solutions, methods, and techniques;

 Outcomes: A classification of state-of-the-art smells techniques that are used

to identify or correct smells across paradigms;

 Context: An exclusive focus on evidence collected from the state-of-the-art

techniques on smells.

Through this SLR, we try to answer five research questions as stated in Table 3.2.

Table 3.2: Research Questions

ID Research Question Motivation

RQ1

What are the classifications of the state-of-

the-art techniques employed in the detection

of smells?

Identification of smells detection techniques

followed by their classifications.

RQ2

How the State-of-the-art Approaches

Evolved across Different Paradigms Starting

from Object Oriented to Service-oriented?

Evolution of specific techniques in OO and

service-oriented systems.

RQ3
What are the smells that are reported for a

specific paradigm?

Identification of unique smells for a specific

paradigm.

RQ4
What is the correlation between smells

across the paradigms?

Smells that are repeatedly reported for different

paradigms.

RQ5
What are the trends in research for smells

from the year 2000 to 2017?

Research trends followed in the domain of

smells.

Conducting the SLR

This section presents the review protocol required to perform our SLR. We search for

the relevant literature to conduct the SLR.

Search Process for Studies

An effective search string is essential to select the most relevant studies. There is no

such clear consensus on the types of smell as design, code, and antipatterns.

Therefore, we first go through the relevant reviews presented for smells to avoid any

overlapping and then we expand this review for OO and SO systems. We also check

the most relevant keyword for the review and check their synonyms, hyponyms, and

33

alternatives. We rely on the boolean operators like ‗AND‘, ‗OR‘, and the wildcard

characters (*) to formulate our search string. As we want to cover all types of smells

starting from term code smell to design smell, then to architectural smell, and, finally,

antipatterns, therefore, we use each search term associated with smells starting with

the help of the wildcard character (*) and ‗AND‘ operators to include the relationship

between population and intervention. General terms related to smells were searched

from different digital libraries along with keywords and full term-based search. Table

3.3 reports the result of each term associated with smells.

Table 3.3: Number of Studies Found in Selected Digital Libraries after General

Term Search.

Sl. No Terms Search IEEE ACM
Science

Direct
Wiley Springer Total

1 Code smell, code smells, code flaws 195 1,586 86 1 32 1,900

2 Antipattern / antipattern /

antipatterns
48 1,719 125 0 1 1,893

3 Design smell, design smells, design

flaws
135 6,550 84 1 8 6,778

4 Architectural smell / architectural

smells
27 2,048 382 0 0 2,457

5 Smells 58 54 100 49 480 741

Total 463 11,957 777 51 521 13,769

Study Selection

To select the most relevant research studies, we applied a three-step process:

Step 1: We extracted 13,769 studies resulting from the generic keyword-based search

strings from different digital libraries. The keyword-based search also reports the

articles from requirement engineering and performance antipatterns. Initially

extracted studies are further refined for the domain of software engineering resulting

2,669 studies left in the pool for review. The majority of the studies are removed from

the ACM library because terms associated with the research strings are also available

in the domain other than software engineering.

Step 2: The collection of studies selected in Step 1 is further refined manually by

covering index terms, abstract, title, and their application domains (OO and SO). This

process removes all studies from the domain of requirement engineering and Android

applications containing various terms related to smells. Duplication is removed

34

among research studies from the selected databases. The resultant provided 540

studies out of 2,669 based on their matching definitions of smells related to design,

code, and architecture.

Step 3: Furthermore, studies are filtered following some exclusion and inclusion

criteria. Only the studies from well-known conferences are kept and the rest is

discarded. The inclusion criteria are based on the following:

 Journal articles are selected related to the domain of object-oriented analysis,

software maintenance, reverse engineering, information and software

technology, service-oriented architecture, and Web service;

 Top-level conferences are selected when related to software maintenance,

reverse engineering, object-oriented technology, evidence-based software

engineering, and service-oriented computing;

 In this SLR, we include all studies associated with the term smells (e.g., code,

design, antipatterns, and architectural smells) ;

 Contextual data for each study is provided in the Excel sheet available

online
31

.

Whereas the exclusion criteria include:

 Articles of short length (less than five pages);

 Book chapters are not included;

 Workshop articles and lecture notes are not included;

 Software performance antipatterns and software requirement antipatterns are

not added due to their irrelevancy to our target domain as we are working the

evolution of smells in OO and services and requirement and performance

could not be part of the evolution from one system to another;

 Research works published as a technical report;

 Research studies related to code clone, duplicate code, and copy-paste

programming is not added since reviews exist for them;

 Smells related to android systems are not added since in this SLR we are

covering only the paradigm of OO and SO;

 Research studies that discussed single smell are also not added because we

want to know which smells are mostly discussed by tools, industry, and

academia.

35

After applying Step 3, only 75 studies are left that satisfy the above-mentioned

inclusion and exclusion criteria. Finally, snow-balling method [110] is applied to

check the reference list of the selected studies to minimize the chance of removal of

any relevant studies. Therefore, in an additional activity, 78 studies are selected in

Step 4. The snowballing provides additional three studies that are [83], [98], and [23],

mostly cited in different research studies and not included in selected searched

databases. Figure 3.3 shows the representation of studies selection criteria.

The identification of smells is performed following an incremental process. In the first

phase, we start with a primary study and collect information on all reported smells.

We then follow the process across all the primary studies for different domains, and,

finally, we get a pool of smells for a specific domain. In the second iteration, we run

the process for identification of smells and check whether these smells are already

‗reported‘ or ‗detected‘ or ‗corrected‘ in the area other than OO, if yes, then we add

those smells into correlated smell section to check what type of smells are evolved

across paradigms. If we are not able to find that smell as ‗corrected‘ for SO systems,

then we report this smell as ‗not corrected‘. Similar iteration is followed for

techniques evolved in OO and SO to check the approach followed in a sequence from

the year 2000 until 2017. This iteration will also help to identify trends in the research

on smells.

36

Figure 3.3: Study Selection Criteria

Data Extraction and Analysis

We extracted data in Excel in a consistent format as presented on our online

appendix
31

 where we also present detailed results. Data is extracted based on the

research questions. We focus on the types of smells, i.e., code, design, architectural,

and antipatterns, as they appear in the title, abstract, or index terms of an article. Our

classification technique is based on static, dynamic, empirical, methodological, and

linguistic source code analysis. Research trends are collected after examining the

sequence of related research patterns over the past seventeen years. Data extracted is

evaluated and disagreement was discussed until the conclusive results are achieved.

Many selected studies did not answer all the questions available in our data extraction

form. Table 3.4 presents the data extraction sheet designed for each research

question.

Step 3: 75 Studies

(Manual)

IEEE

Science Direct

ACM

Wiley

 Articles
(15,412)

2,665 Articles

Study Selection Based on
keywords, Abstract, and Title

Unique Articles (500)

Review Abstracts

Inclusion/Exclusion Criteria

Quality Assessment Criteria

Reference Check for Additional

Important Articles

Step 1

(Automatic)

78 Final Studies Selected

(Manual)

Springer

Step 2

(Manual)

37

Table 3.4: Data Extraction Sheet.

Search

Criteria
Data Item Description

General

Identification number

bibliography

Type of the article

Study aims

Study designs

Reference Number Assigned to the article

Year, Title, Source/Research Group

Conference Paper, Journal Paper/Tech Report

Summarising notes about each study

Experimental, Case Study, Survey, Review

RQ1

Behavioral source code

analysis

Dynamic source code

analysis

Algorithm-based analysis

Empirical source code

analysis

Methodological analysis

Linguistic source code

analysis

Source code analysis that uses Source code metrics

to examine soured code behavior

Analyse the interrelationship of program entities

after the execution and checking the behaviour of

the program

Studies that use a specific algorithm to detect

smells from source code

Studies that report the results of already

established tools to empirically evaluate the

research problems and address some new findings

Implements already proposed a methodology in a

new way to either correct or detect smells. These

types of analysis compare the results before and

after the implementation of any specific method.

Checking the internal code quality like naming

conventions of methods, classes, etc.

RQ2
Evolution of research for

smells in OO and SO

Analysis of multiple research methodologies

constantly repeated from paradigm to paradigm.

RQ3
Smells reported for a

specific paradigm

Unique identification of smells for OO, SOAP

services, REST, SCA, AOP, SPL

38

RQ4
Evolution of smells in

OO and SO

Identification of smells that are reported for OO,

but also later found in SO systems

RQ5

Trends in research Unique trends for Smells

Detection

Correction

Maintenance etc.

Data Synthesis

Quality criteria are based on the inclusion/exclusion criteria as defined above.

Metadata analysis is performed after reviewing the studies completely. Metadata

analysis for each research question is clearly examined and the answer is recorded in

an Excel sheet as presented online
31

. We have verified basic contextual information

reported for each research question. A number of approaches are available for data

synthesis some of which maintain the qualitative form of the evidence such as meta-

ethnography while some involve converting qualitative findings into a quantitative

form such as content analysis [111]. Basic quality criteria for selecting studies

discussed above are based on the guideline provided by Kitchenham [46]. There are

different terms reported for the smells in the literature but most of the smells are

reported as code smells (22 research studies), and only nine studies are reported as

antipatterns. Data addressing our five research questions are extracted from the 78

most relevant studies that satisfy all the quality criteria, including the PICOC and the

inclusion/exclusion checklist. Our goal is to collect most relevant data from the

studies selected to analyse the state-of-the-art approaches in OO and SO paradigm. To

investigate the key questions, three sets of data were extracted from 78 studies.

i) Context data showing the context of each study, such as the source of data,

experimental evaluation, application area, and programming languages are noted;

ii) Qualitative data related to research questions were extracted from the index

terms to assess the type of smells w.r.t. the term generally associated;

a) Qualitative studies through the extraction of qualitative data provides

information for the studies that used cause-effect relationship or introduce new

ideas by using different properties of the system under analysis, e.g., studies

[77] and [88] predict certain properties of the system or studies [30], [61] use

39

different attributes in terms of research questions as qualitative measure to

show their findings.

iii) Quantitative data extracted from the studies based on the predictive

performance of the model or approach reported in the study. The data are divided

categorically and the variable used to represent result is mostly continuous.

However, some of the studies reported their results in both forms:

a) Categorical studies report their results predicting whether the smells

detected, corrected, or maintained in the system under analysis. These

results are reported by using accuracy measures like precision or recall. In

total, 28 studies used accuracy measures like precision and recall in this

SLR.

b) Continuous studies reported their results by using similar measures like

mean standard error (MSE) or measures the difference between expected

and observed results like chi-square, correlation, logistic regression, and

ranking form. We found 21 studies that come in this category as they

report their results by using statistical techniques to validate their research

model and present their findings. The most widely used technique for

continuous studies is correlation analysis (six studies) followed by

regression analysis. The complete list of studies falls into this category is

given below in Table 3.5 along with the techniques applied.

Table 3.5: Techniques for Continuous Studies.

Ref. No Technique Used

[38] Fisher Test

[51] Mean, Median, SD, Correlation

[49], [53],

[91]
Correlation

[68], [73] Wilcoxon Rank Test

[78] Correlation

[81], [113] Chi-Square Test

[77] Regression Analysis

[80] Cliff's D and Kruskal Wallis test, Holm‘s Mann

[98] Cohan‘s Kappa, Fleiss Kappa

[104] Correlation Analysis, Regression

40

28

21

Series1,
Qualitative
Studies, 9

20

Categorical Studies

Continuous Studies

Qualitative Studies

Others

[105] Wilcoxon Rank Test, Mean, Standard Deviation, Median

[104] Logistic Regression Model

[15] Min, Median, Mean, Mode

[59] Proportion, Odd Ratio

[84] PCA, Logistic Regression

[23] Logistic Regression Model, Odd Ratio

[119] Fisher test, Odd Ratio, Chi-squared

The distribution of studies w.r.t. the types of data they used are given in Figure 3.4.

Figure 3.4: Distribution of Studies w.r.t. the Data Analysis Techniques

It is important to consider that 22 studies are reported as ‗Others‘ because they used

mixed approach and did not report their results by using any measures. These types of

studies have mostly focused on the key concepts that are proposed but were not tested

or validated. The complete information about these studies is provided online
31

.

Data synthesis is combined with the data extraction form to analyse the quantitative as

well as qualitative data fully. Data extraction form as reported in Table3.4 provides

complete information regarding each research question along with the data synthesis

reported in Figure 3.4. The information presented helps to look for the most applied

statistical methodology used by the industry for categorical, continuous, and

qualitative studies. In total, 18 studies used a mixed approach based on the

quantitative and qualitative information. Some of them only discuss the concept or

novel approach and present findings or benefits of their approach.

Table 3.6: Frequency of Smells Terms in Studies

Sl. Smells Type Frequency % Reference

41

1 Antipatterns 11 14.1%
[38], [58], [63], [23], [76], [88], [101], [106],

[119], [120], [121]

2 Architecture 15 19.23%
[47], [48], [49], [50], [51], [52], [53], [54], [56],

[57], [66], [67], [68], [100], [102]

3 Unpleasant smell 7 8.75% [78], [82], [90], [93], [94], [96], [98]

4 Code smell 24 30%

[60], [61], [30], [69], [70], [73], [112], [17], [74],

[84], [77], [79], [85], [86], [91], [12], [97], [99],

[103], [104], [105], [114], [115]

5 Design smell 18 23.5%
[26], [62], [65], [16], [15], [25], [71], [72], [75],

[27], [81], [83], [87], [89], [92], [80], [64], [59]

6 Code and Design 3 3.85% [54], [2], [95]

Total 78 100%

Moreover, it is also observed that most of the studies have validated their research

model on open-source systems. Therefore, most of the results in the area of smells can

be compared or tested by analyzing similar open-source systems. Figure3.5 reports 66

primary studies that use open-source systems and three other studies that use

propitiatory systems, i.e., other than open-source systems. We also found nine studies

that do not rely on any target systems, open-source or proprietary, to validate their

results.

Figure 3.5: Data Source Used for the State-of-the-Art Research on Smells

The validation criteria reported by the studies are either based on accuracy as a

measure or by using statistical techniques. We have found the highest number of

research studies between the year 2013 and 2015 (18 studies). Moreover, the research

trend has been moved from static source code analysis to dynamic source code

analysis applying machine learning, artificial intelligence, and genetic algorithms.

Furthermore, smells detection has not gained much attention for SO systems. Figure

3.6 shows the distribution of studies over the years. Fowler [8] introduces the concept

66

Frequency ,
Others, 3

9

Data Set Reported in SLR

Open Source

Others

Not Reported

42

of code smells in 1999 and the first paper reporting smells published in 2001 [14]

followed by four studies in the year 2004 and two studies in 2006. These are

conference studies and we are unable to find any journal studies in those years that

fulfill the criteria of selection for studies. The problem of identifying smells in source

code began to attract more research attention in the year 2010 with an average of

more than six research studies per year. This observation highlights the interest of

researchers and the importance of smells after the year 2009.

Figure 3.6: Year Wise Distribution of Studies.

The research studies were published in 39 different venues. Over half of the studies

are published in conferences and the rest are published in various journals. A slight

shift from conference to journal articles shows the importance of considering both

conference and journal articles in this systematic review. Also, considering either

journal articles or conference articles will create a research bias and may provide the

readers with an incomplete literature review. Furthermore, researchers are attracted

more towards the conference of reverse engineering, software maintenance, whereas,

for services, the SO computing attracted more researchers.

There is less number of studies reported for service-oriented software engineering

compared to OO. This shows that research is now shifting towards SO systems due to

the high demand for Web services. Most of the studies for SOAP services are reported

in the International Journal of Web and Grid Services (four studies) and IEEE

Transaction on Service Oriented Computing (one article). Moreover, we are unable to

find any journal paper on REST services smells as well as correction of smells for

REST services. This observation shows that this is a highly active area of research for

Journal , Year, 0 Journal , 2001, 0 Journal , 2002, 0 Journal , 2003, 0 Journal , 2004, 0 Journal , 2005, 0 Journal , 2006, 0 Journal , 2007, 0 Journal , 2008, 0
Journal , 2009, 1

Journal , 2010, 2
Journal , 2011, 3

Journal , 2012, 2

Journal , 2013, 7

Journal , 2014, 2

Journal , 2015, 9

Journal , 2016, 3

Journal , 2017, 1
Conference , Year,

0

Conference , 2001,
1 Conference , 2002,

0
Conference , 2003,

0

Conference , 2004,
4

Conference , 2005,
0

Conference , 2006,
2

Conference , 2007,
0

Conference , 2008,
0

Conference , 2009,
2

Conference , 2010,
4

Conference , 2011,
4

Conference , 2012,
8

Conference , 2013,
11

Conference , 2014,
4

Conference , 2015,
4 Conference , 2016,
3 Conference , 2017,
2

Journal Conference

43

the new researchers. Figure 3.7 presents studies over the past 16 years for the

paradigms of OO and SO.

Figure 3.7: Year Wise Distribution of Studies w.r.t. Different Paradigms.

The authors of all the above studies are from academia and mainly working in

research groups with support from industry. Therefore, based on this study‘s selection

criteria, no strong evidence was found that gives strong implication whether research

on smells is primarily conducted by the industry or the academic community. We also

found some references where academia solves the industry problems after collecting

information from industry blogs like J2EE
1
 and INFOQ

2
 [47, 57, 52] and provide tool

support that solves the reported problems by industry blogs.

 3.3 Classifications of the State-of-the-art Techniques Employed in the

Detection of Smells

The classification of the detection techniques for smells is also reported in a recent

review [30] but it is focused only on the smells discussed by Fowler [8]. This focus

creates a bias because smells other than Fowler‘s are not reported. Moreover, the

selection of studies covers from January 2000 until December 2017.

Another systematic literature review used the term ―smell‖ for selecting studies, but

focused only on studies that discussed multiple refactoring operations [61]. It focused

only on the refactoring for removing smells and not on the impacts of smells on

system performance and multiple approaches used for the detection of smells. We

1 j2ee.com

2 infoq.com

OOSWE, Year, 0
OOSWE, 2001, 1

OOSWE, 2002, 0 OOSWE, 2003, 0

OOSWE, 2004, 4

OOSWE, 2005, 0

OOSWE, 2006, 2

OOSWE, 2007, 0 OOSWE, 2008, 0

OOSWE, 2009, 3

OOSWE, 2010, 6 OOSWE, 2011, 6

OOSWE, 2012, 8

OOSWE, 2013, 16

OOSWE, 2014, 5

OOSWE, 2015, 11

OOSWE, 2016, 2 OOSWE, 2017, 2

SOA, Year, 0 SOA, 2001, 0 SOA, 2002, 0 SOA, 2003, 0 SOA, 2004, 0 SOA, 2005, 0 SOA, 2006, 0 SOA, 2007, 0 SOA, 2008, 0 SOA, 2009, 0 SOA, 2010, 0
SOA, 2011, 1

SOA, 2012, 2 SOA, 2013, 2
SOA, 2014, 1 SOA, 2015, 1

SOA, 2016, 2 SOA, 2017, 2

OOSWE SOA

44

also found studies that discussed model-driven approaches for smells until the year

2011 [41] due to their research associated with the detection of smells. Moreover, we

also discussed studies that introduced correction approaches in addition to the

detection techniques that were not considered in the most recent review [30]. We

divided the studies on the basis of source code analysis and not based on the

symptoms associated with smells like reported in [30]. The classification is divided

into (1) static source code analysis and (2) dynamic source code analysis.

Static source code analysis is a technique that examines the properties of smells and

their impact without executing systems. In contrast, dynamic source code analysis

examines the cause and effect relationship of smells during system execution.

In the following, we classify primary studies selected for this review into two major

types: (1) dynamic source code analysis and (2) static source code analysis. Most of

the studies focused on static source code analysis as we found 70 primary studies

under this category compared to 8 for dynamic source code analysis. Figure 3.8

reports the total number of studies reported for each type of analysis.

3.3.1 Static Source Code Analysis

We further divide the static source code analysis classification into six categories as

shown in Figure 3.8.

a) Behavioral Source Code Analysis

Software systems undergo various changes and study [9] reports that 98% of the

literature on change impact analysis is related to code analysis in comparison to 17%

of the studies to architectural changes. We classify multiple primary studies into

behavioral source code analysis that examine the program behavior without executing

the source code. The behavioral source code analysis uses different metrics to check

program behavior like cohesion, coupling, depth of inheritance, lines of code using

various source code metrics.

The detection of smells is not possible without any intermediary representation. This

representation is used to extract useful information from the application and to apply

source code metrics to check the detection of smells. Therefore, behavioral source

code analysis is based on either informal description of flaws [16] or using the textual

description of rules with the help of domain-specific language [24]. Source code

parsing is also appliedusing different parsers [49, 51, 53, 100] that make an

45

intermediary representation of source code and apply source code metrics directly to

this intermediary representation. Some code smells are also reported in the literature

after examining the version control histories and then apply source code metrics [17].

These types of studies help industry and academia to investigate the problems for a

system under analysis to improve its quality.

Figure 3.8: Distribution of Primary Studies based on Source code analysis

Table 3.7: Studies Used Behavioral Source Code Analysis

Ref. No Smell Type Precondition Post Condition

[16] DS Informal description of flaws Source code metrics

[17] CS
Change history extractor using SVN

3
,

CVS
4

Code smell detector

applies for each smell type

[24] CS/DS
Textual description is used for DSL to

generate detection algorithms
Source code metrics

[55] CS/DS Parsing using JFLEX
5
 and Java Cup

6 Source code metrics

[60] CS/DS None Source code metrics

[65] DS Meta-model Source code metrics

[95] CS, AP Ontology Source code metrics

[78], [75], [25],

[62], [83]
DS, BS Smells properties are applied Source code metrics

[101] AP UML specification is defined for each AP
Correction approaches are

defined

[49], [51], [53],

[100],
AS, AP Java to WSDL file Source code metrics

*Code Smells (CS), Design Smells (DS), Architectural Smells (AS), Antipatterns (AP)

3 https://subversion.apache.org/

4 http://www.nongnu.org/cvs/

5 http://jflex.de/

6 http://czt.sourceforge.net/dev/java-cup/

46

We also observed that meta-model [65] and ontology [95] are other forms of

intermediary representations on which source code metrics are applied to detect

smells. Moreover, smells identification could be done either specifying them in the

form of textual description [78] that helps to improve WSDL document describing SO

systemsand also OO systems [25, 62, 75] or in the form of UML specifications [101]

to improve the source code quality. Table 3.7 highlights the conditions used by the

primary studies for the smells detection. It provides the primary studies reported for

OO and SO systems.

b. Empirical Source Code Analysis

Empirical source code analysis has been the technique to get information by using

already established tools or approaches either directly or indirectly. Empirical source

code analysis is either analysed quantitatively or qualitatively [122]. The evidence

collected from different techniques will help researchers to answer questions that are

clearly defined and collected from different problem domains [122].

Some smells detection techniques use empirical evidence collected by different

already established tools to check the associations among various versions of OO

systems [38, 22, 68] or systematic literature review to check the most relevant

information presented for either detection of code smells [61, 84, 30] or correction of

code smells [64] or code decay [85].

Empirical source code analysis mostly investigates the cause-effect relationship like

smell vs. maintenance effort [77, 112], best practices of services in open-source

platform [120], class performance [104], change-proneness of antipatterns and clones

[119], refactoring suggestions [80, 97, 104] after smells detection or statistical

techniques to check the relationship between already presented smell and design

patterns [105]. Table 3.8summarises the extracted information of 23 studies that use

empirical source code analysis techniques.

Table 3.8: Empirical Source Code Analysis Techniques.

Ref. Smell Pre-Condition Post Condition

47

Types

[22] AP Mining the source code

12 versions of Eclipse
7
 and nine versions of

ArgoUML
8
 are used to mine the repositories for

antipatterns and code smells

[27] AP

Change-proneness and Null

pointer exception in classes

are analysed

Results are validated in 11 releases of Eclipse

[38] AP

DÉCOR
9
 along with PTDIEJ

7

tool suite to check static

dependencies

Macocha
10

mines version-control systems for

checking association among antipatterns

[68] AS
SO system FraSCAti

11
 is

used for evaluation purposes

Python script is used to check the commit with

changes and without changes

[74] CS
Mimec [88] is used to record

log

12 code smells detected in the pre-maintenance

version using Borland together and INCode

[77] CS

Borland together and

INCode
12

 for the detection of

code smell

Mimec [88] is used to check developer‘s

activity, and then maintenance effort is analysed

[112] CS
Three developers are hired to

perform maintenance tasks

Regression analysis is carried out to measure

effort

[23] CS
Changes are counted using

CVS from Eclipse

Logistic regression is applied to correlate the

presence of antipatterns with the change process

[80] AP

Antipatterns are detected,

MADMU [109] matrix is used

to check the cost

Refactoring options are suggested to remove

smells

[81] DS
Design smells are

analysedw.r.t. Flaws classes
Design defects vs. flaws classes

[88] AP
DÉCOR is used for the

detection of code smells

Odd ratio and Fisher test are applied to check

the difference between mutated and non-mutated

antipatterns

[106] AP
A set of guidelines is defined

for WSDL
Easy SOC plug-in developed for detection

[91] CS

Manual analysis of smell

frequency and source code

metrics for the detection of

Correlation is used to check thefurther

relationship

7 https://eclipse.org

8 http://argouml.tigris.org/

9 http://ptidej.net/tools

10 http://www.ptidej.net/

11http:// frascati.ow2.org/

12https://marketplace.eclipse.org/content/incode-helium

https://marketplace.eclipse.org/content/incode-helium

48

smells

[69] CS

Eclipse plug-in is developed to

check the location of source

code

Naïve Bayes and association rule mining is

applied to check the bug relationship in code

[97] DS

INCODE
13

 as Eclipse plug-in

to check the quality of the

code

Refactoring suggestions for code quality

[98] CS
Different smells detector is

used to check smells in code
Kappa

14
 statistics are applied to check results

[104] BS
Mining the evolution of three

open-source project

Quantitative analysis of the classes participating

in refactoring

[105] CS

Nine design patterns and

seven code smells are

analysed

Correlation, mean, median is used to answer the

research problem

[61], [85],

[30]
CS

Kitchenham guideline to

collect relevant literature

Reported code smells detection and correction

approaches

[119] AP

DECORE for antipatterns

detection and CC finder for

clone detection

Co-change analysis and fault -proneness

identification with Macocha model

[120] AP
A literature review of services

collected

 Analysis of Google Cloud platform, Stack

overflow, OCCI for best practices

*Code Smell (CS), Design Smell (DS), Architectural Smell (AS), AP (Antipatterns), SC Metrics (Source Code

Metrics)

c. Algorithm-based Source Code Analysis

Some smells detection methodsuse more than one detection technique, like source

code metrics. Some use genetic algorithms [12, 59, 79], machine learning techniques

[26, 93], or image processing [92]. These algorithms help to solve the problem of

using fixed threshold for the detection of smells [59] and correction of smell using

development history [12]. Moreover, detection results from different repositories are

used to implement machine learning techniques [26, 93]. These studies also open an

opportunity for the detection of smells and correction using machine learning

algorithms with good precision and recall as reported in our online appendix
31

. Table

3.9summarises the information of all studies that use different algorithms.

13 https://marketplace.eclipse.org/content/incode-helium

14 https://en.wikipedia.org/wiki/Cohen's_kappa

49

Table 3.9: Algorithm-based Source Code Analysis.

Ref.

No

Smell

Type

Algorithm

Domain
Pre-Condition Post Condition

[26] AP ML

60 source code metrics results

are used as training datasets

from PROMISE
15

SVM classifier is applied

using WEKA
16

[52] AS GA

Base examples are collected

from Different Web service

search engines

Different combinations of

source code metrics are

applied

[59] CS GA
GA is used for dynamic

threshold adaptation

Source code metrics are

retrieved from different tools

[58] AP -

Perl Script along with Ptidej tool

used to compute metrics from 12

versions of Eclipse and nine

versions of ArgoUML

DÉCOR is used to detect

antipatterns

[70] CS -
The parallel evolutionary

algorithm is used

Source code metrics thresholds

are set using the GA algorithm

[71] AP Mathematics
Antipatterns are formally

defined

Prolog rules are applied for

detection

[76] AP CG
A set of metrics and their values

are used to generate B-Spline

The similarity of thesignature

is computed to detect

Antipatterns

[79] CS GA
 GA is implemented with the

help of source code metrics

NSGA-II for the correction of

defects

[89] DS BMS
Initialization, training, memory

selection cell

Source code metrics selection

for detection

[90] BS
Set of reference code for

refactoring
GA is applied

[92] DS IP
Input is the name of the method,

association type among classes

Similarity scoring and Bit

vector algorithm applied to

check Smells

[54] AP GA The PE-A algorithm is applied

Different combination of best

threshold source code metrics

for detection

[93] BS ML

Source code metrics results from

seven different software

repositories

Naïve Bayes, Logistic, IB1, IB

k, VFI, J48, and random forest

applied

15 http://promise.site.uottawa.ca/SERepository/

16 http://www.cs.waikato.ac.nz/ml/weka/

50

[12] CS GA Source code metrics

NSGA-II applies to check

detect and correct smells from

development history

[108] CS ML

78 systems are studied, and

different source code metrics are

analysed

Combination of different

machine learning algorithms

are applied to check the smells

for each system under analysis

[121] AP ML/GA Source code metrics are used
An evolutionary algorithm for

antipatterns detection

*Code Smells (CS), Design Smells (DS), Architectural Smells (AS), AP (Antipatterns), ML (Machine Learning),

IP (Image Processing), GA (Genetic Algorithm), BMS (Bio Medical Sciences).

d. Methodological-based Source Code Analysis

Methodological-based source code analysis is used to implement an existing

methodology in an alternative manner for either detecting or correcting smells with

the end goal of improving detection accuracy.

This type of source code analysis can be used to define unique technique relying on

already available tools or algorithms to detect occurrences of smells. The studies in

this aspect mainly focus on the quality of the source code before and after

implementation of specific methodologies, like performance comparison of different

queries using some source code metrics [63] or using different tools for smells

detection [99].

Moreover, NSGA-II (Non-Dominated Sorting Genetic Algorithm) algorithm is also

used to check source code quality before and after applying algorithms for the

correction of smells [102]. The effect of smells on system defects was also studied by

considering five types of smells [114]. This study showed that the switch statement

has more influence on defects in comparison to other smells under study. The studies

reporting empirical source code analysis are presented in Table 3.10.

51

Table 3.10: Methodological Source Code Analysis.

Ref.

No
Smell Type Precondition Post Condition

[63] AP
Execution and transformation of

queries to make ASG

Create an EMF representation of the ASG

for performance comparison

[99] AP

J-Deodorant
17

, Check style
18

 and

InCode is used for the detection

of smells

Extract Class, Encapsulate Fields and Move

Method refactoring is applied using Jason

1.3.10
19

 and Eclipse Kepler
20

[102] AS
Source code metrics and Multi-

objective optimisation approach

NSGA-II implemented to check source

code quality before and after refactoring

[50] AS

Migration strategies are defined

for Legacy application to SO

systems

Refactoring of WSDL document is applied

combining different thresholds of SC

metrics

[72] DS
CLIO approach used to detect

structural and change coupling

Modularity violation calculated by

comparing structural and change coupling

[86]

CS

The tool is developed that run in

the background to monitor

changes

Monitor invokes smell detection tool and

warns developers

[82]
BS

Pattern-based definitions are

presented based on the

symptoms of smells

A survey is conducted to get consensus on

revised and improved definitions

[96]
BS

Two parts Web-based

questionnaire is developed to get

anopinion from developers about

smells

Different options are analysed like an

evaluation of developer perception,

demographic effects, and experience of

developers w.r.t. the code smells

[114] CS

Negative binomial regressions is

run to check the faults in

investigated systems

Different suggestions are passed that helps

researchers for refactoring

*Code Smell (CS), Design Smell (DS), Architectural Smell (AS), AP (Antipatterns), EMF (Eclipse Modelling

Framework), ASG (Abstract Syntax Graph), SC (Source Code).

e. Linguistic Source Code Analysis

This technique of source code analysis through linguistic quality assessment started

early 2015. There are only three studies published in the OO paradigm that

investigated linguistic antipatterns. These antipatterns are erroneously introduced in

17 https://marketplace.eclipse.org/content/jdeodorant

18 checkstyle.sourceforge.net/

19 https://sourceforge.net/projects/jason/files/jason/version%201.3.10/

20 www.eclipse.org/downloads/packages/release/Kepler/SR

52

the code when using wrong naming conventions of methods, classes, and variable

names. The detection of linguistic antipatterns is a new area of research receiving

growing attention in the software engineering research community. We were unable

to find any study that reports the effect of linguistic antipatterns on system

performance. Moreover, it is required to implement correction approaches for

linguistic antipatterns.

Table 3.11: Linguistic Source Code Analysis.

Ref. Paradigm Pre-condition Post-condition

[15] OO 1) Check methods, attributes, leading

comments using Stanford Natural

Language parser

2) The semantic relation is analysed using

WordNet
21

 and implemented as Eclipse

plug-in

Seven open-source systems archives are used to

check linguistic antipatterns using LAPD, then

online questionnaires are designed to check the

developers‘ perception towards linguistic

antipatterns (LAP)

[64] OO Linguistic antipatternsare defined Case examples are given to analyse the LAP

[57] SO Syntactic and semantic similarities are

studies using Stanford Parser
22

 and

WordNet lexical database

DOLAR
23

 tool is developed to detect linguistic

antipatterns from REST API

[59] OO Lexical and design smells are detected in

30 releases of three projects: ANT
24

,

ArgoUML
25

, Apache
26

Fault-proneness is checked for design smells vs.

lexical smells

[84] OO Structural metrics are applied Principal Component Analysis along with

different statistic measures to evaluate the

subject system

These techniques used several types of parsers like Stanford Natural Language parser

to detect parts of speeches. The LAPD [15] tool is proposed for the detection of

linguistic antipatterns based on the NLP parser to detect similarity between class

names, variables, and methods by manually implementing smelldetection techniques

to detect linguistic antipatterns. A recent study reported the effect of linguistic

antipatterns on change-proneness [64]. Table 3.11 highlights different conditions used

for linguistic source code analysis.

21 https://wordnet.princeton.edu/

22 http://nlp.stanford.edu:8080/parser/

23 http://sofa.uqam.ca

24 http:// ant.apache.org/

25https://sourceforge.net/projects/argouml/

26 http://www.apache.org

https://sourceforge.net/projects/argouml/

53

3.3.2 Dynamic Source Code Analysis

The smells detection techniques applying dynamic source code analysis techniques

mainly analyse the execution states of the systems after their execution under real

execution scenarios. Most architectural smells detection techniques use dynamic

source code analysis and belong to the paradigm of service-oriented architecture [47,

56, 57, 66, 67] relying on DSL that helps to generate algorithms along with service

interface, using FraSCAti
11

 runtime support for static, dynamic, and lexical analysis.

The dynamic source code analysis also used a dynamic threshold adaptation instead of

fixed thresholds for smells detection [115]. Genetic algorithm along with tuning

machine is applied to check the results with inferred settings, the default settings, and

with a tuning algorithm [115]. We found eight studies that reported dynamic source

code analysis for OO. The complete information about different techniques

implemented using dynamic source code analysis is presented in Table 3.12.

Table 3.12: Dynamic Source Code Analysis Techniques

Ref. No
Smell

Type
Precondition Post Condition

[47] AS
DSL is used along with algorithm generation to

map rules

Static, dynamic and lexical

source code metrics

[56] AS

DSL is used along with service interface to invoke

the Services by using FraSCAti and Apache CXF
27

runtime support

Wrapping REST API with

FraSCAti SCA analysis

[57] AS

DSL is used along with service interface to invoke

the services by using FraSCAti and Apache CXF

runtime support

WordNet, Core NLP is used to

analyse lexical properties

[66] AS DSL along with FraSCAti runtime support Source code metrics

[67] AS
Association rule mining to check association

among execution of services

Source code metrics

[73] CS
Detect smells on theclient side Check detected smells on

theserver side

[103] CS
Mining the source code through SVN SrcML

28
 toolkit and MARKOS

29

code analyser used

[115] CS
Tuning machine is applied on inferring set to

check most appropriated thresholds

Smells are checked and

refactored after applying

27 https://github.com/apache/cxf

28 http://www.srcml.org/about-srcml.html

29 http://markosproject.sourceforge.net/downloads/

54

dynamic threshold adaptation

*Code Smells (CS), Design Smells (DS), Architectural Smells (AS), AP (Antipatterns), DSL (Domain Specific

Language), SVN (Sub Versioning Number), NLP (Natural Language Processing), SCA (Service Component

Architecture)

Summary on RQ1: Research on smells analyses the target systems by applying

source code-level metrics that helpinvestigate systems by using lexical properties.

Research in the domain of smells also empirically validates findings using statistical

measures after investigating the cause-effect relationship with some independent

variables, like the numbers of defects. A recent shift towards the use of different

algorithms from machine learning as well as artificial intelligence also helps to detect

design smells and may improve the performance of detection techniques. These

algorithms are reported for the detection of smells both in OO and SOparadigms. We

have identified a few studies that reported the use of lexical analysis (e.g., [15], [59])

and dynamic source code analysis (e.g., [57]).

3.4 Evolution of State-of-the-art Approaches

Across different Paradigms Starting from Object-oriented to Service-oriented

There are a number of different detection and correction techniques that crossed

domains. These approaches mostly focused on source code analysis and evolved from

detection to correction in OO and SOA. We extracted data from 78 primary studies

and presented the extracted results in an Excel sheet available online
31

. The attributes

selected for the extraction for each study is reported in Section3. The analysis results

give us a clear idea about the evolution of state-of-the-art approaches in OO and SOA.

We divided the research methodology of 78 primary studies in five different

categories. As we are interested in OO and SOA, we divided the research techniques

reported for OO-related primary studies that also crossed to SOA. The detection and

correction approaches used source code metrics or source code analyses as the

primary techniques, further combined with other research techniques for the

identification of smells. As shown in the following, we use pre- and post-conditions

because techniques mainly used behavioral analysis of systems as a pre-requisite [5].

3.4.1 Source Code Metrics

Source code metrics quantify the application features in the OO design knowledge

base. These metrics are selected based on the object-oriented design principles.

Moreover, these principles are the core of OO design that further classifies the

55

knowledge based on their definitions and different rules used for these definitions.

There should be concrete knowledge about the selection of suitable metrics to check if

these metrics are a valid indicator of detected smell or not. However, most of the

source code metrics are not applied directly to the source code. A literature review

indicates that parsing is the activity that mostly used to get the intermediary

representation of source code and then source code metrics are applied to check

various quality indicators for the applications [16, 55, 65]. It is also observed that OO

source code metrics are used for SO systems to check the quality of the services by

detecting several types of defects in services or in their interfaces [49, 51, 53]. Figure

3.9 reports the condition used for source code metrics-based evolution.

Figure 3.9: Source Code Metrics in OO and SO

The primary studies used source code metrics for OOSE evolve for service-oriented

software engineering. All studies used an intermediate representation of source code

for the detection of smells across two paradigms.

3.4.2 Mining the Source Code using SVN or CVS

There are a number of studies that report the detection of smells through mining

source code using version control systems. Software developers often rely on

subversion to keep track of current and historical versions of files like source code,

Web pages, and documentation. Software version history is often used to check the

relationship between different quality indicators w.r.t.the system performance and

solution, i.e., refactoring, for a specific problem. These types of studies often use

development history of the various releases of the system to check the relationship

between two different variables like smells vs. maintenance effort [77, 112] or smell

vs. quality of code after refactoring [104] or smell vs. change history information

about different versions of the systems [17] by examining the history using SVN or

CVS after collecting commits for each change. Approaches also use versioning

history with the algorithm called HIST (Historical Information for Smell deTection)

[17, 103] and function as follows:

(i) Versioning systems are used to extract changes in source code;

Precondition
Reverse

Engineering the

Source Code for

Intermediary

Representation

Post-condition

Source code metrics

for smell detection

OO

+

Web Services

[16], [55], [65]

[49], [51], [53]

56

(ii) The locations of the changes from versioning systems are given as input;

(iii) Change history extractor like SVN or CVS is used to mine the versioning

systems, reporting the complete information change. This is performed by

comparing the folder and snapshot of change. The srcML
30

 toolkit is used

to parse the source code to find cases of change. Then, the code smell

detector is applied for smells.

3.4.3 Domain Specific Language

Domain analysis is a process that uses specific information required to develop

software systems in such a way that is making the desired system reusable for the

creation of a new system [116]. The domain-specific languages that are proposed for

code, design, and architectural smells are based on following steps:

1. Key characteristics of smells from the literature are gathered and rules to

discover them within code or design are designed manually;

2. The next step is to check the measurable properties by using low, high, and

medium threshold implementation;

3. Lexical properties using WordNet are examined. Moreover, the properties can

be combined using set operators like Union (UNION) and Intersection

(INTER) to build more complex detection rules;

4. Classification of the key characteristics is used to divide the properties further;

5. Finally, a DSL (Domain Specific Language) is proposed to describe smells in

terms of their measurable, structural, and lexical properties via rule card using

a set of operators.

We observed from the systematic literature review of code and design smells that

methods based on a DSL mostly rely on the BNF (Backus-Naur-Form) for the

specification of smells and the box-plot statistical technique for adjusting the

threshold values of source code metrics. This technique evolved from OO [55, 24] to

SO [45, 56, 57, 66] as shown in Figure 3.10.

30

http://www.srcml.org/tools/index.html

Precondition
Textual description

of design heuristics

using DSL

Post-condition

Manual implementation

of detection rules along

with source code metrics

OO

Web Services

[24], [55]

[47], [56], [57], [66]

57

Figure 3.10: DSL Evolves in OO and SO

3.4.4 Genetic Algorithm

Smells detection and correction approaches also use genetic algorithms to improve

system quality by detecting smells as well as suggesting refactoring opportunities to

correct them

[12, 79, 90, 102]. The main benefits of using such approaches are as follows:

1) Genetic algorithms only require defect examples and not different defect types;

2) It is not required to write the detection and correction rules;

3) Metrics with related threshold values are not required that may cause problems

in case of different threshold reported in theliterature;

4) The effort required to perform refactoring is also considered for the detection

and correction of smells;

5) Already discovered smells results are used as examples;

6) Derived detection rules are used to select best refactoring solutions from a list;

7) Refactoring solutions provide suggestions of the best available option for the

correction of defects;

8) Mutation and crossover operators are applied with given probabilities, the

resultant is evaluated using a fitness function, and the process is repeated until

finally stopping criteria is met;

9) The algorithm, called NSGA-II (Non-dominated Sorting Genetic Algorithm)

having the precision for the detection of smells and correction about 87% both

for the OO [12, 79, 90] as well as Web services [102]. Figure 3.11 shows the

relevant studies based on genetic algorithm.

58

Figure. 3.11: Genetic Algorithm Evolves in OO and SO.

3.4.5 Parallel Evolutionary Algorithm (PE-A)

The Evolutionary Algorithms (EA) and Practical Swarm Optimisation (PSO) process

are used to reduce the computational complexity of the search process. The algorithm

is based on the following main features:

1) Parallelisation allows speeding up the search process;

2) Exchanging information between different search methods;

3) Using several types of evolutionary algorithms reduces the sensitivity of

different parameter used for the detection of smells;

4) Iterations are independent of the problem;

5) The parallelisation process uses a single solution from the search space.

The solution uses a set of detection rules that help to detect a specific type

of code smell;

6) Parallelisation is used to generate a detection rule, and then the genetic

algorithm is used for the detection. Finally, the set of the best candidates as

a solution is selected;

7) The PE-A algorithm was reported primarily for OO [70] and then adapted

for Web services antipatterns detection [54]. Criteria for implementing PE-

A are presented in Figure 3.12.

Figure 3.12: PE-A Evolves in OO and SO.

After examining the studies from the last 17 years, we identified five different

approaches that evolved in OO and SO. These approaches are now quite matured with

the ability to provide highly accurate detection results both for OO and SO paradigms.

Precondition
Source code,

possible rule for bad

smells heuristics

using source code

metrics

Post-condition

Genetic Algorithm

generation and smell

detection and correction

OO

Web Services

[12], [79], [90]

[102]

Precondition
Source code

metrics embedded

as detection rule

Post-condition

Parallel evolutionary algorithm is

applied to generate detection rule

along with Genetic Algorithm to

detect code smells

OO

Web Services

[12], [79], [90]

[54]

59

We investigated their steps involved in the identification or correction of smells.

However, in the literature, the technique related to mining the source code using

versioning systems is still not applied for Web services. We did not find any study

that discusses the effect of smells across the different versions of service interfaces

APIs (Application Programming Interfaces). Source code metrics are the only

technique used repeatedly, however, much work still needed to be done for Web

services by introducing some novel metrics, which would help to investigate the

quality of service issues for Web services.

3.5 Bad Smells that are studied for a specific Paradigm

3.5.1 Smells Reported in OO

A key argument for investigating smells is that certain smells are emphasised more in

the literature than others. Moreover, there are different terms provided in the literature

for smells like code smells, design smells, architectural smells, and lexical smells that

may confuse researchers on which category a smell belongs. The term ‗code smell‘

was first introduced by Fowler [8] with corresponding refactoring opportunities.

Later, Brown et al. [40] introduced the term ‗antipatterns‘ and divide them into three

categories: software development, architectural, and project management antipatterns.

Therefore, the smells were later reported in the literature as design, architectural, and

code smells, and commonly referred to as smells.

We search the relevant literature on bad software smells and identify various smells

that are reported as code smells, design smells, architectural smells, and antipatterns.

Most of the relevant studies reported and analysedFeature Envy as code and design-

level smell. To the best of our knowledge, we did not find this smell reported as

architectural smells. Table 3.13describes the number of reported smells and their

categorisation as bad, code, design, and architectural smells in the literature. In Table

3.13, the Frequency column shows that Feature Envy gains an utmost attention from

researchers. In contrast, much study still required to be done for the detection of

smells like Yoyo Problem, Un-named Coupling, Extensive Coupling, and so on, which

gained less attention so far in the SE research community.

If we consider the category of smells defined by Fowler [8] and the antipatterns as

defined by Brown et al. [40], then the total numberof smells comes to 46. If we

examine the literature review from the year 2000 until 2017 we find in total 22 smells

among the ones defined by Fowler [8]. Also, we were unable to find few smells as

60

reported by Brown et al. [40]. Table 3.14 lists all the smells reported as code, design,

architectural smells. However, no studies were found exploring the smells like Dead

End, Reinvent the Wheel, Primitive Obsession, Inappropriate Intimacy, Golden

Hammer, and Incomplete Library Class. Moreover, there is no template described for

code smells as reported for antipatterns in the literature [40]. The correction of code

smells might improve the understandability and maintainability of the source code.

However, one can remove the antipatterns at the design-level, which may lessen the

number of smells at the code-level. Therefore, to improve the system quality, one

should remove both antipatterns and code-level smells, which exist at the design and

code-level, respectively.

Mantyla [37] and Wake [36] proposed a classification for smells. Moha et al. [24]

divide the code smells and antipatterns as inter and intra-class smells based on

structural, lexical, and measurable properties. Another classification of smells was

reported in the literature that divides code smells detection approaches into seven

broad categories [70]. However, this categorisation [70] is based on the approaches

used to handle smells and not based on the properties of the smells. In this paper, we

categorise the smells reported in the literature based on the properties associated with

each smell and follow the criteria defined by Mantyla [37]. We collect relevant

definition and properties of each smells from the literature and then divide those

smells in different classification like code smells, design smells, antipatterns, and

architectural smells. Moreover, Mantyla [37] focused only on the code smells defined

by Fowler [8], and not on the antipattern properties as defined by Brown et al. [40].

Therefore, we also use the classification of design smells and antipatterns reported in

[97]. The partition of smells according to the classification reported in the literature is

discussed in the following.

The Bloater: Bloater describes something in the source code that has grown rapidly,

and, thus, not possible to handle effectively. The smells in this category areBlob, God

Class, God Method, Data Clump, Long Method, Large Class, Primitive Obsession,

Long Parameter List, Complex Class, and God Package. It is very difficult to modify

or maintain large codes that further transformed into the Long Method, Large Class,

or God Class. This is also true for the Long Parameter List and Data Clump as they

are often found with a long list of parameters. The God Package smell is only

reported in two studies [65, 75] while the God Method is found in three studies [58,

61

74, 77]. The Data Clump smell is also reported in several studies [64, 74, 77, 82, 95,

99, 105]. The smells that are reported by the maximum numbers of studies include

Blob and God Class, 18 and 19 times, respectively. The complete list of references

that studied the Bloater group of smells is presented in Table 3.13.

Object-Oriented Abusers: The smells in the object-oriented abuser category include

Switch Statements, Temporary Field, Refused Bequest, Alternative Classes with

Different Interfaces, Parallel Inheritance Hierarchies and Poor Inheritance

Hierarchies, Class Data Should be Private, Global Variables, No Polymorphism,

Procedural Class, Public Fields, Missing Association, Cyclic Inheritance, Idle Cut

Point, Redundant Cut Point, Traditional Breaker, Adapter, Code Clone, External

Duplication, and Cyclic Dependency. This categorization is often related to the smells

where the solution does not fully utilize all the benefits of object-oriented design. The

Refused Bequest smell is based on this definition because it violates the rule of

inheritance design, which is one of the fundamental principles of object-oriented

design. Moreover, the Alternative Classes with Different Interfaces smell also suffers

from the common interface for closely related classes. This shows an example of

misusing the object-oriented principles. Similarly, the Violation of polymorphism, Use

of Public Data Members, Class with Missing andNo Associations also fall in the

abusers category. However, these smells are not reported in the Fowler‘s catalogue of

smells. Several studies under this category of smells ignored Parent Bequest [24, 55,

58, 62, 64, 65, 74, 75, 77, 91, 104], whereas theNo Polymorphism and Procedural

Class smells were studied in only two studies [59, 80]. Similarly, the Cyclic

Inheritance smell is reported in only one primary study that clearly shows a research

gap for this smell.

The Encapsulators: The encapsulators often deal with the communication

mechanism or encapsulation. The smells in this category are Message Chains,

Common Method in Sibling Class, and Poltergeist. These types of smells are often

inter-dependent where the removal of one smell may cause the introduction of another

smell when it itself is removed. The potential solutions for this category of smells are

to restructure the class hierarchy by moving a method to another class. However, care

must be taken such that the move does not introduce the Common Method in Sibling

Class smell. The encapsulators smells are mostly based on the way how the object,

data, and operations are accessed. The studies that reported the smells in the category

62

of encapsulators mostly consider Message Chain smell [25, 59, 64, 80, 82, 93, 104,

105], the Middle Man smell is reported three times in the literature [64, 93, 95], and

the Common Method in Sibling Class is reported only once [86]. More studies are

required in this category.

The Coupler: These types of smells are strongly related to some properties of the

class that may hinder the reusability of the software.The Schizophrenic Class,

Message chain, Middle Man, Incomplete Library Class Feature Envy, Inappropriate

Intimacy, Intensive Coupling, Extensive Coupling, and Un-named Coupling smells

belong to this category. These smells are largely related to the property of coupling,

and often misuse or overuse the coupling. The research on smells reported Feature

Envy as a maximum number of smells detected, corrected, and--or consider for

maintenance (i.e., 25 times) as compared to Intensive/Extensive Coupling [91].

The Design Rule Abusers: These types of smells violate the rules to design the

classes or overall programs. These types of the smells are erroneously introduced by

the programmers in a way that they might consider them as patterns (i.e., good

practice), but later, they turn into antipatterns (i.e., poor practice). Design rule

abusers can be further divided as the use of wrong programming approaches like Boat

Anchor, Lava Flow, or Wrong Methodology by using Copy-Paste Programming,

Golden Hammer, Defactoring, Spaghetti Code, Anti-Singleton, Misplaced Class,

Wide Subsys Interface, and Yoyo Problem. The trend towards the smells as defined by

Brown et al. [40] are not observed much as we found only the Spaghetti Code

reported in a substantial number of studies [12, 22, 23, 25, 27, 38, 55, 59, 70, 79, 80,

89, 95, 102, 104] as compared to Yoyo Problem [71]. However, we are unable to find

any relevant study that reports Boat Anchor and Lava Flow smells.

The Lexical Abuser: Fowler [8] defined code smells in code comments that are

smells when the comments do not contain information corresponding to the source

code and its behaviour, which Moha et al. [24] later reported as lexical smells if they

do not match with the internal code behaviour. Recently, a study reports the catalogue

of lexical smells based on the internal code structure [15]. This catalogue considers

the method, class naming conventions as well as method return types to define lexical

smells [15]. The complete list of these smells is available online
31

.

31http://research.ciitlahore.edu.pk/Groups/SERC/SOA.aspx

63

Table 3.13reports the name of the smells along with their category as reported in the

corresponding research article. The studies reported in this SLR include 58 smells.

However, we do not add Code Clone or Copy Code to this category as it is not

included in our review protocol. In Table 3.13, we report 56 smells along with their

frequency.

Table 3.13: Smells Reported in the Literature from the OO Paradigm

Sl. Smell Name
Type of

Smell
Ref. No Frequency

1 Feature Envy
BS, CS,

DS

[17], [24], [58], [62], [64], [65], [70], [74],

[75], 77, [81], [83], [84], [85], [90], [91],

[93], [94], [97], [98], [99], [103], [104],

[105], [106]

25

4 God Class
AS, BS,

CS, DS

[16], [24], [58], [60], [62], [65], [71], [74],

[75], [77], [81], [85], [91], [97], [98], [101],

[105], [106]

19

2 Blob
BS, CS,

DS, AS

[12], [17], [22], [23], [25], [27], [38], [55],

[59], [70], [76], [79], [80], [89], [95], [102],

[103], [104],[119]

18

3 Data Class CS, DS

[12], [16], [60], [64], [65], [69], [70], [71],

[74], [75], 77, [81], [85], [86], [91], [97],

[105], [106]

18

5
Long Parameter

List

AP, BS,

CS, DS

[22], [25], [27], [38], [55], [59], [64], [69],

[70], [80], [86], [90], [93], [96], [98], [104],

[106],[119]

17

6 Spaghetti Code
AP, AS,

CS, DS

[12], [22], [23], [25], [27], [38], [55], [59],

[70], [79], [80], [89], [95], [102], [104]
15

7 Shotgun Surgery CS, DS
[17], [25], [24], [59], [62], [64], [65], [70],

[74], [75], [77], [80], [91], [103], [106]
15

8 Duplicated Code
BS, CS,

DS

[25], [58], [59], [60], [64], [74], [77], [80],

[86], [91], [92], [96], [97], [98], [106]
15

9 Large Class
AP, BS,

CS, DS

[22], [25], [27], [38], [55], [64], [69], [83],

[86], [90], [92], [95], [96], [98], [106]
15

11 Long Method
AP, BS,

CS, DS

[22], [25], [27], [38], [55], [64], [69], [86],

[89], [93], [95], [98], [104], [106] ,[119]
15

10
Speculative

Generality

AP, BS,

CS, DS

[12], [22], [23], [27], [38], [55], [64], [80],

[82], [89], [91], [102], [104]
13

64

12 Lazy Class
AP, BS,

CS, DS

[22], [27], [38], [55], [64], [70], [83], [84],

[90], [93], [95], [104]
12

13
Refused Parent

Bequest
CS, DS

[24], [55], [58], [62], [64], [65], [74], [75],

[77], [91], [104] ,[119]
11

14
Functional

Decomposition

AS, CS,

DS

[12], [22], [23], [25], [55], [59], [70], [79],

[80], [89], [102]
11

15 Message Chain
BS, CS,

DS

[25], [59], [64], [80], [82], [93], [104], [105],

[114],[119]
9

16 Data Clump
BS, CS,

DS
[64], [74], [77], [82], [95], [99], [105], [114] 8

17 Swiss Army Knife
AP, CS,

DS
[22], [25], [27], [38], [55], [59], [80] 7

18 Divergent Change

CS,

C&D,

DS

[17], [25], [59], [64], [80], [103] 6

19 Switch Statement BS, CS [64], [69], [82], [86], [93], [115] 6

20 Comment

CS,

C&D,

DS

[25], [59], [64], [80], [95] 5

21 Parallel Inheritance CS [17], [64], [69], [103] 4

22 Misplaced Class CS, DS [65], [74], [75], [77] 4

23
Class Data Should

be Private

AP, CS,

DS
[22], [27], [38], [104],[119] 4

24 Poltergeist
AS, CS,

DS
[71], [92], [95], [101] 4

25 God Method CS [58], [74], [77] 3

26 Anti-Singleton AP, DS [22], [27], [38],[119] 3

27 Complex Class AP, DS [22], [27], [38],[119] 3

28 Middle Man BS, CS [64], [93], [95], [114] 4

29 Brain Class CS, DS [81], [85], [91] 3

30 Public Fields CS [86], [99] 2

31
Schizophrenic

Class
CS [91], [105] 2

32 God Package DS [65], [75] 2

33
Wide Subsystem

Interface
DS [65], [75] 2

34 Decorator BS, DS [75], [98] 2

35 Global Variables
C&D,

DS
[59], [80] 2

65

In Table 3.13, we can observe that the smells reported by Brown et al. [40] as

antipatterns still did not receive significant attention from the researchers and were

not studied thoroughly in the literature. Moreover, a number of new smells are

introduced in the literature like Code Clone, Unnamed Coupling, and God Package in

addition to the smells defined by Fowler [8].

3.5.2 Smells Reported in SO Systems

36 No Polymorphism
C&D,

DS
[59], [80] 2

37 Procedure Class
C&D,

DS
[59], [80] 2

38 Brain Method CS [91] 1

39
Common Methods

in Sibling Class
CS [86] 1

40
Extensive

Coupling
CS [91] 1

41
External

Duplication
CS [105] 1

42 Idle Cut Point CS [84] 1

43 Intensive Coupling CS [91] 1

44
Redundant Cut

Point
CS [84] 1

45
Traditional

Breaker
CS [91] 1

46 Adapter DS [74] 1

47 Code Clone DS [72] 1

48 Cyclic Inheritance DS [92] 1

49
Cyclic

Dependency
DS [72] 1

50 Delegated DS [83] 1

51 Interface Bloat DS [71] 1

52
Missing

Association Class
DS [92] 1

53 Observer DS [71] 1

54
Poor Inheritance

Hierarchy
DS [72] 1

55
Un-named

Coupling
DS [72] 1

56 Yoyo Problem DS [71] 1

66

(i) Smells that received more attention: Service-Oriented Architecture (SOA) is a

promising architectural style that facilitates the development of low-cost, reliable, and

flexible services usable or accessible over the Internet [118]. This architectural style

can be implemented using technologies like REST, SOAP, SCA, RPC, and J2EE. The

detection of smells in the services is quite a new but challenging area that is receiving

the increased attention in the SE research community. There are a number of smells

that are detected in different SOA technologies like SOAP (e.g., [47], [54]), REST

(e.g., [56], [57]), and SCA [e.g., 66]. Moreover, we also found several studies that

reported smells for WSDL file that is the core specification of the SOAP Web

services. Table 3.14 highlights the frequency for a specific smell reported in the SO

systems literature. It is also to be noted that there are more than ten smells reported

only once in the services domain like Breaking Self-descriptiveness, Content

Negotiation, and Ignoring MIME Type [56]. The REST architectural style is the area

where we identify the gap for the detection of various service antipatterns in SO

systems.

Table 3.14: Smells that are Reported Repeatedly in the Services Literature

Sl. Smell Name Reference No Frequency

1
God Object Web

Service

[24], [47], [54], [62], [65], [66], [67], [68], [75] 9

2
Low Cohesive

Operation

[47], [48], [49], [51], [53], [54], [100] 7

3 Ambiguous Names [48], [49], [51], [52], [53], [100] 6

4 Chatty Service [47], [52], [54], [66], [67], [68] 6

5 Data Web Service [47], [52], [54], [66], [67], [68] 6

6
Duplicated Web

Service

[47], [54], [66], [67], [68] 5

7 Enclosed Data Model [48], [49], [51], [53], [100] 5

8
Redundant Data

Model

[48], [49], [51], [53], [100] 5

9 Whatever Types [48], [49], [51], [53], [100] 5

10 Empty Messages [49], [51], [53], [100] 4

11 Bloated Service [66], [67], [68] 3

12 Bottleneck Service [66], [67], [68] 3

13 Nobody Home [66], [67], [68] 3

14 Sand Pile [66], [67], [68] 3

15 Service Chain [66], [67], [68] 3

67

16 Stovepipe [66], [67], [68] 3

17 The Knot [66], [67], [68] 3

18 CRUDy Interface [47], [54] 2

19
Fine-grained Web

Service

[47], [54] 2

(ii) Smells that received less attention: We also found several smells from different

SOA technologies that are reported only once in the literature. These smells are

detected based on static and dynamic source code analysis by computing different

properties and detected instances of each antipattern in the related services. Most of

these antipatterns are related to REST services and reported after the year 2014. Table

3.15 and Table 3.16 report the findings of those smells that received less attention

from SOA technologies.

Table 3.15: Smells Reported for the First Time in the Services Literature.

Ref

B
S

D

C
N

C
v

C
L

R
N

D
N

U

D
O

R

D
S

S
S

F
H

H
v

N
H

N

IC

IM
T

IS
C

IL
C

L
D

F
IN

T

L
F

D
S

L
F

E
B

A
O

D

[48]

√ √

[50] √

√ √ √

√ √ √

[52]

[56]

√

√ √

√ √

[57]

√

√

*BSD (Breaking Self Descriptiveness), CN (Content Negotiation), CvCLRN (Contextualised

vs. Contextless Resource Name), IMT (Ignoring Mime Type), IC (Ignoring Cache), ISC

(Ignoring Self Descriptiveness), FH (Forgetting Hypermedia), HvNHN (Hierarchal vs. Non-

Hierarchical Node).

Table 3.16: Smells Reported for the First Time in the Services Literature.

Ref

L
F

R
D

D

L
S

D
A

S
I

L
F

C
W

S
D

L

M
C

M
S

N
S

R
P

T

R
C

S
IN

S

S
P

N

T
V

A

T
T

G

T
T

P

U
C

F
IS

M

V
C

U

[48]

√

√

[50] √ √ √

√

[52]

√ √

[56]

√

√

√ √

68

[57]

√ √

√

*TTG (Tunneling Through Get), TTP (Tunneling Through Post), SPN

(Singularized vs. Pluralized Nodes), MC (Misusing Cookies).

This research question aboutthe smells (reported for a specific domain) is usefulfor

the future research directions. Our findings suggest that most of the study is

performed to investigate God Class, Feature Envy, Data class,and Blob. In total

researchers discussed 56 smells. Researchers used static or dynamic source code

analysis for the identification of smells but attention must be given to those smells

that still took less attention like Un-named Coupling, Poor Inheritance Hierarchy,

and Yoyo Problem. Similarly, there is a need for an investigation on smells that

received less attention in theSO paradigm. Most of the smells belong to REST

services and still did not receive much attention as they need dynamic analysis of the

service interface. The techniques used in the OO for static source code analysis are

not applicable to REST services because the method for using a class in OO and the

method for consuming services in SO paradigm are not conceptually similar. Most of

the attention is given to smells detection for WSDL interface for Web services. The

SOAP services are also analysed using dynamic properties like availability,

throughput, and response time.

3.6 Correlation between Smells across the Paradigms

The studies in the literature considered different smells that are evolved in OOand

other domains of software engineering. These smells are also studied and analysed in

the paradigm of SOA (Service-Oriented Architecture). This research question will

cover the evolution history of source code measures used for the identification of

smells in OO and SO, and the smells evolved in OO and SOA. The OO use classes as

compared to services that use interfaces. But services used by the clients are also

embedded using classes and methods, thus there is a need to study the evolution of

smells in OO and SO. Moreover, service-oriented systems can be implemented by

using various technologies and there are different tools, e.g., Java2WSDL, used to

generate a representation of services from object-oriented code [48], [49], [50]. SOAP

services can be implemented using code-first [48,49] or contract-first approach

[78]and OO source code metrics can be reused to detect antipatterns for the code-first

approach. If OO code is smelly then the interface generated using an automated tool

69

will be also smelly [49]. Therefore, source code metrics are highly used by

researchers to extract smells from Web services.

Intermediate representations are useful for the identification of smells both for SOA

and OO and enable researchers to extract properties of smells. SOA relies on services

that generally gather and implement low cohesive operations in comparison to OO

where cohesion must be high for a class or sets of methods. LCOM (Lack of Cohesion

among Method) may be used for both OO and SOA but the threshold values may vary

as reported in previous studies [47], [54].

Evolution of Smells across the Paradigms: Out of the 78 most relevant studies

investigated in this paper, we identified four studies that belong to OOparadigm and

reported code comments as the smell that evolves to SO and reported by two SO

primary studies (e.g., [48, 50]). It is worth mentioning that source code measures used

for the identification of smells for SO systems are also reported for OOSE. The

primary studies that reported the smell Comments across different paradigms are

shown in Table 3.17. The detailed descriptions of these smells with the approaches

used for their detection are reported online
31

. Code comments are the property used by

the developers in both OO and SOA. However, property used for the identification of

COMMENT may have different thresholds.

Table 3.17: Smells Evolved in OO and SO.

Sl. Smell Name OO Ref# Services Ref#

1 Comments [25], [59], [64], [80], [95] [48], [50]

Source Code Metrics Used for Smell Detection in OOand SO: Service-oriented

architecture is an emerging and a new challenging area that is gaining increased

research attention. The smells reported for the services paradigm initiated to be

introduced after the year 2010. It is worth mentioning that the smells reported for this

paradigm also rely on source code metrics that are primarily used by OO smells.

However, it is noted that smells from SO systems are based on static, dynamic, and

linguistic analysis of source code, documentation, and service interfaces, e.g., WSDL

files.

70

Table 3.18: Source Code Metrics used for the Detection of Services Smells.

Sl. Smell Name Ref. No Frequency Metrics Used

1
God Object Web service

[24], [47], [54], [62], [65],

[66], [67], [68], [75]
9 COH, NOD, RT, Av

2
Low Cohesive operation

[47], [48], [49], [51], [53],

[54], [100]
7 NOD, ARIO, WMC, LCOM3

3
Ambiguous names

[48], [49], [51], [52],

[100],[121]
6 ALS, RGTS, NVMS, NVOS

4
Chatty Service

[47], [52], [54], [66], [67],

[68],[121]
6 COH, ANAO, NOD, RT, Av

5
Data Web Service

[47], [52], [54], [66], [67],

[68],[121]
6 COH, ANPT, ANAO

6 Duplicated Web Service [47], [54], [66], [67], [68] 5 ARIP, ARIO

7
Enclosed Data Model

[48], [49], [51], [53],

[100]
5 CBO

8
Redundant Data Model

[48], [49], [51], [53],

[100]
5 WMC

9
Whatever types

[48], [49], [51], [53],

[100]
5 ATC

10 Empty messages [49], [51], [53], [100] 4 WMC

11 Bloated Service [66], [67], [68] 3 NOI, NMD, TNP, COH

12 Bottleneck service [66], [67], [68] 3 CPL, Av, RT

13 Nobody Home [66], [67], [68] 3 NIR, NMI

14 Sand Pile [66], [67], [68] 3 NIR, NMI

15 Service Chain [66], [67], [68] 3 NTMI, Av

16 Stove pipe [66], [67], [68] 3 NUM, NMD, ANIM

17 The knot [66], [67], [68] 3 CPL, COH, Av, RT

71

18 CRUDy Interface [47], [54] 2 NCO, ANAO, NOD, RT, Av

19 Fine grained Web service [47], [54] 2 NOD, CPL, COH

20 Chatty Service [121] 2 COH,CBO

*NOD - Number Of Operations Declared; ANAO - Average Number of Accessor Operations; RT - Response Time; Av -

Availability; CPL - Coupling; COH - Cohesion; NCO - Number of CRUDy Operations; ALS - Average Length of Signature;

ANP - Average Number of Parameter in Operations; ANPT - Average Number of Primitive Types; ANIO - Average Number of

Identical Operations; ARIM - Average Ratio of Identical Message; NIR - Number of Incoming References; NMI - Number of

Method Invocation; NOR - Number of Outgoing Reference; NOPT - Number of Port Types; NTMI - Number of Transitive

Method Invocation; WMC - Weighted Method Complexity; LCOM3 - Lack of Cohesion Method 3; ATC - Abstract Type Count;

NVMS - Number of Verbs in Method Signature; NUM - Number of Utility Method; CBO - Coupling Between Objects.

The metrics used for the identification of 20 smells reported for SOA used source

code metrics that have been previously reported for OO. For example, identification

of God Object Web Service used cohesion metrics (e.g., LCOM3) and operation

identification metric (e.g. NOD) that are also used for the identification of smells in

OO [30] but the threshold values may vary for SOA in comparison to OO. The

LCOM3 value must be high for OO [2], [30] but it should be low for SOA [6], [7].

In answering RQ4 on the smells and source code measures that evolved in OO and

SO, we identified many source code metrics that were used for the identification of

OO smells but later reused for the identification of smells related to SO systems.

More smells could be investigated and detected after examining the complete list of

information already available in blogs, Web sites, and books related to SO systems

using the source code-level metrics that belong to the widely known CKMJ
32

 suite to

discover and even define new antipatterns in the SO paradigm. Some studies also used

source code metrics as a pre-requisite for smell identification [38, 81, 88, 98] and then

different statistical measures are applied to investigate the effect of smells on subject

systems. Therefore, we also used these source code measures to investigate the effect

of smells on different versions of SO systems, defect prediction and maintenance. We

are more interested in investigating the approach used for the smell identification

rather than the characteristics of the smells because OO and SOA smells are not

directly comparable. For example, for the Multi Service antipattern in SO systems and

God Class antipattern in OO systems, their presence is at different granularity levels.

Thus, the detection methodology may be same but conditions used to implement these

32 https://www.dmst.aueb.gr/dds/sw/ckjm/doc/indexw.html

72

approaches vary like threshold values for measures, implementation of metrics at

code-level or at the interface-level, and the presentation of intermediary source code

representation [48], [49].

3.7 Trends in Research on Smells from January 2000 to December 2017

Our study collected relevant research studies based on the Kitchenham guidelines

[46]. We have observed a clear research trend for the detection and correction

techniques of smells. The research started in the year 2000 on the detection of smells

in object-oriented systems and slowly moving towards the correction of detected and

reported smells.

Figure 3.13: General Classification of Research Trend.

Based on our literature review, we can classify research trends on smells into three

principal categories, i.e., detection, correction, and the impact of smells. Figure3.13

reports the main research trends in the domain of smells along with their sub-

domains. Figure 3.13 provides general trends associated with smells. These research

trends are still not reported for SO smells. Figure 3.13 also reports a new trend

towards the impact of smells on software system evolution also reported for SO

smells [121]. Table 3.19summarises the trend of the research on the smells. Major

studies focused on the detection by using source code metrics with the help of

different algorithms. Most of the primary studies that use genetic algorithm and

development history for the detection of smells also reply mainly on source code

metrics.

73

Table 3.19: Trends in Research from the year 2000 to 2017.

Trend Name Frequency Year Ref#

Smells detection 34 2001-2015

[22], [60], [61], [63], [64], [65], [15],

[68], [69], [70], [25], [67], [71], [72],

[73], [75], [27], [76], [58], [78], [74],

[81], [84], [79], [87], [89], [86], [93],

[95], [12], [97], [100]

Smells vs. maintenance 2 2013 [112], [77]

Smells detection using

machine learning
2 2011-2012 [92], [26]

Detection of WSDL

antipatterns
2 2011-2015 [50-54]

Smells and code quality 2 2012, 2015 [59], [80]

Detection of antipatterns

from services
2 2013-2014 [47], [49]

Linguistic antipatterns 2 2015-2017 [59], [64]

Smells impact on software

changeability
1 2009 [23]

Smells detection using

image processing
1 2010 [88]

Ontological relationship of

smells
1 2010 [95]

Antipatterns detection by

mining execution traces
1 2013 [24]

Antipatterns and fault-

proneness
1 2013 [38]

Impact of smell on system

quality
1 2013 [74]

Change-proneness of 1 2014 [66]

74

service pattern and

antipatterns

Smells correction using the

development history
1 2015 [96]

Detection of REST

linguistic antipatterns
1 2015 [57]

WSDL refactoring 1 2015 [48]

Performance comparison of

smells detection technique
1 2015 [62]

Source code versioning for

code smell detection
1 2015 [17]

Evolution of Code smells 1 2017 [121]

Summary on RQ5: In answering RQ5 on the research trends in the domain of

smells, we found a corpus of 34 research studies on the detection of smells. We

observed (i) the studies on the relationship between smells and the change-proneness,

maintenance, and (ii) the studies on inter-smell relationships, both started after the

year 2010. A new research gap was filled by introducing smells in SOAP and REST

services. Moreover, there is no study published on the correction of REST

antipatterns. The natural language processing (NLP) techniques are also used for the

detection and correction of smells in OO [16, 104] to the detection of REST

linguistic antipatterns [57]. The inter-smell relationships and the impact of smells on

the maintenance of services in the SO paradigm have not yet been studied.

3.8 DISCUSSION AND OPEN ISSUES

In total, we reviewed 78 highly relevant studies out of the collection of 506 studies

published between January 2000 and December 2017. Previous surveys focused either

on only code clones (i.e., a type of smell) or smells or refactoring activities in the OO

paradigm. After collecting the most relevant studies related to the evolution of smells

in OO and SO, we analysed techniques applied to detect smells. Most of the studies

[47, 48, 50, 52, 53, 54, 67] reporting the detection of smells for SO systems are at the

interface-level, unlike in the OO paradigm where analyses are mainly done at the

source code-level. Moreover, while few studies reported the detection of smells in SO

75

systems at the architectural-level [54, 55, 56], the correction of these architectural

smells is not yet studied and requires further research.

Fowler [8] identified 22 code smells and suggested their refactoring opportunities.

Since then, the research on smells had been gaining increased attention, and different

research studies were published from the year 2000 until 2017. However, the term

'code smells' later reported in the literature included various forms of code, design,

and architectural smells. The development and architectural antipatterns reported in

[40] also focus on Fowler code smells. Antipatterns like the Blob and Functional

Decomposition are reported for the first time as antipatterns by Brown et al. [40], but

later they are also described as code and design smells. Table 3.13 shows the Blob as

code, design, architectural smells, and antipatterns. Therefore, the software

engineering research community does not have a clear consensus on smells.

Moreover, the detection approaches for these smells have also varied results due to

the availability of multiple source code metrics for the same systems. For example,

one can measure the cohesion by using LCOM, LCOM1, LCOM2, or LCOM3 [117].

Moreover, the research community does not always validate their results using

precision or recall. We found 15 studies [27, 30, 38, 75, 77, 82, 83, 91, 95, 96, 98,

101, 104, 105, 106] where the precision and recall to measure the accuracy could not

be applied because these studies focused on cause-effect relationships, i.e., examples

include the impact of smells on the developers‘ maintenance effort, change-proneness,

and so on. One study measured the performance of their research model by using

correlation analysis [73]. However, in total, 13 studies did not validate their results at

all.

Apache is an open-source FOSS ecosystem providing various versions of Xerces in

multiple programming languages, like C++ and Java. More than 90% of the plug-ins

reported for the validation of the detection techniques are for Eclipse. We provided

our complete findings and detailed discussion on those tools online
31

.

While moving towards smells detection in SO systems, most of the studies, e.g., in

[49, 51, 53], are dependent on the techniques to develop the SO systems as the code-

first or the contract-first approaches. To the best of our knowledge, only one research

paper studied smells in RESTful APIs. However, the APIs used for the study are not

open-source and the definitions of smells are mostly focused on QoS issues. Future

76

research should include the impact of smells on different versions of APIs to

investigate the evolving smells.

The research on smells is quite mature in terms of a number of studies as well as

different state-of-the-art techniques for the OO paradigm. However, the detection of

smells in SO systems was introduced only after the year 2010. It is difficult to validate

detection or correction techniques of smells for SO systems because open-source

service-oriented systems are not greatly available, unlike OO systems. Also, there is

no technical support available from the industry to validate the proposed techniques

and their results. This research on the impact of smells will also help in confirming

the benefits of design patterns in SO systems as opposed to the antipatterns. The area

is still open for researchers to study different state-of-the-art smells detection and

correction techniques for the improvement of the quality of REST and SOAP systems.

A large number of the studies reported negative impacts of smells on software

systems. Few studies investigated the occurrences of smells across different versions

of software systems [17, 77, 104, 112]. More investigation should be carried to

measure the cause-effect relationship of design patterns vs. antipatterns (i.e., smells)

as well as their impact on system‘s overall performance over the long run. The studies

focus more on the detection (i.e., 39 studies in total) as compared to the maintenance

effort. Some of the studies also use version control system for investigating smells

[17]. We did not find any study investigating more than ten smells by using SVN or

CVS [12, 58, 60, 103]. Recently, multiple studies have concluded that smells have an

adverse impact on software quality [91, 97, 104].

The Implication for Research and Academia

A systematic literature review (SLR) provides directions for researchers who want to

understand trends in a specific field. This review on smells provides an updated state

of the art on smells starting in the OO and SO paradigms. It also provides guidelines

for practitioners working in the software industry to apply smells detection or

correction techniques during the software development.

Because the software engineering research community could not find the most

appropriate classification of smells, it is essential to develop an automatic oracle for

all types of smells, which also includes variants of smells. Studies in the literature also

confirm that there is a disagreement on using one definition and implementation of

77

one specific source code metrics to detect smells. It is a difficult and time-consuming

task to manually classify and detect smells. Therefore, we believe that an expert

advice is required both from the academia and industry to provide a catalogue on the

categories of smells and their detection approaches for those defined by Brown et al.

[40] and Fowler [8].

For researchers and practitioners, several opportunities are open. An automatic

detection technique of smells as part of an IDE must be implemented in Eclipse or

Visual Studio for developers and designers to avoid smells. Software development

tools must use smells detector to help developers design and implement higher quality

systems.

A comprehensive, industrial smells management tool with fully automated detection

support with friendly visualisation of the variants of smells as and when they

propagate through code segments would help developers. Existing smells detection

techniques can be reorganised to have more assistance by the developers for the

detection of smells. Origin analysis of smells should also be studied to locate the

origin of the introduction of smells in systems across their multiple versions.

3.9 Summary of Literature Review

Smells are classified in the literature as code smells, design smells, architectural

smells, and antipatterns. We analysed the most relevant research studies published

between January 2000 and December 2017 in different online libraries and

investigated five key research questions:

Classifications of the state-of-the-art techniques employed in the detection of

smells?

Findings: Mainly two techniques are used in the literature: (1) static source

code analysis (e.g., behavioral source code analysis, empirical source code

analysis, algorithm-based source code analysis, methodological-based source

code analysis, and linguistic source code analysis) and (2) dynamic source

code analysis based on dynamic threshold adaptation, e.g., using genetic

algorithm, instead of fixed thresholds for smells detection.

State-of-the-art approaches evolve across different paradigms starting from

object-oriented to service-oriented

78

Findings: A number of different detection techniques that crossed domains

are based on (1) source code metrics, (2) mining the source code using SVN or

CVS, (3) domain-specific language, (4) genetic algorithm, and (5) parallel

evolutionary algorithm (PE-A).

Bad smells that are studied for a specific paradigm

Findings: In OO, most of the relevant studies reported and analysed Feature

Envy as code and design-level smell. In contrast, much study still required to

be done for the detection of smells like Yoyo Problem, Un-named Coupling,

Extensive Coupling, and so on, which gained less attention so far in the SE

research community. In SO, antipatterns/smells that received most attention

include God Object Web Service, Low Cohesive Operation, Ambiguous

Names, Chatty Service, and Data Web Service.

Correlation between smells across the paradigms?

Findings: The metrics used for the identification of 20 smells reported for

SOA used source code metrics that have also been previously reported for OO.

The identification of God Object Web Service used cohesion metrics (e.g.,

LCOM3) and operation identification metric (e.g. NOD) that are also used for

the identification of smells in OO. However, the threshold values may vary for

SOA in comparison to OO.

Research trends on smells from January 2000 to December 2017.

Findings: We found a corpus of 34 research studies on the detection of smells. A

new research gap was filled by introducing smells in SOAP and REST services.

Moreover, there is no study published on the correction of REST antipatterns. The

natural language processing (NLP) techniques are also used for the detection and

correction of smells in OO to the detection of REST linguistic antipatterns.

We identified several issues that should be considered and receive more attention

from researchers. We also found several related research activities that must be

explored. We advised researchers to pay more attention to linguistic smells that are

gaining popularity in the last five years. Moreover, research on the correction of

lexical smells requires further investigation. Inter-smells relationship for lexical

79

smells and performance evaluations of lexical design patterns vs. antipatterns are yet

to be studied. Refactoring is a major area that is well researched for OO smells but not

yet for SCA and REST smells due to their complex nature. Developers' maintenance

effort for smells in SO systems is still not addressed in the recent studies. We were

also unable to find any antipatterns detected in Java Enterprise systems although their

detections were performed on SCA systems [66].

80

Chapter 4 Specification of Web Services Antipatterns

Detection

81

4.1 Introduction

Design patterns suggest viable solutions to the problems that occur again and again in

the design of the software [145]. Design patterns follow the fundamental design

principles for the development of software applications. Antipatterns violate

fundamental design principles and they are bad solutions to the problems. Antipatterns

may have the negative impact on the quality and performance of software applications

and their presence may result in degrading the structure of the services [146]. The

identification of antipatterns from the web services is a primary step for the removal of

antipatterns from service based systems. It is important to have knowledge about the

presence of antipatterns in the software system because it will help to improve the

software at its abstraction-level. This is reported through different studies that timely

detection and correction of antipatterns from software systems improve system

performance and quality [113, 149]. This edge motivates researchers to offer assistance

for unskilled designers through the detection of antipatterns.

Service Oriented Architecture (SOA) is an arising architecture paradigm that is widely

adopted by software industry for the development of distributed and heterogeneous

applications. SOA allows the growth of timely, cost effective, flexible, adaptable,

reusable, scalable and extendable distributed software applications with enhanced

security by composing services through independent, reusable, and platform

independent software modules that are easy to get via a network [118]. The application

of SOA for emerging technologies such as cloud computing, big data and mobile

applications is continuously escalating. Web-services have become a governing

technology for Service Oriented Architectures for the development of Service Based

Systems (SBS) such as Amazon, Google, eBay, PayPal, Facebook, Dropbox etc.

Service based systems needs to evolve with time to fulfill requirements of users. These

systems also evolve to accommodate new execution contexts such as addition of new

technologies, devices and products [118]. The evolution of service based systems may

degrade design and quality of services and it may also cause appearance of common

poor solutions called antipatterns. These antipatterns affect the quality of service and

can hinder maintenance along with evolution. An antipattern identification techniques

revealed that mostly the concentration was on the static analysis of Web-services or on

antipatterns in other Service Oriented Architecture technologies (e.g., Service

Component Architecture) [66].

82

It has been reported that antipatterns have impact on the progress and maintenance of

software systems [77]. The motivation for automatic identification of SOA related

antipatterns is to improve the quality of service and to make maintenance and

evolution easy. Maintaining changes in web services is a common practice to provide

quality of services to the users. A study has shown that the software maintenance

requires eighty to ninety percent of total budget in its whole life cycle [94]. Most state

of the art techniques focused on detection of antipatterns from object oriented software

applications but these techniques are not capable to detect antipatterns from SOA. We

identified only few representative approaches on specification and detection of SOA

antipatterns from Web-services [66, 67, 47, 54,15,120,57,56]. To the best of our

knowledge, most authors used different metrics and static and dynamic analysis for the

detection of antipatterns from web-services. The state of the art antipattern detection

approaches has some limitations: The approaches [47, 54] are not extensible for code

first and contract first concepts. SODA-W [47] approach detects antipatterns by just

considering interface level metrics and it ignores implementation details. PA-E [54]

approach detects antipatterns from web services by considering their class as well as

implementation details but it is not capable to identify classes that create problem at

interface level. Moreover, low cohesion operation and duplicated web service

antipatterns are not detected by this approach. The both approaches are also not able to

identify location of defected code segments that play a major role for interface level

implementation.

The proposed approach is capable to handle code first and contract first concepts. Our

approach is free from the implementation restriction of WSDL interface. SOAP

services could be implemented by using multiple languages like C#, Java and Perl. Our

approach can detect antipatterns from WSDL interface level as well as source code due

to support of multiple languages. There are no standard definitions for web-service

antipatterns that are important for their accurate detection. Moreover, there is a still no

standard benchmark system for comparing and evaluating results of antipattern

detection techniques. We present a flexible approach supplemented with a tool support

that is used to specify and detect the SOA antipatterns from Web-services. Our

objective is to analyze the structure and quality of Web-services and automatically

identify antipatterns that may help the progression and growth of Web-services. The

proposed approach is implemented by using C# dot.net Framework. We also focus on

83

improving the accuracy in comparison to existing methods available for detection of

Web-service specific antipatterns.

 Following are the major contributions of our work:

 Standardized definitions of 10 Web-service related Antipatterns.

 A flexible and scalable approach supplemented with a tool support for

detection of 10 Web-service related Antipatterns from the source code and

Web service Interface .

 Evaluation and comparison of the proposed approach by performing

experiments on different open source Web Services.

4.2 State of the Art for Web services

The number of books are available on SOA-patterns and principles [150,33,132] that

provide guidelines and principles characterizing ―good‖ service-oriented designs.

These books enable software engineers to manually evaluate the quality of their

systems and provide a basis for the enhancement of design and implementation. For

example, Rotem et al. [35] suggested 23 SOA-patterns and 4 SOA-antipatterns and

described their affects, causes, and corrections. Erl, in his book [33], presented 80+

SOA design, implementation, security, and governance-related patterns. Kr´al etal.

[132] elaborated seven different types of SOA-antipatterns, resulted due to the poor

practice of SOA rules. Brown et al. [40] provided the set of 40 antipatterns. Dudney et

al. [37] presented 52 antipatterns in SOA, and especially in the area of Web-services.

There are few contributions on the identification of patterns from SOA [38,56,39].

Upadhyaya et al. [39] presented an approach to detect 9 SOA patterns. Demange et al.

[40] presented an approach to detect five SOA patterns from two SOA based

systems.It is revealed through the review of literature that the research on Service

Oriented Architecture still needs to be explored. Many detection techniques and tools

are presented in the literature [150,24,27,152] that focus on specification and detection

of OO antipatterns. These OO based techniques did not give a viable solution for the

identification of antipatterns that are pointed out in web-services. There is a difference

between structure of Object Oriented software applications and applications developed

using web services. A limited number of approaches are available for the identification

of the WS antipatterns.

84

Palma et al. [66] presented a technique supplemented with tool SODA to specify and

identify the antipatterns in SCA systems. Authors performed experiments on two

different corpora i.e., Home automation system and Frascati service component

architecture. Authors apply algorithms that are not generated manually and then they

experimented the algorithms on a number of SCA systems to gain the best accuracy.

Hence, this approach can only tackle the SCA modules build up using the Java

language and are not able to tackle the other SOA technologies like J2EE,SOAP and

REST.

Rodriguez et al. [41] described EasySOC and provided a set of guidelines for service

providers to avoid bad practices during writing WSDLs. Authors identified eight poor

practices that are used to form WSDL template for Web-services. These heuristics are

the rules that use pattern matching. A toolset is developed that enforces

implementation of guidelines. Authors evaluated effectiveness of the toolset by

performing experiments. However, authors have not examined the quality-related

issues in the web service design. Coscia et al. [49] have done a statistical correlation

analysis on the number of traditional OO metrics and WSDL-level service metrics and

found a correlation between them. Antipatterns in SOAP based web services and

REST are introduced first time in [37,57,56]. These authors used natural language

processing and source code metrics to detect antipatterns. Antipatterns of SOAP based

web services are detected with high precision and recall but only for some specific

services. The tool SODA-W, an extension of SOFA framework [66] uses already

established DSL for the detection of SOAP and REST services.

The state of the art approaches discussed above reflect that a large number of authors

worked for the detection of antipatterns from object oriented software projects. We

present summarized information about SOA based antipattern detection approaches in

Table 4.1. We also realized that SOA based antipattern detection approaches focused

towards antipatterns detection for Service oriented architecture specifically for

SOAP(Simple Object Access Protocol) based services. We found only three articles

for REST APIs antipatterns detection [30,56,57].

Sindhgatta etal. [43] have done a detailed literature survey on service cohesion,

coupling, and reusability metrics, and he come up with five new cohesions and

coupling metrics, which were set as new service design requirement. Due to

85

limitations of approaches discussed in the literature, we propose a flexible approach for

the specification and identification of SOA-antipatterns in web services.

Table 4.1 :Summarized Information about SOA Antipattern Detection

Techniques

Reference Key Concept

Antipatterns

Recovered

Technique

Name

Case studies P /R

[66] SODA relies on domain

specific language that

enables antipatterns

specification using a set

of metrics.

TS, MS, DS,MS SOFA Home-

Automation

System

75%

[67]

SOMAD apply

sequential association

rules to get execution

traces of services .

S,MS,CS,DS,Kt,B

S

Association

rule mining

Home

Automation

90%

[47]

SODA-W is supported

by an extended version

of SOFA and is

dedicated to the

specification of SOA

antipatterns and their

automatic detection in

Web services. The

extended SOFA

provides the means to

analyze Web services

statically, dynamically,

or combining them.

RPT,AN,LCOP,CS

,DuS,MRPC,CRU

DY-

I,GOWS,FGWS

Source Code

metrics for

static and

dynamic

analysis

along

embedded

sing DSL

Experiments

performed

with

13 weather-

related

and 109

financer

elated WSs.

75%

100%

[54] An automated approach

for detection of Web

service antipatterns

using a cooperative

parallel evolutionary

MRPC, CRUDYI,

DS,

AN,FG,GOWS

Parallel

Evolutionary

Algorithm

Web services

from ten

different

application

domains

85to89

%

86

algorithm (P-EA).

[52] Genetic Programming

approach based on

combination of metrics

and threshold values

MS,NS,DS,AN Genetic

Programming

310 services

of different

domains

-85%

87%

[100]

Java to WSDL Mapper

EDM,RPT,WET,A

N,UFI,IC,ISM,LC

OP

Text Mining

and meta

programming

(Java2wsdl)

60 web

services

96%

70-74%

[72]

Contract first concept

based approach for

detecting WSDL based

services using EasySOC

tool

WSDL based

Services

text mining,

machine

learning and

component

based

software

engineering

391 web

services

75-80%

78-94%

[121]

Prediction of Web

Services Evolution

Ds,MS,NS,CS ANN

algorithm to

predict

antipatterns

in future

release

5 different

web services

interfaces

81%P,9

1%R

[43]

Identification of Web

Service Refactoring

Opportunities as a

Multi-Objective

Problem

MRPC, CRUDYI,

DS,

AN,FG,GOWS

MOGP(multi

objective

genetic

programming

) to

implements

detection rule

for web

services

Different

combination

of metrics to

select

dynamic

threshold

94%P,9

2%R

87

[106]

Comprehensive

guidelines along with

tool support to enforce

these guidelines for

service development

EDM,RPT,WET,A

N,UFI,IC,ISM,LC

OP

WSDL bad

practices are

embedded in

EASY SOC

to detect

violation of

rules in

WSDL

Source Code

metrics on

different web

services

95.8%

[53]

Correlation analysis

between source code

metrics and WSDL

implementation code

EDM,RPT,WET,A

N,UFI,IC,ISM,LC

OP

Effect of

source code

metrics on

WSDl

document

refactoring

Source Code

metrics

NA

[153]

WSDL document

improvement for

effective service

availability

EDM,RPT,WET,A

N,UFI,IC,ISM,LC

OP

Removlal of

antipatterns

for service

availavility

Results are

evaluated

using case

study using

Convertforce

WSDl

document

NA

P (Precision), NA(Not applicable) ,EDM (Enclosed Data Model), RPT (Redundant Port Type), RDM (Redundant Data

Model),WET(What Ever Type) ,AN(Ambiguous names),UFI(Undercover fault Information),IC(Inappropriate

Comments),ISM(information within standard messages),LCOP(Low cohesive operations in same port types), MS(Multi Service

), NS(Nano Service), DS(Data Service),Kt(the Knot), BNS(Bottle Neck Service) ,CS(Chatty Service),DuS(Duplicated

service),SC(Service Chain),NH(Nobody Home), MRPC(may be Its Not RPC).

It is observed that many techniques have used metrics for the identification of the

antipatterns.

 Different approaches also used source-code parsing techniques to identify

the antipatterns. The parsing techniques used the statistical collection of

data like counting Lines of Code, measuring Switch Statement Cases and

matching or finding other syntax etc. [49].

 The accuracy of metrics were highly dependent on different values of

threshold, and in most cases thresholds were constant [49].

88

 Accuracy has great impact for the validation. Therefore, many approaches in

literature not mentioned the accuracy of the tool like given in [49,100,72].

The light of above analysis, we come up with a new technique supplemented with a

tool support: Unification of metrics-based and parsing based approach that not only

improves the scope in order to identify number of antipatterns but it also improves

accuracy. The required metrics are obtained from the SOAML(Service Oriented

Architecture Modeling Language) of Enterprise Architecture, in spite of reinventing

the wheel and by examining them directly from the source code.

4.3 SWAD Approach

The specification of web services related antipatterns is primary step for their accurate

detection from web services. The specification of antipatterns in literate is textual that

is hard to use and describe. Due to unavailability of standard specification of web

service antipatterns, we present specification of nine selected antipatterns. Our

specification contains detail information that is important to understand and detect

these antipatterns. The specifications are further used by our approach for the detection

of these antipatterns. We selected these nineantipatterns for the specification and

detection due to their common existence in different web services.

4.3.1 Specification of SOAP Antipatterns

4.3.1.1 God Object Antipattern

An object that contains all the information related to the whole service and this object

also has many methods. This makes its role in the source-code ―god-like‖.

It is so known as: ―Schizophrenic-class‖, ―divergent-change‖, ―unconnected-

responsibilities‖, ―conceptualization-abuse‖, ―mixed-abstractions‖ [37].

Variants: ―Vague-classes‖, ―abusive-conceptualization‖, ―non-related data and

behavior‖, ―irrelevant-methods‖, ―discordant-attributes‖.

God object exists if the service contains:

 Many Methods AND Has Very Low Cohesion AND Has High Response-Time AND

Low-Availability. Where Many Methods >=10, Cohesion >= 1, High Response-Time

>=1

89

4.3.1.2 Data Web-service Antipattern

A web-service that performs information retrieval tasks in a distributed environment

through accessor operations like getters and setters.

This Antipattern occurs when a class is used as a holder for data, without any methods

operating on it.Data Web service exists if the service contains: High Accessor

Operations with Few Parameters And Has High Cohesion And High Primitive

Parameters

Where Accessor Operations> 50 < 73 And with Few Parameters And lcom3<=0

And Primitive Parameters >100

4.3.1.3 Fined Grained WS Antipattern

Fine-grained web-service description regards tiny services out of which the larger ones

are composed. That larger one needs to have many coupled web-services. Therefore, it

gives rise to higher development complexity, reduced usability. Individual Web-

service is less cohesive due to related operations that spread across services of an

abstraction. This antipattern is the result of overdone implementation-complexity.

The existence of this antipattern based on : Few Operations And Has Low Cohesion

And Has Very High Coupling Where Operations >=1 And <=2, Low Cohesion >=1

And <=2, Coupling >=1 And <=4

4.3.1.4 Ambiguous Name WS Antipattern

The developers use the key-terms like Port-Types, operation, and message that

contains too short and long, or too general terms, or even show the improper use of

verbs.

This antipattern arises when the class name has a verb only and hold one method with

same name as the class and class has no inheritance. Ambiguous WS antipatterns also

known as ―Operation-class‖, ―method turned into class‖, ―single-routine-classes‖.

A service contains: Too Long or Too Short Signatures AND Has Too Many General

Terms in Operations ,

where COUNT [Operations signature length<3 or Operations Signature length > 30]

>1 or Ambiguous operations name should have any one (arg, var, obj, foo, param, in,

out, str) >1

90

4.3.1.5 Duplicated Service

 Duplicated Web-service contains identical-operations with the similar names and

message parameters. This aantipattern introduces when two or more abstractions are

identical sharing commonalities with their improper use in the design.

A web-service having Identical Operations and Identical Port-Types

Where ARIP > 1 And ARIO>1

ARIP= Average Ratio of Identical Port-Types, ARIO= Avg. Ratio of Identical

Operations

Where ARIP count all ambiguous names starting from (arg, var,obj,foo) and ARIO is

calculated as all meaningless operations name having length less then 3 and greater

then 30. We also used Wordnet dictionary to check the ambiguious names.

4.3.1.6 LowCohesiveOperations in the Same Port-Type Antipattern

Many unrelated operations in one port type.

The service contains: Many Methods And has Very Low Cohesion.

NOD >=1 And <= 70 And ARAO <=27

ARAO= Avg. Ratio of Accessor Operations

4.3.1.7 Redundant Port-Types Antipattern

A WS contains multitude Port-Types and is composed of number of redundant

operations handling the same messages. This antipattern arises when two or more

classes have split-identity.

Web-service contains: Many Operations AND Has Many Port-Types resulting in High

Cohesion

Where NOPT>1 And NPT >1

NOPT = Num of Operations in Port-Types, NPT= Number of Port-types

4.3.1.8 Chatty Web-service Antipattern

Chatty-WS is an antipattern in which numerous attribute-level operations like getters

and setters exist in order to complete an abstraction. Difficult to infer the order of

invocation give rise to maintenance issues. Chatty Web-services exists if service

contains:

91

 Low Cohesion with High Accessor Methods And Has Low Availability And High

Response Time And Many Methods.

Where Low Cohesion >0 And Accessor Methods >=101 And Many Methods >70

4.3.1.9 CRUDy Web-service Antipattern

A web-service design that contains CRUD-type operations, e.g., create (), ready (),

delete (), update (). Interfaces designed may have several methods need to be called to

accomplish a goal which makes it chatty.

A web-service is Chatty if it contains: Many CRUD-type operations and LOW

Cohesion AND High Accessor Operations AND high Procedures

LCOM3<=0 AND Accessor operations>100 and procedures >70 Crudy Operations>1

Where CRUD-type operations >1

4.3.1.10 Loosey Goosey Web Service Antipatterns

Services are designed in a complex way that create problems for further service

extensibility and functionality. Services are tightly coupled and not able to answer the

user request.A web service is Loosey goosey if the service interface implementation is

single tier and services are loosely coupled, less cohesive

DIT<1 AND AND CBO>1 AND LCOM3>0

Where DIT: Depth of inheritance

4.3.2 Detection Approach for SOAP Antipatterns

The motivation of our proposed approach stems from the methodology presented by

[10] for the detection of antipatterns from Web-services. We input standard definitions

of web services presented in the previous section. The definitions include static and

dynamic properties of web services. The static properties include static features of web

services such as number of operations, number of port types, number of parameters

etc. The dynamic properties include features such as response time and availability.

The metric rules are composed based on the static and dynamic properties of web

services. The approach applies these metric rules for the detection of a specific

antipattern.

92

4.3.2.1 Antipatterns Detection using Reverse Engineering

Step1

Web services interfaces are reversed in form of java code using JAVA2WSDL tool

using contract first approach.

Step 2

Antipattern detection engine is build using C# after implementing the static and

dynamic properties of each antipatterns collected from step 2. The code-first approach

is based on Sparx System data model that is directly generated from source code.Sparx

System Enterprise Architect has the ability to generate data model of different

languages directly from the source code. Instead of reinventing the wheelSparx System

Enterprise Architect has the ability to generate data model of different languages

directly from the source code. Instead of reinventing the wheel, we relied on the use of

metrics i.e. SOA data model to extract relevant features related to any given

antipattern. This approach is similar to the contract-first where we have a WSDL

interface and then use tool to generate java code . However, previously reported

techniques in literature used OOSE metric to check the antipatterns from SOAP

service, no interface level properties are used.

4.3.2.2 SOAP antipatterns detection at interface level

This technique uses WSDL instead of reverse engineering the code in multiple form

of representation like C#,C++and java . SOAP web services are analyzed at interface

level and their dynamic properties like availability is measured using SAAJ tool .

Step 1:

WSDL code is used as a contract. SOAML is used as WSDL intermediate

representation using Sparx system Enterprise architecture.

Step2 :

Antipattern detection engine is build using C# after implementing the static and

dynamic properties of each antipatterns collected from step 1. Instead of reinventing

the wheel, we relied on the use of Interface level and code level metrics and use

SOAML model for the extraction of Interface level properties. The proposed approach

adapt variable threshold using GUI that helps analyst to check the antipatterns as per

its requirement.

93

We describe relevant properties of antipatterns in web-services and parse the WSDL

code into Java template using EA tool.

1. EA Data Model

2. Structure Query Language

EA Data Model

Our approach is based on Sparx System data model that is directly generated from

source code. Sparx System Enterprise Architect has the ability to generate data model

of different languages directly from the source code. Instead of reinventing the wheel,

we relied on the use of metrics i.e. SOA data model to extract relevant features related

to any given antipattern.

We used SOAP-UI for parsing the code and SQL, to extract the required data for the

detection of Web-service related antipatterns from the Service Oriented Modeling

Framework of Enterprise Architect.We selected Enterprise Architect because of its

ability to generate well structured, self-explanatory and detailed (metrics) data model

from the source code of 13 programming languages.

B) Structure Query Language

Our approach is based on SQL to extract data from the data model of Sparx System

Enterprise Architect. Structure Query Language is very useful database Query

language capable to extract any required data from the Database model.

SQL is having enough types and clauses through which we can extract (delete or

alter) any required data (if present) from the SQL database. SQL Queries are useful to

retrieve huge amount of data and records from database effectively and efficiently.

SQL based databases established standards that is adopted by ANSI & ISO. SQL

commands syntax is simple English like statements.

Examples of SQL commands that we used in our prototype for extracting data from

the data model of Enterprise Architecture are given below:

a) Portnames = select Name from t_object where

t_object.stereotype='WSDLportType'

94

b) Operations =Select t_operation.Name from t_operation,t_object where

t_operation.Object_ID=t_object.Object_ID and

t_object.Stereotype='WSDLportType'

c) Procedures = Select count(operationid) from t_operation,t_object where

t_operation.Object_ID=t_object.Object_ID and t_object.Object_Type='class'

d) Variables = "select count(*) from t_attribute,t_object where

t_attribute.object_id=t_object.object_id and t_object.object_type='class'"

e) Methods accessed parameter = select count (name) from t_operationparams

");

f) Paramatertype = "select count(operationid) from t_operationparams ");

g) Accessoroperation = "select count (name) from t_operation where name

like'set*' or name like 'get*'

h) Crudy Operation =select count (t_operation.OperationID) from t_operation,

t_object where t_operation.Object_ID = t_object.Object_ID AND

t_object.Object_Type = 'Interface' and t_object.Name like 'Create*' and

t_object.Name like 'update*' and t_object.Name like primitivetype = select

count(operationid) from t_operationparams where type

IN('boolean','double','int','byte','short','long','char')"delete*'

i) Methodsacessed = "select count (operationid) from t_operation ,t_object

where t_object.Scope='public' and t_object.Object_Type='class'"

j) coupling = select count (connector_id) from t_connector,t_object where

t_connector.Connector_ID= t_object.Object_ID and

t_object.Object_Type='class'

95

The above mentioned SQL queries are used to calculate the Interface level metrics

listed in Table 4.2. SWAD used SOAML model for representation of SOAP web

services, so the mapping of different features of SOAP along with SOAML are also

listed below in Table 4.2.

Table 4.2 : Mapping of SOAP interface with SOAML Model

Table 4.2 helps to map the property of SOAML with SOAP services. SOAML parse

the SOAP services and map each SOAP property with its corresponding table and we

use the attribute of each table to extract the values of the SOAP services. Property

map column describes the SOAML database table attribute that helps to extract the

value of SOAP attribute like ‗port types ‗ and operations.

C)Prototype Tool

The proposed architecture of the SWAD is described in Figure 4.1 and interface is

available in Figure 4.2

Sr.No
SOAP

Parameter
SOAML

SOAML Table

Name

Property

map

1 Wsdl :port-

Types

Service End point

interface
T_operation

‗Stereotype‘

2 Wsdl:operation Method,Operation T_operation ‗name‘

3 Wsdl:binding Stub T_object ‗name‘

4 Wsdl:service Service interface T_object ‗type‘

5
Wsdl:port

Port Accessor T_operation,

t_operationparams

‗Sterotype‘

6 Xsd:simple type Class T_object ‗type‘

7 XSD Element

and Attribute

Class
T_attribute

‗type‘

96

Figure 4.1 Antipatterns Detection Approach For SOAP Services

Figure 4.2 Interface of Prototype Tool

4.4 Experimental Results

We selected 60 weather and 7 finance related web services to evaluate our approach

and recovered 9 antipatterns. We selected these datasets due to their free availability

and comparison of our results with state of the art approaches. The general

information of the services under analysis using code-first approach is as reported in

Table 4.3

Intermediate

representation of

Source Code

Data Base

Engine

Antipatterns

Detection Engine

97

Table 4.3 : Statistics of Examined Systems

Sr.# Systems SLOC Methods Attributes

1 BLiquidity 12210 4618 4284

2 Cloan to Currency 29663 8647 7650

3 sxBATS 13068 4994 4584

4 xBondRealTime 26577 6170 4541

5 Curs 12415 4627 4333

6 Data 34836 10451 8528

7 ExchangeRates 13535 5030 4544

8 MFundService 13530 4930 4527

9 getImage 16307 5506 5230

10 Index 11958 4635 4218

11 Populate 11335 4406 4077

12 ProhibitedInvestor 11565 4453 4165

13 StockQuoteService 13331 5383 4923

14 StockQuotes 19790 6327 5662

15 sflXML 14941 5771 5079

16 TaarifCustoms 19678 6565 5919

17 TaxEconomy 16167 6210 5336

18 TipoCombio 13268 4959 4608

19 VerifilterSoap 10500 4204 3878

98

20 WebService 11120 4314 4046

21 wsIndicator 10329 4203 3864

22 wsStrikon 15078 5588 5217

23 xCalender 22122 7294 6585

24 xCharts 32925 5585 3679

25 xCompensation 18917 6553 5693

26 xEarningCalender 20340 7137 6374

27 xEnergy 49670 13952 11433

28 xEnchanges 21305 7154 6476

29 xFinance 49377 14458 11503

30 xFundamentals 23731 7581 6806

31 xFundata 34821 11384 9405

32 xFunds 31660 9765 8193

33 xFuture 58311 1732 766

34 xGlobalBond 16582 5723 5079

35 xGlobalFundamentals 21858 6963 6236

36 xGlobalHistorical 36392 11192 9626

37 xGlobalRealTime 13829 5273 4741

38 xIndices 22838 6775 5978

39 xInsider 35561 11714 9565

40 xInterbank 77971 7551 4291

99

41 xLogos 11385 4611 4257

42 xMaster 23182 7922 7094

43 xMetals 57469 16208 12659

44 xNASDAQ 21183 7059 5846

45 xNews 15531 5666 5158

46 xOFAC 16037 5906 5293

47 xOptions 24044 7896 6520

48 xOutlook 14899 5353 4937

49 xReleases 4872 5984 5355

The results of our approach are shown in Tables 4.4 and 4.5. Each Table presents the

names of web-services in second column and then rest of the columns shows

antipatterns with their possible metrics detected.

4.4.1 Results of Antipattern Detection using Code –first Approach

We used two different types of data sets from the field of financial applications and

the web services used for weather forecasting. The detailed results are reported in

Table 4.4 and Table 4.5.

Table 4.4 Results for Finance related Web-services

Sr.N

o

Name ofWeb-

services

GOW

S

DW

S

CW

S

LC

W

S

FGW

S

CRUD

I

RP

T

Dup

-WS

ANW

S

LGW

S

RT

1 BLiquidity √ √ √ √ √ X X √ √ √ 1s

2 Cloan to Currency √ √ √ √ √ X X √ √ √ 2s

3 xBATS √ √ √ X X X X √ √ X 2s

4 xBondRealTime √ √ √ √ X X √ √ X Non

e

5 Curs √ √ √ √ √ X X √ √ X 2s

100

6 Data √ √ √ √ √ X X √ √ X 2s

7 ExchangeRates √ √ √ √ √ X X √ √ √ 2s

8 MFundService √ √ √ √ √ X X √ √ √ 2s

9 getImage √ √ √ X X √ √ √

10 Index √ √ √ √ √ X X √ √ √ 2s

11 Populate √ √ √ √ √ X X √ √ √ 3s

12 ProhibitedInvestor √ √ √ √ √ X X √ √ √ 2s

13 StockQuoteService √ √ √ √ √ X X √ √ X 3s

14 StockQuotes √ √ √ √ √ X X √ √ X 2s

15 sflXML √ √ √ √ √ X X √ √ √ 2s

16 TaarifCustoms √ √ √ √ √ X X √ √ √ 4s

17 TaxEconomy √ √ √ √ √ X X √ √ X 2s

18 TipoCombio √ √ √ √ √ X X √ √ X 2s

19 VerifilterSoap √ √ √ √ √ X X √ X 2s

20 WebService √ √ √ √ √ X X √ √ X 2s

21 wsIndicator √ √ √ √ √ X X √ √ √ 3s

22 wsStrikon √ √ √ √ √ X X √ √ √ 2s

23 xCalender √ √ √ √ √ X X √ √ √ 2s

24 xCharts √ √ √ √ X X √ √ √ 2s

252 xCompensation √ √ √ √ √ X X √ √ √ 2s

26 xEarningCalender √ √ √ √ √ X X √ √ √ 2s

27 xEnergy √ √ √ √ √ X X √ √ X 2s

28 xEnchanges √ √ √ √ √ X X √ √ X 2s

29 xFinance √ √ √ √ √ X X √ √ X 2s

30 xFundamentals √ √ √ √ √ X X √ √ X 2s

31 xFundata √ √ √ √ √ X X √ √ √ Non

101

e

32 xFunds √ √ √ √ √ X X √ √ X 2s

33 xFuture √ √ √ √ X X √ √ X 2s

34 xGlobalBond √ √ √ √ √ X X √ √ √ 2s

35 xGlobalFundament

als

√ √ √ √ √ X X √ √ √ 2s

36 xGlobalHistorical √ √ √ √ √ X X √ √ √ 2s

37 xGlobalRealTime √ √ √ √ √ X X √ √ √ 2s

38 xIndices √ √ √ √ X X √ √ √ Non

e

39 xInsider √ √ √ √ √ X X √ √ X 2s

40 xInterbank √ √ √ √ X X √ √ X 2s

41 xLogos √ √ √ √ √ X X √ X 2s

42 xMaster √ √ √ √ √ X X √ √ √ 2s

43 xMetals √ √ √ √ √ X X √ √ √ 2s

44 xNASDAQ √ √ √ √ √ X X √ √ √ 2s

45 xNews √ √ √ √ √ X X √ √ √ 2s

46 xOFAC √ √ √ √ √ X X √ √ √ 2s

47 xOptions √ √ √ √ √ X X √ √ √ Non

e

48 xOutlook √ √ √ √ √ X X √ √ √ 2s

49 xReleases √ √ √ √ √ X X √ √ √ 2s

MO = Multi-Operation Occurrences, CO = Cohesion Occurrences, NPT = Number of Parameter Type,

NOD = Number of Operations Declared, AO = Accessor Operations, NOI = Number of Instances

detected, DT = Detection Time, RT = Response Time, P = Precision ,R = Recall ,NAN= Num. of

Ambiguous names in Port-type, SLAP ,AmbOp =Ambiguous Operations ,ANA=Ambiguous names

antipattern,X = No Response (Service not available)

Table 4.5 Results for Weather-related Web-services

Name ofWeb- GOW DW CW LCW FGW CRU RP Du

p-

ANW LGW

102

services S S S S S DI T WS S S

AIP3 √ √ √ √ √ √ X √ √ √

FindingService X X X √ X √ X X √ √

Ndfd √ √ √ √ √ √ X √ √ X

SOAP WS X X X √ X X X X √ X

WeatherForecastServi

ce

√ √ √ √ √ X X √ √ X

WeatherTerrapin √ √ √ √ √ X X √ √ X

webSky √ √ √ √ √ X X √ √ X

GOWS: Gob Object Web Service , DWS: Data Web Service , CWS: Cruddy Web Service , LCWS:

Low Cohesive Web service , RPT: Redundant Port Type , ANWS: Ambiguous Name Web Service ,

FGWS: Fine Grained Web service, CRUDY I: Crudy Interface, DupWS:Duplicate Web Service

4.4.2Results of Antipattern detectionat interface level using Contract first

Approach

Table 4.6 reports the results of SWAD at interface level using SOAML(Service

Oriented Architecture Modeling Analysis) framework for the detailed analysis of

antipatterns for SOAP web services. This approach is suitable for code-first technique

too.

103

Table 4.6 Results for Finance related Web-services

Sr. # Name of

Web-services

G
O

W
S

D
W

S

C
W

S

L
C

 W
S

F
G

W
S

C
R

U
D

I

R
P

T

D
u

p
-W

S

A
N

W
S

L
G

W
S

R
T

1 BLiquidity √ √ √ √ √ X X √ √ √ 1s

2 Cloan to

Currency

√ √ √ √ √ X √ √ √ √ 2s

3 xBATS √ √ √ X X X X √ √ X 2s

4 xBondRealTi

me

 √ √ √ √ X X √ √ X No

ne

5 Curs √ √ √ √ √ X √ √ √ X 2s

6 Data √ √ √ √ √ X √ √ √ X 2s

7 ExchangeRat

es

√ X X X √ X √ √ √ √ 2s

104

8 MFundServic

e

√ √ √ √ √ X √ √ √ √ 2s

9 getImage X √ X X X X √ √ √ √

10 Index √ √ √ √ √ X √ √ √ √ 2s

11 Populate √ √ √ √ √ X √ √ √ √ 3s

12 ProhibitedInv

estor

√ √ √ √ √ X √ √ √ √ 2s

13 StockQuoteS

ervice

√ X √ X √ X √ √ √ X 3s

14 StockQuotes √ √ √ √ √ X √ √ √ X 2s

15 sflXML √ √ √ √ √ X √ √ √ √ 2s

16 TaarifCustom

s

√ √ √ √ √ X √ √ √ √ 4s

17 TaxEconomy √ √ √ √ √ X √ √ √ X 2s

18 TipoCombio X X √ X √ X √ √ √ X 2s

19 VerifilterSoa

p

√ √ √ √ √ X √ √ X 2s

105

20 WebService X √ √ √ √ X √ √ √ X 2s

21 wsIndicator √ √ √ √ √ X √ √ √ √ 3s

22 wsStrikon √ √ √ √ √ X √ √ √ √ 2s

23 xCalender √ √ √ √ √ X √ √ √ 2s

24 xCharts X √ √ √ √ X √ √ √ √ 2s

25 xCompensati

on

√ √ √ √ √ X √ √ √ √ 2s

26 xEarningCale

nder

√ √ √ √ √ X √ √ √ √ 2s

27 xEnergy √ √ √ √ √ X X √ √ X 2s

28 xEnchanges √ √ √ √ √ X X √ √ X 2s

29 xFinance √ √ √ √ √ X X √ √ X 2s

30 xFundamenta

ls

√ √ √ √ √ X X √ √ X 2s

31 xFundata X √ √ √ √ X X √ √ √ No

ne

106

32 xFunds √ √ √ √ √ X X √ √ X 2s

33 xFuture X √ √ √ √ X X √ √ X 2s

34 xGlobalBond √ √ √ √ √ X X √ √ √ 2s

35 xGlobalFund

amentals

√ √ √ √ √ X X √ √ √ 2s

36 xGlobalHisto

rical

√ √ √ √ √ X X √ √ √ 2s

37 xGlobalRealT

ime

√ √ √ √ √ X X √ √ √ 2s

38 xIndices √ √ √ √ X X √ √ √ No

ne

39 xInsider √ √ √ √ √ X X √ √ X 2s

40 xInterbank √ √ √ √ X X √ √ X 2s

41 xLogos √ √ √ √ √ X X √ X 2s

42 xMaster √ √ √ √ √ X X √ √ √ 2s

43 xMetals √ √ √ √ √ X X √ √ √ 2s

107

44 xNASDAQ √ √ √ √ √ X X √ √ √ 2s

45 xNews √ √ √ √ √ X X √ √ √ 2s

46 xOFAC √ √ √ √ √ X X √ √ √ 2s

47 xOptions √ √ √ √ √ X X √ √ √ No

ne

48 xOutlook √ √ √ √ √ X X √ √ √ 2s

49 xReleases √ √ √ √ √ X X √ √ √ 2s

MO = Multi-Operation Occurrences, CO = Cohesion Occurrences , NPT = Number of Parameter

Type, NOD = Number of Operations Declared, AO = Accessor Operations, NOI = Number of

Instances detected, DT = Detection Time, RT = Response Time, P = Precision ,R = Recall ,NAN=

Num. of Ambiguous names in Port-type, SLAP ,AmbOp =Ambiguous Operations ,ANA=Ambiguous

names antipattern,X = No Response (Service not available)

Table 4.7 Results for Weather-related Web-services

Name of

Web-services

G
O

W
S

D
W

S

C
W

S

L
C

 W
S

F
G

W
S

C
R

U
D

I

R
P

T

D
u

p
-W

S

A
N

W
S

L
G

W
S

AIP3 √ √ √ √ √ √ X √ √ √

FindingService X X X √ X √ X X √ √

ndfd √ √ √ √ √ √ X √ √ X

soapWS X X X √ X X X X √ X

WeatherForecastSer √ √ √ √ √ X X √ √ X

108

vice

WeatherTerrapin √ √ √ √ √ X X √ √ X

webSky √ √ √ √ √ X X √ √ X

4.4.3 Comparison of Results

For the comparison of different detection tools for antipatterns in web-services, we

select SODA-W, and Parallel Evolutionary Algorithm the brief description is listed in

Table 4.8. The reason of their selection is that we have very limited number of

approaches available for the identification of web-services related antipatterns. It is

worth mentioning that we report the accuracy of our tool using Code-first(WSDL to

java) and contract first (Interface only) approach. We use SOAML(Service Oriented

Architecture Modeling Language) to model the system using Sparx system Enterprise

Architecture.

Table 4.8 Description of Detection Tools

Detection

Tools

Existing Java Open Source Tools Description

SODA-W SODA-W is an approach used to detect antipatterns for SOAP

based web services . [47]. (http://sofa.uqam.ca/soda-w//)

P.E Algo ‗Parallel Evolutionary Algorithm is based on auto-mated

detection algorithms that automatically select threshold for

source code metrics used to detect antipatterns for SOAP based

services. The tool is not publically available [54].

Table 4.9 Comparison of Results for Weather Related Services

SWAD Tool SODA-W Tool PE-A

Algorithm

Antipattern WS Precision

(Average of Both

Approaches)

WS P WS P

http://http/www.jdeodorant.com/

109

GWS Detected 78% None detected ---- Detected 87%

DWS Detected 100% None detected ---- Detected 88%

Chatty

WS

Detected 68% Detected 50% Detected 81%

LCWS Detected 95% Detected 100% None

Detected

--

FGWS Detected 98% Detected 100% Detected 83%

DWS Detected 86% None detected ---- Detected 90%

ANWS Detected 93% Detected 100% Detected 95%

CRUDy I None

detected

---- Detected 50% Detected 88%

RPT Detected 85% Detected 100% Detected 87%

MRPC None

detected

---- None detected ---- None

Detected

--

Table 4.10 Comparison of Results for Finance Related Services

SWAD Tool SODA-W Tool

Antipattern WS Precision Antipattern WS Precision

GWS Detected 42.8% GWS None detected ----

DWS Detected 100% DWS None detected ----

Chatty WS Detected 42.8% Chatty WS None detected ----

LCWS Detected 71.5% LCWS Detected 100%

FGWS Detected 100% FGWS Detected 66.67%

DWS Detected 57.1% DWS None detected ----

ANWS Detected 100% ANWS Detected 100%

110

CRUDy I None

detected

---- CRUDy I None detected ----

RPT None

detected

75% RPT Detected 100%

MRPC None

detected

---- MRPC None detected ----

4.4.4 Comparison of Results with P.E Algorithm

Figure 4.3 shows the comparison of the Antipattern results of related to the web-

services using Parallel Evolutionary Algorithm (P.E.Algo) and our approach. This

table shows the cumulative comparison of three approaches presented for Antipattern

detections. Table4. 10 shows cumulative comparison of those web services that are

used for antipatterns detection in three approaches. This table will helps us to

generalize the results regarding success rate of Antipattern detection because data set is

same for three tools.

Figure 4.3Percentage of Antipatterns Detection for Three approaches

It can be seen from Table 4.10 that only one or two WS-related antipatterns are

detected in each web-service. For instance, in the web-service named xOutlook only

two antipatterns have been detected using P.E-Algo approach. Similarly, xMaster web-

service has Fine Grained WS-related antipattern detected by P.E Algo technique.

0

20

40

60

80

100

120

SODA-W

SWAD

PE-A

111

On the other hand, SWAD is capable to detect more than two WS-related antipatterns

if any present in the given web-service. Table 4.11 listed the names of the web-services

in the first column and rest of the columns presents the number of antipatterns detected

using SWAD approach.

112

Table 4.11 Comparison of Results Generated by SWAD

Services/Patterns GOWS DWS CWS MX LCWS RPT ANWS

P
E

-A

S
O

D
A

-

W

S
W

A
D

P
E

-A

S
O

D
A

-

W

S
W

A
D

P
E

-A

S
O

D
A

-

W

S
W

A
D

P
E

-A

S
O

D
A

-

W

S
W

A
D

P
E

-A

S
O

D
A

-

W

S
W

A
D

P
E

-A

S
O

D
A

-

W

S
W

A
D

P
E

-A

S
O

D
A

-

W

S
W

A
D

AIP3_PV_Impact X X √ X X X X X X X X X X X √ √ X X √ √

Finding Service X X X X X X X X X X X X X X √ X X √ X X √

XBATS X X √ X X √ X X √ √ X X X X X X X X X X √

ExchangeRates X X √ X X √ X √ √ X X X X X √ X X X √ X √

xAnalyst √ X X X X X √ X √ X X X X X X X X X X X √

X Master X X √ √ X √ √ X √ X X X X X √ X X X X X √

Xoutlook X X √ X X √ X X √ X X X X X √ X X X √ X √

Xrelease X X √ X X √ √ X √ X X X X X √ X X X X X √

Xcompensation √ X √ X X √ √ X √ X X X X X √ X X X X X √

GOWS: Gob Object Web Service , DWS: Data Web Service , CWS: Cruddy Web Service , MNR :May be its not RPC , LCWS: Low Cohesive Web service , RPT:

Redundant Port Type, ANWS: Ambiguous Name Web Service.

113

4.5Conclusion

The detection of web service antipatterns from source code supports maintenance,

refactoring and highlights poor practices adopted by developers during development of

software applications. The detection of antipatterns from SOA is still young area. A

limited number of approaches and tools are presented by different authors for the

detection of antipatterns from SOA based software projects. The state of the art

approaches are not flexible for code first and contract first concepts. Our proposed

approach has three major contributions. First, we present customizable definitions and

algorithms for detection of SOA antipatterns from multiple languages with varying

features. Second, our approach is flexible due to application of SQL queries and

regular expressions for matching definitions of antipatterns in the source code and

these searching queries are not hard coded in the source code. Our approach is capable

to detect eight SOA antipatterns from 7 weather related and 60 finance related web

services. A prototyping tool is developed to validate the concept of approach. Thirdly,

we evaluate our tool on two domains of web services implemented using different

programming languages and recovered eight antipatterns with improved accuracy. The

results of presented approach are compared with two state-of-the-art approaches. Our

results illustrate the significance of customizable antipatterns definitions and

lightweight searching techniques in order to overcome the accuracy and flexibility

issues of previous approaches.

114

Chapter 5 Service Oriented Correction of Antipatterns

for RESUTful APIs

115

5.1 Introduction

Service system evolution is quite different as compared to the software system

evolution. The major complexity of service system evolution is due to the distributed

nature of services. Components of services reside on different servers, organization

and beyond the control of an individual entity. However, change in any service

system components may not affect the direct change in its corresponding interface

[154]. Lehman and Belady highlight the importance of evolution for software to meet

end user requirement [155]. Moreover, the evolution of API can be assessed with the

new version of software component [156].

In the perspective of statically linked APIs, Dig and Johnson addressed numerous

changes in the interfaces with respect to time [156] and Laitinen addresses the high

return on investment for the migration of new software version [157]. If we consider

these issues in context of web API, developers cannot afford lethargy that was

observed by Laitinen [157], a developer must follow the strict deadline from web API

providers for migration towards a new version. It is also observed that for static

environment developers may have an option to stay with the older version like libxml,

which still meet the needs.

However, web service APIs are dependent on their providers that can change older

version (and functionality) thus forcing API up gradation. On the other hand, another

study revealed that only 4 APIs that were statically linked used out of the total of 1476

Source forge project [158]. This may imply that developers have no control over API

evolution and client developers have to change their application code according to the

new version [158]. Another survey among 130 Web API client developers reported a

large number of complaints about current API providers like improper documentation,

changes in API without warning message and preceding poor industry standards

[159].

Web APIs are implemented by using two different protocols SOAP and REST. REST

is well-known architecture style that is gaining popularity day by day. REST

architecture style is mostly used amongst the top API providers due to the popularity

of World Wide Web (WWW). REST uses HTTP and HTTPS together with URIs and

MIME type with a simple and standardized availability for all kind of

116

platforms[160].Even more important is the effect of REST style on the quality

attributes of software systems. Distributed software systems that follow REST

architecture style implicitly support durability, inter dependency among the evolution

of REST components, extensibility and scalability among others [6]. However, what

will be the outcome when these REST API evolved? The main challenges in

achieving these quality attributes are continuous evolution of REST API due to the

change in user requirements.

All of the above mentioned studies addressed the changes in Web APIs due to user

requirement and improper usage of industry standards. The rapid changes in user

requirement also forced the developers to follow wrong practices called as antipatterns

in contrast to design patterns that forced developers to follow industry standards

[161][162][163].

There are some studies that reported the detection of REST design patterns as well as

antipatterns. The detection of REST patterns and antipatterns with a tool support

SODA-R first time introduced by Palma et al.[56]. SODA-R detected REST design

patterns as well as antipatterns by using static and dynamic properties of REST APIs

with an average recall about 94 percent from widely used REST APIs providers like

YouTube, Facebook and Twitter [56]. Another study also detected the REST

linguistic antipatterns with a tool support DOLLAR that examine the URI of widely

used REST APIs [57]. A very recent approach detected the REST linguistic

antipatterns by using semantic and syntactic [58] analyses. Another study examined

three well-known REST APIs for their lexicon with a tool support, called

CLOUDLEX that helps to extract and analyze REST cloud computing lexicon [164].

Moreover, they also analyze the designed aspect of famous REST API like Google

cloud platform, OpenStack and Open Cloud Computing [120].All of the above-

mentioned researchers focus only towards detection of REST design patterns and

antipatterns.

While moving towards the solution of antipatterns for REST APIs, there is no study

that reports an automated approach for the correction of REST APIs antipatterns. We

are also not able to identify any study that reports the evolution of REST antipatterns

from one version to another. Automated tracking of antipattern correction across each

version also assists developers to track changes for the entire revision history of REST

APIs. The result of this study will assists developers to assess the quality of their

117

client REST APIs that may undergo various changes in case there is a change by the

major service providers.

However, there are many studies for object-oriented software engineering that

addresses the evolution of code smells along evolution of software. It was also

observed from a case study that quality of software deteriorates before and after

transfer from one version to another [166]. The implication of code smells on code

quality have been empirically assessed in recent study after examining version history

of 200 open source projects [167]. This study investigated smells that introduce

commit and finally, 10k classes were manually analyzed from those commits. Another

study tracked the quality of mobile application along with their evolution with a tool

support PAPRIKA [168]. PAPRIKA addressed the evolution of antipatterns along 106

versions of mobile application using their binaries [168]. However, there is no such

study that addresses the evolution of antipatterns along the evolution of REST APIs

after examining the versions of REST APIs. This study helps to report a clear

guideline along with tool support for correction of antipatterns for REST APIs after

examiningtheirversion or revision history.In this exploratory qualitative study, we try

to answer the following research questions

RQ1: When Antipatterns are introduced in REST APIs?

We tried to investigate that in which circumstances these antipatterns are introduced

in REST APIs.This may help to check that antipatterns are introduced as a result of

maintenance in REST APIs.The answer to this research question also helps to report

specific services that are constantly error-prone and have the most number of changes.

Therefore, we investigated the presence of possible trends in the history of REST API

versions for the evolution of a specific type of antipatterns.

RQ2: How Antipatterns are evolved?

In this research question, we aim to investigate how long antipatterns remain in the

services. That is to say, we want to investigate survivability of antipatterns that is the

probability that antipatterns instances survive over time. Evolution of each

antipatterns along with versions or revision for each REST APIs are also checked.

RQ3: How do developers remove Antipatterns?

Evolution history will help us to monitor the changes for each antipattern across

versions. There is a possibility that some antipatterns are removed or evolved again.

118

This question provides us a clear answer for the correction of antipattern approaches

used by famous REST APIs providers after collecting real-time traces from year 2015

to 2017. This will also help to investigate that which refactoring operations are used

by the REST API providers to remove these smells.

We selected 11 widely used REST APIs and collected their trace history using tool

SODA-R over the past two years. Moreover, we track how they remove antipatterns

and then extend SODA-R for the correction of REST API antipatterns. This tool is

publically available and tested on 11 widely used REST APIs along with their

available versions of 200 REST services and have precision 100% and recall 94 %.

5.2 Related work

A. Empirical Studies for RESTful web services

REST is gaining popularity in the web service community that introduces a new

debate in industry related to the design of RESTful web services [169]. Li li et

al.[169] noticed that most of the web services that claim to use REST architectural

style are not hypermedia driven . This problem also makes REST not scalable,

extensible and inter-operable as promised by its architectural style. REST chart model

proposed by Li Ii et al [169] helped to design and describe the REST APIs without

violating REST. This study helped to force the REST constraints automatically.

Another study presented an approach to analyses the REST APIs based on machine-

readable description [170].

REST API description language like Swagger and RAML also gaining popularity day

by day and this was also confirmed from a recent study regarding Open API initiative

to use these languages as API description. Machine readable API description can be

applied at design time as it requires an API model, not its implementation [171]. This

study reported the description of REST APIs into multiple languages to transform into

canonical meta model. This canonical meta model acted as the repository to calculate

metrics. This model is tested for 286 SWAGGER REST API. Results are presented

based on the metrics proposed for the REST APIs evaluation [171]. Results showed

that there was an average 9 to 40 resources per API but the distribution of resources

among REST APIs were not even like Azure API uses 61.5% resources as read-only

whereas the distribution of resources for Google was even. They also noticed that

APIs are ―more wide than deep‖ [171].

https://swagger.io/
https://raml.org/
https://www.opnapi.org/

119

Another study showed that REST Resource model could be extracted from procedure

oriented service interface [172]. WSDL documents contain various aspects of the

service interface and the proposed approach mainly focused on the port type element

of service interface for model extraction. The output of REST resource extraction

model is the hierarchical model of resource type which contains primary informational

entities that should be present in the REST API under analysis. However, this study

did not focus all aspect of REST API models like media type, hyper media, and

caching [172]. This model was further tested for Amazon simple storage service that

store data both procedure oriented (WSDL) as well as resource oriented (REST)

[172]. The technique was validated for the accuracy of intermediate steps for resource

extraction, the quality of extracted resource model, productivity enhancement

comparison with the manual process and time performance with respect to the service

size. The result showed that intermediate models have accuracy between 88% to

96.6% that were calculated using 867 valid WSDL documents containing 12,918

operations [172].

A recent study reported the syntactic and semantic analyses of REST APIs for the

detection of their linguistic patterns and antipatterns [58]. This study is validated with

a tool called SARA (Semantic Analysis of RESTful APIs) that use WORDNET,

Stanford CoreNLP along with Latent Dirichlet Allocation (LDA) topic modeling

technique that helps to check the URI nodes to decide their semantic similarity [58].A

new antipattern is reported by the name as Pertinent versus Non-pertinent

Documentation. SARA is validated for 12 widely used REST APIs for the detection

of their linguistic patterns as well as antipatterns with improved accuracy reported as

75% to 88% as compared to DOLAAR [58] that has average precision 79% for the

detection of linguistic pattern and Antipatterns from REST APIS. Dollar tool analysed

the syntactical URIs design problems as most of the REST APIs under analyses have

unorganized URI nodes. The validation of DOLLAR tool suggested that most REST

API providers use nouns in their resource name as compared to verbs [58]. The other

study also reported the problem in cloud lexicon used by famous cloud providers like

Google, Cloud Platform, Open Cloud Computing Interface, and Open Stack [164].

The verdict is validated with a tool approach called CLOUDLEX for extracting and

analyzing cloud computing lexicon. It was observed that REST API under analyses

are heterogeneous and there is no consensus among REST API providers regarding

120

term used for cloud computing lexicon [164]. There are different studies that

empirically validate the REST APIs performance for mobile devices [173] and use of

RESTful web resources practices for designing REST APIs [170]. However, above all

mentioned approaches discusses either good or bad practices in REST API URI or

detect antipatterns and design patterns but none of them discusses the evolution of

REST API for the correction of antipatterns.

B. Studies on Antipatterns Correction

Many studies are reported that give an idea about code smell correction for Object

oriented software engineering by using different techniques from the area of data

mining, natural language processing, source code metrics and machine learning.

1) Antipatterns Correction for OOSE: There are a number of studies that

discussed the correction of antipatterns by using various techniques to improve the

source code quality. Simon et al. [174] reported that it is difficult to find the location

of bad smells manually for correction. They argued that Metric-based techniques can

be used for the selection of suitable type of refactoring. Their tool assisted developers

to perform suitable refactoring operations by using metric based software

visualization tool [174]. Ge et al. [175] invented a tool name Benefactor that suggests

developers to perform auto refactoring and get rid of manual refactoring. Ivkovic and

Kontogiannis [176] reported software architecture artifacts as the highest level of

abstraction that also helps to map requirements to design. UML 2.0 is used as a model

to perform architecture refactoring.Finally, software metrics are applied on UML

model for the decision of most suitable refactoring operations.

Moha et al.[177] presented a methodology based on the meta model that helps to

correct and detects high-level design defects using refactoring. Detection of design

defects use source code metrics along with structural and semantic information of

source code [177].Another study uses genetic programming for the detection and

genetic algorithm for the correction of design defects [178].

While moving towards the recommendation studies that help to decide when to re-

factor the code, Moha et al.[179][180] suggested approaches that use Formal Concept

Analysis(FCA) and Relational Concept Analysis(RCA) to improve the code

quality.Suitable refactoring operations are performed with the help of coupling and

cohesion metrics values [179][180]. Design defects problems are resolved by

121

redistribution of the class members between new and existing classes. This may

improve the cohesion and coupling problems. The authors [179][180] uses PADL

(Pattern and Abstract-level Description Language) to model source code and Galicia

v.2.1 to build and show the concept lattices. Another study reports the use of RTM

(Relational Topic Model) to analyze the structural and textual information from

software that support move method refactoring [181]. This approach is also validated

by two case studies and results show that RTM recommendation is quite useful that

also helps to improve the code quality and remove feature envy smell [181].

A recent study proposes a technique with a tool support that builds an agent to

autonomously perform refactoring for a code project [182]. This technique helps to

identify code smells, need of refactoring and the behavior of the code after

refactoring. They apply extract class, move method and encapsulation field

refactoring techniques to remove feature envy, public field and data class code smell.

Test cases are written and new test cases are generated before and after the

refactoring. Saferefactor an eclipse plug-in is used to generate new test cases for the

evaluation of auto refactoring [182].The authors also identified multiple problems

associated with previous approaches like a manual implementation of rule card. The

above-mentioned approaches just consider the improvement in the quality of the

software by reducing a number of existing smells.

Another research reported Non-dominated Sorting Genetic Algorithm (NSGA-II) for

the detection and correction of software defects that claim to minimize the time used

for refactoring [90]. This technique automates the detection rules by using genetic

programming to get rid of manual rule implementation having an average precision of

85 percent. Correction of code smells using development history also used NSGA-II

[12]. Moreover, NSGA-II also minimizes the time needed to correct a defect with

minimal efforts [79]. It is also observed that refactoring could not be applied at all

stages of software development that may have the negative impact on source code

quality. This might be due to the inexperience developers that use refactoring to

remove smells without considering its importance [86]. A recent study reported a

framework called monitor based instant software refactoring that helps inexperience

developers to perform more refactoring with the help of monitor running in the

background. This monitor warns the developers only for those changes that may

introduce code smells. Feedback from developers are also used to optimize smell

122

detection algorithms [86]. This framework was also tested and provides 140 %

increase in code smell detection and thus reducing code smells by 51 % [86]. Another

study also discussed the use of correct refactoring options that may help to improve

the system performance as compared to those options that might have the negative

impact on system evolution [183]. The approach is automated with JDeodrant an

eclipse plugin that ranked suitable refactoring options to remove smells. The proposed

approach is also evaluated on JMol and JFreeChart. Few researchers used implicit

dependencies as a technique for refactoring [184].This technique guided the

developers to use most suitable refactoring operations on a given context using

Atrributed Graph Grammer (AGG) transformation with a combination of critical pair

algorithm running in background [184] .

2) Correction of Antipatterns for Web services:Pautasso [185] reported the

solution of different REST antipatterns inform of guidelines and there are also

different books available that focus towards the improved service discovery by

avoiding Antipatterns in REST APIs [186][187][188][189]. However, no such

technique is available as per best of our knowledge that focuses towards the correction

of REST antipatterns. Moreover, developers using web APIs are forced to meet the

rapid changing requirement from a client as well as APIs providers. A recent study

reported the APIs evolution and the effects of this on source code quality [190]

through a qualitative study of the Facebook, Google Maps, and Twitter. They

conducted a case study to know the information regarding the evolution of APIs.

However, there is no discussion about the solution of the problems that these APIs

providers face due to the evolution [190]. Daigneau in his book [191] addressed the

importance of design decisions for using web services as technology is changing with

respect to time and also reported changes that are important in different application

scenario. However, focus was only for the suitable pattern choices [191]. Furthermore,

most of the web API providers allow their developers to use old versions for extended

time period. Authors also focus to use the blackout tests for change analysis and

report fewer changes in APIs with respect to time [191].

While moving towards the detection of static code problems in web services, there are

different studies that reported the violation of different design principles in web

services commonly called as Antipatterns [78] [48]. Software industry mostly uses the

123

code-first technique that first generate source code and then use WSDL generation

tool.

Matoes et al. [78] proposed a tool that assists developers to generate WSDL document

with few Antipatterns. The author uses text mining with the help of meta-

programming and provide an Eclipse plugin called AF-Java2WSDL(Antifree-Java 2

WSDL) [78].The author also reported an approach used by the contract-first WSDL

document [48].Another study reported that traditional object-oriented metrics-driven

refactoring for the code first WSDL service. Authors reported different threshold of

various source code metrics that effect the number of occurrences of WSDL

Antipatterns [49].It is also observed that early code first refactoring technique helps to

avoid antipatterns during migration phase from traditional systems to SOA [192]. This

approach also helps a community to reduce the migration cost from traditional

systems towards SOA [192].The strategies to detect the antipatterns from WSDL is

either contract first or code first. The correction of WSDL antipatterns are based on

OOSE refactoring techniques [192]. Another research also proposed the use of early

code refactoring for the code first approach that helps to retrieve the syntactic

registries [100].

Use of CBO, WMC, ATC, EPM metrics for service refactoring is studied by using

four different java to WSDL tool and two different registries [100]. The experimental

results proved that refactoring options decrease the WSDL antipatterns independently

of the WSDL generation tools for effective service retrieveability [100].There are

number of approaches that highlight the importance of improvement in WSDL

document by highlighting the bad practices that prevent the discovery of any web

services [193]. Removal of the antipatterns in WSDL may improve the performance.

This study is also evaluated by 26 professionals regarding improvement in service

discovery. However, no automated process is adopted for the correction of WSDL

antipatterns. Another study also reported the WSDL bad practices commonly found in

WSDL document and suggested some solutions for these Antipatterns [194]. There is

also an attempt towards the discovery of static and dynamic analysis of antipatterns

for SOAP services by Francis et al.[56] with the help of tool support SODA-W.

Palmaet al. [56] used DSL and Frascati runtime support for static and dynamic

analysis having an average precision of 89%. Another study also addressed the

124

antipatterns detection for SOAP services using PE-A (Parallel evolutionary algorithm)

derived from genetic algorithm [54].

5.3 Study Design

This empirical study aims at investigating the evolution of REST antipatterns and

proposes an automated approach for the correction of antipatterns in RESTful APIs.

More specifically, this study addresses the following three research questions:

• RQ1: When antipatterns are introduced in RESTful APIs?

• RQ2: How antipatterns are evolved for a specific RESTful API?

• RQ3: How REST antipatterns are removed from RESTful APIs?

Palma et al. [56] developed SODA-R tool for the detection of REST antipatterns in

RESTful APIs. The authors showed high detection accuracy (i.e., with an average

precision of 89.42% and an average recall of 94%) on popular APIs like YouTube,

Twitter, and Facebook. To answer the three research questions stated above, we rely

on the SODA-R tool [56]. The motivations for using SODA-R are as follows:

 In the literature, SODA-R is the only tool that can automatically detect the

REST antipatterns by dynamically invoking a REST service;

 SODA-R supports invoking a specific version of a RESTful API relying on

FraSCAti service component architecture [55] for the detection of REST

patterns andantipatterns;

 SODA-R generates traces that can be reused by the engineers for detailed

analysis of HTTP requests and responses of RESTful APIs.

 The focus of thisstudy is to examine the evolution history of seven REST

antipatterns from the literature [196]. The short description of these antipatterns are as

follows:

1) Breaking self-descriptiveness occurs when developers ignore the standardized

headers, formats, or protocols and use their own customised ones, which breaks

the self-descriptiveness or containment of a message header. This poor practice

also limits the re-usability and adaptability of REST resources [196].

2) Forgetting hypermedia refers to the lack of hypermedia, i.e., not linking

resources, which hinders the state transition for REST applications. One

125

indication of this antipattern is missing URL links in the HTTP response or

resource representation that restricts clients to follow the links [196].

3) Ignoring caching occurs when REST clients and server-side developers avoid

the caching capability. The caching capability is among the principle REST

constraints. The developers may avoid caching by simply setting the value for

Cache-Control to ‗no-cache‘ or ‗no-store‘ without an ETag in the response

header [196].

4) Ignoring MIME types refers to the practice that the server side developers often

have a single representation for REST resources or even rely on their own

customized formats that may limit the resource (or service) accessibility and re-

usability. In general, the requested resources should be available in various

formats, e.g., XML, JSON, HTML, or PDF [196].

5) Misusing cookies occurs when client developers send keys or tokens in the Set-

Cookie or Cookie header field to the server-side sessions that concerns both

security and privacy. In REST, session state in the server side is not allowed, and

use of cookies strictly violates the principle of RESTfulness [196].

6) Ignoring status code refers to the practice when REST developers avoid the rich

set of pre-defined application level status codes suitable for various contexts and

rely only on common ones, namely 200, 404, and 500, or even use the wrong or

no status codes. However, using the correct status codes from the classes 2xx,

3xx, 4 xx, and 5xx may make the communication between clients and servers

semantically richer [196].

7) Tunneling through GET occurs when the developers rely only on GET method

for all sorts of actions including creating, deleting, or updating resources.

However, the HTTP GET method is inappropriate for every actions other than

retrieving resources [196].

8) Tunneling through POST, similar to Tunneling through GET, occurs when the

developers depend only on HTTP POST method for sending all sorts of requests

to the server including retrieving, updating, or deleting a resource. In REST, the

proper use of POST method should be limited in creating server-side resources

only [196].

126

The following sections discuss our data gathering process and how we analyse to

answer each research question.

5.3.1 Data Extraction and Analysis

To answer RQ1 on when antipatterns are introduced in RESTful APIs? We performed

the detection of REST antipatterns using SODA-R tool [56] on the RESTful APIs

reported in Table 5.1. The detection results reported in [56] are from 2015. Thereafter,

we rerun the detection and check the occurrences of antipatterns again for the year

2017 by using SODA-R for the same set of RESTful APIs. This also helped us to

study and compare the occurrences of REST antipatterns for a specific RESTful API.

We also studied the change history for 12 RESTful APIs from their online changelog

as listed in Table5.1.

As we observed from the study by Palma et al. [68], services that are involved in

antipatterns usually are more change prone than services that are part of design

patterns. Therefore, software components involved in antipatterns face higher

structural changes as compared to the software components involved in design

patterns [197]. We also observed the occurrences of antipatterns that are newly

introduced or disappeared for a specific period of time. However, the techniques used

to measure changes in Object-oriented (OO) systems like code churn and

changeproneness by different studies [113] [198] cannot be applied directly to

RESTful APIs due to several reasons:

 Most of the RESTful APIs do not provide version history. For example,

YouTube has its Version 3 running since 2013. According to the software

systems versioning guideline, any change in software systems must be

reflected in its system version number [199], [200], [201]. Software versioning

also assists in backtracking bugs and issues in software systems to their

particular release [202]. In our study, in the absence of versioning support by

RESTful APIs, we collected their online changelogs. For example, the APIs

YouTube and Alchemy do not carry their version information in their HTTP

request URIs but in their online changelog only. On the contrary,

StackExchange explicitly shows it API version in its request URIs.

 One possibility to identify the changes by using commit history [167]. In

reality, commit history are also not available from RESTful APIs providers.

127

Moreover, RESTful APIs providers not always provided changes for each

version online. Therefore, for such services we can only rely on their online

documentations. We manually validated for the changes in the instances of

REST antipatterns based on their changes in online documentation. We also

checked the migration date for RESTful APIs and further validated changes

from their trace history over the two years using the tool SODA-R [56].

 We also observed some RESTful APIs where we can find different API

versions running at a given time, for example, StackExchange and Facebook.

These APIs accept HTTP requests to its multiple versions. This can also help

us in preparing a concrete definition for the correction of REST antipatterns.

Therefore, RQ1 is answered based on the changes in the request URIs and HTTP

requests and responses associated with the detection of REST antipatterns for an API

for the year 2015 and 2017. If we observe changes in the total instances of antipatterns

or instances of antipatterns for a specific RESTful API then we check those

differences with their associated traces that may provide the hint or reason for the

appearance or disappearance of antipatterns. The detection of antipatterns from

version history for the years 2015 and 2017 provided a timeline regarding effects of

antipatterns for specific service. Figure 5.1 shows the steps related to each

researchquestion that cover the correction process starting from the detection of

antipatterns, collection of trace history, and the evolution of antipatterns in RESTful

APIs.

128

Table 5.1 List of RESTful APIs under Analysis

RESTful APIs Available Version Monthly Active

Users

Online Changelog URLs

Alchemy Version 1 not available https://www.ibm.com/watson/developercloud/doc/index.html

Bitly Version 3 13,530 https://dev.bitly.com/api.html

Charlieharvey Version 1 not available https://charlieharvey.org.uk/about/api

Dropbox Versions 1 and 2 500 million https://dropbox.github.io/dropbox-api-v2-explorer

Musicgraph Version 2 1 billion https://developer.musicgraph.com

Ohloh Version 1.0 669,601 https://www.openhub.net

Facebook Version 2.3 to 2.10 1.94 billion https://developers.facebook.com/docs/apps/changelog

Instagram Version 2 319 million https://instagram.com/developer/changelog

Twitter Version 1 600 million https://dev.twitter.com/ads/version/1/changes-in-version-1

Teamviewer All versions 300 million https://oldteamviewer.com/download/changelog/windows

StackaExchange Version 2.0, 2.1, 2.2 345 million https://api.stackexchange.com/docs/change-log

Youtube Revision history from 2013 to

2017

1 billion https://developers.google.com/youtube.v3/revision history

129

Figure 5.1 Research Methodology

To answer RQ2 on How antipatterns are evolved for a specific RESTful API?

We need to know when antipatterns are detected by SODA-R [56] for each RESTful

API. We collected the results of recent changes in each RESTful API for three

consecutive months to identify the changes in theirtraces and instances of antipatterns.

This process helped us to mine the changes in RESTful APIs and formulate the

definition of correction. Moreover, since SODA-R detects antipatterns instances

dynamically and there could be changes in RESTful APIs requests and responses each

time SODAR calls, we collected the trace history and prepared a list of request and

response parameters returned by RESTful APIs to formulate a correction definition

used by the RESTful APIs. If there is an instant change in request/response of a

RESTful API then there is a need to check the changes in the API‘s changelog to

identify which parameters or methods the developers introduced that may cause the

(dis)appearance of antipatterns. However, this step is performed only for those

RESTful APIs that change frequently. A high number of changes associated to a

130

RESTful API suggest the motive on service evolution [154]. Finally, being inspired

from the study of API evolution from [203], we tried to identify the effect of

antipatterns on a RESTful API‘s evolution.

Table 5.2 Operations Performed in Evolution

After completing the process, we prepare a list of factors as suggested in [167] and

assign tags to each change in the traces and changelog for a RESTful API. Table 5.2

highlights the tags and their roles in API evolution.

To answer RQ3 on How REST antipatterns are removed from RESTful APIs?

We rely on the output of RQ2 in Step 2. Results obtained from RQ2 indicate changes

associated with each RESTful API‘s HTTP requests and responses. Later, these

changes can be verified using their traces that provide more insights on different

attributes for the correction of REST antipatterns used by the RESTful APIs

providers. In an empirical study in [66], authors observed relationship between code

smells and design patterns. Thus, removal of specific antipatterns by the RESTful API

providers may stimulate the use of design patterns for some REST APIs. We also

observed the total number of instances of antipatterns and design patterns found for

this study and make a list of corrected requests and responses used by the service

providers to investigate the evolution of antipatterns in each RESTful API.

We mined all the changes in HTTP request/response headers and bodies for each

RESTful API for two years starting from 2015 (i.e., when the SODA-R [56] tool is

developed) and then restudy the traces in 2016 and 2017. We also observed the

variations in HTTP requests/responses for three consecutive months (in 2017) to

observe any changes in results of antipatterns evolution through their detection traces.

The benefit of mining trace history includes the proof of the appearance and removal

Operation Name Actors Descriptions

Fixing Error Code Response API‘s response status change.

Enhancement Request, Response

Body

API changes its version or domain.

New Feature Request , Response API has an additional functionality.

Refactoring Response Correction of Response through the

addition or deletion of attributes

131

of antipatterns as well as changes implemented by RESTful API providers. We

consider:

 11 RESTful APIs correction results along with their traces;

 Analysis of most suitable operations performed for the correction. The use

of corrected request/response and body parameters will help to implement

the most suitable correction operation as reported in Table 5.2;

 According to the definitions of REST antipatterns [56], clients might

requests resources in various representations from the server, and the REST

service providers must fulfil any client requirements. Thus, if there is any

such change, e.g., change in resource representation format, it can come in

the form of enhancement, and as a new feature if the core functionality is

changed;

 Online trace history helps to prepare the list of refactoring operations used

by the RESTful API providers after considering their changelog,

documentation, and antipattern evolution results.

5.3.2 Correction of Antipatterns using Evolution History

This section explains the steps we performed to acquire the evolution of antipatterns

for RESTful APIs.

An Example of Ignoring MIME Types Antipattern: We invoke seven HTTP methods

from Alchemy API and collect their requests and responses from 2015 to 2017. We

discuss here one HTTP call using the /calls/url/URLGetText and for the changes in

the evolution history for Ignoring MIME Types antipattern [56]. This anitpattern is

introduced when the REST developers do not consider multiple resource

representations for a resource which may force client developers to manage their

resources in a single format, for example, in JSON or XML. Figure 5.2 shows the

change history of traces collected using the SODA-R tool [56] for the detection of

Ignoring MIME Types antipattern in Alchemy API for the callusing

/calls/url/URLGetTextSentiments. Figure 5.3 shows the real time traces of Alchemy

API that reports the removal of ignoring mime type antipatterns due to the migration

on Watsonplatform. Figure 5.4 reports the correction algorithm implemented in

proposed approach. The complete tracelog is available on our project website
33

.We

33www.sofa.uqam.ca

http://www.sofa.uqam.ca/

132

collect and verify such heuristics from trace logs of antipatterns and then implement

them in SOCAR (Service Oriented Correction of Antipatterns in REST) for the

automatic correction of REST antipatterns like Ignoring MIME Types. We consider

Alchemy API as our example because this API is migrating their services from HTTP

to HTTPS by changing its URIs from www.access.alchemyapi.com to www.gateway-

a.watsonplatform.net. Thus, we expect some improvements and changes in the API,

and, as expected, the Ignoring MIME Types was present and then disappeared after

the migration phase. The results of this tracelog can also be observed in our trace

history from July 2017 which shows the information in the response body of an HTTP

call. A research study conducted for Web services migration also discusses the

challenges that REST client developers face during the migration phase by service

providers [190]. However, it is worth mentioning that each RESTful API might have

unique migration plan across versions with varying effect on their clients. Changes

during the migration may include changes in calling methods, protocols, or changes

we notice here in Alchemy. We show the heuristic in Figure 5.4 that we applied for

the correction of Ignoring MIME Types REST antipatterns.

133

Figure 5.2 Migration Traces of Alchemy RESTful API

134

Figure 5.3 Migration Traces of Alchemy API

135

Figure 5.4 Correction Heuristic of Mime Type Antipatterns

Second example of Forgetting Hypermedia Antipattern:

Figure 5.5 Correction Heuristic of Forgetting Hypermedia Antipattern

The Forgetting Hypermedia occurs with the absence of URL links in the HTTP

response that restricts the usability feature of RESTful APIs. Hypermedia is the

concept of linking resources, i.e., a set of connected resources where applications

move from one state to another [56]. The API developers design and rely on

resource URIs but the client might not be able to receive and follow such links

because the server never expose them via responses. Ideally, REST developers must

provide at least one URI link to avoid this antipattern. Client developers can ask

resources or links in various forms and server should provide as per client request.

The responses provided by the server may combine certain attributes like meta-data or

136

location of links, and while processing the response client developers check each link

and its resource types. The evolution of this antipatterns can be considered as the

changes in responses in terms of changes in location attribute or formats in the

responses provided by the REST API providers. We found slow change for YouTube

as compared to Facebook and Dropbox. Moreover, Forgetting hypermedia instances

are not evolved in Bitly and Alchemy API. Forgetting Hypermedia antipattern is

found in YouTubein /guidecategories,/vidoes,/playlists for 2015 but evolved from

/playlist service to the /subscription service in 2017. The total number of instances

remains same for Forgetting Hypermedia antipattern. Therefore, total number of

instances were 3 for year 2015 to 2017 but they were evolving from one service to

another. Figure 5.5 shows the algorithm used for the correction of Forgetting

Hypermedia antipattern.

Addition of location and link in metadata is done by considering the format of each

request and fulfill the client by providing response that append the link and location

attribute to the generic ‖google.com‖. This will also help client API or client to search

specific terms in case there is no link provided by the service providers.

5.4 SOCA-R(SERVICE ORIENTED CORRECTION OF

ANTIPATTERNS for REST APIs)

We used the SODA-R to cover the entire evolution history of antipatterns detection

for REST web services. The general structure of SOCA-R is based on SODA-R

approach. Figure5.5 describes correction heuristics used for the correction of

forgetting hypermedia antipattern . The correction heuristics are implemented in

SOCA-R, a new handler added in SOFA framework for the correction of REST

antipatterns. SOCA-R uses Frascati Service Component Architecture for the dynamic

invocation of REST API and biding each REST API client to the

FrascatiIntentHandler for authentication of client request and response of each REST

APIs. The complete methodology used for correction of RESTantipatterns is

described as below

Step 1 :Input: Dynamic invocation of client request using service interface

Output : Instances of design pattern and antipattern

Description : SODA-R proposed by Palma et al.[56] used for the detection of

antipatterns from REST APIs. SODA- R has implemented the detection heuristic of

137

different REST antipatterns for popular REST APIs like Facebook,YouTube,

Alchemy and Dropbox. There is a need to check the antipatterns instances before

implementation of correction heuristic.This step will help us to identify the increase

or decrease in REST API antipatterns. This will also help to check the correction of

specific antipatterns by REST API providers. We collected the total number of

instances for specific antipatterns for 11 REST APIs. We performed the detection

using SODA-R for two months continuously to identify the change in the detection of

REST antipatterns.

Correction always needs a proof that services are improved and number of

antipatterns are either decreased or removed. A study has been conducted that shows

the relationship between code smells and design patterns [66]. Therefore, if the

services are improved then total number of design patterns for a specific web service

may also improved after the correction of antipatterns. We performed detection of

REST patterns to check the possible number of design patterns used by each REST

API providers. This step was also performed iteratively for two months and detection

of possible design patterns instances were recorded that helped us to verify the

correction of antipatterns and their possible effects on specific instances of REST

design patterns .

Step2: Input

Refactoring operations and attributes values from trace history

Output

 Possible refactoring consideration.

Description: Trace history of the design patterns and antipatterns are used to decide

the possible refactoring operations used by REST API. Table 5.2 reports the major

refactoring operations used by the service providers for the correction of REST APIs.

As per the guideline of IETF [205], SODA- R implemented the list of standard

request, response and status codes. The properties used to correct REST APIs

antipatterns also available in the literature [56] . However, we also identified the list

of non-standardized header description [205] and use remove refactoring operations if

non-standardized header was detected. The non-standardized header was finally

replaced with correct-standardized header. We also checked the complete trace

history of each REST API to identify the mostly used non-standardized header. The

138

detail results of this step are reported in the result section. For the correction of Status

Code problem, we implemented the status code list in the correction definition of

Ignoring Status Code antipatterns and used add refactoring operations in response

header field that shows the client correct status of REST APIs.There was a possibility

regarding wrong status description so this error is corrected after applying replace

method and removing wrong error description with the correct description available in

our tool .All possible refactoring operations are implemented in SOCA-R for the

correction of REST antipatterns.

Step3:

Input:

SOCA-R algorithm implementation

Output:

 Design pattern Instances and antipatterns removal.

Description: REST APIs are changing day by day and this can also be assessed from

their online change history available in Table5.1. These changes may affect their

usage of multiple methods available for specific service. We implemented the

correction heuristic based on the available definition in the literature [56] [68].

However, we also took the benefit of SODA-R real time traces and improved the

definition of correction heuristic reported in the literature [56]. For the application, we

followed the SOFA framework that enable the detection of antipattern dynamically.

We automatically applied the correction algorithms as reported in Figure 5.3 and

Figure 5.4. We added a new REST Correction handler to the underlying framework of

SOFA. The list of correction heuristic used for each antipatterns is reported in Table

5.3. It is worth mentioning that quality of the system under analysis must be improved

before and after refactoring. We implemented the correction heuristic in a way that

improved the REST APIs quality of services and provide response as per client need.

These heuristic are added by (1) Wrapping each REST API with an SCA component

for the detection and then dynamically (2) adding missing attributes like content-type,

response format, links, status code description to full fill the client needs and (3)

automatically correction of antipatterns by removing their instances.

It is worth mentioning that after removal of Ignoring Mime Type, Ignoring Cache and

Forgetting Hypermedia antipatterns the instances of Content Negotiation, Response

139

Caching and Entity Linking design patterns detected respectively. The results of

correction heuristics were saved in csv file for further calculation of precision and

recall.

The results were verified from traces collected dynamically that helped to identify the

reason of antipattern removal from REST APIs. These traces also helped to identify

the possible reason of removal of antipatterns for specific APIs like Alchemy has

removal of Mime-Type antipatterns due to the migration of www.gateway-

a.watsonplatform.net and Facebook also not report Mime Type antipattern due to the

migration from version 2.3 to 2.4.

Table 5.3 Refactoring Operations Performed for each Antipattern

Sr.No Antipattern

Name

Properties Refactoring Operations Effect

1 Ignoring Mime

Type

Accept, Content Type Add Content-Type Content

Negotiation

Pattern

2 Ignoring Cache Cache-Control, ETag Add Cache Control,

Generate Unique E-Tag for

Request

Response

Caching

Pattern

3 Forgetting

Hypermedia

http-methods, entity

 link, location

add links, metadata info, status

code

Entity Link

Pattern

4 Breaking Self-

descriptiveness

Request-header field,

response-header field

Remove non standardized

Header from Response

Antipattern

Remove

5 Ignoring Status

Code

http method, status,

standardized status code

description,

Status code number and

description change, replace

method for code description

and number

Antipattern

Remove

6 Misusing

Cookie

Cookie ,Set Cookie Remove set-Cookie, cookie

from response metadata

Antipattern

Remove

7 Tunneling

Through post

http-method,request-uri remove access,update and

delete from resource uri

Antipattern

remove

8 Tunneling

Through get

http-method,request-uri remove access, update and

delete from resource URI

Antipattern

remove

http://www.gateway-a.watsonplatform.net/
http://www.gateway-a.watsonplatform.net/

140

Similar information was also found for Dropbbox that has deadline of shifting

fromversion 1 to version 2. However, StackExchange is following different strategy

as they haveall 3 version running simultaneously i.e., 2.0,2.1,2.2. We have collected

the trace history of all three available versions to define the correction heuristics.

These heuristics can also be used for antipatterns correction from others APIS. These

traces helped us for the verification of correction results for REST antipatterns. Figure

5.3 shows the migration of Alchemy API to the new location. We also found similar

traces for Facebook migration from one version to another version. However, no such

information is found for the Dropbox traces. Moreover, Dropbox APIs shows

migration information at their developer‘s login account page.We were also not able

to found such information for YouTube having version 3 running since last 4 years

and also have quite long change history as reported in Table5.1.

5.5 Analysis of Results

5.5.1 RQ1: When antipatterns are introduced?

Antipatterns are introduced due to the continuous maintenance activities when

developers try to provide on-time product. The evolution of antipatterns could also be

seen in the Table 5.4. This is worth mentioning that total number of antipatterns in all

REST APIs were increased in 2017 as compared to 2015. The antipatterns reported

for Facebook are increased as compared to others APIs. Amongst the selected REST

APIs testing datasets, Facebook has a long version history from year 2015 upto now.

The resultsof antipatterns detection for Fcebook in 2015 are from version 2.3 and in

2017 version 2.10 is also available for users. We also observed no change

in‖Misusing Cookies antipatterns‖ because we are unable to find any instance of this

antipatterns in 2015 as well as in 2017 for Facebook APIs.

We found constant variation in the result of Breaking self-descriptive antipatterns that

constantly increased or decreased. Music graph, Facebook and Alchemy are those

APIs that report the high increase in these antipattern in 2017 as compared to zero in

2015 for Breaking self-descriptive antipattern.

141

We were also unable to find variation in ignoring status code antipattern for the entire

revision from 2015 to 2017 as compared to slow variation in tunneling through get

antipattern. We have found very little change in Charlihavery API that only shows

changes in breaking self-descriptiveness and mime type antipatterns. As the

representation of content-type antipatterns are not changed that stop the growth of

mime type antipatterns. Most of the APIs are still running with single mime type and

content representation. We also checked the results of antipatterns detection of 11

REST APIs after calling specific version of service interface.

Stack exchange results showed changes in Breaking Self descriptive antipattern for all

three versions available. Table 5.5 shows the antipattern detection result for 3 versions

of Stack Exchange and two different versions of Facebook API. While moving

towards the identification of most effected REST API, we checked the evolution of

antipatterns of all the web services reported in 2017 from widely used REST APIs. As

different service providers not completely maintained their changelog history so for

the paper we are highlighting the evolution of antipatterns in

YouTube,Facebook,Alchemy and Stack exchange due to the following reasons,

 Stack Exchange has a complete changelog for all three versions also available on line

and user can use any one of them. Facebook has 7 versions running simultaneously

with a two-year time period from REST API providers for changing one version to

another. Currently they are using version 2.10 but still version 2.4 is running and

giving time to their client REST APIs for changing to the new version. Alchemy has

version 0.9 running and the previous version is not available once they change to the

new version. Regarding, version history we just checked the detection for version 0.9

and compared these results with the results of [56] for REST API antipatterns

detection. We checked the relative change in the antipatterns for year 2015 to 2017 by

using the formula described as under:

The results of Table5. 4 show relative changes in instances of antipatterns in year

2017 as compared to year 2015. The maximum change was seen in Facebook, Twitter

and Bitly as compared to YouTube that has only 76% change. Antipatterns detection

result of version history of StackExchange showed us the change of antipatterns

instances from one version to another. Forgetting Hypermedia antipatterns are

142

constantly increasing from one version to another. The correction heuristic of

Forgetting hypermedia antipatterns is also reported in Figure 5.5. The major cause of

this antipattern is the violation of service response. Each service response must

haveany link or use of link attribute in location. Most of the service API providers

used single response format like json,xml or rdf but client API or user can ask

response in any format as per the principal of REST [6].Correction of this antipattern

must consider the response returned by the service API providers and match it with

client API request or user request. Then we generically built parser that checked the

child and parent node in the location or link attribute and if there is no link presented

in both nodes then application provide link to the client generically. This is

maintained by using import org.codehaus.jettison.*; that use JSON Array, Json Token

and xml.parsers. Document Builder (DB), org.xml.sax.InputSource and Document

Object Model (DOM)from W3C to parse each request as per service provider format

and then complete the client request as per its demand. Location or Link is

dynamically added after checking absence of link in location attribute.

While checking the REST APIs that are evolved for StackExcahnge version 2.0 to

version 2.2. We found significant changes in the Forgetting Hypermedia antipattern

like ‖2.0/me/write-permissions‖ has no instance of this antipattern but for the next

version this API reported one instance of Forgetting Hypermedia. The instance of this

antipattern was not removed also in version 2.2 of stack exchange. We also noticed

that there is an increase in the Forgetting hypermedia from version 2.0 to 2.2. This

information could also be checked from the trace history of Stack Exchange API. We

also found one REST service from StackExchange‖2.0/question/featured that has no

instances of Forgetting Hypermedia antipattern for version 2.0 to 2.2. StackExchange

also provides versioned call for each of its service that helps users as well as client

APIs to check the change in its services. However, Facebook has long version history

but provides unversioned call and they gave suitable time to their client REST API

providers from shifting old version to the new version. This information is also

available in their online changelog.

A recent study also proved this information regarding Facebook unversioned call

[190]. The changes in their REST services are referred to as migration not as changes

into the version [190]. Palma et al.[68] invoked 65 services for Facebook graph API

in 2015 but some of these services were not available due to extensive migration.

143

Therefore, we only considered those services that are still available for version 2.2 to

version 2.10. These options helped us to identify the relative changes in antipattern

evolution history. Un-version call of Facebook was also validated by the trace history

collected after calling each service.

The trace history of the REST services is also available on our SOFA website for year

2015. As per the previous study [190] on web services, we don‘t use same procedure

of checking the antipattern instances for each version of Facebook but we checked the

online changelog of Facebook reported in Table 5.1. The Facebook services are

constantly evolving and we found some services out of 67 from year 2015 that are not

available and deprecated with respect to the time. We randomly selected 21 services

and collected their trace information. We checked the presence of antipattern for these

services.

 We selected only those services that are available in version 2.10 just to make sure

that they are constantly evolved from version 2.2 and were available for year 2015

and also for version 2.10 for the year 2017. It has not been possible to check each

version due to the dynamic nature of request and response because Facebook support

unversioned call. Traces of version number is not found either in CSV file or in trace

log.

144

Table 5.4 Evolution History of REST APIs

 BSD (Breaking Self Descriptiveness), IMT (Ignoring Mime Type), IC (Ignoring Cache), ISC (Ignoring Status

Code), FH (Forgetting Hypermedia), Tun(Tunneling), MC(Misusing Cookie)

Sr.No API Name Yea

r

BS

D

FH

M

IM

T

IS

C

IC M

C

Tu

n

RC

(%age

)

1 Alchemy 2015

2017

0

9

1

1

2

2

1

1

7

9

0

0

5

9

94

2 Music

Graph

2015

2017

0

9

1

1

2

2

1

1

7

9

0

0

5

9

94

3 Bitly 2015

2017

0

0

2

5

3

15

0

0

0

0

0

0

2

4

243

4 DropBox 2015

2017

12

17

9

14

0

0

0

0

12

8

0

0

5

6

18

5 Twitter 2015

2017

10

25

3

6

9

25

0

6

0

14

0

0

0

2

225

6 YouTube 2015

2017

9

17

3

3

9

14

0

0

0

3

0

0

0

0

76

7 CharliHaver

y

2015

2017

4

12

0

0

4

0

0

0

0

0

0

0

0

0

50

8 Zappos 2015

2017

7

21

0

21

0

12

0

2

0

4

0

4

0

0

67

9 Ohloh 2015 3 0 0 0 1 3 0 78

 2017 21 21 12 2 4 4 0

145

Table 5.5Antipattern Detection for Stack Exchange and Facebook Version

History

BSD (Breaking Self Descriptiveness), IMT (Ignoring Mime Type), IC (Ignoring Cache), ISC (Ignoring Status

Code), FH (Forgetting Hypermedia), Tun(Tunneling), MC(Misusing Cookie).

Possible solution of comparison of antipattern evolution was to check the common

method that were available in year 2015 to 2017. This information can also be

checked from their online changelog reported in Table5.1. Let‘s consider the changes

in service/id/friends that reports the antipattern tunneling in year 2015 and same for

year 2017. But the information we got in response was different as compared to

2015.The two non-standardized header like x-fb-debug and x-fbrev was found in 2015

as compared to 4 non standardized header like x-fb-rev,x-fb-trace-id,facebook-api-

version, x-fb-debug in 2017. This information also helped us to identify which type of

parameter that each service providers used in its header field. We added these

parameters to enrich the non-standardized header file for the correction of tunneling

antipattern.

API Name Version

Number

BSD FH IMT ISC IC MC Tun

Stack Exchange 2.0

2.1

0

0

19

24

53

53

0

0

0

0

0

0

1

1

 2.2 0 26 53 0 0 0 1

Facebook 2.7 67 29 8 2 0 0 0

 2.10 21 21 12 2 4 4 0

146

5.5.2 RQ2: How antipatterns are evolved?

We consider three case examples for this question that cover the changes in the

evolution history of REST API.

Alchemy API: Alchemy API is constantly changing and also passed through the

migration phase. The migration phase of Alchemy API is verified from their online

trace history reported in Figure 5.2 and its traces are also available on SOFA website.

Migration phase of alchemy API has effected the Mime type antipattern where its

instances were increased in May 2017 to July 2017 from 2 to 7. We also found the

removal of Mime Type antipattern when we changed its request to the new address

www.gateway-a.watsonplatform.net. This also proved that REST APIs undergo

changes during its migration phase that effected the content type parameter for

 response. However, this migration didn‘t effect on other antipatterns. We are also not

able to find any instance of Misusing cookies over two moth continuous detection.

Figure 5.6 shows the graphical analysis of entire evolution history of Alchemy API

from May 2017 to July 2017.

Figure 5.6 Antipatterns Evolution for Alchemy API

147

Bitly: is currently running its version 3.0 that follow OAuth 2.0 with SSL

implementation. There were only few options available in their documentation

regarding their API implementation. They just mentioned the status code description

for 200,400,403,500 and 503. However, we implemented the complete status code

description for all options from the forum [67] and checked the description of request

and response for each REST API. There was no change for Ignoring Cache, Misusing

Cookie and Ignoring Status Code. Tunneling antipattern was also shown 4 instances

for its entire detection results. But we found little change for the forgetting

hypermedia antipattern. The reason of change was the absence of‖ location‘ attribute

in its response meta-data. The most effected services by this antipattern are /link

/click,/shorten,/bitly_pro_domain,/user/tracking_domain,click/user/tracking_domain_l

ist. This antipattern evolved in July and effected one more service name

as/link/encoders_by_count. Manual validation proved that there was also a conflict

regarding status code. Response body of this service shows ‖data‖,‖null‖ with status

code 500 value. Figure 5.7 shows the graphical representation of Bitly antipattern

evolution history.

Figure 5.7 Antipatterns Evolution for Bitly API

YouTube:

YouTube has quite long change history and is constantly evolved over the past four

years. We were unable to found any change on the instances of breaking self-

descriptive antipattern and tunneling antipatterns from May 2017 to July 2017.

148

Ignoring Cache antipattern was evolved from one service to another. The major

reason of this evolution that /video/rate was also not available while requesting for

response. After checking the online changelog of YouTube we found that /video/rate

is available till May 2017 but

Figure 5.8 Antipatterns Evolution for YouTube API

some of its feature like recordingDetails.locationDescription,

recordingDetails.location.latitude and recordingDetail.location.longitude was

deprecated at June 1, 2017. This change also effected the response of this service.

We also found non-standardized header description from activities, /playtimes,

/guidecategoriesname asalt-svc. Ignoring mime type antipatterns were also found in

/activities,/playtimes,/guidecategories where server required response in json but

client ask in XML.

5.5.3 How antipatterns are removed?

We analyzed the complete trace history of each REST APIs for year 2005 to 2007 and

investigated the changes in the instances of each antipatterns. We collected real time

definition of each antipatterns correction by the REST API providers when

subsequent antipatterns are removed by the REST API providers. We collected the

correction approach of ignoring status code antipatterns from Bitly and Drop Box.

Similarly, Charlihavery REST API reports the removal of Ignoring Mime type

antipatterns. However, Tunneling through Get and Response antipatterns was not

detected from Facebook and YouTube. The corrected antipatterns definition from

traces helped to refine the correction definition of antipatterns reported in [56].

149

After analyzing each response and request for the correction of antipatterns, we

implemented correction heuristics in SOCA-R (Service Oriented Correction for

Antipatterns for REST APIs) to dynamically correct the antipatterns and improve the

quality of REST API. This was also necessary that correction approach may not

further introduced more antipatterns and improve the quality of the REST APIs by

either increasing the total number of design patterns or removing the antipatterns from

REST APIs. Table 5.3 reports the correction heuristics used by SOCAR that increase

the instances of Entity-Linking, Response Caching and Contents Negotiation design

patterns. Table 5. 6 reports the total number of antipatterns corrected for each REST

API by using SOCA-R.

Table 5.6 Correction of Antipatterns by SOCA-R

Sr.No API Name

Number of

Services

Analyzed

Total

Antipatterns

Detected

Total

Antipatterns

Corrected

1 StackExchange 53 72 72

2 Alchemy 9 31 31

3 ChalriHavery 12 12 12

4 Dropbox 17 45 45

5 ExternalLip 6 6 6

6 Music Graph 19 40 40

7 Ohloh 7 7 7

8 TeamViewer 19 14 14

9 Twitter 24 72 72

10 YouTube 14 36 36

11 Facebook 30 64 64

5.6 Threats to Validity

The goal of this study is to provide an approach for the improvement of REST API

antipatterns, a generic methodology that will help industry to improve the quality of

services.

150

5.6.1Construct Validity:

Threats related to construct Validity concern with the relationship between theory and

observation, and checked the validity for the accuracy of the experiment we

performed to address our research questions. We have conducted an online case study

to know about the developer‘s perception about our correction approach used for the

REST API antipatterns.

Objects:

For the purpose of the study, we performed evaluation of proposed research

methodology for the correction of antipatterns for the REST APIs. First we checked

the removal of these antipatterns from the tracelog collecting before and after

correction. We provided correction rule to two independent researchers who were not

part of this study.

Participant:

Ideally, a target population should be defined as a finite list of participants- i.e., the

individual who can use the survey. Participant‘s involvement should be in valid

numbers of the target population [218]. Non probabilistic sampling is the technique to

define the sampling if target population is not clear. In this study, target population

was all developers who were working in REST API and the students who used REST

API as per the guidelines, it was impossible to define such list. Therefore, we selected

the target population using convenience sampling. We invited participants by email

and also shared the link of our questionnaire on famous developer‘s forums available

at social media. We also posted our questionnaire in famous REST API provider‘s

blogs like Facebook, YouTube,twitter,teamviewer e.t.c used in this study. 25

participants completed this study out of these 25 ,3 are graduated students and 22 are

professional developers, provide a response rate close to 10 as expected [219].

Participants are volunteers and they did not receive any rewards for this survey. We

explicitly told the professionals that we will maintain the anonymity of the results.

Study Design :

We prepared an online questionnaire and asked participants about their views

regarding eight antipatterns and their refactoring operations needed to performed for

the antipatterns correction reported in Table 5.7. The questionnaire was designed

151

based on the correction definition implemented in SOCA-R (Service Oriented

Correction for Antipatterns for REST API) after collecting real time definition of

traces collected by calling each service interface.

Table 5.7 Accuracy of SOCA-R(Service Oriented Correction for Antipatterns for

REST API

Sr.No Antipattern

Name

Corrected Parameters Agree Not

Agree

Corrected

definition

P R

1 Ignoring

Mime Type

Content –type 23 2 json/xml 100 92

2 Ignoring status

code

status code/status

description

25 None Replace wrong

description/code

with correct

100 100

3 Misusing

Cookies

set- cookie 22 3 remove set

cookie

100 88

4 Breaking Self

Descriptiveness

Request

header/Response

Header field

24 1 HTTP

information as

per IETF

100 96

5 Forgetting

Hypermedia

httpmethods,entity

link,location

25 0 dynamically

add location

attribute and

information if

not available

100 100

6 Ignoring Cache E-Tag,Cache Control 23 2 dynamically

add unique E-tag

for

request/ enable

cache

100 92

7 Tunneling httpmethod,requesturi 23 2 HTTP

information as

per IETF

100 92

We informed the users about the antipatterns definition, correction definition used for

each antipattern correction. Users were asked to check the correction definition and

give their consent about the correction definition, if not then they may provide

alternative solution for each antipattern. We also provided an example for each

antipattern that how specific antipatterns corrected. Correction example contained the

parameters needed to be corrected for REST API like status code, request, response,

location attributes e.t.c . More detail of each refactoring operations is available in

Table 5.3. The data collection survey is designed online and was available online for

152

two months. The survey used for the data collection is also reported in Appendix 2.

The users from academia and industry fill the questionnaire and data were collected

after survey was completed.

5.6.2 Internal Validity:

Threats to internal validity concern with the factors that may affect our results. When

asking the opinions from users about the correction definition of antipatterns, we

designed specific questions as per the correction definition of each antipattern. To

mitigate this threat, we gave rights to users to negate our correction definition and

may provide opinion that what was the best definition one can use for specific

antipatterns. Developers may have right to negate our correction definition and give

answers that can further be used for a correction definition if most of the community

negate with the possible solution of antipatterns. Another threat to the validity, the

solution of particular antipattern is already provided that may lead to an easy

evaluation and subject to inconsistencies. We mitigate this threat by asking developers

opinion about the way of correction for each specific antipattern.

5.5.3 External Validity

Threats to external validity concern with the generalizability of SOCA-R findings.

Interims of accuracy, we corrected all instances of reported antipatterns. We

implemented real time correction definition of famous REST APIs like YouTube,

Facebook, StackExchange after collecting their tracelogs from 2014 to 2017 and then

use corrected parameters in SOCA-R for the correction of antipatterns instances.

Precision of our tool is calculated as

Precision = TP/TP+FP

where TP is True Positive and FP is False Positive. We calculated the precision of

SCOA-R as ratio of correctly predicted observation over total number of observations.

Here correctly predicted observations are all reported antipatterns by SODAR and

then we developed correction algorithm in SOCA-R to correct all reported predicted

antipatterns in major REST APIs tested. Recall of the SOCA-R was calculated as

Recall is the ratio of correct prediction over total observation in actual class.

Recall = TP/TP+FN

We checked the developers and users opinion about the correction definition. For

reporting the recall, we calculated the number of user‘s opinions who negated with

153

our correction definition. Precision of SOCA-R was 100 percent whereas recall was

94 percent. Table 5.7 reports the accuracy of each antipattern correction by SOCA-R.

5.6 Conclusion

The analysis of evolution of REST APIs for the correction of antipatterns helped us to

know about the overall strategy of REST API designs by famous REST API

providers. REST API changeproness cannot be monitored directly due to the

unavailability of trace history by famous REST API providers. There was also lack of

information regarding number of errors reported for each REST API over specific

period of time. Every REST API providers used their own guidelines for designing

REST API and no mechanism exist that force REST API providers to report the

number of changes for each REST API services. YouTube started its change log for

version history first time in 2013. There is no online database that provide the number

of errors or user responses for each specific change for specific web service.

There are number of approaches that report the REST APIs design schema and

information regarding antipatterns and design patterns, however no information is

available for the correction of errors or any empirical study that report the solution of

changes for REST API for one version or for a specific period of time. There is no

publically available dataset that provide complete information for REST APIs like

trace log, effect of evolution on service providers when REST API undergo various

changes as we noticed in the case of Alchemy when they shifted from Alchemy to

watsonplatform.net. Most of the companies like twitter or dropbox even not provide

changelog to analyses the changes for each version. We developed SOCA-R for the

correction for REST antipatterns with precision of 100 percent and recall 94 percent.

We validated our results by conducting an online survey and asked opinion from

industry as well as academia that are working in the area of REST API development.

We reported recall after collecting the results of survey. Most of the user accept our

correction approach. There was only 25 percent negation for antipattern that is

Ignoring Mime Type because now a day‘s industry more relies on json as compare to

xml. However, it is recommended that use different representation of Mime type. The

industry also provided its views for correction of misusing cookie by setting set

cookie. The respondents of the survey focused to avoid set cookie field instead of

remove tokens or key in set-cookie field. Using an extended SOFA framework

154

(Service Oriented Framework for Antipatterns), we analyzed 115 methods and mined

their trace history for the correction heuristic from 2014 to 2017.

155

Chapter 6 Correction of Linguistic Antipatterns for RESTful API

156

6.1 Introduction

Representational State Transfer (REST) architectural style is a popular style widely

used by industry introduced by Fielder et al.[6] . REST helps to publish a set of

multiple interconnected resources for client to discover hyperlinks and interact with

each other by using their uniform interface. Interconnected resources imply that

clients can achieve multiple targets without creating problem for application state.

The client communicates with multiple REST APIs using basic set of Hyper Text

Transfer Protocol (HTTP) with the combination of URI and MIME types that helps to

maintain interoperability and simplicity for various platforms [6]. Service-Oriented

Architecture (SOA) has provided new direction for the software developers to

develop fully distributed and customizable applications used by large software

industry like Facebook, Twitter, YouTube, Dropbox in the form of RESTFUL APIs.

RESTful APIs must use coherent naming rules that may attract client developers as

compare to poorly design naming rules. The usage of best practices for RESTful APIs

design also improve the design and development time for web based applications. The

improper use of linguistic relations for parameters, resources and services are crucial

for designing RESTful APIs that may introduce antipatterns as compared to the good

design RESTful resources call as design patterns. Quality of design and development

of the RESTful APIs can be improved by adopting good design practices [206].

In the context of semantic and syntactic knowledge about RESTful API poor design

practices, a recent study by Palma et al. [57] highlighted the detection of REST

linguistic antipatterns from12 widely used REST APIs with a tool support

DOLAR[57] and SARA[58]. The researchers focused on the analysis of poor

practices [2][5[6] in URI nodes or in cloud based API[7][8]. Consider the example of

www.illustration.com/mathmatical/essay where math and essay URI nodes have no

sematic context and identified as Contextless Resource name [208] as compared to

www.illustration.com/mathmatical/trignomatry identified as Contextualized

Resource Name [208]. Contextualized resource name helped developers for better

understanding and interaction with server. Researchers also highlighted the issues in

REST cloud computing lexicon with a tool support CLOUDLEX [164]. The poor

design practices are also validated by another study after examining the REST API of

Google Cloud Platform, OpenStack, and Open Cloud.

http://www.illustration.com/mathmatical/essay
http://www.illustration.com/mathmatical/trignomatry

157

The researchers studied the improvement in source code lexicon for OOSE(Object

Oriented Software Engineering) but we are not able to identify any tool support for

the improvement in RESTful API linguistic antipatterns correction. This study will

bridge the gap from the detection of REST API linguistic antipatterns towards the

correction of linguistic antipatterns after extending the SOFA architecture by

introducing new linguistic antipatterns correction handler.

6.2 Related Work

Service based systems are continually evolved to meet the rapidly changing user

requirements. There is a need to improve the QOS (Quality of Services) for the

service based systems by detecting and correcting antipatterns. This study only aims

to focus QOS issues for Web Services specifically for RESTful APIs. There are

different approaches available for antipatterns correction for Webs services as well as

for OOSE. This section highlights the importance of lexical analysis for the

improvement in program understandability, maintainability that also helps to remove

the antipatterns.

6.2.1 Analysis for Web services

There are number of contributions available in the field of the lexical analysis for the

improvement in web services availability and readability for REST API developers.

Design principles and RESTful APIs

Masse et al. [206] in his book defined six rules for RESTfull APIs design related to

URI , request, responses and representation of hypermedia. These design principles

are further used by another study for the compilation of 73 best practices. These best

practices are further investigated for Google cloud, Open Stack and OCCI1.2 [120].

The results of this case study show that major REST APIs providers do not adopt

good practices completely [120]. Another study also highlighted the lexical issues in

RESTfull APIs after parsing their documentation and extracting URI, child nodes for

RESTfull web services. Lexical analysis of RESTful APIs URI showed that majority

of the REST cloud computing APIs use nouns and they do not share common lexicon

globally as no commonality is found between 352 different terms collected from

Google Cloud Platform, OpenStack, and Open Cloud Computing Interface. Palma et

al. [66] also discussed a new antipattern in his study named as Pertinent versus

Nonpertinent Documentation that check the URI with respect to the documentation of

158

15 widely used REST API with a tool support SARA. The results of the study showed

that 72% URIs are consistent with their documentation as compared to 28 percent that

are not persistent with their documentation.

Rodríguez et al. [170] highlighted good and bad design principles for android REST

APIs. The dataset used for the evaluation related to the HTTP data logs is collected

after examining the internet traffic. Zhou et al. [153] also reported the issues that will

help to fix REST design problems for the REST services in existing Northbound

networking APIs specifically for a Software Defined Network. Zhou et al. [165] also

guided the users regarding design of a REST Northbound API specifically for the

OpenStack . Maleshkova et al.[208] investigated the set of 220 Web APIs publicly-

available, including RPC, REST, and hybrid. The characteristics under analysis were

general information, types of Web APIs, input parameters, output formats, invocation

details, and complementary documentation. This work helped users to know about the

development and usage of REST APIs.

Antipatterns detection for web services

There are a number of antipatterns detection approaches available for the Web

Services. A catalog of Web service Antipatterns is presented in [170]. These

antipatterns also addressed previously identified WSDL antipatterns issues like name

issues [47] and data type definition issues [70]. Moreover, it is also very difficult to

assessed the quality of Web services that were affected by non-representative names

as well as unclear documentation [52]. Different approaches discussed antipatterns

detection for WSDL document [48,49,51,52,53,54] that assists developers for

developing, discovering, publishing and consuming web services. Palma et

al.[47]addressed the detection of antipatterns from SOAP based services . SOAP

antipatterns were also detected by using PE-A(Parallel Evolutionary Algorithm) based

on genetic algorithm [54]. Researchers also used the machine learning and genetic

programming algorithm for the detection of antipatterns and design defects among

SOAP web service [212][52].

There are number of approaches that detect antipatterns based on the industry code-

first and contract first approach [78]. Antipatterns detection from some of the above

mentioned researches focused towards static analysis of the WSDL document and

then suggested refactoring approaches needed to remove these antipatterns. But the

159

above mentioned researches don‘t provided any technique with tool support for the

correction of linguistic antipatterns.

6.2.2Analyses for OOSE.

Lexicon analysis for Source code

Researchers claimed that bad coding practices related to the fault proness [84] and

affected the understandability of source code [213]. Researchers also applied ontology

that used to extract relations between source code and improve the concept

understandability [214]. This technique helped developers to choose right identifiers

consistent with the concept of the overall system [215]. They also suggested to use

ranking techniques for the replacement of identifiers not following standardized

quality criteria [215]. The tool name COCONUT by De Lucia et al. [219] ensures

consistency between high level artifacts and source code lexicon. The evaluation of

source code quality was based on the results of textual similarity between source code

lexicon and high level source code artifacts.

There were multiple studies that highlighted the importance of identifiers [220],

[209], on maintainability program comprehension and quality of the source code.

Identifiers were used for the recovery of traceability links, [222][223],

understandability and maintainability [224]and conceptual cohesion and coupling

[41][46]. Verdancaet al. [225] also highlighted the importance synonyms, antonyms

and hyponyms for the understandability of the program by conducting a case study

and with a tool support. However, above all mentioned approaches inspired us for the

improvement in linguistic antipatterns for RESTful APIs but cannot be applied

directly as services provide interface as compare to OOSE where source code of

application is available.

Correction of Linguistic Antipatterns for OOSE

Weissgerber and Diehl [226] proposed a signature based methodology for the

identification of refactoring. The Signature based approach started with the use of

preprocessing data for collecting information from version control system. Moreover,

they detected multiple classes, fields, interfaces in different version control system.

The resultant information from different version control systems was used for

refactoring. The tool named as REF-FINDER helped to detect method renaming after

160

comparing similarity between body of two methods [227].The RENAMING

DETECTOR proposed by Malphol also helped to detect identifiers renaming after

matching their declaration in two different versions [229]. Precision was reported 100

percent for 77 analyzed systems [229]. The source code evolution was analyzed with

the help of AST by Neamtiu et al. [209] that summarized changes in two systems with

the help of program written in C. The objected oriented refactoring was also identified

with the help of change count metrics calculated from source code from two versions

of Smalltalk program [209].

Fluri et al. [211] proposed a tree differencing algorithm, CHANGEDISTILLER, for

extracting the changes from two consecutive versions of Java files. Fluri et al. [211]

proposed a tree differencing algorithm, CHANGEDISTILLER, for extracting the

changes from two consecutive versions of Java files. Renaming is a type of change

that CHANGEDISTILLER can detected together with many others. The algorithm

compared the ASTs of the files and computed the edit operations to transform the

AST of the old version of a file to the AST of the new version of the same file. The

association rule discovery [58] was also used for the detection of change coupling

.The renaming of an entity considered as ―essential ―change while their updating

considered as ―non-essential‖. They proposed tool named as DIFFCAT which based

on the approach of [211] and tested for dnsjava and JBoss.

The above mentioned studies reported for detection of OOSE and correction of web

services antipatterns for SOAP based web services. Some recent studies also reported

the evolution of antipatterns for web services. As per best of our knowledge we are

not able to find approach for the correction of linguistic antipatterns for RESTful

APIs.

6.3 Correction of Linguistic Antipatterns in REST APIs.

Correction Approach for linguistic antipatterns for REST APIs is based on the SOFA

(Service Oriented Framework for Analysis) with a tool support DOLAR(Detection of

Linguistic Antipatterns in REST) [57]. COLAR(Correction of Linguistic Antipatterns

in REST) used approach of DOLAR with an extension of correction handler for

REST API for solving linguistic antipatterns problems. COLAR approach is based on

the following steps as shown in Figure 6.1.

161

1. The use of DOLAR for linguistic antipatterns detection for REST API. This

step is used to extract the traces of RESTful APIs for the analysis of complete

URI used for request of RESTfull web services.

2. The detailed analyses of the definition of linguistic antipatterns is collected

from the literature [206] [207]. The violation of design principles for RESTfull

APIs also helped us to report the correction approach [206] [207].

3. Generate tokenization of URI parameters to perform refactoring for the

correction of antipatterns.

4. Implementation of correction algorithm after collecting definition from

literature and develop a correction handler for SOFA suite.

5. Automatic correction of linguistic antipatterns is added in SOFA suite.The

complete methodology of COLAR tool is given below in Figure 6. 1.

Figure 6.1 Correction of Linguistic Antipatterns

6.3.1 Definition Analysis for RESTful Linguistic Patterns and Antipatterns

Verbless design pattern vs. CRUDY URIs anti pattern

The use of GET, PUT ,POST or DELETE should be used in URI provided verbless

design pattern as compared to the CRUDY(create ,update ,delete) terms in CRUDY

URI antipatterns [206][207] .

Example:

POST as https://www.abcexample.com/create/list/customer?id=123 is a CRUDy

URIs antipattern because it contains a CRUDy term 'delete' while creating customer

having id 123. The use of Verbless design pattern is to avoid CRUDY terms and the

correct URI will be as POST https://www.abcexample.com/list/customer?id=123 as

this is used HTTP POST request without any verb.

162

Correction Algorithm:

Figure 6.2 Correction Heuristics for CRUDY Antipatterns

Figure6. 2 shows the correction algorithm used for the correction of CRUDY URI

antipattern. We extended the DOLLAR [57] by implementing correction algorithm

that provided the missing parameters and correct the URI dynamically. We reported

RESTful API URI as CRUDY URI if it contains the CRUDY (create, update, delete)

words in the URI nodes as well as http method implemented by this URI. Each node

was checked for CRUDY words and then COLAR removed these antipatterns. After

removal of CRUDY antipatterns the instances of Verbless design pattern detected as

URI now fullfill the criteria of Verbless design pattern definition.

Hierarchical vs. Non-hierarchical Nodes

Description: The URI is the combination of multiple nodes and each node must be

semantically related to its neighbor nodes. Non-Hierarchical nodes antipattern

represent one irrelevant node among all URI.

Example:

https://www.abcexample.com/Department/fee/ faculty is an example of a Non-

hierarchical Nodes antipattern since 'department', 'fee', and 'faculty' have not a

hierarchical relationship.

https://www.abcexample.com/Department/fee/%20faculty

163

The URI https://www.example.com/university/faculty/professors/ is a Hierarchical

Nodes pattern since 'university', 'faculty', and 'professors' are in a hierarchical

relationship.

Correction algorithm

Figure 6.3 Correction Heuristics for Hierarchical Nodes Antipatterns

Figure 6.3 shows the implementation algorithm used for the Non-Hierarchical nodes

antipatterns correction. This antipattern focused on the formation of nodes and their

relevancy with their child nodes. The nodes are collected and checked after removing

extensions from the URI. We used CORENLP for the checking the semantic of the

nodes and then replace their position after swapping. This technique helped us to add

164

most relevant parent node first and then child nodes at the last. Nodes must be

singular after swapping and fulfill the definition of Hierarchical nodes design pattern.

Tidy vs. Amorphous URIs

Description: REST is an architectural style that promote easy readability for

resource URIs. A Tidy URI is REST linguistic design pattern that promotes the use of

lowercase letter for resource naming without the use of extension, underscore and

trailing slashes.In contrast, Amorphous URI antipatterns detected when URI used

symbols and capital letter that created problem for URI readability.

Example:

https://www.abcexample.com/university/faculty/profile/biodatais Tidy URI as

compared tohttps://www.abcexample.com/University/Faculty/pic.jpg is an

Amorphous URI antipatterns as use of uppercase letters and extension is appeared in

URI.

https://www.abcexample.com/university/faculty/profile/biodata
https://www.abcexample.com/University/Faculty/pic.jpg

165

Correction algorithm :

Figure 6.4Correction Heuristics for Amorphous Antipattern

Amorphous antipatterns removal consists on several steps.

1. It checked the hyphen in URI as use of hyphen in URI nodes was considered

as bad design practice for designing RESTful API [206] [207]. The removal of

this antipattern based on the removal of hyphenated URI with dash ‗-‗sign.

Moreover, there was a need to remove the uppercase letter in the URI to make

URI more readable by client.

2. Use of final trailing slash is not a good choice for designing RESTful

resources. The removal of this antipatterns is based on the parsing of final or

last URI node and then removing ‗/‘ from URI nodes.

3. The Extensions and upper case letters should be removed from the RESTful

resources.

The implemented correction algorithm must fulfill above all criteria after calling the

interface of each RESTful API and then removing all above issues to make tidy

design pattern.

166

Singularised vs. Pluralised Nodes

Description: URIs must use singular/plural nouns for the representation of resources

for all APIs. When client requested any information using PUT/DELETE, the last

node that acquire URI must be singular. The last node of URI should be plural in case

requested node contain POST request. The Pluralised antipattern does not effect GET

request. Therefore, it is required to use Singular name for PUT/DELETE to avoid this

antipattern.

Example:

For POST operations

https://www.abcexample.com/university/faculty/profiles is Pluralised node antipattern

For DELETE operation

https://www.abcexample.com/university/faculty/messages

Correction Algorithm

Figure 6.5 Correction Heuristics for Pluralised Antipatterns

The correction of Pluralised antipattern was based on the inflector library that convert

plural node into singular node. The refactoring of Pluralised antipattern first checked

https://www.abcexample.com/university/faculty/profiles
https://www.abcexample.com/university/faculty/messages

167

the client request. The inflector library helped us to remove the plural words in to

singular words in case of PUT and DELETE. The removal of words based on the

appearance of plural words in the last node of the URI. Similarly, use of singular

name is also prohibited in case of POST request from client. The implementation of

correction algorithm first checked the method used for the request and then

implemented the strategy used for the correction of Pluralised antipattern.

6.3.2 Implementation of Correction Algorithms

 Correction algorithms are implemented in java by extending SOFA framework and

adding RESFTfull Linguistic antipatterns correction handler. Request are analyzed

using trace history as well as using WORDNET[11] and CORENLP dictionary after

extracting tokens for each request of RESTful API. Refactoring operations are

performed for each antipattern separated after transforming rules manually

implemented in java.

The COLAR(Correction of Linguistic Antipatterns for RESTfulAPI) tool used

correction algorithm after extending the SOFA(Service Oriented Framework for

Antipatterns). The algorithmic rules were translated in form of refactoring operations

performed for each antipatterns .

For the correction algorithm we mainly rely on DOLAR approach that used FraSCAti

IntentHandler for extracting runtime parameters for complete request and response.

The correction algorithm provided complete trace log for a correction of each

antipatterns.

6.4Analysis of Results

This section reports the detailed results of correction of linguistic antipatterns from

RESTful API along with the accuracy of the correction algorithm. Table 6.1 reports

the total number of services analyzed for each RESTful API under analysis.

168

Table 6.1 Online documentation of Services Analysed

Sr.No RESTful API

name

Online Documentation No of APIs

under

analysis

1 YouTube https://developers.google.com/youtube/documentation 17

2 Facebook https://developers.facebook.com/docs 27

3 Alchemy https://www.ibm.com/watson/developercloud/doc/inde

x.html

9

4 Twitter https://dev.twitter.com/en/docs 25

5 Bitly https://dev.bitly.com/documentation.html

6 CharlieHarvey https://charlieharvey.org.uk/page/api_docs_prelaunch

12

7 Externalip https://Eden.openovate.com/documentation/social/zapp

os

6

8 StackExchang

e

https://www.sackoverflow.com/documentation 52

9 Ohloh https://www.openhub.net 7

10 Dropbox https://dropbox.github.io/dropbox-api-v2-explorer 17

11 Zappos https://www.programmableweb.com/api/zappos 9

12 MusicGraph https://developer.musicgraph.com 19

Total 200 services are analyzed for the analysis of the correction of linguistic

antipatterns. The results of the correction of linguistic antipatterns are reported in

Table6. 2.

https://developers.google.com/youtube/documentation
https://developers.facebook.com/docs
https://www.ibm.com/watson/developercloud/doc/index.html
https://www.ibm.com/watson/developercloud/doc/index.html
https://dev.twitter.com/en/docs
https://dev.bitly.com/documentation.html
https://charlieharvey.org.uk/page/api_docs_prelaunch
https://eden.openovate.com/documentation/social/zappos
https://eden.openovate.com/documentation/social/zappos
https://www.sackoverflow.com/documentation
https://www.openhub.net/
https://www.programmableweb.com/api/zappos
https://developer.musicgraph.com/

169

Table 6.2 Results of correction of Linguistic Antipatterns

AURI(Amorphous URI) , FHM(Pluralised Nodes),CURI(Crudy URI),NHN(Non Hierarchical nodes) APC(Antipattern

correction)

Sr.No

API Name Services

Analyzed

AURI CURI PN NHN Total

Detection

Total

Corrections

%

Corrected

1 Alchemy(AP)

APC

9 8

8

0

0

0

0

9

0

17

8

50%

2 Music Graph

APC

19 19

19

0

0

0

0

19

0

38

19

50%

3 Bitly

APC

20 15

15

0

0

0

0

10

0

25

15

60%

4 DropBox

APC

17 14

14

6

6

8

8

15

0

43

28

65%

5 Twitter

APC

25 25

25

5

5

1

1

25

0

56

31

70&

6 YouTube

APC

17 10

10

5

5

1

1

25

0

41

16

39%

7 CharliHavery

APC

12 0

0

0

0

0

0

9

0

9

0

0%

8 Zappos

APC

9 9

9

1

1

0

0

0

0

10

10

100%

9 Ohloh

APC

7 7

7

0

0

0

0

5

0

12

7

58%

10 Facebook

APC

30 29

29

0

0

0

0

3

0

32

29

90%

Average

Corrected

58%

170

6.4 Discussion on Results

Amorphous URI antipatterns are reported mostly in all RESTful APIs excluding Bitly

and CharlieHarvery . The results of Linguistic antipatterns detection using DOLAR

not varies also in year 2018. The instances of antipatterns are not increased or

decreased for Linguistic antipattern detection. The reason of getting same results are

that antipatterns detection perform on the request resource URI that are not vary and

this can also be confirmed from their online documentation. Some of the RESTful

services are not available in 2018 as analyzed for Facebook. Therefore, we selected

30 methods from Facebook and perform their detection and correction to check the

number of antipatterns reported by DOLAR and corrected by COLAR. Facebook is

suffering from Amorphous antipatterns mostly as compared to other linguistic

antipatterns as we detected 29 instances for Amorphous antipatterns and we corrected

all 29 instances. However, we are not able to correct the single instances of

Nonhierarchical nodes. We also found Nonhierarchical nodes in most of the RESTful

APIs and we also didn‘t find the relation between their nodes to justify the

Hierarchical node antipatterns. One of the reason to not correct the Non-Hierarchical

nodes antipatterns as most of the APIs have single nodes. We successfully removed

some antipattern from twitter API completely. We also found Pluralized nodes

antipattern in YouTube API where POST method is called but resultant node is

singular as reported in Figure 6.7.

1. https://api.twitter.com/1.1/{application}/{rate_limit_status.json}?

resources=users

2. https://api.twitter.com/1.1/{ show.json}?screen_name=testjohann

3. https://api.twitter.com/1.1/{account}/{verify_credentials.json}

1. 1. https://api.twitter.com/1.1/{application}/{rate-limit-

status}?resources=users

2. 2. https://api.twitter.com/1.1/{ show}?screen-name=testjohann

3. 3. https://api.twitter.com/1.1/{account}/{verify-credentials}

171

Figure 6.6 Traces of Antipattern Correction for Twitter

Figure 6.7.Traces of antipattern correction for YouTube

Amorphous antipattern is reported in all APIs as APIs providers don‘t follow the

guidelines for RESTful API design. Twitter reported 25 instances and Stack Exchange

28 instances for Amorphous Antipattern detection that are successfully removed by

COLAR. The Amorphous antipattern depends on multiple conditions and most of the

APIs violate the principal of good design. The complete traces are available for

further analysis of URI.

6.5 Validity:

We examined total 200 methods for 5 antipatterns and it was quite difficult task to

validate answers of 1000 questions. Therefore, we randomly selected some requested

URIs from the set of 10REST APIs. The findings of the previous studies showed that

Facebook and YouTube is well designed but as APIs are under constant evolution so

we decided to select the methods from all APIs under analysis given priority to

Facebook, YouTube, Twitter in terms of selecting maximum request. We manually

validated the results of correction by three professionals to investigate the true

positives, false positives and false negatives. We provided antipatterns definition to

professionals to measure the accuracy of COLAR tool. The precision and recall is

used as an accuracy measures.

Precision is reported as percentage between the true corrected antipatterns and all

corrected antipatterns. Recall is reported as the percentage between the true corrected

antipatterns and all available true antipatterns among RESTful API URI. The average

precision of COLAR tool is 79 % and average recall is 75%. We are not able to

https://www.googleapis.com/youtube/v3" /videos/rate

https://www.googleapis.com/youtube/v3" /videos/rates

4.

Refactoring operation “replace ” performed

172

correct the non-hierarchical nodes antipatterns, that decrease the recall and precision

of COLAR tool.

173

Table 6.3 Relative Accuracy Measures of COLAR Tool

Threats to Validity

 We performed correction on 12 widely used REST APIs by calling their 200 methods

to minimize the threat to external validity. For lexical analyses of URI nodes we used

the WORDNet for lexical as well as semantic analyses. Threat to construct validity

deals with the association between theory and observation. We try to mitigate this rule

by performing manual validation and involving post graduate students who were not

involved in the implementation of correction algorithm and helped us to calculate the

Sr.No RESTful API name Method

Tested

P TP Validated Precision Recall

1 YouTube 8 6 5 5 83% 100

2 Facebook 8 6 4 3 50% 75%

3 Alchemy 2 2 2 2 100% 100%

4 Twitter 2 1 1 1 100% 100%

5 Bitly 1 1 1 1 100% 100%

6 CharlieHarvey 1 1 1 1 100% 100%

7 Externalip 1 1 1 1 100% 100%

8 StackExchange 7 7 6 5 71% 83%

9 Ohloh 1 1 1 1 100% 100%

10 Dropbox 2 2 2 1 50% 50%

11 Zappos 2 2 2 1 50% 50%

12 MusicGraph 2 2 2 1 50%

Average

79 %

50%

Average

75%

174

precision and recall. We implemented the correction definitions after complete

review of the definition of antipatterns and design patterns and then transform manual

correction rules in java to perform correction. We tried to coup with external validity

by selecting suitable representation of RESTful APIs. However, correction rules are

based on the DOLAR tool architecture that perform detection and already have very

low precision for Nonhierarchical nodes antipattern. The results of correction can vary

based on the NLP algorithms used for checking the similarity between nodes as every

algorithm has specific rule of implementation that may vary the results of accuracy.

Threat to Internal validity concerns with the factor that may affect our results. The

one reason of this type of threat could be the possible reason of subjectiveness due to

manual implementation of rules. We define the correction algorithm in detail to avoid

any biasness.

6.6 Conclusion

 RESTful APIs are gaining popularity day by day and need constant maintenance as

there are number of versions rapidly introduced by RESTful APIs provider‘s over the

last few years. There is a need to follow the design principles while updating and

maintaining RESTful APIs. This chapter presented a novel approach

COLAR(Correction of Linguistic Antipatterns for RESTful APIs) tool for the

correction of their linguistic antipatterns, an extension to the DOLAR tool. SOFA

framework is extended by adding correction definition of linguistic antipatterns with

an average precision of 79%. We partially validated the results of COLAR on the

representative sample of RESTful APIs that shows average recall 75%.We found that

most of the RESTful APIs are suffered from Amorphous URI antipattern. COLAR

successfully corrected all instances of Amorphous URI antipattern.

175

Chapter 7 Conclusion

176

7.1 Conclusion

The Service Oriented Architecture is widely used by industry having multiple

technologies like SOAP,REST and SCA. SOAP and REST services are widely used

by industry like Facebook, Twitter, Google, LinkedIn e.t.c. SOA technologies are

subject to functional as well as non-functional requirements that force service

developers to meet the end user requirements in a short period of time. These rapidly

changing requirements sometime lead towards the service design issues also called as

antipatterns. These antipatterns effect the evolution of services, degrade the

performance and raise different maintenance issues. The detection of antipatterns is

important to improve the quality of services. There are different technologies used by

industry to implement the services. The SOAP based services are implemented using

code-first as well as contract-first approaches. There was a need to propose a generic

approach for the detection of SOAP antipatterns that can be used by industry to detect

antipatterns at interface level as well as code-first level. The current literature still so

far did not report the correction of antipatterns as well as evolution of antipatterns for

RESTful APIs. We tried to bridge the gap in research with a tool support SWAD for

SOAP web services and SOCA-R along with COLAR for REST web services.

The analysis of primary studies by using systematic literature review helped us to

identify the gap in literature and we extracted the data of 77 primary studies to

investigate the literature thoroughly for the selection of problem domain. The

detection of SOAP antipatterns are proposed as per the industry standards and we

used Sparx System Enterprise Architecture to modeled for SOAP web services using

SOAML.

We have identified problems in literature as 1) generic approach for the SOAP

antipatterns detection based on industry techniques,2) evolution of antipatterns for

various RESTful services over the last 2 years, 3) propose a correction approach for

RESTful APIs to the quality of services and (4) the correction approach for the

improvement in URI design of RESTful APIs. We proposed a solution for three

research questions.

RQ1 – What type of unique and lightweight approach that can be used by

academia and industry for the detection of antipatterns for SOAP web services?

177

SWAD (Specification of Web service Antipatterns Detection) is proposed that can

be used by the industry for the detection of antipatterns at interface level and at

implementation level for SOAP web services.This tool used variable threshold

adaptation implemented via GUI that give rights to the developers to set threshold as

per their choice for the detection of different antipatterns.

RQ2- How antipatterns are evolved for REST APIs?

The evolution of antipatterns are covered over year 2014 to year 2017 after calling

service interface and mining trace history to check the attributes properties used by

RESTful API providers for the correction of antipatterns. The evolution results can be

confirmed from the trace history.

RQ3-How antipatterns for REST services are corrected?

The SOCA-R and COLAR tool is proposed for the correction of RESTful APIs

antipatterns. The SOCA-R is evaluated by industry and academia and having

precision and recall 94%. The COLAR tool is proposed that can assist RESTful API

designers for the correction of RESTful API linguistic errors.

The SOCA-R is the only tool available still so far that dynamically correct the

RESTful API with the support of SOFA framework proposed by Palma et al. [57].

The SOCA-R is further evaluated by industry and academia.

7.2 Implications of Research

We advise researchers to pay more attention to linguistic smells that are gaining

popularity in the last five years. Moreover, research on the correction of lexical smells

requires further investigation. Inter-smells relationship for lexical smells and

performance evaluations of lexical design patterns vs. antipatterns are yet to be

studied. Refactoring is a major area that is well researched for OO smells but not yet

for SCA and REST smells due to their complex nature.

Developers' maintenance effort for smells in SOA systems is still not addressed in the

recent studies. We were also unable to find any antipattern detected in Java Enterprise

systems although their detections were performed on SCA systems [66].

We tend to improve the accuracy of COLAR tool for RESTAPI linguistic antipatterns

correction. An interesting research area is to investigate the number of changes

adopted by each REST API service and further investigate that which API are

178

survived for a longer period. Another, investigation is the collection of errors reported

for a specific REST API that will help to correlate the errors with the change reported

in revision history of REST API providers. There could be the improvement in the

correction algorithm dynamically after linking correction definitions with user

perception as input and design REST APIs as per developer‘s perception.

There is also a need to mine the trace history of request, repose and body of the

RESTful API and investigates the correlation between practical implementation and

documentation available over the internet. This will help to investigate the changes

each REST API providers implemented as per the IETF standards [205]. There is also

a need to report the standardize databases for status codes and description after

tracking past 5 years‘ data of REST API providers.

We are interested to investigate the effect of different NLP algorithms for checking

the semantic and syntactic similarity between RESTful API. We also want to

investigate the effect of linguistic antipatterns on client APIs by conducting a case

study. Another good approach is to investigate the errors against each RESTful API

methods reported on developer‘s forum to investigate the antipattern effect with

respect to user response.

179

Chapter 8 References

180

[1] Object-Oriented Software Construction vol. 2: Prentice Hall New York, 1988.

[2] Papazoglou, M. P., ―Service-Oriented Computing: Concepts, Characteristics and

Directions‖, Proceedings of the Fourth International Conference on Web Information

Systems Engineering (WISE), 2003.

[3] Heffner, R., Fulton, L., Gilpin, M., Peyret, H., Vollmer, K. and Stone, J,. Topic

overview: Service-oriented architecture. Forrester, June, 8, p.4,2007

[4] Alonso, G., Casati, F., Kuno, H., & Machiraju, V. Web services. In Web

Services (pp. 123-149). Springer, Berlin, Heidelberg,2004.

[5] Chappell, D. (2007). Introducing sca. Avalaible at http://www. davidchappell.

com/articles/Introducing_SCA. pdf.

[6] R. T. Fielding and R. N. Taylor, ―Principled design of the modern web

architecture,‖ ACM Transactions on Internet Technology (TOIT), vol. 2 , no. 2, pp.

115–150, 2002.

[7] Heß, A., Johnston, E., Kushmerick, N.:‖ ASSAM: A Tool for Semi-

Automatically Annotating Semantic Web Services‖. In: McIlraith, S.A., Plexousakis,

D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 320–334. Springer,

Heidelberg (2004).

[8] Fowler, M. (1999). Refactoring: improving the design of existing code. Pearson

Education India.

[9] Lehnert, S. (2011). A Review of Software Change Impact Analysis.

[10] Westland, J. C. (2004). The cost behavior of software defects. Decision Support

Systems, 37(2), 229-238.

[11] Kilgarriff, A. (2000). Wordnet: An electronic lexical database.

[12] A. Ouni, M. Kessentini, H. Sahraoui, K. Inoue, and M. S. Hamdi, "Improving

Multi-Objective Code-Smells Correction Using Development History‖ Journal of

Systems and Software, vol. 105, pp. 18-39, 2015.

[13]Manning, C., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S., & McClosky, D.

―The Stanford CoreNLP natural language processing toolkit ―. In Proceedings of

52nd annual meeting of the association for computational linguistics: system

demonstrations,2014,pp. 55-60.

181

 [14] F. Simon, F. Steinbruckner, and C. Lewerentz, "Metrics-Based Refactoring‖ in

Software Maintenance and Reengineering, 2001. Fifth European Conference on,

2001, pp. 30-38.

[15] V. Arnaoudova, M. Di Penta, and G. Antoniol, "Linguistic Antipatterns: What

They Are and How Developers Perceive Them‖ Empirical Software Engineering,

vol. 21, pp. 104-158, 2016.

 [17] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia, and D.

Poshyvanyk, "Detecting Bad Smells in Source Code Using Change History

Information‖ in Automated software engineering (ASE), 2013 IEEE/ACM 28th

international conference on, 2013, pp. 268-278.

[18] Papazoglou, M. P., Traverso, P., Dustdar, S. and Leymann, F., ―ServiceOriented

Computing Research Roadmap‖, 2006.

[19] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice, 2nd ed.

Addison-Wesley, 2003.

[20] Brown, A., Johnston, S., & Kelly, K. (2002). Using service-oriented architecture

and component-based development to build web service applications. Rational

Software Corporation, 6, 1-16.

[21] R., & Magazinius, A. (2010, July). Validity Threats in Empirical Software

Engineering Research-An Initial Survey. In SEKE (pp. 374-379).

 [22] G. Soares, R. Gheyi, E. Murphy-Hill, and B. Johnson, "Comparing Approaches

to Analyse Refactoring Activity on Software Repositories‖ Journal of Systems and

Software, vol. 86, pp. 1006-1022, 2013.

[23] F. Khomh, M. Di Penta, and D. Ptidej Team, "An Exploratory Study of the

Impact of Software Changeability‖ 2009.

[24] Moha, N. Y.-G. Gueheneuc, L. Duchien, and A.-F. Le Meur, "DECOR: A

Method for The Specification and Detection of Code and Design Smells‖ IEEE

Transactions on Software Engineering, vol. 36, pp. 20-36, 2010.

[25] M. Salehie, S. Li, and L. Tahvildari, "A Metric-Based Heuristic Framework to

Detect Object-Oriented Design Flaws‖ in Program Comprehension, 2006. ICPC

2006. 14th IEEE International Conference on, 2006, pp. 159-168.

182

[26] A. Maiga, N. Ali, N. Bhattacharya, A. Sabane, Y.-G. Gueheneuc, and E.

Aimeur, "SMURF: A SVM-Based Incremental Antipattern Detection Approach‖ in

Reverse engineering (WCRE), 2012 19th working conference on, 2012, pp. 466-475.

[27] F. Khomh, S. Vaucher, Y.-G. Guéhéneuc, and H. Sahraoui, "BDTEX: A GQM-

Based Bayesian Approach for The Detection of Antipatterns‖ Journal of Systems and

Software, vol. 84, pp. 559-572, 2011.

[28] R. Wangberg, "A Literature Review on Code Smells and Refactoring‖ 2010.

[29] M. Zhang, T. Hall, and N. Baddoo, "Code Bad Smells: A Review of Current

Knowledge‖ Journal of Software Maintenance and Evolution: research and practice,

vol. 23, pp. 179-202, 2011.

[30] G. Rasool and Z. Arshad, "A Review of Code Smell Mining Techniques‖

Journal of Software: Evolution and Process, vol. 27, pp. 867-895, 2015.

[31] C. K. Roy, J. R. Cordy, and R. Koschke, "Comparison and Evaluation of Code

Clone Detection Techniques and Tools: A Qualitative Approach‖ Science of

Computer Programming, vol. 74, pp. 470-495, 2009.

[32] J. R. Pate, R. Tairas, and N. A. Kraft, "Clone Evolution: A Systematic Review‖

Journal of software: Evolution and Process, vol. 25, pp. 261-283, 2013.

[33] D. Rattan, R. Bhatia, and M. Singh, "Software Clone Detection: A Systematic

Review‖ Information and Software Technology, vol. 55, pp. 1165-1199, 2013.

[34] C. K. Roy and J. R. Cordy, "A Survey on Software Clone Detection Research‖

Queen‘s School of Computing TR, vol. 541, pp. 64-68, 2007.

[35] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, "A Systematic

Literature Review on Fault Prediction Performance in Software Engineering‖ IEEE

Transactions on Software Engineering, vol. 38, pp. 1276-1304, 2012.

[36] W. C. Wake, Refactoring Workbook: Addison-Wesley Professional, 2004.

[37] M. Mantyla, J. Vanhanen, and C. Lassenius, "A Taxonomy and An Initial

Empirical Study of Bad Smells in Code‖ in Software Maintenance. ICSM 2003.

Proceedings. International Conference on, 2003, pp. 381-384.

183

[38] F. Jaafar, Y.-G. Guéhéneuc, S. Hamel, and F. Khomh, "Mining the Relationship

Between Antipatterns Dependencies and Fault-Proneness‖ in Reverse Engineering

(WCRE), 2013 20th Working Conference on, 2013, pp. 351-360.

[39] J. Bansiya and C. G. Davis, "A Hierarchical Model for Object-Oriented Design

Quality Assessment‖ IEEE Transactions on software engineering, vol. 28, pp. 4-17,

2002.

[40] W. H. Brown, R. C. Malveau, H. W. McCormick, and T. J. Mowbray,

Antipatterns: Refactoring Software, Architectures, And Projects in Crisis: John

Wiley & Sons, Inc., 1998.

[41] M. A. Laguna and Y. Crespo, "A Systematic Mapping Study on Software

Product Line Evolution: From Legacy System Reengineering to Product Line

Refactoring‖ Science of Computer Programming, vol. 78, pp. 1010-1034, 2013.

[42] T. Mens and T. Tourwé, "A Survey of Software Refactoring‖ IEEE

Transactions on software engineering, vol. 30, pp. 126-139, 2004.

[43] R. Wangberg, "A Literature Review on Code Smells and Refactoring‖ 2010.

[44] M. Misbhauddin and M. Alshayeb, "UML Model Refactoring: A Systematic

Literature Review‖ Empirical Software Engineering, vol. 20, pp. 206-251, 2015.

[45] P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and M. Khalil, "Lessons

from Applying the Systematic Literature Review Process Within the Software

Engineering Domain‖ Journal of systems and software, vol. 80, pp. 571-583, 2007.

 [46] B. Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J. Bailey, and S.

Linkman, "Systematic Literature Reviews in Software Engineering–A Systematic

Literature Review‖ Information and software technology, vol. 51, pp. 7-15, 2009.

[47] F. Palma, N. Moha, G. Tremblay, and Y.-G. Guéhéneuc, "Specification and

Detection of SOA Antipatterns In Web Services‖ in European Conference on

Software Architecture 2014, pp. 58-73.

[48] C. Mateos, J. M. Rodriguez, and A. Zunino, "A Tool to Improve Code‐ First

Web Services Discoverability Through Text Mining Techniques‖ Software: Practice

and Experience, vol. 45, pp. 925-948, 2015.

184

[49] J. L. Ordiales Coscia, C. Mateos, M. Crasso, and A. Zunino, "Antipattern Free

Code-First Web Services for State-Of-The-Art Java WSDL Generation Tools‖

International Journal of Web and Grid Services, vol. 9, pp. 107-126, 2013.

[50] G. Salvatierra, C. Mateos, M. Crasso, and A. Zunino, "Towards A Computer-

Assisted Approach for Migrating Legacy Systems To SOA‖ in International

Conference on Computational Science and Its Applications, 2012, pp. 484-497.

[51] S. Keele, "Guidelines for Performing Systematic Literature Reviews in Software

Engineering‖ in Technical report, Ver. 2.3 EBSE Technical Report. EBSE, ed: sn,

2007.

[52] A. Ouni, R. Gaikovina Kula, M. Kessentini, and K. Inoue, "Web Service

Antipatterns Detection Using Genetic Programming‖ in Proceedings of the 2015

Annual Conference on Genetic and Evolutionary Computation, 2015, pp. 1351-1358.

[53] J. L. O. Coscia, C. Mateos, M. Crasso, and A. Zunino, "Avoiding WSDL Bad

Practices in Code-First Web Services‖ in Proceedings of the 12th Argentine

Symposium on Software Engineering (ASSE2011)-40th JAIIO, 2011, pp. 1-12.

[54] Ouni, A., Kessentini, M., Inoue, K., & Cinnéide, M. O. "Search-based web

service antipatterns detection". IEEE Transactions on Services Computing, 10(4),

603-617,2017.

[55] N. Moha, Y.-G. Guéhéneuc, A.-F. Le Meur, L. Duchien, and A. Tiberghien,

"From A Domain Analysis to The Specification and Detection of Code and Design

Smells‖ Formal Aspects of Computing, vol. 22, pp. 345-361, 2010.

[56] F. Palma, J. Dubois, N. Moha, and Y.-G. Guéhéneuc, "Detection of REST

Patterns and Antipatterns: A Heuristics-Based Approach‖ in International

Conference on Service-Oriented Computing, 2014, pp. 230-244.

[57] F. Palma, J. Gonzalez-Huerta, N. Moha, Y.-G. Guéhéneuc, and G. Tremblay,

"Are Restful APIs Well-Designed? Detection of Their Linguistic (Anti) Patterns‖ in

International Conference on Service-Oriented Computing, 2015, pp. 171-187.

[58] S. E. S. Taba, F. Khomh, Y. Zou, A. E. Hassan, and M. Nagappan, "Predicting

Bugs Using Antipatterns‖ in Software Maintenance (ICSM), 2013 29th IEEE

International Conference on, 2013, pp. 270-279.

185

[59] L. Guerrouj, Z. Kermansaravi, V. Arnaoudova, B. C. Fung, F. Khomh, G.

Antoniol, et al., "Investigating the Relation Between Lexical Smells and Change- and

Fault-Proneness: An Empirical Study‖ Software Quality Journal, pp. 1-30, 2015.

[60] F. A. Fontana, V. Ferme, and S. Spinelli, "Investigating the Impact of Code

Smells Debt on Quality Code Evaluation‖ in Managing Technical Debt (MTD), 2012

Third International Workshop on, 2012, pp. 15-22.

[61] J. Al Dallal, "Identifying Refactoring Opportunities in Object-Oriented Code: A

Systematic Literature Review‖ Information and software Technology, vol. 58, pp.

231-249, 2015.

[62] R. Marinescu, "Measurement and Quality in Object-Oriented Design‖ in

Software Maintenance, 2005. ICSM'05. Proceedings of the 21st IEEE International

Conference on, 2005, pp. 701-704.

[63] Z. Ujhelyi, G. Szőke, Á. Horváth, N. I. Csiszár, L. Vidács, D. Varró, et al.,

"Performance Comparison of Query-Based Techniques for Antipattern Detection‖

Information and Software Technology, vol. 65, pp. 147-165, 2015.

[64] V. Arnaoudova, M. Di Penta, G. Antoniol, and Y.-G. Gueheneuc, "A New

Family of Software Antipatterns: Linguistic Antipatterns‖ in Software Maintenance

and Reengineering (CSMR), 2013 17th European Conference on, 2013, pp. 187-196.

[65] R. Marinescu, "Detection Strategies: Metrics-Based Rules for Detecting Design

Flaws‖ in Software Maintenance Proceedings. 20th IEEE International Conference

on, 2004, pp. 350-359.

[66] F. Palma, M. Nayrolles, N. Moha, Y.-G. Guéhéneuc, B. Baudry, and J.-M.

Jézéquel, "SOA Antipatterns: An Approach for Their Specification and Detection‖

International Journal of Cooperative Information Systems, vol. 22, p. 1341004, 2013.

[67] Nayrolles, Mathieu, Naouel Moha, and Petko Valtchev. "Improving SOA

antipatterns detection in Service Based Systems by mining execution traces."

In Reverse Engineering (WCRE), 2013 20th Working Conference on, pp. 321-330.

IEEE, 2013.

[68] F. Palma, L. An, F. Khomh, N. Moha, and Y.-G. Guéhéneuc, "Investigating the

Change-Proneness of Service Patterns and Antipatterns‖ in Service-Oriented

186

Computing and Applications (SOCA), 2014 IEEE 7th International Conference on,

2014, pp. 1-8.

[69] P. Danphitsanuphan and T. Suwantada, "Code Smell Detecting Tool and Code

Smell-Structure Bug Relationship‖ in Engineering and Technology (S-CET), 2012

Spring Congress on, 2012, pp. 1-5.

[70] W. Kessentini, M. Kessentini, H. Sahraoui, S. Bechikh, and A. Ouni, "A

Cooperative Parallel Search-Based Software Engineering Approach for Code-Smells

Detection‖ IEEE Transactions on Software Engineering, vol. 40, pp. 841-861, 2014.

[71] A. Stoianov and I. Şora, "Detecting Patterns and Antipatterns In Software Using

Prolog Rules‖ in Computational Cybernetics and Technical Informatics (ICCC-

CONTI), 2010 International Joint Conference on, 2010, pp. 253-258.

[72] S. Wong, Y. Cai, M. Kim, and M. Dalton, "Detecting Software Modularity

Violations‖ in Proceedings of the 33rd International Conference on Software

Engineering, 2011, pp. 411-420.

[73] H. V. Nguyen, H. A. Nguyen, T. T. Nguyen, A. T. Nguyen, and T. N. Nguyen,

"Detection of Embedded Code Smells in Dynamic Web Applications‖ in

Proceedings of the 27th IEEE/ACM International Conference on Automated

Software Engineering, 2012, pp. 282-285.

[74] A. Yamashita and L. Moonen, "Exploring the Impact of Inter-Smell Relations

on Software Maintainability: An Empirical Study‖ in Software Engineering (ICSE),

2013 35th International Conference on, 2013, pp. 682-691.

[75] R. Marinescu and D. Ratiu, "Quantifying the Quality of Object-Oriented

Design: The Factor Strategy Model‖ in Reverse Engineering, 2004. Proceedings.

11th Working Conference on, 2004, pp. 192-201.

[76] R. Oliveto, F. Khomh, G. Antoniol, and Y.-G. Guéhéneuc, "Numerical

Signatures of Antipatterns: An Approach Based On B-Splines‖ in Software

maintenance and reengineering (CSMR), 2010 14th European Conference on, 2010,

pp. 248-251.

[77] A. Yamashita and L. Moonen, "To What Extent Can Maintenance Problems Be

Predicted by Code Smell Detection? – An Empirical Study‖ Information and

Software Technology, vol. 55, pp. 2223-2242, 2013.

187

[78] C. Mateos, M. Crasso, A. Zunino, and J. L. O. Coscia, "Revising WSDL

Documents: Why and How, Part 2‖ IEEE Internet Computing, vol. 17, pp. 46-53,

2013.

[79] A. Ouni, M. Kessentini, H. Sahraoui, and M. Boukadoum, "Maintainability

Defects Detection and Correction: A Multi-Objective Approach‖ Automated

Software Engineering, pp. 1-33, 2013.

[80] A. Sabané, M. Di Penta, G. Antoniol, and Y.-G. Guéhéneuc, "A Study on The

Relation Between Antipatterns And the Cost of Class Unit Testing‖ in Software

Maintenance and Reengineering (CSMR), 2013 17th European Conference on, 2013,

pp. 167-176.

[81] R. Marinescu and C. Marinescu, "Are the Clients of Flawed Classes (Also)

Defect-prone?" in Source Code Analysis and Manipulation (SCAM), 2011 11th

IEEE International Working Conference on, 2011, pp. 65-74.

[82] M. Petticrew and H. Roberts, Systematic Reviews in The Social Sciences: A

Practical Guide: John Wiley & Sons, 2008.

[83] J. Kreimer, "Adaptive Detection of Design Flaws‖ Electronic Notes in

Theoretical Computer Science, vol. 141, pp. 117-136, 2005.

[84] S. L. Abebe, V. Arnaoudova, P. Tonella, G. Antoniol, and Y.-G. Gueheneuc,

"Can Lexicon Bad Smells Improve Fault Prediction?" in Reverse Engineering

(WCRE), 2012 19th Working Conference on, 2012, pp. 235-244.

[85] A. Bandi, B. J. Williams, and E. B. Allen, "Empirical Evidence of Code Decay:

A Systematic Mapping Study‖ in Reverse Engineering (WCRE), 2013 20th Working

Conference on, 2013, pp. 341-350.

[86] H. Liu, X. Guo, and W. Shao, "Monitor-Based Instant Software Refactoring‖

IEEE Transactions on Software Engineering, vol. 39, pp. 1112-1126, 2013.

[87] A. Trifu, O. Seng, and T. Genssler, "Automated Design Flaw Correction in

Object-Oriented Systems‖ in Software Maintenance and Reengineering, 2004.

CSMR 2004. Proceedings. Eighth European Conference on, 2004, pp. 174-183.

[88] F. Jaafar, F. Khomh, Y.-G. Guéhéneuc, and M. Zulkernine, "Antipattern

Mutations and Fault-Proneness‖ in Quality Software (QSIC),14th International

Conference on, 2014, pp. 246-255.

188

[89] S. Hassaine, F. Khomh, Y.-G. Guéhéneuc, and S. Hamel, "IDS: An Immune-

Inspired Approach for The Detection of Software Design Smells‖ in Quality of

Information and Communications Technology (QUATIC),Seventh International

Conference on the, 2010, pp. 343-348.

[90] M. Kessentini, R. Mahaouachi, and K. Ghedira, "What You Like in Design Use

to Correct Bad-Smells‖ Software Quality Journal, vol. 21, pp. 551-571, 2013.

[91] F. A. Fontana, V. Ferme, A. Marino, B. Walter, and P. Martenka, "Investigating

the Impact of Code Smells on System's Quality: An Empirical Study on Systems of

Different Application Domains‖ in Software Maintenance (ICSM),29th IEEE

International Conference on, 2013, pp. 260-269.

[92] I. Polášek, P. Líška, J. Kelemen, and J. Lang, "On Extended Similarity Scoring

and Bit-Vector Algorithms for Design Smell Detection‖ in Intelligent Engineering

Systems (INES), IEEE 16th International Conference on, 2012, pp. 115-120.

[93] N. Maneerat and P. Muenchaisri, "Bad-Smell Prediction from Software Design

Model Using Machine Learning Techniques‖ in Computer Science and Software

Engineering (JCSSE), 2011 Eighth International Joint Conference on, 2011, pp. 331-

336.

[94] H. Liu, Z. Ma, W. Shao, and Z. Niu, "Schedule of Bad Smell Detection and

Resolution: A New Way to Save Effort‖ IEEE Transactions on Software

Engineering, vol. 38, pp. 220-235, 2012.

[95] Y. Luo, A. Hoss, and D. L. Carver, "An Ontological Identification of

Relationships Between Antipatterns and Code Smells‖ in Aerospace Conference,

2010 IEEE, 2010, pp. 1-10.

[96] M. V. Mantyla, J. Vanhanen, and C. Lassenius, "Bad Smells-Humans as Code

Critics. Proceedings. 20th IEEE International Conference on Software Maintenance,

2004, pp. 399-408.

[97] G. Ganea, I. Verebi, and R. Marinescu, "Continuous Quality Assessment With

inCode‖ Science of Computer Programming, 2015.

[98] F. A. Fontana, P. Braione, and M. Zanoni, "Automatic Detection of Bad Smells

in Code: An Experimental Assessment‖ Journal of Object Technology, vol. 11, pp.

5:1-38, 2012.

189

[99] B. F. dos Santos Neto, M. Ribeiro, V. T. da Silva, C. Braga, C. J. P. de Lucena,

and E. de Barros Costa, "AutoRefactoring: A Platform to Build Refactoring Agents‖

Expert Systems with Applications, vol. 42, pp. 1652-1664, 2015.

[100] J. L. O. Coscia, C. Mateos, M. Crasso, and A. Zunino, "Refactoring Code-First

Web Services for Early Avoiding WSDL Antipatterns: Approach and comprehensive

assessment‖ Science of Computer Programming, vol. 89, pp. 374-407, 2014.

[101] M. T. Llano and R. Pooley, "UML Specification and Correction of Object-

Oriented Antipatterns‖ ICSEA'09. Fourth International Conference on Software

Engineering Advances, 2009, pp. 39-44.

[102] A. Ouni, M. Kessentini, H. Sahraoui, and M. S. Hamdi, "Search-Based

Refactoring: Towards Semantics Preservation‖ in Software Maintenance (ICSM),

2012 28th IEEE International Conference on, 2012, pp. 347-356.

[103] Palomba, Fabio, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto,

Denys Poshyvanyk, and Andrea De Lucia. "Mining version histories for detecting

code smells." IEEE Transactions on Software Engineering 41, no. 5 (2015): 462-

489..

[104] G. Bavota, A. De Lucia, M. Di Penta, R. Oliveto, and F. Palomba, "An

Experimental Investigation on The Innate Relationship Between Quality and

Refactoring‖ Journal of Systems and Software, vol. 107, pp. 1-14, 2015.

[105] B. Walter and T. Alkhaeir, "The Relationship Between Design Patterns and

Code Smells: An Exploratory Study‖ Information and Software Technology, vol. 74,

pp. 127-142, 2016.

[106] J. M. Rodriguez, M. Crasso, C. Mateos, and A. Zunino, "Best Practices for

Describing, Consuming, And Discovering Web Services: A Comprehensive Toolset‖

Software: Practice and Experience, vol. 43, pp. 613-639, 2013.

[107] H. S. de Andrade, E. Almeida, and I. Crnkovic, "Architectural Bad Smells in

Software Product Lines: An Exploratory Study‖ in Proceedings of the WICSA 2014

Companion Volume, 2014, p. 12.

[108] F. A. Fontana, M. V. Mäntylä, M. Zanoni, and A. Marino, "Comparing And

Experimenting Machine Learning Techniques For Code Smell Detection‖ Empirical

Software Engineering, vol. 21, pp. 1143-1191, 2016.

190

[109] I. Bashir and A. L. Goel, Testing Object-Oriented Software: Life Cycle

Solutions: Springer Science & Business Media, 2012.

[110] C. Wohlin, "Guidelines for Snowballing in Systematic Literature Studies and

A Replication in Software Engineering‖ in Proceedings of the 18th international

conference on evaluation and assessment in software engineering, 2014, p. 38.

[111] D. S. Cruzes and T. Dybå, "Research Synthesis in Software Engineering: A

Tertiary Study‖ Information and Software Technology, vol. 53, pp. 440-455, 2011.

[112] D. I. Sjøberg, A. Yamashita, B. C. Anda, A. Mockus, and T. Dybå,

"Quantifying the Effect of Code Smells on Maintenance Effort‖ IEEE Transactions

on Software Engineering, vol. 39, pp. 1144-1156, 2013.

[113] F. Khomh, M. Di Penta, Y.-G. Guéhéneuc, and G. Antoniol, "An Exploratory

Study of The Impact of Antipatterns On Class Change-And Fault-Proneness‖

Empirical Software Engineering, vol. 17, pp. 243-275, 2012.

[114] T. Hall, M. Zhang, D. Bowes, and Y. Sun, "Some Code Smells Have A

Significant But Small Effect On Faults" ACM Transactions on Software Engineering

and Methodology (TOSEM), vol. 23, p. 33, 2014.

[115] H. Liu, Q. Liu, Z. Niu, and Y. Liu, "Dynamic And Automatic Feedback-Based

Threshold Adaptation For Code Smell Detection‖ IEEE Transactions on Software

Engineering, vol. 42, pp. 544-558, 2016.

[116] G. Karsai, H. Krahn, C. Pinkernell, B. Rumpe, M. Schindler, and S. Völkel,

"Design Guidelines For Domain Specific Languages‖ arXiv preprint

arXiv:1409.2378, 2014.

[117] L. H. Etzkorn, S. E. Gholston, J. L. Fortune, C. E. Stein, D. Utley, P. A.

Farrington, et al., "A Comparison of Cohesion Metrics for Object-Oriented Systems‖

Information and Software Technology, vol. 46, pp. 677-687, 2004.

[118] T. Erl, Service-Oriented Architecture: Concepts, Technology, And Design:

Pearson Education India, 2005.

[119] Jaafar, Fehmi, Angela Lozano, Yann-Gaël Guéhéneuc, and Kim Mens.

"Analyzing software evolution and quality by extracting Asynchrony change

patterns." Journal of Systems and Software 131 ,2017pp. 311-322.

191

[120] Petrillo, F., Merle, P., Moha, N., & Guéhéneuc, Y.-G. "Are REST APIs for

cloud computing well-designed? An exploratory study". In International Conference

on Service-Oriented Computing, pp. 157-170. Springer, Cham, 2016.

[121] Wang, Hanzhang, Marouane Kessentini, and Ali Ouni. "Prediction of Web

Services Evolution." In International Conference on Service-Oriented Computing,

pp. 282-297. Springer, Cham, 2016.

[122] Sjoberg, Dag IK, Tore Dyba, and Magne Jorgensen. "The future of empirical

methods in software engineering research." In Future of Software Engineering, 2007.

FOSE'07, pp. 358-378. IEEE, 2007.

[123] Breivold, H. P., & Larsson, M. Component-based and service-oriented

software engineering: Key concepts and principles. In Software Engineering and

Advanced Applications, 2007. 33rd EUROMICRO Conference on (pp. 13-20).

IEEE.

[124] Baghdadi, Y. Service-oriented software engineering: a guidance framework for

service engineering methods. International Journal of Systems and Service-Oriented

Engineering (IJSSOE), 2015, 5(2), 1-19.

[125] Papazoglou, Mike P. "Service-oriented computing: Concepts, characteristics

and directions." In Web Information Systems Engineering, 2003. WISE 2003.

Proceedings of the Fourth International Conference on, pp. 3-12. IEEE, 2003.

[126] Deb, Kalyanmoy, et al. "A fast and elitist multiobjective genetic algorithm:

NSGA-II." IEEE transactions on evolutionary computation 6.2 (2002): 182-197.

[128] G. Booch, Object-Oriented Analysis & Design with Application: Pearson

Education, 2006.

[129] M. Fowler and K. Beck, Refactoring: Improving the Design of Existing Code:

Addison-Wesley Professional, 1999.

[130] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta, A. De Lucia, et

al., "When and Why Your Code Starts to Smell Bad" in Proceedings of the 37th

International Conference on Software Engineering-Volume 1, 2015, pp. 403-414.

[131] Lehnert, S. (2011, September). A taxonomy for software change impact

analysis. In Proceedings of the 12th International Workshop on Principles of

192

Software Evolution and the 7th annual ERCIM Workshop on Software Evolution(pp.

41-50). ACM.

[132] Kr´al, J., Zemliˇ ˇ cka, M.: Crucial Service-Oriented Antipatterns, vol. 2, pp.

160–171. International Academy, Research and Industry Association, IARIA (2008)

 [134] C. Izurieta, Decay and Grime Buildup in Evolving Object-Oriented Design

Patterns: Colorado State University, 2009.

[136] C. Gravino, M. Risi, G. Scanniello, and G. Tortora, "Does the Documentation

of Design Pattern Instances Impact On Source Code Comprehension? Results From

Two Controlled Experiments‖18th Working Conference on Reverse Engineering

(WCRE), 2011, pp. 67-76.

[137] L. Prechelt, B. Unger-Lamprecht, M. Philippsen, and W. F. Tichy, "Two

Controlled Experiments Assessing the Usefulness of Design Pattern Documentation

in Program Maintenance‖ IEEE Transactions on Software Engineering, vol. 28, pp.

595-606, 2002.

[138] S. Biffl and W. Gutjahr, "Influence of Team Size and Defect Detection

Technique on Inspection Effectiveness‖ in Software Metrics Symposium, 2001.

METRICS 2001. Proceedings. Seventh International, 2001, pp. 63-75.

[139]Monteiro, M. P., & Fernandes, J. M. Refactoring a Java code base to AspectJ:

An illustrative example. In Proceedings of the 21st IEEE International Conference on

Software Maintenance (ICSM‘05),2005, (pp. 1063-6773/05). IEEE.

[142] El Boussaidi, Ghizlane, Duc-Loc Huynh, and Naouel Moha. "Detection of

Design Defects: Formal Concept Analysis and Metrics." (2005).

[143] M. J. Munro, "Product Metrics for Automatic Identification Of" Bad Smell"

Design Problems In Java Source-Code‖ in Software Metrics, 2005. 11th IEEE

International Symposium, 2005.

 [144] Pressman, Roger S. Software engineering: a practitioner's approach. Palgrave

Macmillan, 2005.

[145] E. Gamma, R. Helm, R. Johnson and J. Vlissides. Design Patterns: Abstraction

and Reuse of Object-Oriented Design. European Conference on Object Oriented

Programming, 1993.

193

[146] Riel, A. J. Object-oriented heuristics,1993 (Vol. 335). Reading:

AddisonWesley.

[147] Abbes, M., Khomh, F., Gueheneuc, Y. G., & Antoniol, G. An empirical study

of the impact of two antipatterns, blob and spaghetti code, on program

comprehension. In Software maintenance and reengineering (CSMR), 2011 15th

European conference on (pp. 181-190).

[148] Mäntylä, Mika V., and Casper Lassenius. "Subjective evaluation of software

evolvability using code smells: An empirical study." Empirical Software

Engineering 11, no. 3: 395-431,2006.

[149] Arcelli, Davide, Vittorio Cortellessa, and Catia Trubiani. "Antipattern-based

model refactoring for software performance improvement." In Proceedings of the 8th

international ACM SIGSOFT conference on Quality of Software Architectures, pp.

33-42. ACM, 2012.

[150]Kaur, H., & Kaur, P. J.. A Study on Detection of Antipatterns in Object-

Oriented Systems. International Journal of Computer Applications,93(5),2014.

[151] Erlikh, L. (2000). "Leveraging legacy system dollars for E-business". (IEEE)

IT Pro, May/June 2000, 17-23.

[152] Moha, N., Gueheneuc, Y. G., & Leduc, P. Automatic generation of detection

algorithms for design defects. In 21st IEEE/ACM International Conference on

Automated Software Engineering (ASE'06) (pp. 297-300),2006.

[153] Rodriguez, J. M., Crasso, M., Zunino, A., & Campo, M. Improving Web

Service descriptions for effective service discovery. Science of Computer

Programming, 75(11), 1001-1021,2010.

[154]M. Fokaefs, R. Mikhaiel, N. Tsantalis, E. Stroulia, and A. Lau, ―An empirical

study on web service evolution,‖ in Web Services (ICWS), IEEE International

Conference on. IEEE, pp. 49–56,2011.

 [155] M. M. Lehman and L. A. Belady, Program evolution: processes of software

change. Academic Press Professional, Inc., 1985.

[156] D. Dig and R. Johnson, ―How do apis evolve? a story of refactoring,‖ Journal

of Software: Evolution and Process, vol. 18, no. 2, pp. 83–107, 2006.

194

[157]M. Laitinen, ―Framework maintenance: Vendor viewpoint,‖ Object-Oriented

Application Frameworks: Problems and Perspectives, ME Fayad, DC Schmidt, RE

Johnson (eds), Wiley & Sons, 1999.

[158]R. Lammel,¨ E. Pek, and J. Starek, ―Large-scale, ast-based api-usage analysis of

open-source java projects,‖ in Proceedings of the 2011 ACM Symposium on Applied

Computing. ACM, pp. 1317–1324,2011.

[159]S. Blank, ―Api integration pain survey results,‖ 2011.

[160]J. Webber, S. Parastatidis, and I. Robinson, REST in practice: Hyper-media and

systems architecture. ‖ O‘Reilly Media, Inc.‖, 2010.

[161]A. Demange, N. Moha, and G. Tremblay, ―Detection of SOA patterns,‖ in

International Conference on Service-Oriented Computing. Springer, 2013, pp. 114–

130.

[162]T. Erl and S. D. Patterns, ―Prentice hall ptr,‖ Upper Saddle River, NJ, p. 65,

2009.

[163]T. Erl, B. Carlyle, C. Pautasso, and R. Balasubramanian, SOA with REST:

Principles, Patterns &Constraints for Building Enterprise Solutions with REST.

Prentice Hall Press, 2012.

[164] F. Petrillo, P. Merle, N. Moha, and Y.-G. Gueh´eneuc,´ ―Towards a rest cloud

computing lexicon,‖ in 7th International Conference on Cloud Computing and

Services Science, CLOSER , 2017.

[165][Zhou, W., Li, L., Luo, M., & Chou, W. (2014, May). REST API design

patterns for SDN northbound API. In Advanced Information Networking and

Applications Workshops (WAINA), 2014 28th International Conference on (pp. 358-

365). IEEE.

[166] R. Jabangwe et al., ―An exploratory study of software evolution and quality:

Before, during and after a transfer,‖ in Global Software Engineering (ICGSE), 2012

IEEE Seventh International Conference on. IEEE, 2012, pp. 41–50.

[167] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta, A. De Lucia, and

D. Poshyvanyk, ―When and why your code starts to smell bad (and whether the

smells go away),‖ IEEE Transactions on Software Engineering, 2017.

195

[168] G. Hecht, O. Benomar, R. Rouvoy, N. Moha, and L. Duchien, ―Tracking the

software quality of android applications along their evolution (t),‖ in Automated

Software Engineering (ASE), 2015 30th IEEE/ACM International Conference on.

IEEE, 2015, pp. 236–247.

[169] L. Li and W. Chou, ―Design and describe rest api without violating rest: A

petri net based approach,‖ in Web Services (ICWS), IEEE International Conference

on. IEEE, 2011, pp. 508–515.

[170] C. Rodr´ıguez, M. Baez, F. Daniel, F. Casati, J. C. Trabucco, L. Canali, and G.

Percannella, ―Rest apis: a large-scale analysis of compliance with principles and best

practices,‖ in International Conference on Web Engineering. Springer, 2016, pp. 21–

39.

[171] F. Haupt, F. Leymann, A. Scherer, and K. Vukojevic-Haupt, ―A frame-work

for the structural analysis of rest apis,‖ in Software Architecture (ICSA),IEEE

International Conference on. IEEE, 2017, pp. 55– 58.

[172] M. Athanasopoulos and K. Kontogiannis, ―Extracting rest resource models

from procedure-oriented service interfaces,‖ Journal of Systems and Software, vol.

100, pp. 149–166, 2015.

[173] K. Mohamed and D. Wijesekera, ―Performance analysis of web services on

mobile devices,‖ Procedia Computer Science, vol. 10, pp. 744–751, 2012.

[174] F. Simon, F. Steinbruckner, and C. Lewerentz, ―Metrics based refactor-ing,‖ in

Software Maintenance and Reengineering, Fifth European Conference on. IEEE,

2001, pp. 30–38.

[175] X. Ge, Q. L. DuBose, and E. Murphy-Hill, ―Reconciling manual and automatic

refactoring,‖ in Software Engineering (ICSE), 2012 34th International Conference

on. IEEE, 2012, pp. 211–221.

[176] I. Ivkovic and K. Kontogiannis, ―A framework for software architecture

refactoring using model transformations and semantic annotations,‖ in Software

Maintenance and Reengineering, 2006. CSMR 2006. Proceed-ings of the 10th

European Conference on. IEEE, 2006, pp. 10–pp.

196

[177] N. Moha, ―Detection and correction of design defects in object-oriented

designs,‖ in Companion to the 22nd ACM SIGPLAN conference on Object-oriented

programming systems and applications companion. ACM, 2007, pp. 949–950.

[178] M. Kessentini, W. Kessentini, H. Sahraoui, M. Boukadoum, and A. Ouni,

―Design defects detection and correction by example,‖ in Program Comprehension

(ICPC), 2011 IEEE 19th International Conference on. IEEE, 2011, pp. 81–90.

[179] N. Moha, A. Rouane Hacene, P. Valtchev, and Y.-G. Gueh´eneuc,´ ―Refac-

torings of design defects using relational concept analysis,‖ Formal Concept

Analysis, pp. 289–304, 2008.

[180] N. Moha, J. Rezgui, Y.-G. Gueh´eneuc,´ P. Valtchev, and G. El Boussaidi,

―Using fca to suggest refactorings to correct design defects,‖ in Concept Lattices and

Their Applications. Springer, 2008, pp. 269–275.

[181]G. Bavota, R. Oliveto, M. Gethers, D. Poshyvanyk, and A. De Lucia,

―Methodbook: Recommending move method refactorings via relational topic

models,‖ IEEE Transactions on Software Engineering, vol. 40, no. 7, pp. 671–694,

2014.

[182]B. F. dos Santos Neto, M. Ribeiro, V. T. da Silva, C. Braga, C. J. P. de Lucena,

and E. de Barros Costa, ―Autorefactoring: A platform to build refactoring agents,‖

Expert Systems with Applications, vol. 42, no. 3, pp. 1652–1664, 2015.

[183] N. Tsantalis and A. Chatzigeorgiou, ―Ranking refactoring suggestions based on

historical volatility,‖ in Software Maintenance and Reengi-neering (CSMR), 2011

15th European Conference on. IEEE, 2011, pp. 25–34.

[184] T. Mens, G. Taentzer, and O. Runge, ―Analyzing refactoring dependencies

using graph transformation,‖ Software and Systems Modeling, vol. 6, no. 3, p. 269,

2007.

[185] C. Pautasso, ―Some rest design patterns (and antipatterns),‖ 2009.

[186] J. Purushothaman, RESTful Java Web Services. Packt Publishing Ltd, 2015.

[187] J. Sandoval, Restful java web services: Master core rest concepts and create

restful web services in java. Packt Publishing Ltd, 2009.

197

[188] S. Allamaraju, Restful web services cookbook: solutions for improving

scalability and simplicity. ‖ O‘Reilly Media, Inc.‖, 2010.

[189] L. Richardson and S. Ruby, RESTful web services.‖ O‘Reilly Media, Inc.‖,

2008.

[190] T. Espinha, A. Zaidman, and H.-G. Gross, ―Web api growing pains: Loosely

coupled yet strongly tied,‖ Journal of Systems and Software, vol. 100, pp. 27–43,

2015.

[191] R. Daigneau, Service Design Patterns: fundamental design solutions for

SOAP/WSDL and restful Web Services. Addison-Wesley, 2011.

 [192]G. Salvatierra, C. Mateos, M. Crasso, and A. Zunino, ―Towards a computer

assisted approach for migrating legacy systems to soa,‖ Computational Science and

Its Applications–ICCSA 2012, pp. 484–497, 2012.

[193] J. M. Rodriguez, M. Crasso, A. Zunino, and M. Campo, ―Discoverability

antipatterns: frequent ways of making undiscoverable web service descriptions,‖ in

Proceedings of the 10th Argentine Symposium on Software Engineering

(ASSE2009)-38th JAIIO, 2009, pp. 1–15.

[194] M. Crasso, J. M. Rodriguez, A. Zunino, and M. Campo, ―Revising wsdl

documents: Why and how,‖ IEEE Internet Computing, vol. 14, no. 5,48–56, 2010.

[196] S. Tilkov. Rest antipatterns. [Online]. Available:

https://www.infoq.com/articles/rest-antipatterns

 [197] F. Jaafar, Y.-G. Gueh´eneuc,´ S. Hamel, F. Khomh, and M. Zulkernine,

―Evaluating the impact of design pattern and antipattern dependencies on changes

and faults,‖ Empirical Software Engineering, vol. 21, no. 3,896–931, 2016.

[198] F. Khomh, M. Di Penta, and Y.-G. Gueheneuc, ―An exploratory study of the

impact of code smells on software change-proneness,‖ in Reverse Engineering, 2009.

WCRE‘09. 16th Working Conference on. IEEE, 2009, pp. 75–84.

[199] B. Costa, P. F. Pires, F. C. Delicato, and P. Merson, ―Evaluating rest

architectures—approach, tooling and guidelines,‖ Journal of Systems and Software,

vol. 112, pp. 156–180, 2016.

https://www.infoq.com/articles/rest-anti-patterns
https://www.infoq.com/articles/rest-anti-patterns

198

[200] Spinellis, Diomidis. "Version control systems." IEEE Software22, no. 5

(2005): 108-109.

[201] S. Otte, ―Version control systems,‖ Computer Systems and Telematics,

Institute of Computer Science, Freie Universitat,¨ Berlin, Germany, 2009.

[202] Kuttal, S. K., Sarma, A., & Rothermel, G. (2014). ―On the benefits of

providing versioning support for end users: an empirical study‖. ACM Transactions

on Computer-Human Interaction (TOCHI), 21(2), 9.

[203] Herzig, K., & Zeller, A. ―The impact of tangled code changes‖. In Proceedings

of the 10th Working Conference on Mining Software Repositories (pp. 121-

130),2013 IEEE Press.

[204] B. Walter and T. Alkhaeir, ―The relationship between design patterns and code

smells: An exploratory study,‖ Information and Software Technology, vol. 74, pp.

127–142, 2016.

[205] F. Reschke. Hyper text transfer protocol. [Online]. Available:

https://tools.ietf.org/html/rfc7230#section-6.1

[206] Mass_e, M.: REST API Design Rulebook. O'Reilly (2012)

[207] Berners-Lee, T., Fielding, R.T., Masinter, L.: Uniform Resource Identi_er

(URI):Generic Syntax ,2005

 [208] Fredrich, T.: RESTful Service Best Practices: Recommendations for Creating

WebServices ,http://www.restapitutorial.com/resources.html,May 2012.

[208] Maleshkova, M., Pedrinaci, C.,& Domingue, J.―Investigating web apis on the

world wide web‖. In Web Services (ECOWS), IEEE 8th European Conference on (pp.

107-114). IEEE,2010.

[209] Neamtiu, I., Foster, J. S., & Hicks, M. ―Understanding source code evolution

using abstract syntax tree matching‖. ACM SIGSOFT Software Engineering

Notes, 30(4), 1-5,2005.

[210] Rodriguez, J. M., Crasso, M., Zunino, A., & Campo, M. ―Discoverability

antipatterns: frequent ways of making undiscoverable Web Service descriptions‖.

In Proc. 10th Argentine Symp. Software Eng (pp. 1-15),2009.

https://tools.ietf.org/html/rfc7230#section-6.1
http://www.restapitutorial.com/resources.html

199

[211]Fluri, B., Wuersch, M., PInzger, M., & Gall, H.‖ Change distilling: Tree

differencing for fine-grained source code change extraction‖. IEEE Transactions on

software engineering, 33(11).2007.

[212] Ouni, A., Daagi, M., Kessentini, M., Bouktif, S., & Gammoudi, M. M. ―A

Machine Learning-Based Approach to Detect Web Service Design Defects‖.IEEE

International Conference on Web Services (ICWS), (pp. 532-539). IEEE.

 [213]De Lucia, A., Di Penta, M., & Oliveto, R. (2011). Improving source code

lexicon via traceability and information retrieval. IEEE Transactions on Software

Engineering, 37(2), 205-227.

[214] Abebe, S., and P. Tonella, Towards the extraction of domain concepts from the

identi_ers, in Proceedings of the Working Conference on Reverse Engineering

(WCRE), pp. 77{86, 2011.

[215] Abebe, S. L., Alicante, A., Corazza, A., & Tonella, P. (2013). Supporting

concept location through identifier parsing and ontology extraction. Journal of

Systems and Software, 86(11), 2919-2938.

[216] De Lucia, A., M. Di Penta, and R. Oliveto, Improving source code lexicon via

traceability and information retrieval, IEEE Transactions on Software Engineering,

37 (2), 205{227, 2011.

[217] Wampler, D. (2011). Scala web frameworks: Looking beyond lift. IEEE

Internet Computing, 15(5), 87-94.

[218] Shull, F., Singer, J., & Sjøberg, D. I. (Eds.). (2007). Guide to advanced

empirical software engineering. Springer Science & Business Media.

[219] Groves, R. M., Fowler Jr, F. J., Couper, M. P., Lepkowski, J. M., Singer, E., &

Tourangeau, R. (2011). Survey methodology(Vol. 561). John Wiley & Sons.

[220] De Lucia, A., Oliveto, R., Zurolo, F., & Di Penta, M. (2006, June). Improving

comprehensibility of source code via traceability information: a controlled

experiment. In Program Comprehension, 2006. ICPC 2006. 14th IEEE International

Conference on (pp. 317-326). IEEE.

[221] Deissenboeck, Florian, and Markus Pizka. "Concise and consistent

naming." Software Quality Journal 14, no. 3 (2006): 261-282.

200

[222] Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., & Merlo, E. (2002).

Recovering traceability links between code and documentation. IEEE transactions on

software engineering, 28(10), 970-983.

[223] Marcus, A., & Maletic, J. I. (2003, May). Recovering documentation-to-

source-code traceability links using latent semantic indexing. In Software

Engineering, 2003. Proceedings. 25th International Conference on (pp. 125-135).

IEEE.

[224] Riebisch, M. (2004, May). Supporting evolutionary development by feature

models and traceability links. In Engineering of Computer-Based Systems, 2004.

Proceedings. 11th IEEE International Conference and Workshop on the (pp. 370-

377). IEEE.

[225] Godbole, N., Srinivasaiah, M., & Skiena, S. Large-Scale Sentiment Analysis

for News and Blogs. Icwsm, 7(21), 219-222,2007.

[226] Weissgerber, P., & Diehl, S. Identifying refactorings from source-code

changes. In Automated Software Engineering, 2006. ASE'06. 21st IEEE/ACM

International Conference on (pp. 231-240). IEEE.

[227] Kim, M., Gee, M., Loh, A., & Rachatasumrit, N. Ref-Finder: a refactoring

reconstruction tool based on logic query templates. In Proceedings of the eighteenth

ACM SIGSOFT international symposium on Foundations of software

engineering (pp. 371-372). ACM.

[228] R. Masson. How REST replaced SOAP on the Web: What it means to you,.

[Online]. Available: https://www.infoq.com/articles/rest-soap.

[229] Malpohl, Guido, James J. Hunt, and Walter F. Tichy.

Renamingdetection. Automated Software Engineering 10, no. 2 (2003): 183-202.

https://www.infoq.com/articles/rest-soap

201

Appendices

202

Appendix I: Primary studies used for SLR

Title of the Paper

Reference

Number
Conference Journal Name

Specification and detection of SOA Antipattern

in Web Services
47

ECSA2014, Book Chapter in

Springer
not Applicable

A tool to improve Code first Web service

Discoverability through text miing techniques
48 Not applicab

Softwre practise and

experience

Mining the Relationship between Antipatterns

Dependencies and Fault-Proneness
38 WCRE not Applicable

Towards a Computer Assisted approach for

migrating legacy system
50 ICCSA 2012

International Journal

of web and Grid
Services

detecting WSDl bad practise in code first web
service

51 Not applicab

International Journal

of web and Grid

Services

Web service Antipattern detection using genetic
programming

52

Proceedings of the 2015

Annual Conference on Genetic

and Evolutionary Computation

not Applicable

Avoiding WSDl bad Practise in Code first web

service
53 ASSE not Applicable

Search Based Web Service Antipattern detection 54 Not applicab
IEEE Transaction

Service Coing mpu

From a domain analysis to the specification and

detection of code and design smell
55 Not applicab

Formal Aspect of

Computing

Detection of REST patterns and AP :A heuristic

based approach
56 ICSOC not Applicable

Are RESTful APIs well designed?Detection of
their linguistic AP

57 ICSOC not Applicable

SMURF;An SVm based incremental Reverse
Engineering Approach for Antipattern Detection

26 WCRE not Applicable

Predicting Bugs using AP 58 ICSM not Applicable

Investigating the impact of Code smell debt on

Quality code evaluation
60

Third International Workshop

on Managing Technical Debt
not Applicable

Identifying refactoring opportunities in

OOCode: A systematic Literature Review
61 Not applicab

Journal of

Information and
Software Technology

 A metric Based Heuritic Framework to detect

Object Orineted Design Flaws
62 ICPC not Applicable

Performance Comparison of Query Based
Techniques for Antipatttern Detection

63 Not applicab IST

 A review of Code smell Mining Tecniques 30 Not applicab
Jurnal of Software
evolution and Process

Detection Strategies: Metric based rules for

detecting Design flaws
65 ICSM not Applicable

Detecting Design Flaws via Metris in OOSE 16
International conference on

Exhibtion on 2001
not Applicable

Linguistic AP: What they are and how

developers percieve them
15 Not applicab

Empirical Software

Engineering

http://sr.no/

203

Antipattern free code first web Servcie for state

of the art Java2WSDl tool
49 Not applicab

International Journal

of web and Grid

Services

SOA AP: An Approach for their Specification
and Detection

66 ICSOC not Applicable

Investigating the Change pronesness of Service
Patterns nd AP

68 ICSOC not Applicable

Code smell Detecting tool And code Smell

Strucutre Bug RelatioShip
69

Spring Congress on

engineering and Technology
not Applicable

A Cooperative paprallel serach based software

engineering Approach for Code Smell Detection
70 Not applicab

IEEE transaction on

Software engineering

Décor:A method for the Specification and

Detection of Code snd DS
24 Not applicab

IEEEn transaction on

SWE

A Metric Based Heuristic to detect Object

Oriented design flaws
25 ICPC not Applicable

Improving SOA AP in Service Based System by
Mining exceution traces

67 WCRE not Applicable

Detecting Patterns and AP Using Prolog Rules 71 ICC-CONIT not Applicable

detecting Software Modularity Violation 72 ICSE not Applicable

Detection of embeded CS in Dynamic Web

Application
73 ASE not Applicable

What you like in Design rule to correct Bad

Smell
90 Not applicab

Software quality

journal

Metric Based rules for detecting Design Flaws 75 ICSM not Applicable

AN EXPLORATORY STUDY OF

THE IMPACT OF SOFTWARE
CHANGEABILITY

23 Not applicab
Journal of System
and software

 BDTEX:A GQM based Bayesian Approach for
the detection of AP

27 Not applicab
Journal of System
and software

Numerical Signature of AP:An Approach based

on B-splines
76 CSMR not Applicable

Quantifying the effect of code smell on

maintainance effort
112 Not applicab

IEEE transcation on

software engineering

Revising WSDl Document : Why and How part

II
78 NA

IEEE internet

Computing

Detecting bad Smel in Soure code using Change

History Information
17 ASE not Applicable

Exploring the impact of Intersmell relations on
Software Maintainability

74 ICSE not Applicable

Are the client of flawed Classes also defect
Prone?

81 SCAM not Applicable

Improving the percision of Fowler defination of

Bad Smell
82

Software engineering work

Shop
not Applicable

http://www.polymtl.ca/biblio/epmrt/rapports/rt2009-02.pdf
http://www.polymtl.ca/biblio/epmrt/rapports/rt2009-02.pdf

204

Adaptive detection of Desing flaws 83 Not applicab

Electronic Notes in

Theoretical Computer

Science

Can Lexicon Bad smells Improves Fault
Prediction

84 wcre not Applicable

To What extent can miantiance problem be
prediced by Code smell detection

77 Not applicab not Applicable

maintainability of defect detection and correction 79 ASE not Applicable

Automated Design flaw Correction in Object

Oriented System
87 CSMR not Applicable

Antipattern Mutation And faut proness 88 QSIC not Applicable

IDS:An Immune Inspired Approach for the

detection of DS
89

Quality Information And

commuication technology
not Applicable

Empirical Evidenece of code decay:A systematic
Mapping

85 WCRE not Applicable

Monitor based Instant Software refactoring 86 Not applicab
IEEE Transaction on
Software Engineering

On Extended Similarity Scoring and Bit-vector

Algorithms for Design Smell Detection
92

International Conference on

Intelligent Agents
not Applicable

Bad-smell Prediction from Software Design
Model

Using Machine Learning Techniques

93 jcse not Applicable

Schedule of Bad Smell Detection and

Resolution: A New Way to Save Effort
94 Not applicab

IEEE Transaction on

Software Engineering

Investogating the Impact of Code smell on

System Quality
91

Conference on Softare

Maintainance
not Applicable

An Ontological Identification of Relationships

between
Antipatterns and CS

95 AeroSpace Conference not Applicable

Bad Smell Human As Code Critics 96 WCSM not Applicable

Improving Multi Objective Code smell

Correction Using development History
12 Not applicab

Journal of System

and Software

A study on the relation between AP and Cost of

Class Unit testing
80 CSMR not Applicable

Continuous Quality Assesmenet with in code 97 Not applicab not Applicable

Automatic detection of Bad smells in Code: An

experimental Assesment
98 Not applicab

Journal of Object

technology

Auutorefactoring :A platform to build refactoring
agents

99 Not applicab
Expert System with
application

Refactoring Code first Web Servie for early

avoiding WSDl AP:Approach and

Comprehensive assesment

100 Not applicab
Science of Computer
Programming

UML Specification and Correction of Object

oriented AP
101 ICSEA not Applicable

205

Search Based Refactoring towards Sementic

preservation
102 ICSM not Applicable

mining version histories for detecting CS 103 Not applicab
IEEE transaction on
Software engineering

An experimenta linvestigation on the

innaterelationship between quality and
refactoring

104 not applicab
Journal of System

and software

The relation between Design pattern and CS 105 IST

Best practices for describing, consuming, and
discovering web

services: a comprehensive toolset

106 Not applicab
Journal of Software
Practises and

Evolution

A new Family of Software Antipattern:Linguistic

Antipattern
64 CSMR not Applicable

Investigating the relation between lexical smells

and chage and fault proness
59

Software quality

journal

Some code smells have a significant but small

effect on faults
114 NA ACM transaction

dynamic and automatic feed back threshold
adaptation for code smell detetion

115 NA IEEE transaction

An exploratory study n the impact of anitpattern

on class change and fault proness
113

Empirical Software

Engineering

206

Appendix II: Evaluation of REST API

Questionnaire for Evaluation

for the Correction of Antipatterns inREST APIs

Antipatterns may be the result of a manager or developer working under time pressure

and having to solve a problem as fast as possible, they can also be the result of having

applied a perfectly good pattern in a different context.

As part of the detection and correction of antipatterns in REST API, we are working

on a dynamic approach for the correction of antipatterns in REST API. We develop a

tool name SOCA-R (Service Oriented Correction of Antipatterns for REST APIs) that

helps to correct antipatterns after the analyses of several dynamic and static properties

of some REST APIs.

The purpose of this survey is to have experts evaluate correction proposed by our

approach implemented in SOCA-R so that we can measure the accuracy of our tool.

This survey will also help to report expert-validated corrections that will further assist

software-engineering researchers working on the correction of antipatterns in REST

APIs.

In the following, we describe a set of antipatterns and the correction of this antipattern

as suggested by our approach in SOCA-R. We ask you to kindly provide your

agreement with each correction and, if warranted, explanations for your disagreement.

1. Breaking Self-descriptiveness

Problem: REST developers tend to forgo standardized headers, formats, or protocols

and use their own customized ones. Anything not being standardized by an official

standards body breaks this constraint, and can be considered a case of this antipattern

Example: When your browser retrieves some protected resource‘s PDF

representation, you can see how all of the existing agreements in terms of standards

kick in: some HTTP authentication exchange takes place, there might be some

caching and/or revalidation, the content-type header sent by the server

(―application/pdf‖) triggers the startup of the PDF viewer registered on your system,

and finally you can read the PDF on your screen.

Known Implementations:Every time you invent your own headers, formats, or

protocols you break the self-descriptiveness constraint to a certain degree. This

antipatterns can be found in various format.

Correction: Remove non-standardized headers in request and response fields

returned by the REST APIs providers. Standardized headers list are prepared based on

IETF standards [205] .

http://www.ietf.org/rfc/rfc3778.txt

207

If Disagree, could you please explain why and, possibly, suggest an alternative

correction or that this antipattern should not be corrected at all.

2. Forgetting Hypermedia

Problem: The lack of hypermedia, i.e., not linking resources, hinders the state

transition for REST applications. One possible indication of this antipatterns is the

absence of URL or links in the resource representation, a connected set of resources,

where applications move from one state to the next by following links.

Example:

{

 "name": "Alice",

 "links": [{

 "rel": "self",

 "href": "http://localhost:8080/customer/1"

 }]

}

If ―href‖ is not available in link/location then this is forgetting hypermedia antipatern.

Known Implementations: REST API resource found without ‗ link‘ attribute.

Correction: Check the status code of response against each request if successful then

add location and link (URL) dynamically if not returned by the REST APIs provider.

Agree

If Disagree, could you please explain why and, possibly, suggest an alternative

correction or that this antipattern should not be corrected at all.

3. Ignoring Caching

Problem: REST clients and server-side developers tend to avoid caching due to its

complexity to implement. The developers ignore caching by setting Cache-Control:

no-cache or no-store and by not providing an E-Tag in the response header.

Example:

Response:

Status Code :200

208

 Header: {x-frame-options=[SAMEORIGIN], content-

type=[application/json;charset=utf-8], x-rate-limit-remaining=[899], last-

modified=[Tue, 13 Jun 2017 23:18:06 GMT], status=[200 OK], x-response-

time=[199], date=[Tue, 13 Jun 2017 23:18:06 GMT], x-

transaction=[00886c680009e817], pragma=[no-cache], cache-control=[no-cache,

no-store, must-revalidate, pre-check=0, post-check=0], x-connection-

hash=[7036366a9883905f6e9a38d8a0f38562], x-xss-protection=[1; mode=block]

 Request :

Header: {cache-control=[no-cache], content-type=[application/xml],

connection=[keep-alive], host=[api.twitter.com], accept=[application/xml], get

/1.1/users/show.json?screen_name=testjohann http/1.1=[null], user-agent=[Apache

CXF 2.7.5], authorization=[Bearer

AAAAAAAAAAAAAAAAAAAAAGbEVgAAAAAAN5fFBEzZiajEU4rS6rahlZ

Ik2VU%3D27uIkvHeAAhVsLSYGG94uOdo8GaO5wh0jjmGt47kGsHyZA4nk1]

, pragma=[no-cache]}

Known Implementations: Mostly use no-Cache with out E-tag

Correction: Add dynamically a unique E-Tag for each request and set Cache-Control

from no-cache to private or public if not available .

Agree

If Disagree, could you please explain why and, possibly, suggest an alternative

correction or that this antipattern should not be corrected at all.

4. Ignoring MIME Types

Problem: The server should represent resources in various formats e.g., XML, JSON,

PDF, etc., which may allow clients, developed in diverse languages, a more flexible

service consumption. However, server-side developers often intend to have a single

representation of resources or rely on their own formats, which limits the resource (or

service) accessibility and reusability.

Example: A resource might have a representation in different formats such as XML,

JSON, or YAML, for consumption by consumers implemented in Java, JavaScript,

and Ruby respectively. Or there might be a ―machine-readable‖ format such as XML

in addition to a PDF or JPEG version for humans…

209

Known Implementations: mostly used JSON.

Correction: Fulfill the client request and represent resources in a format as requested

by client by adding Mime type.

Agree

If Disagree, could you please explain why and, possibly, suggest an alternative

correction or that this antipattern should not be corrected at all.

5. Ignoring Status Code

Problem: Despite of a rich set of well-defined application-level status codes suitable

for various contexts, REST developers tend to avoid them, i.e., rely only on common

ones, namely 200, 404, and 500, or even different or no status codes. The correct use

of status codes from the classes 2xx, 3xx, 4xx, and 5xx helps clients and servers to

communicate in a more semantic manner.

Example: Mostly applications treat all 2xx codes as success indicators, even if it

hasn‘t been coded to handle the specific code that has been returned. For example

Status code ‗201‘ should treated as ―created‖ instead of success.

Known Implementations:Many applications that claim to be RESTful return only

200 or 500, or even 200 only (with a failure text contained in the response body)

Correction: Check status code retuned by the server for each request and correct the

description of status code or return correct status code as per response.

Agree

If Disagree, could you please explain why and, possibly, suggest an alternative

correction or that this antipattern should not be corrected at all.

6. Misusing Cookies

Problem: Statelessness is an essential REST principle: session state in the server side

is disallowed and any cookies violate Restfulness. Sending keys or tokens in the Set-

Cookie or Cookie header field to server-side session is an example of misusing

cookies, which concerns both security and privacy.

Example:

Cookies Restful:

Authentication details or 'is logged in' kind a stufflast viewed page or place in

application etc.

 Cookies Not Restful:

210

Storing session information

Known Implementations: Most of the REST API providers use resource state or

client state and resolve the Misusing cookie antipattern.

Correction if Cookies are used to store the session information of key then remove

this from ‘Set-Cookie ‘ field .

Agree

If Disagree, could you please explain why and, possibly, suggest an alternative

correction or that this antipattern should not be corrected at all.

…

7. Tunneling Everything Through GET

Problem: Being the most fundamental HTTP method in REST, the GET method

retrieves a resource identified by its URI. However, developers may rely on the GET

method to perform other kind of actions or operations including creating, deleting,

and updating resources. GET is an inappropriate method for any actions other than

accessing a resource.

Example: …

Known Implementations: …

Correction: Remove action verbs from URIs of get methods and correct the URIs.

Agree

If Disagree, could you please explain why and, possibly, suggest an alternative

correction or that this antipattern should not be corrected at all.

…

8.Tunnelling Everything Through POST

Problem: This antipattern is similar to the previous one, except that in addition to the

URI, the body of the HTTP POST request may embody operations and parameters to

apply on the resource. Developers may depend only on the POST method for sending

any types of requests to the server including accessing, updating, or deleting a

resource. In general, the proper use of POST is to create a server-side resource.

Example: …

211

Known Implementations: …

Correction: Remove verbs from URIs and inspect body after getting response and

remove verbs.

Agree Disagree

If Disagree, could you please explain why and, possibly, suggest an alternative

correction or that this antipattern should not be corrected at all.

212

Appendix III: Correction Algorithm for REST Antipatterns

213

214

215

216

