
Swarm Debugging
The Collective Debugging Intelligence of the Crowd

Universidade Federal do Rio Grande do Sul
Programa de Pós-Graduação em Computação

Fábio Petrillo

Orientadores
Prof. Marcelo Pimenta

Profa. Carla Freitas

Porto Alegre, 19 outubro de 2016

Outline

2

● Motivation
● Background and Related Work
● Swarm Debugging
● Swarm Debug Infrastructure
● Evaluation
● Conclusion and Future Work

Is debugging important?

3

In software maintenance,
debugging is an

everyday activity
(TANENBAUM; BENSON, 1973)

4

Is debugging an important activity?

5

“Developers spend over two-thirds of their time (68%) investigating code,
and the majority of this time is spent debugging code (33%).”

LaToza, T. D., & Myers, B. a. (2010). Developers ask reachability questions. 2010 ACM/IEEE 32nd
International Conference on Software Engineering, 1, 185–194.

Is debugging an important activity?

● 100% of developers execute a system to understand its
source code

● 80% debugging
● Developers avoid understanding software systems (MAALEJ et al., 2014a):

they want only to fix bugs
● Debugging is still a “hot” research topic

6

Maalej, W., Tiarks, R., Roehm, T., & Koschke, R. (2014). On the Comprehension of Program

Comprehension. ACM Transactions on Software Engineering and Methodology, 23(4), 1–37.

Debugging is hard

7

Debugging is a tedious task and a huge effort!

Fleming, S. D., Scaffidi, C., Piorkowski, D., Burnett, M., Bellamy, R., Lawrance, J., & Kwan, I. (2013). An Information
Foraging Theory Perspective on Tools for Debugging, Refactoring, and Reuse Tasks. ACM Transactions on Software
Engineering and Methodology, 22(2), 1–41.

Problem

8

1. Debugging paradigm is basically the same
○ Breakpoints
○ Stepping
○ Tracing

2. Debugging is usually considered as an individual activity
3. Context information is implicit and not captured
4. Debugging knowledge is not used in next debugging sessions

Objectives

9

1. Proposing Swarm Debugging (SD) approach:
○ debugging as a collective activity
○ explicit context information
○ debugging knowledge can be reused

“Swarm Debugging is an approach that use collective intelligence to collect and share interactive
debugging data, providing visualizations and searching tools to support software maintenance activities.”

2. Define and implements SDI as a support for SD

“We propose the Swarm Debug Infrastructure (SDI), with which practitioners and researchers can collect
and share data about developers’ interactive debugging activities.”

Outline

10

● Motivation
● Background and Related Work
● Swarm Debugging
● Swarm Debug Infrastructure
● Evaluation
● Conclusion and Future Work

Debugging - Definition

11

“Debug. Set of techniques to detect, locate, and correct faults
in a computer program. Techniques include the use of
breakpoints, desk checking, dumps, inspection, reversible
execution, single-step operations, and traces.”

—IEEE Standard Glossary of SE Terminology—

Interactive debugging

● Debugging using an interactive tool -> debuggers!!!!
○ Navigate through the code
○ Stepping
○ State of variables

● Interactive debugging -> gain of knowledge (TIARKS; RöHM, 2013)
● First task -> define breakpoints
● Toggle breakpoints is an “extremely difficult” task (TIARKS; RöHM, 2013)
● (TIARKS; RöHM, 2013) claim that developers often simplistically toggle

several irrelevant breakpoints

12

Debugging tools
● Debugging tools are essentials (CHI; NIERSTRASZ; GÎRBA, 2013)
● Automated debugging tools are not helpful (PARNIN; ORSO, 2011)
● Hipikat (ČUBRANIĆ et al., 2005)

○ content of artefacts

● Jive (GESTWICKI; JAYARAMAN, 2005)
○ execution trace, does not work with breakpoints, no sharing

● DebugAdvisor (ASHOK et al., 2009)
○ similar issues, no uses fine-grained data (breakpoints, events, invocations, paths, etc)

● Collaborative Debugging (ESTLER et al., 2013)
○ synchronous approach: after session, debugging data are not reused
○ global software

13

Information Foraging Theory

14

● Inspired by biological sciences, pray/predator metaphor
● Information foraging theory (IFT) - Pirolli and Card (PIROLLI; CARD, 1999) to

understand how individuals search information in Web
● (LAWRANCE; BELLAMY; BURNETT, 2007) ITF - how professional developers

explore on source code during maintenance.
● (FLEMING et al., 2013): an Information Foraging Theory Perspective on Tools

for Debugging

Swarm Intelligence

15

● simple agents interacting locally, following very simple rules without central
coordination simple: repeated interactions between individuals can produce
complex adaptive patterns at the level of the group, since individual units do
not have a complete picture

● Previously used for sw teams: Software teams have used collaborative and
self-organisation approaches because software projects have some
analogies with collective behaviors (CHOW; CAO, 2008)

● We proposed Swarm Intelligence as a new metaphor for Interactive
Debugging : Swarm Debugging!

Task Context Model (KERSTEN; MURPHY, 2006)
● Task context is created by monitoring a programmer’s activity and extracting

the structural relationships of program artifacts.
● Operations on task contexts integrate with development environment

features

● Mylyn (Mylar)
● Degree-of-interest (DOI): based on the frequency of interactions with the

element and a measure of the interactions’ recency.

16

Sharing (debugging) information...
● A new tendence of collaboration in SE - Crowd (STOREY et al., 2014)
● Lack of tool support for collective activities (crowd) in SE (STOREY et al.,

2014)
● Developers are willing to share information about work collected by IDE

automatically. (MAALEJ et al., 2014a)
● (MAALEJ et al., 2014a) suggests implementation of instrumentation of the

IDE and continuous observation of developers’ work.
● Unfortunately context information is typically implicit and not captured: for

example, association issues/tasks and debugging sessions.

17

if interactive debugging is
important to create

knowledge about a software
project and a huge effort,

why waste it?
18

Outline

19

● Motivation
● Background and Related Work
● Swarm Debugging
● Swarm Debug Infrastructure
● Evaluation
● Conclusion and Future Work

Swarm Debugging

20/37

Swarm Debugging

21

● SD is a different way to doing debugging: original idea inspired on
combination of IFT and swarm intelligence, providing collective context and
data automatically captured to interactive debugging

● Central idea: many developers on different tasks
working independently make knowledge, creating a
swarm intelligence environment.

● IFT -> one prey/one predator

● Swarm Debugging -> many prey/many predators
● Explore breakpoints and debugging paths in a collective way
● Use previous data to support debugging tasks

Swarm Debugging

22

Swarm Debugging vs. Traditional Analysis
● Static analysis

○ examine a piece of code without running, using parsers.
○ Identify violations, metrics or structures (patterns)

● Tradicional Dynamic Analysis
○ all interactions, states and events are collected by tools
○ tracing all data without any developers’ decision control or context
○ intrusive infrastructure to collect data
○ considered as a exceptional testing task, NOT a regular development tasks
○ Approach collect-all-data-mining-after , typically generating a huge quantity of data

● Swarm Debugging
○ Explore the gap -> static and dynamic analysis
○ Collect only paths intentionally explored by developers
○ Fundamental difference
○ Collecting methods invocations

23

Outline

24

● Motivation
● Background and Related Work
● Swarm Debugging
● Swarm Debug Infrastructure
● Evaluation
● Conclusion and Future Work

Swarm Debug Infrastructure (SDI)
● SDI is an infrastructure to provide support to our approach
● Provides a set of tools to collect, store, share, retrieve and visualise

interactive debugging sessions
● SDI has three main modules:

○ Tracer: listeners to collect automatically interactive debugging data
○ Services: servers to store and share debugging session data
○ Views: visualizations and searching tools

25

26

27

Sequence stack diagram

Dynamic method call graphs

28

Debug Global View

29

Debug Global View

30

31

Swarm Debug Infrastructure is Free!
● It is free and open research data

○ https://github.com/SwarmDebugging
○ http://server.swarmdebugging.org/

32

Outline

33

● Motivation
● Background and Related Work
● Swarm Debugging
● Swarm Debug Infrastructure
● Evaluation
● Conclusion and Future Work

Experimental Study

34

● Evaluation of the Swarm Debugging
● Three experiments

○ Experiment #1: towards understanding interactive debugging
○ Experiment #2: mining debugging data to recommend breakpoints
○ Experiment #3: supporting maintenance tasks using shared debugging visualisations

● Some interesting findings
● Also a contribution towards debugging phenomenon comprehension

General experimental details

35

● Participants: professional freelancers and students
● Target system: Open source project JabRef 3.2
● 5 actual bug location tasks: focus on breakpoints

a. Breakpoints are essential for interactive debugging!!

● Warm-up task
● Video recording (screencast during sessions) and video analysis
● Using SDI to collect debugging session data
● Protocol:

a. Profile survey
b. Warm-up
c. Task execution (bug location)
d. Questionnaires: qualitative feedback
e. Analysis

Main Results

36

Main results

37

RQ: Is there a correlation between time of first
breakpoint and task’s elapsed time?

● There is a strong correlation (ρ = −0.637)

Main results

38

Quickly

Carefully

Main results

39

RQ:Is there a correlation between time of first breakpoint and
task’s elapsed time?

● whether developers toggle breakpoints carefully, they
complete tasks faster than developers who toggle
breakpoints too quickly

Main results

40

RQ: How much time do developers spend between start a
debugging session and toggling the first breakpoint?

● In average, participants spent 27% of task time to toggle
the first breakpoint

● Toggling the first breakpoint is not an easy task and
developers need tools to assist them in locating the
places to toggle breakpoints.

Main results

41

RQ: Do different developers toggle breakpoints at the same
location (line of code) for the same task?

● Yes, 39 breakpoints out of 207 (near to 20%) were toggled
in exactly the same line of code for the same task
toggled by different developers

● There is evidence of a rational choice of breakpoints

Main results

42

RQ: Does sharing and visualizing debugging data support
software maintenance tasks?

Phase 1 Phase 2

Outline

43

● Motivation
● Background and Related Work
● Swarm Debugging
● Swarm Debug Infrastructure
● Evaluation
● Conclusion and Future Work

Contributions

● SD, a new approach to collect, share and retrieve
information from debugging sessions

● SDI, an infrastructure to support our approach, providing
several visualisations and searching tools.

44

Good for...
● Developers
● Debugger’s developers
● Researchers
● Educators

45

Limitations
● Versioning
● Platform: Java, Eclipse
● Dependency on collecting
● Visualisation scaling

46

Future Work

47

● Versioning (evolution)
● SDI Tracer to new platforms

○ C++ (GDB - in progress)
○ Python (PyDev - in progress)
○ Javascript (Firebug - in progress)
○ PHP, Ruby, .Net
○ Intellij, Netbeans, Pharo (in progress)

● Mylyn integration
● New recommendation systems
● Improve and create visualisations
● New controlled experiments
● Foragers and Builders approach (new applied project)

Publications
● Directly related to Thesis: nine submitted papers

○ SANER 2017 (submitted) Today!! :-)
○ IEEE Software - Special Issue - Crowdsourcing on SE (revision - 2nd round)
○ QRS 2016 (accepted)
○ ICPC 2016 (accepted) ICSME 2016 (rejected)
○ VISSOFT 2015 (accepted) VISSOFT 2016 (rejected)
○ VEM 2015 (accepted) ICSME 2015 (rejected)

● During PhD
○ SAC 2017 (Cloud Lexicon - submitted)
○ WBMA 2016 (Kanban - accepted)
○ ICSOC 2016 (Cloud REST API - accepted)
○ GAS 2016 (Video game dev. process - accepted)
○ VEM 2014 (Polymorphism - accepted)
○ CibSE 2012 (Software Visualisation - accepted)
○ IHC 2011 (Likert Scale Visualisation - accepted)

48

Final Remarks

49

● Swam Debugging is an approach uses Swarm Intelligence and Information
Foraging Theory to provide knowledge from interactive debugging session
information

● Swarm Debug Infrastructure (SDI) provides an infrastructure to create tools
for context-aware debugging

● Improving debugging phenomenon comprehension:
○ When developers toggle breakpoints carefully, they complete tasks faster than developers who

toggle breakpoints too quickly
○ There is evidence of a rational choice of breakpoints

● 75% of developers claim that visualise shared debugging data is useful or
very useful on supporting maintenance tasks

● Many open questions on interactive debugging….

Swarm Debugging
The Collective Debugging Intelligence of the Crowd

Universidade Federal do Rio Grande do Sul
Programa de Pós-Graduação em Computação

Fábio Petrillo

Thanks a lot!!
Questions????

Porto Alegre, 19 outubro de 2016

Main results (not in thesis text)

51

RQ: How many essential breakpoints are toggled
by developers on a task?
● essential breakpoint: breakpoint toggled on path

of the fault

52

Global View - Task #0318

53

Global View - Task #0669

54

Global View - Task #1026

Main results (not in thesis text)

55

How many essential breakpoints are toggled by
developers on a task?

We found 118 essential breakpoints toggled by
developers, or 57% (118/207) of breakpoints are
essential to achieve the fault.

Comentários dos revisores (IEEE Software)
“All of the reviewers agreed that the paper is interesting and promising, and is well within the scope
of crowdsourcing.” Issue’s Editor

“I appreciate this work, very much. The direction is innovative, fun (in a way), and challenging. This
is a nice research problem to be working on, and I encourage the authors to continue.” Reviewer #1

“This manuscript addresses an important problem with a thought-provoking metaphor and solution.”
Reviewer #2

“The authors propose a very interesting idea for software debugging. I encourage the authors to
further push forward to identify and solve the key problems on this topic.” Reviewer #3

56

Comentários dos revisores (VISSOFT 2015)
“The authors identify a pain point in software engineering: debugging is a human activity performed
individually by developers, and these developers accumulate knowledge that is either lost or simply
not easily shared between developers on the same project."

“An important problem is being addressed. Good use of collective intelligence. Builds on prior work.”

"Debugging is a specific and distinct enough activity that specific exploration and support of the
topic is worth exploring.”

57

Co-breakpoint
● Recommendation system example

58

Precision and Recall

59
https://en.wikipedia.org/wiki/Precision_and_recall

Precision: how many selected item
are relevant?

Recall: how many relevant items are
selected?

Static Analysis
● Static analysis examine a piece of code without running, using parsers.
● Identify violations, metrics or structures (patterns)

60

Dynamic Analysis
● Running program

○ behavior
○ instrumentation

● Benefits
○ precision
○ context/scenario

● Limitations
○ small fraction of execution
○ difficulty to determinate scenarios
○ scalability

●
● Identify violations, metrics or structures (patterns)

61

Pygmalion effect
● High leader expectation increase follow performance
● If I pay, freelancers “increase” responses to thank the researchers

62

Use of IDEs (GU, 2012)
● .NET - 97% - Visual Studio
● Java - 73% - Eclipse

63

Information Foraging Theory

64

● In another study, Kuttal et al. (KUTTAL; SARMA; ROTHERMEL, 2013)
showed that the stronger scents available within mashup programming
environments could im prove users’ foraging success, leading to a new model
for debugging activities framed concerning information foraging theory to
support debugging.

● Fleming et al. (FLEMING et al., 2013) without environment support, foraging
during debugging may be tedious and costly, and in IFT terms, setting
breakpoints enriches the environment by creating low-cost links.

Data Frugality (Fowler, 2016)
● Handle, capture and store only data that we need.

65

Collective Intelligence
● Integrated Development Environments (IDEs) only integrate the tools and

knowledge of a single user and workstation. (BRUCH et al.,2010)
● After they found an answer, the newly gained knowledgeis usually lost inside

the IDEs.
● IDE provides a rich source of information that can help ourselves and other

programmers to avoid mistakes in the future
● collective intelligence is an open-field for new software development tools

(STOREY et al., 2014)
● new developers expect collaborations
● Rise of social programmers

○ cooperate in on-line communities open to contributes

● They are opened, transparent, and expect to share their knowledge

66

Automated debugging criticism

● Navigation pattern was not linear
● Give a statement is not enough!
● Automated debugging tools benefit

○ point developers in the right direction
○ not the exactly fault statement

● Devs want alternative views
● Different ways of interactions
● Seamlessly integrated activities

67

Parnin, C., & Orso, A. (2011). Are automated debugging techniques actually helping programmers?
Proceedings of the 2011 International Symposium on Software Testing and Analysis ISSTA 11,
199.

Swarm Debugging Meta-model

68

Swarm Restful API
● Implemented on Spring Boot
● Operations

○ Create
○ Retrieve
○ Update
○ Delete

69

Reopen and Next bugs
● Developers spend significant time looking for similar bugs that have been

resolved in the past (BUGDE et al., 2008)
● Developers benefit from knowing this previous bug data
● About 20-40% of total fixing changes appear repeatedly (KIM; PAN;

WHITEHEAD, 2006).
● Next Bug (2016)

○ 67% of Mozilla developers in the field study indicated interest in a Bugzilla extension with
recommendations

● Finding and ranking relevant classes is a current/open research topic

70

Comentários dos revisores (ICSME 2015)
“The idea itself is definitely promising and I would like to encourage more research in the area, but
this work is still in a very early stage.”

71

Debugging is hard

72

“We observed that performing path simulation manually was nearly
impossible for statements with high branching factors as there were
simply too many paths to consider”.

LaToza, T. D., & Myers, B. a. (2010). Developers ask reachability questions. 2010 ACM/IEEE 32nd
International Conference on Software Engineering, 1, 185–194.

73

Crowd in SE

74

● A new tendence of collaboration in SE
● Large group of individuals together
● In SE -> fluid workforces automatically arranged by the environment to

perform micro tasks within a workflow (LATOZA; HOEK, 2015)
● What is the difference?

○ Awareness of influence of own activities in someone else's activities

Maintaining software is
currently an incredibly

complex activity
(BOOCH, 2015)

75

● Static analysis is not able to achieve all software paths correctly
● Tradicional dynamic analysis

○ high instrumentation effort
○ collect irrelevant data
○ out of everyday activity

● Debugging is seen as an isolated activity

What is lacking?

76

Collaborations
● École Poly de Montréal - Prof. Yann-Gael Gueheneuc, Prof. Foutse Kohm
● UQAM - Profa. Naouel Moha
● INRIA/Lille - Dr. Phillipe Merle
● UFMG - Prof. Marco Túlio Valente, Prof. Guilherme Avelino
● Drew University - Profa. Emily Hill
● UFSM - Sr. Cristiano Politowski (Master student)
● Serpro/UECE - Sr. Francisco Lopes (Master student)
● UniRitter - Prof. Guilherme Lacerda
● UFRGS - Sr. Gabriel Veras (Master student)
● UERN - Profa. Carla Monteiro

77

Swarm Debug Tracer

78

Swarm Debug Infrastructure

79

80

Sequence Stack Diagram

SDI in action

82

83

