
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

FABIO PETRILLO

Swarm Debugging: the Collective
Debugging Intelligence of the Crowd

Thesis presented in partial fulfillment
of the requirements for the degree of
Doctor of Computer Science

Advisor: Prof. Dr. Marcelo Soares Pimenta
Coadvisor: Profa. Dra. Carla M. Dal Sasso Freitas

Porto Alegre
September 2016

CIP — CATALOGING-IN-PUBLICATION

Petrillo, Fabio

Swarm Debugging: the Collective Debugging Intelligence of
the Crowd / Fabio Petrillo. – Porto Alegre: PPGC da UFRGS,
2016.

125 f.: il.

Thesis (Ph.D.) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2016. Advisor: Marcelo Soares Pimenta; Coadvisor: Carla
M. Dal Sasso Freitas.

1. Interactive debugging. 2. Crowd software engineering.
3. Software maintenance. 4. Software engineering. I. Pimenta,
Marcelo Soares. II. Freitas, Carla M. Dal Sasso. III. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Rui Oppermann
Vice-Reitor: Prof. Jane Tutikian
Pró-Reitor de Pós-Graduação: Prof. Celso Giannetti Loureiro Chaves
Diretor do Instituto de Informática: Prof. Luis da Cunha Lamb
Coordenador do PPGC: Prof. Luigi Carro
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“To Andreia and Isabelle.”

“If debugging is the process of removing software bugs,

then programming must be the process of putting them in.”

— EDSGER W. DIJKSTRA

ACKNOWLEDGEMENT

Firstly, my particular thanks to my wife Andreia for sharing all the moments and

helping me to improve my peace and self-control.

All my gratitude to Professors Marcelo Pimenta and Carla Freitas for his trust and

encouragement over the last years, and especially for their unconditional support, valuable

advice, and commitment to guiding me through my doctoral research. Despite challenges

and unusual situations, they ever workaround the problems to give an incredible opportu-

nity. Moreover, probably their most important advising was not "correct" any time; I was

free to make mistakes (and I made a lot of errors). Because of their approach, today I am

stronger and prepared for any challenge.

I do not have words to express my gratitude to Professor Yann-Gaël Guéhéneuc.

He received me as an invited researcher in his Lab at École Polytechnique de Montréal,

and he was a mentor, a partner, a leader. He never demanded me anything, and he ever

gives me a lot. It is an honor to work and collaborate with Professor Guéhéneuc, an

illuminated human being. Another very essential person was Professor Foutse Kohn who

advised me several times, shared great ideas and improved our research papers.

Several friends collaborate a lot to this work, specially Zéphyrin Soh, Guilherme

Lacerda, Gabriel Veras, and Maurício Aniche. Thanks guys for your friendliness and

support.

I would like to express my deep gratitude to my mother, Sonia. She gave me, with

her simplicity, an incredible gift saying just one sentence on my first primary school day:

"Go! You can go alone". She never demanded anything about my studies; she always

trusted me. Now, I became the first Ph.D. in my family.

One Sunday morning, when I was leaving my home to work on this thesis, my

little six-years-old daughter Isabelle gave me a firm hug and said to me: "Dad you will do,

you will finish your work, I’m sure!". Certainly, my daughter, it was the most important

encouragement and why we are here: because of you. I love you so much my baby!

ABSTRACT

Ants are fascinating creatures that beyond the advances in biology have also inspired

research on information theory. In particular, their study resulted in the creation of the In-

formation Foraging Theory, which describes how agents forages for information in their

environment. This theory also explains recent and fruitful phenomena, such as crowd-

sourcing.

Many activities in software engineering have applied crowdsourcing, including develop-

ment, translation, and testing, but one action seems to resist: debugging. Developers

know that debugging can require dedication, effort, long hours of work, sometimes for

changing one line of code only.

We introduce the concept of Swarm Debugging, to bring crowdsourcing to the activity

of debugging. Through crowdsourcing, we aim at helping developers by capitalizing on

their dedication, effort, and long hours of work to ease debugging activities of their peers

or theirs, on other bugs.

We show that swarm debugging requires a particular approach to collect relevant infor-

mation, and we describe the Swarm Debugging Infrastructure. We also show that swarm

debugging minimizes developers effort. We conclude with the advantages and current

limitations of swarm debugging and suggest directions to overcome these limitations and

further the adoption of crowdsourcing for debugging activities.

Keywords: Interactive debugging. Crowd software engineering. Software maintenance.

Software engineering.

Depuração em enxame: a inteligência coletiva na depuração pela multidão

RESUMO

As formigas são criaturas fascinantes que, além dos avanços na biologia também inspi-

raram pesquisas sobre teoria da informação. Em particular, o estudo resultou na criação

da Teoria da Forragem de Informação, que descreve como os agentes de buscam informa-

ções em seu ambiente. Esta teoria também explica fenômenos recentes e bem-sucedidos,

como crowd sourcing.

Crowdsourcing tem sido aplicado a muitas atividades em engenharia de software, in-

cluindo desenvolvimento, tradução e testes, mas uma atividade parece resistir: depuração.

No entanto, os desenvolvedores sabem que a depuração pode exigir dedicação, esforço,

longas horas de trabalho, por vezes, para mudar uma linha de código único.

Nós introduzimos o conceito de Depuração em Enxame, para trazer crowd sourcing para

a atividade de depuração. Através de crowd sourcing, pretendemos ajudar os desenvol-

vedores, capitalizando a sua dedicação, esforço e longas horas de trabalho para facilitar

atividades de depuração.

Mostramos que a depuração enxame requer uma abordagem específica para recolher in-

formações relevantes, e descrevemos sua infra-estrutura. Mostramos também que a depu-

ração em enxame pode reduzir o esforço desenvolvedores. Concluímos com as vantagens

e limitações atuais de depuração enxame, e sugerir caminhos para superar estas limitações

e ainda mais a adoção de crowd sourcing para atividades de depuração.

Palavras-chave: depuração interativa, engenharia de software em multidão, manutenção

de software, engenharia de software.

LIST OF ABBREVIATIONS AND ACRONYMS

SD Swarm Debugging

SDI Swarm Debug Infrastructure

GV Debug Global View

SDT Swarm Debug Tracer

IFT Information Foraging Theory

SI Swarm Intelligence

IDE Integrated Development Environment

JPDA Java Platform Debugging Architecture

SDS Swarm Debug Services

SQL Structured Query Language

LIST OF FIGURES

Figure 2.1 Visualization of dynamic call relations on an execution of JEdit, Java
JRE classes using 3D-HEB...44

Figure 2.2 Ant Colony...45
Figure 2.3 Views of a real world graph in R3 (left, upper right) and R2 (lower

right) representing relations within a software system. The graph contains
1539 vertices, 1847 edges, and 126 clusters. (BALZER; DEUSSEN, 2007).........45

Figure 2.4 Ant Colony...46

Figure 3.1 Main concepts as foundations of Swarm Debugging50
Figure 3.2 Swarm Debugging overview..52
Figure 3.3 The Swarm Debugging meta-model ..54

Figure 4.1 The Swarm Tracer architecture..58
Figure 4.2 The Swarm Manager view...58
Figure 4.3 The Swarm Debug Services - architecture ..60
Figure 4.4 The Swarm Debug metadata..61
Figure 4.5 Swarm Debug SQL Console..61
Figure 4.6 Swarm Debug Dashboard ..62
Figure 4.7 Neo4J Browser - a Cypher query example ..63
Figure 4.8 Sequence stack diagram for Bridge design pattern64
Figure 4.9 Method call graph for Bridge design pattern...64
Figure 4.10 GV elements. A: types (nodes); B: invocations (edges); C: task filter area.65
Figure 4.11 GV showing data from all tasks with JabRef. ...66
Figure 4.12 Breakpoint search tool (fuzzy search example)...66

Figure 5.1 Invocations (Dev/Task) by Elapse Time ..77
Figure 5.2 Invocations (Dev/Task) by Elapse Time ..78
Figure 5.3 Relation between time of first breakpoint and task elapsed time79
Figure 5.4 Examples of fuzzy debugging patterns - Task 1 ..80
Figure 5.5 Examples of fuzzy debugging patterns - Task 2 ..80
Figure 5.6 Examples of straight debugging pattern - Task 1 ..81
Figure 5.7 Examples of straight debugging pattern - Task 2 ..82
Figure 5.8 Breakpoints by kind of statement - call, control flow and assignment86
Figure 5.9 Methods with 5 or more breakpoints ...88
Figure 5.10 Java expertise ...92
Figure 5.11 GV by Task 0318 ...94
Figure 5.12 GV by Task 0667 ...95
Figure 5.13 GV by Task 0669 ...96
Figure 5.14 GV by Task 1026 ...97
Figure 5.15 GV by Task 1235 ...98
Figure 5.16 GV usefulness - experimental phase one...98
Figure 5.17 GV usefulness - experimental phase two...99
Figure 5.18 Video on Dev520 using GV to support the task 993.99

LIST OF TABLES

Table 4.1 Illustration of co-breakpoint..68
Table 4.2 Approach for breakpoint prediction ..69

Table 5.1 Elapse time by task (average)..75
Table 5.2 Breakpoints by kind of statement..86
Table 5.3 Breakpoints in the same line of code by task ..87
Table 5.4 Breakpoints by type in different tasks ...88
Table 5.5 Breakpoint Prediction Results ...89

CONTENTS

1 INTRODUCTION...19
1.1 Motivation..21
1.1.1 Some scenarios and challenges..21
1.1.2 Towards Swarm Debugging ...23
1.2 Objective and Contributions..24
1.3 Research Questions...25
1.4 Outline of the thesis ..25
2 BACKGROUND..27
2.1 Program Comprehension ...27
2.2 Static and Dynamic Analysis of Software...30
2.3 Data frugality ..31
2.4 Re-opened Bugs...31
2.5 Debugging ..31
2.5.1 Interactive Debugging..33
2.5.2 Debugging Tools ..34
2.5.3 Advanced Debugging Approaches...36
2.6 Information Foraging Theory..37
2.7 Collective Behaviour and Swarm Intelligence..39
2.8 Crowd on Software Engineering ...46
2.9 Final remarks ..47
3 SWARM DEBUGGING ..49
3.1 Foundations of Swarm Debugging ...49
3.2 Swarm Debugging overview...51
3.3 Swarm Debugging meta-model..53
3.4 Final remarks ..55
4 SWARM DEBUG INFRASTRUCTURE..57
4.1 Swarm Debug Tracer..57
4.2 Swarm Debug Services ...59
4.2.1 Swarm RESTful API..59
4.2.2 SQL Console..60
4.2.3 Full-text Search Engine..60
4.2.4 Dashboard Service ...62
4.2.5 Graph querying console ...62
4.3 Swarm Debug Views ...62
4.3.1 Sequence stack diagram...63
4.3.2 Dynamic method call graphs ...63
4.3.3 Debug Global View..64
4.3.4 Breakpoint search tool ...66
4.3.5 Starting/Ending method search tool...66
4.4 Definition of Co-Breakpoint...67
4.5 Breakpoint Prediction...68
4.6 Use scenarios..69
4.7 Final remarks ..70
5 EVALUATION OF THE SWARM DEBUGGING ...73
5.1 Experiment 1 - towards understanding interactive debugging73
5.1.1 Context ...74
5.1.2 Study Design..74

5.1.3 RQ1: Is there a correlation between the numbers of invocations and tasks’
elapsed time?..76

5.1.4 RQ2: Is there a relationship between the number of breakpoints and tasks’
elapsed time?..77

5.1.5 RQ3: Do developers explore/debug in different ways a task?...............................78
5.1.6 RQ4: Is there a correlation between the numbers of breakpoints and devel-

opers’ expertise? ..78
5.1.7 RQ5: Is there an association between time of first breakpoint and task’s

elapsed time?..79
5.1.8 Threats of Validity..81
5.2 Experiment 2 - mining debugging data to recommend breakpoints: an

empirical study...82
5.2.1 Experiment setup ...83
5.2.2 RQ1: How much time do developers spend to toggle the first breakpoint?85
5.2.3 RQ2: On what kind of statement do developers toggle their breakpoints?86
5.2.4 RQ3: Do developers toggle breakpoints in the same place?87
5.2.5 RQ4: How effective is co-breakpoint for breakpoint prediction?..........................88
5.2.6 Results and Discussions...89
5.2.7 Threats to Validity..90
5.3 Experiment 3 - supporting maintenance tasks using shared debugging vi-

sualisations..91
5.3.1 Experiment design ...91
5.3.2 Experiment setup ...91
5.3.3 Is Global View useful to support software maintenance tasks?.............................94
5.3.4 Does sharing and visualizing debug data support software maintenance tasks? ...95
5.3.5 Participants’ Feedback ...95
5.3.6 General Feedback...100
5.3.7 Threats to Validity..101
5.4 Final remarks ..102
6 CONCLUSION ...105
6.1 Summary of contributions ...106
6.2 Limitations...107
6.3 Future work...108
REFERENCES...109
APPENDIX...117

19

1 INTRODUCTION

Developing and maintaining software is currently an incredibly complex activity

(BOOCH, 2015). Software is an abstract artifact, virtual, intangible and difficult to un-

derstand (BROOKS, 1987; KNIGHT; MUNRO, 2000), especially when its size increases.

The production and maintenance of software nowadays is mostly supported by means us-

age of Integrated Development Environments (IDEs) dominate the production and main-

tenance of software. In fact, 97% of .NET developers use Microsoft Visual Studio, and

73% of Java developers use Eclipse-based IDEs (GU, 2012). Besides, developers interact

intensively with their IDEs while working on software maintenance.

In software maintenance, debugging is an everyday action (TANENBAUM; BEN-

SON, 1973) during which developers use debugging tools to detect, locate and correct

faults. Debugging is an activity of finding and fixing defects that prevent proper opera-

tions of software programs (IEEE, 1990). In fact, any process that aims at finding faults

can be considered “debugging”. The software engineering community usually focuses on

one kind of particular debugging process, which consists in using a tool called debugger:

interactive debugging.

Developers spend over two-thirds of their time (68%) investigating code, and the

majority of their time is debugging (33%) (LATOZA; MYERS, 2010), frequently using

debuggers in IDEs like Eclipse. However, software debugging is an arduous task that

requires time, effort, and a good understanding of the source code (ZHENG et al., 2006),

and developers use debugging tools to support these piece of work.

Debugging tools, a.k.a. debuggers, such as sdb (KATSO, 1979), dbx (LINTON,

1990), or gdb (STALLMAN; SHEBS, 2002) have been used by developers for decades.

Modern debuggers are often integrated into development environments, e.g., DDD (P.

Wainwright, 2010) or the debuggers of Eclipse, Netbeans, Intellij IDEA, Visual Studio

Integrated Development Environments (IDEs). In order to start a new interactive debug-

ging session, developers must define where to toggle a useful breakpoint. Breakpoints

are key for interactive debugging, and an important breakpoint is the first one during a

session.

With debuggers, developers navigate through the system code, looking for loca-

tions to place breakpoints, and stepping into statements. While stepping, developers can

traverse method invocations, toggle one or–more breakpoints, stop and–or restart execu-

tion. This exploration process allows developers to gain knowledge about programs and

20

the causes of faults, allowing them to fix them. Although debuggers have evolved since

their inception in the sixties, developers’ debugging activities have mostly remained the

same.

During the past 30 years, the research community strove to provide developers

with automated debugging tools. Automated debugging tools require both successful and

failed runs and do not support programs with interactive inputs (KO, 2006). Consequently,

developers have not adopted them in practice (PARNIN; ORSO, 2011). Moreover, au-

tomated debugging approaches are often unable to indicate the “right" locations of faults

(RÖSSLER, 2012). Furthermore, recent studies showed that empirical evidence of the

usefulness of many automated debugging techniques is limited (PARNIN; ORSO, 2011).

Other more interactive approaches, such as slicing and query languages, help developers

but, to date, there has been no evidence that they significantly ease developers’ debugging

activities.

The understanding of debugging activities could help practitioners and researchers

to develop a new family of debugging tools that are more efficient and–or more adapted

to the particularity of each debugging task. Moreover, assessing whether developers fol-

low debugging patterns could be the first step towards recommending locations to toggle

breakpoints that would reduce debugging effort and thus improve developers productivity.

In terms of productivity, ants are fascinating creatures that beyond the advances

in biology have also inspired research on information theory. In particular, their study

resulted in the creation of the Information Foraging Theory, which describes how agents

forages for information in their environment. This theory also explains recent and fruitful

phenomena, such as crowdsourcing.

Many activities in software engineering have applied crowdsourcing, including

development, translation, and testing, but one action seems to resist: debugging. Devel-

opers know that debugging can require dedication, effort, long hours of work, sometimes

for changing one line of code only.

We introduce the concept of Swarm Debugging, to bring crowdsourcing to the

activity of debugging. Through crowdsourcing, we aim at helping developers by capital-

izing on their dedication, effort, and long hours of work to ease debugging activities of

their peers or theirs, on other bugs.

21

1.1 Motivation

Software engineering has several challenges. We designed five cases to illustrate

some situations that often occurs.These cases are some examples that have inspired and

motivated our work.

1.1.1 Some scenarios and challenges

Case 1: Recurrent and reopened bugs Jenifer works for a software company. In our

regular workday, as a senior maintainer, she receives several times the same bug, because

usually bug description is incomplete and incorrect. Consequently, the bug comes back

from testing team each time with a new issue to solve. Moreover, frequently the reopen

bug does not be solved by one developer that worked on previously, and she has to redo a

full investigation process before solving the reopen bug. In this case:

• How Jenifer could use a previous knowledge from colleagues for improving her

job?

• What were the used breakpoints during past sessions of debugging?

• What were the visited types during the previous sessions of debugging?

Case 2: Discovering software project’s architecture John is an engineer who was

hired to maintain a critical system written in Java. Today is his first job day, receiving

some "welcome" instructions and a mission: to describe how the system operates and

what its architecture. Furthermore, no one in the company knows the system. A person

who maintained it won the lottery and suddenly left the company. He had built the soft-

ware alone and had not left any documentation describing how it works or its organization.

In fact, Jonh has only the source code to do his job. In this case:

• What John should do to understand the project?

• What kind of tools does John should use to do the job?

• What are the steps that John should take to find out the system’s architecture?

• What is a starting point that John should look for doing the job?

Case 3: Looking for a maintenance area Peter is a junior programmer. He started

very early to program and after completing a technical course on software development,

22

he was hired as an intern by a large software company. Your boss appointed him a seem-

ingly simple task: to modify labels in user interfaces and reports. It seemed trivial to

be done. However, the problem was more complex. He should change different systems

with several technologies, and he had just a source code. Also, after a quick analyze, he

figures out that the label was dynamically generated by a complicated module on which

Peter debugged for hours to take on what context the labels were made by the system. In

this case:

• Where Peter should toggle breakpoints to understand the complex module?

• What tools should he use to do the job?

Case 4: TDD, unit testing and code coverage Joseph has used unit testing and TDD

for several years, getting good results. He also realized that software with a high percent-

age of unit testing coverage is safer to be modified by developers. Thus, Joseph would

implement unit tests on a legacy project on which he is in charge now. As usual, the

software has no implemented test unit class or documentation. In this case:

• to achieve a high coverage level, where Joseph should start implementing some

tests?

• How could he find the best classes for implementing unit tests?

• What tools it could use to simplify their code analysis?

Case 5: Analyzing an open source project Mary is an experienced programmer who

always learned and was inspired by open source projects. Thus, she decided to contribute

to her favorite project, correcting a registered defect in its issue tracking tool. Browsing

over some items, Mary chose one that believed to be simple for solving. She checked

out the project source code and started to explore it in your favorite IDE. After more than

three hours studying the project, Mary was frustrated: she can not understand how those

thousands of classes work together to perform the software. In this case:

• Have you ever been in a similar situation?

• What could be done to help Mary to understand the software? What would you do

in her place?

• What steps could she take to understand the project?

• What tools, models or techniques could she use?

23

1.1.2 Towards Swarm Debugging

An important aspect of current software engineering is that new developers expect

collaborations (STOREY et al., 2014): the newer generation of developers is proficient in

social media, for communication and learning. They are open, transparent, and hope to

share their knowledge. Hence, a debugging tool that collects and shares knowledge about

debugging sessions among developers is likely to gain developers’ support and adhesion.

Roßler (RÖSSLER, 2012) advocates for the development of a new family of de-

bugging tools that are context-aware and that rely on exact scenarios (even though Ceccato

et al. (CECCATO et al., 2015) recently showed that automatically-generated test-cases

are as useful for debugging as manual test cases). To build context-aware debugging tools,

researchers need an understanding of developers’ debugging activities and the contextual

factors of fault fixing activities. Thus, researchers need tools to collect and share data

about developers’ interactive debugging activities.

In a recent study about program comprehension, Maalej et al. (MAALEJ et al.,

2014) found that developers follow practical understanding strategies depending on con-

text. They try to avoid understanding as possible and often put themselves in the role of

users by inspecting graphical interfaces. Usually, developers interact with the application

user interface to test whether the application behaves as expected and to find starting

points for further inspection. Moreover, developers need to acquire runtime information,

and debuggers are frequently used by developers to comprehend programs and obtain in-

formation (MURPHY; KERSTEN; FINDLATER, 2006) (MAALEJ et al., 2014). Finally,

developers use transient notes as comprehension support. This externalized knowledge

is only used personally. It is neither archived nor reused.

Moreover, Maleejet al. identified a gap between the state of the art and the state of

the practice in program comprehension. Context information also appears to perform an

essential role when providing the knowledge needs of developers in program comprehen-

sion scenarios. Unfortunately, their findings reveal that context information is typically

implicit and not captured.

Maleejet al. suggests that the implementation of such tools would require the in-

strumentation of the IDE and continuous observation of the work of developers.

To this end, they found that developers are willing to share information about their

work collected by the IDE automatically, the vast majority of developers agree to

share non-personal information, such as artifacts used and experience made, while

24

comprehending software. These trends should be further studied and considered when

designing and introducing new context-aware, personalized methodologies and tools for

program comprehension, including accessing and sharing knowledge about programs.

Moreover, developers must find suitable breakpoints when working with debug-

gers, establishing a starting point to debug. However, to set adequate breakpoints, decid-

ing where to toggle them, is a highly laborious task (TIARKS; RÖHM, 2012), and often

developers prefer simplistically toggle several irrelevant breakpoints. This practice causes

an overhead and usually a waste of time and effort.

Thus, if developers spend a lot of time debugging code, why this human effort is

lost? Could we collect debugging session information to (re)use in the future, creating

visualizations and searching tools about this information? Further, more particularly, why

is a breakpoint toggled in a class? What is its purpose?

1.2 Objective and Contributions

Our principal objective is to address these debugging issues and opportunities,

claiming that collecting and sharing debugging session information can provide data

to create new visualizations and searching tools to support programmer tasks, de-

creasing the time for developers deciding where to toggle the breakpoints and im-

prove the project comprehension. To support this statement, we propose a new approach

named Swarm Debugging .

Swarm Debugging is an approach that use collective intelligence reasoning to col-

lect and share interactive debugging data, providing visualizations and searching tools to

support software maintenance activities.

This thesis presents two main contributions. First, we introduce the concept of

Swarm Debugging, to bring crowdsourcing to the activity of debugging. Through crowd-

sourcing, we aim at helping developers by capitalizing on their dedication, effort, and long

hours of work to ease debugging activities of their peers or theirs, on other bugs. Second,

to help research studies on debugging and, thus, help improving our understanding of how

developers debug systems using debuggers, we propose the Swarm Debug Infrastructure

(SDI), with which practitioners and researchers can collect and share data about develop-

ers’ interactive debugging activities. In order to evaluate the effectiveness of the Swarm

Debugging , we have conducted experiments that aims to understand how developers ap-

ply interactive debugging and answering our research questions. As a consequence, some

25

results and findings are an indirect contribution towards debugging phenomenon compre-

hension.

1.3 Research Questions

This thesis has several research questions:

• Is there a correlation between the numbers of invocations and tasks’ elapsed time?

• Is there a relationship between the number of breakpoints and tasks’ elapsed time?

• Do developers explore/debug in different ways a task?

• Is there a correlation between the numbers of breakpoints and developers’ exper-

tise?

• Is there an association between time of first breakpoint and task’s elapsed time?

• How much time do developers spend to toggle the first breakpoint?

• On what kind of statement do developers toggle their breakpoints?

• Do developers toggle breakpoints in the same place?

• Do developers toggle breakpoints in the same place?

• How effective is co-breakpoint for breakpoint prediction?

• Is Global View useful to support software maintenance tasks?

• Does sharing and visualizing debug data support software maintenance tasks?

1.4 Outline of the thesis

We organized the remainder of this work as follows:

• Chapter 2 summarizes some essential concepts for understanding our approach

also describing some related work concerning not only "debugging tools" and "in-

teractive debugging", but software visualisation, software static and dynamic anal-

ysis, release changes and re-opened bugs’ studies, foraging information theory, and

collective intelligence as well;

• Chapter 3 describes the main aspects of our proposed approach: the Swarm De-

bugging;

• Chapter 4 present the SDI, as defined to support the SD approach;

• Chapter 5 evaluates our approach by presenting and discussing results on applying

in three reported experiments; and

26

• Chapter 6 presents the final considerations of this thesis, including the contribu-

tions, challenges, and future work.

27

2 BACKGROUND

This section provides a conceptual background for supporting our approach. First,

we discuss (1) program comprehension (finding starting method, locating and recom-

mending relevant program elements to developers). Next, (2) re-open bugs, (3) debug-

ging, (4) static and dynamic analysis of software, (5) Information Foraging Theory, (6)

collective behavior and swarm intelligence, and finally (7) crowd on Software Engineer-

ing.

2.1 Program Comprehension

Previous work studied how developers understand programs and provided tools

to support program understanding. Maalej et al. (MAALEJ et al., 2014) observed and

surveyed developers to comprehend how they investigate programs. They reported that

to understand a program, developers need to acquire runtime information and frequently

execute the application using a debugger. Ko et al. (KO, 2006) observed that develop-

ers spend large amounts of times navigating between program elements. They modeled

program understanding as a process of searching, relating, and collecting relevant infor-

mation. Sillito et al. (SILLITO; MURPHY; De Volder, 2008) identified the questions

that developers ask when finding and extending starting methods. They described how

developers answer these questions during software maintenance activities.

Feature and fault location tools are used to identify and recommend program el-

ements that are relevant to a task at hand (WANG; LO, 2014). These tools are used to

recommend relevant pieces of code to developers, the bug report (ZHOU; ZHANG; LO,

2012), domain knowledge (YE; BUNESCU; LIU, 2014), version history and bug report

similarity (WANG; LO, 2014). In contrast to these approaches, Mylyn uses developers’

activities (interaction traces collected during maintenance tasks) to reduce developers in-

formation overhead and to show in the developers’ IDE only program elements that may

be relevant to the task (KERSTEN; MURPHY, 2006). Mylyn interaction traces have been

used to study work interruption (SANCHEZ; ROBBES; GONZALEZ, 2015), editing pat-

terns (YING; ROBILLARD, 2011), and program exploration patterns (SOH et al., 2013).

In addition to Mylyn, other tools collect data during maintenance tasks.

In a recent study about program comprehension, Maalej et al. (MAALEJ et al.,

2014) found that developers follow practical comprehension strategies depending on con-

28

text. Developers try to avoid understanding whenever possible and often put themselves

in the position of users by inspecting interfaces. Participants affirmed that standards, ex-

perience, and personal communication promote understanding. Their results reveal a gap

between research and practice, as they did not observe any use of comprehension tools

and developers seem to be unaware of them, finding a call for reconsidering the research

agendas towards context-aware support.

Usually, developers interact with the application user interface to test whether the

application behaves as expected and to find starting points for further inspection. More-

over, developers need to acquire run-time information, and debuggers are frequently used

by developers to comprehend programs and obtain information (MURPHY; KERSTEN;

FINDLATER, 2006) (MAALEJ et al., 2014). Other significant findings from Maleej’s

study (MAALEJ et al., 2014) is that developers’ experience plays a major role in program

comprehension activities and helps to identify starting points for further inspection and

to filter out code locations that are irrelevant for the current task. Finally, developers use

transient notes as comprehension support. This externalized knowledge is only used

personally. It is neither archived nor reused.

Maleej et al. identified a gap between the state of the art and the state of the

practice in program comprehension. State-of-the-art program comprehension tools were

either unknown or rarely utilized even by experienced developers. Consequently, research

effort should be focused on how research results can be used to support developers in

their everyday work and on how software comprehension features can be integrated into

the workflows depending on the task. Furthermore, context information also seems to

play an important role when supplying the knowledge needs of developers in program

comprehension scenarios. Unfortunately, their findings reveal that context information

is typically implicit and not captured.

Moreover, Maleej et al. suggest that the implementation of such tools would re-

quire the instrumentation of the IDE and continuous observation of the work of de-

velopers. To this end, they found that developers are willing to share information

about their work collected by the IDE automatically, the vast majority of develop-

ers agree to share non-personal information, such as artifacts used and experience

made, while comprehending software. Finally, one of their most interesting findings is

that developers put themselves in the role of users at the start of a comprehension process

and try to collect and comprehend usage data. They observed developers inspecting a

visible behavior in user interfaces and comparing it to expected behavior in bug fixing

29

as well as in other implementation tasks. This strategy aims at understanding the pro-

gram behavior and structure, and at getting first hints for further program exploration, an

alternative to reading and debugging source code. This observation suggests the poten-

tials of usage data at deployment time to facilitate comprehension at development time.

These trends should be further studied and considered when designing and introducing

new context-aware, personalized methodologies, and tools for program comprehension,

including accessing and sharing knowledge about programs.

Parnin et al. (PARNIN; ORSO, 2011), investigated aspects of automating debug-

ging tools, observed that participants might be using automating debugging tools to find

other statements that are near the fault, but ranked higher than the fault. They suggest that

programmers may use tools to identify starting points for their investigation, some of

which may be near the fault. Parnin et al. (PARNIN; ORSO, 2011) determined that pro-

grammers do not visit each statement in a linear fashion, and the navigation pattern was

not linear. They claim that only giving the statement was not enough for the participants

to understand the problem and that more context was needed, which made us conclude

that complete bug understanding is not a realistic assumption. In the same study, Parnin

et al. (PARNIN; ORSO, 2011) reported that the primary benefit of automation tools was

to point them in the right direction. They would not necessarily use the tool to find the

exact faulty statement, but rather identified several candidate causes for the failure.

Even if the tool did not point the exact place of the fault, displaying relevant starting

points could help program understanding considerably, and debugging tools may be

more successful if they focused on searching through or automatically highlighting cer-

tain suspicious statements. Besides, some participants wanted more program structure

information with the statements (e.g., method names). They also wanted alternative

views, different ways of sorting and, in general, different ways of interacting with the

data.

Parnin et al. (PARNIN; ORSO, 2011) claim that for a tool to be useful, it should

seamlessly integrate the distinct parts of the debugging technique considered and pro-

vide end-to-end support for it. Although some of these issues can be addressed with care-

ful engineering, it may be useful to focus research efforts on ways to streamline and

integrate activities such as coverage collection, test-case grouping, and code review.

Finally, LaToza and Myers (LATOZA; MYERS, 2010) suggested that tools could

significantly improve developer productivity by supporting searches across possible paths

for statements matching a wider variety of search criteria, and their results also suggest

30

that developers could perform coding tasks more quickly and accurately with tools that

more directly support answering reachability questions.

2.2 Static and Dynamic Analysis of Software

Static analyses examine a piece of code in the absence of input data and without

running the code (AYEWAH et al., 2008). It could identify potential security violations

(SQL injection), runtime errors (dereferencing a null pointer e.g.,) and logical discrepan-

cies (a conditional test that can’t possibly be true). In most circumstances, the analysis is

performed on a particular version of the source code, and in the other cases, on several

software versions.

Dynamic analysis is the analysis of data gathered from a running program, pro-

viding a picture of software behavior (CORNELISSEN et al., 2009). It typically com-

prises the analysis of a system’s execution through interpretation (e.g., using the Virtual

Machine in Java) or instrumentation, after which the resulting data are used for such

purposes as reverse engineering and debugging. Several studies about dynamic analysis

have to be highlighted as (CORNELISSEN et al., 2009),(CORNELISSEN; ZAIDMAN;

DEURSEN, 2011), (GRATI; SAHRAOUI; POULIN, 2010), (ZIADI et al., 2011), and

(LABICHE; KOLBAH; MEHRFARD, 2013). Dynamic analysis brings some benefits

that are (CORNELISSEN et al., 2009):

• The precision concerning the actual behavior of the software system, for example,

in the context of object-oriented software with its late binding mechanism.

• The fact that a goal-oriented strategy can be used, which entails the definition of

an execution scenario such that only the parts of interest of the software system are

analyzed.

Some limitations that can be highlighted are (CORNELISSEN et al., 2009):

• inherent incompleteness of dynamic analysis, as the behaviors or traces under anal-

ysis capture only a small fraction of the usually infinite execution domain of the

program under study. Note that the same limitation applies to software testing.

• difficulty of determining which scenarios to execute to trigger the program

elements of interest. In practice, test suites can be used, or recorded executions

involving user interaction with the system.

• scalability of dynamic analysis due to the large amounts of data that may be

31

introduced in dynamic analysis, affecting performance, storage, and the cognitive

load

2.3 Data frugality

Datensparsamkeit or data frugality (FOWLER, 2016) is an attitude to how we

capture and store data, saying that we should only handle data that we need.

2.4 Re-opened Bugs

In large software development projects, when a programmer is assigned a bug

to fix, she typically spends a lot of time searching (in an ad-hoc manner) for instances

from the past where similar bugs have been debugged, analyzed and resolved (ASHOK

et al., 2009). No single person understands all the code in such systems, and often

new hires, who have little or no context about the code, are given the job of debugging

failures. A recent study (BUGDE et al., 2008) revealed that developers and testers spend

significant time during diagnosis looking for similar issues that have been resolved in

the past. For example, the same bug or a very similar bug may have been encountered

and fixed in another code branch, and programmers would greatly benefit from knowing

this information.

According to Nguyen et al. (NGUYEN et al., 2010), a bug-fixing change is consid-

ered recurring if it is repeated identically or with relevant, slight modifications on several

code fragments at one or multiple revisions. Kim et al. (KIM; PAN; WHITEHEAD, 2006)

confirmed the existence of recurring bugs, showing that there are about 20-40% of total

fixing changes appear repeatedly.

Finally, An et al. (AN; KHOMH; ADAMS, 2014), who investigated reopened

faults in open-source systems, report that reopened faults can account for up to 10% of all

reported faults in a system. Thus, we argue that debugging knowledge should be saved

and shared among developers. Software development is, in general, a cooperative effort

(FUGGETTA, 2000).

2.5 Debugging

Debug. To detect, locate, and correct faults in a computer program. Tech-
niques include the use of breakpoints, desk checking, dumps, inspection, re-
versible execution, single-step operations, and traces.

32

—IEEE Standard Glossary of SE Terminology—

Debugging is the process of discovering and fixing faults that prevent correct oper-

ations of software programs (IEEE, 1990). Thus, any process that aims at finding defects

can be considered “debugging”. The software engineering community usually focuses on

one kind of particular debugging process, which consists in using a tool called debugger:

interactive debugging.

Developers have used many processes and tools to debug programs. These pro-

cesses and tools range from control flow graphs, profiling tools, logs (BLASCIAK; PARETS,

), to static analyses (BALL; RAJAMANI, 2002).

Understanding the cause of a failure typically involves complex tasks, such as

browse on program dependencies and execute a piece of software several times with dif-

ferent inputs (PARNIN; ORSO, 2011). When a failure occurs, developers must perform

three main essential activities. First, fault localization that consists of identifying the

program statement(s) responsible for the failure. Second, fault understanding involves

comprehending the reason for the failure. Indeed, fault correction is determining how to

modify the code to remove it. Briefly, fault localization, understanding, and correction

are associated with debugging.

Software debugging methods can be divided into fault localization and fault cor-

rection techniques (HOFER; WOTAWA, 2012). Fault localization methods focus on nar-

rowing down potential faulty areas. They include spectrum-based fault localization, delta

debugging, program slicing, and model-based software debugging.

Araki et al. described the debugging activity as an interactive process where de-

velopers make hypotheses, then verify them by examining the problems (ARAKI; FU-

RUKAWA; CHENG, 1991). Developers then refute or validate their hypotheses until the

tasks are resolved. Katz and Anderson (KATZ; ANDERSON, 1987) conducted several

experiments to study how developers debug programs. They observed that the participant

understanding is affected by their debugging behavior. The participant ability to fix faults

is not affected by their debugging behavior, but participants faced difficulties locating

faulty program elements.

Zeller (ZELLER, 2006) introduced the concept of scientific debugging, claiming

that general debugging process could be inspired by the scientific method. Given an

issue report, developer tries reproducing the bug, observing the failure. Next, based on

the observation, developers create hypotheses about the cause of the failure. After that,

developer tests their hypotheses. To do that, developers can print a value at a particular

33

location to determine whether to reject the hypothesis or not. Often, they may change a

source code and evaluate whether the program performs as expected. If the program gives

an unexpected result, it means the hypothesis is rejected. If the hypothesis is rejected, a

developer needs to make a new hypothesis about the failure cause. If the hypothesis is

supported and the bug is fixed, programmers stop the debugging process. If the hypothesis

is supported, but the bug is not fixed, developers refine the hypothesis and test it again.

Debugging is a time-consuming activity, taking as much as 50% of programming

time (ZAYOUR; HAMDAR, 2016). Developers spend prolonged periods of times in de-

bugging sessions to find faults or to understand a program (LATOZA; MYERS, 2010).

During these sessions, using traditional debugging tools, they gather a lot of information

and create mental models of the program (MURPHY; KERSTEN; FINDLATER, 2006;

STOREY, 2006). Unfortunately, several studies have shown that developers quickly

forget details when they explore a different location in the source code, losing parts of

their mental models (TIARKS; RÖHM, 2012). In a recent research, Tiarks and Röhms

(TIARKS; RÖHM, 2012), who investigated the behavior of 28 professional developers,

observed that to recall parts of their mental models, some developers write notes on pieces

of papers or use external editors as short-term memory.

Finally, developers must find suitable breakpoints when working with debuggers

(TIARKS; RÖHM, 2012) to reproduce the data and control flow of the program. Tiarks

and Röhms (TIARKS; RÖHM, 2012) observed that professional developers encounter

problems to set adequate breakpoints and that deciding where to toggle breakpoints is an

“extremely difficult" task. They also showed that, often, developers set a lot of break-

points at the beginning of their debugging sessions to then discard irrelevant breakpoints

while they debug the program, which causes a significant overhead to developers.

2.5.1 Interactive Debugging

Interactive debugging consists in using a debugger tool, yet known as program

animation, stepping, or following execution (ZAYOUR; HAMDAR, 2016). Also, many

developers refer to this process as simply debugging, because several IDEs provide de-

buggers to support debugging.

However, while debugging is the process of finding faults, interactive debugging

is one particular debugging process in which developers use tools to investigate the execu-

tion of a program interactively. We use the expressions interactive debugging or stepping,

34

but there is not yet a consensus on what is the best name for this debugging process.

2.5.2 Debugging Tools

When maintaining and evolving programs, developers must locate and understand

the causes of the faults. Some developers tend to print pieces of text (e.g.,printf()

in C) to identify faulty program elements, but a debugging tool is essential in any pro-

gramming environment (CHIC; NIERSTRASZ; GIRBA, 2013), as it helps developers to

understand the dynamic behavior of software systems. Debugging tools have been devel-

oped to help developers locate and–or understand essential elements. Researchers have

studied to improve debugger tools to address the developer issues. In this section, we

review related research to Swarm Debugging. Our work transverses several domains, in-

cluding debugging techniques, visual debugging, databases, and collective intelligence.

This section highlights some debugging tools proposed by several researchers.

Hipikat (CUBRANIC; MURPHY, 2003)(CUBRANIC et al., 2005) is an Eclipse

open-source tool that groups an implicit memory for a project by analyzing links between

stored artifacts, and that recommends them from the archives that are relevant to a task.

Through two qualitative studies, they have shown that this approach helps a newcomer

perform a task adequately on an unknown system. It also provides search for code-related

artifacts, basing on the notion of relationships among artifacts, which are derived from

“project memory,” which identifies paths traversed by earlier members of a team, and

textual similarity. The textual similarity element is a hand-crafted textual match that

specifies weights to words based on a global prevalence of the word in the repository and

local prevalence of the word to the document. Also, Hipikat supports foraging by reducing

the cost of navigation among code and non-code artifacts, such as bug reports, CVS logs,

and e-mails (CUBRANIC et al., 2005). Our approach shares same perspective, but with

build knowledge from several debugging sessions, while Hipikat’s recommendations are

made purely based on the content of artifacts (CUBRANIC et al., 2005).

Romero et al. (ROMERO et al., 2007) extended the work of Katz and Anderson

(KATZ; ANDERSON, 1987) and identified high-level debugging strategies, e.g., step-

ping and breaking execution paths and inspecting variable values. They reported that,

according to their background and their level of expertise, developers use the information

available in the debugging environment differently.

JIVE (GESTWICKI; JAYARAMAN, 2005; CZYZ; JAYARAMAN, 2007) is an

35

Eclipse plug-in that is based on the Java Platform Debugging Architecture (JPDA) and

can analyze Java program executions. JIVE requests notification of some runtime events,

including class preparations, step, variable modifications, method entries and exits, thread

starts and ends. JIVE capture respectively, the current execution state and execution his-

tory of a Java program, providing two kinds of runtime visualizations of Java programs -

object diagrams and sequence diagrams. However, the JIVE sequence diagrams can be-

come long and unwieldy (JAYARAMAN; JAYARAMAN; LESSA, 2016), and Wang et al.

(JAYARAMAN; JAYARAMAN; LESSA, 2016) proposed a new approach their compact

representation.

DebugAdvisor (ASHOK et al., 2009) is a recommender system to improve debug-

ging productivity by automating the search for similar issues from the past. Like Hipikat

(CUBRANIC et al., 2005), DebugAdvisor includes past bug reports, logs of interactive

debugger sessions, data on related source code changes, and data about people who can be

consulted. These information sources are a mixture of structured and unstructured data,

and ignore all the structure in the data, using only full-text search to index and search

through the data. This approach has the advantage that could reuse existing indexing and

searching tools; however, the experimental result showed that there is much room for

improvement in the quality of retrieved results (ASHOK et al., 2009). Differently, of De-

bugAdvisor, we use structured and unstructured debugging data in our approach. Further-

more, DebugAdvisor does not use debugging fine-grained events to suggest breakpoints

or explore debugged software regions. It is limited as an unstructured searching tool.

Debugging Canvas (DELINE et al., 2012) is a tool where developers debug their

codes as a set of code bubbles, explained with call paths and variable values, on a two-

dimensional pan-and-zoom surface. Code Bubbles employed a call stack bubble in the

debugger to show the parent methods above the current bubble in the call stack bubble.

DeLine et al. showed Code Bubbles is useful with long or complex code paths, with large

code bases with many layers, with unfamiliar code bases, and when the code involved

dynamically linked code, factories, or other indirect forms of control flow. SD uses the

similar idea, but it integrates source code and visualization in two separate views.

Minelli et al. (MINELLI et al., 2014) presented a visual approach to understanding

and characterise development sessions from the UI perspective, collecting, visualizing,

and analyzing hundreds of development sessions and report on their findings. To collect

data, they used DFlow, a tool that records all interactions with the IDE. Barr and Mar-

ron (BARR; MARRON, 2014) proposed TARDIS, a time-traveling debugger (TTD) that

36

supports reverse execution, helping to speed hypothesis formation and validation loop by

allowing developers to navigate backward, as well as forwards, in a program’s execution

history. Moreover, Zayour and Hamdar (ZAYOUR; HAMDAR, 2016) studied the dif-

ficulties faced by developers when debugging in modern IDEs. They reported that the

nature of the IDE affects the time spent by developers during debugging activities.

2.5.3 Advanced Debugging Approaches

Several advanced debugging approaches have been proposed for last years. First,

Zheng et al. (ZHENG et al., 2006) presented a systematic approach to statistical debug-

ging of software programs in the presence of multiple bugs, using probability inference

and common voting framework to accommodate more general bugs and predicate settings.

Ko and Myers (KO, 2006; KO; MYERS, 2009) introduced the interrogative de-

bugging. It is a paradigm that allows developers to ask questions directly about their

programs’ output, helping them to determine more efficiently and accurately what parts

of the system to understand. They evaluated their paradigm using a prototype called the

Whyline, and they claim that their approach reduces debugging time by a factor of eight.

Pothier and Tanter (POTHIER; TANTER, 2009) proposed Omniscient debuggers,

and approach to support back in time navigation across previous program states. In om-

niscient debuggers, all events from the execution are logged and can be inspected and

queried. As a result, programmers can ask the debugger which events (e.g., an assign-

ment) are responsible for a current state (e.g., a variable being null). Performance and

footprint are two issues in omniscient debugging because of all events from program

execution must be processed and stored efficiently.

Delta debugging (HOFER; WOTAWA, 2012) is an approach proposed by Hofer

et al. that the smaller the failure-inducing input, the less program code is covered. It can

be used to minimize a failure-inducing input systematically.

Ressia et al. (RESSIA; BERGEL; NIERSTRASZ, 2012) proposed an alternative

approach named object-centric debugging, focusing on objects as the key abstraction ex-

ecution for many typical developer tasks. The central point of object-centric debugging is

to allow users to perform operations directly on the objects in a computation, instead of

performing operations on the execution stack. Object-centric debugging supports debug-

ging operations that are specific of the Object Oriented paradigm (e.g., set a breakpoint

on an object call). The premise of object-centric debugging is that a static representation

37

of the program (the code) and the stack-based run-time model adopted by most debug-

gers are not suitable for higher level abstractions - objects in the case of object-centric

debugging. Further, object-centric debugging is based on a runtime representation of the

program.

Estler et al. (ESTLER et al., 2013) discussed the Collaborative Debugging de-

scribing CDB, a debugging technique and integrated tool designed to support effective

collaboration among developers during shared debugging sessions. Their study suggests

that debugging collaboration features are perceived as important for developers, and can

improve the experience in collaborative context. Differently of CDB (synchronous de-

bugging tool), our approach uses asynchronous debugging sessions. Consequently, our

approach does not have several collaboration issues founded on CDB.

Chen and Kim (CHEN; KIM, 2015) proposed mining the Stack Overflow QA site

to leverage the large mass of crowd knowledge to aid developers while debugging a sys-

tem. Crowd Debugging detects defective code and suggests solutions with explanations

for developers. The authors perform crowd debugging in eight high quality and well-

maintained projects, claiming that it can identify bugs that are invisible to existing tools.

Salvaneschi and Mezini (SALVANESCHI; MEZINI, 2016) presented the RP De-

bugging, a new debugging paradigm which provides support to inspect and reason about

the flow of changes through a reactive programming application. When an application

is debugged with RP Debugging, users can visualize dependency graphs and use them

as a model for reasoning about the application execution, implementing this approach in

Reactive Inspector, a debugger for reacting.

2.6 Information Foraging Theory

Information foraging theory (IFT) is founded on optimal foraging theory, devel-

oped by Pirolli and Card (PIROLLI; CARD, 1999) to understand how individuals search

for information. Optimal foraging theory is inspired in the biological sciences, in inves-

tigations and theories of how animals hunt for food; this started with Pirolli and Card

for finding relationships between users’ information search patterns and animals’ food

foraging strategies.

In the field of information technology, the predator is the person in need of infor-

mation, and the prey is the information itself (LAWRANCE et al., 2008). Using concepts

such as “patch,” “diet” and “scent,” IFT describes the most suitable pages a web-site user

38

will visit in pursuit of their required information (prey), by clicking links carrying words

that are a near match to (smell like) their information need. The scent of information

comes from the semantic relationships between words expressing an information need

and words contained in links to web pages.

Human “predators” searching for information “prey” look at many sources. They

look for “scents” by following "cues" in the environment, indicators of the relation of

information sources to prey. Inspired by appeals in the psychological literature for eco-

logical accounts of contextually dependent human behaviors, information foraging theory

offered a new perspective for evolving strategies to find information relevant to their needs

efficiently without processing everything, minimizing the mental cost to achieve their

goals.

Lawrance et al. (LAWRANCE; BELLAMY; BURNETT, 2007) reported a study

that makes use of information foraging theory to analyze how professional developers

explore on source code during maintenance. Their results showed that information for-

aging theory was a significant predictor of the developers’ maintenance behavior

(LAWRANCE et al., 2008). They claim that information foraging theory can provide

the foundations needed for tool development. Thus, they believe that programmers may

be information foragers when debugging because their research has shown that when

debugging, programmers create hypotheses and then search for information to verify

(or refute) this hypotheses. Also, they conjectured that such hypotheses are linguistically

related to the words in the bug reports, and consequently, bug reports define the program-

mer’s goal and the scent they are seeking, attempting to fix bugs found a correlation

between the bug report and the set of classes visited by the programmers (LAWRANCE

et al., 2008).

In another study, Kuttal et al. (KUTTAL; SARMA; ROTHERMEL, 2013) showed

that the stronger scents available within mashup programming environments could im-

prove users’ foraging success, leading to a new model for debugging activities framed

concerning information foraging theory to support debugging.

Fleming et al. (FLEMING et al., 2013) studied the applicability of Information

Foraging Theory for understanding information-intensive software engineering tasks. They

concluded that without environment support, foraging during debugging may be te-

dious and costly, and in IFT terms, setting breakpoints enriches the environment by

creating low-cost links. Finally, Piorkowski et al. (PIORKOWSKI; FLEMING, 2013)

claim that diversity is essential regarding IFT. Even though developers were pursuing the

39

same overall goal (find the bug) during a debugging session, they sought highly diverse

diets, suggesting that debugging tools need to support “long tail” demand curves of pro-

grammer information.

2.7 Collective Behaviour and Swarm Intelligence

Software systems are large and complex currently (HILL, 2010). To manage this

complexity, software teams have used collaborative and self-organisation approaches

(CHOW; CAO, 2008), and we claim that software projects have some analogies with col-

lective behaviors. That is an important conceptual aspect of our approach, and we present

several studies that explore this concept, applying the finding that many collective hu-

man behaviors (debug foraging e.g.,) are similar to their animal counterparts (SUMPTER,

2006).

In recent years, the notion of self-organization has been used to understand col-

lective behavior of animals (SUMPTER, 2006). The central principle of self-organization

is that simple repeated interactions between individuals can produce complex adap-

tive patterns at the level of the group. Inspiration comes from patterns seen in physical

systems, such as spiraling chemical waves, which arise without complexity at the level of

the individual units of which the system is composed. The suggestion is that biological

structures such as termite mounds, ant trail networks and even human crowds can be

explained concerning repeated interactions between the animals and their environment,

without invoking individual complexity.

Sumpter (SUMPTER, 2006) argues that the key to understanding collective be-

havior is in identifying the principles of the behavioral algorithms followed by individu-

als and of how information flows between the animals. These principles, such as positive

feedback, response thresholds, and individual integrity are repeatedly observed in very

different animal societies. The individual units do not have a complete picture of their

position in the overall structure and the structure they build has a form that extends well

beyond that of the individual units.

A social insect colony is a superorganism, without a brain, and each worker has

access to only very local information (DENEUBOURG et al., 1990). To understand how

complex colonies are made without a central coordination, emerging from a collective

behavior, Deneubourg et al. claim that it is necessary to use an approach in which the

common pattern is seen as resulting from autocatalytic interactions between simple

40

and identical explorers. Moreover, this analogy may be made on the formation of paths,

for example, by mammals in scrub or grassland. The more individuals have passed at one

position, more vegetation is trampled, and less resistance it offers.

Studying ant colonies, Li et al. (LI et al., 2014) proposed that the entire foraging

process of ants is guided by three successive strategies: hunting, homing, and path build-

ing, showing the transition from chaotic to periodic regimes observed in their model

results from an optimization scheme for group animals with a home. According to

that investigation, the behavior of such insects is not represented by random but rather

deterministic walks (as generated by deterministic dynamical systems) in a random en-

vironment: the animals use their intelligence and experience to guide them. The more

knowledge an ant has, the higher its foraging efficiency is. When young insects join

the collective to forage with old and middle-aged ants, it benefits the whole colony in the

long run. The resulting strategy can even be optimal foraging. Moreover, to survive, ants

need to leave their nest and forage for food. The survival-of-the-fittest mechanism entails

that ants do find not only food but also an optimal path between their nest and the food

source, reflecting the collective intelligence of the insects. Nest and food source indeed

play important roles in ants’ foraging behavior.

For example, if an ant in a small colony finds a food source a long way from the

nest, then by the time another ant passes over the place she left a pheromone trail, the

pheromone will probably have evaporated (DENEUBOURG et al., 1990). In this case,

the trail does not help other ants find the food. For large colonies of ants, however, it is

more likely that an ant will cross the pheromone trail before it evaporates and reinforce

it. The reinforcement leads to the familiar positive feedback loop and a well-established

trail between nest and food. Thus, the output of the system, i.e. number of ants visiting

the feeder and hence food collected, is low for small ant colonies but rapidly increases as

the colony becomes larger. It is in this sense they call ant foraging self-organized: ants

follow only local rules regarding the laying and following of pheromone, but the resulting

trail structure is built on a scale well beyond that of a single ant.

Swarm Intelligence is a combination of simple agents interacting locally and with

their environment, usually following very simple rules. Although there is no centralized

control structure organizing how individual agents should behave, interactions between

such agents lead to the emergence of global behavior, unknown previously by individual

agents.

The roots of swarm intelligence are deeply embedded in the biological study

41

of self-organized behaviors in social insects (GARNIER; GAUTRAIS; THERAULAZ,

2007). Self-organization is a set of dynamical mechanisms whereby structures appear at

the global level of a system from interactions among its lower-level components, without

being explicitly coded at the individual level. It relies on four basic ingredients (GAR-

NIER; GAUTRAIS; THERAULAZ, 2007):

1. positive feedback: results from the execution of simple behavioral “rules of thumb”

that promote the creation of structures.

2. negative feedback: counterbalances positive feedback and that leads to the sta-

bilization of the collective pattern, resulting from the limited number of available

foragers, the food source exhaustion, and the evaporation of pheromone or compe-

tition between paths to attract foragers.

3. stochastic actions: randomness enables the colony to discover new solutions. For

instance, lost foragers can find new, unexploited food sources, and then recruit nest

mates to these food sources.

4. stigmergic interactions: self-organization requires multiple direct among individ-

uals to produce apparently deterministic outcomes and the appearance of large and

enduring structures.

Garnier et al. (GARNIER; GAUTRAIS; THERAULAZ, 2007) proposed that col-

lective behaviors in social insects can be understood as the combination of coordina-

tion, cooperation, deliberation, and collaboration. Each of these functions emerges at

the collective level from the unceasing interactions between the insects. Together, the

four functions of organization produce solutions to the colony problems and may give the

impression that the colony as a whole plans its work to achieve its objectives.

The increased flexibility of collective structures in an insect colony triggered by

simple modulations of the individual behavior opens ways toward the design of self-

adaptive swarm intelligent systems. The pursuance of experimental investigations in bi-

ological systems and the development of new theoretical frameworks about the adaptive

role of these modulations should encourage the emergence of new applied studies.

Tschinkel (TSCHINKEL, 2015) suggested that the central mystery of social insect

behavior is for everything they accomplish without a leader, without a blueprint, without

a plan, without prior instruction, and in the case of subterranean ant nests, in the dark, but

with a shared set of behavioral rules (TSCHINKEL, 2015). Each worker carries within

herself the “instructions” of what to do given a certain context, how to interact with other

42

workers and the forming nest, and when to do it. The tasks are carried out in “series-

parallel”, that is, each worker does a small part of the job, after that, another worker may

do the next step, while the first responds to something else. Applying a labor highly re-

dundant, the work gets done in thousands of little steps, each seeming perhaps undirected,

random or even backward, but statistically, progress is directional, and the nest gradually

appears.

Under the right circumstances, groups are remarkably intelligent and are often
better than the smartest person in them.
— James Surowiecki: Wisdom of the Crowds During —

Collective intelligence is shared or group intelligence that emerges from the col-

laboration, collective efforts, and competition of many individuals and appears in consen-

sus decision making. The term appears in sociobiology, political science and context of

mass peer review and crowdsourcing applications(WIKIPEDIA, 2015).

In the context of software engineering, according to Bruch et al. (BRUCH et al.,

2010), today’s Integrated Development Environments (IDEs) only integrate the tools and

knowledge of a single user and workstation. This neglects the fact that the way in

which we develop and maintain a piece of software and interact with our IDE provides

a rich source of information that can help ourselves and other programmers to avoid

mistakes in the future, or improve productivity otherwise. They argue that, shortly, IDEs

will undergo a revolution that will significantly change the way in which we develop and

maintain software, through the integration of collective intelligence, believing that there

is great space for improvement by exploiting the knowledge of the masses. However, to

unleashing the full power of the crowds, software engineering community has to provide

an appropriate environment for building and evaluating IDE.

Bruch et al. (BRUCH et al., 2010) and Storey et al. (STOREY et al., 2014) claim

that collective intelligence is an open-field for new software development tools. Bruch et

al. (BRUCH et al., 2010) argue that actual Integrated Development Environments (IDEs)

only integrate tools for and knowledge of a single developer and leave out other devel-

opers. Moreover, developers use IDEs only because they integrate all tools necessary to

browse, manipulate, and build programs. If developers have questions about a particular

piece of code, they must go outside of their IDEs to find answers, for example by asking

colleagues or searching on-line. After they found an answer, the newly gained knowledge

is usually lost inside the IDEs. Besides, Storey et al. (STOREY et al., 2014) argue that

new developers expect collaborations: the newer generation of developers is proficient in

social media, for communication and learning. They are opened, transparent, and expect

43

to share their knowledge.

Gu et al. (GU, 2012) defends that the next generation of IDEs has to incorporate

a general framework to capture and exploit IDE interactions, and create an ecosystem of

developer-aware applications and plugins. Additionally, we share their vision that the key

to building the next generation of IDEs is to transform IDEs from being order-takers into

intelligent, user-aware programs that monitor and reason about how their users interact

with them.

The collective intelligence is inspired on a self-organization of ant societies. This

self-organization could be observed on this quotation:

Studying self-organization in ants can make us aware that much of human
activity is also self-organized, that is, that the tasks are accomplished by com-
petent, distributed agents operating under a shared set of rules and interacting
directly with the task itself. In humans as in ants, intense communication is not
necessary to get the job done, and the outcome is to vary degrees an emergent
phenomenon. This is apparent at the scale of economies, but also operates
at many scales in human societies. It seems likely that we overestimate the
importance of hierarchy and underestimate that of self-organization in human
societies. Thus, we might profit from careful analysis of how leaderless groups
of individuals with shared behavioral programs, be they ants or humans, inter-
act to get the job done.
— Walter R. Tschinkel: The architecture of subterranean ant nests: beauty
and mystery underfoot —

Like ant’s societies (TSCHINKEL, 2015), developers usually does not have a

global picture of a software system (BALL; EICK, 1996), and this brings us to another

concept: emergence. Emergence involves local, and to some extent random, interactions

between agents resulting in intelligent global behavior emerging on which hundreds of

simple events can add up to make something complex happen. In nature, this global be-

havior is usually beyond the scope of understanding of the simple agents, so they are just

doing what they are hard-wired, or ‘’programmed", to do. The complex, emergent behav-

ior renders a selective advantage as simple organisms can punch well above their weight

- a swarm of ants might repair a nest very quickly for example.

In fact, a metaphor of ant societies and software systems could also be analyzed in

terms of architectural organization. For instance, Caserta et al. proposed a visualization

using a city metaphor (Figure 2.1), we compare the visualization with an ant picture

colony (Figure 2.2) presented in Tschinkel’s work, observing some similarities. Another

insightful example of similarities between ant nest and software could be observed in

Figure 2.3 on a visualization proposed by Balzer et al. (BALZER; DEUSSEN, 2007) and

a giant nest of ants showed by Hölldobler (HÖLLDOBLER; WILSON, 2009).

In fact, this similarities between self-organization on ant nest and software

44

Figure 2.1: Visualization of dynamic call relations on an execution of JEdit, Java JRE
classes using 3D-HEB.

Source: (CASERTA; ZENDRA; BODéNèS, 2011)

architecture might not be a coincidence. Cockburn claims best architectures, require-

ments, and designs emerge from self-organizing teams, growing in steps and following

the changing knowledge of the team and the changing wishes of the user community

(COCKBURN, 2006)1. Nevertheless, these similarities are highlighted when Highsmith

and Cockburn (HIGHSMITH; COCKBURN, 2001) discussed that software process de-

velopment is a complex adaptive system and decentralized on which autonomous individ-

uals interact to create innovative and emergent results.

1These similarities open may be some opportunities to a new metaphorical approach for software orga-
nization: software could be represented like an ant nest architecture. However, we did not investigate that
claims in this thesis, requiring future studies to evaluate its pertinence.

45

Figure 2.2: Ant Colony

Source: (TSCHINKEL, 2015)

Figure 2.3: Views of a real world graph in R3 (left, upper right) and R2 (lower right)
representing relations within a software system. The graph contains 1539 vertices, 1847

edges, and 126 clusters. (BALZER; DEUSSEN, 2007)

Source: (BALZER; DEUSSEN, 2007)

46

Figure 2.4: Ant Colony

Source: (TSCHINKEL, 2015)

2.8 Crowd on Software Engineering

Crowd is a large group of people that are gathered or considered together (WIKIPEDIA,

2016). The term "the crowd" may sometimes refer to the so-called lower orders of peo-

ple in general (the mob). A crowd may be definable through a common purpose or set

of emotions, such as at a political rally, a sports event, or during looting (this is known

as a psychological crowd), or may simply be made up of many people going about their

business in a busy area.

In software engineering context, crowd development envisions a new way in which

to build software, encompassing transient, fluid workforces automatically arranged by the

environment to perform microtasks within a workflow (NADA, a). As in any potentially

disruptive idea, it is far from clear in what contexts, if any, it may ultimately prove its

value. But in exploring questions such as what context and information are required

by developers in micro tasks, the exploration itself may create important new scientific

knowledge about the nature of software development work, which may be broadly valu-

able in many ways.

47

In this context, Storey et al. (STOREY et al., 2014) advocate that the rise of the

"social programmer" who actively cooperates in online communities and openly con-

tributes to the production of a vast body of crowdsourced socio-technical meaning. The

most recent generation of developers are using and expecting collaboration; they are by

nature open, transparent and assume to share. They claim that the software develop-

ment has entered a social era concerning of media use in software engineering. However,

research into some of these relatively new phenomena indicates a lack of tool support for

crowdsourcing activities in software engineering (STOREY et al., 2014). Finally, they

elaborated several questions about collective intelligence and crowd software engineer-

ing: 1) What are the barriers that may block or turn some potential collaborators away?

2) What kinds of new tools can entice, improve and capture crowd-based participation in

software engineering? 3) How do we ensure crowd diversity, as a “smart crowd” depends

on having diverse skills and viewpoints?

2.9 Final remarks

Debugging is a time-consuming program activity. However, although the software

engineering community provides advanced debugging approaches and tools to improve

fault localization and program understanding, none of these collect debugging activities

data to help on understanding of debugging activities with the goal of improving software

debugging tools and–or program comprehension.

Unfortunately, several findings reveal that currently debugging context informa-

tion is typically implicit and not captured, despite clearly to understand the program,

developers need to acquire run-time information and frequently execute the application

using a debugger. Consequently, researchers have observed that personalized methodolo-

gies and tools for program comprehension, including accessing and sharing knowledge

about programs should be proposed and investigated.

Furthermore, several studies have highlighted how debugging could be improved

applying Foraging Information Theory or a collective intelligence perspective. Finally,

we discussed some aspects of collective behavior that open new avenues for debugging

approaches.

In the next chapter, we present Swarm Debugging , our approach to addressing

some of those opportunities towards context-aware support.

48

49

3 SWARM DEBUGGING

Swarm Debugging is an approach inspired by swarm intelligence (SI) and infor-

mation foraging theory (IFT) to support and improve debugging activities. As we men-

tioned in Chapter 2, traditionally, debugging is an isolated activity performed by an indi-

vidual, collecting information about a system intended to find possible fails. The SI and

IFT concepts inspired us to think a different way of doing debugging. Using the debug-

ging strategies adopted by several individuals to find fails (IFT approach) but as a super

organism outcome from series of activities performed autonomously by team members

(SI approach). Exactly as a swarm, our approach takes advantage of the same motivations

underlying on crowd software engineering.

In this chapter, firstly we discuss the concepts that inspired this approach. Then,

we describe key aspects of our approach. Finally, to represent the data that integrate

the approach and explain their relations, we present a conceptual domain meta-model to

describe Swarm Debugging dataset.

3.1 Foundations of Swarm Debugging

Swarm Debugging (SD) was inspired by Information Foraging Theory (IFT, Sec-

tion 2.6), swarm intelligence (Section 2.7), and previous approaches (Sections 2.1 and

2.5.2), which formed a conceptual framework in which interactive debugging can be used

to create this "intelligence" through the provided context-aware tools. Clearly, it should

be noticed that these concepts are well known, but their integration for debugging is an

original idea. In the following sections, we present how Swarm Debugging proposes this

integration in a way that it is positioned at the intersection of these ideas (see Fig. 3.1).

Debugging is a foraging process in software systems (FLEMING et al., 2013;

PIORKOWSKI; FLEMING, 2013), and we are not the first ones to consider IFT as useful

for debugging (LAWRANCE et al., 2013). Indeed, these authors adopt IFT as a model

one prey/one predator for debugging. Swarm Debugging uses these assumptions to

support an idea that interactive debugging environments could be used as an IFT

environment. However, differently from the IFT proposal that uses a model one prey/one

predator, our approach extends this concept, applying many developers on (different or

a same) tasks working independently, but sharing debugging traces to make knowledge

and behaviors emerge, creating a swarm intelligence environment as a result.

50

Figure 3.1: Main concepts as foundations of Swarm Debugging

Swarm
IntelligenceDebugging

Information
Foraging
Theory

Tools and
Recommendation

Systems

SwarmSwarm
DebuggingDebugging

Source: from author

Thus, Swarm Debugging applies swarm intelligence concepts (Fig. 3.1) to support

interactive debugging (refer to A in Fig. 3.2). It collects data during debugging sessions

(refer to B in Fig. 3.2), storing data as breakpoints, reachable paths (refer to C in Fig.

3.2), transforming this data into knowledge through visualizations, searching tools, and

recommendation systems (refer to D in Fig. 3.2). Finally, this knowledge about software

projects is shared, producing a positive feedback loop (Fig. 3.2).

Briefly, exactly like ants in a swarm, developers work individually to build knowl-

edge that appears to be orchestrated by some collective intelligence. In fact, the em-

phasis here is on appears because there is no particular orchestration. Individual actions

are combined with the actions of others, and the collective intelligence emerges from this

interaction.

Unfortunately, no previous work leverages the developers’ swarm intelligence to

improve debugging activities even though software development is, in general, a cooper-

ative effort. This fact led Maale et al. (MAALEJ et al., 2014) to pose a question: "Why

don’t share knowledge about programs?". They defend that the working context also

influences developers’ knowledge exchange behavior, which also depends on others, the

51

tasks, the size of the companies, and the number of collaborators. Swarm Debugging aims

to fill this gap, designing and introducing new context-aware, personalized approach and

tools for debugging and program comprehension, including accessing and sharing knowl-

edge about programs.

Swarm Debugging complements other approaches proposed by Mylyn (Section

2.1), Hipikat and DebugAdvisor (Section 2.5.2), using debugging session data (either

structured or unstructured), and analysing fine-grained events to collect breakpoints or

information about debugged software areas. SD, Hipikat, and DebugAdvisor share the

same essential idea: use previous data to support debugging tasks. Moreover, SD and

Mylyn share the idea of considering context-awareness in their activities. In fact, SD

and these approaches are complementary because each one treats different aspects of

various debugging data. These previous works have not supported sharing knowledge

about debugging sessions, especially with a context-aware perspective. Only the Swarm

Debugging approach combines and shares multiple context-aware debugging sessions to

explore breakpoints and interactive debugging paths in a collective way.

In fact, Swarm Debugging is a strategy to create an integrated, context-aware sup-

port for knowledge exchange. It enables the automatic capturing and sharing of knowl-

edge with its context by observing developers’ debugging interactions.

3.2 Swarm Debugging overview

Swarm Debugging (SD) is an approach that uses swarm intelligence applied on

interactive debugging data to create knowledge to support software development activi-

ties. To achieve this goal, we propose SD as illustrated in Figure 3.2.

First, several developers perform their regular activities during interactive debug-

ging sessions. Each debugging session begins by associating a task (i.e. an issue ticket)

to this session. Each task is usually assigned to a developer who must perform debugging

activities during a debugging session. For each single debugging session (Figure 3.2-A),

events as toggling breakpoints and stepping events are collected transparently. All data

produced by the developer’s crowd are compiled (Figure 3.2-B) and stored in a debugging

information repository (Figure 3.2-C). Finally, the information is transformed by mecha-

nisms to create visualizations (using visualization tools), to mine debugging data (using

searching tools) and recommend breakpoints (using a recommendation system)(Figure

3.2-D), providing an emerging knowledge for developers and closing a positive feedback

52

Figure 3.2: Swarm Debugging overview

Dev1

Dev2

Dev3

DevN

Visualisations
Searching Tools

Recommendation Systems

Single Debugging Session Crowd Debugging Sessions Debugging Information

Positive feedback

Collect data Store data

Transform information

A B C

D

Source: from author

loop.

This positive feedback is very important to SD. Using SD, developers produce

knowledge about the software, which increases as time goes, and this knowledge created

by the feedback is in fact accumulated. The original knowledge (A, on moment zero) is

modified through all the processes of debugging (i.e., after all steps B, C and D) generating

a new knowledge about the system. This positive feedback loop provides for each new

debugging interaction a new state of knowledge about the software system, continuously

growing until a complete coverage. Finally, this knowledge can be used by any developer,

because it is shared and it supports both regular tasks (as e.g.,software comprehension -

see Section 2.1) and re-opened bugs (see Section 2.4).

During a debugging session, developers analyze the code, toggling breakpoints

and stepping through it. In traditional dynamic analysis approaches (Section 2.2), all

interactions, states or events are collected by tools, typically tracing all data without any

developer decision’s control or context. Consequently, a huge quantity of data is collected

by tracers, becoming both extremely hard and very costly to analyze this data volume.

For using a typical dynamic analysis approach, developers have to install and run an

intrusive infrastructure to collect data, which is not part of their regular tasks. Moreover,

a traditional dynamic analysis usually has separate tools, adopting an approach collect-

all-mining-after as a big data approach.

53

Swarm Debugging uses a data frugality approach (Section 2.3), collecting only

paths that were intentionally explored by developers, collecting only methods explic-

itly visited by developers. It is a fundamental difference between SD and previous ap-

proaches. It means that we collect only invocations where developers call a method and

intentional events (e.g., Step Into or F5 in Eclipse IDE) for visiting a method invoked by

an analyzed method. Our approach permits that we inspect selected areas in a project

because only visited paths (chains of invocations) are collected. Briefly, our approach

typically collects only calls that are visited intentionally and analyses only these data,

with less effort in a context-aware environment.

3.3 Swarm Debugging meta-model

We have defined domain concepts to model software projects and debugging data

in our approach. This meta-model has two main goals. First, it represents the conceptual

model of the SD approach. By definition, a conceptual model is a mapping of the concepts

and relations of a domain, reflecting the real-world relationships and dependencies. Thus,

the meta-model summarizes the central concepts adopted in SD. Second, it presents the

essential elements necessary to build an infrastructure for SD.

The concepts are inspired and complement the simplified FAMIX Data model(DEMEYER;

DUCASSE; LANZA, 1999) with debugging data. FAMIX exploits meta-modelling tech-

niques to make the data model extensible. The simplified view of the FAMIX data model

comprises the main object-oriented concepts — namely Type, Method, plus the necessary

associations between them — namely Invocation and Access.

The Swarm Debugging meta-model concepts (Fig. 3.3) include:

• Developer is a SD user, which creates and executes debugging sessions.

• Product is the target software product. Product is a set of source code projects (one

or more).

• Task is a task to be executed by developers, like software comprehension, bug

location, software maintenance or refactoring.

• Session represents a Swarm Debugging session. It relates developer, project, and

debugging events.

• Type represents classes and interfaces in the project. Each type has a source code

and a file. To simplify, SD only considers types that have source code available as

belonging to the project domain, ignoring external libraries.

54

• Method is a method, procedure or function associated with a type, which can be

invoked during debugging sessions.

• Namespace is a container for types. In Java, for example, namespaces are declared

with the keyword package.

• Invocation is a method invoked from another method. It is formed by a pair of

methods: an invoking (caller) and an invoked (called).

• Breakpoint represents the data collected when a developer toggles a breakpoint in

an IDE. Each breakpoint is associated with a type and a method if appropriate.

• Event is an event data that is collected when a developer performs some actions

during a debugging session, typically stepping events (step into a method, step over,

run, return to the caller, e.g.,).

Figure 3.3: The Swarm Debugging meta-model

TaskDeveloper

Type

MethodInvocation

Breakpoint

Event

Session Project

Product

Namespace

SD model FAMIX

Source: from author

55

3.4 Final remarks

In this chapter, we presented the foundations of Swarm Debugging approach, how

it works and its meta-model. Swarm Debugging provides a transparent approach for

developers to share debugging information, creating a collective intelligence about their

software project. In Chapter 4 we will present the Swarm Debugging Infrastructure aimed

at supporting such debugging approach.

56

57

4 SWARM DEBUG INFRASTRUCTURE

Swarm Debugging (SD) is a conceptual approach that uses collective intelligence

applied on debugging data. To evaluate SD, we built an infrastructure to support it:

Swarm Debug Infrastructure. The Swarm Debug Infrastructure (SDI) implements the

SD approach, providing a set of tools for collecting, storing, sharing, retrieving, and visu-

alizing data produced during developers’ interactive debugging activities.

SDI is an Eclipse IDE 1 plug-in and a set of servers, which capture Java Platform

Debugging Architecture (JPDA) events during a debugging session. When a developer

creates a debugging session within Eclipse, the SDI starts two listeners, and it uses REST-

ful messages to communicate with servers to store debugging data. After that, some tools

are available for retrieving and visualizing these data.

SDI is organized into three main modules: (1) Swarm Debug Tracer; (2) Swarm

Debug Services; and (3) Swarm Debug Views. Next sections give details about these

three modules.

4.1 Swarm Debug Tracer

Swarm Debug Tracer (SDT) is an Eclipse IDE plug-in that listens to debugger

events during debugging sessions, extending the JPDA. Using the Eclipse JPDA, events

are listened by DebugTracer that implements two listeners: IDebugEventSetListener

and IBreakpointListener. Figure 4.1 shows the SDT architecture.

Swarm Debug Tracer has two listeners. First, SwarmDebugEventListener

implements org.eclipse.debug.core. IDebugEventSetListener inter-

face, and it intercepts all user interactions during a Eclipse debug session, as Step Into

(F5) or Step Over (F6). The second listeners is SwarmDebugBreakpointListener

that implements org.eclipse.debug.core. IBreakpointListener. It in-

tercepts all breakpoints events, but SDT only collects data when a breakpoint is added,

and associates it with its Eclipse IType.

After an authentication process, the developer creates a Swarm Debug Session

using the Swarm Manager view (Figure 4.2). At this point, the developer can toggle

breakpoints or start a normal Eclipse debugging session, with stepping events as Step

Into, Step Over or Step Return. All these events are captured silently and transparently

1https://www.eclipse.org/

58

Figure 4.1: The Swarm Tracer architecture

Source: from author

Figure 4.2: The Swarm Manager view

Source: from author

by STD. Next, these events are caught, and stack trace items are analyzed by the Tracer,

extracting method invocations only for explicitly visited methods (Step Into event).

To use SDT, the developer must open the view “Swarm Manager" and establish a

connection with the Swarm Debugging Services. Target projects must be previously asso-

ciated with the Swarm Manager for being debugged within SDI. This association consists

in linking a Swarm Session with a project in the Eclipse workspace. Once a session is es-

tablished, the developer can use any feature of the regular Eclipse debugger, and the SDT

collects the interaction events in the background, with no visible performance decrease.

Typically, the developer will toggle some breakpoints to stop the execution of the

program of interest at locations deemed relevant to fix the fault at hand. The SDT collects

59

the data associated to these breakpoints (locations, conditions, and so on). After toggling

breakpoints, the developer runs the program in debug mode. The program stops at the

first reached breakpoint. Consequently, for each event, such as Step Into or Breakpoint,

the SDT captures the event and related data. It also stores data about methods called,

storing invocations entry for each pair invoking/invoked method. Following the foraging

approach (PIORKOWSKI; FLEMING, 2013), the SDT only collects invoking/invoked

methods that were visited by the developer during the debugging session, ignoring other

invocations. The debugging activity continues until the program execution finishes. The

Swarm session is then completed.

To avoid performance and memory issues, the SDT collects and sends the data

using a set of specialized DomainServices that send RESTful messages to a SwarmRest-

Facade, connecting to the Swarm Debug Services.

4.2 Swarm Debug Services

The Swarm Debug Services (SDS) provide the infrastructure needed by the Swarm

Debug Tracer (SDT) to store and, later, share debugging data among developers. Figure

4.3 shows the architecture of this infrastructure. The SDT sends RESTful messages that

are received by a SDS instance, which stores them in three specialized persistence mech-

anisms: a SQL database (PostgreSQL), a full-text search engine (ElasticSearch), and a

graph database (Neo4J).

The three persistence mechanisms use similar sets of concepts to define the seman-

tics of the SDT messages, i.e., the concepts specified in the meta-model shown in Chapter

3, Figure 3.3. Figure 4.4 shows these concepts using an entity-relationship representation.

The SDS provide several services for manipulating, querying, and searching col-

lected data: (1) Swarm RESTful API; (2) SQL query console; (3) full-text search API;

(4) dashboard service; and (5) graph querying console.

4.2.1 Swarm RESTful API

The RESTful API allows manipulating debugging data using the Spring Boot

framework2. Create, retrieve, update, and delete operations are available through HTTP

GET requests and respond with a JSON structure. For example, upon submitting the

request:

2http://projects.spring.io/spring-boot/

60

Figure 4.3: The Swarm Debug Services - architecture

Source: from author

http://swarmdebugging.org/developers/search/findByName?

name=petrillo

the SDS responds with a list of developers whose names are “petrillo", in JSON format.

4.2.2 SQL Console

The SDS provides a SQL console available at <http://db.swarmdebugging.org>

to receive queries on debugging data, providing relational aggregations and functions.

Figure 4.5 shows an example of SQL query on breakpoint data.

4.2.3 Full-text Search Engine

The SDS also provides an ElasticSearch3 feature, which is a highly scalable open-

source full-text search and analytic engine, to store, search, and analyze the debugging

data. The SDS creates an instance of the ElasticSearch engine and offers a console for

executing complex queries on the debugging data.

3https://www.elastic.co/

http://db.swarmdebugging.org

61

Figure 4.4: The Swarm Debug metadata

Source: from author

Figure 4.5: Swarm Debug SQL Console

Source: from author

62

4.2.4 Dashboard Service

The ElasticSearch allows the use of the Kibana dashboard, and we expose a Kibana

instance on Swarm Debugging collect data. With this dashboard, researchers can build

charts for representing the retrieved data. Figure 4.6 shows a Swarm Dashboard embed-

ded into Eclipse as a view.

Figure 4.6: Swarm Debug Dashboard

Source: from author

4.2.5 Graph querying console

The SDS also persists debugging data in a Neo4J4 graph database. Neo4J pro-

vides a query language named Cypher, which is a declarative, SQL-inspired language for

describing patterns in graphs. It allows researchers to express what they want to select,

insert, update, or delete from a graph database without describing precisely how to do

it. Thus, we expose a Neo4J Browser and creates an Eclipse view. Figure 4.7 shows an

example of a Cypher query and the resulting graph.

4.3 Swarm Debug Views

On top of the SDS, the SDI provides several tools for searching and visualizing the

data collected during debugging sessions. These tools are integrated into the Eclipse IDE,

simplifying their usage. All graph views were implemented using CytoscapeJS (SAITO

et al.,), a JavaScript Graph API framework. As a web application, the SD visualizations

4http://neo4j.com/

63

Figure 4.7: Neo4J Browser - a Cypher query example

Source: from author

can be integrated into an Eclipse view as a SWT Browser Widget, or accessed through a

traditional browser such as Mozilla Firefox or Google Chrome. It can also be accessed

through tablets and smartphones from a web browser. In the next sections, we present

these views.

4.3.1 Sequence stack diagram

The sequence stack diagram, shown in Figure 4.8, is a novel diagram (PETRILLO

et al., 2015) that represents sequences of method invocations. Circles represent methods

and arrows represent invocations, and each line is a complete stack trace, without returns.

The first node is a starting method (non-invoked method), and the last node is an ending

method (non-invoking method). If an invocation chain contains a non-starting method,

a new line is created, and the current stack is repeated, and a dotted arrow is used to

represent a return to this node, as illustrated by the method Circle.draw in Figure 4.8.

Furthermore, developers can directly go to a method in the Eclipse Editor by double-

clicking on a node in the diagram.

4.3.2 Dynamic method call graphs

A dynamic method call graph is a direct call graph (GROVE et al., 1997), shown

in Figure 4.9, used to display the hierarchical relations between invoked methods. Again,

circles are used to represent methods and oriented arrows to express invocations. Each

session generates a graph, and all invocations collected during a session are shown in the

corresponding graph. The circles corresponding to starting points (non-invoked methods)

are drawn on top of a tree, and adjacent nodes represent invocations sequences. Devel-

opers can navigate sequences of methods invocations pressing the F9 (forward) and F10

64

Figure 4.8: Sequence stack diagram for Bridge design pattern

Source: from author

(backward) keys. They can also go directly to a method in the Eclipse Editor by double-

clicking on nodes in the graph.

4.3.3 Debug Global View

Debug Global View (GV) is a call graph for modeling software based on directed

call graphs (GROVE et al., 1997) to represent the hierarchical relationships created by

methods invocations. This visualization use rounded gray boxes (Figure 4.10-A) to rep-

resent types or classes (nodes) and oriented arrows (Figure 4.10-B) to express invocations

Figure 4.9: Method call graph for Bridge design pattern

Source: from author

65

Figure 4.10: GV elements. A: types (nodes); B: invocations (edges); C: task filter area.

Source: from author

(edges). GV is built using context data collected in previous debugging sessions while

developers performed different tasks.

In GV, the gray boxes are types that developers visited during debugging sessions.

The edges represent method calls (Step Into or F5 on Eclipse) performed by all develop-

ers in all traced tasks in a software project. Each edge color describes a task and the line

thickness is proportional to the number of invocations, i.e., the number of times a devel-

oper followed that path. Each debugging session contributes with a context, generating

the visualisation combining all collected invocations. The visualization is organized in

layers or stacks, and each line is a layer defined by the invocations, applying an automatic

breadthfirst layout manager. The starting points (non-invoked methods) are allocated on

top of the tree, the adjacent nodes following the invocations sequence. Also, developers

can directly go to a type in the Eclipse Editor by double-clicking on a node in the diagram.

On the left side of this view, developers find radio buttons that can be used to filter in-

vocations by task (Figure 4.10-C), showing the paths used by developers during previous

debugging sessions. Finally, developers can use the mouse to pan and zoom in/out on the

view. Figure 4.11 shows an example of GV with all tasks performed in debugging the

JabRef system, and from which we have data about seven tasks 5.

GV is a contextual visualization that uses only paths explored by developers. Thus,

GV shows only the paths explicitly and intentionally visited by developers, including

types declarations and methods invocations explored by developers based on their deci-

sions.

5Task 1173 is empty in this dataset.

66

Figure 4.11: GV showing data from all tasks with JabRef.

Source: from author

4.3.4 Breakpoint search tool

The breakpoint search tool can be used by researchers and developers to find suit-

able breakpoints when working with the debugger. For each breakpoint, the SDS captures

the type and location of the type where the breakpoint was toggled. Thus, developers

can share their breakpoints. The breakpoint search tool allows fuzzy, match, and wildcard

ElasticSearch queries. Results are displayed in the Search View table for easy selection.

Developers can also open a type directly in the Eclipse Editor by double-clicking on a

selected breakpoint. Figure 4.12 shows an example of breakpoint search, in which the

search box contains the misspelled word fcatory.

Figure 4.12: Breakpoint search tool (fuzzy search example)

Source: from author

4.3.5 Starting/Ending method search tool

The starting/ending method search tool allows searching for methods that (1) only

invoke other methods but are not explicitly invoked themselves during the debugging

session, and (2) are only invoked by other methods but do not invoke others.

Formally, we define Starting/Ending methods as follows. Given a graph G =

67

(V,E), where V is a set of vertexes V = {V1, V2, . . . , Vn} and E is a set of edges E =

{(V1, V2), (V 1, V 3), . . .}. Then, each edge is formed by a pair: < Vi, Vj >, were Vi is the

invoking method and Vj is the invoked method. If α is the subset of all vertices invoking

methods and β is the subset of all vertices invoked by methods, then the Starting and

Ending methods are:

StartingPoint = {VSP | VSP ∈ α and VSP /∈ β}

EndingPoint = {VEP | VEP ∈ β and VEP /∈ α}

Locating these methods is important in a debugging session because they are the

entry and exit points of a program at runtime.

4.4 Definition of Co-Breakpoint

The concept of coupling has been defined for interaction and change (ZOU; GOD-

FREY; HASSAN,): interaction coupling and change coupling (also named co-change).

Interaction traces are used to detect interaction coupling and predict interaction (ZOU;

GODFREY; HASSAN,). Change histories are used to detect change coupling (i.e.,

co-change) and predict change (ZIMMERMANN et al., 2005). Recently, Bantelay et

al. combined both interaction coupling and co-change to improve interaction and change

prediction (BANTELAY; ZANJANI; KAGDI, 2013).

Similar to the concepts of interaction coupling and co-change, in SD we intro-

duce the concept of co-breakpoint. Let X and Y be two program entities: X and Y are

co-breakpoints if a developer that toggles the breakpoint in entity X , also toggles the

breakpoint in entity Y .

Let S = {e1, e2, ..., en}, be a set of entities involved in the debugging session. A

co-breakpoint is the association rule defined by X ⇒ Y where X and Y are a pair or

distinct entities in S in which a developer toggles breakpoints.

In SD, we use debugging activities collected by SDI to mine co-breakpoints. We

aim at using co-breakpoints to predict breakpoint, i.e.,, to recommend a program entity

where a developer may need to toggle a breakpoint to locate the fault.

68

Table 4.1: Illustration of co-breakpoint
Tasks Breakpoint Activities co-breakpoint(Task)
T1 e1 → e2 → e3 {e1, e2, e3}
T2 e4 → e5 → e2 → e6 {e4, e5, e2, e6}
T3 e1 → e7 {e1, e7}
T4 e2 → e5 → e3 {e2, e5, e3}

4.5 Breakpoint Prediction

This section presents the approach that we use to predict breakpoints. We fol-

low a recommendation process similar to Lee et al. (LEE et al., 2015): we mine the

co-breakpoints on the fly where the co-breakpoints for each task are used as a test set

and training set. To illustrate the prediction process, consider Table 4.1, where devel-

opers have a set of tasks T = {T1, T2, T3, T4} to perform. We define the function

co − breakpoint(T) that returns the ordered set of the entities in which the developer

has toggled breakpoints when resolving the task T . The first task T1 shows the co-

breakpoint between the entities {e1, e2, e3} (i.e., co − breakpoint(T1) = {e1, e2, e3}).

Similarly, co − breakpoint(T2) = {e4, e5, e2, e6}, co − breakpoint(T3) = {e1, e7}, and

co− breakpoint(T4) = {e2, e5, e3}.

Mining the co-breakpoints on the fly consists of ordering the tasks by their com-

pletion date (i.e.,, to predict the breakpoint for a task using the co-breakpoint mined from

an earlier task). The breakpoint prediction is illustrated in Table 4.2. Each line in Ta-

ble 4.2 shows the current task, the content of the co-breakpoint database (DB), and the

recommendation candidates for each breakpoint in the co-breakpoint set. For example, the

first line shows that when performing T1 (T1 is used for the testing set), the co-breakpoint

database is empty, and for each breakpoint in co−breakpoint(T1), there is no recommen-

dation candidate (as the database is empty). For the second line, T1 is used as a training

set. The database contains the co-breakpoint of T1 (which is already used as the testing

set). For the current breakpoint in co−breakpoint(T2) (e.g., e4), we look into the database

and found that there is no breakpoint in the database that shares the co-breakpoint rela-

tion with e4. Thus, the recommendation candidates are empty for e4, and the same for e5.

On the contrary, the database shows that e2 has e1 and e3 as co-breakpoints. So they are

candidates for recommendation. At the end of T2, the co-breakpoint set is added to the

database (see the line for task T3). The process repeats for T3. At the end (T4), we can see

that when a developer toggles a breakpoint on e5, the candidates for recommendation do

not include e2 because a breakpoint was already toggled in it.

69

Table 4.2: Approach for breakpoint prediction
Tasks Co-breakpoint Database (DB) Recommendation Candidates
T1 {} (e1,∅)− (e2,∅)− (e3,∅)

T2 {{e1, e2, e3}} (e4,∅)− (e5,∅)− (e2, {e1, e3})− (e6,∅)

T3 {{e1, e2, e3}, {e4, e5, e2, e6}} (e1, {e2, e3})− (e7,∅)

T4 {{e1, e2, e3}, {e4, e5, e2, e6}, {e1, e7}} (e2, {e1, e3, e4, e5, e6})− (e5, {e4, e6})− (e3, {e1})

At each stage of the breakpoint prediction, we compute precision and recall met-

rics, and use them to evaluate the accuracy of the prediction. To compute them, we use the

set of recommended candidates (C) and the set of co-breakpoint (B) for the given task.

Precision =
|B ∩ C|
|C|

Recall =
|B ∩ C|
|B|

(4.1)

4.6 Use scenarios

Swarm Debugging provides several practical use scenarios, and to exemplify, four

possible scenarios are described in the following subsections.

Scenario A - finding suitable breakpoints: finding suitable breakpoints is the

first challenge addressed by Swarm Debugging. First, using the Breakpoint search

tool, developers can find breakpoints toggled by other programmers in the same project.

Searching for a label, description, purpose, developer or full-text of the breakpoint line

of code, this tool provides a shared memory of relevant points to toggle a breakpoint.

Second, if programmers don’t find a breakpoint to reach their object, they can use the

Starting point search tool. Starting points are the initial methods in a runtime session,

and they are recurrent points to start a code exploration (LATOZA; MYERS, 2010). In

addition, the source code full-text search tool is a generic tool to find breakpoint can-

didates. Finally, visualizing diagrams of previous sessions, developers can have useful

insights for toggling their next breakpoints.

Scenario B - visualizing debugging sessions: Swarm Debugging can be used

to visualize steps in real-time during a debugging session. Using the Sequence Stack

Diagram or the Method Call Graph, developers have a full memory of their steps, and

they can visualize just-in-time the sequence and relationships between methods. Also,

these session visualizations can be revisited for new tasks. Finally, complicated debugging

executions can be divided into multiples Swarm sessions, simplifying a complex problem

in various simple views.

Scenario C - creating collective intelligence: since Swarm debugging is based on

70

collecting data, it is useful for sharing knowledge about a software project. For instance,

developers can know which project areas have been explored before and by whom, or

why a breakpoint was created by a colleague. This information is likely to improve and

create new interactions among members of a software team.

Scenario D - Managing projects: Swarm Debugging opens new perspectives

for managing software projects. Using web technologies, project managers can use the

visualizations and Swarm Dashboard to create real-time panels, visualizing collected in-

formation, which is lost in other approaches. For example, managers can query the most

visited areas, or study developers’ debugging patterns or breakpoint patterns. Addition-

ally, Swarm Debugging databases provide new opportunities for empirical studies about

debugging and software quality.

4.7 Final remarks

Swarm Debug Infrastructure provides an open-source infrastructure, integrated

into Eclipse, to collect, store and share interactive debugging session data, contextualiz-

ing breakpoints and events during these sessions. Further, it provides real-time and inter-

active visualizations using web technologies, making an automatic memory of developer

exploration paths. Moreover, dividing software exploration by sessions and representing

them by call graphs allows easy understanding because only intentional visited areas are

shown on these graphs. One can through the execution of a project and see only the im-

portant areas that are relevant to developers. SDI stores data on a remote server using

an asynchronous execution and, thus, does not suffer from performance or memory is-

sues like omniscient debuggers (POTHIER; TANTER, 2009) or tracing-based approaches

(OHMANN; LIBLIT, 2016).

Currently, the Swarm Tracer is implemented in Java, using Eclipse Debug Core

services. However, SDI provides a RESTful API that can be accessed independently, and

new tracers can be implemented for different IDEs or debuggers. The research community

can leverage SDI by conducting more studies to improve our understanding of developers’

debugging activities, which could ultimately result in the development of whole new fam-

ilies of debugging tools that are more efficient and–or more adapted to the particularity of

each debugging activity.

In conclusion, to the best of our knowledge, others tools like Hipikat, Jive or De-

bugAdvisor while tools for debugging support, they do not consider to explore collective

71

aspects, as SD implemented on SDI. Thus, the SDI complements previous approaches

by collecting data that allow researchers to study how developers find investigate project

during debugging sessions, possibly restoring parts of the developers’ contexts after in-

terruptions by recalling previous breakpoints or stepping invocations, for example.

72

73

5 EVALUATION OF THE SWARM DEBUGGING

In order to assess SD and to evaluate the effectiveness of SDI, we performed three

studies using SDI. First, we conducted an experiment with three actual maintenance task

performed by seven developers on JabRef system. We aimed to evaluate how useful

the data collected by SDI could be use to understand interactive debugging. Next, we

conducted a study collecting debugging activities of 20 developers when performing real-

istic maintenance tasks on a Java open-source system, focusing on how developers toggle

breakpoints. Finally, we assessed the usefulness of GV for conducting a qualitative study

with 23 professional developers and a controlled experiment with 13 professional devel-

opers. The tree studies are described as follows.

5.1 Experiment 1 - towards understanding interactive debugging

In this section, we present the study on the use of SDI to collect and share debug-

ging activities. This study aims to evaluate how the data collected by SDI could be useful.

Thus, we use the data collected by SDI to answer 5research questions. We first present

the context of the study. Then, we explain the design and report the results of the study.

We assess the effectiveness of the Swarm Debugging and SDI through a first ex-

periment that aims to understand how developers apply interactive debugging on five ac-

tual faults found in JabRef, toggling breakpoints, and stepping code. Our study involved

five freelancers and two student developers performing 19 bug location sessions. We col-

lect videos recording and data about 6 hours of effective debugging activities. The data

includes 110 breakpoints and near 7,000 invocations. We process the collected videos

and data to answer 5research questions showing that (1) there is no correlation between

the number of invocations (respectively the number of breakpoints toggled) during a de-

bugging session and the time spent on the debugging task; ρ = −0.039 (respectively

0.093). (2) there is no correlation between numbers of breakpoints and elapse task time

(ρ = 0.093); We also observed that (2) developers follow different debugging patterns and

(3) there is no relation between numbers of breakpoints and expertise. However, (4) there

is a strong negative correlation between time of the first breakpoint (ρ = −0.637); and

the time spent on the task, suggesting that when developers toggle breakpoints carefully,

they complete tasks faster than developers who toggle breakpoints too quickly.

74

5.1.1 Context

Studies and discussions about interactive debugging are scarce in the literature of

program comprehension, so we could elaborate many research questions to better under-

stand such important software development activity. However, to illustrate the use of the

SDI, we formulate the following 5 specific research questions:

RQ1: Is there a correlation between the numbers of invocations and tasks’ elapsed time?

RQ2: Is there a relationship between the number of breakpoints and tasks’ elapsed time?

RQ3: Do developers explore/debug in different ways a task?

RQ4: Is there a correlation between the numbers of breakpoints and developers’ exper-

tise?

RQ5: Is there an association between time of first breakpoint and task’s elapsed time?

To answer the research questions above, we run the experiment designed as de-

scribed in the next section.

5.1.2 Study Design

We have planned the study as follows.1 We had to choose debugging tasks to trig-

ger participants’ debugging activities. We chose to ask participants to find the locations

of true faults in an independent, open-source program. We selected JabRef2 as target pro-

gram, which is an open-source bibliography reference manager developed in Java. We

chose JabRef because it has faults publicly reported in its issue tracker and its domain

was easy to understand by the participants. We picked five faults reported against JabRef

v3.2 in its issue tracker and asked participants to find the locations of the faults described

in issues 318, 667, 669, 993 and 1026.

In order to estimate task’s effort, we calculated averages of elapsing time for each

task by a participant. Table 5.1 shows the average time (in minutes) for each task and the

global average. In average, participants spent 21 minutes to complete the bug location

tasks.

To reproduce a realistic industry scenario, we recruited five professional freelancer

developers3. Among them, 2 Java experts and three intermediates, 100% were male,

1All artifacts on <http://swarmdebugging.org/publications>.
2<http://www.jabref.org/>
3https://www.freelancer.com/

http://swarmdebugging.org/publications
http://www.jabref.org/

75

Table 5.1: Elapse time by task (average)
Task Time (min.)
318 13
667 31
669 11
993 28

1026 21
Mean 21

100% used Eclipse and 100% used debuggers frequently. As many other experimental

studies, we asked two volunteer students at Polytechnique Montréal to participate in our

experimental study.

We provided participants with instructions by two documents. The first docu-

ment was an experiment tutorial4 which explained how to install and configure all tools

to perform a warm-up task and the experimental study. We also used the warm-up task

to confirm that the participants’ environments were correctly configured and that the par-

ticipants understood the instructions. The warm-up task was described using a video to

guide the participants. We make available this video on-line5.

The second document presented the five issues with a description and some piece

of information to reproduce the faults. To reduce the participants’ effort to reproduce the

faults, we offered videos demonstrating step-by-step how to reproduce the faults. We also

provided the participants with an electronic form to report whether they were tired or not

at the end of the experiment.

For this experimental study, we used Eclipse Mars 2 and Java 8, the SDI and its

Swarm Debug Tracer plug-in, and two Java projects: a small Tetris game for the warm-

up task and JabRef v3.2 for the experimental study. All participants received the same

workspace, provided by our artifact repository.

After installing the environment (Eclipse and the SDI), each participant executed

the warm-up task. This tasks consisted of starting a debugging session, toggling a break-

point, and debugging a Tetris program to locate a given method. After the warm-up task,

each participant executed debugging sessions to find the location of faults described in

the five selected issues. We did not set a time constraint but suggested 20 minutes per

fault. We asked participants to control their fatigue, asking them to go to the next task if

they felt tired while informing us of this situation in their reports. Finally, each participant

filled a report to provide their answers and other information, whether they completed the

4<http://swarmdebugging.org/publications/experiment/tutorial.html>
5<https://youtu.be/U1sBMpfL2jc>

http://swarmdebugging.org/publications/experiment/tutorial.html
https://youtu.be/U1sBMpfL2jc

76

tasks successfully or not.

All services were available on our server6 during these debugging sessions and the

experimental data were collected in the course of 8 days. We also capture video images of

the sessions. The experiment tutorial contained the instruction to install and set the OBS

(Open Broadcaster Software), an open source system for live streaming and recording7.

Participants were asked to provide the video captured during the experiment. A video

was recorded for each task, providing about 6 hours of effective developer’s activities.

We had 19 completed tasks by five developers, 110 collected breakpoints, and more than

6000 invocations.

After the participants had completed the debugging sessions (successfully or not),

we used the tools provided by the SDI on the data collected to answer each research

question. To answer RQ1 and RQ2, we used SQL queries, with which we can extract all

the invocations and breakpoints set during each session and find a relationship between

breakpoints and tasks. The example of SQL to extract data to RQ2 is:

select t.id taskId, s.id sessionId, count(*) from breakpoint b, task t,

type tp, session s where b.type_id = tp.id and tp.session_id = s.id

and s.task_id = t.id group by s.id, t.id order by s.id

Finally, to answer RQ3, we plotted the call graph of each debugging session using

the SDI. We organized these graphs by tasks and by numbers of invocations, analyzing

each graph to identify navigation patterns. The SQL to extract data to RQ3 is:

select s.developer_id, tsk.title, s.id, count(*) as invocations

from product p, task tsk, session s, invocation i

where p.id = 1 and p.id = tsk.product_id and tsk.id = s.task_id

and i.session_id = s.id group by tsk.title, s.id

order by tsk.title,invocations

Next, we report the results of our analyses to answer our research questions.

5.1.3 RQ1: Is there a correlation between the numbers of invocations and tasks’

elapsed time?

We define the debugging patterns based on when developers toggle breaking dur-

ing the maintenance task.
6<http://server.swarmdebugging.org>
7https://obsproject.com

http://server.swarmdebugging.org

77

• We define the concept of “breakpoint in the first half” and breakpoint in the second

half. A breakpoint is in the first half if it is toggled before the 50% of the time spend

to perform the maintenance task. Otherwise, the breakpoint is in the second half.

• We compute the percentage of the breakpoint in the first and the second half. Plot

the percentage and see if we can have a cutoff point to split the data. If yes, we can

have a different pattern using the cutoff point to distinguish different breakpoint

patterns: breakpoint first pattern and breakpoint last pattern.

• Using the two patterns, we can relate them with the developer’s profile i.e., follow

a breakpoint pattern is related to developers’ profile?

• RQ3: Relate the patterns to the accuracy and relate the pattern to the overall time

spent to perform the task

By analyzing the elapse time of each task executed by developer and invocations,

we can plot Figure 5.1 in which we can observe that there is not a correlation between

the numbers of invocations and elapse task time. This conclusion can be strengthened

by the Pearson’s correlation coefficient (ρ = −0.039) lower than 0.1.

Figure 5.1: Invocations (Dev/Task) by Elapse Time

Source: from author

5.1.4 RQ2: Is there a relationship between the number of breakpoints and tasks’

elapsed time?

By analyzing the elapse time of each task executed by developer and breakpoints,

we can plot Figure 5.2 in which we can observe that there is not a correlation between

the numbers of toggled breakpoints and elapse task time. This conclusion can be

strengthened by the Pearson’s correlation coefficient (ρ = 0.093) lower than 0.1.

78

Figure 5.2: Invocations (Dev/Task) by Elapse Time

Source: from author

5.1.5 RQ3: Do developers explore/debug in different ways a task?

We observed two distinct debugging navigation patterns: (1) a fuzzy debugging

pattern and (2) a straight debugging pattern. In the fuzzy debugging pattern, the call graph

presents several branches, showing that participants used a foraging approach. Figures

5.4 and 5.5 show two typical fuzzy debugging graphs. In the straight debugging pattern,

participants followed a straight or quasi-straight set of invocations, as shown in Figure 5.6

and 5.7.

Furthermore, we identified a strong correlation between expertise and navigation

patterns: the more expert the participants, the more straightforward their navigation pat-

terns. Future work will further study this correlation to confirm its existence and provide

explanations and, possibly, recommendations to developers during debugging activities.

5.1.6 RQ4: Is there a correlation between the numbers of breakpoints and develop-

ers’ expertise?

By relating the numbers of breakpoints toggled during debugging tasks and devel-

opers’ expertise, we can conclude that there is no relation between numbers of break-

points and expertise. Although this result may seem counter-intuitive, because of the

more expert participants, the fewer breakpoints she could need, we explain this result on

three possible explications. First, the numbers of breakpoints are possibly more related to

task complexity. Second, all participants were newcomers to JabRef. Third, the chosen

program and issues are not representative of all programs and debugging tasks.

79

Figure 5.3: Relation between time of first breakpoint and task elapsed time

Source: from author

5.1.7 RQ5: Is there an association between time of first breakpoint and task’s elapsed

time?

Breakpoints are key for interactive debugging, and an important breakpoint is a

first toggle breakpoint during a session. We analyzed 19 interactive debugging sessions in

which 73% (14/19 sessions) started a first debugger execution after lower than 3 minutes

of toggled first breakpoint, and 52% (10/19 sessions) started the first debugger immedi-

ately (lower than 10 seconds) after had defined the first breakpoint. In conclusion, a first

breakpoint is an important decision on an interactive debugging session.

To analyze if there is a relation between time of the first breakpoint and task

elapsed time, for each session, we normalized our data dividing each first breakpoint

time by task elapsed time, and we associated this ratio with its respective elapsed time,

plotting Figure 5.3.

Analysing Figure Figure 5.3, it is clear that there is a strong correlation between

time of first breakpoint (ρ = −0.637), and task elapsed time is inversely proportional

to the time of task’s first breakpoint, following a correlation function:

f(x) =
α

xβ
(5.1)

where α = 125 and β = 0.72.

On the whole, results show that whether developers toggle breakpoints care-

fully, they complete tasks faster than developers who toggle breakpoints quickly.

80

Figure 5.4: Examples of fuzzy debugging patterns - Task 1

Source: from author

Figure 5.5: Examples of fuzzy debugging patterns - Task 2

Source: from author

81

Figure 5.6: Examples of straight debugging pattern - Task 1

Source: from author

5.1.8 Threats of Validity

As any empirical study, this experimental study is subject to limitations that threaten

the validity of its results. The first limitation concerns to the number of participants in-

volved in the study. With 7 participants, we can not claim generalization of the results.

However, we accept this limitation because the goal of the study was to show the effec-

tiveness of the data collected by the SDI to obtain insights about developers’ debugging

activities. Future studies with more participants and more systems and even more tasks

are needed to confirm or infirm the results of this study.

Other threats to the validity of our results concern their internal, external, and con-

clusion validity. We accept these threats because the aim of the experimental study was to

show the effectiveness of the SDI to collect and share data about developers’ interactive

debugging activities, not to answer with strong statistical significance the research ques-

82

Figure 5.7: Examples of straight debugging pattern - Task 2

Source: from author

tions. Future work is needed to perform in-depth experimental studies with these research

questions and other, possibly drawn from the questions that developers asked found by

Sillito et al. (SILLITO; MURPHY; De Volder, 2008).

5.2 Experiment 2 - mining debugging data to recommend breakpoints: an empirical

study

In the previous section, we showed that developers toggle breakpoints carefully,

they complete tasks faster than developers who toggle breakpoints quickly. Conse-

quently, if good breakpoints improve maintenance task, could developers gather and share

their breakpoints? How useful is sharing debugging activities for software maintenance?

In this section, we address that question, presenting the results from an empirical study

about sharing debugging activities. We developed an infrastructure to collect and ana-

83

lyze data during debugging activities (Swarm Debugging Infrastructure (SDI)), and we

conducted an experiment to understand where developers toggle breakpoints on five true

faults found in the JabRef Java open source project.

Our study involved 20 developers (12 students and eight professional freelancers),

and we collect more than 6 hours of effective developer’s activities and 207 breakpoints.

Using our data provided by the SDI and video analyses, we answer 5research questions

on the nature of breakpoints, showing that breakpoints are strategical locus that are used

several times by several developers for different tasks, and we show that previous break-

points could be used to improve maintenance tasks to future issues. To demonstrate how

breakpoints can be useful, we introduce the concept of co-breakpoint. Finally, we discuss

some implications of our results for tool developers and future debuggers.

Thus, in this study, we perform an empirical study about the nature of breakpoints.

Next, we adopted the concept of co-breakpoint (introduced in section 4.4) and propose an

approach to evaluate it for breakpoint prediction.

5.2.1 Experiment setup

This section presents the design of our experiment, which aims to address the

following fourresearch questions:

RQ1: How much time do developers spend to toggle the first breakpoint?

RQ2: On what kind of statement do developers toggle their breakpoints?

RQ3: Do developers toggle breakpoints in the same place?

RQ4: How effective is co-breakpoint for breakpoint prediction?

To answer the research questions, we proceeded as follows8:

We had to choose debugging tasks to trigger participants’ debugging activities. We

chose to ask participants to find the locations of true faults in an independent, open-source

program. We selected JabRef9 as target program, which is an open-source bibliography

reference manager developed in Java. We chose JabRef because it has faults publicly

reported in its issue tracker, its domain was easy to understand by the participants, and

it has modules with some relative independent regions. We picked five faults reported

against JabRef v3.2 in its issue tracker and asked participants to find the locations of the

faults described in issues 318, 667, 669, 993 and 1026.

8Artifacts available at <http://swarmdebugging.org/publications>.
9<http://www.jabref.org/>

http://swarmdebugging.org/publications
http://www.jabref.org/

84

In order to estimate task’s effort, we calculated averages of elapsing time for each

task per participant. Table 5.1 shows the average time (in minutes) for each task. Further-

more, in average, participants spent 21 minutes to complete the bug location tasks.

To reproduce a realistic industry scenario, we recruited eight professional free-

lancer developers10. Among them, 2 Java experts and three intermediates, 100% were

male, 100% used Eclipse and 100% used debuggers frequently. Also, like many other

experimental studies before ours, we asked volunteers to our undergraduate and graduate

students at Polytechnique Montréal to participate in our experimental study. After sending

a general call for volunteers, 12 students volunteered. They were all experts or advanced

developers (70%). They all used IDEs (70%) and debuggers (60%) frequently.

We provided participants with two instructions documents. The first document

was an experiment tutorial11 which explained how to install and configure all tools to

perform a warm-up task and the experimental study. We also used the warm-up task to

confirm that the participants’ environment were correctly configured and that the partici-

pants understood the instructions. The warm-up task was described using a video to guide

the participants. We make available this video on-line12.

The second document presented the five issues with a description and some piece

of information to reproduce the faults. To reduce the participants’ effort to reproduce the

faults, we offered videos demonstrating step-by-step how to reproduce the faults. We also

provided the participants with an electronic form to report whether they were tired or not

at the end of the experiment.

For this experimental study, we used Eclipse Mars 2 and Java 8, the SDI and its

Swarm Debug Tracer plug-in, and two Java projects: a small Tetris game for the warm-

up task and JabRef v3.2 for the experimental study. All participants received the same

workspace, provided by our artifact repository.

After installing the environment (Eclipse and the SDI), each participant executed

the warm-up task. These tasks consisted of starting a debugging session, toggling a break-

point, and debugging a Tetris program to locate a given method. After the warm-up task,

each participant executed debugging sessions to find the location of faults described in

the five selected issues. We did not set a time constraint but suggested 20 minutes per

fault. We asked participants to control their fatigue, asking them to go to the next task if

they felt tired while informing us of this situation in their reports. Finally, each participant

10https://www.freelancer.com/
11<http://swarmdebugging.org/publications/experiment/tutorial.html>
12<https://youtu.be/U1sBMpfL2jc>

http://swarmdebugging.org/publications/experiment/tutorial.html
https://youtu.be/U1sBMpfL2jc

85

filled a report to provide their answers and other information, whether they completed the

tasks successfully or not.

All services were available on our server13 during these debugging sessions and

the experimental data were collected in the course of 8 days. We also collect the video

capture for the participants. The experiment tutorial contained the instruction to install

and set the OBS (Open Broadcaster Software), an open source system for live streaming

and recording14. Participants were asked to provide the video captured during the exper-

iment. We had 28 recorded videos, providing more than 6 hours of effective developer’s

activities. We had 38 debugging sessions by 20 developers, 207 collected breakpoints and

more than 6000 invocations.

We now report the results of our analyses to answer our research questions.

5.2.2 RQ1: How much time do developers spend to toggle the first breakpoint?

Analysing each screencast recording, we collect the following information:

• Start Time (ST): the effective time when a developer starts a task.

• Time of First Breakpoint (FB): the time when a developer toggles the first break-

point.

• End time (T): the effective time when a developer finishes a task.

• Elapse End time (ET): ET = T − ST

• Elapse Time First Breakpoint (EF): EF = FB − ST

In order to compare different task and developer, we normalize for the moment of

first breakpoint (MFB):

MFB =
EF

ET
(5.2)

MFB shows how much time a developer spend to toggle the first breakpoint com-

paring to the total elapse task. Calculating MFB to each video, we found that in average,

developers spend 27% of task time to toggle the first breakpoint (stddev=17%). This

result shows that developers spend about 1/4 of the time to locate where to toggle the

breakpoint. It means that toggle breakpoint is not an easy task and developers may need

tools that could assist them in locating the place to toggle breakpoints. However, we must

13<http://server.swarmdebugging.org>
14https://obsproject.com

http://server.swarmdebugging.org

86

first understand the common locations where developers toggle breakpoints.

5.2.3 RQ2: On what kind of statement do developers toggle their breakpoints?

Analysing the code statements for the breakpoints, we can classify what kind of

statement the developers toggled their breakpoints. We consider the following kind of

statements15: call, if-statement, assignment, return and while-loop. Follow this cate-

gories, we analysed each breakpoint and classified it, resulting Table 5.2.

Table 5.2: Breakpoints by kind of statement
Statement Number of Brekpoints %
call 111 53
if-statement 39 19
assignment 36 17
return 18 10
while-loop 3 1

Our results show that 53% (111/207) of breakpoints was toggled on call method

statements and only 1% (3/207) on while statements. After grouping if-statement, return

and while-loop like control flow statements, we can observe in Figure 5.8 that 29% of

breakpoints are on flow statements. A possible interpretation is that developers prefer

call statements because they would like to analyze the software state before coming in a

method. This result can be useful, for instance, to recommendation systems, increasing a

rank to breakpoints on call statements.

Figure 5.8: Breakpoints by kind of statement - call, control flow and assignment

Source: from author

15https://en.wikipedia.org/wiki/Statement_(computer_science)

87

5.2.4 RQ3: Do developers toggle breakpoints in the same place?

We investigated each breakpoint to determinate if there are breakpoints at the same

location (type and code line number), analyzing breakpoints in the same tasks and differ-

ent tasks. Thus, we grouped all breakpoints by task, and we counted how many break-

points was toggled on the same line of code several times for each task, producing Table

5.3. Analysing that table, we found 39 breakpoints in the exactly same line of code for

the same task toggled by different developers. It is clear that toggled breakpoints could

be useful to other developers who are working in the same task, as a reopened task or

a regression task.

Table 5.3: Breakpoints in the same line of code by task
Task Type Line # same line
0318 AuthorsFormatter 43 5
0318 AuthorsFormatter 131 3
0667 BasePanel 935 2
0667 BasePanel 969 3
0667 JabRefDesktop 430 2
0669 OpenDatabaseAction 268 2
0669 OpenDatabaseAction 433 4
0669 OpenDatabaseAction 451 4
0993 EntryEditor 717 2
0993 EntryEditor 720 2
0993 EntryEditor 723 2
0993 BibDatabase 187 2
0993 BibDatabase 456 2
1026 EntryEditor 1184 2
1026 BibtexParser 160 2

After that, we analyzed if a type had breakpoints for different tasks. Thus, we

grouped all breakpoints by type, and we counted how many breakpoints was toggled on

the type for different tasks, putting "1" if a type had a breakpoint, producing Table 5.4.

Furthermore, we counted the number of breakpoints by type and how many developers

toggle breakpoints on a type. Analysing that table, we found ten types that received

breakpoints in different tasks by different developers. For instance, the type Open-

DatabaseAction had 19 breakpoints in 3 of 5 tasks by 13 different developers. It is clear

that toggled breakpoints could be useful to new maintenance tasks.

Finally, we count how many breakpoint are in the same method. We found 37

methods that received at least two breakpoints, and 13 methods (Figure 5.9) that received

5 or more breakpoints during different tasks by different developers. Reviewing that

88

Table 5.4: Breakpoints by type in different tasks
Type 0318 0667 0669 0993 1026 Breakpoints Dev Diversity
SaveDatabaseAction 0 0 1 1 1 7 2
BasePanel 1 1 1 0 1 14 7
JabRefDesktop 1 1 0 0 0 9 4
EntryEditor 0 0 1 1 1 36 4
BibtexParser 0 0 1 1 1 44 6
OpenDatabaseAction 0 0 1 1 1 19 13
JabRef 1 1 1 0 0 3 3
JabRefMain 1 1 1 1 0 5 4
URLUtil 1 1 0 0 0 4 2
BibDatabase 0 0 1 1 1 19 4

method aggregation, we conclude that there are methods that are addressed by many

breakpoints in different tasks by several developers, showing a clear opportunity to

use those methods like good candidates for new debugging sessions.

Figure 5.9: Methods with 5 or more breakpoints

Source: from author

5.2.5 RQ4: How effective is co-breakpoint for breakpoint prediction?

The result of RQ3 shows that breakpoints are sometimes toggled on the same

location even of different tasks and–or by different developers. It means that breakpoints

previously toggled by a developer could help another developer. To figure out whether

this assertion is true, we introduce the concept of co-breakpoint (Section 4.4) and use it to

access the effectiveness of using debugging activities to predict breakpoint (sections 4.5

and 5.2.6).

89

5.2.6 Results and Discussions

We report our results on the use of co-breakpoint for breakpoint prediction by fol-

lowing the process described in Section 4.5. As our experiment involved both students and

professional freelancer developers, the way the two kinds of participants debug programs

may vary. Professional freelancer developers may tend to carefully and methodically tog-

gle breakpoints while students may not. Thus, we run our prediction approach on the

whole dataset, then on only freelancer dataset in one and, and only on students dataset

on another hand. This distinction allows us to access whether the debugging activities of

one kind of participant could be more “rich” for breakpoint prediction than other. We also

predict breakpoint at two level of granularity: class level and method level. The predic-

tion at class level aims to recommend the class that developer need to toggle breakpoint to

achieve the task. The prediction at method level recommends the method that developer

need to toggle breakpoint to achieve the task.

Table 5.5: Breakpoint Prediction Results
Class Level Method Level

Freelancer Precision 16.5 15.8
Recall 62.9 34.7

Students Precision 20 37.5
Recall 40 50

All Precision 15.5 21.4
Recall 61.8 35.3

Table 5.5 shows the precision and recall of prediction for freelancer/students and

class/method levels. Overall, it indicates that we can use co-breakpoints to recommend

the class where a developer could toggle the breakpoint with the precision of 15% and

recall of about 62%. We can recommend method with 21% precision and about 35%

recall. When looking into the accuracy of prediction using freelancer and students data,

we can observe that prediction is better at class level with freelancer data while level

method prediction is better with students dataset.

Our results show the potential of debugging activities for breakpoint prediction.

However, the low precision of prediction would be due to the small dataset as we have

only few breakpoint collected during our experiment. We think that more dataset would

improve the accuracy of the prediction.

This promising results of breakpoint prediction show the usefulness of collecting

and sharing debugging activities to assist developers during maintenance activities.

90

5.2.7 Threats to Validity

This section discusses the threats to the validity of our results.

Construct Validity threats is related to the metrics used to answer our research

questions. We mainly used breakpoint counts as a precise measure. However, we consid-

ered the breakpoints collected by our swarm debugging infrastructure (SDI). Any issue

regarding the collection of breakpoints with SDI would affect our results. To mitigate

these threats, we collected both SDI data and video captures of the screen of participants.

We compared information extracted from the videos with the data collected by SDI and

found that the breakpoints collected by SDI are exactly those toggled by developers.

Conclusion Validity threats concerns the violations of the assumptions of the

statistical tests, and how diverse is the collected data. We reported results in terms of

percentages of breakpoints toggled for different kinds of statements, and the common

breakpoints toggled on class/method for the same and different tasks. We did not perform

any statistical analysis to answer our research questions. Thus, our results do not suffer

from any statistical assumptions. We do not claim any causation relationship between the

number/percentage of breakpoints, the kind of statements, and the tasks or developers.

Internal Validity threats are related to the tools used to collect the data and the

subject systems. We use SDI and any issue with SDI would affect our results. However,

as we validated the collection of breakpoints using the videos, the threat related to SDI

is mitigated. We also used videos to identify when developers start and finish the tasks.

Thus, the threat regarding the SDI is addressed by using the video capture of the screen.

We use only one system in our study (i.e., JabRef). We performed our study on a single

system because we needed to have enough data points from a single system to assess the

effectiveness of breakpoint prediction. We should collect more data on other systems and

check whether the system used can affect our results. Each developer (e.g., freelancer)

performed more than one task on the same system. It is possible that a participant may

have become familiar with the system after performing earlier tasks and would be knowl-

edgeable enough to toggle breakpoints when performing later tasks. However, we didn’t

observe any significant difference in performance when comparing the performance of

same developers for the first and last task.

External validity threats concern the possibility to generalize our results. We

share our data and scripts at http://swarmdebugging.org/publications/icsme2016. Further

studies with different sets of tasks and different participants are required to verify our

91

results and make our findings more general.

5.3 Experiment 3 - supporting maintenance tasks using shared debugging visualisa-

tions

In this section, to assess the usefulness of GV, we conducted a qualitative study

with 22 professional developers and a controlled experiment with 14 professional de-

velopers. We report qualitative and quantitative studies showing the benefits of sharing

debugging data.

5.3.1 Experiment design

This section presents the design of our experiment, which aims to address the

following tworesearch questions:

RQ1: Is Global View useful to support software maintenance tasks?

RQ2: Does sharing and visualizing debug data support software maintenance tasks?

5.3.2 Experiment setup

To answer the research questions, we proceeded as follows16.

We had to choose debugging tasks to trigger participants’ debugging activities. We

chose to ask participants to find the locations of true faults in an independent, open-source

program. We selected JabRef17 as target program, which is an open-source bibliography

reference manager developed in Java. We chose JabRef because it has faults publicly

reported in its issue tracker, its domain was easy to understand by the participants, and

it has modules with some relative independent regions. We picked five faults reported

against JabRef v3.2 in its issue tracker (i.e., issues 993, 1026, 1173, 1235 and 1251) and

asked participants to find the locations of the faults.

We performed two different studies: 1) a qualitative evaluation using GV on a

browser; and 2) a controlled experiment on bug location tasks, using GV integrated into

Eclipse.

The qualitative evaluation consisted of a set of questions about JabRef issues, us-

ing only GV on a regular web browser (without JabRef’s source code). The participants

16Artifacts available at <http://swarmdebugging.org/publications/vissoft2016>.
17<http://www.jabref.org/>

http://swarmdebugging.org/publications/vissoft2016
http://www.jabref.org/

92

were asked to identify the “type" in which the issue was located for Issue 318, Issue 667,

and Issue 669, using only GV. An explanation was required for each answer. In addition

to providing information about the usefulness of GV for tasks’ comprehension, this phase

helped to familiarize the participants with GV.

The controlled experiment was a true bug location task, in which some developers

were asked to find the location of a fault using the GV integrated into their Eclipse IDE.

We divided the participants into two groups: control group (7 participants) and experi-

mental group (6 participants). Participants from the control group performed tasks 993

and 1026 without using GV, while those from the experimental group performed the

tasks using GV.

To reproduce a realistic industry scenario, we recruited 30 professional freelancer

developers18. Among them, they have on average six years of experience in software

development (stdev=4); on average 4.8 years of Java experience (stdev = 3.3), and 67%

are advanced or experts on Java (figure 5.10); 77% male and 23% female; 97% used

Eclipse. Among of this professionals, 23 participated in the qualitative evaluation, and

six participated in the bug location using GV in Eclipse.

Figure 5.10: Java expertise

Source: from author

After the profile survey, we provided artifacts to support the two phases. For the

phase one, we provided an electronic form with instructions to follow and questions to

answer. The GV was available at <http://server.swarmdebugging.org/>. For the phase

two, we provided participants with two instruction documents. The first document was

an experiment tutorial19 that explained how to install and configure all tools to perform

a warm-up task and the experimental study. We also used the warm-up task to confirm

18https://www.freelancer.com/
19<http://swarmdebugging.org/publications/experiment/tutorial.html>

http://server.swarmdebugging.org/
http://swarmdebugging.org/publications/experiment/tutorial.html

93

that the participants’ environment were correctly configured and that the participants un-

derstood the instructions. The warm-up task was described using a video to guide the

participants. We make available this video on-line20. The second document was an elec-

tronic form to collect the results and other evaluations made using the integrated GV.

For this experimental study, we used Eclipse Mars 2 and Java 8, the SDI with GV

and its Swarm Debug Tracer plug-in, and two Java projects: a small Tetris game for the

warm-up task and JabRef v3.2 for the experimental study. All participants received the

same workspace, provided by our artifact repository.

In the qualitative evaluation, the participants answered the questions directly in

the electronic form. They used the GV available online (<http://server.swarmdebugging.

org/>) with collected data for JabRef issues’ 318, 667, 669.

In the controlled experiment, after installing the environment (Eclipse and the

SDI), each participant executed the warm-up task. This task consisted of starting a de-

bugging session, toggling a breakpoint, and debugging a Tetris program to locate a given

method. After the warm-up task, each participant executed debugging sessions to find the

location of faults described in the five selected issues. We set a time constraint of one

hour. We asked participants to control their fatigue, asking them to go to the next task if

they felt tired while informing us of this situation in their reports. Finally, each participant

filled a report to provide their answers and other information, whether they completed the

tasks successfully or not, commenting on the usefulness of GV during each task.

All services were available on our server21 during these debugging sessions and

the experimental data were collected in the course of 3 days. We also collected the video

capture from the participants. The experiment tutorial contained the instruction to install

and set the OBS (Open Broadcaster Software), an open source system for live stream-

ing and recording22. Participants were asked to provide the video captured during the

experiment. We obtained ten recorded videos, providing more than 3 hours of effective

developer’s activities.

Next, we now report the results of our analyses to answer our research questions.

20<https://youtu.be/U1sBMpfL2jc>
21<http://server.swarmdebugging.org>
22https://obsproject.com

http://server.swarmdebugging.org/
http://server.swarmdebugging.org/
https://youtu.be/U1sBMpfL2jc
http://server.swarmdebugging.org

94

5.3.3 Is Global View useful to support software maintenance tasks?

During the qualitative evaluation, we asked the participants to analyze the graph

generated by GV to identify the type of the location of each bug, without reading the task

description or looking at the code. The GV generated graph had invocations collected

from previous debugging sessions. These invocations were generated during “good" ses-

sions (the bug was found) and “bad" sessions (the bug was not found). We analyzed

results obtained for task 318, 667 and 699, comparing the number of participants that

were able to propose a solution and the correctness of the solutions.

For the task 318 (Figure 5.11), 95% of participants (22/23) were able to suggest

a “candidate" type for the location of the fault, just by using the GV view. Among these

participants, 52% (12/23) suggested correctly AuthorsFormatter as the problematic

type.

Figure 5.11: GV by Task 0318

Source: from author

For the task 667 (Figure 5.12), 95% of participants (22/23) were also able to sug-

gest a “candidate" type for the problematic code, just by using the GV view. Among these

participants, 31% (7/23) suggested correctly that URLUtil was the problematic type.

Finally, for the task 669 (Figure 5.13), again 95% of participants (22/23) were

able to suggest a “candidate" for the type of the problematic code, just by looking at the

GV view. However, none of them (i.e., 0% (0/23)) provided the correct answer, that

OpenDatabaseAction was the problematic type.

RQ1 asked if GV is useful to support software maintenance tasks. We answered

that 87% of participants agreed that GV is useful or very useful (100% at least

some usefulness) through our qualitative study (Figure 5.16), and 75% of participants

claimed that GV is useful or very useful (100% at least some usefulness) on the task

result survey after true bug location tasks (Figure 5.16). Furthermore, several participants’

feedbacks support our answers.

95

Figure 5.12: GV by Task 0667

Source: Source: from author

Analysing those data, our results suggest that 1) GV is useful to support software

maintenance tasks, and 3) there is a direct relation between the quality of collected session

data and participants’ performance to create hypotheses about the location of an issue.

5.3.4 Does sharing and visualizing debug data support software maintenance tasks?

RQ2 was about sharing and visualizing debugging data to support software main-

tenance and evolution tasks. We analyzed each video recording and searched for evidence

of GV utilization during genuine bug locations tasks. Our controlled experiment showed

that 100% of participants used GV to support their tasks (video recording analysis),

navigating, reorganizing and especially diving into the type double-clicking on a selected

type, as we can observe as an example in Figure 5.18.

5.3.5 Participants’ Feedback

As most visualization techniques proposed in the literature, ours is a prototype

used as a proof of concept but with both intrinsic and accidental advantages and limita-

tions. While intrinsic advantages/limitations pertain to the visualization itself and our de-

sign choices, accidental advantages/limitations concern our implementation. During our

experiment, we collected the participants’ feedback on our visualization and discussed

both intrinsic and accidental advantages/limitations as reported by the participants. We

will return on some of the limitations in the next section that describes threats to the valid-

ity of our experiment. Finally, we report the general feedback from one of the participant.

96

Figure 5.13: GV by Task 0669

Source: from author

Visualisation of Debugging Paths Several participants commented our visualization

for presenting useful information related to the classes and methods followed by other

developers during debugging for some task. In particular, one participant reported that

“[i]t seems a fairly simple way to visualize classes and to demonstrate how they interact.”.

Effort in Debugging Three participants additionally mentioned that our visualization

shows where developers spent their debugging effort and where understanding “bottle-

necks” are. In particular, one participant wrote that our visualization “allows the de-

veloper to skip several steps in debugging, knowing from the graph where the problem

probably comes from.”

Location One participant commented that “the location where [an] issue occurs is not

the same as the one that is responsible for the issue.” We are well aware of this difference

between the location where a bug occurs, for example, a null-pointer exception, and the

location of the source of the bug, for example, a constructor where the field is not initial-

ized. However, we build our visualization on the premise that developers can share their

debugging activities for that very specific reason: by sharing, they could readily identify

the source of a bug rather than only the location where it occurs. We plan to perform

further studies to assess the usefulness of our visualization to achieve or not our premise.

97

Figure 5.14: GV by Task 1026

Source: from author

Scalability Several participants commented on the possible lack of scalability of our

visualization. Graph are well known to be not scalable, so we are expecting issues with

larger graphs (INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COM-

PUTING, 2015, 2015). Strategies to mitigate these issues include graph sampling but also

clustering.

Presentation Several participants also commented on the (relative) lack of information

brought by the visualization, which complementary to the issue of scalability. One partic-

ipant commented on the difference between the graph showing the developers’ paths and

the relative importance of classes during execution. Future work should seek to combine

both information on the same graph, possibly by combining size and colors: size could

relate to the developers’ paths while colors could indicate the “importance” of a class

during execution.

Evolution One participant commented that the graph is relevant for one version of the

system at hand but that, as soon as some changes are performed by a developer, the shown

paths may become irrelevant. We agree with the participant and accept this criticism

because our visualization was thought for one version. We will explore in future work

how to handle evolution and perform the minimal changes to the graph.

98

Figure 5.15: GV by Task 1235

Source: from author

Figure 5.16: GV usefulness - experimental phase one

Source: from author

Trap One participant warned that our visualization could lead developers into a “trap”

if, for some reasons, all developers whose paths are being displayed followed the “wrong”

paths. We agree with the participant and accept this risk because we assume that devel-

opers would not, en masse, choose the wrong paths.

Understanding One participant reported that the visualization alone does not bring

enough information to understand fully the task at hand. We accept this limitation be-

cause our visualization is built to be complementary to other views available in the IDE.

Reducing Code Complexity One participant discussed the use of our visualization to

reduce code complexity for the developers by highlighting its main functionalities.

Complementing Differential Views Another participant contrasted our visualization

with Git Diff and mentioned that they complement each other well because of our visual-

99

Figure 5.17: GV usefulness - experimental phase two

Source: from author

Figure 5.18: Video on Dev520 using GV to support the task 993.

Source: from author

ization “[a]llows to quickly see where the problem probably has been before it got fixed.”

while Git Diff allows seeing where the problem was fixed.

Highlighting Refactoring Opportunities Finally, a third participant suggested that the

larger node could represent classes that could be refactored if they also have many bugs

to simplify future debugging sessions for developers.

Presentation Several participants commented on the presentation of the information by

our visualization. Most importantly, they remarked that identifying the location of the bug

was difficult because there was no distinction between faulty and non-faulty classes. In the

future, we will assess the use of icons and–or colors to identify faulty classes/methods.

100

Others commented on the lack of caption describing the various visual elements. Al-

though this information was present in the tutorial and questionnaires, we will add it also

into the visualization, possibly using tool tips. One participant added that more infor-

mation, such as “execution time metrics [by] invocations” and “failure/success rate [by]

invocations” could be valuable information. We plan to perform other controlled exper-

iments with such additional information to asses its impact on developers’ performance.

Finally, one participant mentioned that arrows would sometimes overlap, which points to

the need for a better placement algorithm for the graph nodes in our visualization.

Navigation One participant commented that the visualization does not help developers

navigating between classes whose methods have a low cohesion. It should be possible to

show in different parts of the graph the methods and their classes if these methods have

low cohesion so as to avoid large nods in the graph that are accidentally large (because of

the sheer numbers of their methods). We plan to modify the graph visualization to have a

“method-level” view whose node could be methods and–or clusters of methods (unrelated

to their classes).

5.3.6 General Feedback

Three participants left general feedback regarding their experience with our visu-
alization in the “Describe your debugging experience” free text part of the questionnaire.
All three participants provided positive comments. We report here one of the three com-
ments:

It went pretty well. In the beginning, I was at a loss, so just was looking around
for some time. Then I opened the breakpoints view for another task that was
related to file parsing in the hope to find some hints. And indeed I’ve found
the BibtexParser class where the method with the most number of breakpoints
was the one where I later found the bug. However, only this knowledge was
not enough, so I had to study the code a bit. Luckily, it didn’t require too
much effort to spot the problem because all the related code was concentrated
inside the parser class. Luckily I had a BibTeX database at hand to use it for
debugging. It was excellent.

This comment highlights the benefits of our visualization and confirm that our

premise may be correct and that developers may benefit from others’ debugging sessions.

It encourages us to pursue our research work in this direction and perform more experi-

ments and improve our visualization.

101

5.3.7 Threats to Validity

Despite its promising results, there exist threats to the validity of our experiment

that we discuss in the following.

Construct Validity Threats are related to the metrics used to answer our research

questions. We mainly used breakpoint locations, which is a precise measure. Yet, as we

located breakpoints using our Swarm Debug Infrastructure (SDI) and visualization, any

issue with it would affect our results. To mitigate these threats, we collected both SDI data

and video captures of the participants’ screens and compared the information extracted

from the videos with the data collected by the SDI. We observed that the breakpoints

collected by the SDI are exactly those toggled by the participants.

We ask participants to self-report on their efforts during the tasks, levels of ex-

perience, etc. through the questionnaires. Consequently, it is possible that the answer to

represent their real efforts, levels, etc. We accept this threat because questionnaires are

the best means to collect data about participants without incurring a high cost. Construct

validity could be improved in future work by using instruments to measure effort indepen-

dently, for example, but such instruments would lead to more time- and effort-consuming

experiments.

Conclusion Validity Threats concern the relations found between independent

and dependent variables. In particular, they concern the assumptions of the statistical

tests performed on the data and how diverse is the data. We did not perform any statistical

analysis to answer our research questions, so our results do not depend on any statistical

assumption.

Internal Validity Threats pertain the tools used to collect the data and the subject

systems and if the collected data is sufficient to answer the research questions. We col-

lected data using our visualization. We are well aware that our visualization does not scale

for large systems but, for JabRef, it allows participants to share paths during debugging

and researchers to collect relevant data, including shared paths. We plan to further study

our visualization to identify possibilities to improve it so that it scales up to large systems.

Each participant performed more than one task on the same system. It is possible

that a participant may have become familiar with the system after performing an earlier

task and would be knowledgeable enough to toggle breakpoints when performing later

tasks. However, we did not observe any significant difference in performance when com-

paring the performance of a same participant for the first and last task. Therefore, we

102

accept this threat but still plan for future studies with more tasks on more systems.

External Validity Threats are about the possibility to generalize our results. We

use only one system in our study (JabRef) because we needed to have enough data points

from a single system to assess the effectiveness of breakpoint prediction. We share our

data and code on-line23. We should collect more data on other systems and check whether

the system used can affect our results.

Moreover, we should collect more data on different versions of some systems, to

assess the benefit of our visualization in time during software evolution, which is the most

important of all developers’ tasks. Future studies with different sets of tasks and different

participants are also necessary to verify our results and make our findings more general.

The participant to our controlled experiment were free-lancers that were paid to

perform the tasks, albeit small amounts of money CAD$five by the phase one and

CAD$10 per task on the phase two. Paying participants is a means to thank them

for their time and effort but also introduce the threat that the participants try to please

the researchers to obtain their payments, through the Pygmalion/Rosenthal effect. We are

planning future studies with volunteer students and developers to assess the impact of this

threat on our results. For this experiment, we accept the threat because the amounts of

money are small enough not to entice unduly participants.

5.4 Final remarks

This chapter presented three studies in other to evaluate the effectiveness of the

Swarm Debugging Infrastructure, showing the data collected by SDI could be use to un-

derstand interactive debugging. First, we conducted an experiment with three real main-

tenance task performed by seven developers on JabRef system. The main findings are:

(1) there is not a correlation between the numbers of invocations and elapse task time

(ρ = −0.039); (2) there is no correlation between numbers of breakpoints and elapse

task time (ρ = 0.093); (3) developers follow different debugging patterns (4) there is

no relation between numbers of breakpoints and expertise; (5) whether developers toggle

breakpoints carefully, they complete tasks faster than developers who toggle breakpoints

quickly.

Next, we conducted a study and collected debugging activities of 20 developers

when performing realistic maintenance tasks on a Java open-source system. We study how

23http://swarmdebugging.org/publications/vissoft2016

103

developers toggled breakpoints and observed that developers spent among of time (27%)

to toggle the first breakpoint. Moreover, developers who carefully toggled breakpoints are

more efficient (in term time spent to resolve the task) than those who toggle breakpoint

early. By analyzing the target statements of breakpoints, we found that breakpoints are

usually toggled on call statements (53% of breakpoints) and that breakpoints are some-

times toggled on the same location even for different tasks and–or by different developers.

This observation calls for the investigation whether breakpoints previously toggled by a

developer could help another developer. Thus, we tested the concept of co-breakpoint and

used it for breakpoint prediction. We predicted breakpoint at class and method level and

achieved the precision and recall of 15% and 62%, and 21% and 35%, respectively for

class and method level. Our results show that collecting and sharing debugging activities

could help to study and improve software maintenance and evolution.

Finally, we assessed the usefulness of GV for conducting a qualitative study with

23 professional developers and a controlled experiment with 13 professional developers.

We answered the following research questions. RQ1 asked if GV is useful to support

software maintenance tasks. We answered that 87% of participants agreed that GV is

useful or very useful (100% at least some usefulness) through our qualitative study.

RQ2 was about sharing and visualizing debug data support software maintenance and

evolution tasks. Our controlled experiment showed that 100% of participants used GV

to support their tasks (video recording analysis), and 75% of participants claimed that

GV is useful or very useful (100% at least some usefulness) in the survey. Furthermore,

several participants’ feedbacks support our answers. Thus, we proposed a visualization

that development teams can use to share debugging data and reported qualitative and

quantitative data showing the benefits of sharing debugging data. Besides, we also re-

ported the feedback of the participants who took part of our controlled experiments and

showed that they identified both essential and accidental advantages and limitations to our

visualization.

In conclusion, these three studies presented three examples how SD and SDI could

be used to investigate debugging phenomena and create a recommendation system and a

visualization. The results showed that SD is an approach that ables to support and improve

debugging activities and researches on interactive debugging.

104

105

6 CONCLUSION

Understanding software and fixing software defects are complex, tedious and time

consuming activities. To address these laborious tasks, developers often exploit applica-

tions through debugging. As a result, this process produces a lot of information about

the system context. This information is, however, usually lost after the end of the de-

bugging sessions. In this thesis, we presented a new approach named Swarm Debugging

(SD) aiming to collect, share and retrieve information from debugging sessions. SD uses

developers’ cooperative effort (FUGGETTA, 2000; STOREY et al., 2014) to capture and

share knowledge, collecting iterations that are usually discarded in traditional debugging

tools. It allows developers to find breakpoints and starting points and share their experi-

ences on software projects transparently. Focusing on sensitive session context, each SD

session captures only the paths covered intentionally, driven by real developers’ issues.

In order to provide support for our approach, we developed the Swarm Debug

Infrastructure (SDI), an open-source infrastructure integrated into Eclipse, to collect and

share fine-grained data about developers’ interactive debugging activities. The SDI col-

lects data in the background during debugging activities without affecting the perfor-

mance of the IDE. SDI stores data on a remote server using an asynchronous execution

and, thus, does not suffer from performance or memory issues as it occurs with omniscient

debuggers (POTHIER; TANTER, 2009) or tracing-based approaches (OHMANN; LIB-

LIT, 2013). Moreover, our approach is not limited to a single language or architecture,

requiring only that a debugging tool performs simple HTTP requests through a RESTful

API, allowing that new clients were implemented easy.

SD shows as a significant feature the division of the software complexity problem.

In traditional approaches, as the JIVE approach, all data are used to construct visualiza-

tions and search. Moreover, when the session finishes all data are lost. On the other hand,

Swarm Debugging saves session information, and developers can divide massive projects

on multiple diagrams, having a fine control over exploring relevant, important software

areas. This feature improves software comprehension. SD is a complementary approach

for JIVE (GESTWICKI; JAYARAMAN, 2005), addressing the sharing of information

and visual scalability issues.

We conducted experimental studies to assess the effectiveness of the SD in collect-

ing data relevant for comprehension studies and debugging. Using data provided by SDI

we performed empirical studies with professional (and freelancer) developers, and we

106

could answer several research questions on which we observe that (1) developers spent

time (about 27%) to toggle the first breakpoint; (2) developers that carefully toggled

breakpoints are more efficient (in terms of time spent to resolve the task) than those who

toggled breakpoints earlier; (3) breakpoints are usually toggled on call statements (53%

of breakpoints) and breakpoint are sometimes toggled on the same location even for dif-

ferent tasks and–or by different developers. These observations lead to the investigation

of whether breakpoints previously toggled by a developer could help another developer,

resulting in the concept of co-breakpoint. In conclusion, our results show that Swarm

Debugging could help and improve software maintenance and evolution.

6.1 Summary of contributions

This research has two main contributions. First, a new approach to collect, share

and retrieve information from debugging sessions named Swarm Debugging. Second, an

infrastructure to support our approach (Swarm Debug Infrastructure), providing several

visualisations and searching tools.

SDI is an open and freely available infrastructure that SE researchers can use to

perform new empirical studies about debugging and–or software static and dynamic anal-

ysis.

Developers can use SDI to record their debugging patterns to identify debugging

strategies that are more efficient in the context of their project, allowing them to improve

their debugging skills.

Moreover, they can also use SDI to store and share project information, such as

breakpoints and–or invocations. Developers can share their debugging activities, such as

breakpoints and–or invocations to improve collaborative work and ease software main-

tenance. While developers usually work on specific tasks, there are sometimes re-open

issues and–or similar tasks that need to understand or toggle breakpoints on the same

entity. Thus, using breakpoints previously toggled by a developer could help to assist

another developer working on similar tasks. For instance, the breakpoint search tools can

be used to retrieve breakpoints from previous debug sessions, which could help speed up

a new debugging session, providing developers with valid starting points. Therefore, the

breakpoint search tool can decrease the time spent to toggle a new breakpoint.

Debugger’s developers can use SDI to understand IDE users’ behaviors and re-

quirements. This knowledge base is important to create new tools, using novel data-

107

mining techniques, to integrate different data sources. SDI provides a transparent frame-

work for developers to share debugging information, creating a collective intelligence

about their software projects.

The understanding of how developers perform debugging activities and–or debug-

ging patterns is an example of debugging activities collected by SDI. In addition to this

perspective, the data collected by SDI can be useful to assess the developers’ interest and

knowledge of the code: when developers toggle a breakpoint in a program element, the

element seems relevant to the task at hand. By collecting debugging activities, we can

know the program elements which raised interest in a developer for solving a task. Thus,

these debugging activities could help to assess the developers’ knowledge of the code.

Last but not least, educators could leverage SDI tools to teach interactive debug-

ging techniques, tracing their students’ debugging sessions, and evaluating their perfor-

mance. Data collected by SDI about debugging sessions of professional development

could also be used to educate students, e.g., by showing them examples of good and bad

debugging patterns.

6.2 Limitations

Our work has the following limitations:

Versioning Our approach currently support only a single software version.

Platform Despite our model is generic, our approach currently has an implementation

that uses Eclipse for Java projects.

Collecting As any knowledge-oriented approach, SD works only if developers collect

data about a software project using SDI, improving its coverage as the amount of tasks

increase in time. Furthermore, some project’s regions could not be debugged, and conse-

quently, they are not collected by SDI. However, this limitation opens opportunities for

exploring why some areas are never explored.

Visualisation scaling Despite task filtering and collecting only real paths, our visual-

izations are not prepared for large-scale systems, and this limitation has to be addressed

in future work.

108

In fact, such limitations are indeed challenges for future work.

6.3 Future work

In future work, we plan to extend the SDI into a full context-aware debugger,

adding new ways to share and visualise debugging sessions, implementing SDI Tracer

for several languages on Eclipse (as C/C++, PHP, Python, and Ruby), and tracers to Net-

beans, IntelliJ IDEA, Visual Studio, Pharo and GDB. We are working to create a tracer

for JavaScript, using Firebug and Google Chrome Developer Tools. We also plan to inte-

grate the SDI with a bug tracking system, improve the breakpoint search, associate issues

tracking information with breakpoints. Finally, we will perform new empirical studies on

developers’ debugging activities using the SDI, exploring multi-language behavior about

debugging, towards a deep study of debugging activities.

We also intend to implement the recommendation of breakpoints, using the co-

breakpoint concept and similarity of tasks. They can be integrated with the graphical

UI that can point the developer to the location where to toggle a breakpoint. We will

combine debugging data with other “usual” call-graph as well as icons to identify the

classes with faults. We will also devise algorithms to change as little as possible the

visualization when changes are performed in the code. Finally, we will perform further

controlled experiments with more tasks and more systems and different measures. We

will also explore other visualization techniques than graphs.

Furthermore, we plan to use SDI in an authentic production environment and sur-

vey developers about the usefulness of SDI. We would also ask the opinion of other devel-

opers of debugging tools to figure out whether SDI could be beneficial to the community

of debugging tools and–or integrated with existing debugging tools and approaches, as

Hipikat (CUBRANIC et al., 2005), for example.

Last but not least, the research community can leverage the SDI to conduct more

studies to improve our understanding of developers’ debugging activities, which could ul-

timately result in the development of whole new families of debugging tools that are more

efficient and–or more adapted to the particularity of each debugging activity. Many open

questions are remaining without answers yet, and this thesis is just a first step towards

fully understanding and improvements on debugging activities.

109

REFERENCES

OHMANN, Peter and Liblit, Ben.

AN, L.; KHOMH, F.; ADAMS, B. Supplementary Bug Fixes vs. Re-opened Bugs.
In: IEEE INTERNATIONAL WORKING CONFERENCE ON SOURCE CODE
ANALYSIS AND MANIPULATION, 14TH, 2014. Proceedings... Los Alamitos, CA,
USA: IEEE Computer Society Press, 2014. p. 205–214.

ARAKI, K.; FURUKAWA, Z.; CHENG, J. A general framework for debugging. IEEE
Software, IEEE Computer Society Press, Los Alamitos, CA, USA, v. 8, n. 3, p. 14–20,
May 1991.

ASHOK, B. et al. Debugadvisor: A recommender system for debugging. In: ACM
SIGSOFT SYMPOSIUM ON THE FOUNDATIONS OF SOFTWARE ENGINEERING,
7TH, 2009. New York, NY, USA: ACM, 2009. p. 373–382.

AYEWAH, N. et al. Using Static Analysis to Find Bugs. IEEE Software, IEEE
Computer Society Press, Los Alamitos, CA, USA, v. 25, n. 5, p. 22–29, sep 2008.

BALL, T.; EICK, S. G. Software visualization in the large. Computer, IEEE Computer
Society Press, Los Alamitos, CA, USA, v. 29, n. 4, p. 33–43, abr. 1996.

BALL, T.; RAJAMANI, S. K. The slam project: Debugging system software via static
analysis. SIGPLAN Not., ACM, New York, NY, USA, v. 37, n. 1, p. 1–3, jan. 2002.
ISSN 0362-1340.

BALZER, M.; DEUSSEN, O. Level-of-detail visualization of clustered graph layouts.
In: INTERNATIONAL ASIA-PACIFIC SYMPOSIUM ON VISUALIZATION, 6TH,
2007. Proceedings... Los Alamitos, CA, USA: IEEE Computer Society Press, 2007. p.
133–140.

BANTELAY, F.; ZANJANI, M. B.; KAGDI, H. Comparing and combining evolutionary
couplings from interactions and commits. Working Conference on Reverse
Engineering, 20th, 2013, IEEE Computer Society, Los Alamitos, CA, USA, v. 00, p.
311–320, 2013.

BARR, E. T.; MARRON, M. Tardis: Affordable time-travel debugging in managed
runtimes. SIGPLAN Not., ACM, New York, NY, USA, v. 49, n. 10, p. 67–82, oct. 2014.
ISSN 0362-1340.

BLASCIAK, A.; PARETS, G. System of debugging software through use of code
markers inserted into spaces in the source code during and after compilation.

BOOCH, G. Then a Miracle Occurs. IEEE Software, IEEE Computer Society,
Washington, DC, USA, v. 32, n. 4, p. 12–14, jul. 2015.

BROOKS, F. P. No silver bullet: Essence and accidents of software engeneering. IEEE
Computer, IEEE Computer Society, Washington, DC, USA, v. 20, n. 4, p. 10–19, April
1987.

110

BRUCH, M. et al. Ide 2.0: Collective intelligence in software development. In:
WORKSHOP ON FUTURE OF SOFTWARE ENGINEERING RESEARCH, 2010.
New York, NY, USA: ACM, 2010. p. 53–58.

BUGDE, S. et al. Global Software Servicing: Observational Experiences at
Microsoft. In: IEEE INTERNATIONAL CONFERENCE ON GLOBAL SOFTWARE
ENGINEERING, 2008. Proceedings... [S.l.]: IEEE, 2008. p. 182–191.

CASERTA, P.; ZENDRA, O.; BODéNèS, D. 3d hierarchical edge bundles to visualize
relations in a software city metaphor. In: IEEE INTERNATIONAL WORKSHOP ON
VISUALIZING SOFTWARE FOR UNDERSTANDING AND ANALYSIS, 6TH, 2011.
Washington, DC, USA: IEEE Computer Society, 2011. p. 1–8.

CECCATO, M. et al. Do Automatically Generated Test Cases Make Debugging
Easier? An Experimental Assessment of Debugging Effectiveness and Efficiency. ACM
Transactions on Software Engineering and Methodology, v. 25, n. 1, p. 1–38, Dec
2015.

CHEN, F.; KIM, S. Crowd debugging. In: FOUNDATIONS OF SOFTWARE
ENGINEERING, 10TH, 2015. New York, NY, USA: ACM, 2015. p. 320–332.

CHIC, A.; NIERSTRASZ, O.; GIRBA, T. Towards a moldable debugger. In:
WORKSHOP ON DYNAMIC LANGUAGES AND APPLICATIONS, 7TH, 2013.
Proceedings... New York, NY, USA: ACM, 2013. p. 2:1–2:6.

CHOW, T.; CAO, D.-B. A survey study of critical success factors in agile software
projects. J. Syst. Softw., Elsevier Science Inc., New York, NY, USA, v. 81, n. 6, p.
961–971, jun. 2008.

COCKBURN, A. Agile Software Development: The Cooperative Game, Second
Edition. [S.l.]: Addison-Wesley Professional, 2006. 504 p.

CORNELISSEN, B.; ZAIDMAN, A.; DEURSEN, A. V. A controlled experiment for
program comprehension through trace visualization. IEEE Transactions on Software
Engineering, IEEE Computer Society Press, Los Alamitos, CA, USA, v. 37, n. 3, p.
341–355, 2011.

CORNELISSEN, B. et al. A Systematic Survey of Program Comprehension through
Dynamic Analysis. IEEE Transactions on Software Engineering, IEEE Computer
Society Press, Los Alamitos, CA, USA, v. 35, n. 5, p. 684–702, sep. 2009.

CUBRANIC, D.; MURPHY, G. C. Hipikat: Recommending pertinent software
development artifacts. In: INTERNATIONAL CONFERENCE ON SOFTWARE
ENGINEERING, 25TH, 2003. Proceedings... Washington, DC, USA: IEEE Computer
Society, 2003. p. 408–418.

CUBRANIC, D. et al. Hipikat: A project memory for software development. IEEE
Trans. Softw. Eng., IEEE Press, Piscataway, NJ, USA, v. 31, n. 6, p. 446–465, jun. 2005.
ISSN 0098-5589.

CZYZ, J. K.; JAYARAMAN, B. Declarative and visual debugging in eclipse.
In: OOPSLA WORKSHOP ON ECLIPSE TECHNOLOGY EXCHANGE, 2007.
Proceedings... New York, NY, USA: ACM, 2007. p. 31–35.

111

DELINE, R. et al. Debugger canvas: Industrial experience with the code bubbles
paradigm. In: INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING,
34TH, 2012. Proceedings... Los Alamitos, CA, USA: IEEE Computer Society Press,
2012. p. 1064–1073.

DEMEYER, S.; DUCASSE, S.; LANZA, M. A hybrid reverse engineering approach
combining metrics and program visualisation. In: WORKING CONFERENCE ON
REVERSE ENGINEERING, SIXTH, 1999. Procedings... Washington, DC, USA: IEEE
Computer Society, 1999. p. 175–186.

DENEUBOURG, J. L. et al. The self-organizing exploratory pattern of the argentine ant.
Journal of Insect Behavior, [S.l. : S.n.], v. 3, n. 2, p. 159–168, mar 1990.

ESTLER, H. C. et al. Collaborative debugging. In: IEEE INTERNATIONAL
CONFERENCE ON GLOBAL SOFTWARE ENGINEERING, 8TH, 2013.
Proceedings... Washington, DC, USA: IEEE Computer Society, 2013. p. 110–119.

FLEMING, S. D. et al. An information foraging theory perspective on tools for
debugging, refactoring, and reuse tasks. ACM Trans. Softw. Eng. Methodol., ACM,
New York, NY, USA, v. 22, n. 2, p. 14:1–14:41, mar. 2013.

FOWLER, M. Datensparsamkeit. 2016. Available from Internet: <http://martinfowler.
com/bliki/Datensparsamkeit.html>.

FUGGETTA, A. Software process: A roadmap. In: CONFERENCE ON THE FUTURE
OF SOFTWARE ENGINEERING. Proceedings... New York, NY, USA: ACM, 2000. p.
25–34.

GARNIER, S.; GAUTRAIS, J.; THERAULAZ, G. The biological principles of swarm
intelligence. Swarm Intelligence, [S.l. : S.n.], v. 1, n. 1, p. 3–31, oct 2007.

GESTWICKI, P.; JAYARAMAN, B. Methodology and architecture of jive. In: ACM
SYMPOSIUM ON SOFTWARE VISUALIZATION, 2005. Proceedings... New York,
NY, USA: ACM, 2005. p. 95–104.

GRATI, H.; SAHRAOUI, H.; POULIN, P. Extracting sequence diagrams from execution
traces using interactive visualization. In: WORKING CONFERENCE ON REVERSE
ENGINEERING, 17TH, 2010. Proceedings... Los Alamitos, CA, USA: IEEE Computer
Society Press, 2010. p. 87–96.

GROVE, D. et al. Call graph construction in object-oriented languages. SIGPLAN Not.,
ACM, New York, NY, USA, v. 32, n. 10, p. 108–124, oct. 1997. ISSN 0362-1340.

GU, Z. Capturing and exploiting fine-grained ide interactions. In: INTERNATIONAL
CONFERENCE ON SOFTWARE ENGINEERING, 34TH, 2012. Proceedings...
Piscataway, NJ, USA: IEEE Press, 2012. p. 1630–1631.

HIGHSMITH, J.; COCKBURN, A. Agile software development: the business of
innovation. Computer, [S.l. : S.n.], v. 34, n. 9, p. 120–127, 2001.

HILL, E. Integrating Natural Language and Program Structure Information to
Improve Software Search and Exploration. Thesis (PhD), Newark, DE, USA, 2010.

http://martinfowler.com/bliki/Datensparsamkeit.html
http://martinfowler.com/bliki/Datensparsamkeit.html

112

HOFER, B.; WOTAWA, F. Combining slicing and constraint solving for better
debugging: The conbas approach. Adv. Soft. Eng., Hindawi Publishing Corp., New
York, NY, United States, v. 2012, p. 13:13–13:13, jan. 2012. ISSN 1687-8655.

HÖLLDOBLER, B.; WILSON, E. The Superorganism: The Beauty, Elegance, and
Strangeness of Insect Societies. [S.l.]: W.W. Norton, 2009.

IEEE. IEEE Standard Glossary of Software Engineering Terminology. Los Alamitos,
CA, USA: IEEE Computer Society Press, 1990. 1 p.

INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING,
2015. Scalable graph exploration and visualization: Sensemaking challenges and
opportunities. In: Proceedings... Los Alamitos, CA, USA: IEEE Computer Society,
2015. p. 271–278.

JAYARAMAN, S.; JAYARAMAN, B.; LESSA, D. Compact visualization of java
program execution. Software: Practice and Experience, [S.l. : s.n.], p. n/a–n/a, 2016.

KATSO, H. Sdb: a symbolic debugger. In: UNIX PROGRAMMER’S MANUAL. [S.l.],
1979.

KATZ, I. R.; ANDERSON, J. R. Debugging: An analysis of bug-location strategies.
Hum.-Comput. Interact., L. Erlbaum Associates Inc., Hillsdale, NJ, USA, v. 3, n. 4, p.
351–399, dec. 1987.

KERSTEN, M.; MURPHY, G. C. Using task context to improve programmer productiv-
ity. In: ACM SIGSOFT INTERNATIONAL SYMPOSIUM ON FOUNDATIONS OF
SOFTWARE ENGINEERING, 14TH, 2014. Proceedings... New York, NY, USA: ACM,
2006. p. 1–11.

KIM, S.; PAN, K.; WHITEHEAD, E. E. J. Memories of bug fixes. In: ACM
SIGSOFT INTERNATIONAL SYMPOSIUM ON FOUNDATIONS OF SOFTWARE
ENGINEERING, 14TH, 2006. Proceedings... New York, New York, USA: ACM Press,
2006. p. 35.

KNIGHT, C.; MUNRO, M. Should users inhabit visualizations? In: IEEE INTERNA-
TIONAL WORKSHOPS ON ENABLING TECHNOLOGIES: INFRASTRUCTURE
FOR COLLABORATIVE ENTERPRISES, 9TH, 2000. Proceedings... Washington, DC,
USA: IEEE Computer Society, 2000. p. 43–50.

KO, A. Debugging by asking questions about program output. In: INTERNATIONAL
CONFERENCE ON SOFTWARE ENGINEERING, 28TH, 2006. Proceedings... New
York, NY, USA: ACM, 2006. p. 989–992.

KO, A. J.; MYERS, B. A. Finding causes of program output with the java whyline.
In: PROCEEDINGS OF THE SIGCHI CONFERENCE ON HUMAN FACTORS
IN COMPUTING SYSTEMS. Proceedings... New York, NY, USA: ACM, 2009. p.
1569–1578.

KUTTAL, S. K.; SARMA, A.; ROTHERMEL, G. Predator behavior in the wild
web world of bugs: An information foraging theory perspective. In: 2013 IEEE
SYMPOSIUM ON VISUAL LANGUAGES AND HUMAN CENTRIC COMPUTING.
Proceedings... Los Alamitos, CA, USA: IEEE Computer Society Press, 2013. p. 59–66.

113

LABICHE, Y.; KOLBAH, B.; MEHRFARD, H. Combining static and dynamic analyses
to reverse-engineer scenario diagrams. In: IEEE INTERNATIONAL CONFERENCE
ON SOFTWARE MAINTENANCE, 29TH, 2013. Proceedings... Los Alamitos, CA,
USA: IEEE Computer Society Press, 2013. p. 130–139.

LATOZA, T. D.; MYERS, B. Developers ask reachability questions. In: ACM/IEEE
INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, 32ND, 2010.
Proceedings... New York, New York, USA: ACM Press, 2010. v. 1, p. 185.

LAWRANCE, J.; BELLAMY, R.; BURNETT, M. Scents in programs: Does information
foraging theory apply to program maintenance? In: IEEE SYMPOSIUM ON VISUAL
LANGUAGES AND HUMAN-CENTRIC COMPUTING. Proceedings... Washington,
DC, USA: IEEE Computer Society, 2007. p. 15–22.

LAWRANCE, J. et al. Using information scent to model the dynamic foraging behavior
of programmers in maintenance tasks. In: CONFERENCE ON HUMAN FACTORS IN
COMPUTING SYSTEMS, 26TH, 2008. Proceedings... New York, New York, USA:
ACM Press, 2008. p. 1323.

LAWRANCE, J. et al. How programmers debug, revisited: An information foraging
theory perspective. IEEE Transactions on Software Engineering, IEEE Press,
Piscataway, NJ, USA, v. 39, n. 2, p. 197–215, 2013.

LEE, S. et al. The impact of view histories on edit recommendations. IEEE Transactions
on Software Engineering, IEEE Computer Society, Los Alamitos, CA, USA, v. 41, n. 3,
p. 314–330, March 2015.

LI, L. et al. Chaos-order transition in foraging behavior of ants. Proceedings of the
National Academy of Sciences, [S.l. : S.n.], v. 111, n. 23, p. 8392–8397, jun 2014.

LINTON, M. A. The evolution of dbx. In: SUMMER USENIX CONFERENCE.
Proceedings... [S.l.], 1990. p. 211–220.

MAALEJ, W. et al. On the comprehension of program comprehension. ACM Trans.
Softw. Eng. Methodol., ACM, New York, NY, USA, v. 23, n. 4, p. 31:1–31:37, sep.
2014.

MINELLI, R. et al. Visualizing developer interactions. In: IEEE WORKING
CONFERENCE ON SOFTWARE VISUALIZATION, SECOND, 2014. Proceedings...
Washington, DC, USA: IEEE Computer Society, 2014. (VISSOFT ’14), p. 147–156.

MURPHY, G. C.; KERSTEN, M.; FINDLATER, L. How are java software developers
using the eclipse ide? IEEE Software, IEEE Computer Society Press, Los Alamitos,
CA, USA, v. 23, n. 4, p. 76–83, jul. 2006.

NGUYEN, T. T. et al. Recurring bug fixes in object-oriented programs. In: ACM/IEEE
INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, 32ND, 2010.
Proceedings... New York, New York, USA: ACM Press, 2010. v. 1, p. 315.

OHMANN, P.; LIBLIT, B. Lightweight control-flow instrumentation and postmortem
analysis in support of debugging. In: IEEE/ACM INTERNATIONAL CONFERENCE
ON AUTOMATED SOFTWARE ENGINEERING, 28TH, 2013. Proceedings...
Piscataway, NJ, USA: IEEE Press, 2013. p. 378–388.

114

OHMANN, P.; LIBLIT, B. Lightweight control-flow instrumentation and postmortem
analysis in support of debugging. Automated Software Engineering, [S.n.], [S.l.], p.
1–40, 2016.

P. Wainwright. GNU DDD - Data Display Debugger. [S.l.]: Free Software Foundation,
2010.

PARNIN, C.; ORSO, A. Are automated debugging techniques actually helping
programmers? In: INTERNATIONAL SYMPOSIUM ON SOFTWARE TESTING AND
ANALYSIS, 2011. Proceedings... New York, NY, USA: ACM, 2011. p. 199–209.

PETRILLO, F. et al. Visualizing interactive and shared debugging sessions. In: Software
Visualization (VISSOFT), 2015 IEEE 3rd Working Conference on. Washington, DC,
USA: IEEE Computer Society, 2015. p. 140–144.

PIORKOWSKI, D.; FLEMING, S. The whats and hows of programmers’ foraging diets.
In: CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, 2013.
Proceedings... Paris, France: ACM, 2013. p. 3063–3072.

PIROLLI, P.; CARD, S. Information foraging. Psychological Review, [S.l. : s.n.], v. 106,
n. 4, p. 643–675, 1999.

POTHIER, G.; TANTER Éric. Back to the future: Omniscient debugging. IEEE
Software, IEEE Computer Society, Los Alamitos, CA, USA, v. 26, p. 78–85, 2009.

RESSIA, J.; BERGEL, A.; NIERSTRASZ, O. Object-centric debugging. In:
INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, 34TH, 2012.
Proceedings... Piscataway, NJ, USA: IEEE Press, 2012. p. 485–495.

ROMERO, P. et al. Debugging strategies and tactics in a multi-representation software
environment. Int. J. Hum.-Comput. Stud., Academic Press, Inc., Duluth, MN, USA,
v. 65, n. 12, p. 992–1009, dec. 2007. ISSN 1071-5819.

RÖSSLER, J. How helpful are automated debugging tools? In: INTERNATIONAL
WORKSHOP ON USER EVALUATION FOR SOFTWARE ENGINEERING
RESEARCHERS, 1ST, 2012. Proceedings... [S.l.], 2012. p. 13–16.

SAITO, R. et al.

SALVANESCHI, G.; MEZINI, M. Debugging for reactive programming. In:
INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, 38TH, 2016.
Proceedings... New York, New York, USA: IEEE Computer Society Press, 2016. p.
796–807.

SANCHEZ, H.; ROBBES, R.; GONZALEZ, V. M. An empirical study of work
fragmentation in software evolution tasks. In: IEEE INTERNATIONAL CONFERENCE
ON SOFTWARE ANALYSIS, EVOLUTION, AND REENGINEERING, 22ND, 2015.
Proceedings... Los Alamitos, CA, USA: IEEE Computer Society Press, 2015. p.
251–260.

SILLITO, J.; MURPHY, G.; De Volder, K. Asking and Answering Questions during a
Programming Change Task. IEEE Transactions on Software Engineering, IEEE Press,
Piscataway, NJ, USA, v. 34, n. 4, p. 434–451, jul 2008.

115

SOH, Z. et al. On the effect of program exploration on maintenance tasks. In: WORKING
CONFERENCE ON REVERSE ENGINEERING, 20TH, 2013. Proceedings... Los
Alamitos, CA, USA: IEEE Computer Society Press, 2013. p. 391–400.

STALLMAN, R. P.; SHEBS, S. Debugging with GDB - The GNU Source-Level
Debugger. [S.l.]: GNU Press, 2002.

STOREY, M.-A. Theories, tools and research methods in program comprehension: past,
present and future. Software Quality Journal, [S.l. : S.n.], v. 14, n. 3, p. 187–208, sep.
2006.

STOREY, M.-A. et al. The (r) evolution of social media in software engineering. In: THE
ON FUTURE OF SOFTWARE ENGINEERING, 2014. Proceedings... New York, NY,
USA: ACM, 2014. p. 100–116.

SUMPTER, D. J. T. The principles of collective animal behaviour. Philosophical
Transactions of the Royal Society B: Biological Sciences, [S.l.], v. 361, n. 1465, p.
5–22, jan 2006.

TANENBAUM, A. S.; BENSON, W. H. The people’s time sharing system. Software:
Practice and Experience, [S.l. : s.n.], n. 2, p. 109–119, apr 1973.

TIARKS, R.; RÖHM, T. Challenges in Program Comprehension. Softwaretechnik-
Trends, [S.l. : s.n.], v. 32, n. 2, p. 19–20, may 2012.

TSCHINKEL, W. R. The architecture of subterranean ant nests: beauty and mystery
underfoot. Journal of Bioeconomics, Springer US, [S.l], v. 17, n. 3, p. 271–291, oct
2015.

WANG, S.; LO, D. Version history, similar report, and structure: Putting them together
for improved bug localization. In: INTERNATIONAL CONFERENCE ON PROGRAM
COMPREHENSION, 22ND, 2014. Proceedings... New York, NY, USA: ACM, 2014. p.
53–63.

WIKIPEDIA. Collective intelligence. 2015. Available from Internet: <http:
//en.wikipedia.org/wiki/Collective_intelligence>.

WIKIPEDIA. Crowd. [S.l.]: [S.n., 2016. Available from Internet: <http://en.wikipedia.
org/wiki/Crowd>.

YE, X.; BUNESCU, R.; LIU, C. Learning to rank relevant files for bug reports using
domain knowledge. In: ACM SIGSOFT INTERNATIONAL SYMPOSIUM ON
FOUNDATIONS OF SOFTWARE ENGINEERING, 22ND, 2014. Proceedings... New
York, NY, USA: ACM, 2014. (FSE 2014), p. 689–699.

YING, A. T.; ROBILLARD, M. P. The Influence of the Task on Programmer Behaviour.
In: IEEE INTERNATIONAL CONFERENCE ON PROGRAM COMPREHENSION,
19TH, 2011. Proceedings... Los Alamitos, CA, USA: IEEE Computer Society, 2011. p.
31–40.

ZAYOUR, I.; HAMDAR, A. A qualitative study on debugging under an enterprise
ide. Inf. Softw. Technol., Butterworth-Heinemann, Newton, MA, USA, v. 70, n. C, p.
130–139, feb. 2016. ISSN 0950-5849.

http://en.wikipedia.org/wiki/Collective_intelligence
http://en.wikipedia.org/wiki/Collective_intelligence
http://en.wikipedia.org/wiki/Crowd
http://en.wikipedia.org/wiki/Crowd

116

ZELLER, A. Why programs fail: a guide to systematic debugging. San Francisco,
CA, USA: Elsevier Inc., 2006.

ZHENG, A. X. et al. Statistical debugging: Simultaneous identification of multiple bugs.
In: INTERNATIONAL CONFERENCE ON MACHINE LEARNING, 23RD, 2006.
Proceedings... New York, NY, USA: ACM, 2006. p. 1105–1112.

ZHOU, J.; ZHANG, H.; LO, D. Where should the bugs be fixed? - more
accurate information retrieval-based bug localization based on bug reports. In:
INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, 34TH, 2012.
Proceedings... Piscataway, NJ, USA: IEEE Press, 2012. p. 14–24.

ZIADI, T. et al. A fully dynamic approach to the reverse engineering of uml sequence
diagrams. In: IEEE International Conference on Engineering of Complex Computer
Systems, 16th, 2011. Los Alamitos, CA, USA: IEEE Computer Society Press, 2011. p.
107–116.

ZIMMERMANN, T. et al. Mining version histories to guide software changes. IEEE
Transactions on Software Engineering, IEEE Computer Society, Washington, DC,
USA, v. 31, n. 6, p. 429–445, June 2005.

ZOU, L.; GODFREY, M. W.; HASSAN, A. E. Detecting interaction coupling from task
interaction histories. In: Proceedings... [S.l.: s.n.].

117

APPENDIX

Appendices 1 - Swarm Debugging - Interactive debugging experiment tutorial

QRS/ICSME 2016 - Experiment Tutorial

Questions? Please contact me: Fabio Petrillo (fabio@petrillo.com)

Thank you for accept this project. You have to follow this instructions to complete the

tasks. Please, use Java 8 for running this experiment and follow theses steps:

1. Developer login

First, if you don’t have a developer login, please ask us to receive a login.

2. Profile Survey

Please, fill this profile survey: http://goo.gl/forms/a7Is2DYGaI.

3. Screencast recording

During this work, all activities must be recorded using a screencast tool. Thus, when

before to start any task (reading, searching, debugging), start to record your screen. When

you complete a task, stop to record. You can use your prefered screencast tool, or Open

Broadcaster Software (OBS). You can download this tool on http://obsproject.com.

To start a screencast recording (screen capture) using OBS follow this steps: - run the

OBS - create a new Scene Collection - create a new Screen Capture to your screen - click

"Start Recording" on right side.

This video explain how to do it: https://youtu.be/6s81E9l78yk.

4. Eclipse set up

118

You must use Eclipse Mars 2 for Java Developers for this work. If you already have this

Eclipse version installed in your system, you can use it. However, we suggest to follow

these steps:

1. create a new folder (swarmdbg for example)

2. download Eclipse Mars 2 for Java Developers, saving in your work folder. You can

download on:

• Linux 64-bits

• Windows 64-bits

• Other systems

3. extract it in the folderextract it in the folder

4. download the Swarm Debug Plugin on

http://swarmdebugging.org/publications/experiment/SwarmManager_0.0.1.jar

5. move the plugin to /eclipse/plugins

6. run the installed Eclipse

7. choose your workspace

8. setup Java Debug Step filtering

• click on menu Windows -> Preferences

• search by "Step Filtering"

• click on "Step Filtering"

• select all checkboxes and click on "Ok"

9. open the Swarm Debugging Manager

• click on menu Windows -> Show View -> Other

• find "Swarm Debug" and select "Swarm Debug Manager"

• click "OK"

Suggestion: organize this view on the left, below of Package Explorer.

In case of problem, please watch the video on https://youtu.be/pjxDNyK5nxs.

If you did not find a view "Swarm Debug" in the "Show View -> Other", probably you

are using Java 7. Please install Java 8 or contact the experimenter for helping.

119

5. Warm up task

We propose a "warm up" task in order to test the environment setup and to learn some

procedures to follow during the work. The task is simply use the Eclipse Debugger on

a small Tetris game project. Departing from Game.handleStart method, arrive into the

method Game.handleScoreModification() using "Step Into" (F5) and/or "Step Over" (F6).

Thus, please, follow these steps to complete the task:

1. download the warmup project from

http://swarmdebugging.org/publications/experiment/tetris-1.2-src.zip

2. extract the Tetris in your workspace

3. run Eclipse and import the Tetris as a Java project

4. start to record a screencast (using OBS or any other tool)

5. open the Swarm Debugging Manager

• click on menu Windows -> Show View -> Other

• find "Swarm Debug" and select "Swarm Debug Manager"

• click "OK"

6. login to Swarm Debug

• click on Login button ("people" icon)

• inform your login (username)

7. create a new Swarm Debug Session

• in the Eclipse Package Explorer view or Project Explorer view, select the

Tetris project (click it one time)

• in the Swarm Debug Manager view, select the task "Tetris#001 Game.handle...."

• finally, click on Create a session button (gear icon) to create a new session.

Automatically, the stop red button will be activated.

8. execute the task using Eclipse Debugger toggle breakpoints start the Tetris using

Run -> Debug stepping in the code until to arrive in the Game.handleScoreModification()

method.

9. click on the stop session button to finish the session

10. stop the screencast recording

120

11. contact the experimenter to send your video

In case of problem, please watch the video on https://www.youtube.com/watch?v=U1sBMpfL2jc.

6. Experiment tasks

In this work, you will execute two defined tasks for you about JabRef project (http://www.jabref.org/).

JabRef is an open source bibliography reference manager. The goal is to locate the bug,

describing where (class(es) and method(s)) and why the issue happens in the system. For

each task, you have one hour maximum to complete the task. If you can not locate the

bug, please stop and fill the form resulting informing "Not found".

After start the task, please follow this steps:

1. download the JabRef project on

http://swarmdebugging.org/publications/experiment/JabRef3.2.zip

2. extract it in your workspace

3. run in a console the command *./gradlew eclipse *

4. open the Eclipse and import the project in your workspace

5. start to record your screencast

6. remove all breakpoints

7. stop all active swarm sessions (if you have any)

8. execute a defined task, following the same steps of warm up task, but now for one of

defined tasks for you. Double click on task will open the respective task description.

9. After finish, stop recording

10. send your video. You can use https://www.wetransfer.com, or any other system.

11. Finally, fill the form open the "Result Task Form" on http://goo.gl/forms/gworprqsPH.

In this form, you will inform your results about the task.

12. execute from step 5 to 11 for the second defined task for you.

7. Payment

We will pay you by task, after analyse your artefacts and results. Thus, *you must *:

• start your recording

121

• clear all breakpoints in Eclipse

• stop any swarm session active

• start a new session

• analyse the issue/bug defined for you (double click to open the issue description)

• analyse the code

• toggle one or more breakpoints

• start the debugger to locate the bug

• after locate the bug and understand it (or not after one hour), stop the session and

the video recording.

• fill the result form

• send the video.

After that, we will analyse your results and pay you if you follow correct that steps. In

addition, we are available to clarify any question.

8. Thanking

Thank you so much for participating in this work. We will have several projects in the

future and you will be invited if you show a good proactivity and attitude.

122

Appendices 2 - Publications

This thesis generated the following publications and therefore contains material

from them:

1. Fabio Petrillo, Foutse Khomh, Marcelo Pimenta, Carla Freitas and Yann-Gaël

Guéhéneuc, Swarm Debugging: the Collective Debugging Intelligence of the

Crowd, IEEE Software (submitted).

2. Fabio Petrillo, Zéphyrin Soh, Foutse Khomh, Marcelo Pimenta, Carla Freitas and

Yann-Gaël Guéhéneuc, Towards Understanding Interactive Debugging, Proceed-

ings of the 2016 IEEE International Conference on Software Quality, Reliability

and Security (QRS), August 1-3, 2016, Vienna, Austria.

3. Fabio Petrillo, Zéphyrin Soh, Foutse Khomh, Marcelo Pimenta, Carla Freitas and

Yann-Gaël Guéhéneuc, Understanding Interactive Debugging with Swarm De-

bug Infrastructure, Proceedings of the 24th International Conference on Program

Comprehension (ICPC), May 16-17, 2016, Austin, Texas, USA.

4. Fabio Petrillo, Guilherme Lacerda, Marcelo Pimenta, and Carla Freitas, Visualiz-

ing Interactive and Shared Debugging Sessions, in Software Visualization - New

Ideas and Emerging Results (VISSOFT/NIER), 2015 Third IEEE Working Confer-

ence on, 27-28 Sept. 2015, Bremen, Germany.

5. Fabio Petrillo, Guilherme Lacerda, Marcelo Pimenta, and Carla Freitas. Swarm

debugging: towards a shared debugging knowledge. In III Workshop de Visu-

alização, Evolução e Manutenção de Software (VEM), pages 65-72, 2015, Belo

Horizonte, MG.

6. Fabio Petrillo, Guilherme Lacerda, Marcelo Pimenta, and Carla Freitas, Polimor-

phic View: Visualizando o Uso de Polimorfismo em Projetos de Software. In:

2nd Workshop on Software Visualization, Evolution and Maintenance, 2014, Ma-

ceió, AL. 2nd Workshop on Software Visualization, Evolution and Maintenance.

Maceió, AL, 2014. v. U. p. 1-8.

7. Fabio Petrillo, Marcelo Pimenta, and Carla Freitas, O Estado-da-Arte das Ferra-

mentas de Visualização de Software. In: XV Ibero-American Conference on Soft-

ware Engineering (CibSE 2012), 2012, Buenos Aires. Proceedings of XV Ibero-

American Conference on Software Engineering (CibSE 2012), 2012. v. U.

123

Appendices 3 - Highlighted comments from submitted paper reviews

In all, nine papers1 were submitted for evaluation wich four were accepted (VEM

2015 and VISSOFT 2015 (NIER), ICPC 2016 (short paper) and QRS 2016) and four were

rejected (VISSOFT (2015, 2016), ICSME 201 (ERA) and ICSME 2016). In this section

are listed some encouraging comments on the work, organising by event and reviewer.

ICSME 2016

“The studied research question is both relevant and has not yet sufficiently
covered in previous work, which the authors motivate well in the introduction
and discussion of related work. The topic also clearly fits the scope of the
conference. The suggested framework to collect the required data and the
performed study are sound. I appreciate the efforts of the authors to involve
professional developers and to investigate a realistic scenario. I believe the
authors follow a promising direction and have already collected a valuable
data set.”

“I started out being very intrigued and excited by the idea of this paper. I
still think the work has great promise, but I find the current draft to be poorly
written and not well argued. I would like to encourage you to work hard at
repairing it, as I believe the results can be very important and influential. I
like the overall idea of the paper of attempting to improve comprehension by
investigating how developers place and work with breakpoints, and by sharing
these information. Breakpoints can be a valuable data source given that they
mark an explicit place in which a developer was interested during debugging.”

“I believe observing and learning how developers debug code and translating
that knowledge into how we can assist them to perform debugging in a better
way is very valuable and a motivated goal. As such I have no doubts about the
motivation of the problem addressed in the paper.”

QRS 2016

“The idea to record and provide collective information for debugging purposes
is quite nice.”

“It addresses an interesting problem.”

ICPC 2016

“Investigated an area that researchers/practitioners have relatively little in-
sight into - debugging. Create an infrastructure that enables the study of de-
bugging.”

‘The paper addresses an important problem in program comprehension and
software maintenance, namely the study and improvement of interactive de-
bugging. The idea of swarm debugging and its knowledge sharing aspect is

1The IEEE Software paper is under evaluation when we finished this thesis.

124

promising and worthwhile to study further. The SDI infrastructure provides an
infrastructure for researchers to conduct debugging case studies and collect
debugging data. The whole infrastructure is available on the web for other
researchers to use.”

“I think enabling data collection during debugging activities is very impor-
tant and useful for understanding debugging activities. More importantly, the
SDI enables this function without disturbing the debugging activities. That is,
it makes SDI applicable. In addition, SDI also provides visualization of the
collected data.”

“The idea to support interactive debugging is also novel. The experiments in
this paper are conducted on one real software, with 10 participants, and of
which the results show some interesting observations.”

VEM 2015

“Exciting research topic.”

“The idea of joining code view with storage data from prior sessions or per-
formed by different programmers is interesting. The implementation tool is a
very positive point since managed to use several resources available on the
Eclipse framework to develop the technique/tool.”

“The paper covers a timely and relevant research topic of clear interest to the
software maintenance and visualization communities.”

ICSME 2015

“The idea itself is definitely promising and I would like to encourage more
research in the area, but this work is still in a very early stage. The paper
lacks any kind of evaluation. Instead, the authors report on some of their own
experiences in using the tools.”

VISSOFT 2015

“This also has a very good education component to it. Having students view
exemplar debugging sessions by experts would greatly help. The search is an
important part of the tool.”

“An important problem is being addressed. Good use of collective intelli-
gence.”

“The authors identify a pain point in software engineering: debugging is a
human activity performed individually by developers, and these developers
accumulate knowledge that is either lost or simply not easily shared between
developers on the same project. The paper is well organized. It motivates
the work by identifying three major challenges in SE. The authors list several
use cases for their tool - none have any empirical evaluations but this is to be
expected of a NIER paper.”

“I like the idea to look at debugging with the question if we can change it in a
way that not all information is lost. Debugging right now is a completely "non
persistant" activity. You can only learn with the person doing it, everything
else is lost.”

125

“This is a great idea to present for NIER, although some more work can be
done on connecting with previous work (though not specific to debugging).
Debugging is a specific and distinct enough activity that specific exploration
and support of the topic is worth exploring.”

	Acknowledgement
	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	Contents
	1 Introduction
	1.1 Motivation
	1.1.1 Some scenarios and challenges
	1.1.2 Towards Swarm Debugging

	1.2 Objective and Contributions
	1.3 Research Questions
	1.4 Outline of the thesis

	2 Background
	2.1 Program Comprehension
	2.2 Static and Dynamic Analysis of Software
	2.3 Data frugality
	2.4 Re-opened Bugs
	2.5 Debugging
	2.5.1 Interactive Debugging
	2.5.2 Debugging Tools
	2.5.3 Advanced Debugging Approaches

	2.6 Information Foraging Theory
	2.7 Collective Behaviour and Swarm Intelligence
	2.8 Crowd on Software Engineering
	2.9 Final remarks

	3 Swarm Debugging
	3.1 Foundations of Swarm Debugging
	3.2 Swarm Debugging overview
	3.3 Swarm Debugging meta-model
	3.4 Final remarks

	4 Swarm Debug Infrastructure
	4.1 Swarm Debug Tracer
	4.2 Swarm Debug Services
	4.2.1 Swarm RESTful API
	4.2.2 SQL Console
	4.2.3 Full-text Search Engine
	4.2.4 Dashboard Service
	4.2.5 Graph querying console

	4.3 Swarm Debug Views
	4.3.1 Sequence stack diagram
	4.3.2 Dynamic method call graphs
	4.3.3 Debug Global View
	4.3.4 Breakpoint search tool
	4.3.5 Starting/Ending method search tool

	4.4 Definition of Co-Breakpoint
	4.5 Breakpoint Prediction
	4.6 Use scenarios
	4.7 Final remarks

	5 Evaluation of the Swarm Debugging
	5.1 Experiment 1 - towards understanding interactive debugging
	5.1.1 Context
	5.1.2 Study Design
	5.1.3 RQ1: Is there a correlation between the numbers of invocations and tasks' elapsed time?
	5.1.4 RQ2: Is there a relationship between the number of breakpoints and tasks' elapsed time?
	5.1.5 RQ3: Do developers explore/debug in different ways a task?
	5.1.6 RQ4: Is there a correlation between the numbers of breakpoints and developers' expertise?
	5.1.7 RQ5: Is there an association between time of first breakpoint and task's elapsed time?
	5.1.8 Threats of Validity

	5.2 Experiment 2 - mining debugging data to recommend breakpoints: an empirical study
	5.2.1 Experiment setup
	5.2.2 RQ1: How much time do developers spend to toggle the first breakpoint?
	5.2.3 RQ2: On what kind of statement do developers toggle their breakpoints?
	5.2.4 RQ3: Do developers toggle breakpoints in the same place?
	5.2.5 RQ4: How effective is co-breakpoint for breakpoint prediction?
	5.2.6 Results and Discussions
	5.2.7 Threats to Validity

	5.3 Experiment 3 - supporting maintenance tasks using shared debugging visualisations
	5.3.1 Experiment design
	5.3.2 Experiment setup
	5.3.3 Is Global View useful to support software maintenance tasks?
	5.3.4 Does sharing and visualizing debug data support software maintenance tasks?
	5.3.5 Participants' Feedback
	5.3.6 General Feedback
	5.3.7 Threats to Validity

	5.4 Final remarks

	6 Conclusion
	6.1 Summary of contributions
	6.2 Limitations
	6.3 Future work

	References
	Appendix

