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ABSTRACT

Cloud-based applications are used in about every industry; from financial, retail, education,
and communication, to manufacturing, utilities, and transportation. Despite their popularity
and wide adoption, little is still known about the energy footprint of these applications and, in
particular, of their databases, which are the backbone of cloud-based applications. Reducing
the energy consumption of applications is a major objective for society and will continue to
be so in the near to far future.

Two families of databases are currently used in cloud-based applications: relational and non-
relational databases. Consequently, in this thesis, we study the energy consumption of three
databases used by cloud-based applications: MySQL, PostgreSQL, and MongoDB, which
are respectively relational, relational, and non-relational. We devise a series of experiments
with three cloud-based applications (a RESTful multi-threaded application, DVD Store, and
JPetStore).

We also study the impact of cloud patterns on the energy consumption because databases
in cloud-based applications are often implemented in conjunction with patterns like Local
Database Proxy, Local Sharding-Based Router, and Priority Message Queue.

We measure the energy consumption using the Power-API tool to keep track of the energy
consumed at the process-level by the variants of the cloud-based applications. We measure
the response time of the cloud-based application because we wanted to contrast response
time with energy efficiency, so that developers are aware of the trade-offs between these two
quality indicators when selecting a database for their application.

We report that the choice of the databases can reduce the energy consumption of a cloud-
based application regardless of the three cloud patterns that are implemented. We showed
that MySQL database is the least energy consuming but is the slowest among the three
databases. PostgreSQL is the most energy consuming among the three databases, but is faster
than MySQL but slower than MongoDB. MongoDB consumes more energy than MySQL but
less than PostgreSQL and is the fastest among the three databases.
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RÉSUMÉ

Aujourd’hui, les applications infonuagiques sont utilisées dans toutes les industries ; de la
finance, au commerce de détail, en passant par l’éducation, la communication, la manufac-
ture, les services publics et les transports. Malgré leur popularité et leur large adoption,
peu d’informations sont disponibles sur l’empreinte énergétique de ces applications et, en
particulier, celle de leurs bases de données, qui constituent l’épine dorsale de ces applications
infonuagiques. Pourtant, la réduction de la consommation d’énergie des applications est un
objectif majeur pour la société et continuera de l’être à l’avenir.

Deux familles de bases de données sont actuellement utilisées dans les applications infonu-
agiques: Les bases de données relationnelles et non-relationnelles. Aussi, nous examinons
la consommation d’énergie des trois bases de données utilisées par les applications infonu-
agiques : MySQL, PostgreSQL et MongoDB, respectivement relationelle, relationelle, et
non-relationelle. Nous réalisons une série d’expériences avec trois applications infonuagiques
(une application “multi-thread RESTful”, “DVD Store”, et “JPetStore”).

Nous étudions également l’impact des patrons infonuagiques sur la consommation d’énergie
parce que les bases de données dans les applications infonuagiques sont souvent implémentées
conjointement avec des patrons infonuagiques tels que le “Local Database Proxy”, le “Local
Sharding Based Router”, ou la “Priority Message Queue”.

Nous mesurons la consommation d’énergie en utilisant l’outil Power-API pour garder une
trace de l’énergie consommée au niveau de processus par les variantes des applications infonu-
agiques. Cette estimation énergétique au niveau processus donne une précision plus exacte
que d’une estimation au niveau d’un logiciel en général. En plus de cela, nous mesurons le
temps de réponse de l’application infonuagique pour mettre en contraste le temps de réponse
avec l’efficacité énergétique, afin que les développeurs soient conscients des compromis entre
ces deux indicateurs de qualité lors de la sélection d’une base de données pour leur applica-
tion.

Nous rapportons que le choix des bases de données peut réduire la consommation d’énergie
d’une application infonuagique quelque soit les trois types des patrons infonuagiques étudiés.
Nous avons montré que la base de données MySQL est la moins consommatrice d’énergie,
mais est la plus lente parmi les trois bases de données étudiées. PostgreSQL est la plus
consommatrice d’énergie entre les trois bases de données, mais est plus rapide que MySQL,
mais plus lente que MongoDB. MongoDB consomme plus d’énergie que MySQL, mais moins
que PostgreSQL et est la plus rapide parmi les trois bases de données étudiées.
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CHAPITRE 1 INTRODUCTION

With the continuous development of the Internet and cloud computing, companies use
databases to store and perform analyses on large data-sets in cloud environments. Cloud-
based applications are used in about every industry today; from financial, retail, education,
and communications, to manufacturing, utilities, and transportation. Yet, despite their pop-
ularity and wide adoption, little is known about the energy footprint of these applications
and, in particular, of their databases. Therefore, we set to devise and carry out experiments
to assess the energy footprint and the response time of the databases in cloud-based appli-
cations. Two families of databases are currently used in cloud-based applications: relational
and non-relational databases. Companies demand high performance databases when reading
and writing data [1].

In addition, they want to benefit from best practices encoded in the form of cloud patterns
[2]. Cloud patterns are general and tough “good” solutions to recurring design problems for
cloud-based applications. Design Patterns were introduced by Beck and Cunningham [3] and
applied to object-oriented systems by Gamma et al. [4]. From that moment, design patterns
have been expanded to all disciplines of software engineering, including cloud computing. In
addition, cloud patterns [2] were processed to include the requirements of the cloud infras-
tructure, and they were borrowed from parallel computing [5]. We should mention that, in
most cases, the “Priority Message Queue pattern” is used to manage inter-process communi-
cation 1 between components. However, in a cloud environment, the Message Queue pattern
is used to improve scalability and availability [6]. Yet, reducing the energy consumption of
applications is a major objective for society and will continue to be so in the near to far
future.

1.1 Research statement

Some previous works have benchmarked databases with cloud-based workloads [7]. How-
ever, to the best of our knowledge, none of these works investigated the combined impact of
databases and cloud patterns on the energy consumption of cloud-based applications. Conse-
quently, the benefits and trade-offs of different databases and combinations of cloud patterns
are mostly intuitive and not validated.

In this thesis, we evaluate the impact on energy consumption and response time of three
1https://en.wikipedia.org/wiki/Inter-process_communication
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cloud patterns: Local Database Proxy, Local Sharding-Based Router, and Priority Message
Queue, with three databases: two relational databases, Postgresql and MySQL, and one
NoSQL database, MongoDB. To achieve this evaluation, we use three versions of three cloud-
based applications (a RESTful multi-threaded application, DVD Store, and JPetStore) that
use respectively MySQL, Postgresql, and MongoDB databases. We also implement the three
studied patterns in each version of the RESTful multi-threaded application.

We measure energy consumption using the Power-API profiler [8], which provides an ap-
plication programming interface to estimate the energy consumed by an application at the
process-level.

1.2 Research objectives

Our specific research objectives are as follows:

1. Propose an approach to collect energy measures of cloud-based applications imple-
mented with cloud patterns in conjunction with databases in a cloud environment.

2. Evaluate the impact on energy consumption of three cloud patterns: Local Database
Proxy, Local Sharding-Based Router, and Priority Message Queue, individually, and
also their combination, with three databases: MySQL, PostgreSQL, and MongoDB.

3. Highlight the contrast response time with energy efficiency of databases so that devel-
opers are aware of the trade-offs between these two quality indicators when selecting a
database for their application.

1.3 Thesis outline

The rest of this thesis is organised as follows:

• Chapter 2 outlines background in the areas of relational and NoSQL databases, cloud
patterns, and the Power-API profiler.

• Chapter 3 provide a literature review in the areas of software energy consumption and
performance.

• Chapter 4 describes our methodology to study the impact of databases and cloud
patterns on energy consumption.
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• Chapter 5 presents the results of applying our methodology and discusses the impact
of databases and cloud patterns on the energy consumption and performance of cloud-
based applications.

• Chapter 6 summarises and concludes our work. A discussion of limitations and future
work is also provided.
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CHAPITRE 2 BACKGROUND

In this chapter, we present a variety of databases, including a description of SQL and NoSQL
databases and the differences between them. We introduce a description of the cloud patterns
studied in this thesis. We include a description and a discussion about the Power-API
software profiler and we explain how it works and we highlights its precision.

2.1 Databases

The database is an organized system to back up and recover data effectively, managed by
a database management system (DBMS) [9]. In this section, we present the two families
of databases that we use in our study: two relational databases, Postgresql and MySQL,
and one NoSQL database, MongoDB. We choose these three databases because they are
frequently used in cloud-based applications [10], [11], [12], [13] and also because they are the
most popular databases available today.

2.1.1 Relational Databases

A Relational Database is a collection of data items organized by tables, records and columns,
with well defined relationships between tables. Relational Databases provide a program-
ming interface for database interaction [14]. Relational databases are still hard to scale with
cloud-based applications. RDBMSs support indexes which is a mechanism that allows sort-
ing a number of records on multiple fields. An example relational database table storing
information about a football player looks as follows:

id | name | lastName | country |birthYear| club | location

7 |Cristiano | Ronaldo | Portugal| 1985 | Real Madrid | Spain

Contrary to NoSQL databases, relational databases follow the ACID Transaction support
[15]. Most RDBMSs guarantee ACID transactions. ACID is an acronym for the following
four properties [16]:
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• Atomicity: each transaction should be executed entirely, otherwise it is not executed.
Accordingly, it is called an atomic transaction.

• Consistency: each transaction takes the database from one valid state to another.

• Isolation: each transaction is isolated from any other transaction.

• Durability: each transaction is saved by the system even in the event of a system failure
or restart. In other words, a transaction must persist and thus never be lost.

In this work, we use MySQL [17] and PostgreSQL [18] as two relational databases. We choose
these two databases because they are the most popular relational databases in the last few
years [19].

MySQL database

MySQL is a relational database system that was developed in 1996 by Michael Widenius for
the Swedish Company TcX. At the begining, MySQL database was developed for open source
distributions (i.e., Linux and Solaris) [20]. While not being open source, MySQL does have
a non-restrictive licensing that allows organizations to use the product for in-house projects
for free [20].

MySQL has performance criteria: it is very fast, portable, simple, supports a variety of
programming interfaces and has the ability to be accessed from anywhere over the Internet.
All these mentioned criteria enabled MySQL to be a popular and a very known RDBMS [20].

As indicated in figure 2.1 1, MySQL architecture contains three levels that work together
and in a complementary manner to respond to a request. The first level is the “Connection
management” which ensures the connection to the MySQL database through TCP/IP using
SSH or SSL encryption protocol. The second level contains the “SQL parsing”, “SQL execu-
tion” and “SQL caching”. The “SQL parsing” parses the obtained query and then forward
it to the “SQL execution” unit to be executed. Besides that, “SQL caching” saves the result
obtained by a query in a memory for a period of time. This period of time depends on
the frequency of application of the corresponding request from the database. Finally, the
third level corresponds to the storage engine. This storage engine could be either by default
“MyISAM” or “InnoDB” or “HEAP” or “NDB”.

1http://books.gigatux.nl/mirror/highperfmysql/0596003064/hpmysql-CHP-2-SECT-1.html
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Figure 2.1 MySQL architecture

PostgreSQL Database

PostgreSQL was created by professor “Michael Stonebraker” 2. PostgreSQL is a public do-
main software that operates as a single machine. Contrary to MySQL, which does not support
parallelism in query execution, PostgreSQL does support it and all its operations use a Multi-
Version Concurrency Control (MVCC). This RDBMS runs on Unix or Linux distributions.
For our project, we use PostgreSQL version 9.1.

PostgreSQL database has an architecture based on the concept of process, where the execu-
tion units present the process. While most of the databases use threads instead of processes
for executing transactions, we believe that these systems have a similar architecture to Post-
greSQL. As indicated in Figure 2.2 3, this architecture has a PostgreSQL engine (yellow
color) which contains a “postmaster”, “backends”, and a “shared memory”. The postmaster
acts as a central process that listens for requests received on a definite port. The Postmaster
creates a process for each connected client, and the rest of the communication is done directly
between the “back-end” and “client”, using a channel based on the “buffered sockets” (by
using TCP/IP or CPI sockets). The PostgreSQL database has a mechanism that allows to
set the maximum threshold of “backend” executed in such a way that the maximum level
is reached. In this case, PostgreSQL blocks new clients. This locking mechanism effectively
limits the number of simultaneous transactions by avoiding a deterioration in peak situa-
tions. In addition, we should mention that this mechanism is necessary because the process
management is expensive. In addition, we believe that this process management can affect

2https://www.postgresql.org/about/history/
3http://www.cs.mcgill.ca/ kemme/papers/phd-letter.pdf
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the energy consumption. PostgreSQL architecture also supports a “shared memory”, which
contains stored data required for use by the various “backends”. The shared memory involve
the “back-end process”, “lock table” and “buffer pool”. In general, access to shared memory
is controlled by the synchronization primitive: semaphore.

Figure 2.2 PostgreSQL architecture (process structure)

2.1.2 NoSQL Databases

NoSQL databases [1] are non-relational and distributed databases [21]. Contrary to relational
databases (as mentioned in 2.1.1), NoSQL databases follow the CAP theorem [22], that is
Consistency, Availability and Partition tolerance.

NoSQL databases are categorized based on the way they store data such as document store
(e.g., MongoDB [23]) and key-value stores (e.g., BigTable [24], Dynamo [25]). In our study,
we examine MongoDB database [23] because it is the most popular NoSQL database available
today; it is widely used by eBay, IBM, Expedia, and The New York Times.

MongoDB

MongoDB uses different concepts compared to relational databases. Table 2.1 shows the
terminology of its concepts. A MongoDB deployment holds a set of databases. Compared
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to relational databases, where each database backup data as tables, MongoDB stores each
database in the form of collections. Each collection holds a set of documents. A document,
that has a format known as BSON, is a set of fields. A field is a key-value pair where
Keys are always strings and Value types can be string, object, boolean, or integer. Similarly
to many databases, each document contains an automatically-added field called id, which
assigns the document a unique id.

Table 2.1 Terminology between MongoDB and RDBMS

RDBMS MongoDB
Database Database
Table Collection
Index Index
Row Document
Join Embedding & Linking

An example of MongoDB document storing information about a football player looks as
follows:

{

_id: 7000e717b7543fe00k23,

name: Cristiano,

lastName: Ronaldo,

country: Portugal,

birthYear: 1985,

club: Real Madrid,

location: Spain

}

All values are atomic. The example below shows the same example mentioned previously
but including some complex values:

{

_id: 7000e717b7543fe00k23,

name: Cristiano,

lastName: Ronaldo,
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country: Portugal,

birthYear: 1985,

address: {

city: Madrid,

street: Camino Sintra - 28050 Valdedebas.

},

club: Real Madrid,

location: Spain,

hobbies: [cooking, music, swimming]

}

MongoDB provides a technique called embedding allowing to store a document within a
document. The address field shows the use of this technique.

While there are no schemas in MongoDB, the names of the databases and the names of
their respective collections are stored as metadata. Also, the defined indexes are stored as
metadata.

Indexes are supported in MongoDB. They work similarly as to how indexes work in RDBMSs,
allowing clients to index arbitrary fields within a collection. Even embedded fields can be
indexed, e.g., address.city from the second example above. Fields that have been indexed
support both random access retrieval and range queries. Indexes can be created at any time
in the lifetime of a collection. The id field of all documents is automatically indexed.

As indicated in Figure 2.3 4, MongoDB architecture contains 3 levels: “MongoDB Query Lan-
guage”, “MongoDB Data Model” and “MongoDB Storage Engines”. The MongoDB Query
Language allows users to access and operate their documents in sophisticated ways. This
mechanism allows to support analytical and operational applications. The MongoDB Data
Model allows to store and combine data of any structure easily. Besides that, the MongoDB
Data Model allows to customize the schema of the database without having a significant
impact on the performance of the query execution. The third level of the MongoDB archi-
tecture represents the MongoDB Storage Engine. It supports five different types of storage
engines: WiredTiger, MMAPv1, In-memory, Encrypted, and 3rd party engine. We should
mention that MongoDB provides WiredTiger as a default storage engine that provides the
best of storage performance among all the mentioned storage engines 5.

4https://www.mongodb.com/mongodb-architecture
5https://docs.mongodb.com/manual/core/storage-engines/
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Figure 2.3 MongoDB architecture

2.2 Cloud Patterns

Cloud patterns are widely used in cloud-based applications to improve data organization and
access. In this section, we present the three cloud patterns that have been used in this study.
We choose these three cloud patterns in our study because they are the most relevant for
data management.

2.2.1 Local Database Proxy

The Local Database proxy pattern is widely used to replicate the data between servers in
a cloud environment. More precisely, this pattern ensures the replication of data between
master and slave databases. To replicate the data, the proxy pattern uses a proxy to handle
read and write requests, where it takes into account the type and the workload of the received
request to assign it either to the master or to the slave database [26]. Besides that, this pattern
provides the ability to assign read requests directly, where these requests are performed
by the slave nodes. This pattern assigns write requests to the master node, which in turn
ensures the replication of these requests in its slave nodes. Interestingly, the proxy pattern
supports elasticity, during the execution, by providing the opportunity to add or to delete
slave nodes.

2.2.2 Local Sharding-Based Router

The sharding pattern is widely used to split and distribute the data between multiple database
nodes. The divided data between the databases nodes are called Shards. In addition, this
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pattern ensures the scalability of applications when they handle read or write requests. Ac-
cording to a mechanism that is somewhat similar to the proxy pattern, the sharding pattern
uses a router to attribute the received request to the appropriate database node (shards) [26].
The sharding pattern gives the possibility of scalability by adding nodes (shards) during ex-
ecution. Costa et al. [27] mentioned that this pattern could be implemented through three
different strategies: the first strategy is a range of value, the second strategy is hashing, and
the third strategy is a shard key, which assigns each data corresponding to the suitable shard
using this key [27].

2.2.3 Priority Message Queue

The Priority Message Queue pattern is highly recommended to manage queries of different
types, by respecting the FIFO mechanism. Each request has a priority value where the
message queue pattern handles the requests received, taking into account their priority. The
request that has a higher priority value will be treated before the request that have less pri-
ority value [28]. As indicated in the aforementioned pattern (sharding pattern), this pattern
gives the possibility to improve the scalability [6].

2.3 Power-API

Power-API is a profiler that provides power information (in watts converted to joules to
measure the energy) per PID (Process Identifier) for each system component (e.g., CPU,
memory, etc.) [29]. Power-API uses sensors and analytical models for its energy estimation.
Noureddine et al. [30] described the PowerAPI CPU model as following:

P P ID
CP U(d) = PCP U(d)× UP ID

CP U(d) (2.1)

Where P P ID
CP U(d) is the CPU power consumed by the specific PID during a given duration d,

PCP U(d) is the global CPU power during d and UP ID
CP U(d) represents the process CPU usage

during d.

This API allows to estimate the amount of power required by the CPU to execute a process
(At the corresponding PID). Noureddine et al. [30] performed a test to evaluate the accuracy
of Power-API profiler using PowerSpy [31]. The results of this experiment showed that
there is only low perturbations between the energy consumption measured by PowerSpy and
the energy estimations of Power-API profiler [29]. For this reason (i.e., high accuracy), we
selected Power-API profiler for our study. In addition, according to an experiment performed
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by Abtahizadeh et al. [32], Power-API profiler does not introduce noise in its measurements.
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CHAPITRE 3 LITTERATURE REVIEW

In this section, we present works related to software energy measurement and the impact
of databases and patterns on the performance of applications. Section 3.1 discusses the
energy measurement approaches and tools. Section 3.2 discusses how the application design
can affect the energy consumption. Section 3.3 discusses challenges in energy consumption
and security. Section 3.4 highlights related works discussing the impact of cloud patterns on
applications performance. Section 3.5 focuses on the impact of databases on the performance
of applications.

3.1 Energy Measurement Approaches and Tools

Many works have been introduced to measure the energy consumption of software. Estimat-
ing the energy consumption of software can be performed by modeling hardware resource
usages. In this section, we present the main energy measurement approaches and tools in
the literature.

3.1.1 Energy Measurement Approaches

Seo et al. [33] proposed an estimation-based approach that calculates the energy consumption
of a software component using the following formula from Equation 3.1 [34]:

EComponent = EComputational + ECommunication + EInfrastructure (3.1)

Where EComputational is the energy estimation of a hardware resource utilization (i.e., CPU
processing, memory access, queries executed by the Disk). ECommunication is the energy es-
timation of the data transferred over the network and EInfrastructure represents the energy
estimation of the virtual machine.

The advantage of this approach is that it allows for the estimation of the energy consumption
of Java applications running in virtual machines.

Kansal et al. [35] also proposed an approach to calculate the energy consumption of an
application. The major difference between their approach and the Seo’s approach is that it
allows for the estimation of energy consumption even when the application is in wait and
idle states. Applications consume energy when waiting for requests from the disk. The total
energy consumption of an application is given by Equation 3.2 [34].



14

EApp = EActive + EW ait + EIdle (3.2)

Where EActive represents the energy spent by the application when it is running. EW ait is
the energy cost of the application in the wait state and EIdle represents the energy cost of
the application in the idle state.

Trefethen et al. [36] introduced an approach based on sensors. Sensors are used between the
application on which measurements are made and the power source (i.e., the source of electric
current). The sensors collect accurate data from the power source. The collected data, stored
in a data collection server, can be, for example, a voltage measurement. The operation of
the sensors is not always continuous but periodic over intervals of time. After running the
measured software, the data read part of the sensors and the software are correlated. The
energy consumed by the application is given by Equation 3.3 [34].

E =
∫

T
PWdt− PIT (3.3)

Where PW represents the split-second power profile. PI is the idle profile of the software,
and T represents the execution time of the running software.

3.1.2 Measurement Tools

We now describe the most common energy measurement tools available in the literature
beside Power-API presented in Section 2.

Eprof

Pathak et al. [37] proposed a fine-grained energy profiler called Eprof. The authors showed
that this profiler can be used to estimate the energy consumption of an application executed
in a smartphone. Eprof can measure the energy consumption of mobile applications only
for two plateforms: Android and windows mobile phone. Pathak et al. [37] conducted
multiple experiments with Eprof and reported that different versions of the same mobile
application can have a different amount of energy consumed. They also showed that there is
no a correlation between the amount of energy consumed by an application and its execution
time.

GreenTracker

Amsel et al. [38] introduced a tool called GreenTracker. GreenTracker can estimate the
power consumption of the CPU during the execution of a software. GreenTracker was used
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to profile software from different categories: word processing software, audio and internet
browsers (e.g., Opera, Google Chrome, Internet Explorer, and Mozilla Firefox). Results
showed that Internet Explorer is the most efficient internet browser among all the exper-
imented browsers.

Powerscope

Flinn et al. [39] introduced a profiler of energy consumption called Powerscope. Powerscope
was designed mainly for measuring mobile applications. Powerscope is very similar to
PowerAPI in the sense that it estimates the energy consumption of a software (i.e., mo-
bile applications) at the process level. However, Powerscope follows a different estimation
approach (than PowerAPI) to compute the energy consumed by different procedures within a
specific process. This profiler uses three different software components for its operation [34]:

1. an Energy Monitor that records energy samples from a digital multimeter.

2. a System Monitor that records important system information, such as the value of the
Process Identifier (PID) and the Program Counter (PC).

3. an Energy Analyzer that calculates the energy consumption of a software using the
energy samples recorded by the Energy Monitor and the system information recorded
by the System Monitor. The energy consumption is calculated following Equation 3.4:

E ≈ V
n∑

t=0
It∆t (3.4)

Where E represents the total energy usage collected by the Energy Analyzer over n samples.
V represents the value of the voltage, It is the current time, and ∆t is the duration time (the
interval of time).

Joulemeter

Joulemeter [40], [41] is a software tool developed by Microsoft that can estimate the energy
consumed by a computer, a server, or a virtual machine. This tool also allows modeling
the impact of different components (such as CPU utilization, memory utilization, or screen
brightness) on total energy consumption. Interestingly, Joulemeter can be used to estimate
the energy consumption in a data center or even during software development.
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3.2 Energy Consumption and applications design

Pinto et al. [42] used a popular Web site, StackOverflow, as primary data source to under-
stand the software engineers’ perspectives on issues related to the energy consumption of
their applications. The authors showed that the number of questions on energy consumption
increased by 183% only in a year (from 2012 to 2013). Their finding suggest that software
engineers are actively seeking guidelines about the energy efficiency of their applications.

The most closely related work to ours is that by Abtahizadeh et al. [32]. They conducted an
empirical study that aimed to compare the energy efficiency of three cloud patterns: Local
Database Proxy, Local Sharding-Based Router, and Priority Message Queue. Similar to
our work, they measured the energy consumption of applications using Power-API profiler.
However, they only considered MySQL database. They showed that cloud patterns can
effectively reduce the energy consumption of a cloud-based application. They showed also
that the implementation of the Local Database Proxy Pattern can significantly improve the
energy efficiency of a cloud-based application and that this pattern is more appropriate for
cloud applications handling huge requests of read loads. They also found that a combination
of the Local Database Proxy pattern with the Local Sharding-Based Router does not have a
significant impact on energy consumption.

In the same direction, Manotas et al. [43] conducted an empirical study in which they
investigated the impact of four Web servers (i.e., mongrel, puma, thin, webrick) on the
energy consumption of a Web application. They showed that the energy consumption of
a Web application depends on the Web server used to handle requests. They also showed
that the impact of the Web server depends on the features that are used. Each Web server
can increase or decrease the energy consumption of the Web application, depending on the
features for which it is executed.

Capra et al. [44] conducted an empirical study that investigated the impact of Management
Information Systems (MIS) on the energy consumption. Using a server machine, a hard-
ware kit and a tool generating workloads, they showed that a server running an application
consumes around 72% power more than a server in the idle mode. By experimenting with
many MIS applications, they observed that each MIS application requires a different amount
of energy. They also observed that the use of different operating systems, more precisely
the use of Windows or Linux, have a significant impact on the energy consumption of an
application.

Bunse et al. [45] compared the energy consumption of various sorting algorithms, running
on an embedded system. The sorting algorithms investigated are selectionsort, insertionsort,
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quicksort, heapsort, shellsort, shakersort, mergesort, and bubblesort. The results of their
study show that insertionsort is the more energy-efficient algorithm. They also found no
correlation between the energy consumption and the time complexity of the algorithms.
Meaning that algorithms that consume more energy are not necessarily those that take longer
time to be executed.

Arunagiri et al. [46] compared different implementations of algorithms used to solve the
global stereo matching problem. The metrics used for comparisons are: the amount of energy
consumed, the average response time and the global minimum cost achieved. Their results
show that the graph cut algorithm performs better than the simulated annealing algorithm.

Sahin et al. [47] investigated the energy efficiency of 15 structural, behavioral and creational
design patterns, implemented in an application. For each pattern, they examined the en-
ergy consumption of the versions of the application before and after applying design pattern.
Their results show that design patterns have a significant impact on energy consumption.
However, the impact on energy consumption of different types of design patterns is not the
same. Certain design patterns like Decorator can increase the energy usage of an application
by up to 700%. Similar study was conducted by Bunse et al. [48]. However, they inves-
tigated the energy efficiency of design patterns implemented in smartphones applications.
The patterns considered in their study are: Facade, Abstract Factory, Observer, Decora-
tor, Prototype, Template Method. They measured the energy consumption of applications
running on different smartphone models (e.g., Samsung Galaxy S2, Nexus One) using the
PowerTutorApp tool from Michigan University. Their results show that in some cases, design
patterns can significantly increase the energy consumption of mobile applications. In partic-
ular, similarly to Sahin et al. [47], they found that Decorator pattern strongly increases the
energy consumption of mobile applications.

Sahin et al. [49] conducted an empirical study in which they investigated the effect of code
refactorings on the energy consumption of applications. The study was conducted using
197 applications implementing 6 commonly-used refactorings. Their results show that code
refactorings affect the energy consumption of applications. More specifically, they found
that all the tested code refactorings have the potential to both increase and decrease the en-
ergy consumption of an application, with the exception of Extract Local Variable, which
consistently decreased the energy consumption of the studied applications.

In the same area, Procaccianti et al. [50] conducted an empirical study that investigated
the impact of three different ORM approaches on the energy consumption of applications. ORM
stands for “Object-Relational Mapping”, which allows a link between a relational database
and object-oriented programming. This technique is widely used for transforming a table
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stored in a relational database in an easily manipulable object via its attributes. In Java,
we can mention “Hibernate” among the frameworks commonly used to perform this task.
Yet, this technique facilitates the manipulation of relational databases using object-oriented
programming, but in this paper, they showed that this technique has a negative effect on
the energy consumption of an application. In more details, the authors conducted their
experiments specifically on PHP applications, testing three different ORM approaches that
manipulate an SQL relational database: plain SQL queries in the source code, and Propel and
TinyQueries. In addition, they guided their experiments taking into account three factors:
the aforementioned three approaches, the size of the relational database, and the type of
the query used to extract the desired data from the relational database (SQL). The used
requests manipulate the popular CRUD operations (i.e., Create, Read, Update, Delete). Their
results are presented mainly along two axes: the energy efficiency and the execution time of
the PHP application. Interestingly, they showed that the tested approaches provides benefits
and trade-off in terms of execution time and energy consumption: the Propel framework is
the most energy consuming and is the slowest among the three tested approaches. The most
suitable approach is the use of plain SQL queries in the source code because it is least energy
consuming and the fastest in all the test cases. The third approach, that of TinyQueries,
performed much better than Propel, but slightly worse than the pure SQL queries.

3.3 Energy Consumption and Security

Recently, researchers have started investigating the energy cost of security tools. Kim et
al. [51] constructed a power monitor that collects power samples and defines a history
of the energy consumption from these samples. They also proposed a data analyzer that
generates a power signature, after noise filtering. According to experimental results on a HP
iPAQ running a Windows mobile OS, the tool achieves a true positive rate of 99% in the
classification of malware targeting mobiles.

Merlo et al. [52] proposed a methodology for computing the energy consumption patterns of
two mobile devices subsystems i.e., CPU and wireless network card (WiFi). The proposed
methodology has been implemented and tested during a ping-flood attack conducted during
the execution of a legitimate application. Experimental results show that the proposed
methodology is robust, accurate, and reliable for detecting the occurrence of such attack.

Hoffmann et al. [53] studied the typical power consumption of various aspects of common
Android mobile phones, and found that power consumption varies greatly in practice. They
attempted to measured the energy consumed by malwares and concluded that in practice,
the additional power consumed by malware is too small to be detectable using average con-
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sumption rate measurements.

Merlo et al. [54] introduced a new concept called “Energy-aware Intrusion Detection Sys-
tems”, which recognizes malicious behavior in mobile devices according to their energy foot-
print. To implement this concept, the energy consumption of several hardware components
of a mobile device must be measured with a sufficient level of accuracy. They investigated
two measurements approaches: High Level and Low Level (HL and LL). HL measures can
provide important information not only in terms of energy consumption, but also the ability
to isolate the power consumption of each component. Unlike the LL approach, the measures
of the HL approach are not instantaneous. The LL approach provides instantaneous infor-
mation on the consumption of the entire system at a granularity of 250 milliseconds. Given
that such measures don’t separate the power consumption of each component (audio, screen,
3G and GPS), the authors opted for a combination of the two approaches, which they called
medium level (ML) measurement. ML uses a high-level API to take action directly from the
battery driver to have both instantaneous measurements and information on the consump-
tion of each component. With this approach, they were able to easily identify ping-flood
attacks.

Palmieri et al. [55] report about an attack targeting cloud services providers, where attackers
performed a denial of service focusing on energy (energy-oriented denial of service). In this
attack, the goal is to use available resources to increase considerably the energy consumption
without triggering protection mechanisms in monitors. This type of attack can have a heavy
financial impact on cloud services providers.

3.4 Impact of Cloud Patterns on Applications Performance

Geoffrey et al. [6] conducted an empirical study aimed at understanding the impact of
cloud patterns on Quality of Service (QoS). Multiple versions of a multithreaded RESTful
application were deployed in a cloud environment. To implement their RESTful application,
They used the following three cloud patterns: Local Database Proxy Pattern, Local Sharding-
Based Router, and Priority Message Queue. They used a MySQL database to store the data
of the application. The authors measured the QoS of the application using the following
metrics: the average and the maximum number of requests per second, and the application
response time. Their obtained results show that cloud patterns can impact the QoS of cloud-
based applications. More precisely, they reported that the implementation of the Local
Database Proxy pattern can significantly impact the QoS of a cloud-based application in
terms of average and maximum number of requests processed per second and also the average
response time. Besides that, they mentioned that their implementation of some combinations
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of the aforementioned patterns can significantly affect the QoS of the studied multithreaded
application.

Ardagna et al. [56] evaluated the impact of five scalability patterns on the performance of
a Platform as a Service (PaaS). These five patterns are: Clustered, Single, Shared, Multiple
Clustered Platform, and multiple Shared patterns. For each of the aforementioned patterns,
the authors measured the number of transactions processed per second and the response time.
Their obtained results show that each pattern can affect the way virtual machine resources
are added and removed.

3.5 Performance of Relational and NoSQL databases

Researchers have compared the response time of SQL and MongoDB databases [57]. To the
best of our knowledge, there is no previous work that investigated the impact of NoSQL
databases on the energy consumption of cloud-based applications.

Hammes et al. [58] presented a comparative study of SQL and NoSQL databases in the
cloud, where they highlighted the performance of both PostgreSQL database and MongoDB
database, implemented on a cloud server. In this paper, they examined the performance of
the databases using two distinct real-world scenarios: the first scenario represents a highly
structured data and the second scenario represents unstructured data. By testing Create,
Read, Update, and Destroy operations (around 1,400,000 operations) for the two databases
(PostgreSQL and MongoDB) with the two distinct scenarios, they observed that PostgreSQL
databases perform better than MongoDB databases in cloud environments.

Rajat et al. [59] also presented a comparative study of these popular databases, i.e., MySQL
and MongoDB. They examined different operations (CRUD operations) to measure the per-
formance of the two databases. They used three categories of dataset (i.e., Small, Medium
and Large). Similarly to our results, the authors showed that MongoDB database performs
better than MySQL for complex queries, especially those involving multiple joins. They also
showed that MySQL databases perform better than MongoDB databases for small datasets.
In addition to these findings, they outlined some guidelines for software developers; advising
them to use MySQL databases rather than MongoDB in the case of medium data without
complex queries and MongoDB rather than MySQL databases in the case of medium data
involving complex queries and joins.

Loannis et al. [60] proposed a cloud-enabled framework for monitoring NoSQL databases.
Their proposed framework was applied on three popular NoSQL databases: HBase, Cassan-
dra and Riak. Results showed that Cassandra databases are fast for write operations. They
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also scale well during node additions, without a turning point phase. HBase is reported to
be the fastest among the three studied databases. HBase scales very well for node additions.
However, Riak databases can re-balance nodes automatically. Based on these results and
measurements, the authors presented a prototype implementation of their automatic cluster
that facilitates the execution of self-acting elastic operations of any NoSQL engine. Their
proposed prototype offer developers and architects the possibility to test and verify the degree
of scalability of any application using these noSQL databases.

Dory et al. [61] introduced an approach to measure the elasticity of NoSQL databases
deployed in a cloud environment. The proposed approach was assessed on MongoDB, HBase,
and Cassandra databases using a realistic load (48 nodes). In addition, they used Rackspace1

as the cloud infrastructure. The popularWikipedia database was used to generate the dataset
of the study. We should mention that this study gives measurements only for systems, using
the aforementioned NoSQL databases, that scale up. In other words, as a limitation for this
work, these elasticity measures does not work with a system that scales down. The authors
showed that the technical choices and the architecture of each of the studied NoSQL database
can affect the operation of adding new nodes (i.e., to scale up).

1https://www.rackspace.com/cloud/servers
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CHAPITRE 4 METHODOLOGY

In this chapter we introduce our research questions, describe the objects of our study, as well
as our experimental design, describe the cloud environment used for the experiments, clarify
our data extraction process and analysis method.

We want to empirically evaluate the impact of three different Databases (MySQL, Post-
greSQL, and MongoDB) on the energy consumption of cloud-based applications. We also
want to evaluate the impact of three cloud patterns (i.e., Local Database Proxy, Local
Sharding-Based Router, and Priority Message Queue) on the energy consumption of these
three different databases.

4.1 Research Questions

Our study aims at answering the following research questions:

• RQ1: Does the choice of MySQL, PostgreSQL, and MongoDB databases affect the
energy consumption of cloud applications (when no cloud patterns are implemented)?

• RQ2: Does the implementation of Local Database Proxy, Local Sharding Based Router,
and Priority Message Queue patterns affect the energy consumption of cloud applica-
tions using MySQL, PostgreSQL, and MongoDB Databases?

• RQ3: Do the interactions between Local Database Proxy, Local Sharding Based Router,
and Priority Message Queue patterns affect the energy consumption of cloud applica-
tions using MySQL, PostgreSQL, and MongoDB databases?

4.2 Objects

We choose three systems for each experiment, two applications developed in Java and one
application developed as a combination of PHP and Microsoft .NET. We performed each
experiment on three different systems, because one system could be intrinsically more energy
consuming.

At first, for Experiment 1, we implement and deploy a multi-threaded distributed application
that communicates through REST calls. We use GlassFish 4 as application server. The
application interacts with one of the three chosen databases management system. We used
the Sakila sample database [62] provided by MySQL. Sakila database contains a large number



23

of records, and for this reason we believe that it is interesting for experiments. We adapted
the schema of the Sakila database to PostgreSQL and MongoDB databases.

For Experiment 2 and 3, we use DVDStore and JPetStore systems. These two cloud-based
applications have been used in multiple other studies from the literature [63]. DVDStore 1

is an open-source simulation of an e-commerce site. It has been released under the open-
source GNU General Public License (GPL). We use DVD Store as a test workload, which
includes a back-end database component, a driver programs, and a Web application layer.
DVD Store is provided with the implementation of Microsoft SQL Server, Oracle, MySQL,
and PostgreSQL databases. We refactor the code of DVD Store to allow it to connect to a
MongoDB database.

Similarly to DVD Store application, we also modified the code of JPetStore to implement
connections to MySQL, PostgreSQL, and MongoDB databases. JPetStore 2 is an e-Commerce
Web application that offers various types of pets online. JPetStore is coupled with a DAO
layer and uses spring MVC and struts.

As shown in Figure 4.1, our cloud environment contains three servers. We used a switch
to connect these servers on a private network. The first server is the master that executes
the cloud-based application (the RESTful application, DVD Store application, or JPetStore
application). The master server has the following characteristics: Intel CPU Xeon X5650
with 8 GB RAM, and 40 GB disk space. The two other servers contains eight slave database
nodes running on VMware ESXi: 4 on each server, where each slave virtual machine has a
virtual processor Intel CPU QuadCore i5 with 1 GB RAM, and 24 GB disk space.

4.3 Design

In our experiments, we use a combination of databases and cloud patterns encoded using a
letter and a number. The Local Database Proxy pattern has three implementation strategies:
Random Allocation (P1), Round-Robin (P2), and Custom Load Balancing (P3). The Local
Sharding Based Router pattern also has three strategies: Modulo Algorithm (P4), Consistent
Hashing (P5), and Lookup Algorithm (P6). The Priority Message Queue pattern is called
P7. The databases are named: MySQL (D1), PostgreSQL (D2), and MongoDB (D3).

The Round-Robin strategy chooses an instance of the pool in a round-robin fashion, whereas
the Random Allocation strategy selects the instance randomly. On the other hand, the
Custom strategy uses a more sophisticated method to pick the best instance to choose. The

1http://linux.dell.com/dvdstore/
2https://github.com/mybatis/jpetstore-6

http://linux.dell.com/dvdstore/
https://github.com/mybatis/jpetstore-6
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choice is based on the response time and the number of open connections on the slave nodes.
Sharding pattern requires using many clones of the same database in different shards. We
used a subset of the Sakila database because the sharing pattern requires the use of an
independent data. Three flavors of the Sharding pattern are used. In the Modulo strategy,
the primary key is divided by the number of shards and the remainder is used to select the
server, which executes the request. Concerning the Lookup strategy, this strategy use a table
with a number of slots bigger than the number of servers to select the instance. Finally, the
consistent hashing algorithm uses hashes to select the server.

However, in the Priority Message Queue pattern, requests are processed by the server based
on their priority. There is only one strategy to implement this pattern.

We use a client application that sends 100 database manipulation requests to a server. We
measure the average response time of the server. The generated requests are basically a mix
of select and write. Response time (read and write requests) is the main metric used to
measure the performance of the application.

We perform our experiments using different numbers of clients, which are simulated using
a multi-threaded architecture. The number of clients simulated varies from 100 to 1500
clients (100, 250, 500, 1000, and 1500). Each execution is done using different databases and
different cloud patterns.

To get precise measurement results, we repeat each scenario five times and we compute the
average for each performance metric. The total reaches 150,000 concurrent requests, which
reflects the workload of real cloud based applications.

4.4 Data Extraction Process

This section explains in details the data collection for estimating the energy consumed by a
cloud-based application. The material used for data collection is described in Section 4.2.
The procedure below details the steps taken to have the results of the energy assessment of
the cloud-based application (see Figure 2.2).
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Energy Data Collection Procedure
1: CollectData(VMs, CloudApp, Profiler)
2: Begin
3: StartCloudApp()
4: ExecuteCloudApp(x) // Seconds
5: for all VM ∈ VMs do
6: StartProfiler()
7: ExecuteProfiler(x) // Seconds
8: FinishExecProfiler()
9: end for

10: FinishExecCloudApp()
11: End

Figure 4.1 Energy Consumption Data Extraction Process

4.5 Independent Variables

MySQL, PostgreSQL, and MongoDB databases are the independent variables of our study.
Also, the three studied cloud patterns: Local Database Proxy, Local Sharding-Based Router,
and Priority Message Queue patterns, as well as the strategies of these cloud patterns are
considered as independent variables.
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4.6 Dependent Variables

We measure the application response time (corresponding to select and insert requests) in
nanoseconds and then convert it to milliseconds. We measure the energy consumption us-
ing the Power-API profiler (in watts, which we convert to joules (J)). Both measures are
dependent variables.

4.7 Hypotheses

To answer our research questions, we formulate the following null hypotheses, where P0
is the experiment in which we compare the energy consumption and response time of the
three versions of each application using respectively MySQL, PostgreSQL, and MongoDB
databases. Px (x ∈ {1 ... 6}), and P7 are the different patterns.

In each experiment we compare two versions of a same application implementing two different
databases Dy, Dz (y, z ∈ {1, 2, 3} and y 6=z), with the same (combination) of patterns.

• H1
0yz: There is no difference between the average amount of energy consumed by ap-

plications implementing databases Dy and Dz (without any cloud pattern).

• H1
xyz: There is no difference between the average amount of energy consumed by ap-

plications implementing databases Dy and Dz in conjunction with patterns Px.

• H1
xyz7: There is no difference between the average amount of energy consumed by

applications implementing databases Dy and Dz in conjunction with the combination
of patterns Px and P7.

To have more in-depth understanding of the trade-offs between energy consumption and re-
sponse times of the cloud-based applications, we also formulate the following null hypotheses:

• H2
0yz: There is no difference between the average response time of databases Dy and

Dz by applying the design P0.

• H2
xyz: There is no difference between the average response time of databases Dy and

Dz by applying the design Px.

• H2
xyz7: There is no difference between the average response time of databases Dy and

Dz by applying the combination of designs Px and P7.
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4.8 Analysis Method

To analyze our collected data (i.e., response time and energy consumption measurements), we
perform the Mann-Whitney U test [64] to test the following hypotheses: H1

0yz, H2
0yz, H1

xyz,
H2

xyz, H1
xyz7, H2

xyz7. The Mann-Whitney U test is a non-parametric statistical test whose
relevance is reflected in the assessment of two independent distributions.

We also computed the Cliff’s δ effect size [65] because effect sizes are important to understand
the magnitude of the difference between two distributions. In addition, Cliff’s δ represents
the degree of interlock between two sample distributions [65]. Cliff’s δ is also more reliable
and robust than Cohen’s d effect size [66]. Cliff’s δ effect size value ranges from -1 to +1.
We should mention also that Cliff’s δ effect size value is zero when two sample distributions
are the same [67]. In all our tests, we reject the corresponding null hypothesis (i.e., there is
a significant difference between the the two distributions) when its p-value < 0.05.

Interpreting the Effect Sizes:

As indicated in Table 4.1, the Cliff’s δ value may correspond to three different categories of
effect sizes: small, medium and large. The effect size is negligeable is the Cliff’s δ value is
less than 0.147, small if the Cliff’s δ value is greater than 0.147, but less than 0.33, medium
if the the Cliff’s δ value is between 0.33 and 0.474, and large if the Cliff’s δ value is greater
than 0.474 [68].

Table 4.1 Mapping Cohen’s d to Cliff’s δ.

Cohen’s Standard Cohen’s d % of Non-overlap Cliff’s δ
small 0.20 14.7% 0.147

medium 0.50 33.0% 0.330
large 0.80 47.4% 0.474



28

CHAPITRE 5 RESULTS AND DISCUSSIONS

In this chapter, we now present the results of our research questions. At the end, we also
discuss our findings.

5.1 Results

5.1.1 RQ1: Does the choice of MySQL, PostgreSQL, and MongoDB databases
affect the energy consumption of cloud applications (when no cloud pat-
terns are implemented)?

Tables 5.1 and 5.2 summarizes the results of Mann-Whitney U test and Cliff’s δ effect sizes
for the energy consumption and the response time.

Table 5.1 Energy Consumption p-value and Cliff’s δ
Pattern MySQL PostgreSQL p-value Cliff’s δ MySQL MongoDB p-value Cliff’s δ PostgreSQL MongoDB p-value Cliff’s δ

P0 262.5 568.2 0.01 medium 262.5 354.7 0.24 small 568.2 354.7 0.09 small
P1 490.2 1391.1 < 10e−6 large 490.2 890.0 < 10e−6 large 1391.1 890.0 0.09 small
P2 495.2 1529.9 < 10e−6 large 495.2 915.9 < 10e−6 large 1529.9 915.9 0.04 medium
P3 495.0 1476.5 < 10e−6 large 495.0 904.5 < 10e−6 large 1476.5 904.5 0.04 medium
P4 1331.9 6330.2 < 10e−6 large 1331.9 5826.4 < 10e−6 large 6330.2 5826.4 0.23 small
P5 611.6 4245.1 < 10e−6 large 611.6 3821.8 < 10e−6 large 4245.1 3821.8 0.23 small
P6 824.1 4929.4 < 10e−6 large 824.1 4194.4 < 10e−6 large 4929.4 4194.4 0.23 small

P1+P7 442.7 1379.8 < 10e−6 large 442.7 814.3 < 10e−6 large 1379.8 814.3 0.03 medium
P2+P7 468.8 1482.5 < 10e−6 large 468.8 891.9 < 10e−6 large 1482.5 891.9 0.03 medium
P3+P7 490.2 1391.1 < 10e−6 large 490.2 890.0 < 10e−6 large 1391.1 890.0 0.09 small
P4+P7 1255.5 5777.4 < 10e−6 large 1255.5 5622.9 < 10e−6 large 5777.4 5622.9 0.82 negligible
P5+P7 492.2 3884.5 < 10e−6 large 492.2 3386.6 < 10e−6 large 3884.5 3386.6 0.23 small
P6+P7 775.9 4526.8 < 10e−6 large 775.9 4127.4 < 10e−6 large 4526.8 4127.4 0.23 small

Table 5.2 Response Time p-value and Cliff’s δ
Pattern MySQL PostgreSQL p-value Cliff’s δ MySQL MongoDB p-value Cliff’s δ PostgreSQL MongoDB p-value Cliff’s δ

P0 36018.6 28615.7 0.09 small 36018.6 4253.8 < 10e−6 large 28615.7 4253.8 < 10e−6 large
P1 30430.0 27867.8 0.23 small 30430.0 3639.8 < 10e−6 large 27867.8 3639.8 < 10e−6 large
P2 29504.1 27036.5 0.23 small 29504.1 3214.2 < 10e−6 large 27036.5 3214.2 < 10e−6 large
P3 29825.2 26129.6 0.23 small 29825.2 3275.0 < 10e−6 large 26129.6 3275.0 < 10e−6 large
P4 170693.1 138026.6 0.09 small 170693.1 26259.5 < 10e−6 large 138026.6 26259.5 < 10e−6 large
P5 165250.7 145382.6 0.09 small 165250.7 27897.8 < 10e−6 large 145382.6 27897.8 < 10e−6 large
P6 168786.5 130585.0 0.09 small 168786.5 24680.3 < 10e−6 large 130585.0 24680.3 < 10e−6 large

P1+P7 27826.2 22299.8 0.48 negligible 27826.2 3747.1 < 10e−6 large 22299.8 3747.1 < 10e−6 large
P2+P7 26703.4 25706.8 0.48 negligible 26703.4 3127.5 < 10e−6 large 25706.8 3127.5 < 10e−6 large
P3+P7 29339.7 23153.6 0.23 small 29339.7 4210.2 < 10e−6 large 23153.6 4210.2 < 10e−6 large
P4+P7 37584.7 29287.7 0.23 small 37584.7 2716.3 < 10e−6 large 29287.7 2716.3 < 10e−6 large
P5+P7 38153.7 26445.6 0.09 small 38153.7 2869.7 < 10e−6 large 26445.6 2869.7 < 10e−6 large
P6+P7 34183.0 27507.3 0.23 small 34183.0 20609.3 0.03 medium 27507.3 20609.3 0.09 small

Average Amount of Consumed Energy: Results presented in Table 5.1 and in Fig-
ure 5.1 show that, without using any pattern (in other words, by applying the design P0),
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Figure 5.1 Results obtained without implementing cloud patterns

there is a statistically significant difference between the average amount of energy consumed
by application using MySQL and application using PostgreSQL. The effect size in this case
is medium. Therefore, we reject H1

0yz for Dy, Dz (y=1, z=2). However, there is not a statis-
tically significant difference between the average amount of energy consumed by application
using MySQL and application using MongoDB. Therefore, we cannot reject H1

0yz for Dy, Dz

(y=1, z=3). Similarly, there is not a statistically significant difference between the average
amount of energy consumed by application using PostgreSQL database and application using
MongoDB database. In these two cases the effect size is small. Therefore, we cannot reject
H1

0yz for Dy, Dz (y=2, z=3).

Average Response Time: Results presented in Table 5.2 and in Figure 5.1 show that, by
applying the design P0, there is not a statistically significant difference between the aver-
age response time of application using MySQL database and application using PostgreSQL
database. Therefore, we cannot reject H2

0yz for Dy, Dz (y=1, z=2). However, there is a statis-
tically significant difference between the average response time of application using MySQL
database and application using MongoDB database. Similarly, there is a statistically signifi-
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cant difference between the average response time of application using PostgreSQL database
and application using MongoDB database. Therefore, we reject H2

0yz for Dy, Dz ((y=1, z=3),
(y=2, z=3)).
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Figure 5.2 Results obtained with the Local Database Proxy pattern

5.1.2 RQ2: Does the implementation of Local Database Proxy, Local Sharding
Based Router, and Priority Message Queue patterns affect the energy con-
sumption of cloud applications using MySQL, PostgreSQL, and MongoDB
Databases?

We now report on the results and answers to RQ2.

Average Amount of Consumed Energy: As presented in Table 5.1, our results show that
by applying the Local Database Proxy pattern (see Figure 5.2), there is a statistically signifi-
cant difference between the average amount of energy consumed by application using MySQL
database and application using PostgreSQL database. Similarly, also, between application
using MySQL and application using MongoDB. Similarly also by application using Post-
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greSQL database and application using MongoDB database (where the effect size is large).
But, except for the case where the proxy pattern is implemented using the random strat-
egy, there is not a statistically significant difference between application using PostgreSQL
database and application using MongoDB database. Therefore we reject H1

xyz for Px, Dy, Dz

(x ∈ {2, 3}, (y=1, z=2), (y=1, z=3)), but we cannot reject H1
xyz for Px, Dy, Dz (x=1, y=2,

z=3).

When applying the Local Sharding-Based Router (see Figure 5.3), there is a statistically
significant difference between the average amount of energy consumed by application using
MySQL database and application using PostgreSQL database. Similarly also between appli-
cation using MySQL and application using MongoDB (the effect size is large). But, there is
not a significant difference between application using PostgreSQL database and application
using MongoDB database. Therefore, we reject H1

xyz for Px, Dy, Dz (x ∈ {4, 5, 6}, (y=1,
z=2), (y=1, z=3)), but we cannot reject H1

xyz for Px, Dy, Dz (x ∈ {4, 5, 6}, y=2, z=3).
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Figure 5.3 Results obtained with the Local Sharding-Based Router pattern

Average Response Time: As indicated in Table 5.2 and in Figure 5.2, results show that by
applying the Local Database Proxy pattern, there is not a statistically significant difference
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between the average response time of application using MySQL database and application
using PostgreSQL database. Therefore, we cannot reject H2

xyz for Px, Dy, Dz (x ∈ {1,
2, 3}, (y=1, z=2)). However, there is a statistically significant difference between the av-
erage response time of application using MySQL database and application using MongoDB
database. Similarly, there is a statistically significant difference between the average response
time of application using PostgreSQL database and application using MongoDB database.
Therefore, we reject H2

xyz for Px, Dy, Dz (x ∈ {1, 2, 3}, (y=1, z=3), (y=2, z=3)).

Further results, when applying the Local Sharding-Based Router (see Figure 5.3), there is not
a statistically significant difference between the average response time of application using
MySQL database and application using PostgreSQL database. Therefore, we cannot reject
H2

xyz for Px, Dy, Dz (x ∈ {4, 5, 6}, (y=1, z=2)). However, there is a statistically signifi-
cant difference between the average response time of application using MySQL database and
application using MongoDB database. Similarly, there is a statistically significant difference
between the average response time of application using PostgreSQL database and application
using MongoDB database. Therefore, we reject H2

xyz for Px, Dy, Dz (x ∈ {4, 5, 6}, (y=1,
z=3), (y=2, z=3)).

5.1.3 RQ3: Do the interactions between Local Database Proxy, Local Shard-
ing Based Router, and Priority Message Queue patterns affect the energy
consumption of cloud applications using MySQL, PostgreSQL, and Mon-
goDB databases?

We now combine the Local Database Proxy pattern with the priority Message Queue pattern
and also the Local Sharding-Based Router pattern with Priority Message Queue pattern.

Average Amount of Consumed Energy: When we combine the Local Database Proxy
pattern with the priority Message Queue pattern (see Figure 5.4), results show that there
is a statistically significant difference between the average amount of energy consumed by
application using MySQL database and application using PostgreSQL database. Similarly
also between application using MySQL and application using MongoDB (the effect size is
large). The same is true for application using PostgreSQL database and application using
MongoDB database (where the effect size is large). However, except applying the combination
of the custom strategy with the Priority Message Queue pattern, there is not a statistically
significant difference between application using PostgreSQL database and application using
MongoDB database. Therefore, we reject H1

xyz7 for Px, Dy, Dz (x ∈ {1, 2, 3}, (y=1, z=2),
(y=1, z=3)), but we cannot reject H1

xyz7 for Px, Dy, Dz (x = 3, y=2, z=3)
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Figure 5.4 Results obtained for the combination of Proxy pattern with the Message Queue
pattern

Also, when we combine the Local Sharding-Based Router pattern with the priority Mes-
sage Queue pattern (see Figure 5.5), results show that there is not a statistically significant
difference between the average response time of application using MySQL database and ap-
plication using PostgreSQL database. Therefore, we cannot reject H2

xyz7 for Px, Dy, Dz (x
∈ {4, 5, 6}, (y=1, z=2)). However, there is a statistically significant difference between the
average response time of application using MySQL database and application using MongoDB
database. Similarly, there is a statistically significant difference between the average response
time of application using PostgreSQL database and application using MongoDB database.
Therefore, we reject H2

xyz7 for Px, Dy, Dz (x ∈ {1, 2, 3}, (y=1, z=3), (y=2, z=3)).

Average Response Time: When applying the Local Database Proxy pattern with the pri-
ority Message Queue pattern (see Figure 5.4), there is not a statistically significant difference
between the average response time of application using MySQL database and application
using PostgreSQL database. Therefore, we cannot reject H2

xyz7 for Px, Dy, Dz (x ∈ {1,
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Figure 5.5 Results obtained for the combination of Sharding pattern with the Message Queue
pattern

2, 3}, (y=1, z=2)). However, there is a statistically significant difference between the av-
erage response time of application using MySQL database and application using MongoDB
database. Similarly, there is a statistically significant difference between the average response
time of application using PostgreSQL database and application using MongoDB database.
Therefore, we reject H2

xyz7 for Px, Dy, Dz (x ∈ {1, 2, 3}, (y=1, z=3), (y=2, z=3)).

Besides that, when we combine the Local Sharding Based Router pattern with the priority
Message Queue pattern (see Figure 5.5), results show that there is not a statistically signifi-
cant difference between the average response time of application using MySQL database and
application using PostgreSQL database. Therefore, we cannot reject H2

xyz7 for Px, Dy, Dz (x
∈ {4,5,6}, (y=1, z=2)). However, there is a statistically significant difference between the
average response time of application using MySQL database and application using MongoDB
database. As for the combination of the Lookup strategy and the Priority Message Queue
pattern there is not a significant difference. Similarly, there is a statistically significant dif-
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ference between the average response time of application using PostgreSQL database and
application using MongoDB database. Regarding the combination of the Lookup strategy
and the Priority Message Queue pattern there is not a significant difference. Therefore, we
reject H2

xyz7 for Px, Dy, Dz (x ∈ {4, 5}, (y=1, z=3), (y=2, z=3)), and we cannot reject H2
xyz7

for Px, Dy, Dz (x = 6, (y=1, z=3), (y=2, z=3)).

5.2 Discussion

We showed that MySQL database is the least energy consuming but is the slowest among
the three databases. PostgreSQL is the most energy consuming among the three databases,
but is faster than MySQL but slower than MongoDB. MongoDB consumes more energy than
MySQL but less than PostgreSQL and is the fastest among the three databases.

We explain these results by the fact that PostgreSQL database generates multiple parallel
processes to run the requests sent by the RESTful cloud-based application, while MySQL
and MongoDB generate only one process at a time to handle requests sent by the cloud-
based application. We attribute the high energy consumed by PostgreSQL to these multiple
processes.

As mentioned in Section 2, the two relational databases MySQL and PostgreSQL follow the
ACID model while the MongoDB database follow the BASE (Basically Available, Soft state,
Eventual consistency) model. Based on this aspect, we believe that the NoSQL database
studied (i.e., MongoDB) is faster than the other two relational databases because the requests
processed by relational databases must be executed one by one and can not be executed in
a Simultaneous way. This aspect is similar to the phenomenon of mutual exclusion used in
the treatment process.

5.3 Threats to validity

Our experiments, as any other experiment, are subject to threats to their validity. This
section discusses these threats following the guidelines provided by Wohlin et al. [69].

Construct validity threats concern the relation between theory and observations. In this
study, the construct validity threats are mainly due to measurement errors. As shown in
4.1, the precision of our energy measurement approach is likely to affect our findings. These
measurements are subject to perturbations depending of hardware and network. To lessen
these perturbations that could be caused by the network or the hardware of our private
cloud environment, we did several experiments. We conducted each experiment (i.e., for each
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number of clients) five times. After that, we computed average values of these measurements.

Internal validity threats concern our choice of tools and applications. Despite that fact that
we studied three different databases, three cloud patterns, and three cloud-based applications,
some of our findings may still be specific to our studied applications. Our results could also
be impacted by our choice of Power-API as the energy measurement tool. Different tools
and applications could yield different results. Therefore, future studies should consider using
different relational and NoSQL databases, other cloud-based applications implementing the
cloud patterns, and also another tool, with high accuracy, to measure the energy consumption
of a cloud-based application.

External validity threats concern the possibility to generalize our findings. Further validation
should be done on different cloud-based applications and with different relational and NoSQL
databases. Applying different cloud patterns to these databases can extend our understand-
ing of the impact of databases on the energy consumption of cloud applications, providing
software engineers with guidelines about the usage of relational and NoSQL databases when
developing cloud-based applications.

Reliability validity threats concern the possibility of replicating this study. As shown in
chapter 4, we describe our private cloud environment, highlight the cloud-based applications,
the databases and the cloud patterns used in our study for the purpose of providing all the
necessary details to replicate our study.

Finally, the conclusion validity threats refer to the relation between the treatment and the
outcome. In our study, we used carefully the statistical tests (used in chapter 4). The choice
of using non-parametric tests was not arbitrary. We used them becasue they do not require
a normal distribution.
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CHAPITRE 6 CONCLUSION

This chapter summarises the findings of this thesis, discusses the major limitations of our
approach, and finally highlights some future directions of research.

6.1 Summary

Nowadays, reducing energy consumption is a challenge for cloud-based applications. We con-
trasted the performance of various combinations of databases and cloud patterns in terms
of energy consumption and response time of the cloud-Based applications. We carried on
a series of experiments on different versions of a RESTful multi-threaded application im-
plemented with three different databases and three different cloud patterns: PostgreSQL,
MySQL, and MongoDB and Local Database Proxy, Local Sharding-Based Router, and Pri-
ority Message Queue. We also used two standard cloud applications (DVD Store application
and JPetStore application) whose code we refactored to support MySQL, PostgreSQL, and
MongoDB databases to validate our results and have a comprehensive view of the impact of
the three studied databases on different cloud-based applications.

We studied, at first, the impact on energy consumption of three different databases: MySQL
and PostgreSQL, two relational databases, and MongoDB, a NoSQL database. Then, we
evaluated the impact of three cloud patterns on the energy consumption of these databases,
with the aim to provide some guidance to software engineers about the usage of databases
and cloud patterns for cloud-based applications.

We showed that MySQL database is the least energy consuming but is the slowest among
the three databases. PostgreSQL is the most energy consuming among the three databases,
but is faster than MySQL but slower than MongoDB. MongoDB consumes more energy than
MySQL but less than PostgreSQL and is the fastest among the three databases.

In addition, we showed that the implementation of the Local Database Proxy pattern does
not impact the behavior of the databases but can significantly improve the energy efficiency
of MySQL. Concerning the Local Sharding-Based Router pattern, the Modulo strategy has
a strong effect on the energy consumption of PostgreSQL and MongoDB databases but a
small one for MySQL. Moreover, the Consistent strategy has a strong effect on the energy
consumption of PostgreSQL but improves slightly the energy efficiency of MySQL and Mon-
goDB. The LookUp strategy can significantly improve the energy efficiency of PostgreSQL
and MongoDB.
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Besides that, we showed that combining Local Database Proxy pattern with the Priority
Message Queue pattern has no significant impact neither on the application response time
nor on the energy consumed by the application, when it interacts with MySQL. This com-
bination only has a small effect on the energy consumption of PostgreSQL and MongoDB.
Interestingly, the implementation of the Local Sharding Based Router pattern with the Pri-
ority Message Queue pattern has a strong effect on the response time of the three Databases
but without a significant impact on the energy consumption.

6.2 Limitations of the proposed approaches

Our work, like any other work, has limitations. In our study, we have selected the Power-
API profiler from the literature, for its high accuracy, to estimate the energy efficiency of
the cloud-based applications at the process-level. However, since Power-API is not 100%
accurate, more studies should be conducted with possibly more accurate tools to verify our
findings.

Also, we cannot generalize our findings, since they may still be specific to our studied appli-
cations, which were designed specifically for the experiments. Future works should replicate
this study on other cloud based applications.

6.3 Future work

This thesis reports the results of a large empirical study aimed at understanding the impact
of databases and their conjunction with cloud patterns on the energy efficiency of cloud
applications. The results of our study could provide guidelines for cloud architects and
developers.

In the future, we plan to expand our study to different NoSQL databases like HBase, Cas-
sandra, HANA 1, because we believe that the type of database can be an important variable
that should be tested for.

In addition, we plan to investigate the energy impact of data modeling strategies like denor-
malization and data duplication. We also plan examine how a match/mismatch between the
selected database and the workload characteristic affects energy efficiency.

1https://en.wikipedia.org/wiki/SAP_HANA



39

REFERENCES

[1] J. Han, M. Song, and J. Song, “A novel solution of distributed memory nosql database
for cloud computing,” in Computer and Information Science (ICIS), 2011 IEEE/ACIS
10th International Conference on. IEEE, 2011, pp. 351–355.

[2] C. Fehling, F. Leymann, R. Retter, D. Schumm, and W. Schupeck, “An architectural
pattern language of cloud-based applications,” in Proceedings of the 18th Conference on
Pattern Languages of Programs. ACM, 2011, p. 2.

[3] K. Beck and W. Cunningham, “Using pattern languages for object-oriented programs,”
1987.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design patterns: elements of,” 1994.

[5] D. S. Linthicum, Cloud computing and SOA convergence in your enterprise: a step-by-
step guide. Pearson Education, 2009.

[6] G. Hecht, B. Jose-Scheidt, C. De Figueiredo, N. Moha, and F. Khomh, “An empirical
study of the impact of cloud patterns on quality of service (qos),” in Cloud Comput-
ing Technology and Science (CloudCom), 2014 IEEE 6th International Conference on.
IEEE, 2014, pp. 278–283.

[7] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears, “Benchmarking
cloud serving systems with ycsb,” in Proceedings of the 1st ACM symposium on Cloud
computing. ACM, 2010, pp. 143–154.

[8] A. Bourdon, A. Noureddine, R. Rouvoy, and L. Seinturier, “Powerapi: A software library
to monitor the energy consumed at the processlevel,” ERCIM News, vol. 2013, no. 92,
2013.

[9] C. Data, An introduction to database systems. Addison-Wesley publ., 1975.

[10] E. Dede, M. Govindaraju, D. Gunter, R. S. Canon, and L. Ramakrishnan, “Performance
evaluation of a mongodb and hadoop platform for scientific data analysis,” in Proceedings
of the 4th ACM workshop on Scientific cloud computing. ACM, 2013, pp. 13–20.

[11] S. Kaur and D. Kumar, “The implementation of column-oriented database in postgresql
for improving performance of queries,” International Journal of Research, vol. 3, no. 4,
pp. 283–302, 2016.



40

[12] B. Schwartz, P. Zaitsev, and V. Tkachenko, High performance MySQL: Optimization,
backups, and replication. " O’Reilly Media, Inc.", 2012.

[13] Z. Wei-ping, L. Ming-Xin, and C. Huan, “Using mongodb to implement textbook man-
agement system instead of mysql,” in Communication Software and Networks (ICCSN),
2011 IEEE 3rd International Conference on. IEEE, 2011, pp. 303–305.

[14] S. W. Dietrich, D. Goelman, C. M. Borror, and S. M. Crook, “An animated introduction
to relational databases for many majors,” Education, IEEE Transactions on, vol. 58,
no. 2, pp. 81–89, 2015.

[15] D. Maier, The theory of relational databases. Computer science press Rockville, 1983,
vol. 11.

[16] H. Garcia-Molina, Database systems: the complete book. Pearson Education India,
2008.

[17] A. MySQL, “Mysql,” 2001.

[18] B. Momjian, PostgreSQL: introduction and concepts. Addison-Wesley New York, 2001,
vol. 192.

[19] T. Conrad, “Postgresql vs. mysql vs. commercial databases: It’s all about what you
need,” 2006.

[20] P. DuBois, MySQL (Developer’s Library). Sams, 2005.

[21] A. Moniruzzaman and S. A. Hossain, “Nosql database: New era of databases
for big data analytics-classification, characteristics and comparison,” arXiv preprint
arXiv:1307.0191, 2013.

[22] S. Gilbert and N. A. Lynch, “Perspectives on the cap theorem.” Institute of Electrical
and Electronics Engineers, 2012.

[23] P. Membrey, E. Plugge, and D. Hawkins, The definitive guide to MongoDB: the noSQL
database for cloud and desktop computing. Apress, 2011.

[24] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra,
A. Fikes, and R. E. Gruber, “Bigtable: A distributed storage system for structured data,”
ACM Transactions on Computer Systems (TOCS), vol. 26, no. 2, p. 4, 2008.



41

[25] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo: amazon’s highly available
key-value store,” in ACM SIGOPS Operating Systems Review, vol. 41, no. 6. ACM,
2007, pp. 205–220.

[26] S. Strauch, V. Andrikopoulos, U. Breitenbuecher, O. Kopp, and F. Leyrnann, “Non-
functional data layer patterns for cloud applications,” in Cloud Computing Technology
and Science (CloudCom), 2012 IEEE 4th International Conference on. IEEE, 2012,
pp. 601–605.

[27] C. H. Costa, J. V. B. Filho, P. H. M. Maia, and F. Carlos, “Sharding by hash partition-
ing.”

[28] A. Homer, J. Sharp, L. Brader, M. Narumoto, and T. Swanson, Cloud Design Pat-
terns: Prescriptive Architecture Guidance for Cloud Applications. Microsoft patterns
& practices, 2014.

[29] A. Noureddine, A. Bourdon, R. Rouvoy, and L. Seinturier, “A preliminary study of
the impact of software engineering on greenit,” in Green and Sustainable Software
(GREENS), 2012 First International Workshop on. IEEE, 2012, pp. 21–27.

[30] ——, “Runtime monitoring of software energy hotspots,” in Automated Software Engi-
neering (ASE), 2012 Proceedings of the 27th IEEE/ACM International Conference on.
IEEE, 2012, pp. 160–169.

[31] W. Vereecken, W. Van Heddeghem, D. Colle, M. Pickavet, and P. Demeester, “Overall
ict footprint and green communication technologies,” in 4th International Symposium
on Communications, Control and Signal Processing (ISCCSP 2010). IEEE, 2010.

[32] S. A. Abtahizadeh, F. Khomh et al., “How green are cloud patterns?” in Computing
and Communications Conference (IPCCC), 2015 IEEE 34th International Performance.
IEEE, 2015, pp. 1–8.

[33] C. Seo, S. Malek, and N. Medvidovic, “An energy consumption framework for distributed
java-based systems,” in Proceedings of the twenty-second IEEE/ACM international con-
ference on Automated software engineering. ACM, 2007, pp. 421–424.

[34] A. Noureddine, R. Rouvoy, and L. Seinturier, “A review of energy measurement ap-
proaches,” ACM SIGOPS Operating Systems Review, vol. 47, no. 3, pp. 42–49, 2013.



42

[35] A. Kansal and F. Zhao, “Fine-grained energy profiling for power-aware application de-
sign,” ACM SIGMETRICS Performance Evaluation Review, vol. 36, no. 2, pp. 26–31,
2008.

[36] A. E. Trefethen and J. Thiyagalingam, “Energy-aware software: Challenges, opportu-
nities and strategies,” Journal of Computational Science, vol. 4, no. 6, pp. 444–449,
2013.

[37] A. Pathak, Y. C. Hu, and M. Zhang, “Where is the energy spent inside my app?: fine
grained energy accounting on smartphones with eprof,” in Proceedings of the 7th ACM
european conference on Computer Systems. ACM, 2012, pp. 29–42.

[38] N. Amsel, Z. Ibrahim, A. Malik, and B. Tomlinson, “Toward sustainable software engi-
neering (nier track),” in Proceedings of the 33rd International Conference on Software
Engineering. ACM, 2011, pp. 976–979.

[39] J. Flinn and M. Satyanarayanan, “Powerscope: A tool for profiling the energy usage of
mobile applications,” inMobile Computing Systems and Applications, 1999. Proceedings.
WMCSA’99. Second IEEE Workshop on. IEEE, 1999, pp. 2–10.

[40] M. Goraczko, A. Kansal, J. Liu, and F. Zhao, “Joulemeter: Computational energy
measurement and optimization,” 2011.

[41] J. Reich, M. Goraczko, A. Kansal, and J. Padhye, “Sleepless in seattle no longer.” in
USENIX Annual Technical Conference, 2010.

[42] G. Pinto, F. Castor, and Y. D. Liu, “Mining questions about software energy consump-
tion,” in Proceedings of the 11th Working Conference on Mining Software Repositories.
ACM, 2014, pp. 22–31.

[43] I. Manotas, C. Sahin, J. Clause, L. Pollock, and K. Winbladh, “Investigating the impacts
of web servers on web application energy usage,” in Green and Sustainable Software
(GREENS), 2013 2nd International Workshop on. IEEE, 2013, pp. 16–23.

[44] E. Capra, C. Francalanci, and S. A. Slaughter, “Measuring application software energy
efficiency,” IT Professional Magazine, vol. 14, no. 2, p. 54, 2012.

[45] C. Bunse, H. Höpfner, S. Roychoudhury, and E. Mansour, “Choosing the" best" sorting
algorithm for optimal energy consumption.” in ICSOFT (2), 2009, pp. 199–206.



43

[46] S. Arunagiri, V. J. Jordan, P. J. Teller, J. C. Deroba, D. R. Shires, S. J. Park, and
L. H. Nguyen, “Stereo matching: Performance study of two global algorithms,” in SPIE
Defense, Security, and Sensing. International Society for Optics and Photonics, 2011,
pp. 80 211Z–80 211Z.

[47] C. Sahin, F. Cayci, I. L. M. Gutiérrez, J. Clause, F. Kiamilev, L. Pollock, and K. Win-
bladh, “Initial explorations on design pattern energy usage,” in Green and Sustainable
Software (GREENS), 2012 First International Workshop on. IEEE, 2012, pp. 55–61.

[48] C. Bunse, Z. Schwedenschanze, and S. Stiemer, “On the energy consumption of design
patterns,” in Proceedings of the 2nd Workshop EASED@ BUIS Energy Aware Software-
Engineering and Development. Citeseer, 2013, pp. 7–8.

[49] C. Sahin, L. Pollock, and J. Clause, “How do code refactorings affect energy usage?”
in Proceedings of the 8th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement. ACM, 2014, p. 36.

[50] G. Procaccianti, P. Lago, W. Diesveld et al., “Energy efficiency of orm approaches: an
empirical evaluation,” 2016.

[51] H. Kim, J. Smith, and K. G. Shin, “Detecting energy-greedy anomalies and mobile
malware variants,” in Proceedings of the 6th international conference on Mobile systems,
applications, and services. ACM, 2008, pp. 239–252.

[52] A. Merlo, M. Migliardi, and P. Fontanelli, “Measuring and estimating power consump-
tion in android to support energy-based intrusion detection,” Journal of Computer Se-
curity, vol. 23, no. 5, pp. 611–637, 2015.

[53] J. Hoffmann, S. Neumann, and T. Holz, “Mobile malware detection based on energy
fingerprints—a dead end?” in Research in Attacks, Intrusions, and Defenses. Springer,
2013, pp. 348–368.

[54] A. Merlo, M. Migliardi, and P. Fontanelli, “On energy-based profiling of malware in
android,” in High Performance Computing & Simulation (HPCS), 2014 International
Conference on. IEEE, 2014, pp. 535–542.

[55] F. Palmieri, S. Ricciardi, U. Fiore, M. Ficco, and A. Castiglione, “Energy-oriented denial
of service attacks: an emerging menace for large cloud infrastructures,” The Journal of
Supercomputing, vol. 71, no. 5, pp. 1620–1641, 2015.



44

[56] C. A. Ardagna, E. Damiani, F. Frati, D. Rebeccani, and M. Ughetti, “Scalability patterns
for platform-as-a-service,” in Cloud Computing (CLOUD), 2012 IEEE 5th International
Conference on. IEEE, 2012, pp. 718–725.

[57] R. Aghi, S. Mehta, R. Chauhan, S. Chaudhary, and N. Bohra, “A comprehensive com-
parison of sql and mongodb databases,” 2015.

[58] D. Hammes, H. Medero, and H. Mitchell, “Comparison of nosql and sql databases in
the cloud,” Proceedings of the Southern Association for Information Systems (SAIS),
Macon, GA, pp. 21–22, 2014.

[59] R. Aghi, S. Mehta, R. Chauhan, S. Chaudhary, and N. Bohra, “A comprehensive com-
parison of sql and mongodb databases,” International Journal of Scientific and Research
Publications, vol. 5, no. 2, 2015.

[60] I. Konstantinou, E. Angelou, C. Boumpouka, D. Tsoumakos, and N. Koziris, “On the
elasticity of nosql databases over cloud management platforms,” in Proceedings of the
20th ACM international conference on Information and knowledge management. ACM,
2011, pp. 2385–2388.

[61] T. Dory, B. Mejías, P. Roy, and N.-L. Tran, “Measuring elasticity for cloud databases,”
in Proceedings of the The Second International Conference on Cloud Computing, GRIDs,
and Virtualization. Citeseer, 2011.

[62] A. MySQL, MySQL Administrator_s Guide and Language Reference. Sams Publishing,
2006.

[63] K. C. Foo, Z. M. Jiang, B. Adams, A. E. Hassan, Y. Zou, and P. Flora, “An industrial
case study on the automated detection of performance regressions in heterogeneous
environments,” in 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, vol. 2. IEEE, 2015, pp. 159–168.

[64] D. J. Sheskin, Handbook of parametric and nonparametric statistical procedures. crc
Press, 2003.

[65] J. Romano, J. D. Kromrey, J. Coraggio, and J. Skowronek, “Appropriate statistics for
ordinal level data: Should we really be using t-test and cohen’s d for evaluating group
differences on the nsse and other surveys,” in annual meeting of the Florida Association
of Institutional Research, 2006, pp. 1–33.



45

[66] J. Cohen, Statistical power analysis for the behavioral sciences (rev. Lawrence Erlbaum
Associates, Inc, 1977.

[67] N. Cliff, “Dominance statistics: Ordinal analyses to answer ordinal questions.” Psycho-
logical Bulletin, vol. 114, no. 3, p. 494, 1993.

[68] J. Cohen, “A power primer.” Psychological bulletin, vol. 112, no. 1, p. 155, 1992.

[69] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén, Experi-
mentation in software engineering. Springer, 2012.


	DEDICATION
	ACKNOWLEDGEMENTS
	ABSTRACT
	RÉSUMÉ
	CO-AUTHORSHIP
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	1 INTRODUCTION
	1.1 Research statement
	1.2 Research objectives
	1.3 Thesis outline

	2 BACKGROUND
	2.1 Databases
	2.1.1 Relational Databases
	2.1.2 NoSQL Databases

	2.2 Cloud Patterns
	2.2.1 Local Database Proxy
	2.2.2 Local Sharding-Based Router
	2.2.3 Priority Message Queue

	2.3 Power-API

	3 LITTERATURE REVIEW
	3.1 Energy Measurement Approaches and Tools
	3.1.1 Energy Measurement Approaches
	3.1.2 Measurement Tools

	3.2 Energy Consumption and applications design
	3.3 Energy Consumption and Security
	3.4 Impact of Cloud Patterns on Applications Performance
	3.5 Performance of Relational and NoSQL databases 

	4 METHODOLOGY
	4.1 Research Questions
	4.2 Objects
	4.3 Design
	4.4 Data Extraction Process
	4.5 Independent Variables
	4.6 Dependent Variables
	4.7 Hypotheses
	4.8 Analysis Method

	5 RESULTS AND DISCUSSIONS
	5.1 Results
	5.1.1 RQ1: Does the choice of MySQL, PostgreSQL, and MongoDB databases affect the energy consumption of cloud applications (when no cloud patterns are implemented)?
	5.1.2 RQ2: Does the implementation of Local Database Proxy, Local Sharding Based Router, and Priority Message Queue patterns affect the energy consumption of cloud applications using MySQL, PostgreSQL, and MongoDB Databases?
	5.1.3 RQ3: Do the interactions between Local Database Proxy, Local Sharding Based Router, and Priority Message Queue patterns affect the energy consumption of cloud applications using MySQL, PostgreSQL, and MongoDB databases?

	5.2 Discussion
	5.3 Threats to validity

	6 CONCLUSION
	6.1 Summary
	6.2 Limitations of the proposed approaches
	6.3 Future work

	REFERENCES

