
Atefeh Meshinchi
Supervisors:
Alejandro Quintero
Yann-Gaël Guéhéneuc
Université de Montréal-Ecole Polytechnique
May 2018
(1) Problem definition
o Internet of Things(loT) definition and vision

- QoS management in loT
- Objective
(2) Related works and background
- Related works
- Software-Defined Networking

3) Proposed QoS framework

- Architecture
- Modules and interaction between components
- Workflow sequence
4 Proposed QoS Model
- Making-decision framework
- Mathematical model
- Normalization
(5) Experiments and Results
- Model Implementation
- Experiment scenario
- Result Analysis
6 Conclusion
- Work summary and contribution
- Limitation and Future Work

Problem definition Related works and background угомәшец soo pasodoud Proposed QoS Model Experiments and Results
 Conclusion
 Internet of Things(loT)

Internet of Things(IoT) definition and vision QoS management in IoT Objective

IoT is an ecosystem of physical objects that are accessible through the Internet.

Problem definition

 Related works and background Proposed QoS framework ןəpow soo pesodord Experiments and ResultsConclusion
Internet of Things(loT) reference model

Generic Management Capabilities
Management Capabilities
Internet of Things(loT) definition and vision
 Objective

uo!snjpuoう

It is predicted that the number of Internet-connected things will
reach 50 billion by 2020 .
CiscolEricsson

Diversity in application domain and application ranges:
data-centric, innovative, and stochastic nature

- Multi-system environment and diverse SLA

QoS Indicator	
Transport Network	Sensing Network
Bandwidth	Data accuracy
Packet loss	Data collection delay
Jitter	Sampling rate
Delay	WSN lifetime
	WSN coverage

Problem definition Related works and background чиомәшед soo pesodord ןəpow soo pesodord st|nsəy pue słuәmu!ədxヨ Conclusion

Aspects of problem

- Low-end loT devices : Battery-powered and non-IP
sensors

Problem definition
 Related works and background
 Proposed QoS framework
 Iəpow soo pesododd
 Experiments and Results
 uo!snjouoう

Software-Defined Networking

$$
\begin{array}{r}
\text { Problem definition } \\
\text { Related works and background } \\
\text { Proposed QoS framework } \\
\text { Proposed QoS Model } \\
\text { Experiments and Results } \\
\text { Conclusion }
\end{array}
$$

$$
\begin{aligned}
& \text { Related works } \\
& \text { Software-Defined Networking }
\end{aligned}
$$

Traditional network architecture

 Software Defined Networking(SDN)

Problem definition Related works and background Proposed QoS framework Proposed QoS Model słןnsəy pue słuәm!!ədxヨ
uo!snjouoう
OpenFlow protocol

Direct over TCP/ Secure SSL channel

Problem definition Related works and background Proposed QoS framework ןəpow soo pesodold Experiments and Results Conclusion
 support framework in loT
 QoS

Global Database Problem definition Related works and background Proposed QoS framework ןəpow soo pesodold st|nsəy pue stuәm!!ədxヨ
uo!snjouoう Workflow sequence Architecture
Modules and interaction between components
voiniow sequetice

uo!sn|juoう

WSN Local QoS Management Module
$\begin{array}{lll} & \checkmark \text { QoS-aware sensing resource allocation and efficient task management } \\ \checkmark & \text { Sensor status tracking } \\ \checkmark & \text { Sensor energy residue estimation }\end{array}$

Problem definition Related works and background Proposed QoS framework Proposed QoS Model Experiments and Results Conclusion $\quad \begin{aligned} & \text { Architecture } \\ & \text { Core Transport Network Topology Management Mont Module sequence }\end{aligned}$

\checkmark Network topology discovery
\checkmark Network link status collection in terms of QoS parameters
$\checkmark \quad$ Updated database

ио!!!!!!əp məøqold Related works and background Proposed QoS framework Proposed QoS Model Experiments and Results
 uo!̣njouoう
 Policy Management Module

Problem definition	
Related works and background	Architecture
Proposed QoS framework	Modules and interaction between components
Proposed QoS Model	Workflow sequence
Experiments and Results	
Conclusion	

Path Computation and Application Classification Module

Application Class	IoT application	QoS attributes	Priority	Type of queue	Cisco classification
Delay-Centric	Mission-critical (event-based application)	$D_{\text {max }}^{k} \leq D_{\text {Threshold }}$	1	PQ (Priority Queue)	EF (Expedited Forwarding)
Bandwidth-Centric (Multimedia application)	Real-time monitoring, query-driven application	$D_{\text {max }}^{k} \geq D_{\text {Threshold }}$ $B W_{\text {min }}^{k} \geq B W_{\text {Threshold }}$	2	Q1	AF (Assured Forwarding)
General	Non-Real time monitoring, analytic application	N / A	3	Q2	BE (Best Effort)

Queuing/Scheduling techniques

- Queuing model
- Complete Buffer Sharing
- Preemptive Priority Scheduling

Architecture
Modules and interaction between components Workflow sequence

Classification Module Path Calculator:
\checkmark WSNs determination for the requested services
\checkmark QoS support routing path calculation across the core
transport network
uo!snjpuoう sł|nsəy pue słuәm!!ədxヨ ןəpow soo pesodold чомәшец soo pesodord Related works and background

Path and Demand Database :

\checkmark Database of currently active demand information and the
associated paths

[^0]
Query-driven application scenario
ио!!!u!!!əp wә|qo्d Related works and background Proposed DoS framework ןəpow so pesodord Experiments and Results
uo!sn|эuoう
Modules and interaction between components
Workflow sequence

-
ins

core
across
algorithm
routing
Status-aware and QoS-aware
transport network : Proposed QoS Model st|nsəy pue słuәm!!ədxヨ uo!snjpuoう

Making-decision framework

Making-decision framework Mathematical model Normalization
Making-decision framework
Mathematical model
Normalization Problem definition Related works and background Proposed QoS framework ןəpow soo pesododd sł!nsəy pue słuәu!!əədxヨ
Conclusion

Am

[^1]
Making-decision framework Mathematical model Normalization

Problem definition Related works and background Proposed QoS framework Proposed QoS Model sł!nsəy pue słuәm!!ədxヨ uo!snjэuoう

 -Parameters

Problem definition Related works and background Proposed QoS framework Iəpow SOO pasododd sł!nsəy pue słuәm!!ədxヨ
 uo!snjpuoう

Parameters

Service demand parameters

$S^{k} \in V$	Source of demand k
$T^{k} \in V$	Destination of demand k
$F^{k} \geq 0$	Total demand volume k
$D_{S L A}^{k} \geq 0$	Maximum acceptable delay for demand k, agreed in SLA
$P L_{S L A}^{k} \geq 0$	Maximum acceptable packet loss ratio for demand k, agreed in SLA
$B_{S L A}^{k} \geq 0$	Minimum bandwidth required for demand k, agreed in SLA
P^{k}	Selected path across the network for demand k

Making－decision framework Mathematical model Normalization punoィбуэеq pue syıом рәґеןәと уломәшец SOO pesodoıd ןəpow soon pəsododd Experiments and Results
uo！snjouoう
$-$

Constraint function

- Delay Constraint : $d_{p}^{k} \leq D_{S L A}^{k}$
$d_{p}^{k}=\sum_{(i, j) \in E, p^{k}} d_{i j}$
$\sum_{(i, j) \in E, P^{k}} d_{i j} \leq D_{S L A}^{k}, \forall k \in K$
Packet Loss Constraint :

Making-decision framework Mathematical model Normalization $-1-1+$
Constraint

Model Implementation Experiment scenario Result Analysis

Problem definition

Related works and background
уломәшед SOO pesodold ןəpow Soo pasododd
st|nsəy pue słuәш!!ədxヨ Conclusion

Model implementation

Mixed Integer Linear Programming

problem

AMPL: A Mathematical Programming Languages
CPLEX: Integer linear programming solver

Model Implementation Experiment scenario Result Analysis

Assumption

- QoS parameters bound for normalization purpose :

	Minimum	Maximum
Link packet loss ratio range	0%	5%
Link delay range	0 s	0.0001 s
Link bandwidth range	0 bps	1000 Mbps

- Link utilization rate limit= 75%

$$
\begin{aligned}
& \text { Model Implementation } \\
& \text { Experiment scenario } \\
& \text { Result Analysis }
\end{aligned}
$$

Experiment method

	Multi-demand	
Topology A	Test 1	1 Delay-centric, 1 BW-centric
	Test 2	2 Delay-centric, 1 BW-centric
	Test 3	1 Delay-centric, 2 BW-centric
Topology B	Test 1	2 Delay-centric, 1 BW-centric
	Test 2	2 Delay-centric, 2 BW-centric
	Test 3	2 Delay-centric, 3 BW-centric
Topology D	Test 1	2 Delay-centric, 1 BW-centric
	Test 2	3 Delay-centric, 2 BW-centric
	Test 3	3 Delay-centric, 3 BW-centric

	Single-demand	
Topology A	Delay-centric	3
	BW-centric	4
Topology B	Delay-centric	3
	BW-centric	4
Topology C	Delay-centric	4
	BW-centric	4

Problem definition	
Related works and background	Model Implementation
Proposed QoS framework	Experiment scenario
Proposed QoS Model	Result Analysis
Experiments and Results	
Conclusion	

Example1: Single demand- Topology A

Model Implementation Experiment scenario Result Analysis

 Related works and background уиомәшец SOO pasododd Iəpow SOO pəsododd st|nsəy pue sıuәm!!ədxヨuo!sn|juoう
(10)

> Model Implementation Experiment scenario
> Result Analysis

Result Analysis

Less maximum link utilization Link load balancing Minimized congestion probability Increase network availability Improve customer satisfaction

Work summary and contribution Limitation and Future Work

Work summary
Work summary and contribution
Limitation and Future Work

Architecture and model advantage

Problem definition
 Related works and background
 чномәше.. soo pasodo.d əəpow soo pasodo.d
 st|nsəy pue sчuәu!uədxヨ
 Conclusion
 Limitation and future work

[^0]: Generator/Pusher:
 Flow rules generation
 Rule insertion in the F
 the paths.
 along
 calculated paths
 etwork elements
 the
 ${ }^{\circ}$
 based on
 Flow Table

 Rule

[^1]: sible path across the core transport network
 Algorithm 1: Routing path algorithm to find the least-cost pos-
 1 Procedure; $: G=(V, E)$ as the topology graph of the SDN network including nodes and bidirectional links :
 $V=\{1,2, \ldots, v\}$ and $E=\{(i, j): i, j \in V, i \neq j\}$
 2 for k in K do
 Input : Source S^{k}, Destination T^{k} and Volume F^{k}
 Output 3 end

 4 for (i, j) in E do
 5 Read the link QoS parameters including $b_{i j}$, pl ${ }_{i j}$, and $d_{i j}$; Calculate the current link utilization rate;

 Read the link utilization limit $u_{\text {Threshold }}$;
 if Link utilization rate $>=u_{\text {Threshold }}$ then
 $9 \quad$ It excludes this link from the logical network topology used to calculate the path;

 Input

