
UNIVERSITÉ DE MONTRÉAL

QOS-AWARE AND STATUS-AWARE ADAPTIVE RESOURCE ALLOCATION
FRAMEWORK IN SDN-BASED IOT MIDDLEWARE

ATEFEH MESHINCHI
DÉPARTEMENT DE GÉNIE INFORMATIQUE ET GÉNIE LOGICIEL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

MÉMOIRE PRÉSENTÉ EN VUE DE L’OBTENTION
DU DIPLÔME DE MAÎTRISE ÈS SCIENCES APPLIQUÉES

(GÉNIE INFORMATIQUE)
MAI 2018

© Atefeh Meshinchi, 2018.

UNIVERSITÉ DE MONTRÉAL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

Ce mémoire intitulé :

QOS-AWARE AND STATUS-AWARE ADAPTIVE RESOURCE ALLOCATION
FRAMEWORK IN SDN-BASED IOT MIDDLEWARE

présenté par : MESHINCHI Atefeh
en vue de l’obtention du diplôme de : Maîtrise ès sciences appliquées
a été dûment accepté par le jury d’examen constitué de :

M. SAMUEL Pierre, Ph. D., président
M. QUINTERO Alejandro, Doctorat, membre et directeur de recherche
M. GUÉHÉNEUC Yann-Gaël, Doctorat, membre et codirecteur de recherche
Mme BELLAÏCHE Martine, Ph. D., membre

iii

DEDICATION

I dedicate my thesis to my husband, Hossein, who has been a constant source of support and
encouragement during the challenges of graduate school. I am thankful for having you in my

life.

iv

AKNOWLEDGEMENTS

I would like to offer my sincere gratitude to my research supervisor, Professor Alejandro
Quintero, and my co-advisor, Professor Yann-Gaël Guéhéneuc, for their support and guidance
to successfully complete this project, and the opportunity to study under their supervision. I
would like to thank Professor Samuel Pierre and Professor Martine Bellaïche for taking part
in my thesis committee. Also, I would like to express my thanks to my husband, my parents,
and my colleagues at LARIM(Mobile computing and networking research laboratory) who
have supported me.

v

RÉSUMÉ

«L’Internet des objets (IdO) est une infrastructure mondiale pour la société de l’informa-
tion, qui permet de disposer de services évolués en interconnectant des objets (physiques
ou virtuels) grâce aux technologies de l’information et de la communication interopérables
existantes ou en évolution. »[1]

La vision de l’Internet des Objets est d’étendre l’Internet dans nos vies quotidiennes afin
d’améliorer la qualité de vie des personnes, de sorte que le nombre d’appareils connectés et
d’applications innovantes augmente très rapidement pour amener l’intelligence dans différents
secteurs comme la ville, le transport ou la santé. En 2020, les études affirment que les appareils
connectés à Internet devraient compter entre 26 milliards et 50 milliards d’unités. [2, 3]

La qualité de service d’application IoT dépend non seulement du réseau Internet et de l’infra-
structure de communication, mais aussi du fonctionnement et des performances des appareils
IoT. Par conséquent, les nouveaux paramètres de QoS tels que la précision des données et la
disponibilité des appareils deviennent importants pour les applications IoT par rapport aux
applications Internet.

Le grand nombre de dispositifs et d’applications IoT connectés à Internet, et le flux de
trafic spontané entre eux rendent la gestion de la qualité de service complexe à travers
l’infrastructure Internet. D’un autre côté, les dispositifs non-IP et leurs capacités limitées en
termes d’énergie et de transmission créent l’environnement dynamique et contraint. De plus,
l’interconnexion de bout en bout entre les dispositifs et les applications n’est pas possible.
Aussi, les applications sont intéressées par les données collectées, pas à la source spécifique
qui les produit.

Le Software Defined Networking (SDN) est un nouveau paradigme pour les réseaux informa-
tiques apparu récemment pour cacher la complexité de l’architecture de réseau traditionnelle
(par exemple de l’Internet) et briser la fermeture des systèmes de réseau dans les fonctions
de contrôle et de données. Il permet aux propriétaires et aux administrateurs de réseau de
contrôler et de gérer le comportement du réseau par programme, en découplant le plan de
contrôle du plan de données. SDN a le potentiel de révolutionner les réseaux informatiques
classiques existants, en offrant plusieurs avantages tels que la gestion centralisée, la program-
mabilité du réseau, l’efficacité des coûts d’exploitation, et les innovations.

Dans cette thèse, nous étudions la gestion de ressources sur l’infrastructure IoT, y compris les
réseaux de transport/Internet et de détection. Nous profitons de la technologie SDN comme le

vi

futur d’Internet pour offrir un système de support QoS flexible et adaptatif pour les services
IoT. Nous présentons un intergiciel basé sur SDN pour définir un cadre de gestion de QoS
pour gérer les besoins spécifiques de chaque application à travers l’infrastructure IoT. De
plus, nous proposons un nouveau modèle QoS qui prend en compte les préférences de QoS
des applications et l’état des éléments de réseau pour allouer efficacement les ressources sur
le réseau transport/Internet basé sur SDN tout en maximisant les performances du réseau.

vii

ABSTRACT

The Internet of Things (IoT) is an integration of various kinds of technologies, wherein
heterogeneous objects with capabilities of sensing, actuation, communication, computation,
networking, and storage are rapidly developed to collect the data for the users and appli-
cations. The IoT vision is to extend the Internet into our everyday lives, so the number of
connected devices and innovative applications are growing very fast to bring intelligence into
as many domains as possible.

The QoS for IoT application not only depends on the Internet network and communication
infrastructure, it is also impacted by the operation and performance of IoT sensing infras-
tructure. Therefore, the new QoS parameters such as data accuracy, sampling rate, and
device availability become important for the IoT applications compared to the Internet ap-
plications. The huge number of the Internet-connected IoT devices and application, and the
spontaneous traffic flow among them make the management of the quality of service complex
across the Internet infrastructure. On the other hand, the non-IP devices and their limited
capabilities in terms of energy and transmission create the dynamic environment and hinder
the direct interaction between devices and applications.

The quality of service is becoming one of the critical non-functional IoT element which
needs research and studies. A flexible and scalable QoS management mechanism must be
implemented in IoT system to keep up with the growth rate of the Internet-connected IoT
devices and applications as well as their heterogeneity and diversity. The solution should
address the IoT application requirements and user satisfaction while considering the system
dynamism, limitations, and characteristics.

Software-Defined Networking (SDN) is an emerging paradigm in computer networking which
separates the control plane and the data plane of the network elements. It makes the network
elements programmable via the centralized control plane. This approach enables more agile
management and control over the network behavior.

In this thesis, we take advantage of SDN technology as the future of the Internet to offer a
flexible and adaptive QoS support scheme for the IoT services. We present an SDN-based
middleware to define a QoS management framework to manage the application specific QoS
needs across the IoT infrastructure including transport and sensing network. Also, we propose
a new QoS model that takes into account the application QoS preferences and the network
elements status to allocate effectively the resources for the applications across SDN network
while maximizing network performance.

viii

TABLE OF THE CONTENTS

DEDICATION . iii

AKNOWLEDGEMENTS . iv

RÉSUMÉ . v

ABSTRACT . vii

TABLE OF THE CONTENTS . viii

LIST OF THE TABLES . x

LIST OF THE FIGURES . xi

TABLE OF ACRONYMS AND ABBREVIATIONS xiii

LIST OF APPENDICES . xiv

CHAPTER 1 INTRODUCTION . 1
1.1 Definitions and basic concepts . 4

1.1.1 Internet of Things architecture . 4
1.1.2 Software Defined Networking(SDN) architecture 6
1.1.3 Quality of Service (QoS) . 8

1.2 Aspects of the problem . 10
1.3 Research objectives . 12
1.4 Outline . 13

CHAPTER 2 RELATED WORK AND OVERVIEW 14
2.1 Quality of Service approaches in IoT system 15
2.2 Software Defined Networking (SDN) . 19

2.2.1 OpenFlow Protocol . 20
2.2.2 SDN operation mechanism . 22
2.2.3 QoS management in SDN . 24

2.3 Software-Defined IoT system . 26

CHAPTER 3 SYSTEM ARCHITECTURE . 30

ix

3.1 Proposed architecture . 31
3.2 Assumption . 39
3.3 Component description . 39
3.4 Architecture workflow . 53
3.5 Architecture advantage . 53

CHAPTER 4 MATHEMATICAL MODELING . 58
4.1 Multi-Commodity Constraint-based Routing Path Flow problem (MCCRPF) 58
4.2 Link cost design based on multiple metrics 62
4.3 QoS parameters definitions and calculations formula 64

4.3.1 Delay . 65
4.3.2 Packet loss ratio . 66
4.3.3 Bandwidth . 68

4.4 Summary . 68

CHAPTER 5 EVALUATION AND RESULT . 71
5.1 Model implementation . 71
5.2 Experiments and performance evaluation . 73

5.2.1 Single-demand scenario . 76
5.2.2 Multi-demand scenario . 81

5.3 Result analysis . 87

CHAPTER 6 CONCLUSION . 91
6.1 Summary of the work and contribution . 91
6.2 Limitation of the work . 94
6.3 Future work . 95

BIBLIOGRAPHY . 97

ANNEXES . 107

x

LIST OF THE TABLES

Table 2.1 “Required” counters in OpenFlow [4] 25
Table 3.1 QoS parameters mapped in IoT architecture layers 33
Table 3.2 Application classification and queuing policy in OpenFlow Network

Element . 50
Table 5.1 IoT application class . 75
Table 5.2 QoS parameters limits for normalization 76
Table 5.3 Paths and congested links in Test 3 when OSPF routing model is used

- Topology A . 83
Table 5.4 Paths and congested links in Test 3 when OSPF routing model is used

- Topology B . 85
Table 5.5 Paths and congested links in Test 3 when OSPF routing model is used

- Topology D . 87
Table A.1 Topology-A link configuration . 107
Table A.2 Topology-B link configuration . 107
Table A.3 Topology-C link configuration . 108
Table A.4 Topology-D link configuration . 109
Table B.1 Various routing protocols . 110

xi

LIST OF THE FIGURES

Figure 1.1 IoT Strategic Research Roadmap [5] 1
Figure 1.2 IoT Architectural Reference Model [6] 5
Figure 1.3 Traditional network architecture . 6
Figure 1.4 SDN architecture [7] . 7
Figure 2.1 Simplified IoT application model [8] 15
Figure 2.2 QoS architecture of IoT . 18
Figure 2.3 A system that employs MiLAN [9] 19
Figure 2.4 (a)OpenFlow network element components (b)Flow Table entry format

(Reproduced from [10]) . 21
Figure 2.5 How an OpenFlow-enabled element handles incoming packets (Repro-

duced from [10]) . 23
Figure 2.6 Architecture of Software Defined Wireless Networks (SDWN) (source:

Stanford wireless systems lab) . 27
Figure 2.7 (a)WSN architecture [11], (b)Software-Defined Wireless Sensor Net-

work architecture [12] . 28
Figure 2.8 The proposed SDIoT architecture design [13] 29
Figure 3.1 QoS-aware and status-aware QoS support IoT framework through SDN-

based middleware solution . 32
Figure 3.2 (a)Sequence diagram of designed QoS support resource allocation for

query-driven IoT application mapped into the architecture components
illustrated in (b) . 37

Figure 3.3 (a)Sequence diagram of designed QoS support resource allocation for
event-driven IoT application/pre-setup IoT services mapped into the
architecture components illustrated in (b) 38

Figure 3.4 Logical Format of Global WSN Profile Database. (It shows the particular
WSN1 profile and its association with IoT services) 40

Figure 3.5 Logical format for SLA-based QoS Database 41
Figure 3.6 Building blocks of WSN Local QoS Manager module 42
Figure 3.7 IoT device connection paradigm (reproduced from [14]) 43
Figure 3.8 Topology discovery mechanism in SDN (Reproduced from [15]) 46
Figure 3.9 Building blocks of Core Transport Network Topology Management mo-

dule . 47
Figure 3.10 Policy management module . 49

xii

Figure 3.11 Building blocks of Path computation and Application classification mo-
dule . 50

Figure 3.12 (a)Core Transport and (b)Sensing Network Status Collection diagram 54
Figure 3.13 QoS support workflow for query-driven application 55
Figure 4.1 Delay in packet switch network . 65
Figure 4.2 Routing path decision-making framework 69
Figure 5.1 Experiment and performance analysis scenario 76
Figure 5.2 QoS attributes associated for the calculated path by the proposed mo-

del and OSPF - Topology A . 77
Figure 5.3 QoS attributes associated for the calculated path by the proposed mo-

del and OSPF - Topology B . 77
Figure 5.4 QoS attributes associated for the calculated path by the proposed mo-

del and OSPF - Topology C . 78
Figure 5.5 Maximum link utilization rate in the calculated paths by the proposed

model and OSPF . 79
Figure 5.6 Paths allocated in case of high-BW demand in Topology C 81
Figure 5.7 Path delay - Topology A . 82
Figure 5.8 Packet Loss Ratio of the paths - Topology A 82
Figure 5.9 Maximum Link Utilization across the network in different tests - To-

pology A . 82
Figure 5.10 Path delay result - Topology B . 84
Figure 5.11 Packet Loss Ratio of the paths - Topology B 84
Figure 5.12 Maximum Link Utilization across the network in different tests - To-

pology B . 85
Figure 5.13 Path delay results - Topology D . 86
Figure 5.14 Packet Loss Ratio of the paths - Topology D 86
Figure 5.15 Maximum Link Utilization across the network in different tests - To-

pology D . 86
Figure A.1 Network topology-A . 107
Figure A.2 Network topology-B . 108
Figure A.3 Network topology-C . 108
Figure A.4 Network topology-D . 109

xiii

TABLE OF ACRONYMS AND ABBREVIATIONS

IoT Internet of Things
SDN Software Defined Networking
QoS Quality of Service
WSN Wireless Sensor Network
SLA Service Level Agreement
6LoWPAN Internet Protocol(IPv6) and Low-power Wireless Personal Area Net-

works
M2M Machine to Machine
CAPEX Capital Expenditure
OPEX Operating Expenses
RFID Radio-Frequency IDentification
BW Bandwidth

xiv

LIST OF APPENDICES

Appendix A NETWORK TOPOLOGY . 107

Appendix B ROUTING PROTOCOL . 110

1

CHAPTER 1 INTRODUCTION

The Internet of Things (IoT) represents the future of the Internet. Referring to ITU-T and
IERC [1, 16], the IoT, first introduced in 1999, creates an Internet-based interconnected
platform wherein smart objects have interfaces and identities. These smart objects can com-
municate with one another through standard and interoperable communication protocols
without human interference. Smart objects with sensing, interaction, communication, com-
puting, and decision-making capabilities, using locally- or globally-gathered data, are going
to make IoT happen.

IoT employs all technologies in the field of communication, data, application, and device
to improve the efficiency and lower the cost of business processes. By 2020, IoT studies
argue that Internet-connected devices are expected to number between 26 billion and 50
billion [2, 3]. Therefore, IoT is going to cover all the objects in our environment and it is
expected to have a significant impact on all aspects of daily life to provide various benefits
by connecting objects together in support of intelligent decision making. Figure 1.1 shows
the vision of the IoT which is the creation of the smart environments such as Smart City,
Smart Home, Smart Health, and Smart Transport.

Figure 1.1 IoT Strategic Research Roadmap [5]

For example, in the context of the Smart City, information and communication technolo-
gies provide the critical infrastructure and services for city administration, transportation,
education, health-care, public safety, and utilities. The connected infrastructure and effi-
cient services empower the creation of more intelligent and innovative living and working

2

environment.[16]

In IoT, The smart sensors produce a large volume of data that must be processed and analyzed
to be transformed into useful output. Therefore, IoT offers a new class of applications, also
called data-centric application, which harvest data from the environment and transform them
into desired information for users. For example, a smart traffic management application
monitors the vehicles and pedestrians across a city to optimize driving and walking routes,
and video surveillance applications monitor the environment to identify suspicious activities.

To work properly and effectively, IoT applications present different QoS requirements compa-
ring with Internet applications. Their concerns are not only the speed of communication and
error rate, but they have other concerns such as data accuracy, coverage, and the limitation
of the sensing resources, which could be the major problem hindering their effectiveness. [17]

QoS management in IoT systems is a very complex task because of the extremely large
variety of devices and services, as well as the technologies and techniques involved in the
systems architecture. Therefore, multiple systems, such as devices, data, and communication
are involved in the fulfillment of the service and accordingly, the Quality of services. QoS
must not only be embedded in the design of all individual component, it must be considered
in the system architecture design and the cross-layer interactions among components and
technologies as well.

Wireless Sensor Networks (WSNs), widely used in IoT infrastructure, are comprised of hun-
dreds or thousands of sensor nodes, and these sensors have the ability to communicate either
among each other or directly to an external base station(BS). These sensors are generally
low-end with strong constraints in energy, processing, storage, and transmission capabilities.
Besides, implementation of IP stack in such low-end devices is too complex, so most of the
sensors does not support IP addressing scheme. Therefore, the direct interaction between the
applications and the sensors could not be established. In this case, IoT-gateway as a powerful
device acts as a bridge between IP-based systems and non-IP addressable sensors. Although,
with the introduction and development of the 6LoWPAN (Internet Protocol (IPv6) and Low-
power Wireless Personal Area Networks) technologies [18], a low-power sensor network could
communicate with other IP-based systems directly(e.g. an application server, storage server),
sensors still suffer from resource and capability limitation. Hence, Wireless Sensor Networks
(WSNs) differ significantly from traditional wireless networks with respect to the network
and device architecture, traffic characteristics, scale, and design goals.

The Internet as a large-scale networking system has had great success in the interconnection of
computer networks and with the creation of IPv6, it extends the TCP/IP address identifiers
and offers plenty of advanced capability in terms of security, connectivity, and scalability.

3

Therefore, Internet world-wide availability plus IP stack capability added to smart objects
make the Internet the best available choice as transport and communication infrastructure
in IoT system [19]. However, the legacy computer network and the Internet still face some
limitations. On one hand, the control intelligence, which is implemented by various routing
and management protocols, is embedded in every network elements (e.g., router, switch)
and is difficult to change. Vendor-dependent platforms and interfaces make the Internet
evolution complex and slow. On the other hand, the Internet provides best-effort services
and it is not capable to meet the more specific requirements of applications in terms of
service quality. In the IoT, heterogeneous networks and devices create opportunities for a
wide range of applications with varying QoS requirements, which cannot be guaranteed by
the best-effort Internet mechanisms. Moreover, the number of connected devices and the
amount of generated data will become an increasing stress on the Internet network.

As a conclusion, the organization and management of a large number of devices and applica-
tions require novel ideas in the design of the IoT to enhance the system performance and the
quality of provided services. Although the limitations imposed by the technologies integrated
into IoT system(e.g., WSNs and Internet) must be considered in the design of the QoS
management mechanisms, they need to be evolved and adapted to the IoT characteristics
and IoT application-specific needs to make system services useful and effective.

Software Defined Networking (SDN) is a new paradigm for computer networking that appea-
red recently to hide the complexity of traditional networking architecture (e.g., the Internet)
and break down the closeness of network systems in both control and data functions. It allows
the network owners and administrators to programmatically initialize, control, and manage
network behavior ; by decoupling the control plane from the data plane. SDN has the poten-
tial to revolutionize existing classical computer networks, by offering several benefits such as
the centralized management, network programmability, operation and capital cost efficiency,
and inherent innovations. [10].

Therefore, SDN is a potential solution to the problems faced by traditional computer networks
such as the core transport network and the Internet. Network device producers are working
together on standardization process around protocols and features in the Open Networking
Foundation(ONF). SDN technical characteristics and the success stories extend the SDN use
cases to the networking segments of the data-centers and cloud environment. For example,
Google has deployed a software-defined networking to interconnect its data-centers across
the globe and provide workload optimization in its distributed systems [20].

In recent years, software-defined system and the idea of having a centralized control layer
gained more interest in the research community to solve the challenges related to the closeness

4

of the different type of the access and communication networks, such as 5G networks [21],
VANET [22], and WSN [23]. It is also desirable to integrate SDN into the IoT to utilize its
capabilities to simplify the control and management process in terms of data storage, data
communication, and data security [13].

To ensure an acceptable level of QoS for applications specifically mission-critical application,
several QoS approaches have been proposed in any IoT layer or subsystem. In this thesis, we
focus on the impact of IoT network elements, which are the Internet (also called Core Trans-
port network) and sensing networks, on the quality of services expected by IoT application.
We aim to provide a centralized and unified QoS management service by integrating SDN
technology into IoT architecture. This approach could be classified into the middleware-based
approaches since the SDN control layer is going to provide the abstraction layer between the
IoT infrastructure and the application layer. Resource allocation decision is a fundamental
requirement of the QoS and performance management framework. The main question ad-
dressed in this work is how resource allocation can be matched to the IoT application QoS
needs while considering the resource capabilities and limitations. Therefore, the goal is to
build an adaptive and flexible QoS framework which could keep pace with dynamic business
and application requirements.

1.1 Definitions and basic concepts

This section presents background information to provide a thorough understanding of the
basic concepts of the Internet of Things (IoT), Software Defined Networking (SDN), and
Quality of Service (QoS).

1.1.1 Internet of Things architecture

For a common understanding of the IoT, we present definitions of the main building blocks
of the IoT. The common IoT architecture illustrated in Figure 1.2 comprises multiple layers:
device layer, network and communication layer, service support layer, and application layer.
Also, security and system management are vital parts of the architecture and must be consi-
dered in the design of all these layers to provide reliable, secure, extensible, and flexible
systems. [2, 16]

— The device layer, also called sensing layer, includes all IoT devices, sensors, and ac-
tuators. Sensors are sensing and gathering data from real-world objects, machines, and
people. Actuators perform actions based on the sensed data or the requests from users.
Wireless Sensor Networks (WSNs)and RFID are the main competences of IoT sensing

5

Figure 1.2 IoT Architectural Reference Model [6]

layer.

— The network and communication layer, also called access and transmission network,
securely transfers the data from sensor devices to information processing systems and
applications, and the opposite direction from the application to the sensing layer. In-
ternet could provide the transmission infrastructure and other technologies such as 5G,
LTE, 3G, Wi-Fi, Bluetooth, and Zig-Bee, depending upon the IoT devices and their
capabilities could be used as the communication network and access network to the
Internet.

— The service support layer, or middle-ware layer, includes all functional services to pro-
vide an inter-operable and context-aware communication among heterogeneous IoT
devices, and between devices and applications. This layer also performs service ma-
nagement, data storage, and information processing between applications and sensor
devices.

— The application layer provides global management of IoT applications that are the
consumers of the data with the purpose of in-depth data analysis, data computa-
tion, and action creation depending on business goals. The applications form the user-
interface of the IoT. They are essential for a proper utilization of the collected data.

Managing all devices, and their communication and interaction with the application layer
of IoT architecture and keeping track of the failures, configurations, and performance are
definitely challenging in such complex system. Therefore, management capabilities in terms
of fault, configuration, accounting, performance, and security are another aspects of IoT,

6

which can be found in almost all layers, are critical to being addressed in IoT system design.

All technologies, in terms of device, communication, connectivity, mobility, database, and ap-
plication are involved in designing the IoT. Academic and industrial researchers are working
on solving IoT-specific issues and adapting the existing technologies to be appropriate for the
IoT. For example, to improve the scalability and performance of the IoT, some technologies,
such as Cloud Computing and Fog Computing, are converging with the IoT. Cloud Com-
puting [16, 24] offers unlimited storage, computation, and networking capabilities. It makes
cross-domain application opportunities possible and offers fine-grained IoT resources in a
pay-as-you-use manner. Fog Computing [25], as an extension of cloud computing, improves
the response time to the end users and provides near real-time experience by moving service
provisioning and data processing to the edge of the network instead of entirely in the cloud.
Additionally, it also reduces data flow volume through the Internet.

1.1.2 Software Defined Networking(SDN) architecture

Software Defined Networking has been introduced by University of California at Berkeley and
Stanford University in 2008. The Open Networking Foundation (ONF) [10] is a non-profit
and user organization dedicated to the promotion and adoption of SDN through the creation
of software-defined networking standards and protocols.

In current networking devices (see Figure 1.3), the control plane, which is responsible for
traffic handling, and the forwarding plane, also called data plane, which forwards the pa-
ckets based on control plane’s decision, are installed and tied together. In such vertically
networking devices, the closeness of the planes reduces flexibility and hinders the innovation
and evolution of the networking infrastructure, because deploying new services, resource op-
timization mechanisms, and traffic differentiation methods are bundled with hardware and
vendor-specific interfaces.

Figure 1.3 Traditional network architecture

7

SDN decouples the control plane from the data plane to enhance the network evolution,
interoperability, and scalability. SDN architecture depicted in Figure 1.4 is made of three
logical layers [7]:

— The data plane layer, which includes the network infrastructure, and is composed of
physical forwarding devices, such as switches and routers.

— The control plane, which includes the centralized networking controller, supervises all
network traffic and makes decisions about where the traffic must be forwarded using a
global view of the network.

— The application layer, which represents the services that interact with the controller to
specify the networking needs of the applications in terms of security, configuration, and
management. Network operators and administrators can directly write and deploy cus-
tomized services and make them operational through the controller without depending
on the vendor-dependent releases or updates.

Figure 1.4 SDN architecture [7]

The communication between the forwarding devices and controller is done through newly
designed interfaces known as Southbound interfaces. A controller exercises direct control over
the states of the data-plane devices via well-defined Application Programming Interfaces
(APIs). OpenFlow [26] is the first standard southbound interface.

8

The control layer communicates with the upper layer, application layer, through a Northbound
interface. The SDN controller provides services to the application layer through APIs that
allow implementing customized applications in terms of routing, security, traffic engineering,
and policy management.

Supporting APIs in SDN hide the complexity and heterogeneity of the physical infrastructure
and allow sharing physical infrastructure which significantly reduces the difficulty of appli-
cation development and shortens the time to market of new applications. East/westbound
interfaces are a special case of interfaces required by distributed controllers. They are used
to interconnect the SDN architecture with external SDN-based network architectures or the
legacy networks. [7]

1.1.3 Quality of Service (QoS)

Quality is defined by ISO 9001 as “The totality of features and characteristics of a product
or service bear on its ability to satisfy stated or implied needs” [27]. QoS in the communica-
tion network refers to “the capability to provide assurance that the service requirements of
applications can be satisfied.” [28]

It is a group of indicators that reflect the properties of services. Therefore, the service provider
must consider the applications and users preferences in terms of QoS to provide useful and
adaptable services and resources. In general, QoS indicators are included in Service Level
Agreement (SLA) [29]. SLA is a formal negotiated agreement between service providers and
customers and it can cover many aspects of their relationship such as the performance of
services, customer care, billing, and provisioning. For performance, the service providers must
monitor SLA-based QoS indicators to verify whether the offered services meet the agreed level
of service quality and, if the SLA is broken, they will be penalized.

SLAs are widely used in the IP-based networks and the Internet services. The common
functional QoS indicators are throughput, loss rate, and response time, while non-functional
indicators contain non-measurable parameters, such as availability, reliability, delivery, and
sustainability [30].

SLAs become increasingly important with the IoT and it is essential to maintain and ma-
nage SLAs of IoT networks to ensure the service quality received by the consumer devices.
According to the IoT architecture (see Figure 1.2), the application and service layers directly
interact with user requirements while the network layer helps to transmit the data to the
upper layer and the device layer, which is responsible for sensing and collecting data. The-
refore, SLAs for IoT include user and application expectations relative to network, devices,

9

and data. It is necessary to clarify the QoS indicators in each of IoT layers and determine
the interrelations among them.

Application and service layer. The QoS of applications and services, which are perceived
directly by customers, may have many possible indicators. The main QoS properties from
the application point of view, generally agreed in SLA, are as follows: [31]

— Service time, defined as the time interval between accepting a service request and
finishing of it.

— Service cost, defined as the price to be paid due to the service usage.

— Availability, denoting the probability that the service is accessible at some point in
time.

— Reliability, also called service accuracy, denoting the probability that a request is cor-
rectly served within the expected time, providing the appropriate service information.

Network layer. User expectations of the access and core transport network service providers
are not much different from that of the Internet-based services [32]:

— Bandwidth (Bit rate), defined as the rate of successful carrying the traffic by the net-
work.

— Latency, defined as the time needed for one packet to reach its destination.

— Jitter, defined as the variation in the delays of received packets related to the same
traffic flow.

— Packet loss ratio, determined as the percentage of packets discarded by the network
devices or lost with respect to packets sent.

Device and sensing layer. The definition of the QoS and metrics to evaluate the perfor-
mance of wireless sensor network (WSNs) are different than that for traditional networks.
QoS parameters depend on the sensing applications. The common QoS indicators are: [31, 33]:

— Quality of Information(QoI)/Quality of Data (QoD), defined as the accuracy and sensi-
tivity of the measurements provided by physical sensors, which depends on the quality
of the hardware and sensor capabilities.

— Bandwidth, measured as the available data transmitting-receiving rate for sensors/devices,
which depends on the communication technologies supported by the sensors.

— Sampling rate, defined as the frequency of sampling, which affects bandwidth and
storage utilization ratio. Efficient data collection process boosts performance and sca-
lability.

10

— Network lifetime, which is impacted by sensor energy consumption while sensing, pro-
cessing, and transmitting.

— Coverage, defined as the area range where the sensing layer is working effectively.

— Delay which refers to delay in data collection from sensors.

1.2 Aspects of the problem

Applications are fundamental to the IoT. They provide the presentation layer for the data
captured from the billions of devices around the world. IoT application could be classified
from different perspectives such as the type of information they manage, the type of recipient
(person or system oriented), and their criticality. In general, IoT applications are classified
into three different types: (1) control applications, also called mission-critical applications,
such as city-traffic management and emergency management, which need very fast response
with as less error as possible, (2) monitoring applications, such as intelligent security sur-
veillance tasks, which are fed by cameras and need more throughput, and (3) analysis and
inquiry applications, such as the inquiry into the transported item state in the intelligent
logistics, which are throughput and delay tolerant.

Although IoT can be seen as an Internet connecting things, it is not only the Internet. IoT
boosts its own attributes and applications. The level of services not only depends on the
communication network (e.g., Internet), it also depends on the performance of the sensing
network as the sources of the collected data. Thus, some new QoS parameters such as data
accuracy and sampling rate are desired from the application point of view to be measured
in the service delivery. Therefore, multiple elements such as the Internet and WSNs are
contributing to the quality of services.

QoS management on the core transport network and Internet seeks to provide optimal per-
formance for computer networks while ensuring data flow at an acceptable level of quality.
Performance optimization and Traffic Engineering (TE) within computer networks have been
studied for many years. Many effective solutions in terms of traffic classification, traffic sche-
duling, prioritization, and resource reservation have been proposed and widely implemented
in the computer networking [34]. Traffic Engineering (TE) methods intend to manage the
network traffic and design optimized resource allocation and routing mechanisms to improve
resource utilization while better meeting the requirement of the network QoS. Two main
standardized QoS implementation models in classical IP networks are Integrated Services
(IntServ) [35], with the idea of per-flow resource reservation, and Differentiated Services
(DiffServ) [36] with the idea of traffic classification and prioritization. While both models are

11

offering advanced features in TE, but the scalability and robustness of IntServ approach and
lack of end-to-end connection guarantee and per-flow QoS setup in DiffServ are the draw-
backs of the two approaches. These limitations are not suitable for the IoT system since the
Internet of Things (IoT) is placing new demands on network infrastructure due to the diverse
application domain (e.g., smart health, smart city). Under different contexts and domains,
IoT applications could adopt different classification methods and QoS policies compared with
the current web applications.

On the other hand, the characteristics of WSNs are very different from other conventional
networks. For example, sensor nodes may read data at different rates or they may generate
redundant data. Besides, WSNs are highly constrained in terms of battery, bandwidth, storage
and communication capabilities. Sensors may fail or be blocked due to lack of energy, physical
damage, or interference. Therefore, the QoS management must address the WSN specific
challenges as well as energy conservation to schedule the tasks and allocate resources for
the different type of IoT applications. Although several efficient protocols, middleware-based
QoS models, and QoS routing mechanisms have been proposed in the literature [37], there
is still ongoing research to provide more optimized QoS control and management framework
within WSN.

The heterogeneous nature of the IoT systems and a wide variety of application domains, as
well as the fast growth of IoT devices and applications, make QoS management a complex
challenge. Multiple service providers, such as network service providers, sensing service pro-
viders, and storage service providers, are involved in maintaining the QoS and different SLAs
could be established between the IoT customers and service providers. Moreover, multiple
WSN providers or network transport service providers might contribute together to extend
IoT coverage and have overlapping area providing same services but with different level of
quality and service cost depending on the capabilities of the system and components. Be-
sides, there are a large number of QoS factors which can be taken into account in the IoT
environment. Therefore, the IoT makes the network control and resource allocation more
complicated than for the Internet.

In the literature, several QoS models and approaches have been proposed for IoT system, each
attacks different architectural layer and subsystem and covers one or multiple quality factors.
Despite all research and studies in QoS management within IoT network elements(sensing
and communication network), still, they need enhanced solutions to be adapted to IoT spe-
cific characteristics and QoS requirements. Besides, we remarked that IoT system lacks the
standardized and unified QoS support service framework which considers the inherent sto-
chastic and dynamic nature of IoT. The successful framework must provide the QoS across

12

multiple IoT systems based on the user and application expectation and must be flexible,
extensible, and scalable to pace the system evolution.

Application SLA enforcement in the service delivery and QoS-aware resource allocation in
the IoT framework is the main motivation for this thesis. Our approach is to provide a
middleware-based QoS support service for the IoT application. We propose a flexible and
dynamic resource allocation scheme that directly applies the SLA-related application QoS
requirements and the infrastructure resource status in the resource allocation process. Having
the resource status and application preferences create an adaptive best-fit resource allocation
over time. To achieve this, we leverage the capabilities introduced by SDN technology and
integrate it into the IoT architecture. So, the main contribution of our work is the proposition
of the scalable and adaptive QoS management framework which support the diverse and
dynamic QoS requirements of the application from the sensing and transport network.

Also, our framework provides the centralized and unified way to apply the SLA across the IoT
network infrastructure. Therefore, it abstracts the complexity of the SLA enforcement in the
infrastructure resources. It rapidly adapts to the dynamic business goals and SLA changes
without any complex reconfiguration and policy definition of the infrastructure resources.

1.3 Research objectives

Our main goal is to design a QoS management framework for the IoT application. We aim
to manage the IoT infrastructure resources composed of Internet/transport network and
sensing network devices to provide QoS support services across the IoT layered architecture.
To accomplish this goal, we integrate the SDN technology into IoT architecture to use its
characteristics and features to implement a QoS-aware resource allocation for various IoT
application with different QoS needs. Thus, this thesis has the following goals:

— Propose an appropriate QoS support framework to enforce the diverse application SLA
and improve network resource allocation mechanism for the IoT.

— Model QoS in SDN-based core transport network/Internet to guarantee application
QoS in terms of packet loss, delay, and bandwidth, taking into account application
preferences and network constraints.

— Analyze and evaluate the performance of the proposed QoS model through experiments.

13

1.4 Outline

This thesis describes a new architecture that allows enhanced SLA-aware QoS support in
the IoT by taking advantage of SDN integration into the network and communication layer
of IoT architecture. The architecture is comprised of several modules deployed in different
layers of the IoT to make the required information accessible and to provide dynamic network
resource management. The remainder of the thesis is structured as follows:

— Chapter 2 presents the several approaches and methods introduced by previous works
which investigate different aspects of QoS in IoT systems such as architecture, appli-
cation, and network. This chapter also provides a general view of the Software Defined
Networking(SDN) as the future of the networking paradigm. It is followed by the ideas
and prototypes employing SDN techniques in IoT environments.

— Chapter 3 provides the proposed QoS support IoT architecture, taking advantages of
SDN based transport networking, and describes all relevant components.

— Chapter 4 details the mathematical model provided for QoS support routing across
SDN-based transport network, based on a multi-criteria approach.

— Chapter 5 presents our experimental design and the numerical results obtained from
the performance assessment of the offered model.

— Chapter 6 concludes the thesis and suggests some limitations and directions which
could be attacked as the future work.

14

CHAPTER 2 RELATED WORK AND OVERVIEW

IoT has attracted significant attention from research community both in academia and indus-
try. The basic idea of IoT is to have sensors and smart devices (commonly called “Connected
devices”), are designed in such a way that they capture the data and utilize them to complete
tasks on several aspects of everyday life. IoT world is growing at a surprising speed, from 2
billion objects in 2006 to a projected 20 billion by 2020 [38].

Research communities investigate different aspects of IoT system and they present surveys
of IoT issues and challenges to be solved such as security and privacy, architectural issue, big
data as well as energy efficiency and QoS (Quality of Service)[16]. The Internet of Things
(IoT) continues to evolve and expand in terms of domains, interconnected-devices, data, and
application, so the challenges are becoming more complex. From QoS point of view, IoT
presents several issues such as availability, reliability, mobility, performance, scalability, and
interoperability. [2, 16, 39, 40]

The performance of IoT services is a big challenge because IoT architecture is made of
multiple layers, so the service performance depends on the performance of many components
that need continuous development and improvement to meet the requirements of the system
and applications. In the literature, there are various conceptual and technological ideas to
improve the IoT system performance and the quality of the services. This chapter presents
the state-of-the-art of approaches and solutions proposed to enhance the IoT service quality,
either attacking one particular IoT component or the IoT architectural design.

Software Defined Networking(SDN) has been regarded as a future networking paradigm to
improve the flexibility and scalability of networks by decoupling the control plane from the
data plane. Later, we briefly introduce the SDN standards and its characteristics, more
specifically we highlight the QoS management within SDN architecture and the most-valuable
academic papers in this regard.

Although lots of prior research has exposed the potential benefits of applying SDN in compu-
ter networks to facilitate the evolution of network technologies, there has been a few studies
about how to apply the SDN to the management of the other networking systems such as
telecommunication, wireless networks, and IoT. In the end, we discuss some of the relevant
research which aims to bring the openness in the wireless networks and IoT, addressing
the system specific complexities which hinder their evolution. Considering the benefits and
weaknesses of all current approaches and solutions, the last section draws a conclusion.

15

2.1 Quality of Service approaches in IoT system

In IoT environment, smart things are able to have interaction and communication capabilities
with each other and with the environment. They sense, collect, exchange data, and react to
the real-world events in an autonomous way without human intervention. A huge number of
applications are going to be deployed to make use of sensing data and information collected
by thousands of IoT-devices.

The authors in [16, 41] present surveys on IoT vision, technologies, applications and the
research issues in IoT. However, with the rapid development of technologies and consequently,
with the growth of the sensing devices and connected things all challenges and issues are
getting more bigger and complex [40]. Academia research communities and enterprises work
on IoT-specific challenging issues and try to solve all technological barriers.

The IoT vision is to provide intelligent services in various domains such as Transport, Health,
Environment, Building, and City. The basic IoT application model is demonstrated in Figure
2.1. Therefore, it deals with different kind of applications and traffic, each accepts a specific
quality level of performances to operate appropriately. To provide QoS in the IoT, it is
necessary to ensure suitable mechanisms at each layer of the IoT since various applications
could have the dependency on the different QoS attributes which must be provided by a
specific IoT layer.

Figure 2.1 Simplified IoT application model [8]

QoS management as one of the critical subsystem needs research and investigation. The
solution must consider volume and the variety of the devices, the diversity of the application

16

domains and their QoS needs, and multi-layer IoT architecture n the design of the IoT system
to provide a stable, robust and scalable QoS framework.

QoS requirements can be investigated from the application and user perspective, or from the
networking perspective in terms of reliability, timeliness, robustness, trustworthiness, and
adaptability. The applications are just concerned how the services provided by the network
impact the quality of the application. Various applications and users drive the specific needs
with a specific level of performance. The feasibility and practicality of application could be
derived from one or multiple of these qualitative attributes. From the network point of view,
the goal is to provide the agreed services for the applications while maximizing network
resource utilization.

In the previous chapter, we defined the main QoS attributes in different layers of IoT ar-
chitecture. QoS parameters are important in the performance evaluation of the service, they
should be considered in function of the quality perceived by the end-user and as a fulfillment
of Service Level Agreements.

The specific architecture would depend on the IoT application domains and the enabling
technologies used in specific implementations. Unlike Internet, Internet of Things is not a
single technology and it is compounded with many functions including sensing, processing,
transmission, analysis, and deciding. So, many different technologies in terms of hardware,
software, data, and communication are involved in the different layers of IoT architecture to
implement the smart environments. Therefore, Quality of Service not only must be embedded
in the production and design of all hardware and software components in IoT infrastructure,
their integration into IoT system might raise needs for adaption and adjustment with the
dynamic nature of IoT and application requirements. In other words, the overall IoT service
quality and end-user satisfaction depend on various service providers like sensing service,
network service, and cloud and it is carried out by all involved technologies and components
of IoT service.

Some of the IoT enabling technologies like the Internet and the cellular access networks (e.g.
3G, LTE) have the evolved QoS functions within their closed systems, although their in-
tegration into IoT bring issues and limitations. With the realization of the 5G technology,
the barriers of the access networks are rectified, since 5G provides less-delay high-bandwidth
access network for the IoT system. The Internet imposes some limitations in terms of the
supported QoS mechanisms. Compared with the web application, IoT applications have dy-
namic and data-centric nature and they could have diverse QoS needs. Therefore, current
QoS differentiation mechanism could not meet the QoS needs of the diverse and progressive
of the IoT applications.

17

Another subsystem such as WSN needs more research and investigation. WSNs have very
limited resources in terms of energy, processing, and memory. Additionally, they are made
of heterogeneous nodes and often operate in the dynamic and unpredictable environment.
Thus, meeting QoS requirements in WSNs would be difficult. Improving energy efficiency,
bandwidth, storage optimization, coverage in IoT and accuracy as some of the critical QoS
parameters. Several papers focus on the improvement of the WSN QoS attributes through
embedding QoS-aware mechanisms in the aspects of protocols, routing, topology control and
data acquisition to optimize the energy consumption and increase the network lifetime. Ac-
cordingly, network availability is increased for the associated applications [37]. In the context
of the QoS-aware resource allocation which is the focused subject of our work, Sequential
Assignment Routing (SAR) [42] as one of the first protocols for wireless sensor networks
provides the notion of QoS routing criteria. In this routing algorithm, each sensor considers
several parameters such as the packet priority, the energy resources, and the QoS metrics
(delay and energy cost) in the path selection process to achieve energy efficiency and fault
tolerance. SPEED (Stateless Protocol for End-to-End Delay) [43] as the next QoS-based
routing protocol uses the geographic information to estimate the delay of the transmitted
packets and selects the sensor node which meets the application speed requirement. The
proposed protocol in [44] provides an energy efficient and a least cost path to meet the end-
to-end delay requirement within intra-network connection for the real-time traffic generated
by video or imaging sensors. Some efforts have argued the sensor selection based on a trade-
off between application-perceived benefit and energy consumption of the selected sensor set.
Utility-based sensor selection [45] enables sensor network applications to express utilities as-
sociated with retrieving data from sets of sensors, a price-based resource management scheme
[46] provides the self-organized framework aiming to balance between the sensors profit and
power consumption. That far, we note that these papers cover the QoS management aspects
within individual IoT sensing layer. Authors in [47] present the computational QoS model for
the QoS routing within WSNs which considers the response time, reliability, and availability
using the directed graph theory. The proposed mathematical model has been implemented
for different service composition modes: serial, parallel, branch, and circulation.

Various research communities and academic organizations have attempted to define the QoS
schemes and QoS architectures based on the careful study and understanding of service com-
ponents, enabling technologies, data classification, application domain areas, and interactions
between each of these modules. Jin et al [48] analyze the design approach, connectivity model,
in-network processing, and QoS complexity within several types of the network architecture
including autonomous network, ubiquitous network and service-oriented network architec-
ture in a smart city, but they do not provide in-depth analysis of the QoS issues. Irfan et

18

al. [49] do the investigation into the different kinds of traffic with various QoS requirements
and different level of sensitivity. They provide an analytical model to do priority-based traffic
scheduling in a finite-capacity queuing system and evaluate the performance of the model
for the delay-sensitive traffic comparing with low-priority traffic. Li et al. [31] propose a
QoS-aware service scheduling model using three-layer service-oriented IoT architecture as
the basis. They model the QoS optimization problem as a Markov decision process (MDP)
in the application layer. They model the cost minimization problem at network layer using
decision making algorithm/programming method. Similarly, they use the sensing ability and
QoS requirement of the application to model an optimal sensing-cost decision at sensing
layer.

Other papers focus on the use of the QoS monitoring and evaluation techniques. [33] defines
an IoT architecture composed of three layers: sensing, networking, and application ; in each
layer, QoS monitoring function is implemented to measure the QoS parameters. This structure
introduces the broker-based interaction between the QoS functions across the layer. Agents
resided in each layer take the QoS requirements from the upper layer and provide it for the
lower layer, and vice versa to take the feedback from the lower layer components and pass
them to the upper layer. This is shown in Figure 2.2.

Figure 2.2 QoS architecture of IoT

Recently, one of the promising approaches in the IoT QoS management is the middleware-
based mechanism. Middleware could provide access to the heterogeneous resources and sup-
port interoperability within diverse applications. In [9], Heinzelman proposes that the appli-
cation sends the QoS requirement to the middleware and middleware configures the networks
and the devices to meet the application expectations. This middleware approach enables the

19

adaptation of the code allocation on the basis of the current application requirements. If the
QoS requirements from the application are not feasible to fulfill in the network, the middle-
ware may negotiate a new QoS guarantee with both the application and the network. (see
Figure 2.3)

Figure 2.3 A system that employs MiLAN [9]

Therefore, we conclude that most of the QoS schemes and approaches proposed in the li-
terature concentrate on one or multiple QoS factor within a particular subsystem such as
WSN. They seek the optimized hardware design, protocol and decision-making algorithms
for a particular QoS issue. Very limited works have tried to figure out the implementation of
the QoS framework considering the dynamic and diverse nature of the IoT in terms of the
application and device as well as their limitations and constraints.

Current research trends suggest the power of middleware to ease the application development
task in complex environments. Inspired by the relevant research, we propose the middleware-
based IoT QoS architecture based on the SDN technology. In the following section, we describe
more detail information about the SDN operation mechanism and its features. Moreover, we
insist on the advantages of the SDN architecture to design the QoS support techniques and
algorithms within the Internet and core computing networks.

2.2 Software Defined Networking (SDN)

Software-Defined Networking (SDN) is an emerging network paradigm that gives hope to
change the restriction of current network infrastructures by separation of control plane and
data plane of network elements. SDN technology enables the possibility of network control by
a software application and makes the network management more efficient, quick, and flexible.

20

SDN as an open technology improves the interoperability between multi-vendor products and
removes vendor lock-in state which it is common drawbacks in the traditional network. So,
it decreases the overhead of network element configuration and troubleshooting, leading to
the optimized CAPEX and OPEX for IT enterprises.

In the following subsections, first, we give an overview of SDN standard protocol and the
way of operation. Further, the major papers and efforts in the field of QoS support within
SDN are highlighted.

2.2.1 OpenFlow Protocol

OpenFlow is the first standard communication interface defined between the controller and
forwarding device. It provides the direct access to the forwarding plane of network devices
and makes their manipulation and configuration possible. Accordingly, the controller as the
control plane element must support the OpenFlow protocol to be able to understand the
contents of the OpenFlow messages and to convey the instructions to the data plane on how
to forward data.[10]

The ONF (Open Networking Foundation) manages the OpenFlow standard. Version 1.1.0 of
the OpenFlow protocol was released on February 28, 2011. More recent OpenFlow version
is 1.5.1 released in April 2015. At the beginning, the OpenFlow protocol was developed at
the Stanford University around 2008 for enabling researchers to run experimental protocols
in the campus networks [26], but recently OpenFlow is added as a feature to the commercial
network devices (called “OpenFlow-enabled devices”) as the interface to access the Ethernet
switches, routers, and wireless access points. The OpenFlow protocol defines the requirements
of OpenFlow-enabled devices (based on OpenFlow protocol specification 1.4.0).

The main components of the OpenFlow-enabled devices are an OpenFlow channel, a Group
Table, a Meter Table and one or more Flow Tables (see Figure 2.4a). The OpenFlow channel
is the interface that connects each network element to an external controller providing secure
SSL channel or direct over TCP. The external controller uses the OpenFlow protocol to ma-
nage one or more OpenFlow elements. The Flow Tables and the Group Table are responsible
for performing packet lookups and packet forwarding. Noting that multiple Flow Tables could
be defined in one network element, and each one could have multiple numbers of flow entries.
Multiple flow entries could be grouped in Group Table to point to as one group. Meter-table
enables OpenFlow to implement simple QoS features like traffic shaping and rate-limiting.
[10]

In OpenFlow protocol, a set of defined messages are exchanged between the controller and

21

(a) (b)

Figure 2.4 (a)OpenFlow network element components (b)Flow Table entry format (Repro-
duced from [10])

the forwarding devices over a secure channel. OpenFlow channel supports three types of
messages: Controller-to-Switch, Asynchronous, Symmetric. We provide the definition of the
messages and some of the important sub-messages because we take advantage of them in
designing our proposed architecture. [4]

— Controller-to-Switch is initiated by the controller to manage or query the state of the
switch. The message may or may not require a response from the switch.

— Packet-out: Sent by the controller in response to packet-In message to inform
switch to forward a packet on a specific interface

— Modify-state: Used to add/delete/modify entries in the Flow Table.

— Read-state: Used to collect various information from switch such as configuration
and statistics.

— Features request/reply: Used to request switch capability.

— Configuration request/reply: Used to request switch configuration.

— Asynchronous message re-initiated by the switch to denote packet arrival, switch state
change or error.

— Packet-In: Sent by a switch when a packet needs to be processed by the controller.

— Flow-removed: Sent by a switch to inform the controller that flow entry is deleted
because of timer expiry.

22

— Port Status: Sent by a switch when a port configuration or state changes.

— Flow-Monitor : Sent to inform the controller of the change in the Flow Table.

— Symmetric messages can be sent by either the controller or the switch, without solici-
tation.

— Hello: Used to exchange information between a switch and associated controller
when a switch comes up, controller learns about the switch from Hello packet.

— Echo Request/Reply: Sent from either the switch or the controller to verify the
liveness of the OpenFlow-connection and must return an echo reply.

— Error : Used by switch or controller to notify problems to the other side of the
connection.

2.2.2 SDN operation mechanism

In SDN, the OpenFlow devices have no idea how packets are to be routed. The control
logic inside the controller is responsible to express the packet behavior and then the detailed
configuration information is placed in the forwarding Flow Tables in every device along the
path. As described in the previous subsection, OpenFlow-enabled devices could consist of
multiple Flow Table. These tables are the important part of the OpenFlow devices. They are
used to determine what action should be taken based on receiving packets.

Each Flow Table has multiple flow entry. Each entry is associated with actions to be applied
to a certain flow. The flow entry consists of three fields as shown in Figure 2.4b:

— Header field or rule field which is used to define the match condition to an exact flow.

— Actions which define the action or network element behavior to be applied to a specific
flow.

— Counters which collect statistics for the particular flow, such as the number of received
packets, number of bytes, and duration of the flow.

When a packet arrives at an OpenFlow-enabled network element, the network element looks
at the existing entries in the Flow Tables, so the action is executed if the header field is
matched and the value of the counters are updated. If there is no matching rule in the Flow
Table, it will be sent to the controller over the secure channel. The controller then decides on
whether to forward the packet or drop it by creating new flow rules and inserting them in the
Flow Table of the relevant network elements, considering that the Flow Table has a priority
associated with every entry ; a higher number means a higher priority and the matched flow
entry with the higher priority is used.

23

Depicted in Figure 2.5, the Flow Tables of an OpenFlow-enabled element are sequentially
numbered, starting at 0. Pipeline processing mechanism specifies how the packets have to
interact with each Flow Table and always starts at the first Flow Table (Flow Table 0). A flow
entry can only direct a packet to a Flow Table number which is greater than its own Flow
Table number. In other words, pipeline processing can only go forward and not backward. If
a packet does not match a flow entry in a Flow Table, this is called Table Miss which the
device sends the packet to the controller and asks for the appropriate actions. [4]

Figure 2.5 How an OpenFlow-enabled element handles incoming packets (Reproduced from
[10])

OpenFlow controller can modify the content of flow-tables in two ways: (1) reactively, where
the controller reacts when receiving the packet-in message from OpenFlow-enabled network
elements because of non-matched rule for arrival packet. (2) pro-actively, where the controller
takes the initiative based on the programs and configurations given to the controller and adds
rules before packet arrival into the network based on details like network topology change,
or increasing the utilization in specific parts of the network, indicating potential forthcoming
performance bottlenecks. The major advantages of proactive mode are that all packets are
forwarded based on one centralized decision maker dynamically and no delay is added. The
hybrid model as the third way exploits the advantages of both reactive and proactive mode
so that it follows the flexibility of reactive mode for a set of traffic and low-latency forwarding
for the rest of the traffic. [4]

24

2.2.3 QoS management in SDN

As described in section 2.2.1 one of the main components of OpenFlow-enabled network
elements is Meter Table which consists of the meter entries. Each meter entry is composed
of three fields: Meter ID, Meter Band, and Counters (see Figure 2.4a). The functionality of
Meter Table is to measure and control the rate of the packets directed to the Meter Table
based on a defined rule in Flow Table and assigned Meter-ID. Meter Band specifies the rate
of the band and the way to process the packet, and Counters keep track of the number
of the packets processed by a given meter. Therefore, the simple QoS operations like rate-
limiting per-flow basis can be implemented using Meter Table. Comparing to the queuing
which accepts packets for output and processes them at a min/max specified rate, meters can
be installed, modified, and removed at runtime using OpenFlow messages. Meter Table could
be defined in OpenFlow 1.3 and upper versions as an optional feature since the OpenFlow
protocol specification does not contain any required meter band types.

However, ONF is actively enhancing the QoS support mechanisms in OpenFlow, SDN allows
for a centralized control with a global network view and a feedback control with informa-
tion exchanged between different layers (application and forwarding layers) in the network
architecture. As such, many challenging performance optimization problems would become
manageable and automated with properly designed centralized algorithms because of the
flexibility and programmability of the controller. Therefore, more complex QoS management
functions like Traffic Engineering (TE), Load Balancing (LB), and even the user-customized
QoS mechanisms need to be implemented as a program or SDN application and then be en-
forced in the network infrastructure devices through the controller. For these reasons, SDN
technology becomes a promising solution for IT enterprises since it makes QoS more agile
which the future Internet demands it.

There have been many studies in the QoS management and Traffic Engineering(TE) over
the software-defined networking. They aim to implement the generic traffic optimization
techniques and some propose the innovative QoS strategies which address the specific aspects
of traffic control in SDN. All of them deal with the techniques of the flow management,
topology update, and traffic characterization. [50, 51]

Authors in [52] classify the QoS frameworks using SDN in four main categories: resource
reservation, per-flow routing, queuing management, and policy enforcement. They review
existing proposals and solutions in each class. For instance, Seddiki et al. [53] propose an
SDN-based QoS framework, also called FlowQoS, managing the QoS in the home broadband
networks. This framework comprises two components: a flow classifier mapping application
traffic to different parts of flow spaces and a rate shaper. Policycop [54] is an automated and

25

extensible QoS policy management framework. It validates and enforces QoS policies which
are used in the route decision process in the control layer. QoSFlow [55] enables the packets
reordering in the queues of OpenFlow-enabled elements by using Hierarchical Token Bucket,
priority-based flow scheduling based on Stochastic Fairness Queuing(SFQ), and Congestion
avoidance by using Randomly Early Detection to improve the QoS control capability in SDN.
Egilmez et al. in [56] propose dynamic QoS routing mechanism which guarantees the service
delivery on an optimal path for multimedia flows, such as VoIP or video streaming. Similarly,
Yan et al. [57] propose a QoS-guarantee solution in the SDN, called HiQoS. The HiQoS
identifies multiple paths between the source and destination nodes by queuing mechanisms
to guarantee QoS for different types of traffic. Experimental results show that the HiQoS
scheme provides better performance for the delay-centric application.

In sum, all of the proposed techniques rely on new network applications to implement the
control logic which will be translated into commands and installed in the data plane, dictating
the behavior of the forwarding devices.

Since the SDN controller has a centralized view of the network topology and the OpenFlow
channel supports the statistical information on the basis of the flow and port by the counter
filed activated in the Flow Table, Group Table, and Meter Table, the novel routing algorithms
intend to employ the link level information to provide the more optimized paths between the
network elements. Counters collect the particular information about the flow, port, table,
and queue based on the packets or bytes received/transmitted. Several counters must be im-
plemented in all OpenFlow elements, also called “required counters”. “Optional counters” are
implemented depending on their user-cases on the specific network application and provide
more depth statistical information. Main counters are listed in Table 2.1.

Table 2.1 “Required” counters in OpenFlow [4]

Per Port Counters
Received packets

Transmitted packets
Received bytes

Transmitted bytes
Received drops

Transmitted drops
Received errors

Transmitted errors

Per Flow Counters
Received packets

Transmitted packets
Duration (s, ms)

Per Queue Counters
Transmitted packets
Transmitted bytes

Per Table Counters
Active entries
Packet lookups
Packet matches

However, the existing SDN challenges in terms of scalability, security, interoperability, and

26

performance have been rectified in a certain degree and it has been evolving very fast with new
features, still, research in both academia and industry is going on to extend the OpenFlow
protocol and simplify the implementation of novel creative programs. [58]

OpenFlow interface has recently been embraced by the network element manufactures to
be integrated into their products and many SDN controllers have been developed by the
product vendors such as Big Switch Networks, HP, IBM, VMWare, and Juniper. The most
widespread controller in the industrial enterprises is Open Daylight [59] written in Java,
and in the research section are Floodlight [60] and Ryu [61] written in Java and Python,
respectively.

Recently, the flexibility and simplicity of the SDN architecture have attracted a lot of at-
tention and approaches inspired by Software Defined Networking (SDN) represent a very
promising research direction in all kind of the networking paradigm. In the following section,
we are going to point to the works which intend to enter SDN concept into the wireless
networks and IoT system.

2.3 Software-Defined IoT system

Although much prior research has exposed the potential benefits of applying SDN in wired
networks, because of increasing its success and reputation, the interest in exploring and
adapting SDN design in the wireless networks and IoT system is growing in the literature and
industry. Therefore, several papers [62, 63, 64] are trying to bring the concept of softwarization
in IoT ecosystem, and others are arguing on the SDN application in the other systems such
as mobile wireless networks and wireless sensor networks.

The appearance of IoT and a need for a flexible architecture to manage a large amount of
traffic in the wireless network and to promote rapid innovation in the network motivate the
formation of Software Defined Wireless Network (SDWN)[65]. Orienting towards the charac-
teristics of the mobile and wireless network, SDWN aims to study the network architecture
and a series of relatively crucial technologies for the future mobile and wireless network. The
SDWN architecture depicted in Figure 2.6 is supposed to benefit from all the network entities,
network operators, service providers, and end users through efficient resource management,
mobility management, QoE (Quality of Experience) improvement. The main vision is to pro-
vide a unified control plane to manage dynamic and heterogeneous wireless technologies such
as WiFi, WiMAX, 3G, LTE, and 5G.

For instances, OpenRoad [66] as the first work in this field proposes an OpenFlow-based
open and backward compatible wireless network infrastructure. OpenRoad uses the SDN

27

Figure 2.6 Architecture of Software Defined Wireless Networks (SDWN) (source: Stanford
wireless systems lab)

characteristics to support multiple co-located technologies like LTE, WiFi, or WiMAX to
support a seamless user mobility. OpenRadio [67] proposes a programmable wireless data
plane which makes it flexible and adaptable to the new application. The main idea behind
it is to support systematically different protocols in the wireless network while optimizing
operation across all of them due to the network hardware in-dependency for any future
evolution. SoftRAN [68] uses a software-defined centralized control plane to abstract a set of
base-stations as a single virtual base-station that in principle could provide a near-optimal
radio resource allocation, however communication delay between data and control plane is an
issue in this design. Moreover, [69, 70] are the more recent papers with the focus on mobility
management leveraging SDN architecture and its application within heterogeneous wireless
environments in data flow basis.

Wireless Sensor Networks (WSNs) differ substantially from wireless networks with respect
to network and node architecture, resource capability, traffic characteristics, scale, and de-
sign goals. Recent significant research on wireless sensor networks (WSNs) has led to the
widespread adoption of software-defined WSNs (SDWSNs) [23, 71], which seeks to solve the
inherent issues present in WSNs by separating the control and data layer. The objective is to
provide the WSNs reconfiguration capability even after deployment. Although data-centric
nature of WSNs, no support of TCP/IP stack and out of band signaling mechanism make
SDN concept integration too challenging, a few exploratory studies have been done in this
space.

28

WSNs architecture relies on one or more centralized base station/sink to schedule the sensor-
based tasks and gather the data (Shown in Figure 2.7a). In the software-defined sensor
network framework shown in Figure 2.7b, the centralized control logic is supposed to be
implemented in the base station. The centralized controller manages tasks such as routing,
QoS, mobility management, and localization in more efficient and flexible way. The sensor
energy also could be optimized better through the centralized management point. [12]

(a) (b)

Figure 2.7 (a)WSN architecture [11], (b)Software-Defined Wireless Sensor Network architec-
ture [12]

SDN-WISE [72, 73] as an extension of SDWSN, provides a flexible vendor-independent policy
implementation in WSN. The other papers have argued about multi-tasking WSNs scheduling
(QoSen) [74], energy-optimized Quality-of-Sensing resource allocation [75], and the efficient
sensor clustering [76] through softwarization of WSNs. The performance studies in these
solutions show an SDN-based architecture could improve network scalability and stability as
well as flexibility to define more fine-grained policies, operational tasks, and security control
methods. Though the integration of the SDN-based wireless networks could profit the IoT
system, these studies are still in the primary steps. And more efforts and consideration need
in the way toward the productive implementation phases.

Recently, research domain subjected as SD-IoT aims to integrate SDN into IoT framework
to improve the system control and management. The SD-IoT framework model in [13] offers
as centralized control system over security services(SDSec), storage services (SDS) and in-
frastructure resources (see Figure 2.8). The authors argue that SDSec can provide visibility
of all the traffic flows in the network, which gives the possibility to detect suspicious traffic
using automated policies and fine-grained analyzing process. The data gathered by the sen-
sors is sent to the SDSec controller for security checking, authentication, and authorization.
Controlling rules and policies defined by the SDN controller on the basis of collected data are

29

stored in SDStore module. Motivated by this proposal, few studies [77, 78] try to improve
the resource utilization in terms of data acquisition, transmission, and processing within IoT
framework. UbiFlow by Di. WU et al [79] proposes an efficient flow control and mobility
management in urban multi-networks using SDN distributed controllers. In UbiFlow, IoT
network is partitioned into the small network. Each network is controlled by a physically
distributed SDN controller. The IoT devices in each network could connect to the different
access point depending on their positions.

Figure 2.8 The proposed SDIoT architecture design [13]

However all of these efforts argue that SDN can facilitate the system and resource manage-
ment in the WSN, the existing architecture and frameworks are more like conceptual and
analytical models and they are not established so far [80]. The design of controllers and the
management programs would be a very complex task considering the IoT network scale and
the application complexities. As a conclusion, the whole concept of SD-IoT is in its infancy
and standardization efforts in terms of framework, protocols, SDN applications, and assess-
ment tools are still underway. Additionally, we found out the lack of study in the field of
performance and quality of service management within the unified SDN and IoT system.
The aim of this work is to provide the QoS management architecture for IoT applications.
The architecture leverages the SDN technology to build a flexible and adaptive QoS support
framework which evaluates the performance of the infrastructure resources across multiple
layers of IoT architecture and allocates the resources based on user/application QoS needs.

30

CHAPTER 3 SYSTEM ARCHITECTURE

The context of the Internet of Things (IoT) is the radical evolution of the current Internet
into a network of the interconnected objects. IoT system is comprised of a large number of
heterogeneous devices which lead to having diverse services and a multitude of applications.

IoT is entered to cover a wide area of our daily life in the concept of the Smart Transport,
Smart City, Smart Home, Smart Health, and so on. The vision of the Smart City is to utilize
the most advanced technologies to build the sustainable infrastructures and develop the
better-quality and enhanced services for the citizens. Therefore, there are plenty of smart city
projects up and running around the world, each one is working on specific applications such
as Traffic Congestion, Structural Health, Smart Parking, and Environmental Monitoring. All
those projects utilize sensor technologies to collect application-specific data, and the Internet
(generally, core transport network) to do data exchange between applications and sensors.
Therefore, sensors and the Internet are shared between a wide range of applications. Also for
the cost efficiency, sensing networks are mostly multi-services and they provide more than
one application and services.

Various applications demand the various QoS requirements from the system framework to
achieve the desired and appropriate objectives. As mentioned earlier, IoT presents different
QoS requirements from conventional computer networks. In IoT, besides all well-known QoS
attributes (e.g., delay, throughput and packet loss), new QoS attributes such as data accu-
racy, sensing coverage, sampling rate, and energy consumption are concerned too. Noting
that this list is not exhaustive and other attributes could be added to the list. For instances,
the QoS requirements of city traffic congestion and monitoring applications 1 are relatively
stringent in terms of throughput and delay as well as data accuracy collected by sensors. The
environmental monitoring applications 2 tolerate delay and packet loss, but their primary
concerns are bandwidth and IoT coverage. The structural health monitoring applications 3

are sensitive to the quality of information and delay. Besides, the data collection must be
processed in an energy efficient way to increase the sensing network lifetime [16]. Thus, to en-
sure that the system can provide the guaranteed service delivery, the QoS requirements of the
application must be addressed at all involved subsystems and layers of the IoT architecture.

IoT systems are growing fast in terms of devices, services, and applications. The lack of a

1. To monitor vehicles and pedestrian levels to optimize driving and walking routes and to avoid the
congestion.

2. To measure pollution, noise, temperature, humidity and smoke levels.
3. To monitor vibrations and material conditions in buildings, bridges, and historical monuments.

31

standardized end-to-end protocol for establishing QoS, the dynamic nature of the network,
the unpredicted growth rate of the system, and the diverse QoS requirements of applications
make the QoS guarantee in IoT system more complicated. The organizations need to design
a flexible and scalable QoS framework to keep up with system growth, diverse application
types and complexity of the system.

Allocating sufficient resources to different applications in order to satisfy various require-
ments is a fundamental function of QoS management framework. So, the IoT framework
must provide effective resource allocation and scheduling methods to meet the different QoS
requirements of the applications and users in every layer of IoT.

In this chapter, we propose an SDN-based middleware to provide generic QoS support fra-
mework for IoT system in the context of Smart City. We focus on the IoT application QoS
needs from the sensing layer and the core transport network(or the Internet), which both
have the significant impact on the service performance in IoT architecture. The framework
aims to provide QoS-aware resource allocation within sensing networks (WSNs) and end-to-
end QoS guaranteed route across the core transport network in a coherent way. To achieve
this, our framework leverages Software-Defined core transport network and its capabilities.
The control layer within SDN architecture could play the role of the middleware to pro-
vide the general and customized services for the IoT applications through Northbound APIs.
Besides, The centralized controller could control the network elements through Southbound
APIs.

Our structure is made of several databases and functionalities across different layers of IoT
architecture. The following sub-chapters include the proposed QoS architecture, assumptions,
principles, and the main modules. Later, the rules which govern the architecture, and the
details about the modules are described. To help clarify the framework operation and objec-
tive, we describe the workflow in the sequential style. Finally, we analyze the values of the
proposed architecture from different perspectives.

3.1 Proposed architecture

The proposed architecture has been illustrated in Figure 3.1. To provide a flexible and scalable
QoS support service for IoT system, we offer to have SDN-based Internet/core transport
network. The control layer of SDN architecture could provide the abstraction layer between
the application and IoT infrastructure.

It also enables to have the central control over the transmission and sensing resources. Our ar-
chitecture focus lies in the QoS requirements imposed by the IoT applications. Thus, applica-

32

Figure 3.1 QoS-aware and status-aware QoS support IoT framework through SDN-based
middleware solution

tions can customize their own specific QoS needs at any time. These changes are dynamically
enforced in the resource allocation process running on the middleware. Also, on one hand,
the framework continuously collects the QoS status of the networks, in both sensing and

33

core transport network. On the other hand, it accesses to the application QoS needs and the
specific network constraints. This solution is adaptive to the ever-changing conditions of the
network status and the application needs. So, the awareness of the current status of network
resources, the features of performance required by each application and the network policy
direct not only to have intelligent resource allocation, it improves the application satisfaction
and network throughput.

SLA as the quality of service agreement between customer and service provider establishes
the customer expectations on a service performance and quality. SLA includes several QoS
parameters and various level of services [81]. In IoT, SLA comprises user and application
expectations relative to the network, data, and devices. The success and failure of a requested
service are determined by the service availability in both network and sensing layers. The
sensing layer possesses the essential functions and resources to extract required data for
any given services. Transport network (core and access) provides the access and routing
functions between the application and the sensing devices. Therefore, the overall IoT service
performance depends on the performance of both layers in providing services [82].

The application QoS attributes are mapped into the QoS parameters of transport and sensing
networks based on their impact on any of these attributes. Earlier, we introduced the main
QoS attributes over three layers, which are briefly shown in Table 3.1. Noting that the
quantitative QoS parameters are just demonstrated and the list is non-exhaustive.

Table 3.1 QoS parameters mapped in IoT architecture layers

IoT layer Application layer Network layer Sensing layer

QoS parameters

Service time Bandwidth Data accuracy
Service availability Packet loss Data collection delay

Service cost Jitter Sampling rate
Service reliability Delay WSN lifetime

WSN coverage

Various applications want to obtain different resources to fulfill their diverse requirements in
order to operate appropriately. Thus, the QoS framework should be able to allocate resources
to the different service demands while maximizing the overall system throughput. If there
are multiple networks or devices available to serve the request, the decision process needs to
allocate the most appropriate one considering all constraints imposed by both application and
system. The framework must have the capabilities to handle the situation which within any
SLA-based QoS premises are violated based on the current network situation. Besides, in case
of resource shortage to serve all the requests received together, the system must differentiate
the priority of the demands and schedule them based on their criticality. Furthermore, QoS

34

support management in the IoT needs a flexible and scalable solution to keep up with the
diversity and evolvement of IoT applications, and system complexity in terms of heterogeneity
and dynamism.

To achieve such QoS support framework for IoT, we propose an SDN-based core transport
network and Internet. Because of the control plane and data plane separation, the opera-
tional instructions are provided by the software programs running in the SDN controller
instead of the multiple vendor-specific devices and protocols. The controller could manage
the forwarding devices with various characteristics and functions through the southbound
interfaces(e.g., OpenFlow protocol).

The northbound interfaces enable the programmable network functions that tell the controller
how to manage the network. It yields the cost-effective network operation and management
in the globally extended Internet. The value of the northbound interfaces is tied to the
innovative and adaptive network services it can potentially support and enable. The new
services could be aligned exactly with the business and users needs. The customized network
services are completely a software and could be implemented as plug-ins to the centralized
controller or any other standalone servers which could interact with the controller through
APIs. In this work, we take full advantages of the SDN characteristics and the benefits of the
northbound interfaces to design a centralized QoS management service to efficiently control
the core transport network resources. Since we integrate SDN into IoT architecture, we could
customize the QoS management services based on IoT application needs.

In our architecture, the management layer and control layer in SDN architecture act as the
middleware layer (or software layer) between IoT application layer and IoT infrastructure
layer. It abstracts the complexity and heterogeneity of physical devices from the application
point of view. Figure 3.1 shows how we map our design and its components into the IoT and
SDN architecture layers individually (at the left side of figure), and finally into the SD-IoT
architecture layers (at the right side of figure). In SD-IoT architecture, the sensor and core
transport network elements are considered as the IoT infrastructure (data plane), the control
layer and management layer have the middleware functionality, and finally, application layer
includes the IoT applications.

In general, sensing networks including WSNs and RFID are made of low-end devices with
the limitation in addressability and IP-based connectivity. The most common approach to
connect WSNs with an IP network and the Internet is through a gateway node. Along with the
connectivity, the gateway-based approach enables us to implement more efficient protocols
and algorithms in terms of clustering, routing, data gathering and fusion processes inside the
WSNs in the centralized powerful gateway [16]. So, the IoT-gateway within our architecture

35

would be the entry point to access the low-end sensors under its control. It controls and
manages the sensor resources and the tasks associated with the WSNs through implemented
algorithms and mechanisms.

In our design, the well-defined southbound APIs provide a centralized view of the core trans-
port network topology, and the status of the network links and network elements’ ports in
terms of the QoS metrics such as the available bandwidth of link, packet loss ratio, and
delay. Also, we assume that the SLA-related QoS requirements of the IoT applications from
either the core transport network or sensing network are quantified and represented by real
numbers in a Database. The WSNs setup configurations in terms of the supported services
and the IoT-gateway addresses are provided in a specific database. Also, the sensors QoS at-
tributes such as energy level, quality of information, and sensor distances from the gateway,
are gathered by the IoT-gateway continuously and stored in the local storage. The sensing
network energy level and the availability of the sensing resources are updated in the global
(cloud-based) database which is accessible through the standard database APIs.

Depending on the requested services and the availability of the WSNs, our designed frame-
work could select the most optimized network for the services. Accordingly, the associated
IoT-gateway is considered as the destination of the routing path across the core transport
network. The dynamically gathered network status information (sensing and transport net-
work) and the application QoS preferences are utilized by the designed QoS function to
provide best possible routing resources across the core transport network between the ap-
plication as the source of demand and IoT-gateways as the destination of the demand. The
IoT-gateway is supposed to be OpenFlow-enabled so that it can be remotely programmed by
the SDN controller through southbound interfaces. Hence, the sensing requirements of the
application, which are stored in the SLA-related database, are enforced dynamically in the
IoT-gateway by the controller. The IoT-gateway receives the request and the QoS require-
ments, then it schedules the task and sends the collected data back to the source through
the arranged routing path.

Therefore, the QoS support service implemented on top of the controller provides the follo-
wing functions:
— Allocate the QoS-aware sensing network based on application request.
— Classify the application traffic based on the defined policy.
— Calculate the dynamic QoS support routing path across the core transport network.
— Generate and insert the flow table rules in the OpenFlow-enabled elements.
— Provide the sensing-relevant application QoS requirement and application priority for

the IoT-gateway.

36

and, IoT-gateway provides the following functions:
— Connect low-end sensing devices to the Internet and IP network.
— Collect the sensors dynamic status data in terms of QoS-related attributes to calculate

the network energy level, availability, and quality of information level for the storage
database.

— Manage the QoS-aware task scheduling and resource allocation within the WSN under
its coverage.

As a summary, we consider how the underlying IoT infrastructure can deliver the sensor data
while efficiently utilizing resources and respecting the required quality of service. Since it is
not sufficient to analyze all possible application in sensing networks, we classify them based
on the data delivery model. In general, there are two main data delivery model in WSNs:
[83]
— Query-driven in which data is generated on demand.
— Event-driven in which data generated in response to an event.

In query-driven model, the service demand is started from the application side toward sensing
infrastructure. Therefore, the service request is received by the QoS management module on
top of the SDN controller. If we assume that the application servers are connected to the
Internet, then the request will pass through the core transport network elements and reach
the SDN controller and QoS management module. First, it verifies the user subscription for
the requested service. If the request is admitted, it queries the WSNs databases to determine
energy-efficient WSN to serve the request. Then, it computes the optimized routing path
across the core network toward the IoT-gateway of determined WSNs. To calculate the path,
the designed QoS support routing function takes into account the source and the destination
of the data, the QoS requirements of the application, and the network link status. Then,
the forwarding rules for this path are inserted into the Flow Table of the associated core
network elements by the controller. Besides, application QoS expectation from the WSNs are
deployed within the programmable IoT-gateway by the remote controller, so IoT-gateway
could assign the resources and schedule the task by applying the received QoS policy in
the sensor allocation and routing algorithms running on it. Diagram 3.2a summarizes the
flow of steps to handle QoS-aware routing path and resource assignment for the query-driven
application. To make the workflow more understandable, we map the steps in the components
of IoT architecture in Figure 3.2b.

In the event-driven data model, the sensors are programmed to report the data only when
an event of interest occurs. Therefore, data is flowed from sensing layer toward application

37

(a)

(b)

Figure 3.2 (a)Sequence diagram of designed QoS support resource allocation for query-driven
IoT application mapped into the architecture components illustrated in (b)

layer. When IoT-gateway receives the collected data, it sends the data transfer request to
the controller. Again, the QoS management module on top of controller verifies the request
QoS needs and calculates the routing path across the core transport network respecting
its preferences and the network status. Diagram 3.3 shows the sequences followed in our
framework for this type of application. The application with pre-defined WSN setup for

38

continuously or periodically data collection could follow the same steps to transfer the data
from IoT-gateway to the appropriate application server or database.

(a)

(b)

Figure 3.3 (a)Sequence diagram of designed QoS support resource allocation for event-driven
IoT application/pre-setup IoT services mapped into the architecture components illustrated
in (b)

39

3.2 Assumption

Our idea is to provide the QoS support service delivery within IoT system. Generally, the
flows are classified into QoS flow and best-effort flow. The QoS flows are the flows which need
the specific level of QoS so that the QoS parameters such as bandwidth, packet loss, jitter,
and delay must be guaranteed [84]. Our design considers the QoS support framework for the
QoS flow which has an SLA agreement regarding the service performance expectation. The
best-effort flow could be responded by the existing best-effort mechanisms.

Our architecture needs to have the updated information about the QoS attributes of the
wireless sensor networks. Thus, we assume that there are algorithms and mechanisms im-
plemented in the IoT-gateway to collect the status information, calculate the QoS metrics
value and store them in the database. There have been plenty of approaches which have been
explained in Chapter 2 and later, we will mention more relevant solutions.

Additionally, our assumption is that the core transport network elements plus IoT-gateways
are OpenFlow-enabled and they support OpenFlow version 1.3 and upper versions which
have the extended QoS capabilities.

Also, we suppose that all the databases are structured in standard storage styles and data
format. So, the data could be queried and retrieved by the external applications. NoSQL da-
tabase is increasingly used in big data and real-time web applications because of its simplicity,
scalability, and flexibility for rapidly changing data. In the offered framework, the databases
are going to be updated very frequently. NoSQL database and standard data interchange
format like RDF/XML could be used to simplify the database query.

3.3 Component description

This section aims to focus on the logical components of the architecture and the interaction
between them. The proposed architecture is made of five modules (Indicated with a gray
dashed-line box in Figure 3.1), and each one has several components (Orange-colored box)
to perform specific functions within our structure.

(a) Global Database, which could be implemented in cloud system to be globally ac-
cessible, is made up of two main databases:
Global WSN Database. This database (see Figure 3.4) includes the general and static
information about the WSNs such as the supported services, the supported bandwidth,
the address of the IoT-gateways which connect WSNs to the external IP-based networks
(e.g., the Internet).

40

Considering IoT sensing layer deployed by multiple providers, several WSNs could
provide the same services but with different level of data quality and level of cost.
Being aware of the WSNs status helps us to decide the most appropriate one for a
given application request. Therefore, this database comprises the overall status of the
WSNs in terms of the energy residue level, availability, the quality level of the collected
data (QoI), and the cost.
The initial information of WSNs could be provided by Sensing Network Provider(SNP)
in the network deployment phases. The dynamic characteristics of the sensing networks
could be estimated over the time by the IoT-gateways based on the implemented algo-
rithms. (WSN energy residue calculator and Sensors status collector functions
in Figure 3.1).

Figure 3.4 Logical Format of Global WSN Profile Database. (It shows the particular WSN1
profile and its association with IoT services)

SLA-based Application QoS Database. This database stores the QoS requirements
of IoT application from transport network and sensing network point of view. Either
application owner or service provider can provide the QoS-specific information in this
database based on the agreed SLA. It includes the subscription of the applications to
the IoT services as well as the accepted level of QoS indicators from IoT infrastructure.
Assuming this database has the logical format illustrated in Figure 3.5. This figure

41

explains that application1 has subscribed to the IoT service k, expecting a specific de-
gree of QoS parameters: Dk

max refers to the maximum acceptable delay across transport
network, Bk

min is the minimum required bandwidth, and PLk
max refers to the maximum

tolerable packet loss ratio. Further, required the quality level of the sensing data, the
accepted sampling rate and cost of the sensing services are associated with the service
k. Then, this database includes the unified format for SLA-related QoS constraints of
services for the user or the application.

Figure 3.5 Logical format for SLA-based QoS Database

(b) WSN Local QoS Management Module. This module is implemented on the IoT-
gateway to take care of the QoS-aware resource and task management inside the local
WSNs. This module is made of several components and functions which are illustrated
in Figure 3.6.
The IoT-gateway as the centralized and powerful device gets the requests from the
upper layer, allocates the sensors for data collection and makes them available for the
source of the requests. The powerful IoT devices with the Internet access capability
could directly interact with the application. Although IoT-gateway could have sensing
capabilities, they could provide the data collection services as well as the computation,
storage, and Internet access functions for the low-end WSNs. (see Figure 3.7)
In this work, we focus on the low-end sensing devices which communicate with the
external network through IoT-gateway, since they are widely used in the Smart City
to sense the environment and provide the IoT services ; although the idea could be
extended to the standalone powerful devices as well. QoS mechanisms used to support
QoS in wired data networks cannot be directly applied to the wireless sensing networks

42

Figure 3.6 Building blocks of WSN Local QoS Manager module

because of the resource constraint, dynamic network topology, and different QoS attri-
butes. From the network point of view, bandwidth and energy optimization would be
the most important metrics. From the application perspective, the Quality of informa-
tion (QoI), data collection rate, delay, and cost are the main QoS parameters. In the
literature, there have been plenty of works to implement the complex energy-efficient
QoS functionalities in sensor-based environments [37]. However, we are interested in the
energy-aware and bandwidth-efficient network resource allocation methods in which the
application QoS preferences could also be considered in the service delivery. The cost of
service could have an opposite relation with QoI, so the WSN QoS management solution
should balance between QoI and service cost while minimizing energy and bandwidth.
These functions and algorithms are implemented in Energy and bandwidth efficient
QoS-aware resource allocation component in our proposed framework.

43

Figure 3.7 IoT device connection paradigm (reproduced from [14])

The application request might need the data acquisition by a single sensor or multiple
sensors, continuously or periodically [37]. Though, two main approaches used for data
collection in WSNs are:
(a) Push approach [85], which sensors pro-actively collect the data and store in the

pre-defined storage. The applications which are subscribed to the data could query
the storage and fetch the required data. This method could be more useful when
multiple applications are subscribed to the same data.

(b) Pull approach [86], which keeps all the sensors silent until a request for their data
arrives from associated application. IoT-gateway receives the application requests
and provides the QoS specific data for them.

In the first approach, the QoS requirement for any services could be embedded in the
sensors programs. Also, IoT-gateway could do more complex functions like data aggre-
gation and filtering process to make the data more appropriate for the application. In
our architecture, we put the application subscription information, pro-actively-planned
task configuration and data collection setup in the component Pre-scheduled Data
Collection Setup, although the collected data could be either in local storage or in

44

the cloud (Sensing data storage). So, the applications subscribed to these services
could use the storage address to query the data. In the second approach, IoT-gateway
enforces the QoS requirements while assigning sensors and scheduling tasks. Thus, QoS
support mechanism for the sensor allocation and task scheduling takes into account
the desired QoS policy for sensor assignment, while optimizing the energy and network
bandwidth.
IoT-gateway needs to have the sensor QoS status in terms of energy level, mode, loca-
tion, and data quality to assign more appropriate and optimized resources for different
application requests.
Sensors Status Collector collects periodically the sensor status data and stores in
a local Database Sensors Status Database at the IoT-gateway. The QoS routing
mechanism implemented on the IoT-gateway provides the QoS-aware local resource al-
location while optimizing energy and bandwidth (Energy and Bandwidth Efficient
QoS-aware Routing Algorithm) using the sensor status.
The component calledWSN Energy Residue Calculator estimates the overall WSN
energy residue based on the sensors energy level and provides it for the Global WSN
Database. In the literature, the information regarding the amount of the residual
energy distributed in the WSN is called an energy map. Escan [87] proposes one ap-
proach to provide the information about the WSN energy level.
To avoid redundancy in data collection tasks, IoT-gateway keeps the currently active
service demand and the relevant configuration setup in the database called Active
Demand Database. So, whenever a new request is received, IoT-gateway verifies
this database to see whether this demand is replicated or any current active demand
could satisfy this new request. This process eliminates the repetition in data acquisition,
transmission and pre-processing. Hence, it enhances the resource efficiency and network
lifetime.
Having the design or operational goals in terms of WSN QoS attributes is generally
difficult since it is still very challenging to capture, analyze and utilize all kinds of QoS
information in a consistent manner from heterogeneous and sensor devices in WSNs.
The researchers in the literature have pursued WSN QoS support using a large number
of mechanisms and algorithms in different protocol layers while maximizing sensor
lifetime and bandwidth utilization. We classify the approaches into two big categories:

— SDN-basedWSNs in which IoT-gateway operates as the controller for the OpenFlow-
enabled sensors to adaptively manage them. For instances, authors in ([76, 88])
propose a prototype for Software Defined Clustered Sensor Networks (SDCSN),
which facilitate the status collection of the sensors. More importantly, routing

45

and resource management could be more efficient through having centralized IoT
controller, argued in [12, 89]. In [90], the lightweight and efficient northbound and
southbound API style are designed for the SDIoT.

— Classical WSNs in which the algorithms are installed on the IoT-gateway in terms
of clustering, routing, energy and bandwidth management.
One of the most relevant approaches is implemented in MiLAN project [9]. Authors
develop a middleware which allows applications to specify a policy for managing
the sensor networks. MiLAN receives a description of application requirements,
monitors sensing network conditions about available sensors and their capabilities
and level of energy. Then, it configures the sensors in the way that applications
are satisfied and network lifetime is maximized. This technique is deployed in
the centralized control device (IoT-gateway) as an advanced feature of WSN-
middleware.
Other studies are trying to measure one or multiple WSN QoS attributes in order
to benefit from the QoS-aware data collection. QoI as the degree of the data ac-
curacy in WSN considered as one of the centers of attraction for the application.
Authors in [91] aims to provide a common quality of information model including
principles and policies for exchanging the quality metadata about the informa-
tion. It could be used as a base model from which application-specific models can
be developed. [92] provides an estimation of the quality of information(QoI) per-
ceived by the end-user through the impact of some attributes including latency,
reliability, accuracy, relevance, and robustness. M. Mathew et al [93] present an
optimization model towards co-improving quality and energy in sensor networks.
They introduce a quality and energy-aware adaptive scheduling techniques to ba-
lance between energy consumption and application QoI requirement satisfaction.
Another approach considers user feedback to evaluate the sensor quality of infor-
mation [94].

Inspiring from these works, we could develop a QoS control model for the sensor-based
networks, either SDN-based or classical sensing network, to adaptively manage the re-
sources.

(c) Core Transport Network Topology Management Module. A network topo-
logy is the arrangement of a network including all network devices, their connection
structure, link capacity and port status (up or down /active or inactive). In our archi-
tecture, we need to have the updated information about network topology and also the
QoS state of the SDN network links.

46

According to the OpenFlow specification v1.0, Topology Discovery function as the de
facto standard function is implemented in all controllers. This function enables the
controller to discover a network topology of the entire SDN infrastructure. The control-
ler discovers the network elements by exchanging Hello messages, and it detects their
connection structures using OFDP(OpenFlow Discovery Protocol) mechanism illustra-
ted in Figure 3.8. The controller encapsulates an LLDP (Link Layer Discovery Protocol)
packet as a Packet-out message and sends it to the connected OpenFlow-enabled ele-
ments. Then after, the network element(NE) sends the received LLDP packet to all
its neighbors which are connected directly to its active ports. When a network ele-
ment receives an LLDP packet from another element, it sends this LLDP packet to the
controller as a Packet-in message since there is no matching entry in its Flow Table. The
controller learns which network elements are connected directly to each other through
received Packet-in messages and builds the global network physical topology. In other
words, the controller confirms a direct link between two network element according to
two identical LLDP packets received from both network element. [15, 95].

Figure 3.8 Topology discovery mechanism in SDN (Reproduced from [15])

The components of this module and the interaction between them are illustrated in
Figure 3.9. Topology Database includes the up-to-date information about the net-
work topology and the link status, which are provided by Topology Discovery and Link
Status Collector, respectively.
Link Status Collector collects the network link status. Here, network link status
refers to the network performance parameters including the packet loss ratio, available
bandwidth, and delay of all active links within the network topology.

47

Figure 3.9 Building blocks of Core Transport Network Topology Management module

To obtain this information from the network, we take advantage of the implemented
counters in the OpenFlow-enabled network element. As described in Section 2.2.3, there
have been several counters implemented in Flow Table, Group Table, and Meter Table
which store the packet processing record in each OpenFlow-enabled device (Table 2.1).
Flow level counters provide information about a particular flow, e.g., how many bytes
were matched against this flow, how many packets were forwarded, how many packets
were dropped, how many errors occurred, the duration for which this flow entry was ac-
tive etc. Table level counters aggregate statistical information regarding an entire flow
table. Port-level counters provide more specific information about a particular port.
Queue level counters provide information about how many bytes and packets were en-
queued at a particular queue attached to a particular output port, how many packets
were dropped, a duration for which this queue was active. In OpenFlow specification
1.3.0, support for querying meter level statistics was also added. Meter level statis-
tics contain similar information e.g., how many bytes and packets were forwarded, a
duration of this meter. The messaging mechanisms implemented in OpenFlow proto-
col facilitates the communication between the Link Status Collector function and
the counters inside the network elements. FEATURE_REQUEST/STATS_REQUEST

48

and FEATURE_REPLY/STATS_REPLY messages are used, respectively, to request
and return the statistical information from the counters. [4]
This statistical information is playing a key role in our proposed model. They not only
describe the estimate parameters of network conditions, they are used in the resource
allocation and routing decision process across SDN. In the traditional network, several
tools have been developed to monitor and measure the network conditions, passively 4

or actively 5. In literature, new methods or tools such as OpenNetMon [96] and Flow-
Sense [97] have been developed to measure the SDN network performance. They use
different techniques to capture and analyze control messages between the network ele-
ments and controller. Their experimental results show the accepted level of accuracy in
the small SDN network, although each one has been implemented for a specific control-
ler. The ideas to obtain the packet loss ratio, delay and available bandwidth between
pair network elements through OpenFlow counters could be implemented with some
modification and adaptation in Link Status Collector.
Topology Database must be updated by both Topology Discovery and Link Sta-
tus Collector periodically or in case of the changes in the network and link status.
The interval time for status collection could be determined by the administrator based
on the overall IoT traffic behaviors including traffic arrival rate and service time or the
network dynamism history.
In summary, the goal of this module is to present a global transport network view. It
could logically look like a graph (nodes and links) that has network link information
associated with it: delay, available capacity, and loss rate. The control logic running on
the SDN controller uses the APIs to interact with this module.

(d) Policy Management Module. Policy Database holds the network policy infor-
mation provided by the network provider. This database includes the instructions which
must be followed when SLA-violation or congestion happens in the network. Also the
event-based temporary or permanent bandwidth reservation, admission control and
load balancing procedure could be included in this module. The controller and the
SDN applications could query this module to get the rules associated with the given
network situation. (Figure 3.10)

(e) Path Computation and Application Classification Module. This module is
supposed to handle QoS support routing management within the core transport net-

4. Passive measurement methods measure network traffic by observation, without injecting additional
traffic in the form of probe packets

5. Active measurements inject additional packets into the network, monitoring their behavior. The Most
popular application is ping which uses ICMP packets

49

Figure 3.10 Policy management module

work. Since the OpenFlow(OF) proposal allows a straightforward QoS support mecha-
nism, we propose an SDN application to provide the QoS support resource allocation
in SDN-based core transport network for any QoS flow. This module interacts with
the database in application layer in order to get application QoS requirements and
then calculates the best feasible QoS-aware routing path based on the current network
condition. The components which compose this module are called Path Calculator,
Application Classifier, Rule Generator/Pusher, Forwarding Rule Database,
WSN policy pusher, and Path and Demand Database. The components and their
relationships are illustrated in Figure 3.11 and the functionality of each component is
explained in the following paragraphs.
Application classifier/scheduler. In the implementation of the QoS enforcement in
the networking environment, one main task is to differentiate the type of the application
to do effective traffic scheduling and classification. Queuing mechanisms are the funda-
mental techniques to prioritize traffic in the network elements. The use of the queuing
mechanisms also guarantees the network bandwidth to the different application traffic
and to control the congestion. In the classical and SDN-based network, the packets, by
default, cross the network with the well-known First-In First-Out (FIFO) scheduling
method. This method is not suitable for the IoT system wherein the efficiency of the
mission-critical applications is bounded to the delay. Besides, the QoS requirements of

50

Figure 3.11 Building blocks of Path computation and Application classification module

different applications might not meet in this method.
The Application classifier does the IoT application differentiation and queuing assign-
ment for the IoT application. Network elements could have several limited queues in
each port. Arrival packets are classified into a separate queue based on parameters like
source/destination IP address, source/destination TCP port (application type), and
Type of Service(ToS) field in IP header. We classify IoT applications based on delay
sensitivity as described in Table 3.2.

Table 3.2 Application classification and queuing policy in OpenFlow Network Element

Application Class QoS attributes Priority Type of queue Traffic Class
mapped onto the Cisco classification Description

Delay-Centric
(Mission Critical) Dk

max ≤ DT hreshold 1 PQ
(Priority Queue)

EF
(Expedited Forwarding)

Packet should experience
no queuing delays,
packets should have very low loss.

Bandwidth-Centric
(Multimedia application)

Dk
max ≥ DT hreshold

BW k
min ≥ BWT hreshold

2 Q1 AF
(Assured Forwarding)

Packet should experience
no mis-ordering ,
packets expect very limited loss rate.

General
(Non-Real time analytic application) N/A 3 Q2 BE

(Best Effort) No strict QoS needs.

We assume to have three different queues in each port of the OpenFlow-enabled network
elements: (1) Priority Queue(PQ) as the most prioritized queue includes the traffics
related to the mission-critical applications with intensive delay sensitivity. If the delay
requirement of application is less than a pre-defined threshold, it is marked as a high-

51

prioritized demand and it is inserted in PQ of egress ports of network elements. (2) Q1
is about the data-centric application with bandwidth sensitivity, and less sensitivity to
the delay compared with the pre-defined threshold. (3) Q2 contains the applications
with no strict QoS requirements.
Since the network elements have finite buffer capacity, Complete Buffer Sharing scheme
between queues could be implemented to minimize the network delay for the mission-
critical application. In this scheme, the highest priority traffic packets push-out the
lower priority packets. All packets in higher priority queue are served before a lower
priority queue. In general, in network devices such as routers, if a higher priority packet
arrives while a lower priority packet is being served, it waits until the lower priority
packet completes, unless Preemptive Priority Scheduling is used. In Preemptive Priority
Scheduling, if a new process having a higher priority than the currently running process
arrives, it gets selected immediately and the new process has not to wait until the
currently running process finishes or yields. The port queues can be configured with
standard protocols such as CLI, and NetConf directly in the network elements. Also,
OF-Config protocol [98] could facilitate and automate the implementation of queuing
mechanism and policy inside the OpenFlow-enabled devices too [99].
Path Calculator/ Path Decision Maker. Once the network topology and status
information are provided by Topology Manager, the routing algorithm implemented
in Path Calculator makes a decision about the routing paths for the application flow.
This function first determines the best-fit WSN for the requested service based on the
availability and the energy level of the WSNs. And then it considers the application
QoS preferences and the network link status to provide SLA-respected routing path
from the source of the demand to the IoT-gateway of the determined WSN.
Although the consideration of the dynamic status of the network link leads to avoid the
congestion, we set the limit for the link utilization rate to keep the link load balanced
across the network. Therefore, the links with the utilization rate more than a pre-defined
threshold are excluded from the logical topology at a given time when calculating the
routes. The link utilization threshold could have dynamic value depending on the traffic
arrival rate and burst hours in the network. The link utilization policy could be defined
in policy Database by the network administrator or the learning-based methods could
be developed to determine this limit based on the network traffic history.
Rule Generator/Pusher. This function translates the routing decisions made by
Path Calculator into the actual configuration commands for each of the network
elements. So, it generates the flow rules of the route information and configures the
Flow Table of all elements along the paths. Due to the design concept of OpenFlow,

52

forwarding rules (flow entries) for all network-elements will be kept in a data structure of
the controller. In this architecture, Forwarding Rule Database keeps the configured
flow rules. To have the optimized messaging between the network elements and the
control layer, when Rule Generator/Pusher receives the request of path insertion,
first it checks the Forwarding Rule Database to verify if the associated flow rule
exists in the Flow Tables, if not, the new flow entry is pushed in the Flow Tables. Then
we need to always have the updated flow rules in this database.
The OpenFlow protocol supports two methods of removing entries from a flow table. In
the first method, the controller sends an explicit FLOW_DEL message to the network
element to specify which entry or entries should be removed. In the second one, the
controller assigns a timeout to each flow entry. When the timeout expires, the network
element erases the rule from the flow table and, optionally, notifies the controller the flow
was removed [4]. To keep Forwarding Rule Database up-to-date, all the modification
of the Flow Table entries must be reflected in this database. Therefore, the controller
either sends a delete command for entry removal or receives the expiration notification
from the network element, it modifies the database. Therefore, Forwarding Rule
Database lists all active flows entries on the entire SDN network controlled by the
controller.
In OpenFlow channel, FLOW_MOD message is used by the controller to modify the
Flow Table entries in the network elements. It could ADD, DELETE or MODIFY flow
entry. SET_QUEUE action/EN_QUEUE action specifies the queue ID in network
elements’ port which the flow entry should be entered.
Path and Demand Database. The path calculated for application requests are stored
in this database. Whenever network topology is changed because of the fault or new
design, Path Calculator verifies this database. If any currently installed path across
the network is affected by this changes, it recalculates the new path and reinstalls
them. This database is also updated based on new paths. This approach boosts the
performance and resiliency of the system.
WSN policy pusher. To dynamically provide the application sensing-related QoS
needs for the IoT-gateway, there could be two approaches. Whether IoT-gateway queries
the SLA-based database to fetch the required information or WSN policy pusher is
going to enforce the required data in the IoT-gateway. The later could be automated
by employing OF-Config protocol [98] in the OpenFlow-enabled IoT-gateway.

53

3.4 Architecture workflow

In this section, to better understand the proposed architecture, we would like to explain the
functions and process workflow in the diagram.

Flowchart 3.12 demonstrates the tasks associated with the SDN Controller and IoT-gateway
to collect the status information of the OpenFlow-enabled network elements and the sensors,
respectively. The SDN controller collects the network information about network structure
by using LLDP and Hello messages. It measures the status of each network link such as the
available bandwidth, delay, and loss rate by developed southbound APIs. It is set to update
the topology database periodically and in case of topology change notification received by the
controller. In WSNs, the IoT-gateway is responsible for monitoring the sensor’s status and
the energy level of them. Local routing mechanism inside WSN is managed by IoT-gateway
through implemented energy-efficient QoS-aware routing algorithms [100, 101, 102, 103].

Flowchart 3.13 represents the steps followed when query-driven applications send the request
to collect data. For the event-driven application, if the event is very critical, it might have
reserved resources. If not, the workflow starts from the step that SDN controller receives the
data transfer request from the IoT-gateway. Then, the same steps including SLA-DB query,
path calculation, and flow rule enforcement are done consequently.

Since SDN controller supports multiple algorithms, the existing Best-Effort algorithms could
be used for the application without the specific needs, in order not to do the complex calcu-
lation and energy/CPU resource consumption.

Block which is dark-blue colored in Figure 3.13 performs the routing path calculation for
the application with specific QoS needs. The designed routing algorithm takes the variety of
information in terms of network status, application needs, and network policy to calculate
the best possible path considering the business and resource constraints. We are going to
provide a mathematical model for this algorithm in Chapter 4.

3.5 Architecture advantage

The dissertation studies the IoT application requirements from QoS point of view and it
proposes the framework to manage their requirement through transport and sensing infra-
structure. We describe the characteristics and advantages of our proposed framework from
three perspectives:

Architectural perspective. The proposed framework has been mapped onto both the
four-layer IoT architecture and SD-IoT architecture. The SDN control layer/management

54

(a) (b)

Figure 3.12 (a)Core Transport and (b)Sensing Network Status Collection diagram

layer provides a software layer between the IoT infrastructure and applications. It works as
the middleware and it enables the implementation of unified support services for the IoT
system. In our design, the QoS module implemented over the controller provides the service
support for QoS management in IoT framework: the end-to-end QoS routing across the SDN,
and QoS-aware sensing network allocation and sensor assignment. The QoS needs of IoT
application aims to be respected in each relevant layer, either core transport or sensing layer.
And, the resources and the routing path are allocated dynamically per-demand, depending
on the specific service requirements and network resources status. Consequently, this design
is adaptive to any changes in network and application QoS needs.

The SDN northbound interfaces enable the enforcement of the quantified SLA-related QoS
attributes directly in the resource allocation functions, which in the closed network is not

55

Figure 3.13 QoS support workflow for query-driven application

possible due to the lack of such standard interfaces and programmable capabilities.

Since multiple programs could be implemented in the SDN controller, we are able to develop
multiple algorithms and apply them in different conditions. we could use the best-effort
routing path algorithm for the application without strict QoS needs. For the QoS-based
applications, newly designed routing algorithm which considers the application constraint is
applied. Since the framework uses the up-to-date information about the network status and
application needs, it could provide the routing path dynamically over time.

Compared with the traditional QoS approaches such as IntServ and DiffServ, SDN-based

56

core transport network resolves the limitation of the traffic differentiation and application
classification according to their needs. As the IoT system grows, it might bring the new class
of applications with different QoS needs. Our architecture is flexible and fast-adapted to
adopt the new QoS paradigms due to the business changes.

Based on the SDN network status information and the different application request history,
it would be easier to learn the traffic pattern and predict the future traffic trend, to extend
the network and enhance its efficiency.

Implementing the IoT data preprocessing and aggregation process at the edge of the network
within the local IoT-gateway not only enhances the transmission resource optimization and
SDN network throughput, it speeds up the task scheduling and data acquisition for the user.
The OpenFlow-enabled IoT-gateway also enables the sensing network programmability. The
centralized algorithms and mechanisms in the IoT-gateway could be reprogrammed based on
business and application needs, or when new optimized methods and solution are invented
to manage the sensor resources in terms of clustering, routing, and task scheduling.

Network perspective. Network resource management in the globally distributed network
such as transport network and the Internet is extremely complicated. One of the main bene-
fits of the SDN-based core transport network is that it simplifies the network operation and
management, compared with the traditional IP-based network which is defined in isolation
and each vendor-dependent protocol only addresses a specific problem. We could leverage
from SDN and its capabilities to develop customized network control and management ser-
vices for core transport network. The controller as a centralized brain of SDN provides the
single global map of the network and it abstracts the core transport network topology from
the application layer. It enables the intelligent, and agile decisions making regarding flow
direction, control, and speedy network reconciliation when a link fails. The SDN controller
can run multiple algorithms simultaneously in the field of network operation and mainte-
nance. Therefore, network developer could deploy a wide range of the customized network
application in terms of security, monitoring, performance management and fault-diagnosis.
Also, scalability can be improved by centralizing the controller, where there is more global
and less detailed view of the network elements.

Our framework collects dynamically the transport network topology and links status infor-
mation, it increases the awareness of the network resource status at any given time. The
design routing path excludes the higher utilized and congested links from the logical network
topology when computing the route across SDN. It aims to make the link utilization balan-
ced and it prevents the congestion probabilities in the transport network. It increases the
transport network availability, accordingly the IoT service availability. Suppose that the IoT

57

sensing resources are available but the transport network is congested, it leads to failing the
data transfer.

Furthermore, the centralized QoS management function does not deal with low-level configu-
ration of data plane network elements. All the information such as SLA and network policy
are specified in abstracted level. So, reconfiguration of low-level settings in the network ele-
ments is not needed. All lead to saving a lot of resources, workforces and time.

Application perspective. The Internet of Things (IoT) is placing new demands on network
infrastructure due to the diverse application domain. With this architecture, IoT applications
can customize their own QoS requirements in terms of data acquisition and transmission. The
designed path computation and QoS management functions compute a path respecting to
the application QoS constraints which increases the user satisfaction, as well as, enabling of
innovative application deployment.

Furthermore, using the queue policy to classify different applications based on their QoS needs
and the operation criticality guarantees the quality of service for high priority demands when
multiple demands fight the available shared resources.

Also, the collection of the current state of the network elements and being notified in case
of changes or failure, these approaches help the SDN controller to be aware of the cur-
rent network status and the occurred events such as link up/down or the node join/leave.
Network-state awareness and its involvement in the design of the routing computation al-
gorithm decrease the possibility of link congestion and increase the network availability and
throughput. Also, status-aware QoS-support resource allocation algorithm in sensing network
fits the task and sensor data into application characteristic and needs. Additionally, the soft-
warization and centralization of the network services make the system to be converged with
the changes. All of these approaches impact on the application satisfaction index (such as
Quality of Experiences).

58

CHAPTER 4 MATHEMATICAL MODELING

Quality of Service (QoS) in IoT as one of critical factor needs more research in terms of
QoS implementation, management and optimization so that the applications could be served
by the acceptable performance level while system resources utilization is maximized. In the
previous chapter, we explained the proposed QoS support framework within IoT architec-
ture and the QoS-aware resource allocation workflow within the framework. One of the key
components of the architecture is Path Calculator which includes the routing algorithm to
determine the best possible path across the core transport network for any demand. In this
chapter, we focus on the route optimization problem within capacitated 1 SDN network and
present a new mathematical modeling for the routing algorithm.

Our modeling approach is considered as multi-criteria approach since the model makes the
decision about the routing path for the application traffic taking into consideration multiple
constraints imposed by network situation and policy, and application. The result which it
produces are the per-application routing paths from a set of origin locations to a set of
destinations while maximizing network throughput. It is worth noting that the core transport
network topology and link status are regularly gathered and updated by SDN controller in
our proposed framework and the values are used in the path calculation process.

4.1 Multi-Commodity Constraint-based Routing Path Flow problem (MCCRPF)

The mathematical modeling is based on the well-known Network Design Problems (NDPs):
Multi-Commodity Flow Problem (MCFP) and Constrained-Based Routing(CBR) which are
being addressed by researchers and enterprises for years.

The term Multi-Commodity (opposed to a simpler single-commodity) is related to the fact
that multiple demands could simultaneously arrive in the system and ask for routing resources
in the network, which is very common in the communication and computer networks as
well as IoT system. In the multi-commodity environment, each commodity has a unique
set of characteristics and the commodities are not interchangeable ; meaning that system
cannot satisfy a demand for one commodity with another commodity. The objective of the
MCFP problem is to flow the different traffic flows (demands) from various sources to the
distinct destinations through the network at minimum cost without exceeding the network
link capacities.

1. If the network capacity is given, it is called a capacitated network.

59

Constraint-based routing (CBR) denotes a class of routing algorithms that base path selec-
tion decisions on a set of requirements or constraints, in addition to the destination. These
constraints may be imposed by administrative policies, or by Quality of Service (QoS) re-
quirements. Constraints imposed by QoS requirements, such as bandwidth, delay, or loss,
are known as QoS constraints, and the associated routing is known as QoS routing. If there
are no bandwidth constraints in a network, each pair of nodes could communicate over the
shortest path between them to have the minimized delay and cost. Hence, in real capa-
citated networks, all network links have a bandwidth constraint. Besides, we consider the
application delay and packet loss constraints in our formulation. This is known as constraint
shortest path(CSP) problem as an extension of the shortest path problem. The objective is a
minimum-cost feasible solution for the Constraint based routing (CBR) problem to find the
cheapest possible way of sending a certain amount of flow through the network.

Therefore, we suppose to have a network of interconnected nodes where each link has a
dedicated capacity. Assuming that all network nodes are OpenFlow-enabled and connected
to one centralized SDN-controller. To start with, we give some definitions and notation used
for the remainder of the dissertation.

The SDN-based core transport network (same as traditional computing network) can be
described by a strongly connected graph G = (V,E) where V, V = {1, 2, ..., v} denotes the
set of nodes (OpenFlow-enabled network elements) and E,E = {(i, j) : i, j ∈ V, i 6= j}
denotes the set of edges which refer to the bi-directional links between OpenFlow network
elements. Each link (i, j) has the associated maximum bandwidth Bij, available bandwidth
bij, delay dij

2, and packet loss ratio plij.

K,K = {1, 2, ..., k} and |K| = k, represents the set of different commodities, also called
demands, to be routed on the graph. For each demand k ∈ K, three parameters are given:
Sk as the source of the demand, T k as the destination of the demand and F k as the positive
demand volume. Demand volume represents either the traffic volume or the required band-
width between a pair of nodes. As an important point, the unit of the demand volume needs
to be consistent with the unit of link capacities which could be Megabit per second (Mbps)
or packets per second (pps). Let Dk

SLA, PLk
SLA, and Bk

SLA be the acceptable values of delay,
packet loss ratio, and average required bandwidth, respectively, which are agreed in SLA for
service k. The trio (Sk, T k, F k) plus Dk

SLA, PLk
SLA, and Bk

SLA are considered as the input for
routing path algorithm. The algorithm takes this information for each demand as well as the
network link information (bij, dij, and plij) and calculates the best possible path pk for each
new-arrival demand k across the SDN network with minimum flow cost. This is also a good

2. Delay means the total link delay consisting of processing, propagation, transmission, and queuing delay.

60

time to point out that the term path is used as the finite sequence of network links which
connect a sequence of distinct nodes, from one node to another.

The system could provide multiple paths for any demand k aiming not to violate the appli-
cation QoS limits. All determined paths for service k are from source Sk to the destination
T k so that each one routes a portion of the whole demand volume F k. We assume that there
exists no pair of flows with the same origin and destination.

In the following paragraphs, we mathematically model the objective and constraints of our
problem.

Objective function: The optimization objective is to route all the flows in the network
with the minimum cost. Equation 4.1 as the objective function represents the flow cost
minimization which depends on the cost of the links determined for all K demands traffic.
In the literature, this formulation is called node-link formulation. Cij is the unit cost of link
(i, j) and Xk

ij as the variable of our model is the amount of volume corresponding to the
demand k routed on the link (i, j).

Minimize
∑

(i,j)∈E

∑
k

CijX
k
ij (4.1)

Constraint function: We introduce the several types of conditions which are imposed by
the network and application so that the feasible solution must satisfy these constraints.

— Path delay constraint for each demand is defined in Equation 4.2, where dk
p is the

end-to-end delay for the routing path pk determined for demand k, and Dk
SLA is the

maximum acceptable delay for demand k agreed in SLA.

dk
p ≤ Dk

SLA (4.2)

— Path packet loss constraint for each demand is defined in Equation 4.3, where plkp is the
total packet loss ratio for the routing path pk determined for demand k and PLk

SLA is
the maximum acceptable packet loss for demand k agreed in SLA.

plkp ≤ PLk
SLA (4.3)

— Path capacity constraint which must be satisfied by the path pk for demand k, is
formulated in Equation 4.4:

bk
p ≥ Bk

SLA (4.4)

61

, where bk
p is the bandwidth for the path pk for demand k and Bk

SLA is the minimum
required bandwidth for demand k agreed in SLA.

— Link capacity constraint is formulated in Equation 4.5. In the multi-commodity environ-
ment, each link could be part of multiple routing paths used by different commodities.
Then, the summation of the volume of the different commodity in any link (i, j) must
be less than the available link bandwidth bij. This constraint could fulfill the context
of the congestion management in the network. Since in the SDN network we could
estimate the available link capacity through accessing the network elements’ counters,
the available link capacity could be considered instead of maximum link capacity.

∑
k∈K

Xk
ij ≤ bij , ∀(i, j) ∈ E (4.5)

— Link utilization/load balancing constraint. To reduce the congestion probability and
balance the traffic volume on the links, we aim to consider the link utilization in the
path allocation process too. In general, utilization rate on the link is measured by
dividing the current link load with maximum link capacity, in a unit of Percentage.
With the network link status information gathered by SDN controller, the utilization
of link (i, j) could be calculated by Equation 4.6.

Utilization rate in link(i, j) = Bij − bij

Bij

,∀(i, j) ∈ E (4.6)

To keep balanced the traffic distribution across the network links and to avoid the
congestion, we consider the limit for the link utilization rate. The routing algorithm
excludes the links with higher link utilization than the limit from the path calculation
scenario to prevent the congestion and have the balanced load. In general, the link
with utilization rate more than about 75% ∼ 80% considered as the congested links,
so the utilization threshold could be set in this range [104]. In our case, the default
value could be pre-defined in the policy database and alternatively, SDN controller
could dynamically adjust the link utilization limit based on the network situation such
as traffic volume and demand arrival rate. Also, if in the worst case due to the traffic
burst, no path does not satisfy the capacity condition by considering the pre-defined
link utilization limit, it could be increased carefully.
If UT hreshold represents the link utilization limit in our SDN network, we could have
Equation 4.7 as the utilization limit formula:

(
∑
k∈K

Xk
ij +Bij − bij)/Bij ≤ UT hreshold ,∀(i, j) ∈ E (4.7)

62

and consequently, load balancing principle in our model will be:

∑
k∈K

Xk
ij ≤ bij + (UT hreshold − 1)×Bij , ∀(i, j) ∈ E (4.8)

— Flow Conservation Law. This law states that total incoming flow into each node in the
network is equal to the total outgoing flow from that node, except for the source and
destination nodes of flow. If the considered node is the source of the demand, the total
outgoing flow minus the total incoming flow must be equal to the demand volume. If
the considered node is the destination of the demand, the total incoming flow minus
the total outgoing flow must be equal to the demand volume [105]. We formulate Flow
Conservation Law in our network as Equation 4.9 which guarantees the same bandwidth
in all links across the determined paths:

∑
(i,j)∈E

Xk
ij −

∑
(j,i)∈E

Xk
ji =

F k, for i = Sk (4.9a)

−F k, for i = T k (4.9b)

0, for i 6= Sk and i 6= T k (4.9c)

4.2 Link cost design based on multiple metrics

In this section, we describe the link cost metrics used in our model. The objective is to
weight the links based on the associated metrics to determine the cost of the various paths and
accordingly to realize whether one path should be chosen over another. In traditional network
scheme, most of the designed routing protocols consider just one QoS-related parameter
(like packet loss probability, bandwidth, jitter, and delay) or another parameter such as the
number of hops and link length in path decision process. For instances, OSPF (Open Shortest
Path First) as the most known routing protocol in traditional IP networking, uses the link
bandwidth as the link cost metric in the shortest path calculation algorithm. (see Appendix
B)

The link cost metrics considered in our model are bandwidth, packet loss ratio, and delay. It
is represented as a weighted sum of these metrics in Equation 4.10, where Cij represents the
unit cost of the link (i, j), the metrics bij, plij, and dij refer to the available link bandwidth,
packet loss ratio, and delay in link (i, j), respectively.

Cij = α× bij + β × plij + γ × dij (4.10)

The coefficient α, β, and γ are the scaling factors of each metrics with the relation expressed

63

in Equation 4.11. So, each metric could have the different weight to give a priority to a
particular one.

α + β + γ = 1 , 0 ≤ α, β, γ ≤ 1 (4.11)

This computation allows weighting the network links based on the importance of the delay,
packet loss and bandwidth for a particular application regarding the application classification
approach and application sensitivity. For example, Traffic Congestion Control and Monitoring
application, served by camera or sensors, needs the strict end-to-end delay requirements and
very low packet loss. Camera surveillance application needs high bandwidth. On the contrary,
an analytical data application doesn’t have any strict requirements. So, the priority given
to the scale factors α, β, and γ could be different in each case. Therefore, in our model, we
consider the dynamic metric for the link cost depending on the type of application and its
requirements mentioned in SLA-related QoS Database.

Among these quality-related metrics, some are positive such as bandwidth: meaning the
higher the value, the higher the service quality. Some are negative such as delay and packet
loss ratio: meaning that higher the value, the lower the service quality. Additionally, each
metric has a different unit. Daley unit is second, bandwidth unit is bps and finally, packet
loss ratio is a digit in the percentage format. To express a weighted sum of independent
metrics, the values of these metrics need to be adjusted to a notionally common scale. We
use Feature scaling method [106] to normalize the range of these independent metrics. This
method rescales the range of all values and brings all into the range [0, 1]. The general formula
for Feature scaling method is given as:

x́ = x− xmin

xmax − xmin

(4.12)

, where x is the original value and x́ is the normalized value, assuming x has the limited
range [xmin, xmax]. Equations 4.13 ∼ 4.15 presents the normalization formulas used in our
model:

b́ij = bmax − bij

bmax − bmin

, bmin ≤ bij ≤ bmax , bmax 6= bmin (4.13)

´plij = plij − plmin

plmax − plmin

, plmin ≤ plij ≤ plmax , plmax 6= plmin (4.14)

64

d́ij = dij − dmin

dmax − dmin

, dmin ≤ dij ≤ dmax , dmax 6= dmin (4.15)

Considering the fact that higher available bandwidth leads to the lower link cost, consequently
to the lower path cost, 4.13 calculates the normalized value of available link bandwidth bij,
whereas bmax and bmin represent the maximum and minimum range for link bandwidth in
the core transport network, respectively. They could have a constant value or dynamically
adjusted value based on the network topology information at any given time. There is a
direct relationship between packet loss ratio and cost of the link so that lower link packet
loss ratio, lower cost of the link. Equation 4.14 computes the normalized value of the packet
loss ratio plij on the link (i, j). The parameters plmin and plmax refer to the minimum and
maximum range for link packet loss ratio in the network, plmin could be considered as zero
and plmax could have the constant value or dynamically adjusted value based on the packet
loss ratio information in the given network. Similarity, link delay has the direct relationship
with the cost of the link. Equation 4.15 represents the normalized value of the link delay. The
parameters dmin and dmax are lower and upper bound of link delay, respectively. The lower
bound could be zero and upper bound could be any constant value regarding the link delay
across the given network. Noting that if upper limit in any of these functions is equal to the
lower limit which is rarely possible in the network, the value of the function will be equal to
1.

4.3 QoS parameters definitions and calculations formula

To calculate the cost of the link, we employ the link characteristics in terms of QoS indicators
including packet loss, delay, and bandwidth. In this section, we explain how the link QoS
parameters are calculated in the network. The path QoS parameters can be derived from the
combination of the same parameters related to the links which make the path. In general,
there is three basic composition rule as the Additive metric 3, Multiplicative metric 4 and
Concave metric 5 [107, 108]. Further, we describe how to calculate the path QoS parameters
in detail.

3. Additive metric is calculated by adding the metric of each link, this principle is applied for the delay,
hop count, and cost.

4. Multiplicative metric is calculated by multiplying metrics of each link, it is applied for reliability and
loss.

5. Concave metric is determined by selecting minimum or maximum value of each link, bandwidth follows
this rule.

65

4.3.1 Delay

Delay in the packet-switch network is defined as the average time for a block of data to go
from one end-node to another end-node. Four types of delays contribute to the overall delay
on the link (i, j) as demonstrated in Figure 4.1 and Equation 4.16. [109]

dij = dT ransmission + dP ropagation + dP rocessing + dQueuing (4.16)

Figure 4.1 Delay in packet switch network

Transmission delay is the time it takes to transmit data on a link. It is determined by
Equation 4.17:

dT ransmission[sec] = packet size [bit]
link bandwidth [bps] (4.17)

(on the order of 1× 10−6 seconds to 1× 10−3 seconds)

Propagation delay is the time takes for a transmitted bit to travel from one end of a link
to the other end. It depends on the signal speed of the transmission medium and the length
of the link (meter). This type of delay is most considerable delay component in WAN (Wide
Area Network).

dP ropagation[sec] = link length [m]
link propagation speed [mps] (4.18)

(on the order of 1× 10−6 seconds)

Processing delay is the time to check packets for bit errors and look up the routing table
for output determination before passing them to the output queue. Its range is 1 × 10−6

seconds or less which is often negligible in the powerful network element.

66

Queuing delay is the time packet spend waiting in output buffers and it depends on intensity
and nature of traffic arriving at queues. The Queuing delay can vary significantly from packet
to packet because the number of the earlier-arriving packets in the queue which are waiting
for transmitting across the link will affect its waiting time on queue.

Queuing delay is the most complicated component of total delay. Since packet arrivals rate
and packet lengths are random, the prediction of the network behavior and queuing delay
become a complex task. A huge number of papers and books have discussed the queuing mo-
del through employing Queuing Theory, Poisson, and Markov processes to make the queue
lengths and waiting time predictable in the traditional IP network. The same techniques are
being verified in the SDN environment through research and studies. For instances, authors
in [110] argue that M/M/1 queue model for SDN controller and M/G/1 queue model for
network elements could improve the packet sojourn time and the performance of the sys-
tem. Depending on the queuing model, the queuing delay would follow different rules and
principles. Equation 4.19 gives the high-level intuitive formula of average queuing delay. The
average queue length depends on the load factor, which is the ratio of the attempted link
transmission rate to the link maximum transmission rate.

dQueuing[sec] = packet size [bits]× queue length
link bit rate[bps] (4.19)

(on the order of 1× 10−6 seconds to 1× 10−3 seconds)

Delay metric is an additive metric. So, total delay in the path from one source to the des-
tination is calculated by the summing of the delay on each link of the path. Equation 4.20
formulates the delay in the path p where dp refers to the path delay and dij refers to the
delay of each link (i, j) which path p is composed of.

dp =
∑

(i,j)∈p

dij (4.20)

4.3.2 Packet loss ratio

Packet loss is also associated with quality of service consideration. It determines the failure
of one or more transmitted packets from the sender to the destination during a specific time
interval. The average packet loss can depend on many points along a TCP connection such
as physical transmission error and link capacity limitation. Buffer size at the destination
or even at the intermediate nodes could affect the packet loss probability too. If it has not
properly been designed by considering the near-real traffic arrival rate, the node starts to

67

drop the packets because of congestion and lack of space in the queuing buffer. Therefore,
buffer size could be one of the bottlenecks in reducing TCP throughput. If the link has enough
bandwidth, the available buffer size in ingress node causes the limitation too.

Packet loss ratio between a pair of nodes is calculated by Equation 4.21:

Packet loss ratio = number of sent packet from source−number of received packet in destination
number of sent packet from source

× 100% (4.21)

Referring to the proposed queuing configuration in Table 3.2 in Chapter 3, three different
queues are configured in the OpenFlow network elements based on application classification
approach. However, the queuing mechanism has a direct impact on the packet loss of the
different type of classes, Equation 4.22 could be used to estimate packet loss ratio on the link
(i, j):

plij =

 (TP Q + TQ1 + TQ2 − bij)/(TP Q + TQ1 + TQ2), for (TP Q + TQ1 + TQ2) > bij (4.22a)

0, for (TP Q + TQ1 + TQ2) ≤ bij (4.22b)

, where TP Q refers to the number of packets waiting in the queue PQ, TQ1 as the number of
the packets waiting in the queue Q1, TQ2 as the number of packets in the queue Q2, and bij

as the available bandwidth on the link (i, j).

Packet loss is a multiplicative metric. Packet loss ratio along the path is determined in
Equation 4.23, where plp refers to the packet loss ratio for path p and plij refers to the packet
loss ratio for a particular link (i, j) of the path p: Packet loss is a multiplicative metrics.
Packet loss ratio along the path is determined in Equation 4.23, where plp refers to the
packet loss ratio for path p and plij refers to the packet loss ratio for a particular link (i, j)
of the path p:

plp = 1−
∏

(i,j)∈p

(1− plij) (4.23)

If the packet loss ratio in the network links is very small and close to zero, packet loss measure
could be considered as an additive measure and can be approximately simplified by Equation
4.24: [109]

plp =
∑

(i,j)∈p

plij (4.24)

68

4.3.3 Bandwidth

Bandwidth describes the rate at which data can be transferred on the link. It determines the
efficiency and speed of data transmission activity. The link maximum bandwidth is defined
based on the interface capacity. Bandwidth in a concave metric and the amount of bandwidth
available in the path is affected by the slowest link found in the path. Equation 4.25 explains
the bandwidth measurement in the path, where bp is the available bandwidth for the path p
and bij is the available bandwidth for any link (i, j) in the path.

bp = min{bij |(i, j) ∈ p} (4.25)

Available link bandwidth is calculated based on the link utilization rate uij and maximum
possible link capacity Bij through Equation 4.26

bij = Bij × (1− uij) (4.26)

Throughput is an important indicator of the performance and quality of a network connection,
and it is different than bandwidth. Network throughput is defined as the total demand volume
carried successfully by the network and typically measured in bits per second (bps). So,
bandwidth is the capacity available for the data transfer but throughput is the actual data
rate. Throughput is affected by the link utilization, loss rate, and link congestion, so its value
depends on the network conditions.

4.4 Summary

In general, two main algorithms are used to compute the shortest paths from a single source to
all the other destinations in a weighted graph: Bellman-Ford’s algorithm [111] first proposed
by Alfonso Shimbel in 1955 but published by Richard Bellman and Lester Ford Jr. in 1958
and 1956, respectively. Dijkstra’s algorithm [112] which was conceived by Dutch computer
scientist Edsger Dijkstra in 1956 and published in 1959. Both are a graph search algorithm
that solves the single source shortest path problem for a weighted graph. The only difference
between two is that Dijkstra’s algorithm cannot handle negative edge weights which Bellman-
Ford handles. Bellman-Ford also tells us whether the graph contains the negative cycle. If a
graph does not contain negative edges then Dijkstra’s is always better.

The classical Dijkstra’s algorithm [112] gets the network topology and the link weighs, then
it determines the shortest distance (or the lowest cost) from the source node to every other

69

node. This algorithm is the base of the current network routing protocols which the cost
metric is based on the link status information.

In this chapter, we designed a new QoS support routing model, leveraging all advantages of
the SDN-based core transport network. The Northbound interface makes SDN controller have
access to the application layer and the databases to fetch directly the application preferences
in terms of QoS attributes. The southbound interface (OpenFlow) enables it to collect the
network link status from the network elements and provide the links data in terms of the
packet loss, delay, available link bandwidth, and link load.

Our model would be an extension of the Dijkstra algorithm with more input data such as
link status information and application QoS needs, as well as different link cost metrics. All
these information could be available for our model because of the SDN controller capabilities.
This model aims to propose least-cost status-aware and SLA-respected routing path across
the SDN network. In the classical network, there is no way to fetch the status information
directly from the network elements in a centralized and real-time way, and consequently
the network topology and the QoS parameters. Therefore current routing path mechanisms
do not consider the current network status e.g., packet loss, delay, or available bandwidth
in the path calculation process. Besides, link cost metrics used in the routing mechanism
are same for all the application type. But, our model assigns different path for the same
data dynamically depending on the current network status and link cost metrics are diverse
depending on the application type.

Decision-making framework and the procedure followed in our model are displayed in Figure
4.2 and Algorithm 1, respectively. The topology information, application QoS needs, and link
weighting mechanism are taken into accounts to provide a new efficient algorithm to compute
a minimum-cost path between pairs of network elements.

Figure 4.2 Routing path decision-making framework

70

Algorithm 1: Routing path algorithm to find the least-cost possible path across the core
transport network, taking into account application needs and network link situation

1 Procedure ;
Input : G = (V,E) as the topology graph of the SDN network including nodes and

bidirectional links: V = {1, 2, ..., v} and E = {(i, j) : i, j ∈ V, i 6= j}
2 for k in K do

Input : Source Sk, Destination T k and Volume F k

Output : Paths from Source Sk to Destination T k

3 end

4 for (i, j) in E do
5 Read the link QoS parameters including bij, plij, and dij;
6 Calculate the current link utilization rate;
7 Read the link utilization limit uT hreshold ;
8 if Link utilization rate >= uT hreshold then
9 It excludes this link from the logical network topology used to calculate the path ;

10 end
11 end
12 for k in K do
13 Read SLA-DB to have Max acceptable delay Dk

SLA, Max acceptable packet loss PLk
SLA,

and Min required bandwidth Bk
SLA;

14 Set the link cost metrics depending on the application class;
15 end
16 for k in K do
17 Make decision about the path based on the mathematical model;
18 end

71

CHAPTER 5 EVALUATION AND RESULT

In Chapter 4, we have provided the mathematical model of the routing path computation in
the SDN-based transport network. In this chapter, we aim to validate our proposed model
to guarantee that it certainly enhances the function of QoS routing in the system. First,
we explain the implementation of the model and the test scenarios. Then, we validate and
analyze its performance through presenting the numerical results, compared to the currently-
used routing method in the Internet and transport network.

5.1 Model implementation

To investigate the feasibility and the performance of the model, we implement the proposed
MCCRPF problem in AMPL(A Mathematical Programming Language). AMPL [113] is an
algebraic modeling language to prototype the mathematical models and describe the complex
problems, e.g., optimization and scheduling problems. It also unifies the interface for setting
both the problems and solvers for the linear and non-linear problems. Depending on the type
of the problem and the mathematical formulation, the appropriate solver could be used to
find the optimal or feasible solutions.

First, we put all together the expressions including objective, constraints, and variables as
well as the parameters used to define the problem in AMPL. We represent the SDN-based
core transport network by an oriented graph G = (V,E) where V is the list of network ele-
ments and E is the set of links between each pair of network elements. We assume that k is
the number of new demands which enter the system simultaneously.

Sets:

— List of network elements: 1...v, v ∈ V ;

— List of bidirectional links between network elements: (i, j) ∈ E ∪ (j, i) ;

— Demands: 1...k ;

Parameters:

Network link status and policy parameters:

72

Bij > 0 Maximum capacity on the link (i, j), [Mbps]
bij ≥ 0 Available capacity on the link(i, j), [Mbps]
dij ≥ 0 Delay on the link (i, j), [Second]
plij ≥ 0 Packet loss ratio on the link (i, j), [Percentage]
uT hreshold > 0 Link utilization limit on the link, [Percentage]

Service demand-relevant parameters:

Sk ∈ V Source of demand k
T k ∈ V Destination of demand k
F k ≥ 0 Total demand volume k, [Mbps]
Dk

SLA ≥ 0 Maximum acceptable delay for demand k, agreed in SLA
PLk

SLA ≥ 0 Maximum acceptable packet loss ratio for demand k, agreed in SLA
Bk

SLA ≥ 0 Minimum bandwidth required for demand k, agreed in SLA
P k Determined path across the network for demand k

Variable:

0 ≤ Xk
ij ≤ bij Amount of demand volume k on the link (i, j), [Mbps]

Objective function:

Minimize ∑
(i,j)∈E

∑
k∈K CijX

k
ij

Cij = α× b′ij + β × pl′ij + γ × d′ij ,∀(i, j) ∈ E
α + β + γ = 1 , 0 ≤ α, β, γ ≤ 1

b′ij, pl′ij, and d′ij as the normalized value of bij, plij, and dij, respectively.

Subject to the constrains:

73

∑
k∈K Xk

ij ≤ bij, ∀(i, j) ∈ E∑
k∈K Xk

ij ≤ bij − (1− uT hreshold)×Bij, ∀(i, j) ∈ E

∑
(i,j)∈E

Xk
ij −

∑
(j,i)∈E

Xk
ji =

F k, for i = Sk

−F k, for i = T k, ∀k ∈ K, i ∈ V
0, for i 6= Sk and T k

∑
(i,j)∈E,P k dij ≤ Dk

SLA, ∀k ∈ K∑
(i,j)∈E,P k plij ≤ PLk

SLA, ∀k ∈ K

In the offered mathematical formulation, the number of variables is |E||K| and the number
of constraints is |E||K| + |K| + |E|. Since the number of the QoS parameters used in our
model is more than one, it is proven to be Nρ-complete [114] as the complex problem.

In optimization context, linear programming efficiently solves problems where the objective
function and constraints are linear with respect to the decision variables. On the contrary,
the problem is called a nonlinear programming problem if the objective function is nonlinear
and/or the feasible solution is determined by nonlinear constraints. However in our model,
the objective function is linear and the constraints are linear, except the delay and packet loss
constraints. In each demand K, the delay and packet loss constraints employ the link delay
and packet loss ratio independently to the exact volume of the demands in the link. Therefore,
we convert Xk

ij into binary representation 0 and 1 in these constraints. We structure the
problem in both styles: nonlinear and linear. To solve the nonlinear style, we useMINOS [115]
solver. MINOS is a software package for solving large-scale optimization problems (linear
and nonlinear programs). MINOS is highly effective and numerically stable algorithms. It
uses augmented Lagrangian methods to solve the nonlinear optimization problem. In case
of the linear style, since the values of the variable X is going to be discrete, it is classified
as Mixed Integer Programming (MIP) problem. We pair AMPL with the CPLEX [116] to
solve the problem. CPLEX is the optimization engine developed by IBM and it is used
for mostly solving integer programming problems, very large linear programming problems
and quadratic programming problems. CPLEX uses branch-and-bound algorithm to find the
optimal solution for the Mixed Integer Linear Programming problem. Though the feasible
solution found by both style were the same in most of the experiments we did, we analyze
the results provided by the CPLEX in the next section.

5.2 Experiments and performance evaluation

In the concept of the packet-switched networking, a routing protocol specifies how network
elements exchange information together, determines optimal network data transfer paths

74

between network elements and facilitates the overall network topology understanding for
each of network elements. In general, path determination includes two main steps: destination
determination which is based on the destination IP address and, packet routing toward the
destination which is based on the rules. In the traditional network, the rules could be defined
either manually by the network administrator or automatically by the routing protocol and
they are stored in the routing table. [117]

In the large networks, there is the possibility of having multiple paths between a particular
pair of source and destination. Different routing protocols use different metrics to evaluate
and differentiate between all available paths. Depending on the metrics used by the routing
protocols, two different protocols might choose different paths to the same destination. Both
Bellman-Ford and Dijkstra algorithms have enabled the development of different routing
protocols. Bellman-Ford’s algorithm has enabled the development of distance-vector routing
protocols 1 while Dijkstra’s algorithm has paved the way for the introduction of link-state
routing 2. Link-state routing protocols enable a router to build and track a full map of all
network links while distance-vector protocols allow routers to work with less information
about the network area. In both, the router learns about remote networks from the neighbor
routers or the configuration to build the routing table. The characteristics of the widely-used
routing protocols are provided in Appendix B.

The general idea in link-state routing protocol is that a cost (called also weight) is assigned
to the network link based on the metrics and the less cost shortest path between a particular
node pair is calculated. Open shortest-path first (OSPF) [118] is one of the well-established
and widely-adopted link-state routing protocols in the traditional network. OSPF makes the
routing decision based on the link bandwidth. Link cost calculation formula in OSPF is
determined in Equation 5.2:

Interface cost = Reference bandwidth

Interface bandwidth
(5.2)

In Cisco product, the default reference bandwidth value in OSPF is 100Mbps (equal to
108bps). Hence, we have the following equation as the cost of link (i, j): [119]

1. In Distance-vector routing protocols, routers compute the best path from information received from
neighbors periodically. The information means the distance or metric to reach the remote network. It is
recommended to be used in small networks

2. In Link-state routing protocols, routers inform all the nodes in a network of topology changes, and since
the convergence speed is higher than distance vector routing protocol, it is recommended to be implemented
in the large network.

75

costij = 100
Bij

(5.3)

Referring to the link cost formulation in our model in Equation 4.10, multiple link metrics
including delay, packet loss, and bandwidth are used. The QoS requirements of the IoT
applications are not clearly defined because of the diverse, innovative, and data-centric nature
of the application, so there is no standard SLA in the IoT. Referring to Table 3.2, for queuing
purpose, we classify the application based on their sensitivity to the delay and bandwidth.
To facilitate the implementation of our experiment environment, we map the IoT application
classes onto the IoT data delivery model as Table 5.1:

Table 5.1 IoT application class

IoT Application Application class
Mission-critical,

Event-related application Delay-centric

Continious application
(Query-driven, Real-time monitoring) Bandwidth-centric

General application
(Non-real time monitoring) BE

We design our model to assign dynamic cost metrics for different application classes. For the
delay-sensitive application, packet loss and delay would be the metrics, for the bandwidth-
sensitive application, the combination of the packet loss and bandwidth are considered in
link cost estimation, and for the BE application, the combination of all three metrics would
be used or the traditional less-complex best-effort routing protocol could be applied.

The approach used to implement the experiment is demonstrated in Figure 5.1. So, we charac-
terize the application from different classes with different QoS requirements, then we evaluate
the performance of the routing paths calculated by our model in terms of delay, packet loss
and link utilization rate in several network topology, and compare with the characteristics of
calculated paths by OSPF routing model.

The particular network topologies designed to run the test, ensure the path diversity bet-
ween any pair of nodes. Therefore, we define the network topology and assign the maximum
capacity, available bandwidth, delay, and packet loss ratio for network links. Also, we present
the service demands specifying the source, destination, and volume as well as its QoS requi-
rements in terms of delay, packet loss, and minimum bandwidth. The simulated demands are
directed towards the bottlenecks to investigate latencies and throughput of the delay-centric
and bandwidth-centric traffics, respectively. Both single-commodity and multi-commodity
scenarios are investigated under the same network situation.

76

Figure 5.1 Experiment and performance analysis scenario

The network topologies used in our experiments (topology A, B, C, and D) and the associated
link configurations are demonstrated in Appendix A. To do the normalization of the link cost
metrics, we assign the lower-bound and upper-bound for each metrics as Table 5.2, based on
the network link configurations of our topologies.

Table 5.2 QoS parameters limits for normalization

Minimum Maximum
Link packet loss ratio range 0% 5%
Link delay range 0 s 0.0001 s
Link bandwidth range 0 bps 1000Mbps

5.2.1 Single-demand scenario

The first experiment is in the single commodity environment. We characterize multiple delay-
centric and BW-centric demands with the different source, destination and QoS levels in
network topology A, B, and C. Each demand is defined individually and the behavior of
our routing model and OSPF model are studied in terms of the network QoS metrics: delay,

77

packet loss, and link utilization.

The path delay and packet loss ratio for all single demands characterized in Topology A, B,
and C are demonstrated in the columns charts 5.2, 5.3, and 5.4, respectively. In the column
charts, the horizontal axis contains the demands called delay-centric and BW-centric which
point to the type of the demands.

(a) (b)

Figure 5.2 QoS attributes associated for the calculated path by the proposed model and
OSPF - Topology A

(a) (b)

Figure 5.3 QoS attributes associated for the calculated path by the proposed model and
OSPF - Topology B

The delay of the paths assigned for each demand are depicted in Figure 5.2a, 5.3a, and 5.4a.
That is the estimation of the end-to-end delay that a data flow would suffer between the
source and destination of the demand. The path loss ratio for each case are illustrated in
Figure 5.2b, 5.3b, and 5.4b. As mentioned earlier, our model considers the delay and packet
loss ratio as the metric of link cost for the delay-centric demands, and OSPF just considers

78

(a) (b)

Figure 5.4 QoS attributes associated for the calculated path by the proposed model and
OSPF - Topology C

the link bandwidth as the link cost metric. Consequently, our model and OSPF could find
different paths for the same demand in the same topology. Referring to the charts and the
delay-centric columns, it can be seen that the delay and the loss rate for the demands are
less in our proposed model compared to the OSPF. Thus, it is perceived that our model
provides more optimized paths in terms of delay and packet loss ratio for this type of the
applications. Therefore, the mission-critical application gets the requested service and data
with minimized delay and error rate. To compare values determined by our model and OSPF,
we calculated PERCENT DIFFERENCE 3 for each application and displayed in each columns
in the diagrams. It shows the average improvement in our model compared to OSPF.

In general, the multimedia applications including the high-resolution images and videos need
more bandwidths compared with the delay-centric and event-based application. So, we cha-
racterize multiple BW-centric applications with different throughput needs in each topology,
as it can be seen in Figure 5.2, 5.3, and 5.4. Analyzing the results obtained for the BW-centric
demands shows that our model assigns the less delay and less loss rate paths for these types of
the demands too, although their most important concern is the bandwidth and throughput.
Our model considers the link available bandwidth and packet loss ratio as the cost metric
for the BW-centric demands. Less delay in the service delivery would boost the application
satisfaction from the system performance.

3. PERCENT DIFFERENCE as a percentage of their average value is calculated using the following
Equation:

PERCENTDIFFERENCE = |value(OSPF)− value(our model)| /(((value(OSPF) + value(our model))/2) (5.4)

79

Besides, to examine the behavior of the proposed model about this type of application, we
observe the link bandwidth utilization rate in each test cases. The test direction is that the
demand volumes surpass the link available bandwidth and increase the rate of the conges-
tion. The maximum link utilization across the network for each single-commodity demand in
Topology A, B, and C are depicted in Figure 5.5a, 5.5b, and 5.5c, respectively.

(a) (b)

(c)

Figure 5.5 Maximum link utilization rate in the calculated paths by the proposed model and
OSPF

In our test, the demand volume for the delay-centric application is inconsiderable compared
with the available link bandwidth. Conceivably, the link load is normal and stable for both
models. In the case of the BW-sensitive application, we characterize the volume demand
with the different bit-rate request in a way to go beyond what is available in the links.
Considering that our model is aware of the current link bandwidth, and it calculates the
current link utilization and considers the current situation when computing the paths for
new incoming demands. Besides, we defined a limit for the link utilization rate within policy
database. In our experiments, we set the link utilization rate to 75%. Therefore, our model
uses multi-path approach to allocate the desired bandwidth for the demands while controlling

80

the link utilization based on the pre-defined limit across the network. This mechanism could
decrease the congestion rate and increase the network throughput since the congested links
could augment the packet loss and delay for the demands passing through these links.

On the contrary, OSPF has not the knowledge about the available link bandwidth. OSPF
just considers the link bandwidth information to determine the least-cost path. Between a
pair of nodes, it forwards the flow through the same path which is the same way at all
times. Therefore, the network experiences the link congestion. The lines in Figure 5.5a, 5.5a,
and 5.5a show that link utilization rate goes beyond 100% in some of the test situations (
remarked with “pattern fills”). It means that OSPF assigns the path which has not enough
available bandwidth to serve the demand request. Consequently, we displayed the relevant
demands with “pattern fills” in Figure 5.2, 5.3, and 5.4 to declare that the real delay and
packet loss would be more than the one determined in the charts. The congestion in one
particular link affects the service delivery for all demands which are transferred through this
link. Therefore, it leads to decreasing the network throughput and impacting significantly on
the customer satisfaction.

For instance, we detail the path allocated for the demand BW-centric 4 in Topology C. The
demand is defined from source 2 to destination 11 with high bit-rate volume. In the first place,
our model follows the multi-path approach when one path could not satisfy the requested
volume of the demand. Secondly, the defined link utilization rate is regarded by the model to
keep the link utilization balanced across the network and prevent the congestion. Depending
on the link utilization limit, different paths could be allocated for the same demands based on
the current network situation. Figure 5.6a and 5.6b show the paths allocated for a particular
demand by our proposed model under the same network situation but with different link
utilization limit, 75% and 90%, respectively. When link utilization limit is set to 75%, three
paths (displayed by multiple-colored) are allocated, and in 90%, two paths (displayed by
multiple-colored) are determined by the demand. The utilization limit could be assigned
dynamically based on the demand arrival rate and demand QoS needs ; meaning that the
default value could be used as long as the demand SLA is not violated. In conclusion, our
model distributes the demand volume in the multiple paths to first provide the required
bandwidth, aiming to keep the delay and packet loss as less as possible which improve the
demand satisfaction index. OSPF leads to having link congestion in high bit-rate demands
since there is no knowledge about the current link bandwidth. Figure 5.6c explains that
one path is allocated for the demand which causes the congestion in two links (red-colored
crossed line).

81

(a) Multi-path with uT hreshold = 75% in the propo-
sed model

(b) Multi-path with uT hreshold = 90% in the propo-
sed model

(c) Congested links in OSPF model

Figure 5.6 Paths allocated in case of high-BW demand in Topology C

5.2.2 Multi-demand scenario

In this section, we investigate the behavior of our model in the multi-commodity environ-
ment. Similar to the experiments in the single-commodity scenario, we characterize different
demands from both delay-centric and BW-centric classes, with different QoS requirements,
but this time we study the QoS attributes of the paths when multiple demands are entered
in the network simultaneously.

Topology A. We perform three different tests (Test 1 to Test 3). The Test 1 includes two
different demands from different classes of the application (Daley-centric and BW-centric).
In Test 2 and Test 3, we add, respectively, one other delay-centric and BW-centric demand
for the first test. The multiple demands come simultaneously into the system and the goal is
to allocate the routing paths between the source and destination of each demand.

As illustrated in the Figure 5.7 and 5.8, it can be seen that the delay and packet loss of the
paths associated with the delay-centric demands by our model are lower than the relevant
attributes in the paths associated by OSPF model. It is observed that this statement can be
extended to the BW-centric demands too. Then the optimized paths in terms of the delay
and the loss rate are found by our model.

Figure 5.9 shows the maximum link utilization across the network in each test. It declares
that our model keeps the link utilization rate stable in all three tests since the adjusted
threshold are respected by the model. On the contrary, it expresses that the utilization rate

82

(a) Test1 (b) Test2 (c) Test3

Figure 5.7 Path delay - Topology A

(a) Test1 (b) Test2 (c) Test3

Figure 5.8 Packet Loss Ratio of the paths - Topology A

in some of the links reaches 100% in Test 3 when running the OSPF. When link utilization is
more than 100%, the link is considered as the congested link and consequently, the demands
passing through the congested link could not be served as desired and they may suffer from
more delay and loss.

Figure 5.9 Maximum Link Utilization across the network in different tests - Topology A

83

To facilitate understanding the congestion scenario, we demonstrate details of the OSPF
allocated paths and the congested links in Test 3 in Table 5.3. The congestion happens when
multiple demands are entered into the system and the higher bit-rate is demanded by them.
In this test, BW-centric 2 is the one which demands high volume and it leads to occurring
the saturation in one link across the demand path. Since the other two demands (BW-centric
1 and BW-centric 1) are also transferred through this link, their performances in terms
of delay and loss could also be affected. Because of that, we displayed the columns of all
three demands with “pattern fills” in Figure 5.7c and 5.8c ; insisting that they might suffer
more delay and loss as computed. The effectiveness of the delay-sensitive demands might be
degraded by undesired delay, or even the transferred data could be useless because of its late
arrival. Though the queuing and priority scheduling policies implemented in the nodes could
impact the behavior of the system in order to determine what demands to remove in priority
in the congestion situation, the active demands and the network situation have the major
impacts on the consequences.

Table 5.3 Paths and congested links in Test 3 when OSPF routing model is used - Topology
A

Demand class Source /Destination Computed path
(OSPF) Congested link

Test 2
Delay-centric 1 2 →4 (2 5)(5 4)

(5 2)/(2 5)BW-centric 1 3 →4 (3 2)(2 5)(5 4)
BW-centric 2 5 →3 (5 2)(2 3)

We conclude that our model provides the less-delay and less-loss paths for the demands,
especially for delay-centric demands. The model performs somehow the load-balancing across
the network links by keeping the link load under the defined threshold. Also, the model
excludes the links with current load higher than the threshold from the logical topology when
calculating the paths for newly entered demands. This approach decreases the congestion rate
in the multi-commodity environment.

Topology B. we repeat the previous test on Topology B with more flow demands. Topology
B has more nodes and links compared with Topology A. similarly, the characterized demands
belong to the different QoS classes based on our application classification approach.

First, we execute the request with three demands and then we continue with four and five
within the same network situation (Test 1, Test 2, and Test 3). The delay and packet loss of
the calculated paths in each test are illustrated in Figure 5.10 and 5.11, respectively. Analysis
of the diagrams shows that the same interpretation can be applied for this experiment too
since the optimized paths in terms of the delay and loss rate are discovered by our model

84

compared to the OSPF results, either in delay-centric demand or in BW-centric demand.

(a) Test1 (b) Test2 (c) Test3

Figure 5.10 Path delay result - Topology B

(a) Test1 (b) Test2 (c) Test3

Figure 5.11 Packet Loss Ratio of the paths - Topology B

In terms of the link utilization rate, Figure 5.12 shows that the same scenario happens on
Topology B ; the link utilization rate is normal in all the steps within our model and the
network doesn’t experience the link overload and congestion. In OSPF case, TEST 2 and
TEST 3 have the links with more than 100% utilization rate, since there is no awareness of
the available link bandwidth in OSPF.

Here, we express the situation of the network in TEST 3. In Table 5.4, the allocated paths
calculated by OSPF for different demands are determined as well as the links with utilization
rate 100% or more. The links with highest congestion rate are being used with four demands
out of five. So, the QoS of all demands could be affected by the link failure and they may
endure the delay and loss more than expected in the associated paths.

Topology D. The same scenario performed on Topology A and Topology B are redone on
Topology D which have more nodes and links. So, we characterize more delay-centric and
BW-centric demands in this case. All of them are entered in the network at the same time,

85

Figure 5.12 Maximum Link Utilization across the network in different tests - Topology B

Table 5.4 Paths and congested links in Test 3 when OSPF routing model is used - Topology
B

Demand class Source /Destination Computed path
(OSPF) Congested link

Test 3

Delay-centric 1 4 →9 (4 7)(7 8)(8 9)

(4 7)/(7 4)
(7 5)(5 7)

Delay-centric 2 3 →4 (3 5)(5 7)(7 4)
BW-centric 1 6 →2 (6 3)(3 2)
BW-centric 2 1 →9 (1 4)(4 7)(7 8)(8 9)
BW-centric 3 7 →6 (7 5)(5 6)

so the objective is to assign the paths between the source and destination for each of the
demands.

Figure 5.13a, 5.13b, and 5.13c display the delay associated for each demands in Test 1, Test 2,
and Test 3 scenarios, respectively. The columns in the charts declare that the delay associated
with the delay-centric as well as the BW-centric demands are smaller in our model. According
to Figure 5.14a, 5.14b, and 5.14c, the same statement can be declared for the packet loss of
the paths. Similar to the conclusion made by previous experiments, we realize that our model
finds the less-delay and less-loss paths among multiple choices for demands. Less delay is the
major concern of the delay-centric demands, although the quick response time will increase
the satisfaction of the other class of the application too.

Referring to Figure 5.15, the network experiences the link overload in Test 3 when OSPF
model is used for path determination and the link utilization rate exceeds the 100%. But,
the maximum link utilization is kept around 75% in our model and the demands flow among
the paths with high available bandwidth.

In Table 5.5, we detail the paths decided by OSPF model for the demands in Test3. The
utilization of two links surpasses 100% and leads to having the congestion. Since two demands

86

(a) Test1 (b) Test2 (c) Test3

Figure 5.13 Path delay results - Topology D

(a) Test1 (b) Test2 (c) Test3

Figure 5.14 Packet Loss Ratio of the paths - Topology D

Figure 5.15 Maximum Link Utilization across the network in different tests - Topology D

BW-centric 1 and BW-centric 3 flow through these links, the delay and loss ratio could be
increased and might exceed the acceptable level.

87

Table 5.5 Paths and congested links in Test 3 when OSPF routing model is used - Topology
D

Demand class Source /Destination Computed path
(OSPF) Congested link

Test 3

Delay-centric 1 4 →12 (4 5)(5 6)(6 9)(9 12)

(8 11)/(11 8)
(11 14)(14 11)

Delay-centric 2 7 →15 (7 8)(8 9)(9 12)(12 15)
Delay-centric 2 2 →14 (2 5)(5 6)(6 9)(9 11)(11 14)
BW-centric 1 10 →11 (10 9)(9 6)(6 11)
BW-centric 2 1 →9 (1 4)(4 5)(5 6)(6 9)
BW-centric 3 8 →14 (8 11)(11 14)

5.3 Result analysis

Similar to the Internet, telecommunication, and cloud services, also IoT applications have
to be evaluated in order to measure the quality provided to the end-users who use the
application. The objective of the QoS model proposed by this thesis is to have control of the
allocated resources and delivered services as expected by the IoT application from QoS point
of view while maximizing the utilized resources in the network.

Our proposed model uses the characteristics of the SDN technology to be aware of the
network elements status and the application QoS needs. SDN technology gives us these
possibilities by southbound and northbound interfaces. The model employs the multi-path
approach to find the optimal QoS-aware routing path for the applications which demand the
data transfer service across the SDN network. The QoS policies are applied per individual
application, although it can be applied per-customer through the modification application
definition structure in SLA-database. In our model, different metrics are considered as the
link cost metrics for the different application types: link delay and packet loss for the delay-
sensitive applications, and bandwidth and loss rate for the bandwidth-sensitive applications,
so the idea is to provide the least-cost resources using dynamic cost metrics and desired QoS
levels per various applications.

In this chapter, we did multiple experiments in the single-commodity and multi-commodity
environment. The scenario was to characterize different type demands (delay-sensitive and
BW-sensitive) with particular QoS needs in different network topology, and then measure
the delay, loss rate, and throughput of network paths calculated by the proposed routing
model and OSPF. Here, we summarize our analysis results from two perspectives: delay and
throughput.

Delay analysis

Minimizing the delay for packets traversing through the network is one of the main goals

88

of network delivery. Most event-driven applications in IoT are mission-critical and delay
intolerant, such as the emergency signals and safety-related applications in the Smart City.
To be effective, the information should be transmitted in a limited time frame. Hence, it is
important to verify the operability of applications in the service delivery subsystem such as
core transport network in terms of the imposed delay.

Referring to the experimental results, we observed that our model finds the optimized routing
paths in terms of the delay and packet loss for either delay-centric and bandwidth-centric ap-
plications. Seeing that our model uses the link QoS status in the path determination process,
it analyzes available network paths and dynamically calculates delay and loss rate associated
with the paths, and then it redirects the demand flow to the path with minimal delay and
loss rate, respecting to the QoS constraints of the applications. Besides, the proposed frame-
work monitors the current status of the network link and updates the topology databases.
In case of the change in the path delay, the model calculates the alternative paths for the
flows based on new network situation. Measuring the (near) real-time available link band-
width and the utilization rate boosts the system performance and decreases the rate of the
service level degradation since it avoids considering the high-load or congested links in the
path determination process.

In the BW-centric demands, although the model looks for the links with the optimized
combination of the high available bandwidth and lower packet loss rate, it still looks for the
best-fit path with the acceptable level of delay and loss rate. The results achieved by the
experiments affirm that our model provides the better performance paths compared with the
OSPF in the BW-centric application scenario too.

In OSPF, the link cost metric is bandwidth, so the idea is to forward the demand through the
links with the highest bandwidth. The high-bandwidth links could not be always considered as
the less-delay links since link delay is affected by other facts such as queuing and congestion.

Therefore, we conclude that SDN-based architecture makes our model capable to be dyna-
mically aware of the network status and SLA-related application QoS. Thus, we designed
our model to directly apply them in the resource allocation process. Secondly, the criticality
of the delay for the mission-critical application makes the model to seek for the delay-less
and loss-less paths. The outcome is the least-cost (least-delay) and SLA-respected resource
assignment for the applications.

Throughput analysis

Multimedia applications are going to be used widely in the Smart City, for instances, ca-
mera surveillance and traffic congestion management. Such applications have to exploit a

89

considerable amount of data, which may be difficult to achieve especially in the dense urban
environment and shared network capacity. These applications collect data either periodically
or continuously from the IoT sensing devices. From the QoS point of view, this class of appli-
cations concerns about the bandwidth assigned by the system, and it may not be guaranteed
in the best-effort Internet.

To assess the network throughput, we measure the maximum link utilization in the network
after allocating the paths for the demands. When the link utilization reaches 100% and more,
it signifies that congestion occurs in this link. The rate of the congestion is increased in the
multi-commodity environment with more bandwidth-intensive demands 4. The congestion
may affect the performance of the demands passing through the congested links. The conges-
tion costs a lot for the delay-sensitive applications and they might not fulfill their mission
depending on to what extent they are impacted and delayed.

In our model, when multiple BW-intensive demands request for data transfer services, the
multi-path approaches are applied if one path could not provide the requested bandwidth.
The BW-intensive application is delay-tolerant compared with the delay-centric application.
Since the model has currently available bandwidth of network links, it seeks to direct the
flow toward the links with the higher available bandwidth which cost less. Secondly, we
implemented the congestion prevention method in our model so that the link utilization rate
is estimated at a given time and the links with higher link load are excluded from the path
determination process. Besides, the model considers the limit for the link utilization rate to
balance the load across the network links. So, the links with highest available bandwidth and
less utilization rate are discovered by the model to prevent the congestion. Our model could
apply different link utilization limit depending on the network status, demand arrival rate, or
when it could not find the path fitted with the application QoS. The limit definition policy
could be provided in the policy database in our framework.

As a conclusion, our model objective is not only to meet the application needs, it also maxi-
mizes the resource utilization and the network throughput. The centralized controller in the
SDN-based network makes possible to control all aspects of the resource allocation process
centrally and dynamically, instead of the complex and definitely static per-node configura-
tion. It is worth noting that the link congestion could be happened because of the different
issues in the network such as hardware and SW problem. In our thesis, when we point to the
link congestion, we mean the congestion which happens because of the bad operation of the
routing algorithm and link overload.

Differently, OSPF does not have access to the currently available bandwidth and the utiliza-

4. This situation could occur in the network when multiple high-resolution images or videos are transferred.

90

tion rate. It directs the demand flows toward the high-bandwidth links. OSPF could apply
the multi-path approach but based on the knowledge of the maximum link capacity. The
same paths could be assigned for a particular demand, independent of the current network
status. Then it could cause the congestion and failure in the high-loaded links. Consequently,
the demand performance flown through the failed links are impacted in terms of the delay
and loss. If the impacted demand is the delay-sensitive, its effectiveness and usefulness might
be significantly degraded. To avoid the congestion and have the load-balancing across the
OSPF-based network, the QoS mechanism such as DiffServ, IntServ, queuing, and congestion
control methods should be implemented in all the network elements. Implementation of the
QoS mechanisms across the large network is the resource-intensive, time-intensive and com-
plex task. It is error-prone because of the technical resource involvement. Moreover, the speed
of convergence and the system adaptability to application needs and the network changes
are low.

Concisely, our model takes advantages of the SDN controller to have the updated information
regarding the network topology, network links, and SLA-relevant application QoS needs.
Besides, the network policies regarding the event-based link reservations, link utilization
rate, and load-balancing are provided for the routing calculator. Adaptive link cost metrics
to the various application type are also applied in our model, aiming to minimize the cost
as each type application desires. Compared to the best effort approach, the proposed model
could guarantee the end-to-end application QoS across the core transport network. Thus, the
centralized, status-aware, and SLA-aware resource allocation is performed both to satisfy the
different types of demands and maximize the network throughput. This model is flexible and
scalable since application SLA could be changed over time, the new policy may be applied,
or application classification strategy could be changed on the business basis. The changes are
deployed in the components of the framework, then they are applied in the routing calculation
process as soon as they go and live in the system. This transformation is abstracted from the
low-level configuration of the network elements, so this framework leads to optimizing the
time and resources by skipping the complex vendor-dependent configuration tasks.

91

CHAPTER 6 CONCLUSION

Our proposal aims to provide a customized and centralized QoS support service for the IoT
application. The objective was to provide a QoS-aware resource allocation in the IoT system
which enhances the evaluation metrics: network efficiency, user satisfaction, and application
quality of service. Also, we intended to model a dynamic QoS-aware routing method within
SDN-based core transport network to guarantee application QoS in terms of packet loss,
delay, and requested bandwidth. Further, we evaluated the performance of the proposed QoS
model.

In this section, we present a summary of our proposal and the main contributions of this
work. Then, we discuss the limitations of the current work. Later on, some future works and
possible extensions to enhance the proposed framework and model are described.

6.1 Summary of the work and contribution

The development and generation of the cheaper and smaller wireless devices such as RFID,
sensors, and actuators have led to the formation of the IoT. The number of physical devices
which are being connected to the Internet is growing at an increasing rate. A large number
of devices enables a wide variety of services in many different application domains such as
Smart City, Smart Transport, Smart Home, and Smart Health. Each application depending
on their goals and criticality may expect various QoS requirements from IoT system in terms
of data acquisition, transmission, and processing.

Despite QoS in traditional core networks which is more straightforward, QoS in IoT is very
complex. Referring to the multi-layer IoT architecture (Figure 1.2), the quality parameters
from users perspective would require the combination of all the schemes involved in the service
delivery. Therefore, apart from time delay, packet loss rate, and capacity in the network layer,
it also involves the quality of the service provided by sensing network. To ensure an acceptable
level of QoS especially for safety-critical applications, there must be QoS approaches at
every layer of the IoT architecture to measure the layer-relevant QoS parameters. Because of
the data-centric and dynamic nature of the sensing network, new QoS factors such as data
accuracy, coverage, data sampling rate become important for the IoT application. Besides, the
growth of the innovative applications and their spontaneous deployment in the IoT system
make the IoT SLA more dynamic and diverse. The IoT system still suffers from the lack of
standardized mechanisms to represent the diverse application requirements. Therefore, the

92

Internet of Things (IoT) which is increasing on an unprecedented scale, faces challenges to
properly support the applications demands on IoT infrastructure resources. So, the platform
must be enabled to enforce the diverse and dynamism SLA. Apart from the flexibility and
scalability of the IoT solutions, the simplicity of system control and management must be
considered in the design of the solution so that IoT applications could be deployed easily and
creatively.

In this thesis, we first described the main QoS parameters related to the IoT architectural
layer. Application layer directly responds to the user requirements and it demands the desired
data from the IoT devices. Network and communication layer made of core and access network
provides the information transfer service. The Internet is going to be part of the core network
to provide the globally connected things. The main QoS factors in the transport network are
the delay, packet loss, jitter, and bandwidth. Sensing layer collects the desired data and
the important QoS factors are data accuracy, sampling rate, coverage, delay, and lifetime.
Further, we discussed that current QoS mechanisms in the communication network and
Internet impose the limitations in terms of the diverse SLA support, scalability, and flexibility.
Besides, we remarked that sensing network constraints make the QoS management very
challenging due to the lack of end-to-end communication and unified interfaces between the
application and devices.

Our investigation into the current IoT QoS approaches in the literature shows the lack of
unified QoS support framework which could control the application QoS needs across different
IoT subsystem including the data transfer and data acquisition services.

Middleware-based approaches have got the high attraction in the IoT system since the abs-
traction layer could hide the complexity and heterogeneity of the lower layer from the upper
layer and increase the system flexibility and performance. There have been offered several
middleware solutions for the IoT systems [120]. In this thesis, we proposed an SDN-based
middleware to design the generic QoS support service for the IoT applications. The SDN
technology is implemented in the core transport network/Internet and it provides the cen-
tralized layer to develop the support services. In the SDN-based network, applications can
tell the controller how to program the network through the northbound interfaces, while
the controller control and manage the network devices through the southbound interfaces
(OpenFlow protocol). SDN principles not only abstract the complexity of the lower layers
from the application layer, it makes the network programmable and fast-converged based on
the business needs.

Although much prior research has exposed the potential benefits of applying SDN in computer
networks to facilitate the network management, there have been a few studies about how

93

to apply the SDN in the IoT system. As discussed earlier, most of the ideas are mostly
preliminary proposal about the softwarization of the WSNs or with more focus on security
and big data challenges of IoT. Here, we focused on the QoS management service.

We mapped the IoT architecture reference model onto the SDN architecture, so the IoT
infrastructure is made of the sensing networks and transport network elements, the control
layer/management layer is going to provide the middleware and support services for the IoT
system, and finally, application layer includes the IoT application and services.

The contributions of this work are to propose a flexible and programmable software layer
through integration core transport SDN into IoT architecture to provide customized and
generic support services for the IoT applications. This framework overcomes the challenge
of the dynamic and diverse definition of the SLA and the application QoS in the IoT. It is
obtained through the programmable interfaces between the QoS management services and
application layer provided by SDN technology.

The proposed scheme is made of several databases and functionalities implemented across
different layers of SD-IoT architecture. The core functions are implemented in the SDN-
based transport layer to provide the status-aware and QoS-aware application scheduling
and routing mechanisms across the core transport network. Additionally, it provides unified
interfaces towards the IoT-gateways to enforce dynamically the application QoS needs in the
data acquisition process. IoT-gateway contains the resource optimization and task allocation
mechanisms to manage the local sensing devices.

The framework provides the global knowledge about the transport network topology and
the (near) real-time network status through developing the SDN application and OpenFlow
interface characteristics. To enforce the application SLA in the QoS-aware resource allocation
process, we assumed that all the quantitative QoS parameters and the accepted level are
stored in the central database. This database is accessible by the SDN application through the
standard API. This approach not only enables SLA enforcement in the resource management,
it also resolves the dynamic definition of the SLA in the IoT. The IoT application could modify
the QoS needs overtime in the database based on the business changes, so the QoS framework
adopts them in the resources allocation to meet the new demands of the application. The
path decision-making module provides the end-to-end QoS routing based on the current
network status and the application preferences. Besides, the network policies are applied in
the path determination process. This module includes the application classification principle
which is based on the application sensitivity to the different QoS metrics. This principle is
used for queuing mechanism in the network elements ports. We defined three classes of the
application, each mapped into the different queues. However, the SDN characteristics enable

94

the flexible and unrestricted number of the classes. The IoT-gateway continuously collects
the sensing devices status and updates the global database in terms of the network lifetime.
This information is used to assign QoS-ware sensing network and status-ware sensing device
allocation for the IoT application.

Further, we proposed a model-based method to design status-aware and SLA-aware routing
mechanism across the core transport SDN. This model uses the network topology and link
status data collected by the SDN controller and the SLA-based application QoS constraints
from the associated database to determine the best fit routing path for the data transfer. We
mathematically formulated the QoS routing problem as Multi-Commodity Constraint Based
Routing approach. The link cost metrics used in our model are packet loss, delay, and available
link bandwidth. But different metrics are associated with the different application classes:
delay and loss rate for the delay-centric, and bandwidth and loss rate for the BW-sensitive
applications.

At last, we investigated the performance of the model in several network topology. The
experimental results showed that our model provides the less-delay and less-loss rate paths for
both delay-centric and BW-centric application, it performs link load-balancing and decreases
the possibility of the congestion and service performance degradation. For the bandwidth-
sensitive applications, it distributes the demand volumes across multiple paths to balance the
network link utilization and to prevent the congestion. Multi-path and link load-balancing
approach implemented in the model lead to enhancing the network throughput and increasing
the system availability which especially is critical for the mission-critical application.

In sum, our proposal could be considered as a step into the definition of a centralized QoS
architecture and adaptive SLA-aware resource allocation framework in the IoT system since
the blocks, components, and their interactions have been described in detail. The unified SDN
transport and IoT simplify the network management and configuration. It also enhances the
definition of the customized and adaptive support services, not only in terms of QoS but in
terms of security and storage.

6.2 Limitation of the work

The work presents several limitations that should be taken into consideration when using the
proposal and when defining a future research path.

The proposed architecture relies on SDN technology implemented in the core transport net-
work. So, the performance of the offered architecture depends on the accuracy of the gathered
data from the IoT infrastructure (meaning transport network and sensing network elements).

95

The SDN controller could query the transport network element state either when receiving
the service demand or periodically based on the time set. The collection of the information
for the large network would be inefficient. The framework should determine the optimized
time frame to gather the network status information, based on the demand characteristics
and behaviors. It might make a trade-off between the system throughput and the cost of the
status collection.

A centralized controller may be enough to manage all network elements of the small-scale
network. Naturally, it represents a single point of failure and may have scaling limitations.
Since OpenFlow allows the connection of multiple controllers to a network element, redundant
controllers could be implemented in Hot-standby method to increase the network reliability
and availability. So, the backup controller could take over in the case of a failure.

In IoT, large-scale sensing network and a large number of IoT applications produce a huge
amount of data flows which must be transferred through the transport network. Generally,
the large core transport networks often extend over multiple domains. Since SDN control-
ler has a limited capacity in the request processing, independent SDN controller could be
distributed across the large-scale network, each of them managing a network domain. Dif-
ferent design models have been proposed to distribute the network information among SDN
controllers such as hierarchal and flat model [121]. The general idea is to have a logically
centralized, but physically distributed control plane which still provides a simplified central
view of the network from the application perspective. The East/Westbound interfaces are
the communication channel for distributed SDN controllers. ONOS [122], HP VAN controller
[123], and Onix [124] are examples of distributed controllers which are being widely used in
the research and studies. [51]

6.3 Future work

Based on the proof of concept developed and the presented limitations, our study opens the
door to several extensions.

First, we plan to study the QoS management in the distributed SDN control plane and multi-
domain network, and accordingly the performance of the proposed QoS model in the different
architectural model.

To increase the performance of the QoS support framework and minimize the system response
time to the network topology changes or link failures, we plan to integrate k shortest path
routing algorithm into our QoS model. For any particular demand, specifically delay-centric
applications, more than one feasible solution is found, in case of the failure and SLA-violation

96

by already-configured path, the alternative feasible solution is deployed in the network ele-
ments. Removing the calculation time of the new path could boost the satisfaction level of the
delay-centric applications. For the best effort application, the current best efforts algorithms
can be implemented to optimize the controller resources.

As our main future work, we think of extending the QoS support scheme by building an
intelligent decision-making process on the use of the learning-based algorithms. The objective
will be to make the SDN controller learn the network demand behavior on a real-time basis
and provide the optimal behavior policy at any given time. The idea is to predict the volume
demand at any segment of the network and apply the self-learned policy to determine the
optimized routing path, aiming to minimize the cost of the paths for the different class of
application and maximize the network throughput.

97

BIBLIOGRAPHY

[1] ITU-T Y.2060, “Overview of the internet of things,” International Telecommunication
Union, Tech. Rep., 2012. [Online]. Available: https://www.itu.int/rec/T-REC-Y.
2060-201206-I

[2] P. F. Ovidiu Vermesan, Internet of Things – From Research and Innovation to Market
Deployment. River Publishers, 2014.

[3] “The internet of things: How the next evolution of the internet is changing everything,”
CISCO, Tech. Rep., April 2011. [Online]. Available: https://www.cisco.com/c/dam/
en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf

[4] ONF, “Openflow switch specification (version 1.5.1),” Open Networking Foundation,
Tech. Rep., 2015. [Online]. Available: https://www.opennetworking.org/wp-content/
uploads/2014/10/openflow-switch-v1.5.1.pdf

[5] O. Vermesan, P. Friess, P. Guillemin, S. Gusmeroli, H. Sundmaeker, A. Bassi, I. S.
Jubert, M. Mazura, M. Harrison, M. Eisenhauer et al., “Internet of things strategic
research roadmap,” Internet of Things-Global Technological and Societal Trends, vol. 1,
no. 2011, pp. 9–52, 2011.

[6] T. Kurakova, “Overview of the internet of things,” Proceedings of the Internet of things
and its enablers (INTHITEN), pp. 82–94, 2013.

[7] ONF, “Software-defined networking: The new norm for networks,” Open Networking
Foundation, Tech. Rep., April 2012. [Online]. Available: https://www.opennetworking.
org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf

[8] A. Haidine, S. El Hassani, A. Aqqal, and A. El Hannani, “The role of communication
technologies in building future smart cities,” in Smart Cities Technologies. InTech,
2016.

[9] W. B. Heinzelman, A. L. Murphy, H. S. Carvalho, and M. A. Perillo, “Middleware to
support sensor network applications,” IEEE network, vol. 18, pp. 6–14, 2004.

[10] “Open networking foundation.” [Online]. Available: https://www.opennetworking.org
[11] H. Ouchitachen, A. Hair, and N. Idrissi, “Optimal placement of sensors in mission-

specific mobile sensor networks,” Indonesian Journal of Electrical Engineering and
Computer Science, vol. 16, no. 1, pp. 191–198, 2015.

[12] A. De Gante, M. Aslan, and A. Matrawy, “Smart wireless sensor network manage-
ment based on software-defined networking,” in Communications (QBSC), 2014 27th
Biennial Symposium on. IEEE, 2014, pp. 71–75.

https://www.itu.int/rec/T-REC-Y.2060-201206-I
https://www.itu.int/rec/T-REC-Y.2060-201206-I
https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
https://www.opennetworking.org

98

[13] Y. Jararweh, M. Al-Ayyoub, E. Benkhelifa, M. Vouk, A. Rindos et al., “Sdiot: a soft-
ware defined based internet of things framework,” Journal of Ambient Intelligence and
Humanized Computing, vol. 6, no. 4, pp. 453–461, 2015.

[14] [Online]. Available: http://forklog.net/

[15] F. Pakzad, M. Portmann, W. L. Tan, and J. Indulska, “Efficient topology disco-
very in software defined networks,” in Signal Processing and Communication Systems
(ICSPCS), 2014 8th International Conference on. IEEE, 2014, pp. 1–8.

[16] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things (iot): A vision,
architectural elements, and future directions,” Future generation computer systems,
vol. 29, no. 7, pp. 1645–1660, 2013.

[17] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet of things for
smart cities,” IEEE Internet of Things journal, vol. 1, no. 1, pp. 22–32, 2014.

[18] Z. Shelby and C. Bormann, 6LoWPAN: The wireless embedded Internet. John Wiley
& Sons, 2011, vol. 43.

[19] “Official internet protocol standards.” [Online]. Available: https://www.rfc-editor.org/
standards

[20] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J. Wanderer,
J. Zhou, M. Zhu et al., “B4: Experience with a globally-deployed software defined wan,”
ACM SIGCOMM Computer Communication Review, vol. 43, no. 4, pp. 3–14, 2013.

[21] M. Palkovic, P. Raghavan, M. Li, A. Dejonghe, L. Van der Perre, and F. Catthoor,
“Future software-defined radio platforms and mapping flows,” IEEE Signal Processing
Magazine, vol. 27, no. 2, pp. 22–33, 2010.

[22] I. Ku, Y. Lu, M. Gerla, F. Ongaro, R. L. Gomes, and E. Cerqueira, “Towards software-
defined vanet: Architecture and services,” in Ad Hoc Networking Workshop (MED-
HOC-NET), 2014 13th Annual Mediterranean. IEEE, 2014, pp. 103–110.

[23] T. Luo, H.-P. Tan, and T. Q. Quek, “Sensor openflow: Enabling software-defined wi-
reless sensor networks,” IEEE Communications letters, vol. 16, no. 11, pp. 1896–1899,
2012.

[24] R. Caceres and A. Friday, “Ubicomp systems at 20: Progress, opportunities, and chal-
lenges,” IEEE Pervasive Computing, vol. 11, no. 1, pp. 14–21, 2012.

[25] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its role in the
internet of things,” in Proceedings of the first edition of the MCC workshop on Mobile
cloud computing. ACM, 2012.

http://forklog.net/
https://www.rfc-editor.org/standards
https://www.rfc-editor.org/standards

99

[26] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,
S. Shenker, and J. Turner, “Openflow: enabling innovation in campus networks,” ACM
SIGCOMM Computer Communication Review, vol. 38, no. 2, pp. 69–74, 2008.

[27] ANSI/ASQC ISO A8402, “Quality management and quality assurance— vocabulary,”
American society for quality control, Tech. Rep., 1994. [Online]. Available:
https://www.iso.org/standard/20115.html

[28] F. Xia, “Qos challenges and opportunities in wireless sensor/actuator networks,” Sen-
sors, vol. 8, no. 2, pp. 1099–1110, 2008.

[29] T. Forum, SLA Management Handbook. The Open Group, 2014, vol. 4.

[30] ——, “Performance reporting concepts and definitions,” Tech. Rep., 2001.

[31] L. Li, S. Li, and S. Zhao, “Qos-aware scheduling of services-oriented internet of things,”
IEEE Transactions on Industrial Informatics, vol. 10, no. 2, pp. 1497–1505, 2014.

[32] M. Peuhkuri, “Ip quality of service,” Helsinki University of Technology, Laboratory of
Telecommunications Technology, pp. 2–0, 1999.

[33] R. Duan, X. Chen, and T. Xing, “A qos architecture for iot,” in Internet of Things
(iThings/CPSCom), 2011 International Conference on and 4th International Confe-
rence on Cyber, Physical and Social Computing. IEEE, 2011, pp. 717–720.

[34] Cisco, “Enterprise qos solution reference network design guide,” Tech. Rep., 2014.

[35] R. Braden, D. Clark, and S. Shenker, “Integrated services in the internet architecture:
an overview,” Tech. Rep., 1994.

[36] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An architecture
for differentiated services,” Tech. Rep., 1998.

[37] D. Chen and P. K. Varshney, “Qos support in wireless sensor networks: A survey.” in
International conference on wireless networks, vol. 233, 2004, pp. 1–7.

[38] Egham, “Gartner says 8.4 billion connected "things" will be in use in 2017,
up 31 percent from 2016,” Gartner, Tech. Rep., 2017. [Online]. Available:
https://www.gartner.com/newsroom/id/3598917f

[39] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “Internet of
things: A survey on enabling technologies, protocols, and applications,” IEEE Commu-
nications Surveys & Tutorials, vol. 17, no. 4, pp. 2347–2376, 2015.

[40] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,” Computer
networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[41] J. A. Stankovic, “Research directions for the internet of things,” IEEE Internet of
Things Journal, vol. 1, no. 1, pp. 3–9, 2014.

https://www.iso.org/standard/20115.html
https://www.gartner.com/newsroom/id/3598917f

100

[42] J. N. Al-Karaki and A. E. Kamal, “Routing techniques in wireless sensor networks: a
survey,” IEEE wireless communications, vol. 11, no. 6, pp. 6–28, 2004.

[43] T. He, J. A. Stankovic, C. Lu, and T. Abdelzaher, “Speed: A stateless protocol for
real-time communication in sensor networks,” in Distributed Computing Systems, 2003.
Proceedings. 23rd International Conference on. IEEE, 2003, pp. 46–55.

[44] K. Akkaya and M. Younis, “An energy-aware qos routing protocol for wireless sen-
sor networks,” in Distributed Computing Systems Workshops, 2003. Proceedings. 23rd
International Conference on. IEEE, 2003, pp. 710–715.

[45] F. Bian, D. Kempe, and R. Govindan, “Utility based sensor selection,” in Proceedings of
the 5th international conference on Information processing in sensor networks. ACM,
2006, pp. 11–18.

[46] G. Mainland, D. C. Parkes, and M. Welsh, “Decentralized, adaptive resource allocation
for sensor networks,” in Proceedings of the 2nd conference on Symposium on Networked
Systems Design & Implementation-Volume 2. USENIX Association, 2005, pp. 315–328.

[47] Z. Ming and M. Yan, “A modeling and computational method for qos in iot,” in Software
Engineering and Service Science (ICSESS), 2012 IEEE 3rd International Conference
on. IEEE, 2012, pp. 275–279.

[48] J. Jin, J. Gubbi, T. Luo, and M. Palaniswami, “Network architecture and qos issues in
the internet of things for a smart city,” in Communications and Information Techno-
logies (ISCIT), 2012 International Symposium on. IEEE, 2012, pp. 956–961.

[49] I. Awan, M. Younas, and W. Naveed, “Modelling qos in iot applications,” in Network-
Based Information Systems (NBiS), 2014 17th International Conference on. IEEE,
2014, pp. 99–105.

[50] I. F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou, “A roadmap for traffic engi-
neering in sdn-openflow networks,” Computer Networks, vol. 71, pp. 1–30, 2014.

[51] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky, and
S. Uhlig, “Software-defined networking: A comprehensive survey,” Proceedings of the
IEEE, vol. 103, no. 1, pp. 14–76, 2015.

[52] A. Mirchev, “Survey of concepts for qos improvements via sdn,” Future Internet (FI)
and Innovative Internet Technologies and Mobile Communications (IITM), vol. 33, p. 1,
2015.

[53] M. S. Seddiki, M. Shahbaz, S. Donovan, S. Grover, M. Park, N. Feamster, and Y.-Q.
Song, “Flowqos: Qos for the rest of us,” in Proceedings of the third workshop on Hot
topics in software defined networking. ACM, 2014, pp. 207–208.

101

[54] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba, “Policycop: An autonomic
qos policy enforcement framework for software defined networks,” in Future Networks
and Services (SDN4FNS), 2013 IEEE SDN For. IEEE, 2013, pp. 1–7.

[55] A. Ishimori, F. Farias, E. Cerqueira, and A. Abelém, “Control of multiple packet sche-
dulers for improving qos on openflow/sdn networking,” in Software Defined Networks
(EWSDN), 2013 Second European Workshop on. IEEE, 2013, pp. 81–86.

[56] H. E. Egilmez, S. T. Dane, K. T. Bagci, and A. M. Tekalp, “Openqos: An open-
flow controller design for multimedia delivery with end-to-end quality of service over
software-defined networks,” in Signal & Information processing association annual sum-
mit and conference (APSIPA ASC), 2012 Asia-Pacific. IEEE, 2012, pp. 1–8.

[57] Y. Jinyao, Z. Hailong, S. Qianjun, L. Bo, and G. Xiao, “Hiqos: An sdn-based multipath
qos solution,” China Communications, vol. 12, no. 5, pp. 123–133, 2015.

[58] M. Jammal, T. Singh, A. Shami, R. Asal, and Y. Li, “Software defined networking:
State of the art and research challenges,” Computer Networks, vol. 72, pp. 74–98, 2014.

[59] “Opendaylight.” [Online]. Available: https://www.opendaylight.org
[60] “Project floodlight.” [Online]. Available: http://www.projectfloodlight.org/floodlight
[61] “Ryu sdn framework.” [Online]. Available: https://osrg.github.io/ryu/
[62] P. Martinez-Julia and A. F. Skarmeta, “Empowering the internet of things with soft-

ware defined networking,” FP7 European research project on the future Internet of
Things, 2014.

[63] Z. Qin, G. Denker, C. Giannelli, P. Bellavista, and N. Venkatasubramanian, “A software
defined networking architecture for the internet-of-things,” in Network Operations and
Management Symposium (NOMS), 2014 IEEE. IEEE, 2014, pp. 1–9.

[64] M. Mendonca, K. Obraczka, and T. Turletti, “The case for software-defined networking
in heterogeneous networked environments,” in Proceedings of the 2012 ACM conference
on CoNEXT student workshop. ACM, 2012, pp. 59–60.

[65] S. Costanzo, L. Galluccio, G. Morabito, and S. Palazzo, “Software defined wireless
networks: Unbridling sdns,” in Software Defined Networking (EWSDN), 2012 European
Workshop on. IEEE, 2012, pp. 1–6.

[66] K.-K. Yap, M. Kobayashi, R. Sherwood, T.-Y. Huang, M. Chan, N. Handigol, and
N. McKeown, “Openroads: Empowering research in mobile networks,” ACM SIG-
COMM Computer Communication Review, vol. 40, no. 1, pp. 125–126, 2010.

[67] M. Bansal, J. Mehlman, S. Katti, and P. Levis, “Openradio: a programmable wire-
less dataplane,” in Proceedings of the first workshop on Hot topics in software defined
networks. ACM, 2012, pp. 109–114.

https://www.opendaylight.org
http://www.projectfloodlight.org/ floodlight
https://osrg.github.io/ryu/

102

[68] A. Gudipati, D. Perry, L. E. Li, and S. Katti, “Softran: Software defined radio access
network,” in Proceedings of the second ACM SIGCOMM workshop on Hot topics in
software defined networking. ACM, 2013, pp. 25–30.

[69] F. Meneses, D. Corujo, C. Guimaraes, and R. L. Aguiar, “Multiple flow in extended
sdn wireless mobility,” in Software Defined Networks (EWSDN), 2015 Fourth European
Workshop on. IEEE, 2015, pp. 1–6.

[70] H. Yang and Y. Kim, “Sdn-based distributed mobility management,” in Information
Networking (ICOIN), 2016 International Conference on. IEEE, 2016, pp. 337–342.

[71] T. Miyazaki, S. Yamaguchi, K. Kobayashi, J. Kitamichi, S. Guo, T. Tsukahara, and
T. Hayashi, “A software defined wireless sensor network,” in Computing, Networking
and Communications (ICNC), 2014 International Conference on. IEEE, 2014, pp.
847–852.

[72] L. Galluccio, S. Milardo, G. Morabito, and S. Palazzo, “Sdn-wise: Design, prototyping
and experimentation of a stateful sdn solution for wireless sensor networks,” in Com-
puter Communications (INFOCOM), 2015 IEEE Conference on. IEEE, 2015, pp.
513–521.

[73] ——, “Reprogramming wireless sensor networks by using sdn-wise: A hands-on demo,”
in Computer Communications Workshops (INFOCOM WKSHPS), 2015 IEEE Confe-
rence on. IEEE, 2015, pp. 19–20.

[74] D. Zeng, P. Li, S. Guo, T. Miyazaki, J. Hu, and Y. Xiang, “Energy minimization in
multi-task software-defined sensor networks,” IEEE transactions on computers, vol. 64,
no. 11, pp. 3128–3139, 2015.

[75] D. Zeng, P. Li, S. Guo, and T. Miyazaki, “Minimum-energy reprogramming with gua-
ranteed quality-of-sensing in software-defined sensor networks,” in Communications
(ICC), 2014 IEEE International Conference on. IEEE, 2014, pp. 288–293.

[76] F. Olivier, G. Carlos, and N. Florent, “Sdn based architecture for clustered wsn,” in
Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS), 2015 9th
International Conference on. IEEE, 2015, pp. 342–347.

[77] J. Liu, Y. Li, M. Chen, W. Dong, and D. Jin, “Software-defined internet of things for
smart urban sensing,” IEEE communications magazine, vol. 53, no. 9, pp. 55–63, 2015.

[78] N. Bizanis and F. A. Kuipers, “Sdn and virtualization solutions for the internet of
things: A survey,” IEEE Access, vol. 4, pp. 5591–5606, 2016.

[79] D. Wu, D. I. Arkhipov, E. Asmare, Z. Qin, and J. A. McCann, “Ubiflow: Mobility
management in urban-scale software defined iot,” in Computer Communications (IN-
FOCOM), 2015 IEEE Conference on. IEEE, 2015, pp. 208–216.

103

[80] S. K. Tayyaba, M. A. Shah, O. A. Khan, and A. W. Ahmed, “Software defined network
(sdn) based internet of things (iot): A road ahead,” in Proceedings of the International
Conference on Future Networks and Distributed Systems. ACM, 2017, p. 10.

[81] C. Gudipalley, C. Monden, J. Abbott, S. Amid, and R. Banke, “Service level agreement
management,” Feb. 21 2008, uS Patent App. 11/784,301.

[82] H.-J. Lee, M.-S. Kim, J. W. Hong, and G.-H. Lee, “Qos parameters to network perfor-
mance metrics mapping for sla monitoring,” KNOM Review, vol. 5, no. 2, pp. 42–53,
2002.

[83] S. Tilak, N. B. Abu-Ghazaleh, and W. Heinzelman, “A taxonomy of wireless micro-
sensor network models,” ACM SIGMOBILE Mobile Computing and Communications
Review, vol. 6, no. 2, pp. 28–36, 2002.

[84] C. Xu, B. Chen, and H. Qian, “Quality of service guaranteed resource management
dynamically in software defined network,” Journal of Communications, vol. 10, no. 11,
pp. 843–850, 2015.

[85] F. Ye, H. Luo, J. Cheng, S. Lu, and L. Zhang, “A two-tier data dissemination model
for large-scale wireless sensor networks,” in Proceedings of the 8th annual international
conference on Mobile computing and networking. ACM, 2002, pp. 148–159.

[86] Y. Yao and J. Gehrke, “The cougar approach to in-network query processing in sensor
networks,” ACM Sigmod record, vol. 31, pp. 9–18, 2002.

[87] Y. Zhao, R. Govindan, and D. Estrin, “Residual energy scans for monitoring wireless
sensor networks,” 2002.

[88] O. Flauzac, C. Gonzalez, and F. Nolot, “Developing a distributed software defined
networking testbed for iot,” Procedia Computer Science, vol. 83, pp. 680–684, 2016.

[89] W. Li, D. Liu, B. Zhu, X. Wei, W. Xiao, and L. Yang, “Sdn control model for intel-
ligent task execution in wireless sensor and actor networks,” in Vehicular Technology
Conference (VTC Spring), 2016 IEEE 83rd. IEEE, 2016, pp. 1–5.

[90] Z. Wen, X. Liu, Y. Xu, and J. Zou, “A restful framework for internet of things based
on software defined network in modern manufacturing,” The International Journal of
Advanced Manufacturing Technology, vol. 84, pp. 361–369, 2016.

[91] C. Bisdikian, L. M. Kaplan, M. B. Srivastava, D. J. Thornley, D. Verma, and R. I.
Young, “Building principles for a quality of information specification for sensor infor-
mation,” in Information Fusion, 2009. FUSION’09. 12th International Conference on.
IEEE, 2009, pp. 1370–1377.

104

[92] C. Bisdikian, L. M. Kaplan, and M. B. Srivastava, “On the quality and value of infor-
mation in sensor networks,” ACM Transactions on Sensor Networks (TOSN), vol. 9,
no. 4, p. 48, 2013.

[93] M. Mathew and N. Weng, “Quality of information and energy efficiency optimization
for sensor networks via adaptive sensing and transmitting,” IEEE Sensors Journal,
vol. 14, no. 2, pp. 341–348, 2014.

[94] V. Sachidananda, A. Khelil, and N. Suri, “Quality of information in wireless sensor
networks: A survey,” ICIQ (to appear), 2010.

[95] W.-Y. Huang, T.-Y. Chou, J.-W. Hu, and T.-L. Liu, “Automatically end to end to-
pology discovery and flow viewer on sdn,” in Advanced Information Networking and
Applications Workshops (WAINA), 2014 28th International Conference on. IEEE,
2014, pp. 910–915.

[96] N. L. Van Adrichem, C. Doerr, and F. A. Kuipers, “Opennetmon: Network monito-
ring in openflow software-defined networks,” in Network Operations and Management
Symposium (NOMS). IEEE, 2014, pp. 1–8.

[97] C. Yu, C. Lumezanu, Y. Zhang, V. Singh, G. Jiang, and H. V. Madhyastha, “Flow-
sense: Monitoring network utilization with zero measurement cost,” in International
Conference on Passive and Active Network Measurement. Springer, 2013, pp. 31–41.

[98] “Openflow management and configuration protocol of-config1.1.1,” ONF(Open Net-
working Foundation, 3 2013.

[99] W. Wendong, Q. Qinglei, G. Xiangyang, H. Yannan, and Q. Xirong, “Autonomic qos
management mechanism in software defined network,” China Communications, vol. 11,
no. 7, pp. 13–23, 2014.

[100] J. Zhou, H. Jiang, J. Wu, L. Wu, C. Zhu, and W. Li, “Sdn-based application framework
for wireless sensor and actor networks,” IEEE Access, vol. 4, pp. 1583–1594, 2016.

[101] S. Subbiah and V. Perumal, “Energy-aware network resource allocation in sdn,” in Wi-
reless Communications, Signal Processing and Networking (WiSPNET), International
Conference on. IEEE, 2016, pp. 2071–2075.

[102] Y. Chen, N. Nasser, T. E. Salti, and H. Zhang, “A multipath qos routing protocol in
wireless sensor networks,” International Journal of Sensor Networks, vol. 7, no. 4, pp.
207–216, 2010.

[103] S. A. Chaudhry and J. Zhang, “Network-state-aware quality of service provisioning for
the internet of things,” Network, vol. 7, no. 6, 2016.

105

[104] S. Song, J. Lee, K. Son, H. Jung, and J. Lee, “A congestion avoidance algorithm in sdn
environment,” in Information Networking (ICOIN), 2016 International Conference on.
IEEE, 2016, pp. 420–423.

[105] D. M. Micha Pióro, Routing, Flow, and Capacity Design in Communication and Com-
puter Networks. Morgan Kaufmann, 2004.

[106] “Feature scaling,” 1999. [Online]. Available: https://en.wikipedia.org/wiki/Feature_
scaling

[107] P. Karkazis, P. Trakadas, H. C. Leligou, L. Sarakis, I. Papaefstathiou, and T. Zaharia-
dis, “Evaluating routing metric composition approaches for qos differentiation in low
power and lossy networks,” Wireless networks, vol. 19, no. 6, pp. 1269–1284, 2013.

[108] M. Dastbaz, C. Pattinson, and B. Akhgar, Green information technology: A sustainable
approach. Morgan Kaufmann, 2015.

[109] D. Medhi and K. Ramasamy, Network routing: algorithms, protocols, and architectures.
Morgan Kaufmann, 2017.

[110] B. Xiong, K. Yang, J. Zhao, W. Li, and K. Li, “Performance evaluation of openflow-
based software-defined networks based on queueing model,” Computer Networks, vol.
102, pp. 172–185, 2016.

[111] R. Bellman, “On a routing problem,” Quarterly of applied mathematics, vol. 16, no. 1,
pp. 87–90, 1958.

[112] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische
mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[113] “Ampl, a mathematical programming language.” [Online]. Available: http://www.
ampl.com

[114] R. M. Karp, “Reducibility among combinatorial problems,” in Complexity of computer
computations. Springer, 1972, pp. 85–103.

[115] “User guide for minos 5.5: Fortran package for large-scale optimization.” [Online].
Available: https://web.stanford.edu/group/SOL/minos.htm

[116] “Ibm cplex optimizer.” [Online]. Available: http://www-01.ibm.com/software/
commerce/optimization/cplex-optimizer

[117] L. Tan, Resource Allocation and Performance Optimization in Communication Net-
works and the Internet. CRC press, 2017.

[118] S. Halabi, “Ospf design guide,” Cisco Systems Network Supported Accounts, 1996.

[119] CISCO, “How to configure ospf cost,” Tech. Rep., June 2009. [Online]. Available:
https://supportforums.cisco.com

https://en.wikipedia.org/wiki/Feature_scaling
https://en.wikipedia.org/wiki/Feature_scaling
http://www. ampl.com
http://www. ampl.com
https://web.stanford.edu/group/SOL/minos.htm
http://www-01.ibm.com/software/ commerce/optimization/cplex-optimizer
http://www-01.ibm.com/software/ commerce/optimization/cplex-optimizer
https://supportforums.cisco.com

106

[120] M. A. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Clarke, “Middleware for in-
ternet of things: a survey,” IEEE Internet of Things Journal, vol. 3, no. 1, pp. 70–95,
2016.

[121] Y. E. Oktian, S. Lee, H. Lee, and J. Lam, “Distributed sdn controller system: A survey
on design choice,” Computer Networks, vol. 121, pp. 100–111, 2017.

[122] U. Krishnaswamy, P. Berde, J. Hart, M. Kobayashi, P. Radoslavov, T. Lindberg,
R. Sverdlov, S. Zhang, W. Snow, and G. Parulkar, “Onos: An open source distributed
sdn os,” 2013.

[123] HP, “Hp sdn controller architecture,” Tech. Rep., September 2013. [Online].
Available: http://h17007.www1.hpe.com/docs/networking/solutions/sdn/devcenter/
06_-_HP_SDN_Controller_Architecture_TSG_v1_3013-10-01.pdf

[124] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu, R. Ramanathan,
Y. Iwata, H. Inoue, T. Hama et al., “Onix: A distributed control platform for large-scale
production networks.” in OSDI, vol. 10, 2010, pp. 1–6.

[125] THE SCHOOL OF CISCO NETWORKING (SCN), “Protocol com-
parison ospf with eigrp, bgp and rip,” Tech. Rep., 2013.
[Online]. Available: https://premji-schoolofcisconetworking.blogspot.com/2013/06/
protocol-comparison-ospf-with-eigrp-bgp.html

http://h17007.www1.hpe.com/docs/networking/solutions/sdn/devcenter/06_-_HP_SDN_Controller_Architecture_TSG_v1_3013-10-01.pdf
http://h17007.www1.hpe.com/docs/networking/solutions/sdn/devcenter/06_-_HP_SDN_Controller_Architecture_TSG_v1_3013-10-01.pdf
https://premji-schoolofcisconetworking.blogspot.com/2013/06/protocol-comparison-ospf-with-eigrp-bgp.html
https://premji-schoolofcisconetworking.blogspot.com/2013/06/protocol-comparison-ospf-with-eigrp-bgp.html

107

APPENDIX A NETWORK TOPOLOGY

The particular network topologies used to evaluate the performance of the proposed QoS
model in Chapter 5 are illustrated here:

Topology A:

Figure A.1 Network topology-A

Table A.1 Topology-A link configuration

Link Max
BW(Mbps) PacketLoss Delay(ms) Available

BW(Mbps) Link Max
BW(Mbps) PacketLoss(%) Delay(ms) Available

BW(Mbps)
(1,2) 300 1% 0.01 300 (2,6) 400 2% 0.01 200
(1,4) 400 1% 0.02 400 (3,6) 600 2% 0.05 400
(1,5) 200 2% 0.01 200 (4,5) 400 1% 0.01 300
(2,3) 600 2% 0.02 300 (5,6) 300 1% 0.01 300
(2,5) 600 2% 0.05 200

Topology B:

Table A.2 Topology-B link configuration

Link Max
BW(Mbps) PacketLoss(%) Delay(ms) Available

BW(Mbps) Link Max
BW(Mbps) PacketLoss(%) Delay(ms) Available

BW(Mbps)
(1,2) 400 1 0.01 200 (4,7) 600 1 0.01 200
(1,4) 600 2 0.02 300 (5,6) 400 1 0.01 300
(2,3) 300 1 0.02 300 (5,7) 300 1 0.01 200
(2,3) 200 2 0.01 150 (5,8) 200 2 0.02 100
(2,5) 300 1 0.02 300 (6,8) 300 1 0.01 200
(3,5) 400 1 0.05 200 (6,9) 300 2 0.02 1500
(3,6) 600 2 0.03 400 (7,8) 400 2 0.03 400
(4,5) 200 2 0.01 100 (8,9) 600 2 0.02 400

108

Figure A.2 Network topology-B

Topology C:

Figure A.3 Network topology-C

Table A.3 Topology-C link configuration

Link Link
BW (Mbps) Packet loss(%) Delay(ms) Available

BW(Mbps) Link Link
BW(Mbps) Packet loss(%) Delay(ms) Available

BW(Mbps)
(1 2) 500 1 0.01 300 (5 6) 600 1.5 0.01 400
(1 4) 600 2 0.02 300 (5 12) 300 0 0.01 300
(1 5) 200 1.5 0.05 100 (6 10) 500 1.5 0.05 300
(2 3) 600 1.5 0.02 300 (7 8) 600 1.5 0.02 150
(2 5) 300 1.5 0.05 150 (7 10) 400 2 0.05 200
(2 6) 400 1.5 0.01 200 (8 9) 400 1.5 0.01 200
(2 9) 400 0 0.01 200 (8 11) 600 1.5 0.01 300
(3 6) 600 1.5 0.05 500 (10 11) 400 1.5 0.01 200
(3 7) 600 2 0.05 500 (11 12) 300 1 0.02 200
(4 5) 400 0 0.01 300

Topology D:

109

Figure A.4 Network topology-D

Table A.4 Topology-D link configuration

Link Link
BW (Mbps) Packet loss(%) Delay(ms) Available

BW(Mbps) Link Link
BW(Mbps) Packet loss(%) Delay(ms) Available

BW(Mbps)
(1 2) 400 1 0.01 200 (7 10) 600 1 0.01 400
(1 4) 600 2 0.02 300 (8 9) 300 2 0.02 200
(2 3) 300 1 0.02 300 (8 10) 200 1 0.01 200
(2 4) 200 2 0.01 150 (8 11) 300 2 0.01 100
(2 5) 300 1 0.02 300 (9 11) 400 1 0.01 200
(3 5) 400 1 0.05 200 (9 12) 600 2 0.02 400
(3 6) 600 2 0.01 400 (10 11) 600 1 0.01 400
(4 5) 600 2 0.03 400 (10 13) 300 2 0.02 250
(4 7) 200 1 0.01 100 (11 12) 200 1 0.01 100
(5 6) 600 2 0.01 400 (11 13) 200 2 0.02 200
(5 7) 300 1 0.01 200 (11 14) 300 1 0.01 200
(5 8) 200 2 0.02 100 (12 14) 200 2 0.02 100
(6 8) 300 1 0.01 200 (12 15) 600 1 0.01 200
(6 9) 600 2 0.02 400 (13 14) 300 2 0.01 200
(7 8) 400 2 0.02 400 (13 15) 300 2 0.02 100

110

APPENDIX B ROUTING PROTOCOL

In Table B.1, we demonstrate well-known routing protocols and their main characteristics.
OSPF as a link-state routing protocol is used in the large network, but it consumes more
computational resource. Its implementation also is complex task across the large network.
[125]

Table B.1 Various routing protocols

Features RIPv1 RIPv2 IGRP OSPF EIGRP
Category Distance vector Distance vector Distance vector Link state Hybrid

Metric Hop Hop Composite
(BW and delay) BW Composite

(BW and delay)
Periodic advertisement (second) 30s 30s 90s N/A 30s
Scalability – Size of network Small Small Small Large Large
Resource usage Low Low Low High Medium
Implementation and maintenance Simple Simple Simple Complex Complex

	DEDICATION
	AKNOWLEDGEMENTS
	RÉSUMÉ
	ABSTRACT
	TABLE OF THE CONTENTS
	LIST OF THE TABLES
	LIST OF THE FIGURES
	TABLE OF ACRONYMS AND ABBREVIATIONS
	LIST OF APPENDICES
	1 INTRODUCTION
	1.1 Definitions and basic concepts
	1.1.1 Internet of Things architecture
	1.1.2 Software Defined Networking(SDN) architecture
	1.1.3 Quality of Service (QoS)

	1.2 Aspects of the problem
	1.3 Research objectives
	1.4 Outline

	2 RELATED WORK AND OVERVIEW
	2.1 Quality of Service approaches in IoT system
	2.2 Software Defined Networking (SDN)
	2.2.1 OpenFlow Protocol
	2.2.2 SDN operation mechanism
	2.2.3 QoS management in SDN

	2.3 Software-Defined IoT system

	3 SYSTEM ARCHITECTURE
	3.1 Proposed architecture
	3.2 Assumption
	3.3 Component description
	3.4 Architecture workflow
	3.5 Architecture advantage

	4 MATHEMATICAL MODELING
	4.1 Multi-Commodity Constraint-based Routing Path Flow problem (MCCRPF)
	4.2 Link cost design based on multiple metrics
	4.3 QoS parameters definitions and calculations formula
	4.3.1 Delay
	4.3.2 Packet loss ratio
	4.3.3 Bandwidth

	4.4 Summary

	5 EVALUATION AND RESULT
	5.1 Model implementation
	5.2 Experiments and performance evaluation
	5.2.1 Single-demand scenario
	5.2.2 Multi-demand scenario

	5.3 Result analysis

	6 CONCLUSION
	6.1 Summary of the work and contribution
	6.2 Limitation of the work
	6.3 Future work

	BIBLIOGRAPHY
	ANNEXES

