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RÉSUMÉ

Les systèmes logiciels sont devenus une des composantes principales de tous les secteurs
d’activité. Dans la course au rendement économique, les développeurs sont susceptibles d’im-
plémenter des solutions non optimales aux problèmes qui leur sont posés. On nomme ainsi
anti-patrons ou “design smells” ces mauvais choix de conception introduits par manque de
temps et–ou d’expérience. Si ces derniers n’ont pas forcément d’impact à l’exécution, de nom-
breuses études ont mis en lumière leur influence négative sur la maintenabilité des systèmes.

De nombreuses approches de détection automatique des anti-patrons ont été proposées. Pour
la plupart, ces approches reposent sur l’analyse statique du code, mais il a été montré que les
anti-pattrons sont aussi détectables par une analyse des données historiques des systèmes.
Cependant, aucune d’entre elles ne semble clairement se distinguer des autres, et chaque ap-
proche identifie des ensembles d’occurrences différents, en particulier quand celles-ci reposent
sur des sources d’information complémentaires (i.e., structurelles vs. historiques).

Plusieurs approches basées sur l’apprentissage automatique ont tenté d’adresser ce problème.
Toutefois, ces approches semblent faire face à des limitations qui leur sont intrinsèques. D’une
part, inférer des caractéristiques de haut niveau sur les systèmes à partir de données brutes
nécessite des modèles d’une grande complexité. D’autre part, l’entrainement de tels modèles
requière un nombre conséquent d’exemples d’apprentissage, qui sont fastidieux à produire et
existent en nombre très limité.

Ce travail tire profit des méthodes d’apprentissage automatique pour répondre aux limitations
évoquées précédemment. Dans un premier temps, nous proposons une méthode ensembliste
permettant d’agréger plusieurs outils de détection. Nous montrons qu’une telle méthode
atteint des performances nettement supérieures à celles des outils ainsi agrégés et permet de
générer des instances d’apprentissage pour des modèles plus complexes à partir d’un nombre
raisonnable d’exemples. Ensuite, nous proposons un modèle d’apprentissage profond pour
la détection des anti-patrons. Ce modèle est basé sur l’analyse de l’évolution des métriques
logicielles. Plus précisément, nous calculons les valeurs de certaines métriques pour chaque
révision du système étudié, et, entrainons un réseau de neurones convolutif à y détecter les
anti-patrons à partir de ces données. Nous montrons qu’en s’appuyant ainsi sur les aspects
structurels et historiques des systèmes, notre modèle surpasse les approches existantes.

Nos approches ont été expérimentées dans le cadre de la détection de deux anti-patrons
populaires : God Class et Feature Envy, et leurs performances comparées avec celles de l’état
de l’art.
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ABSTRACT

Software systems are constantly modified, whether to be adapted or to be fixed. Due to
the exigence of economic performances, these modifications are sometimes performed in a
hurry and developers often implement sub optimal solutions that decrease the quality of the
code. In this context, the term “anti-pattern” have been introduced to represent such “bad”
solutions to recurring design problems.

A variety of approaches have been proposed to identify the occurrences of anti-patterns in
source code. Most of them rely on structural aspects of software systems but some alternative
solutions exist. It has been shown that anti-patterns are also detectable through an analysis
of historical information, i.e., by analyzing how code components evolve with one another over
time. However, none of these approaches can claim high performances for any anti-pattern
and for any system. Furthermore different approaches identify different sets of occurrences,
especially when based on orthogonal sources of information (structural vs. historical).

Several machine-learning based approaches have been proposed to address this issue. However
these approaches failed to surpass conventional detection techniques. On the one hand,
learning high level features from raw data requires complex models such as deep neural-
networks. On the other hand, training such complex models requires substantial amounts of
manually-produced training data, which is hardly available and time consuming to produce
for anti-patterns.

In this work, we address these issues by taking advantage of machine-learning techniques.
First we propose a machine-learning based ensemble method to efficiently aggregate various
anti-patterns detection tools. We show that (1) such approach clearly enhances the perfor-
mances of the so aggregated tools and; (2) our method produces reliable training instances
for more complex anti-pattern detection models from a reasonable number of training exam-
ples. Second we propose a deep-learning based approach to detect anti-patterns by analyzing
how source code metrics evolve over time. To do so, we retrieve code metrics values for
each revision of the system under investigation by mining its version control system. This
information is then provided as input to a convolutional neural network to perform final
prediction. The results of our experiments indicate that our model significantly outperforms
existing approaches.

We experiment our approaches for the detection of two widely known anti-patterns: God
Class and Feature Envy and compare their performances with those of state-of-the-art.
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CHAPTER 1 INTRODUCTION

1.1 Context and Motivations

Software systems are becoming one of the key components of every industry. Thus, main-
taining software quality at a high level while constantly innovating is a major issue for every
company. Software quality is impacted by the patterns applied and followed by developers.
Among these patterns, design patterns and anti-patterns have been shown in the literature
to impact the maintenance and evolution of systems.

Design patterns (Gamma et al. (1994)) and anti-patterns (Brown et al. (1998)) have been in-
troduced to encode the “good” and “bad” design practices of experienced software developers.
Design patterns describe solutions to common recurring design problems and promote flexi-
bility and reusability. Design anti-patterns present common recurring design problems, i.e.,
“bad” solutions that decrease some quality characteristics, and suggest “good” alternative
solutions.

Anti-patterns are typically introduced in the source code of systems when developers imple-
ment suboptimal solutions to their problems due for example to a lack of knowledge and–or
time constraints. For instance, the God Class anti-pattern refers to the situation in which a
class centralizes most of the system intelligence and implements a high number of responsi-
bilities. Such classes appear when developers always assign new functionalities to the same
class, thus breaking the principle of single responsibility.

There have been many empirical studies aiming to understand the effect of design anti-
patterns on software systems. These works have highlighted their negative impact on software
comprehension (Abbes et al. (2011)), fault-proneness (Khomh et al. (2012)) and maintain-
ability (Yamashita and Moonen (2013)).

In response to these works, several strategies have been proposed to identify the occurrences
of anti-patterns in software systems. Most of these works describe anti-patterns using struc-
tural metrics (e.g., cyclomatic complexity or lines of code) and attempt to identify bad motifs
in models of the source code by defining thresholds to apply to the value of these metrics.
For example, Moha et al. (2010) proposed a domain-specific language to describe and gen-
erate detection algorithms for anti-patterns using structural and lexical metrics. Alternative
solutions have also been proposed to detect anti-patterns using others aspects of software sys-
tems. For instance, Palomba et al. (2013, 2015a) have shown that number of anti-patterns
impact how source code entities, i.e., classes and methods, evolve with one another when
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changes are applied to the systems. Therefore, they proposed a set of rules designed to
identify occurrences of anti-patterns from co-changes occurring between source code entities.

Even though these approaches have shown acceptable detection performances, they still ex-
hibit large numbers of false positives and misses, and none of them seem to truly stand
out among others. Besides, a low agreement can be observed between different approaches
(Fontana et al. (2012)) because each of them is based on a different definition of anti-patterns.
Thus, each approach can identify occurrences that cannot be detected by others, especially
when they rely on orthogonal sources of information (Palomba et al. (2013)).

Recently, machine-learning models have been shown efficient in a variety of domains. Specifi-
cally, deep neural-networks have completely redefined the fields of speech recognition (Graves
et al. (2013)), image processing (Krizhevsky et al. (2012)) or sentiment analysis (dos Santos
and Gatti (2014)). This success stands on their ability to extract “deep features” i.e., high
level characteristics, from complex data. Several machine-learning based approaches have
been proposed to detect anti-patterns. For example, Maiga et al. (2012a,b) proposed the use
of support vector machines (SVM) for the detection of God Class, Functional Decomposi-
tion, Spaghetti code, and Swiss Army Knife, while Liu et al. (2018) proposed a deep-learning
model to detect Feature Envy. However, these approaches failed to surpass clearly conven-
tional detection techniques.

We identify two main reasons to the limitations faced by machine-learning models in detect-
ing anti-patterns. First, as shown by Palomba et al. (2018), software systems are usually
affected by a small proportion of anti-patterns (<1%). Consequently, the repartition of la-
bels (i.e., Affected or Healthy) within the data is highly imbalanced, which have been shown
to compromise the performances of machine-learning models (He and Garcia (2008)). Sec-
ond, training complex models such as deep neural-networks requires substantial amounts of
training data, i.e., manually-validated examples of Affected and Healthy components, which
is hardly available and time consuming to produce for anti-patterns.

1.2 Research Objectives

This master’s thesis focuses on the detection of design anti-patterns by leveraging both struc-
tural and historical information. In particular, we propose two novel machine-learning de-
tection approaches and we implement them for two widely known anti-patterns: God Class
and Feature Envy. This work also addresses the issues evoked in the previous section as
follows: (1) we created an oracle reporting the occurrences of the studied anti-patterns in
eight open-source Java projects and; (2) we propose a training procedure designed to address
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the imbalanced data problem. In a first part, we propose a machine-learning based ensem-
ble method to efficiently aggregate various anti-patterns detection tools based on different
strategies and–or sources of information. We show that (1) such approach significantly en-
hances the performances of the so aggregated tools and; (2) our method produces reliable
training instances for more complex anti-pattern detection models from a reasonable number
of training examples. In a second part, we propose a deep-learning based approach to detect
anti-patterns by analyzing how source code metrics evolve over time. To do so, we retrieve
code metrics values for each revision of the system under investigation by mining its version
control system. This information is then provided as input to a convolutional neural network
to perform final prediction. The results of our experiments indicate that our model signif-
icantly outperforms state-of-the-art detection tools. Thus, this work answers the following
research questions:

• How can the imbalanced data problem be addressed for anti-patterns detection?

• How can we leverage existing detection tools to automatically label training instances
for machine-learning anti-patterns detection models?

• How can we leverage machine-learning techniques to detect anti-patterns using both
structural and historical informations?

• How does such approaches compare with state-of-the-art?

1.3 Research Contributions

This thesis investigates the use of machine-learning techniques to detect anti-patterns from
both structural and historical sources of information. With the results of our experiments,
we make the following contributions:

1. An oracle reporting the occurrences of God Class and Feature Envy in eight Java
software systems.

2. A procedure to train feed-forward neural-networks to detect anti-patterns.

3. A machine-learning based ensemble method to efficiently aggregate existing anti-patterns
detection approaches.

4. A procedure to automatically generate training data for machine-learning anti-patterns
detection models.
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5. A deep-learning model that rely on code metrics evolution to detect anti-patterns.

6. An implementation of our approaches for the detection of God Class and Feature Envy
and a comparison of their performances with state-of-the-art.

1.4 Thesis Structure

This thesis is organized as follows. Chapter 2 presents a background on neural-networks
and provides necessary information to understand the models used in this work. Chapter 3
overviews the related literature on design anti-patterns. Chapter 4 presents the background
common to our studies as well as the building of our oracle and our training procedure.
Chapter 5 presents our first study on the aggregation of various detection approaches while
Chapter 6 presents our deep-learning model for anti-patterns detection from code metrics
history. Finally, Chapter 7 discusses the threats that could affect the validity of our studies
and Chapter 8 concludes and discusses future work.
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CHAPTER 2 BACKGROUND ON SUPERVISED LEARNING

2.1 Classification

Classification is the task of arranging the elements of a set into different classes c1, c2, ..., cK .
Formally, we dispose of a set of N samples xi, i ∈ {1, 2, ..., N} and we want to assign a
label yi ∈ {c1, c2, ..., cK} to each sample. To perform this classification, each sample xi is
characterized by a set of m numerical attributes (i.e., features) xij ∈ R, j ∈ {1, 2, ...,m} and
the values of this set of attributes for a given sample is commonly referred to as instance.
Then, the task of classification consists in finding a function f that predicts the label of an
instance from its input attributes, which can be expressed as:

yi = f(xi1, xi2, ..., xim) (2.1)

Real world problems are rarely deterministic and are often described using probabilities.
Thus, the problem of classification is usually addressed by predicting a probability for each
class and taking the one with the maximum value. In this context, a probabilistic classifica-
tion model outputs the labels conditional probability distribution for a given element:

p(yi|xi1, xi2, ..., xim) = f(xi1, xi2, ..., xim) (2.2)

In a typical scenario, the set D = {(xi, yi)}N
i=1 of the instances and their associated labels is

called the training set. We want to learn the conditional distribution given in Equation 2.2
as a parametric function of the attributes. Our goal is to find the parameters of this function
that lead to the best description of the probability distribution among instances and labels in
the training set. Then, when a new unobserved instance has to be classified, the so “trained”
model is used to predict which label is the most probable given its attributes.

Anti-patterns detection can be seen as a binary classification problem, where entities (classes
or methods) of a software system need to be classified between two labels: Affected or Healthy.
In the following sections, we first describe the models used to perform classification before
discussing the optimization of such models, commonly known as training.
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2.2 Models

This section describes the machine-learning models used in the context of our studies to
perform binary classification.

2.2.1 Logistic Regression

Logistic regression is a statistical technique for predicting the probability distribution for a
single class ck. Hence, the variable of interest here is the boolean variable yi = ck which takes
the value 1 if the input instance belongs to ck and 0 for other classes. Logistic regression
relies on the fundamental hypothesis that the log-odds of this variable can be expressed as a
linear function of the attributes:

log
(

P (1|xi1, xi2, ..., xim)
1− P (1|xi1, xi2, ..., xim)

)
= w0 + w1xi1 + w2xi2 + ...+ wmxim (2.3)

which can be expressed in vector form as:

log
(

P (1|xi)
1− P (1|xi)

)
= x>i w (2.4)

with the left-hand side of Equation 2.4, the log-odds (or logit transformation) for yi = ck,
xi = [1, xi1, ..., xim]> the input vector of the ith instance and w = [w0, w1, ..., wm] ∈ Rm

the vector of weights. The advantage of such expression is that the logit transformation
maps the input probability, which is bounded in [0, 1], into a real value. Thus, we can solve
Equation 2.4 for P (1|xi) to obtain the desired form for a binary classification expressed in
Equation 2.2:

P (1|xi) = 1
1 + exp(−x>i w) = sigmoid(x>i w) (2.5)

Figure 2.1 illustrates the process of logistic regression in a graphical form.
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Σ f

Sigmoid
function

P (1|xi)

xi1

...
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1
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w1

w0

Figure 2.1 Graph Representation of Logistic Regression

Consider now that we want to express the conditional probability distribution of the variable
yi among the different classes, i.e., the K probabilities that xi belongs to each class ck. In
this context, a multi-class logistic regression generalizes Equation 2.5 as follows:

P (yi = ck|xi) = exp(x>i wk)∑K
j=1 exp(x>i wj)

= softmax(x>i wk) (2.6)

With wj = [wj0, wj1, ..., wjm] the weights associated with the jth class. Figure 2.2 illustrates
this process in a graphical form. Note that for the sake of readability, we did not represent
the weights associated to each connection.

xi1

...

xim

1

Σ f

Softmax
function

P (yi = c1|xi)

Σ f P (yi = c2|xi)

...

Σ f P (yi = cK |xi)

Figure 2.2 Graph Representation of Multi-class Logistic Regression

It is interesting to remark that there are two ways of performing binary classification, i.e.,
yi ∈ {0, 1}. The first one consists in the operation illustrated in Figure 2.1 where the output
is one single real value: P (1|xi) using the sigmoid function. The second one considers binary
classification as a two-class classification problem which uses the softmax function to output
a vector of two values: [P (0|xi), P (1|xi)].
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2.2.2 Multi-layer Perceptron

A multi-layer perceptron (MLP) is a type of feed-forward artificial neural-network (ANN).
ANNs, are a family of probabilistic models that can be seen as a mathematical abstraction
of the biological nervous system. An ANN is composed of elementary units called “neurons”.
As shown in Figure 2.3, an artificial neuron takes as input a set of numerical values. These
input values are then summed and passed as input to an “activation function” that returns
the output of the neuron.

Σ f

Activation
function

Output

Input 1

Input 2

...

Figure 2.3 Graph Representation of an Artificial Neuron

There exists a variety of activation functions. As shown in Figure 2.4, most of them are
step-like functions which reminds us of the behavior of a biological neuron, i.e., the neuron
outputs a positive value only if the sum of the inputs is greater than a given threshold.

Figure 2.4 Examples of Activation Functions

The architecture of a MLP model is organized as follows:

1. Neurons are organized in successive fully-connected layers (or dense layers), i.e., the
output of a neuron is connected to all the neurons of the next layer and there exists no
connections between neurons of a same layer.

2. Connections between neurons are weighted. Thus the input of a given neuron is a linear
function of the outputs of all the neurons of the previous layer.
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3. The input layer (i.e., the first layer) represents the attributes of the data used to
perform classification.

4. The output layer (i.e., the last layer) represents the conditional probabilities for each
label predicted by the model.

5. The hidden layers (i.e., the layers in between) have no direct connections with the
environment.

Let us illustrate such architecture with the MLP presented in Figure 2.5. This model takes as
input m attributes and is composed of L hidden layers. It outputs a vector of K probabilities.
We note Ml, l ∈ {1, 2, ..., L} the size (i.e., number of neurons) of the lth hidden layer.
Activation functions are represented inside the neurons. Here, hidden neurons have a relu
activation function and the output neuron a softmax, thus outputting a probability.

Figure 2.5 Architecture of a MLP model

Note that input and hidden layers have an additional constant node called the bias. This
node allows each neuron to receive as input a linear function of the output of the neurons
of the previous layer. One can also remark that logistic regression is in fact equivalent to a
MLP with no hidden layers.
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2.2.3 Convolutional Neural Network

Convolutional Neural Networks are a special kind of feed-forward ANNs. These networks have
proved to be extremely efficient to process multi-dimensional inputs such as images. Indeed,
these networks happen to have a similar architecture than that of the human and animal
visual cortex (Hubel and Wiesel (1962)). CNNs have originally been proposed by LeCun et al.
(1998). However, their great potential for image processing have only been recognized by the
community after the deep CNN proposed by Krizhevsky et al. (2012) achieved breakthrough
results at the 2012 ImageNet Large Scale Visual Recognition Challenge (ILSVRC). CNNs
are characterized by the use of successive so called convolution layers directly after the input
layer. Then, the output of these convolution layers is usually fully-connected to a MLP model
(i.e., dense layers).

Convolution Layer

A convolution layer takes as input a multi-dimensional array of numbers (typically an image)
called a tensor and returns several filtered versions (called feature maps) of this input. There-
fore, a convolution layer contains several fixed-size filters and outputs the filter’s response at
each spatial location of the input. A convolution filter can be seen as an artificial neuron
that takes as input a fixed-size portion of the input tensor and pass the weighted sum of its
inputs to an activation function. Figure 2.6 illustrates the process of filtering of the input
also called convolution. In this example, a 4×5 input tensor is filtered by a 1×2 convolution
filter with a relu activation function, which produces a 4× 4 output.

Figure 2.6 Convolution of a 4× 5 tensor by a 1× 2 filter
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Pooling Layer

Once the input has been filtered by several filters, feature maps are often aggregated across a
small spatial region to reduce their dimensionality. This process called pooling is usually done
using the average or maximum value. Figure 2.7 illustrate a 2 × 2 max-pooling operation
across the feature map presented in Figure 2.6.

Figure 2.7 2× 2 max-pooling of a 4× 4 feature map

Thus, in a CNN, the input tensor is aggregated into several smaller tensors through multiple
successive convolution + pooling operations. These output tensors are then flattened and
concatenated to feed a MLP which performs the final prediction. Figure 2.8 overviews the
whole process with a CNN composed of two convolution + pooling layers, one dense layer
and three output neurons.

Figure 2.8 Architecture of a CNN model
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2.3 Optimization

The previous section focuses on the structure of the neural-networks used for classification. In
this section, we address the problem of training such models, i.e., finding the set of weights
that minimizes the error achieved by a model on a set of input–output examples. In the
remainder of this section, we consider having a training set D = {(xi, yi)}n

i=1 of instances
and their known associated labels. We note θ = {Wl}L+1

l=1 the set of weights of the model we
want to train.

2.3.1 Loss Function

We have seen how neural networks map an input vector xi of real values into an output
vector f(xi,θ) of probabilities. Training a neural-network model, is the process of finding
an optimal set of weights θ∗ that minimizes the error (or loss) obtained by the model on
the examples of D. Thus, one must define a loss function L(f(xi,θ),yi) that measures how
“bad” is the model’s prediction for a given example (xi,yi). Then, once the loss function is
defined, we want to minimize the mean loss performed by the model over every example of
the training set, which is called the empirical risk:

θ∗ = argmin
θ

1
N

N∑
i=1

L(f(xi,θ),yi) (2.7)

There exists a variety of loss functions. The choice of the right loss to use for a given
classification problem depends on the nature of this problem and how we want our model to
behave. Equations 2.8 and 2.9 presents two commonly used loss functions, the cross entropy
and the squared error :

cross_entropy = −
K∑

k=1
[yik log(fk(xi,θ)) + (1− yik) log(1− fk(xi,θ))] (2.8)

squared_error =
K∑

k=1
(fk(xi,θ)− yik)2 (2.9)

2.3.2 Gradient Descent

Gradient descent, is a procedure that allows to minimize the empirical risk by incrementally
updating the model weights. At each epoch, i.e., pass over the whole training set, the weights
are updated according to the gradient of the empirical risk computed with respect to the
model weights. This process is repeated until the computed value of the empirical risk has
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converged. Figure 2.9 shows the algorithm of gradient descent in pseudocode. The hyper-
parameter η is called the learning rate. It represents the length of the step by which the
weights are updated in the opposite direction to that of the gradient.

θ = θ0; // weights initialization
while converged == FALSE do

g = ∂

∂θ
[ 1
N

N∑
i=1

L(f(xi,θ),yi)];

θ = θ − ηg;
end

Figure 2.9 Gradient Descent Algorithm

In gradient descent, weights are only updated after all training examples have been fed
through the model. However, weights can also be updated according to the gradient of the
loss function computed for each training example, which is called stochastic gradient descent
(SGD). Another variant of gradient descent called mini-batch stochastic gradient descent
consists in splitting the training set in equal size subsets called mini-batch. Then, at each
epoch, the training set is split into new mini-batches and the weights are updated according
to the gradient of the empirical risk computed for each mini-batch.

2.3.3 Hyper-parameters Calibration

In the previous subsections, we have seen how to find an optimal set of weights θ∗ by
incrementally updating θ according to the gradient of the loss. However, before training a
neural-network, one must also find the optimal set of hyper-parameters for the model. For
example, the number of layers in the network (L), the size of each layer (Ml) as well as the
learning rate (η) are common hyper-parameters that must be assessed before training.

To do so, a common approach consists in keeping a portion of the training set (usually 30%)
called the validation set to monitor the performances achieved by the model with different
sets of hyper-parameters. Hence, for each set of hyper-parameters to test, the model is
trained on the new training set (70%) and the performances are tested on the validation
set (30%). Once the optimal set of hyper-parameters has been decided, it is a common
practice to perform the final training of the model on the whole set (100%) to maximize
the number of training examples. However, in this approach the validation set is selected
randomly which can lead to a wrong choice of hyper-parameters if the 30% sample selected is
not representative of the data. An alternative strategy is called the k-fold cross validation. It
consists in splitting the training set into k equal size partitions called folds. Afterwards, each
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set of hyper-parameters is tested k times by leaving one fold out for testing and keeping the
remaining k − 1 for training. Finally, the performance value retained for the tested hyper-
parameters is computed by taking the mean across the k generated values. Although k-fold
cross validation usually leads to a better hyper-parameters calibration, it can be tedious to
execute in practice, especially for deep-learning models that can take days to train.

The values of the hyper-parameters to test are usually selected using a random search, which
simply consists in randomly selecting the value for each hyper-parameter inside a predefined
range. This technique has proved to be more efficient than grid search (Bergstra and Bengio
(2012)).
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CHAPTER 3 LITERATURE REVIEW

During the past decade, the use of machine-learning has allowed great improvements in a
variety of domains, and of course, the field of anti-patterns detection has not been immune
from it. In this chapter, we first define the two anti-patterns considered in this thesis, then, we
present a literature review of (1) conventional techniques used to detect these anti-patterns
as well as their machine-learning counterparts and; (2) empirical studies conducted on the
impact of anti-patterns on software systems.

3.1 Definitions

3.1.1 God Class

A God Class or Blob, is a class that tends to centralize most of the system’s intelligence,
and implements a high number of responsibilities. It is characterized by the presence of a
large number of attributes, methods and dependencies with data classes (i.e., classes only
used to store data in the form of attributes that can be accessed via getters and setters).
Thus, assigning much of the work to a single class, delegating only minor operations to other
small classes causes a negative impact on program comprehension (Abbes et al. (2011)) and
reusability. The alternative refactoring operation commonly applied to remove this anti-
pattern is called Extract Class Refactoring and consists in splitting the affected God Class
into several more cohesive smaller classes (Fowler (1999)).

3.1.2 Feature Envy

A method that is more interested in the data of another class (the envied class) than that of
the class it is actually in. This anti-pattern represents a symptom of the method’s misplace-
ment, and is characterized by a lot of access to foreign attributes and methods. The main
consequences are an increase of coupling and a reduction of cohesion, because the affected
method often implements responsibilities more related to the envied class with respect to
the methods of its own class. This anti-pattern is commonly removed using Move Method
Refactoring, which consists in moving all or parts of the affected method to the envied class
(Fowler (1999)). Let us consider the situation where a class UseRectangle needs to compute
the area of an instance of a class Rectangle. In the implementation presented in Figure 3.1,
the class UseRectangle implements a method getArea(Rectangle) to compute the desired
area from the public attributes provided by the class rectangle instead of asking the object
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to do the computation himself. This is a clear case where the method getArea(Rectangle)
envies the class Rectangle. As shown in Figure 3.2 this issue can be addressed by moving
the envious method to the envied class thus keeping the attributes width and height private.

import Rectangle;

class UseRectangle {
private int area;

public UseRectangle(Rectangle r) {
this.area = getArea(r);

}

private int getArea(Rectangle r) {
int width = r.width;
int height = r.height;
return width*height;

}
...

}

class Rectangle {
public int width;
public int height;

public Rectangle(int w, int h) {
this.width = w;
this.height = h;

}
}

Figure 3.1 Feature Envy example

import Rectangle;

class UseRectangle {
private int area;

public UseRectangle(Rectangle r) {
this.area = r.getArea();

}
...

}

class Rectangle {
private int width;
private int height;

public Rectangle(int w, int h) {
this.width = w;
this.height = h;

}

public getArea() {
return width*height;

}
}

Figure 3.2 Move Method Refactoring solution
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3.2 Detection Techniques

The idea of anti-patterns or design smells has first been introduced by Webster (1995) to
capture the pitfalls of object oriented development. Since then, number of books have been
written to define new anti-patterns, sharpen the definition of existing ones, and propose
alternative refactoring solutions. Among these books, Fowler (1999) wrote a taxonomy of
22 design and code smells and discussed that such smells are indicators of design or imple-
mentation issues to be addressed by refactorings. Lanza and Marinescu (2007) provided a
metric oriented approach to characterize, evaluate and improve the design of object oriented
systems. Suryanarayana (2014) described 25 structural design smells contributing to tech-
nical debt in software projects. Based on the definitions provided by these books, several
automatic detection approaches have been proposed in the literature to detect instances of
anti-patterns in source code. Later, as in many research fields, machine learning techniques
have been used to overcome the performance issues encountered by the previous approaches.
In the following, we present the detection approaches that have been proposed in literature
to identify the occurrences of the two anti-patterns considered in this thesis.

3.2.1 God Class

Heuristic Based Detection Approaches

The first attempts to detect components affected by anti-patterns in general, and God Classes
in particular have focused on the definition of rule-based approaches which use some metrics
to capture deviations from good object oriented design principles. First, Marinescu (2004)
presented detection strategy, a metric-based mechanism for analyzing source code models
and detect design fragments using a quantifiable expression of a rule. They illustrate their
methodology step by step by defining the detection strategy for God Class. Later, Lanza and
Marinescu (2007) formulated their detection strategies for 11 design and code smells by de-
signing a set of metrics for each smell along with thresholds. These metrics are combined with
their respective thresholds to create the final detection rules for each anti-pattern. As de-
scribed in Figure 3.3, God Class occurrences are detected using a set of three metrics, namely
ATFD (Access To Foreign Data), WMC (Weighted Method Count), and TCC (Tight Class
Cohesion). These heuristics have then been implemented to create anti-pattern detection
tools like InCode (Marinescu et al. (2010)).

Similar to the approach described above, Moha et al. (2010) performed a systematic analysis
of the definitions of code and design smells in the literature and proposed templates and
a grammar to encode these smells and generate detection algorithms automatically. Based
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Figure 3.3 Lanza and Marinescu (2007) detection rule for God Class.

on such analysis, they proposed the detection tool DECOR (DEtection and CORrection of
Design Flaws), implemented for four design anti-patterns: God Class, Functional Decompo-
sition, Spaghetti Code, and Swiss Army Knife, and their 15 underlying code smells. Their
detection approach takes the form of a “Rule Card” which encodes the formal definition of
anti-patterns and code smells. As described in Figure 3.4 the identification of classes affected
by God Class is based on both structural and lexical information.

Figure 3.4 Moha et al. (2010) Rule Card for God Class detection. (Hexagons are anti-patterns,
gray ovals are code smells, and white ovals are properties).

Other approaches rely on the identification of refactoring opportunities to detect anti-patterns.
Based on this consideration, instances of a given anti-pattern can be detected in a system
by looking at the opportunities to apply the corresponding refactoring operation. In this
context, Fokaefs et al. (2012) proposed an approach to detect God Classes in a system by
suggesting a set of Extract Class Refactoring operations. This set of refactoring opportu-
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nities is generated in two main steps. First, they identify cohesive clusters of entities (i.e.,
attributes and methods) in each class of the system, that could then be extracted as separate
classes. To do so, the Jaccard distance is computed among each class members (i.e., entities).
The Jaccard distance between two entities ei and ej measures the dissimilarity between their
respective “entity sets” Si and Sj and is computed as follows:

dist(ei, ej) = 1− |Si ∩ Sj|
|Si ∪ Sj|

(3.1)

For a method, the “entity set” contains the entities accessed by the method, and for an
attribute, it contains the methods accessing the attribute. Then, cohesive groups of entities
are identified using a hierarchical agglomerative algorithm on the information previously
generated. In the second step, the potential classes to be extracted are filtered using a set of
rules, to ensure that the behavior of the original program is preserved. Later, this approach
has been implemented as an Eclipse plug-in called JDeodorant (Fokaefs et al. (2011)).

The approaches described above are solely based on structural information to predict whether
an entity is affected of not by an anti-pattern. However, anti-patterns can also impact how
source code entities change together over time. Based on such considerations, Palomba et al.
(2013, 2015a) proposed HIST (Historical Information for Smell deTection), an approach to
detect anti-patterns occurrences in systems using historical information derived from ver-
sion control systems (e.g., Git, SVN). They applied their approach to the detection of five
anti-patterns: Divergent Change, Shotgun Surgery, Parallel Inheritance, God Class and Fea-
ture Envy. The detection process followed by HIST consists of two steps. First, historical
information is extracted from versioning systems using a component called change history
extractor which outputs the sequence of changes applied to source code entities (i.e., classes
or methods) through the history of the system. Second, a set of rules is applied to this so
produced sequence to identify occurrences of anti-patterns. In this context, God Classes are
identified as: “classes modified (in any way) in more than α% of commits involving at least
another class”, with a value of α set to 8% after parameter calibration.

Machine-learning Based Detection Approaches

The approaches described above detect God Classes among other classes of a system using
manually-defined heuristics, while a number of machine-learning based approaches have been
proposed in the past decade. First, Kreimer (2005) proposed the use of decision trees to
identify occurrences of God Class and Long Method. Their model relies on the number
of fields, number of methods, and number of statements as decision criteria for God Class
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detection and have been evaluated on two small systems (IYC and WEKA). This observation
has been confirmed 10 years later by Amorim et al. (2015) who extended this approach to
12 anti-patterns.

Khomh et al. (2009a, 2011) presented BDTEX (Bayesian Detection Expert), a metric based
approach to build Bayesian Belief Networks from the definitions of anti-patterns. This ap-
proach has been validated on three different anti-patterns (God Class, Functional Decompo-
sition, and Spaghetti Code) and provides a probability that a given entity is affected instead
of a boolean value like other approaches. Following, Vaucher et al. (2009) relied on Bayesian
Belief Networks to track the evolution of the“godliness” of a class and thus, distinguishing
real God Classes from those that are so by design.

Later, Maiga et al. (2012a,b) introduced SVMDetect, an approach based on Support Vector
Machines to detect four well known anti-patterns: God Class, Functional Decomposition,
Spaghetti code, and Swiss Army Knife. The input vector fed into their classifier for God
Class detection is composed of 60 structural metrics computed from the PADL meta-model
(Guéhéneuc (2005)).

Fontana et al. (2016) performed the largest experiment on the effectiveness of machine learn-
ing algorithms for smell detection. They conducted a study where 16 different machine
learning algorithms were implemented (along with their boosting variant) for the detection
of four smells (Data Class, God Class, Feature Envy, and Long Method) on 74 software sys-
tems belonging to the Qualitas Corpus dataset (Tempero et al. (2010)). The experiments
have been conducted using a set of independent metrics related to class, method, package
and project level as input information and the datasets used for training and evaluation have
been filtered using an under-sampling technique (i.e., instances have been removed from the
original dataset) to avoid the poor performances commonly reported from machine learning
models on imbalanced datasets. Their study concluded that the algorithm that performed the
best for God Class detection was the J48 decision tree algorithm with an F-measure of 99%.
However, Di Nucci et al. (2018) replicated their study and highlighted many limitations. In
particular, the way the datasets used in this study have been constructed is strongly discussed
and the performances achieved after replication were far from those originally reported.

3.2.2 Feature Envy

Heuristic Based Detection Approaches

As for other anti-patterns, the first approaches proposed to detect Feature Envy are based
on manyally-defined heuristics that rely on some metrics. First, Lanza and Marinescu (2007)
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proposed the detection strategy illustrated in Figure 3.5 which rely on: (1) the number of
Accesses To Foreign Data (ATFD) made by a method; (2) the Locality of Attribute Accesses
(LAA), i.e., ratio between the number of accesses to attributes that belongs to the envied class
vs. the enclosing class and; (3) the number of Foreign Data Providers (FDP) i.e., the number
of classes accessed in the body of a method. One must remark that this approach focuses
only on predicting whether or not a method is involved in the Feature Envy anti-pattern but
does not provide any information about the envied class.

Figure 3.5 Lanza and Marinescu (2007) detection rule for Feature Envy.

Similarly to this work, Nongpong (2015) proposed the Feature Envy Factor, a metric for
automatic Feature Envy detection. This approach relies on counting the number of calls
made on a given object by the method under investigation, in order to produce a metric
assess from zero to one how good is the Feature Envy candidate. The Feature Envy Factor
between an object obj and a method mtd is computed as follows:

FEF (obj,mtd) = w(m/n) + (1− w)(1− xm) (3.2)

Where m is the number of calls on the object obj; n is the total number of calls on any
objects defined or visible by the method mtd; w and x are real values in the range [0, 1].

It is also possible to detect occurrences of Feature Envy by looking at the opportunities to
apply the corresponding refactoring operation. Methods that can potentially be moved to
another class under certain conditions are presented to the software engineer as potentially
affected components. In this context, Tsantalis and Chatzigeorgiou (2009) proposed an ap-
proach for automatic suggestions of Move Method Refactoring. First, for each method m in
the system, a set of candidate target classes T is created by examining the entities that are
accessed in the body of m. Second, T is sorted according to two criteria: (1) the number of
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entities that m accesses from each target class of T in descending order and; (2) the Jaccard
distance from m to each target class in ascending order if m accesses an equal number of
entities from two or more classes. In this context, the Jaccard distance between an entity e
and a class C is computed as follows:

dist(e, C) = 1− |Se ∩ SC |
|Se ∪ SC |

where Sc =
⋃

e∈C

{e} (3.3)

With Se the entity set of a method defined in Equation 3.1. Third, T is filtered under the
condition that m must modify at least one data structure in the target class. Fourth, they
suggest to move m to the first target class in T that satisfies a set of preconditions related
to compilation, behavior, and quality. This algorithm is implemented in the Eclipse plug-in
JDeodorant (Fokaefs et al. (2007)).

Similarly to God Class, Palomba et al. (2013, 2015a) proposed to detect Feature Envy using
historical information. First, the sequence of co-changed methods is extracted from version
control systems using the Change History Extractor. Then, the detection rule for HIST rely
on the conjecture that “a method affected by feature envy changes more often with the envied
class than with the class it is actually in”. Thus, Feature Envy methods are identified as those
involved in commits with methods of another class of the system β % more than in commits
with methods of their class. The value of β being set to 80% after parameter calibration.

Machine-learning Based Detection Approaches

The first attempt to detect Feature Envy using machine-learning techniques has been pro-
posed by Fontana et al. (2016) during their large-scale study. In this context, the J48 decision
tree algorithm outperformed other classifiers in detecting Feature Envy with an F-measure
of 97%. Again, these results have been challenged by Di Nucci et al. (2018).

More recently, Liu et al. (2018) proposed a deep learning based approach to detect Feature
Envy. Their approach relies on both structural and lexical information. On one side, the
names of the method, the enclosing class (i.e., where the method is implemented) and the
envied class are fed into convolutional layers. On the other side, the distance proposed by
Tsantalis and Chatzigeorgiou (2009) is computed for both the enclosing class (dist(m, ec))
and the target class (dist(m, tc)), and values are fed into other convolutional layers. Then the
output of both sides is fed into fully-connected layers to perform final decision. To train and
evaluate their model, they use an approach similar to Moghadam and Cinneide (2012) where
labeled samples are automatically generated from open-source applications by the injection
of affected methods. These methods assumed to be correctly placed in the original systems
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are extracted and moved into random classes to produce artificial Feature Envy instances
(i.e., misplaced methods). Figure 3.6 overviews the proposed approach.

Figure 3.6 Liu et al. (2018) architecture for Feature Envy detection.

3.3 Empirical Studies on Anti-patterns

This section reports the empirical studies that have been conducted on anti-patterns. First we
present studies aiming to understand the impact of anti-patterns on software quality. Second,
we overview the studies conducted to understand how anti-patterns appear and evolve over
time.

3.3.1 Impact of Anti-patterns on Software Quality

First, Deligiannis et al. (2004) performed a controlled experiment to understand the impact of
God Class on design quality. Their results show that the presence of God Classes in a system
negatively impacts the maintainability of the source code. Furthermore they concluded that
it considerably impacts the way developers apply the inheritance mechanism. Yamashita
and Moonen (2012) investigated the relation between specific anti-patterns and a variety of
maintenance characteristics such as effort, change size and simplicity. They identify which
anti-patterns can be used as indicator for maintainability assessments based on: (1) expert-
based maintainability assessments of four Java systems and; (2) observations and interviews
with professional developers who were asked to maintain these systems during a period of
time. For the anti-patterns considered in this thesis, their results show that God Class affects
the Simplicity and the Use Of Components and that Feature Envy affects the Logic Spread.
Later Yamashita and Moonen (2013) performed a similar study aiming at understanding the
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interactions between co-located anti-patterns and the impact of such interactions on software
maintenance.

Abbes et al. (2011) conducted an empirical study with the aim of understanding the impact
of two anti-patterns, namely God Class and Spaghetti Code on program comprehension. In
this study, subjects were asked to perform basic tasks related to program comprehension on
systems affected or not by the investigated anti-patterns. The results of their study show: (1)
an increase in subjects’ time and effort and a decrease of their percentage of correct answers in
systems affected by God Class; (2) no significant correlation between program comprehension
and the presence of Spaghetti Code and; (3) a strong difference between subjects’ efforts,
times, and percentages of correct answers on systems affected by both anti-patterns.

Khomh et al. (2009b, 2012) conducted a large scale empirical study investigating the relation
between the presence of anti-patterns and the classes change- and fault-proneness. They
investigate 13 anti-patterns in 54 releases of four software systems and analyze the changes
and fault-fixing operations applied to the classes of these systems. Their results indicate
clearly that classes participating in anti-patterns are more change- and fault-prone than
classes not affected by any anti-pattern. Later, Palomba et al. (2018) confirmed the above
findings by performing a similar experiment on a larger number of systems.

3.3.2 Evolution and Presence of Anti-patterns

First, Olbrich et al. (2009) studied the impact of anti-patterns on the change behavior of
code components. Specifically, they analyzed the historical data over several years of devel-
opment, of two large scale software systems and compared the change frequency and size of
components affected by God Class and Shotgun Surgery with those of healthy components.
With the results of their study, the authors confirmed that affected components exhibit dif-
ferent change behaviors. They also identified different phases in the life of software systems
where the number of anti-patterns increase and decrease. Similarly, Vaucher et al. (2009)
studied the “life cycle” of God Class occurrences in two open-source systems with the aim
of understanding when they arise and how they evolve. With the results of their study, the
authors were able to develop prevention mechanisms to predict whether changes applied to
the system are likely to introduce new anti-patterns.

On the same line, Chatzigeorgiou and Manakos (2010) tracked the evolution of three anti-
patterns: Long Method, Feature Envy and State Checking in the history of two open-source
systems, showing that: (1) anti-patterns persist after being introduced; (2) most of the time,
anti-patterns are introduced when the component they affect is added to the system and; (3)
few occurrences are willingly removed through refactoring operations.
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Tufano et al. (2015) performed the largest experiment on the presence of anti-patterns
through the history of systems. Specifically, they mined the history of 200 software projects
to understand when and why (i.e., under what circumstances) anti-patterns appear. First,
their results confirm the observation made by Chatzigeorgiou and Manakos (2010) that most
of instances are introduced when the file is added to the system. Second, they show that
anti-patterns are also often introduced the last month before deadlines by experienced devel-
opers.

Finally, Palomba et al. (2018) assessed during their large scale study, the diffuseness, i.e., the
percentage of affected code components of 13 anti-patterns in 30 open-source systems. They
concluded that most of the anti-patterns are quite diffused, especially the ones characterized
by their size or complexity. However they also identified few other anti-patterns such as
Feature Envy that are less diffused.
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CHAPTER 4 STUDY BACKGROUND

This chapter presents the background common to the studies detailed in the remainder of this
thesis. First, we present and discuss the choice of the eight software systems considered in
these studies. Second, we describe the oracle we created to conduct our experiments, which
reports the occurrences of God Class and Feature Envy in the studied systems. Third, we
overview the metrics used for evaluation. Finally, we discuss the considerations adopted to
train machine-learning models on the task of anti-patterns detection.

4.1 Studied Systems

The context of our studies consists of eight open-source Java software systems belonging to
various ecosystems. Two systems belong to the Android APIs1: Android Opt Telephony and
Android Support. Four systems belong to the Apache Foundation2: Apache Ant, Apache
Tomcat, Apache Lucene, and Apache Xerces. Finally, one free UML design software: Ar-
goUML3 and one text editor: Jedit4 available under GNU General Public License5. As further
discussed in Section 4.2, this choice is motivated by the preliminary manual-detection of God
Classes performed in prior studies on these systems (Moha et al. (2010); Palomba et al.
(2013)). Without loss of generalizability, we chose to analyze only the directories that im-
plement the core features of the systems and to ignore test directories. Table 4.1 reports for
each system, the Git identification (SHA) of the considered snapshot, its “age” (i.e., number
of commit) and its size (i.e., number of class).

Table 4.1 Characteristics of the Studied Systems

System name Snapshot Directory #Commit #Class
Android Opt Telephony c241cad src/java/ 98 192
Android Support 38fc0cf v4/ 195 109
Apache Ant e7734de src/main/ 6397 694
Apache Tomcat 398ca7ee java/org/ 3289 925
Apache Lucene 39f6dc1 src/java/ 429 155
Apache Xerces c986230 src/ 3453 512
ArgoUML 6edc166 src_new/ 5559 1230
Jedit e343491 ./ 1181 423

1https://android.googlesource.com/
2https://www.apache.org/
3http://argouml.tigris.org/
4http://www.jedit.org/
5https://www.gnu.org/
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4.2 Building a Reliable Oracle

To train and evaluate the performances of our models, we needed an oracle reporting the
occurrences of the studied anti-patterns in the considered systems snapshots. We found no
such large dataset in the literature. One existing crowd-sourcing dataset, Landfill created
by Palomba et al. (2015b) included manually-produced anti-pattern instances but we found
many erroneously-tagged instances, which discouraged and prevented its use in our work.

For God Class, we found two sets of manually-detected occurrences in open-source Java sys-
tems, respectively from DECOR (Moha et al. (2010)) and HIST (Palomba et al. (2013))
replication packages. Thus, we created our oracle from these occurrences under two con-
straints: (1) the full history of the system must be available and (2) the occurrences reported
must be relevant. After filtering, over the 15 systems available in these replication packages,
we retained eight to construct our oracle.

For Feature Envy, most of the approaches proposed in the literature are evaluated on artifi-
cial examples, i.e., assuming methods are correctly placed in the original systems, they are
extracted and moved into random classes to produce Feature Envy occurrences (i.e., mis-
placed methods) (Moghadam and Cinneide (2012); Sales et al. (2013); Liu et al. (2018)).
However, our approach relies on the history of code components. Therefore, such artificial
anti-patterns are not usable because they have been willingly introduced in the considered
systems’ snapshot. Thus, we had to build manually our own oracle.

First, we formed a set of 779 candidate Feature Envy instances over the eight subject systems
by merging the output of three detection tools (HIST, InCode, and JDeodorant), adjusting
their detection thresholds to produce a number of candidate per system proportional to the
systems sizes. Second, three different groups of people manually checked each candidate
of this set: (1) the author of this thesis, (2) nine M.Sc. and Ph.D. students, and (3) two
software engineers. We gave them access to the source code of the enclosing classes (where the
methods were defined) and the potential envied classes. After analyzing each candidate, we
asked respondents to report their confidence in the range [strongly_approve, weakly_approve,
weakly_disapprove, strongly_disapprove]. To avoid any bias, none of the respondent was
aware of the origin of each candidate. We made the final decision using a weighted vote over
the reported answers. First we assigned the following weights to each confidence level:

strongly_approve → 1.00 weakly_disapprove → 0.33
weakly_approve → 0.66 strongly_disapprove → 0.00

Then, an instance is considered as a Feature Envy if the mean weight of the three answers
reported for this instance is greater than 0.5.
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Table 4.2 reports, for each system, the number of God Classes, the number of produced
candidate Feature Envy instances, and the number of Feature Envy instances retained after
manual-validation.

Table 4.2 Characteristics of the Oracle
System name #God_Class #Candidate_FE #Feature_Envy
Android Opt Telephony 11 62 18
Android Support 4 21 2
Apache Ant 7 110 25
Apache Tomcat 5 173 57
Apache Lucene 4 42 4
ArgoUML 22 144 24
Jedit 5 98 22
Xerces 15 129 37
Total 73 779 189

4.3 Evaluation Metrics

To compare the performances achieved by different approaches on the studied systems, we
consider each approach as a binary classifier able to perform a boolean prediction on each
entity of the system. Thus, we evaluate their performances using the following confusion
matrix:

Table 4.3 Confusion Matrix for Anti-patterns Detection

predicted

to
ta

l

1 0

tr
ue 1 A B npos

0 C D nneg

total mpos mneg n

With (A) the number of true positives, (B) the number of misses, (C) the number of false
alarms and (D) the number of true negatives. Then, based on this matrix, we compute the
widely adopted precision and recall metrics:

precision = A

A+ C
(4.1) recall = A

A+B
(4.2)

We also compute the F-measure (i.e., the harmonic mean of precision and recall) to obtain
a single aggregated metric:

F -measure = 2× precision× recall
precision+ recall

= 2× A

npos +mpos

(4.3)
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4.4 Training

This section discusses the considerations adopted to train neural-networks on the task of
anti-patterns detection. We consider training a multi-layer feed-forward neural-network to
perform a boolean prediction on each entity of the training systems. First, the training set
contains N training systems which can be expressed as:

D = {Si}N
i=1, with Si = {(xijyij)}ni

j=1 (4.4)

With Si the ith training system, xij the input vector corresponding to the jth entity of this
system, yij ∈ {0, 1} the true label for this entity and ni the size (i.e., number of entities) of
Si. Second, we refer to the output of the neural network corresponding to the positive label,
i.e., the predicted probability that an entity is affected as: Pθ(1|xij).

4.4.1 Custom Loss Function

Software systems are usually affected by a small proportion of anti-patterns (< 1%) (Palomba
et al. (2018)). As a consequence, the repartition of labels within a dataset composed of
software system entities is highly imbalanced. Such imbalanced dataset compromises the
performances of models optimized using conventional loss functions (He and Garcia (2008)).
Indeed, the conventional binary_cross_entropy (cf. Equation 2.8) loss function maximizes
the expected accuracy on a given dataset ,i.e., the proportion of instances correctly labeled.
In the context of anti-patterns, the use of this loss function lead to useless models that assign
the majority label to all input instances, thus maximizing the overall accuracy (> 99%)
during training. To overcome this issue, we must define a loss function that reflects our
training objective (i.e., maximizing the F-measure achieved over the training systems).

Let us formulate our training objective as finding the set of parameters θ∗ that maximizes
the mean F-measure achieved over the training system, which can be expressed as:

θ∗ = argmax
θ

1
N

N∑
i=1

Fm(θ, Si) (4.5)

Which is equivalent to the minimization of the empirical risk expressed in Equation 2.7 with
a loss: L = −Fm. However, to solve this problem through gradient descent, we need our loss
to be a continuous and differentiable function of the weights θ. As defined in Equation 4.3,
the F-measure does not meet this criterion, which prevents its direct use to define our loss
function. Indeed, computing the number of true positives (A) and positives (mpos) requires



30

counting elements from the probability outputed by the model, which necessarily involves
discontinuous operators like the Kronecker operator JK (cf. Equation 5.1):

A(θ, Si) =
ni∑

j=1
yij=+1

JPθ(1|xij) > 0.5K (4.6)

mpos(θ, Si) =
ni∑

j=1
JPθ(1|xij) > 0.5K (4.7)

Consequently, we use the differentiable approximation of the F-measure provided by Jansche
(2005), which simply consists in considering:

JPθ(1|xij) > 0.5K ≈ Pθ(1|xij) (4.8)

Thus, the approximated F-measure can be expressed as:

F̃m(θ, S) = 2× Ã(θ, S)
npos + m̃pos(θ, S) (4.9)

Where:

Ã(θ, Si) =
ni∑

j=1
yij=+1

Pθ(1|xij) (4.10)

m̃pos(θ, Si) =
ni∑

j=1
Pθ(1|xij) (4.11)

Finally, we define our loss function as follows:

L = −F̃m(θ, S) (4.12)

4.4.2 Optimization

When performing optimization through gradient descent, model parameters are usually up-
dated according to the gradient of the loss computed on the whole training set or on equal-size
subsets of the training set (mini-batch based SGD). To prevent our model to overfit on large
systems (that contain more instances than others), we performed weights updates on variable
size batches that contain instances of the same system. Hence, each training system have the
same impact on optimization, regardless of their sizes. In fact, this approach is equivalent to
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a stochastic gradient descent, considering each training system as a single instance. Fig. 4.1
overviews our approach in comparison to gradient descent and mini-batch SGD.

(a)

(b)

(c)

Figure 4.1 Comparison of feeding approaches: (a) gradient descent, (b) mini-batch SGD, (c)
imbalanced-batch SGD. Colors represent instances belonging to same systems.

4.4.3 Regularization

Regularization is a way to prevent over-fitting. We used two widely-adopted regularization
techniques: L2 regularization and dropout.

L2 Regularization

L2 regularization consists in adding a term to the loss function to encourage the weights to be
small (Witten et al. (2016)). This term is proportional to the sum of the Euclidean norm of
the weight matrices, i.e., ‖W‖2 =

√
W>W, also called L2-norm. Thus, the L2 regularization

term added to the loss function can be expressed as:

L2 = λ
L+1∑
l=1
‖Wl‖2 (4.13)

With λ ∈ R an hyper-parameter adjusted during cross-validation.

Dropout

Dropout consists in dropping randomly out units, i.e., temporarily removing nodes of the
network along with their connections during training. Thus, at each step, each node has
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a probability (1 − Pkeep) to be removed from the network. Dropout is equivalent to com-
bining exponentially many architectures with shared parameters and has proved to prevent
successfully over-fitting (Srivastava et al. (2014)).

4.4.4 Ensemble Learning

Ensemble learning is a common practice to improve the final performances of probabilistic
models as well as to reduce the output variability from one training to another (Dietterich
(2000)). The key idea is to train separately several randomly-initialized models and, thus,
construct a set of classifiers. Then, when a new instance must be classified, the final prediction
is computed from the output of each classifier. In the context of this study, we used the widely-
adopted Bayesian averaging heuristic to compute the final prediction. Thus, after trainingM
randomly-initialized models, the final predicted probability that an entity is affected given
its corresponding feature vector x can be expressed as:

Pensemble(1|x) =
∑M

i=1 Pθi
(1|x)

M
(4.14)

With θi, the set of weights of the ith model.
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CHAPTER 5 A MACHINE-LEARNING BASED ENSEMBLE METHOD
FOR ANTI-PATTERNS DETECTION

5.1 Introduction

Fowler (1999) defined design smells as symptoms of poor solutions to recurring design prob-
lems. These symptoms, also called anti-patterns, are typically introduced in object-oriented
systems when developers implement suboptimal design solutions due to lack of knowledge
and–or time constraints. For example, the God Class anti-pattern refers to the situation in
which a class grows rapidly by the addition of new functionalities, when developers break the
principle of single responsibility. Prior empirical studies highlighted the negative impact of
anti-patterns on a variety of quality characteristics, such as program comprehension (Abbes
et al. (2011)), maintainability (Yamashita and Moonen (2013)), and correctness (increase of
fault-proneness) (Khomh et al. (2012)). Thus, it is of major importance to identify their
occurrences in software systems and apply refactoring operations to remove them.

Several approaches have been proposed to detect the occurrences of anti-patterns in systems.
Most of these approaches attempt to identify bad motifs in models of source code using
manually-defined heuristics that rely on some metrics (e.g., cyclomatic complexity). For
example, Moha et al. (2010) proposed a domain-specific language to describe and generate
detection algorithms for anti-patterns using structural and lexical metrics, while Palomba
et al. (2013, 2015a) proposed a rule-based approach to detect anti-patterns from change
history information.

Even though these approaches have shown acceptable performances, none of them can claim
high accuracy on any systems and for any anti-patterns. Besides, each approach relies on
its own definitions of anti-patterns and only focuses on specific aspects of systems. Thus,
tools based on different detection strategies identify different sets of occurrences and have a
low agreement (Fontana et al. (2012)), especially when these strategies rely on orthogonal
sources of information (Palomba et al. (2013)).

Recently, machine-learning models have been shown efficient in a variety of domains, such
as speech recognition (Graves et al. (2013)) or image processing (Krizhevsky et al. (2012)).
Several machine-learning based approaches have been proposed to detect anti-patterns. How-
ever, these approaches failed to surpass clearly previous approaches. On the one hand, learn-
ing high-level features of systems requires complex machine-learning models, such as deep-
neural-networks. On the other hand, these complex models require substantial amounts of
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manually-produced training data, which is hardly available and time consuming to produce
for anti-patterns.

Consequently, we propose SMAD (SMart Aggregation of Anti-pattern Detectors), a machine-
learning based ensemble method to efficiently aggregate various anti-pattern detection tools.
For each tool to be aggregated, we identify a set of core metrics, i.e., metrics that reflect
the internal detection process. We then use the core metrics as input features of a simple
neural-architecture. We identify three major advantages of our approach: (1) it combines
detection tools more efficiently than conventional voting techniques; (2) it allows using a
simple architecture by considering a low number of high-level features (i.e., core-metrics).
Thus, the number of manually-produced examples needed to train our model is relatively
low; and, (3) the occurrences detected by our approach could be used as training or pre-
training instances for more complex models.

We implemented the proposed ensemble method to detect two well known anti-patterns: God
Class and Feature Envy. To train and evaluate our model, we created an oracle containing
instances of the studied anti-patterns in eight Java systems. We used instances from five of
the eight systems to train the proposed model and the remaining instances for evaluation.
We compared the performances achieved by SMAD with those obtained by (1) the tools
aggregated through our approach and (2) the baseline voting ensemble technique. Thus, we
can answer the following two research questions:

(RQ1) Does SMAD outperform state-of-the-art detection tools?
Our approach significantly improves the state-of-the-art. Compared to the
tool that performed best, the average F-measure improves from 38% to 66%
for God class and from 52% to 70% for Feature Envy.

(RQ2) Does SMAD outperform voting ensemble technique?
Our results indicate that our approach outperforms the voting technique by
35% for God class and 27% for Feature Envy in term of F-measure.

Finally, we assessed the possibility of using SMAD to produce training instances for deep-
learning based anti-pattern detection models. We compared the performances achieved by the
model proposed by Liu et al. (2018) trained on a dataset of artificial anti-patterns instances
with those of the same model trained using instances identified by SMAD, thus answering
the following research question:

(RQ3) To what extent can SMAD be used to label training instances for
deep-learning anti-pattern detection models?
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Our results show that the model proposed by Liu et al. (2018) achieves better
performances (+13%) when trained on instances identified by SMAD.

Thus, we make the following contributions: (1) a manually-produced oracle reporting the
occurrences of God Class and Feature Envy in eight Java software systems; (2) a machine
learning-based ensemble method to aggregate efficiently existing anti-pattern detection tools;
and (3) a process for the automatic generation of training data for machine learning-based
anti-pattern detection models.

The remainder of this chapter is organized as follows. Section 5.2 presents our approach
SMAD. Sections 5.3 presents the study aiming at answering the first two research questions,
while Section 5.4 presents the second study, thus answering the third research question.
Finally, Section 5.5 concludes with future work.

5.2 SMart Aggregation of Anti-pattern Detectors

In this section, we present our machine-learning based ensemble method to aggregate effi-
ciently various anti-pattern detection tools.

5.2.1 Baseline

Let us consider D detection tools d1, d2, ..., dD performing a boolean prediction over the
entities of a software system based on some internal detection rule. We refer to as di(e) ∈
{True, False} the boolean prediction of the ith detection tool on an entity e.

We want to combine these tools to maximize the F-measure of the so-produced “merged”
prediction over the entities of the studied system. The baseline approach consists in aggre-
gating these tools using a voting policy over their predictions. We can define the function
that outputs the “voted” prediction on a given entity e as:

V (e) = (
D∑

i=1
Jdi(e)K ≥ k) with JxK =

{
1 if x=True
0 if x=False

(5.1)

where k ∈ {1, 2, ..., D} is the policy, i.e., minimal number of positive agreements beyond
which an entity receive the label True.

We identify two major limitations to this simple approach. First, every detection tool has
the same weight on the final result while we argue that a tool with poor performances should
have less weight in the vote than the one with better performances. Second, this approach
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ignore the confidence of each tool in its prediction. Let us suppose that an entity is very
close to be positively labeled by a tool, then we argue that the prediction of this tool should
positively influence the voting on this entity more than predictions that are far from the tool
detection threshold.

5.2.2 Overview

The key idea behind SMAD is to combine various detection tools by computing their core-
metrics for each input instance and use these metrics to feed a machine-learning based clas-
sifier. First, for each anti-pattern considered in this study, we selected three state-of-the-art
detection tools. These tools respectively rely on:

• Rule Cards: Affected entities are identified using a combination of source-code metrics
designed to reflect the formal definition of the anti-patterns. For this category, we
selected DECOR (Moha et al. (2010)) for God Class and InCode (Marinescu et al.
(2010)) for Feature Envy detection.

• Historical Information: Affected entities are identified via an analysis of change history
information derived from versioning systems. For this category, we used HIST (Palomba
et al. (2013, 2015a)) for both God Class and Feature Envy detection.

• Refactoring Opportunities: Anti-patterns are detected by identifying the opportunities
to apply their corresponding refactoring operations. For this category, we used the
refactoring operations Extract Class (Fokaefs et al. (2012)) and Move Method (Tsantalis
and Chatzigeorgiou (2009)) provided by JDeodorant, respectively for God Class and
Feature Envy detection.

Selecting tools that are based on different strategies allows us to expect a low degree of
agreement between them and thus, maximize the expected performances of our approach.

Then, we selected the core-metrics, i.e., metrics that reflect best the internal decision process
of each tool, as input features for our model. Finally, we performed the classification through
a logistic regression. Our model is a fully-connected neural-network (i.e., a MLP) composed
of tanh hidden layers connected to a softmax output layer. Fig. 5.1 overviews our approach.
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Figure 5.1 Overview of SMAD detection process

5.2.3 Input

Metrics for God Class Detection

For God Class detection, we extract six core-metrics from the three detection tools considered
in this study. These metrics are computed for each class of a system.

DECOR: The internal detection rule relies on the definition of four code and design smells
and can be expressed as: “(is associated to many DataClass) AND is a (ControllerClass OR
LargeClass OR LowCohesionClass)”. These smells are defined using structural and lexical
metrics along with some thresholds: (1) DataClass relies on the number of accessors, (2)
ControllerClass relies on lexical properties, (3) LargeClass relies on the sum of the NMD
and NAD metrics (Number of Methods Declared + Number of Attributes Declared), and (4)
LowCohesionClass relies on the LCOM metric (Lack of Cohesion in Methods) (Briand et al.
(1998)). Thus, we extracted four core metrics from DECOR internal detection rule for God
Class:

• Number of associated DataClass

• JControllerClassK

• nmd_nad

• lcom

with nmd_nad and lcom being the uppercase metrics divided by their respective threshold.
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HIST: God Classes are identified as: “classes modified (in any way) in more than α% of
commits involving at least another class”. Thus, we extracted one core-metric from HIST
internal detection rule for God Class:

• Number of commits in which the considered class has been modified along with other
classes.

JDeodorant: God Classes are classes from which a concept can be extracted, defined as:
“a distinct entity or abstraction for which a single class provides a description and/or a set of
attributes and methods that contribute together to the same task”. We define our core-metric
for JDeodorant as:

• Number of concepts that can be extracted from the considered class.

Metrics for Feature Envy Detection

A Feature Envy is characterized by two source code entities: a method (i.e., the envious
method) and a class (i.e., the envied class). Thus, in a given system, the number of potential
instances that must be investigated is equal to nm× (nc− 1) with nc and nm respectively the
numbers of classes and methods in the system. To reduce this number, we filter the studied
system at both class and method level, similarly to Tsantalis and Chatzigeorgiou (2009).
First, we consider as potential envious methods only non-static and non-accessor methods.
Then, for each of the remaining methods, we consider as potential envied classes only classes
that are accessed in some way in the body of the method. We extract seven core-metrics
from the three considered detection tools.

HIST: Feature Envy methods are identified as: “methods involved in commits with meth-
ods of another class of the system β% more than in commits with methods of their class”.
Thus, we extract one core-metric from HIST internal detection rule for Feature Envy:

• Ratio between the number of commits involving methods of the envied class and number
of commits involving other methods of the enclosing class.

InCode: Methods are identified as being envious without information about the envied
class. In this context, a method is declared affected if: (1) “it uses directly more than a
few attributes of other classes” (ATFD > FEW), (2) “it uses far more attributes from other
classes than its own” (LAA < ONE THIRD), and (3) “the used “foreign” attributes belong
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to very few other classes” (FDP ≤ FEW). We redefined the first two metrics to express
information about the envied class, which led us to three core-metrics:

• ATFD (Access To Foreign Data), i.e., number of attributes of the envied class accessed
by the method.

• LAA (Locality of Attribute Accesses), i.e., ratio between the number of accesses to
attributes that belongs to the envied class vs. the enclosing class.

• FDP (Foreign Data Providers), i.e., number of distinct foreign classes whose attributes
are accessed by the method.

JDeodorant: For each method m in the system, a set of candidate target classes T is
created and sorted based on: (1) the number of entities (methods or attributes) that m
accesses from each class of T and (2) the Jaccard distance between m and each target
class. Then, JDeodorant suggests to move m to the first target class that satisfies a set of
preconditions related to compilation, behavior, and quality. We extracted three core-metrics,
which can be expressed as:

• Ratio between the number of access to entities that belong to the envied class vs.
enclosing class.

• Ratio between the Jaccard distances from the method to the envied class vs. enclosing
class.

• Boolean value indicating whether the Move Method Refactoring operation has been
proposed by JDeodorant or not.

System Metrics

For both God Class and Feature Envy detection, two additional system metrics are added
to the input vector of our model:

• System size (i.e., number of classes)

• History length (i.e., number of commits)

Adding metrics related to the considered snapshot, positively leverage our model interpreta-
tion of the previous metrics. We confirmed this intuition when performing our experiments.
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5.3 Evaluation of the Detection Perfomances

In this section, we address the evaluation of SMAD performances in detecting the two anti-
patterns considered in this study. We answer the two following research questions:

• RQ1: Does SMAD outperform state-of-the-art detection tools?

• RQ2: Does SMAD outperform voting ensemble technique?

5.3.1 Study Design

The goal of this study is to evaluate SMAD on both God Class and Feature Envy and to com-
pare SMAD to state-of-the-art detection tools as well as competitive ensemble techniques.
The context of this study consists of the eight Java systems presented in Table 4.1. To answer
both research questions, we selected three systems, i.e., Android Support, Apache Tomcat,
and Jedit, to perform an evaluation. We selected these systems to increase the generalizabil-
ity of our results. Indeed, they belong to different domains: telephony framework, service
container, and text editor and their sizes and history lengths cover well the ranges of possible
values as shown in Table 4.1. We used the remaining five systems to train our model and
calibrate hyper-parameters.

To run the competitive tools on the evaluation systems (RQ1), we used their publicly-
available implementations and replicated the approaches for which no implementation was
available. Thus, we ran DECOR using the Ptidej API1 and JDeodorant using its Eclipse
plug-in2. We implemented the detection rules for HIST as described). InCode Eclipse plug-
in is no longer available and we reimplemented its detection rule as described in its original
paper (Lanza and Marinescu (2007)) to retrieve also information about the envied class, as
explained in Section 5.2.3.

To assess the performances of competitive ensemble methods (RQ2), we implemented the
voting technique described in Section 5.2.1 for the three possible values of k, i.e., policies as
shown in Equation 5.1.

1https://github.com/ptidejteam/v5.2/
2https://marketplace.eclipse.org/content/jdeodorant/
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5.3.2 Parameters Calibration

SMAD

To calibrate the hyper-parameters of our model, we performed a random search over 300
generations of five hyper-parameters: learning rate (η), λ, Pkeep, number of hidden layers,
and number of neurons per hidden layer. This technique has shown to be more efficient
than grid search on similar multi-dimensional optimization problems (Bergstra and Bengio
(2012)). We evaluated the performances achieved on each hyper-parameters’ combination by
carrying out a 5-fold cross-validation, i.e., leave-one-out, over the five systems contained in our
training set: Android Opt Telephony, Apache Ant, Apache Lucene, ArgoUML, and Xerces.
At each iteration, we trained five times our model on 100 epochs by leaving one system out
to perform the evaluation while keeping the others for training. Table 5.1 reports, for each
hyper-parameter, the range of values experimented as well as the value with the best result
for both God Class and Feature Envy.

Finally, the models used for experiments have been trained on 400 epochs with an exponential
learning rate decay of 0.7 every 100 epochs. As explained in Section 4.4.4 we computed the
final prediction from the output of five randomly-initialized models.

Table 5.1 Hyper-parameters Calibration of SMAD

Hyper-parameter Range Best (GC) Best (FE)
Learning Rate (η) 10−[0.0;2.5] 8.26×10−2 1.90×10−1

L2-norm (λ) 10−[0.0;2.5] 3.13×10−2 1.97×10−1

Dropout (Pkeep) [0.5; 1.0] 0.5 1.0
Number of Hidden Layers [1; 3] 2 2
Neurons per Layer [4; 140] then [4;n] [34, 30] [86, 44]

With n the size of the previous hidden layer.

Detection Tools

Although we followed rigorously the guidelines given by the authors of HIST and InCode
when reimplementing these tools, some differences may remain between our respective im-
plementations. Such differences could affect the optimal values of their parameters. Thus, we
performed an additional parameter tuning for these tools by computing the mean F-measure
achieved over the eight systems considered in this study. We retained values that led to the
best performances in our experiments. Table 5.2 reports, for each investigated parameter,
the range of values experimented and the value retained to conduct our experiments.
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Table 5.2 Hyper-parameters Calibration of the Competitive Tools

Tool Hyper-parameter(s) Range Best Value
HIST (FE) α From 0% to 300% by 10% 160%
HIST (GC) β From 0% to 20% by 0.5% 8%
InCode (ATFD, LAA, FDP) [0; 7]3 (2, 3, 3)

5.3.3 Analysis of the Results

Table 5.3 reports the results of our experiments for God Class while Table 5.4 reports our
results for Feature Envy. Our results report the performances on the three subject systems,
in terms of precision, recall, and F-measure, achieved by: (1) the three detection tools used
for aggregation; (2) the voting techniques; and, (3) SMAD. In addition, we report the mean
values of the three performance metrics for each investigated approaches.

Table 5.3 Performances Evaluation of SMAD for God Class detection

Approaches Apache Tomcat JEdit Android Platform Support Mean
Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure

DECOR 67% 40% 50% 17% 60% 26% 0% 0% 0% 28% 33% 25%
HIST 0% 0% 0% 22% 40% 29% 100% 75% 86% 41% 38% 38%

JDeodorant 2% 60% 4% 5% 60% 9% 17% 25% 20% 8% 48% 11%

Vote (k=1) 3% 80% 6% 6% 80% 10% 38% 75% 50% 15% 78% 22%
Vote (k=2) 100% 20% 33% 13% 40% 20% 100% 25% 40% 71% 28% 31%
Vote (k=3) 0% 0% 0% 67% 40% 50% 0% 0% 0% 22% 13% 16%
SMAD 43% 60% 50% 80% 80% 80% 100% 50% 67% 74% 63% 66%

Table 5.4 Performances Evaluation of SMAD for Feature Envy detection

Approaches Apache Tomcat JEdit Android Platform Support Mean
Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure

HIST 9% 9% 9% 2% 5% 3% 0% 0% 0% 4% 4% 4%
InCode 52% 56% 54% 46% 59% 52% 50% 50% 50% 49% 55% 52%

JDeodorant 31% 42% 36% 44% 50% 47% 100% 50% 67% 59% 47% 50%

Vote (k=1) 30% 100% 46% 24% 100% 39% 29% 100% 44% 28% 100% 43%
Vote (k=2) 80% 7% 13% 75% 14% 23% 0% 0% 0% 52% 7% 12%
Vote (k=3) 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
SMAD 52% 51% 51% 69% 50% 58% 100% 100% 100% 74% 67% 70%

Does SMAD outperform state-of-the-art detection tools?

For God Class detection, SMAD shows a precision of 74% and a recall of 63% (F-measure
of 66%) on average over the subject systems. Thus, the proposed ensemble method clearly
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outperforms state-of-the-art detection tools. Specifically, the mean F-measure improves by
74% in comparison to the tool that performed the best (HIST with 38%). Considering the
performances achieved on each system, SMAD shows an F-measure ranging between 50% and
80%, which confirms that SMAD performs well independently of the systems characteristics.
On the contrary, each competitive tool shows poor performances on at least one system.
However, the low performances achieved by JDeodorant (especially precision) can be due to
this tool relying on a different definition of God Class than others. Indeed, affected entities
are detected only if opportunities to split them are identified.

For Feature Envy detection, SMAD achieves on average a precision of 74% and a recall of
67% leading to an F-measure of 70%. We observe better performances in terms of F-measure
achieved by the static code analysis tools (52% by InCode and 50% by JDeodorant) than for
God Class detection and low results for HIST. These results show that SMAD outperforms
state-of-the-art tools when detecting Feature Envy with a mean F-measure 35% higher than
that of the tool that performed the best (InCode with 52%). However, when replicating
HIST rules for Feature Envy detection, we used a different component3 to extract changes at
method level than that of the original approach because the original component is supposedly
unavailable because of its license. We are aware that such difference could affect the reported
performances.

�

�

�




SMAD significantly outperforms state-of-the-art detec-
tion tools on detecting God Class and Feature Envy. Fur-
thermore, our results indicate that SMAD performs well
independently of the systems characteristics.

Does SMAD outperform voting ensemble technique?

We report the results of our study for both God Class and Feature Envy, considering precision,
recall, and F-measure independently in turn. In term of precision, our results indicate that
SMAD outperforms the best voting policy (k = 2) with an average value of 74% to be
compared to 71% and 52% for the voting technique, respectively on God Class and Feature
Envy. In term of recall, unsurprisingly, the union voting policy (k = 1), i.e., union of the
detected entities, achieves the highest performances (78% for God Class and 100% for Feature
Envy). Finally, our results show that voting techniques are not a suitable ensemble method
for anti-pattern detection in term of F-measure. Indeed, none of the policies seem to increase
the mean F-measure of the aggregated tools. Furthermore, the policy (i.e., the value of k)

3http://www.incava.org/projects/diffj
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that leads to the highest performances is not the same for both anti-patterns.�

�

�

�

SMAD outperforms voting techniques in terms of preci-
sion and F-measure. Unsurprisingly, we observed that
the union voting policy (k=1) lead to the highest recall.
However, our results indicate that none of the voting poli-
cies are suitable to increase F-measure.

5.4 Evaluation of the Ability to Label Training Instances

In this section, we evaluate SMAD on labeling entities to train complex machine-learning
models. Thus, we answer the following research question:

• RQ3: To what extent can SMAD be used to label training instances for deep-learning
anti-pattern detection models?

5.4.1 Study Design

This study evaluates the ability of SMAD to label training data for deep-learning anti-
pattern detection models. We found no such architecture for the detection of God Class in
the literature. Thus, we experiment this process only for the detection of Feature Envy on the
Convolutional Neural Network (CNN) proposed by Liu et al. (2018). This study compares the
performances achieved by: (1) the studied model trained on “injected smells”, i.e., assuming
methods are correctly placed in the original systems, they are moved into random classes to
produce artificial Feature Envy occurrences and (2) the studied model trained on instances
labeled by SMAD.

To produce labeled instances, we considered using the same systems selected in the original
study. However, for some of these systems, historical information is not available through
version-control systems, which prevents their use in our study. Thus, we selected eleven Java
systems of different sizes and domains from the Qualitas Corpus (Tempero et al. (2010)).
Table 5.5 overviews the characteristics of these systems. Then, we used the architecture of
SMAD trained and evaluated in Section 5.3 to label the instances of these systems.

To compare both approaches, we use the implementation made available by the authors to
run the original model and we implemented another version that allow the use of the custom
loss function defined in Equation 4.12 for optimization as well as regularization to address
the unbalanced labels produced by SMAD. We assess the performances of the two models on
the same three systems used in our previous experiments.
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Table 5.5 Characteristics of the Systems used to Generate Training Instances

System name Snapshot Directory #Commit #Class
Apache Derby c30c7da java/engine/ 1338 1022
Apache Jena dc0bfe6 jena-core/src/main/ 403 686
Apache Jspwiki a3b1041 src/ 3993 330
Apache Log4j 7cf64b6 src/java/ 734 313
Apache Velocity 23c979d src/ 1241 164
Javacc 1b23b61 src/ 315 155
Jgraphx 25c9cfc src/ 117 177
Jgroups 2d2ee7d src/ 3138 276
Jhotdraw 58d8df3 jhotdraw7/src/main/ 503 549
Mongodb b67c0c4 src/main/ 909 111
Pmd 6063aaf pmd/src/main/ 4656 815

5.4.2 Parameters Calibration

We calibrate the hyper-parameters of the subject model using a random search over 100
generations of: η and λ. We evaluate the performances achieved from each hyper-parameters
combination by computing the mean F-measure achieved over the five systems used to train
SMAD in Section 5.3. Thereby, we calibrate the model on manually-validated occurrences
without using testing data. Table 5.6 reports for each hyper-parameter, the range explored
and the value which led to the highest result.

Table 5.6 Hyper-parameters Calibration of the Subject Model

Hyper-parameter Range Best Value
Learning Rate (η) 10−[0.0;4.0] 1.62× 10−1

L2-norm (λ) 10−[0.0;4.0] 1.80× 10−3

When performing preliminary experiments, we observed that the model had difficulties to
learn from both parts of its input (i.e., lexical and structural) together, thus performing
better when trained using only lexical or structural informations. Consequently, we pretrain
the model during 40 epochs using only the structural part of the input (i.e., the distances)
before training it on 40 other epochs with the full input.

5.4.3 Analysis of the Results

Table 5.7 reports the performances achieved by the two CNNs proposed by Liu et al. (2018)
on the three systems. The first version (referred as LIU_INJ) has been trained on “injected
smells” while the second version (referred as LIU_GEN) has been trained on instances labeled
by SMAD. We also report the mean values of the performance metrics on the systems.
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Table 5.7 Performances of the Subject Model Trained on Injected vs Generated Smells

Models Apache Tomcat JEdit Android Platform Support Mean
Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure

LIU_INJ 2% 94% 3% 1% 88% 2% 1% 100% 2% 1% 94% 3%
LIU_GEN 17% 4% 7% 50% 35% 41% 0% 0% 0% 22% 13% 16%

To what extent can SMAD be used to label training instances for deep-learning
anti-pattern detection models?

Our results show that the deep-learning model achieves a precision of 22% and a recall of 13%
(F-measure of 16%) on average when trained on instances labeled by SMAD. These results
confirm that instances labeled by SMAD are more suitable to train this model than injected
smells for Feature Envy. Indeed, when trained on injected smells, the model achieves the
highest recall but at the expense of its precision, which leads to a low F-measure of 3%.

Some factors could explain the difference between our results and those reported in the
literature (Liu et al. (2018)). First, we evaluate a prediction as correct if and only if both the
method AND the envied class are correct, while they evaluate their model on two tasks: (1)
predicting if a method is associated with Feature Envy (without assessing the correctness of
the proposed envied class); (2) recommending a destination (i.e., the envied class) only on the
methods correctly detected in the previous step. Second, we use a different implementation
to compute the distances between methods and classes.

�

�

�
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The CNN proposed by Liu et al. (2018) achieves bet-
ter performances when trained on instances labeled by
SMAD than on “injected smells”. This result confirms
that SMAD generates reliable instances for deep-learning
anti-pattern detection models.

5.5 Conclusion and Future Work

We proposed SMAD, a machine-learning based ensemble method to aggregate efficiently
various anti-pattern detection tools based on their internal decision processes. To train and
evaluate our approach, we built an oracle containing the occurrences of God Class and Feature
Envy in eight open-source systems. Then, we evaluated SMAD on: (1) detecting occurrences
of God Class and Feature Envy and (2) its ability to label training instances for deep-learning
anti-pattern detection models. Key results of our experiments indicate that:
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• SMAD significantly outperforms state-of-the-art detection tools on detecting God Class
and Feature Envy and performs well independently of the systems characteristics.

• SMAD outperforms voting techniques in terms of precision and F-measure. Although
the union voting policy (k = 1) leads to the highest recall, none of the voting policies
increases F-measure.

• The CNN proposed by Liu et al. (2018) achieves better performances when trained
on instances labeled by SMAD than on “injected smells”, which confirms that SMAD
generates reliable instances for deep-learning anti-pattern detection models.

Future work includes a comparative study of the different machine-learning algorithms that
could be used for aggregation. We also plan to extend our approach to the detection of other
anti-patterns with a greater number of detection tools. Finally, we want to leverage deep
learning techniques to “learn” core-metrics from raw data.
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CHAPTER 6 DEEP-LEARNING ANTI-PATTERNS DETECTION FROM
CODE METRICS HISTORY

6.1 Introduction

Anti-patterns have originally been defined by Fowler (1999) as symptoms of poor design
choices. These anti-patterns are typically introduced in the source code of software systems
when developers implement sub-optimal solutions to their daily tasks. Several empirical
studies have highlighted the negative impact of anti-patterns on code quality and maintenance
properties. For example, the Feature Envy anti-pattern, which happens when a method have
been implemented in the wrong class, have been shown to violate the principles of high
cohesion and low coupling (Palomba et al. (2014)).

A variety of approaches have been proposed to detect the occurrences of anti-patterns in
source code (Moha et al. (2010); Tsantalis and Chatzigeorgiou (2009); Marinescu et al.
(2010)). Most of them rely on the formal definition of anti-patterns and attempt to identify
their occurrences in source code using structural metrics (e.g., Lines Of Code) along with
empirically defined thresholds. However, anti-patterns can also be detected by an analysis of
change history information (Palomba et al. (2013)). Indeed, the presence of anti-patterns in
a system influence how source code entities evolve with one another over time. For example,
Feature Envy can be detected by identifying methods that change more often with methods
of another class than that of their own class.

Although structural and historical anti-patterns detection have shown acceptable perfor-
mances, these approaches identify different sets of anti-patterns in a system and suffer from
intrinsic limitations. On the one hand structural detection techniques rely only on one single
version of software systems. On the other hand, the historical detection technique does not
consider the structural properties of the changed entities.

Consequently, we propose CAME (Convolutional Analysis of code Metrics Evolution), a
deep-learning based approach to detect anti-patterns by analyzing how source code metrics
evolve over time. To do so, we retrieve code metrics values for each revision of the system
under investigation by mining its version control system (e.g., Git, SVN). This information
is then provided as input to a convolutional neural network to detect affected components.
We implemented the proposed approach for the detection of God Class.
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To the best of our knowledge, we are first to rely on code metrics evolution for anti-patterns
detection. Furthermore, we are the first to apply deep-learning techniques to the detection
of God Class.

We experiment the proposed approach on the manually-defined oracle presented in Sec-
tion 4.2 reporting occurrences of the studied anti-pattern in eight Java software systems.
First, we split this oracle into training (five systems) and test (three systems) sets. To in-
crease the number of training examples, we use the ensemble method presented in Chapter 5
(SMAD) calibrated on the training set to label instances of eleven other systems selected
in the Qualitas Corpus dataset (Tempero et al. (2010)). Finally, we compare the perfor-
mances achieved by CAME on the test set with those obtained by: (1) an equivalent model
ignoring source code metrics history and; (2) three state-of-the-art detection tools that rely
on structural and historical information. With the results of our study, we aim to answer the
following two research questions:

(RQ1) To what extent historical information about code metrics can im-
prove detection performances?
Source code metrics evolution significantly improves the model for detecting
occurrences of anti-patterns in software systems. With respect to a similar
model which doesn’t take into account metrics history in its prediction, CAME
improves the average F-measure from 63% to 72% for God class.

(RQ2) Does CAME outperform state-of-the-art detection tools?
Our approach significantly improves the state-of-the-art. With respect to the
tool that performed best, the average F-measure improves from 38% to 72%
for God class.

Thus, we make the following contributions: (1) a deep-learning based model for anti-patterns
detection; (2) a comparative study to understand the impact of code metrics evolution on
anti-patterns detection; and (3) a comparison of our approach with state-of-the-art detection
tools.

The remainder of this chapter is organized as follows. Section 6.2 presents our approach
CAME. Sections 6.3 presents our study aiming at answering the two research questions.
Finally, Section 6.4 concludes with future work.
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6.2 CAME: Convolutional Analysis of Metrics Evolution

In this section, we present CAME (Convolutional Analysis of Metrics Evolution), our ap-
proach leverage code metrics history to detect anti-patterns. We first overview the main
steps of our process, then we present the input of our model for the detection of God Class.
Finally, we present in detail the CNN architecture of the model we use to perform classifica-
tion.

6.2.1 Overview

Figure 6.1 overviews the main steps employed by CAME to detect affected entities (i.e.,
classes or methods) in a given software system.

Figure 6.1 Workflow of CAME

Data Extraction

We designed a component called repository miner to automatically extract the necessary data
by mining the version control system (e.g., Git, SVN) of software under investigation. The
repository miner takes as input three arguments: (1) the URL of the system’s repository; (2)
the SHA ,i.e., the identification number, of the system’s snapshot (i.e., version) we want to
analyze and; (3) the sub-directories of interest ,i.e., those in which we want to detect affected
components. Then, the repository miner downloads the repository and starts mining the
system’s history.
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In the first step, the repository miner extract the name of all the entities implemented in
the sub-directories of interest for the considered snapshot. Then, for each commit preceding
the current snapshot, a set of object oriented and code metrics are computed for each entity.
Note that we only consider commits for which at least one metric has been modified for
at least one entity. Also, to reduce execution time, the repository miner keeps an internal
representation of the system’s entities which is updated at each new commit only for the the
files that have been changed. By doing so, we can recalculate the new values of the metrics at
each change applied to the system without reanalyzing all the Abstract Syntax Trees (ASTs).
This process is repeated until we reach the first (i.e., initial) commit of the repository.

Finally, the output of the repository miner consists in several .csv files containing the names
and metrics values of each entity for a given commit.

Classification

From the output of the repository miner, we compute the input matrix of our model for each
entity. This matrix contains the values of the code metrics computed at each commit. Our
model is a CNN which performs a binary classification over the entities of the system from
the input matrix.

6.2.2 Input

Fog God Class detection, the entities to classify correspond to the classes of the systems. To
decide whether or not a given class is affected by the God Class anti-pattern, we retrieve the
history of six metrics.

First, a God Class is mainly characterized by its size. Hence, we compute for each class
the widely known LOC metric which represents the number of lines of code which compose
a class by ignoring blank lines and comments. Then, as proposed by Moha et al. (2010)
we compute four other metrics used by DECOR: (1) NMD (Number of Methods Declared);
(2) NAD (Number of Attributes Declared); (3) the LCOM5 metric (Lack of Cohesion in
Methods) proposed by Briand et al. (1998) and; (4) the number of associated data classes.
We consider as a data class, a class for which the ratio between the number of attributes
declared vs. number of non accessor methods declared is greater than 8. Finally, we also
compute the ATFD metric for a class proposed by Lanza and Marinescu (2007).

Comparatively to SMAD, we also compute two metrics related to the system’s snapshot: (1)
number of classes and; (2) history length. However, we do not retrieve the history of these
metrics which are fed through the network along with the output of the convolutional layers.
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Finally, to allow our model to receive a fixed size input matrix, we limit the length of the
metrics history to 1000 commits. If the output of the repository miner contains more files,
we process only the first 1000. However, if the number of outputted files is lower than 1000,
we fill the rest of the input matrix with zeros.

6.2.3 Architecture

Figure 6.2 overviews the architecture of the convolutional neural network used by our ap-
proach to perform classification.

Figure 6.2 Architecture of CAME’s CNN

The model contains two convolution + pooling layers fully-connected to several dense layers.
The first convolution layer performs a 1D convolution with a filter size of 2. This characteristic
allows the model to compare the values of metrics between two commits and infer that
“something” has been changed. The other hyper-parameters , e.g., number of filters in conv
1, filter size in conv 2, etc., are adjusted at cross-validation time. As previously evoked, the
two additional snapshot related metrics are fed through the network along with the output
of the convolution layers.
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6.3 Experiments

In this section, we evaluate CAME on the task of God Class detection. To avoid redundancy,
we report the results for both research questions together:

• RQ1: To what extent historical information about code metrics can improve detection
performances?

• RQ2: Does CAME outperform state-of-the-art detection tools?

6.3.1 Study Design

The goal of this study is to evaluate the performances of CAME in detecting the God Class
anti-pattern and to compare CAME to state-of-the-art detection tools as well as to assess the
importance of historical information in it’s prediction. To train and evaluate the different
approaches, we used our manually-built oracle which reports the occurrences of God Class
in eight open-source Java projects (cf. Table 4.2). Our test set is composed of three systems:
Android Support Apache Tomcat and Jedit while we keep the remaining five systems for
training. To increase the size of the training set, we used the ensemble method SMAD
presented in Chapter 5 to label instances of eleven other systems reported in table 5.5.

To assess the impact of code metrics history in CAME’s performances (RQ1), we compare
our approach with a similar machine-learning model that takes as input only one version of
the considered metrics. As a competitive approach, we choose a MLP model which takes as
input the same metrics than CAME (i.e., 6 structural metrics + 2 system metrics) computed
for the considered system’s snapshot. Indeed, what defers between CAME and a MLP model
is the use of convolutional layers to process metrics history as a multi-dimensional array. To
avoid any bias, we trained both models on the same systems and used the exact same method
for hyper-parameters calibration.

To answer RQ2, we ran the competitive tools (DECOR, HIST, JDeodorant) on the three
evaluation systems to compare their performances with those of CAME. As for previous
experiments, we used the implementations made publicly available by the authors and repli-
cated the approaches for which no public implementation was available.
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6.3.2 Hyper-parameters Calibration

CAME

The set of optimal hyper-parameters for CAME have been found using a 4-fold cross valida-
tion over the eight hyper-parameters reported in Table 6.1. To do so, we split the training
set into four folds of four systems. Hence, each set of hyper-parameters is tested four times
by leaving one fold out for testing and keeping the remaining twelve systems for training. To
avoid any bias, we made sure that each fold contains systems of various size, history length
and domain. At each step, the new set of hyper-parameters is generated using a random
search. Table 6.1 reports for each hyper-parameter, the ranges of values investigated and the
value that led to the best result.

Table 6.1 Hyper-parameters Calibration of CAME

Hyper-parameter Range Best Value
Learning Rate (η) 10−[0.5;3.0] 1.17×10−1

L2-norm (λ) 10−[0.5;3.0] 2.13×10−2

Nb Filters Conv_1 [10; 40] 40
Size Pooling Conv_1 {5, 10, 20} 20
Nb Filters Conv_2 [10; 20] 20
Size Filters Conv_2 [2; 5] 3
Size Pooling Conv_2 {5, 10, 20} 20
Nb Dense Layers [1; 3] 2
Size Dense Layers [4; 140] then [4;n] [11, 8]

With n the size of the previous dense layer.

For evaluation, we trained CAME during 200 epochs by applying a learning rate decay of
0.7 every 50 epochs. Then, the final performances are computed using an ensemble learning
technique from five randomly initialized models.

MLP

For the concurrent MLP model, the hyper-parameters tuning has been performed similarly
to CAME. We used the same 4-fold cross validation to monitor the performances of the MLP
using the hyper-parameters reported in Table 6.2. Finally, we trained the model during 400
epochs by applying a learning rate decay of 0.7 every 100 epochs and compute the final
performances from an ensemble of five models.
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Table 6.2 Hyper-parameters Calibration of the Concurrent MLP

Hyper-parameter Range Best Value
Learning Rate (η) 10−[0.0;2.5] 2.44×10−2

L2-norm (λ) 10−[0.0;2.5] 6.38×10−2

Dropout (Pkeep) {0.5; 1.0} 1.0
Nb Dense Layers [1; 3] 2
Size Dense Layers [4; 140] then [4;n] [24, 22]

With n the size of the previous dense layer.

6.3.3 Analysis of the Results

Table 6.3 reports the detection performances for God Class achieved by CAME on the three
test systems along with those of: (1) three state-of-the-art detection tools (i.e., DECOR,
HIST and JDeodorant) and; (2) a MLP model that takes as input the same structural metrics
than CAME. We also report an aggregate of the performances achieved on each system by
computing the mean value.

Table 6.3 Performances Evaluation of CAME for God Class detection

Approaches Apache Tomcat JEdit Android Platform Support Mean
Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure

DECOR 67% 40% 50% 17% 60% 26% 0% 0% 0% 28% 33% 25%
HIST 0% 0% 0% 22% 40% 29% 100% 75% 86% 41% 38% 38%

JDeodorant 2% 60% 4% 5% 60% 9% 17% 25% 20% 8% 48% 11%

MLP 44% 80% 57% 75% 60% 67% 100% 50% 67% 73% 63% 63%
CAME 36% 80% 50% 80% 80% 80% 100% 75% 86% �72% 78% 72%

To what extent historical information about code metrics can improve detection
performances?

For God Class detection, CAME shows an F-measure of 72% (precision of 72% and recall
of 78%) on average over the three subject systems. Hence, the use of metrics historical
information improves the detection performances by 14% in terms of F-measure. If we
analyze the performances in detail, we see that in terms of precision, CAME achieves similar
performances than the competitive approach with 72% for CAME against 73% for the MLP
model. However, for recall we can see that using metrics history significantly improves
the performance from 63% to 78% (23% improvement). Hence, CAME is able to identify
occurrences of God Class that could not be detected without using historical information.
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Using historical information as input of machine-learning
anti-patterns detection models improves the performances
in terms of F-measure and recall. Specifically, code met-
rics history does not have a significant impact on preci-
sion but reduces the number of misses

Does CAME outperform state-of-the-art detection tools?

Our results indicate that for God Class detection, CAME clearly outperforms state-of-the-
art. Indeed, with respect to the approach that performed the best for God Class (i.e.,
HIST) the F-measure improves from 38% to 72% (89% improvement). Regarding precision
and recall, the mean values improve respectively by 76% and 67% with respect to the best
approaches (respectively HIST and JDeodorant). As mentioned in previous experiments,
each competitive approach achieves poor performances on at least one software system which
is not the case for CAME with an F-measure ranging from 50% to 86%.

�

�

�

�

For God Class CAME significantly outperforms state-of-
the-art detection tools with an F-measure improvement
of 89% with respect to the best approach. Furthermore,
CAME achieves good performances on every tested sys-
tems

6.4 Conclusion and Future Work

In this chapter, we proposed CAME (Convolutional Analysis of Metrics Evolution) a deep-
learning based approach for anti-patterns detection. Our approach first retrieves the values of
source code metrics computed for each revision of the system under investigation by mining
its version control system. Then this information is provided as input to a convolutional
neural network which performs a binary classification over the entities of the system. This
model has been trained using manually identified occurrences contained in five systems and
instances of eleven other systems labeled using the ensemble method SMAD presented in
chapter 5. We implemented our approach for the detection of God Class and evaluated its
performances on three open source Java projects. Our results indicate that:

• Using historical information about code metrics for machine-learning based anti-patterns
detection improves the performances in terms of F-measure. Particularly, our model is
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able to identify more affected components than a similar model that rely on the same
metrics computed solely for the investigated system’s snapshot.

• CAME significantly outperforms state-of-the-art detection tools in detecting God Class
and performs well independently of the systems characteristics.

Convolutional neural networks offer the possibility of visualizing their internal representation
of what they have been trained to classify. This process is called feature visualization (Zeiler
and Fergus (2014)). By doing so, one can visualize patterns in the input that influence the
classification. Our future research agenda includes applying feature visualization techniques
to CAME to understand the root causes of design anti-patterns.
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CHAPTER 7 THREATS TO VALIDITY

In this chapter, we discuss the threats that could affect the validity of our studies.

7.1 Construct Validity

Threats to construct validity concern the relation between theory and observation. In our
context, this could refer to the reliability of the oracle used to train and evaluate the different
approaches investigated in this work. Instances of God Class extracted from HIST and
DECOR replication packages have been filtered before being incorporated in our oracle.
Furthermore, both papers have been awarded by the community, which confirms the quality
of the processes conducted to produce these instances. For Feature Envy, we followed a
strict blind procedure where each instance has been investigated by three different persons.
However, we can not exclude the possibility of some missed occurrences or false positives.
Another threat is related to the replication of some of the competitive approaches. We
followed rigorously the guidelines provided by the respective authors, and as explained in
Section 5.3.2 we performed an additional parameter tuning for each approach. However,
some differences may remain between our respective implementations.

7.2 Internal Validity

Threats to internal validity concerns all the factors that could have impacted our results. In
our context, this could refer to the training procedure presented in Section 4.4. Even though
we compared the proposed procedure with conventional techniques while performing prelim-
inary experiments. We did not report the results of our comparisons. Hence, a comparative
study of the proposed procedure with conventional optimization approaches would be desir-
able. Also, we used such procedure along with other regularization techniques while training
the model proposed by Liu et al. (2018). Note that these techniques are in fact part of the
approach we propose and are necessary to train models on real imbalanced datasets. Another
threat is related to choice of the architectures used in the approaches we propose (SMAD
and CAME) for classification. We plan to investigate the use of different machine-learning
algorithms to aggregate multiple anti-patterns detection tools for SMAD. For CAME, we
plan to compare the current architecture with other deep-learning models such as Recurrent
Neural Networks. Also, the size of the input matrix for CAME (1000 commits) was chosen
arbitrarily. For future work, we plan to investigate the impact of this length on CAME’s
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performances. Finally, we choose a MLP model as a competitive approach to CAME in order
to better assess the impact of metrics history in anti-patterns detection. Indeed, the MLP
model is the closest architecture to CAME that could take a 1D vector as input without
over-fitting. Furthermore, we used rigorously the same systems and procedure to train and
perform hyper-parameters tuning on both models.

7.3 External Validity

Threats to external validity concern the generalizability of our findings. To reduce this
threat, the software systems used for evaluation have been selected for their different domains,
origins, sizes and history lengths. However, further evaluation of our models on a larger set
of systems would be desirable.
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CHAPTER 8 CONCLUSION

The impact of anti-patterns on software quality highlighted by number of empirical studies
has motivated the development of various detection techniques. Although the proposed
approaches have helped developers in identifying affected code components to be refactored,
we identified a major limitation common to these works. Different detection techniques rely
on different sources of information and thus, identify different sets of occurrences of anti-
patterns. Hence, none of these works is able to truly address the problem of anti-patterns
and to stand out among other approaches by identifying a significant proportion of the
affected components. Recent trends have shown machine-learning models to be efficient in a
variety of domains. Several machine-learning based approaches have been proposed to detect
anti-patterns and address the issues encountered by previous approaches. However, these
models have failed to clearly outperform conventional detection techniques. Indeed, Software
systems are usually affected by a small proportion of anti-patterns. This characteristic lead
to a strong imbalancement in anti-patterns datasets which compromises the performances of
machine-learning models.

Consequently, we proposed two novel deep-learning based approaches for the detection of anti-
patterns and implemented them for the detection of two widely known anti-patterns:God
Class and Feature Envy. These models have in common to leverage both structural and
historical sources of information to perform their predictions. To address the problem of
imbalanced data, we designed a training procedure allowing to maximize the expected F-
measure. Furthermore, we manually created an oracles reporting the occurrences of the
studied anti-patterns in eight Java software systems to train and evaluate our approaches.

In the following, Section 8.1 synthesize our works while Section 8.2 discusses directions for
future work.

8.1 Synthesis

To conduct our experiments, we created an oracle reporting the occurrences of God Class and
Feature Envy in eight open source Java Projects. For God Class, we selected these occur-
rences from the replication packages of two works: Palomba et al. (2013) (HIST) and Moha
et al. (2010) (DECOR). We also filtered the anti-patterns reported in these packages to make
sure that the occurrences were reliable and that the full history of the systems were avail-
able. For Feature Envy, we created a set of potential occurrences by merging the detection
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results of three state-of-the-art detection tools (HIST, InCode and JDeodorant), adjusting
their detection thresholds to produce a number of candidate per system proportional to the
systems’ sizes. Then, each candidate have been manually analyzed by three different persons
following a strict blind procedure.

To overcome the imbalancement problem in anti-patterns datasets, we designed a training
procedure for feed-forward neural networks. This procedure presented in Section 4.4 consists
in two main contributions. First, we designed a custom loss function to guide the optimization
of our models. This loss function allows to minimize the expected mean F-measure achieved
over the training systems (i.e., the empirical risk). Second, we proposed a feeding approach
which is equivalent to a stochastic gradient descent considering each training system as a
single instance. Furthermore, we proposed to use two regularization techniques, namely L2

Regularization and Dropout to prevent our models from overfitting as well as an ensemble
learning method to improve the quality of the performances reported.

Once the oracle and the training procedure have been defined, we proposed two novel deep-
learning based detection techniques.

First, we proposed SMAD (SMart Aggregation of Anti-pattern Detectors), a machine-learning
based ensemble method to efficiently aggregate existing detection tools on the basis of their
internal detection rules. The workflow of SMAD is organized as follows. First, for each tool
to be aggregated, we defined a set of core metrics ,i.e., metrics that reflect the internal deci-
sion process of each tool. Second, for each entity, these metrics are computed and fed into a
dense feed-forward neural-network (i.e., a MLP) to perform classification. We implemented
SMAD for the detection of God Class and Feature Envy and compared its performances
with: (1) the tools aggregated through our approach and; (2) the baseline voting ensemble
technique. Our results indicate that: (1) SMAD significantly improves the performances of
the so aggregated tools and that it performs well independently of the systems characteristics
and; (2) SMAD clearly outperforms the voting technique in terms of precision an F-measure.
Furthermore, we observed that none of the voting policies are suitable to increase F-measure.

Another advantage of such ensemble method is its ability to label systems’ instances for
training other deep-learning anti-patterns detection models. Indeed, in a typical scenario, a
training dataset is built by performing a manual validation over the occurrences detected by
multiple approaches. Hence, SMAD can be used to automate this process and automatically
label training instances from a reasonable number of manually-defined examples. Thus, we
compared the performances achieved by two versions of the CNN proposed by Liu et al.
(2018) for Feature Envy detection. The first version of this model have been trained by the
authors on artificial Feature Envy occurrences while the second version have been trained
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on instances labeled by SMAD. Our results show that the subject model achieves better
performances when trained using instances labeled by our approach with respect to the same
model trained on “injected smells” i.e., artificial occurrences.

Second, we proposed CAME (Convolutional Analysis of Mectrics Evolution), a deep-learning
anti-patterns detection model which rely on source code metrics history. The workflow of
CAME is organized as follows. First, we retrieve code metrics values for each revision of the
system under investigation by mining its version control system. Second, this information,
which has the shape of a 2D matrix, is provided as input to a convolutional neural network.
We implemented CAME for the detection of God Class and compared its performances with
those of: (1) a MLP model which relies on the same metrics than CAME without the historical
part of the input and; (2) three state-of-the-art detection tools. Our results indicate that: (1)
using code metrics historical information improves the performances of the models in terms
of F-measure and recall; and (2) CAME significantly outperforms state-of-the-art detection
tools. Furthermore we show that CAME achieves good performances independently of the
systems characteristics.

8.2 Future Work

Our future research agenda manly focuses on the generalization of our findings. First, we
plan to perform a comparative study of the training procedure proposed in section 4.4 with
conventional optimization techniques. Second, we plan to extend our approaches to more
anti-patterns and to experiment them on a larger set of systems.

For future research, we also plan to investigate the use of deep-learning visualization tech-
niques (Zeiler and Fergus (2014)) on the architecture of CAME. We believe that such ap-
proach could help us identifying the root causes and characteristics of anti-patterns.
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