Design Smells in the Context of Agile Software Development

Abdou Maiga

DIRO, Université de Montréal, Québec, Canada Ph.D. Defense

Nov. 2012

Pattern Trace Identification, Detection, and Enhancement in Java

 \Rightarrow

Agile Software Development (ASD) Context

- ASD is a set of collaborative, iterative, and incremental development methods [Beck, 2001]
- In general we have inadequation between documentation and source code
- The source code is the most important source of information to evolve, change and maintain the system.
- Maintenance activities have become very expensive. They reach more than 70% of the overall costs of software development [Pressman, 2001]

22 methods

• Procedural thinking in object oriented language

22 methods

- Procedural thinking in object oriented language
- Impact of this design on comprehension?

22 methods

- Procedural thinking in object oriented language
- Impact of this design on comprehension?
- Impact of this design on fault-fixing activities?

Data Class

22 methods

- Procedural thinking in object oriented language
- Impact of this design on comprehension?
- Impact of this design on fault-fixing activities?
- How to accurately detect this design in ASD context?

Abdou Maiga

Introduction

Related Works

- Comprehension
- Fault-fixing
- SMURF
- Conclusion and Perspectives

Outline

Introduction

Impact of Design Smells on Comprehension

Impact of Design Smells on Fault-fixing

5 SMURF

Conclusion and Perspectives

Abdou Maiga

Introduction

Context Motivation and Thesi

Related Works

Comprehension

Fault-fixing

SMURF

Conclusion and Perspectives

Outline

Introduction

Related Works and Contributions

Impact of Design Smells on Comprehension

Impact of Design Smells on Fault-fixing

5 SMURF

Conclusion and Perspectives

Abdou Maiga

Introduction

Context

- Motivation and Thesis
- Related Works
- Comprehension
- Fault-fixing
- SMURF
- Conclusion and Perspectives

Design Smells in Software Systems

Design smells are poor solutions to recurring design or implementation problems [Webster, 1995]

 They are generally the result of misuse of the object-oriented paradigm and-or design patterns [Brown, 1998]

Design smells are present in sofware systems due to

- The time-to-market
- The lack of understanding
- The developers' experience

Developers cannot always follow standard designing and coding techniques

Abdou Maiga

Introduction

Conte

- Motivation and Thesis
- Related Works
- Comprehension
- Fault-fixing
- SMURF
- Conclusion and Perspectives

Motivation

 \Rightarrow

Quantitative evidences on the relation between design smells, comprehension, and fault-fixing activities

- are important for practitioners to help developers reduced change costs
- help to reduce maintenance costs and improve software quality
- help practitioners to take rational decisions about how dealing with design smells
- help practitioners justify the removal of design smells

Empirical software engineering thesis

Abdou Maiga

Introduction

Conte

Motivation and Thesis

Related Works

Comprehension

Fault-fixing

SMURF

Conclusion and Perspectives

Thesis

There is an **impact** of **design smells** on source code **comprehension** and **fault-fixing activities** and we can provide a **tool** for **accurate incremental** design smells **detection** in ASD context.

Abdou Maiga

Introduction

Related Works

Related Work Contributions

Comprehension

Fault-fixing

SMURF

Conclusion and Perspectives

Outline

Introduction

Related Works and Contributions

Impact of Design Smells on Comprehension

Impact of Design Smells on Fault-fixing

5 SMURF

Conclusion and Perspectives

Abdou Maiga

Introduction

Related Works

Related Works

Contributions

Comprehension

Fault-fixing

SMUR

Conclusion and Perspectives

Related Works – Design Smells Impact

Work	Limitations
[Deligiannis, 2003] Blob affect evolution of design structures	No evidence of impact of DS on comprehension
and use of inheritance	
[Du Bois, 2006]	No evidence of impact of DS on comprehension
Decomposition of God classes into col-	
indorating classes using refactorings can	
[Oldrich, 2009] Blob, and Shotgun Surgery are more	No evidence of impact of DS on Fault-fixing activities
change-prone than others	
[Abbes, 2011]	Could not find any impact from one occurence of blob
Blob, Spaghetti Code design smells im-	or spaguetti code
pedes developers' performance	
[Khomh 2012]	No link betwen fault-fixing activities and design smells
Design smell classes are more change-	
prone and fault-prone than others	

Abdou Maiga

Introduction

Related Works

Related Works

Comprehension

Fault-fixing

SMURF

Conclusion and Perspectives

Related Work – Limitations

Design Smells Impact

No evidence of the impact of DS on comprehension
 ⇒ Controlled experiments on impact of DS on comprehension

Abdou Maiga

Introduction

Related Works

Related Works Contributions

- Comprehension
- Fault-fixing
- SMURF
- Conclusion and Perspectives

Related Work – Limitations

Design Smells Impact

- No evidence of the impact of DS on comprehension
 - ⇒ Controlled experiments on impact of DS on comprehension
- No impact found for single occurrence of DS on comprehension
 - ⇒ Experiments with combination of DS

Abdou Maiga

Introduction

Related Works

Related Works Contributions

- Comprehension
- Fault-fixing
- SMURF
- Conclusion and Perspectives

Related Work – Limitations

Design Smells Impact

- No evidence of the impact of DS on comprehension
 - ⇒ Controlled experiments on impact of DS on comprehension
- No impact found for single occurrence of DS on comprehension
 - \Rightarrow Experiments with combination of DS
- No evidence of impact of DS on fault-fixing activities
 - ⇒ Empirical study on the impact of DS on fault-fixing activities

Abdou Maiga

Introduction

Related Works

Related Works

Contributions

Comprehension

Fault-fixing

SMURF

Conclusion and Perspectives

Related Work – Design Smells Detection

Approach	Limitations
[Travassos, 99]	Not applicable on large systems
Manual inspection	Time and money consuming
[Marinescu, 2004]	Validated on one system
Detection strategies based on metrics	Threshold problem
[Munro, 2005]	Specific to code smells
Heuristics based on metrics	
[Langelier, 2005], [Dhambri , 2008]	High human intervention
Visualization approach	
[AliKacem, 2006]	Not directly applicable to design smells detection
Rules based on metrics	Threshold problem
detect violations quality principles	No process of DS detection
[Moha, 2010]	Definition of rules cards are manual
Based on set of metrics rules and rela-	Extensive knowledge
tions between classes	Threshold problem
	No feedback
[Khomh, 2011]	Extensive knowledge
Probabilistic approach	Probabilistic approach
based on Bayesian Belief Networks	Threshold problem

Abdou Maiga

Introduction

Related Works

Related Works Contributions

Comprehension

Fault-fixing

SMUR

Conclusion and Perspectives

Related Work – Limitations

Design Smells Detection

The previous approaches are mostly based on the use of code/design quality metrics and thresholds to identify DS.

They require extensive knowledge of DS

 \Rightarrow Machine learning technique: SVM

Abdou Maiga

Introduction

Related Works

Related Works Contributions

Comprehension

Fault-fixing

SMURF

Conclusion and Perspectives

Related Work – Limitations

Design Smells Detection

The previous approaches are mostly based on the use of code/design quality metrics and thresholds to identify DS.

- They require extensive knowledge of DS
 - ⇒ Machine learning technique: SVM
- The choice of thresholds
 - ⇒ Derived automatically from the application of SVM

Abdou Maiga

Introduction

Related Works

Related Works Contributions

Comprehension

Fault-fixing

SMURF

Conclusion and Perspectives

Related Work – Limitations

Design Smells Detection

The previous approaches are mostly based on the use of code/design quality metrics and thresholds to identify DS.

- They require extensive knowledge of DS
 - ⇒ Machine learning technique: SVM
- The choice of thresholds
 - ⇒ Derived automatically from the application of SVM
- They did not integrate the subjectivity of the practitioners

⇒ Integrating user's feedback

Abdou Maiga

Introduction

Related Works Related Works

- Comprehension
- Fault-fixing
- SMURF
- Conclusion and Perspectives

Contributions

- Quantitative evidences of impact of DS on source code comprehension of systems
 - ⇒ Help developers to take rational decisions about their design quality
- Quantitative evidences of impact of DS on fault-fixing activities
 - \Rightarrow Help developers to deal with DS
- Incremental detection approach based on SVM and using users' feedback
 - ⇒ Make developers proactive and help to reduce maintenance costs

Abdou Maiga

Introduction

Related Works

Comprehension

- Context Research Questions Objects and Subjects Independent Dependent Variables Analysis Method Results
- Fault-fixing
- SMURF
- Conclusion and Perspectives

Outline

Introduction

Impact of Design Smells on Comprehension

Impact of Design Smells on Fault-fixing

5 SMURF

Conclusion and Perspectives

Abdou Maiga

Context

 \Rightarrow

Introduction

Related Works

Comprehension

Context

Research Questions Objects and Subjects Independent Dependent Variables Analysis Method Results

Fault-fixing

SMURF

Conclusion and Perspectives

- Comprehension: central element for the effectiveness of software maintenance and evolution
- Design smells are conjectured to negatively impact comprehension

Following the design in [Abbes, 2011], we conducted two experiments to assess the impact of co-occurrences of DS

- In [Abbes, 2011], single occurrence of DS did not impact comprehension but co-occurrences of Blob and Spaguetti Code impact comprehension
- We conducted a quasi quasi-replication to analyse whether co-occurrences of same DS, Blob or Spaghetti Code, in a single system, impact comprehension.

Abdou Maiga

Introduction

Related Works

Comprehension Context Research Questions

Objects and Subjects Independent Dependent Variables Analysis Method Results

Fault-fixing

SMURF

Conclusion and Perspectives

Study Design

Our design is like [Abbes, 2011]: 2*3 factorial design

- Three different systems (per experiment), each with two possibilities (with or without co-occurrences of DS)
- For each combination, we prepare a set of comprehension questions, making up treatments.

Ph D Defence

Abdou Maiga

- Research Questions

Research Questions

RQ1	What is the impact of co-occurrences of Blob on code source comprehension?
RQ2	What is the impact of co-occurrences of Spaghetti Code on code source comprehension?

Hypothesis

For RQs, we formulate following null hypothesis

- $H_{01_{2Blobs}}$: No statistically significant difference between the subjects' average correct answers
- $H_{02_{2Blobs}}$: No statistically significant difference between the subjects' average time spent
- $H_{03_{2Blobs}}$: No statistically significant difference between the subjects' average effort

Abdou Maiga

Introduction

Related Works

Comprehension Context Research Questions **Objects and Subjects** Independent Dependent Variables Analysis Method

Fault-fixing

SMURF

Conclusion and Perspectives

Objects of the Study

Experiments	Systems	Classes	SLOCs	Release
	Azureus v2.3.0.6	1,449	191,963	2005
1	iTrust v11.0	565	21,901	2010
	SIP v1.0	1,771	486,966	2010
	ArgoUml v0.20	1,230	113,017	2006
2	JHotDraw v5.4b2	484	72,312	2004
	Rhino v1.6R5	108	48,824	2009

Table : Object Systems

Subjects of the Study

- 59 anonymous subjects
- M.Sc. and Ph.D. students at ÉPM and UdeM
- M.Sc. and Ph.D. students at Carleton University
- Subjects were volunteers and could withdraw at any time, for any reason

Abdou Maiga

Introduction

Related Works

- Comprehension Context Research Questions Objects and Subject Independent
- Dependent Variable Analysis Method Results
- Fault-fixing
- SMURF
- Conclusion and Perspectives

Independent Variables

Experiment	Variable
1	<i>Has2b</i> : Boolean (presence or not) of co-occurences of Blob
2	Has 2SC : Boolean (presence or not) of co-occurences of Spaghetti Code
	or opugnetti code

Mitigating Variables

Three mitigating variables could possibly impact the measures of the dependent variables

- Subject's knowledge level in Java.
- Subject's knowledge level of Eclipse.
- Subject's knowledge level in software engineering.

Abdou Maiga

Introduction

Related Works

Comprehension Context Research Questions Objects and Subjects Independent

Dependent Variables

- Analysis Meth Results
- Fault-fixing
- SMURF
- Conclusion and Perspectives

Dependent Variables

Dependent variables measure subjects' performance

- Subjects' effort using the NASA Task Load Index (TLX)
- Time spent to answer the comprehension questions
- Percentage of correct answers

Abdou Maiga

Introduction

Related Works

Comprehension Context Research Questions Objects and Subjects Independent Dependent Variables Analysis Method

Results

Fault-fixing

SMURF

Conclusion and Perspectives

Analysis Method

- Non-parametric Mann-Whitney test for RQ1 and RQ2
- Non-parametric effect size measure Cliff's d
- Kruskal-Wallis one-way analysis of variance to analyse the impact of the mitigating variables

Abdou Maiga

Introduction

Related Works

Comprehension Context Research Questions Objects and Subjects Independent Dependent Variables Analysis Method

Results

Fault-fixing

SMURF

Conclusion and Perspectives

Results

Table : Mann-Whitney tests and Cliff's *d* results for 2 Blob

	MW. <i>p</i>	Cliff's d
Time	<0.01	0.87 (Large)
Correct Answers	<0.01	0.53 (Large)
Effort	<0.01	0.73 (Large)

Table : Mann-Whitney tests and Cliff's *d* results for 2 SC

	MW. <i>p</i>	Cliff's d
Time	<0.01	0.93 (Large)
Correct Answers	<0.01	0.93 (Large)
Effort	<0.01	0.55 (Large)

Abdou Maiga

Introduction

Related Works

Comprehension Context Research Questions Objects and Subjects Independent Dependent Variables Analysis Method

Results

Fault-fixing

SMUR

Conclusion and Perspectives

Impact of Mitigating Variables

Kruskal-Wallis test shows no effect on the results of the mitigating variables

- Java Knowledge
- O Eclipse Knowledge
- Software Engineering Knowledge

Abdou Maiga

Introduction

Related Works

Comprehension Context Research Questions Objects and Subjects Independent Dependent Variables Analysis Method

Results

Fault-fixing

SMURF

Conclusion and Perspectives

Results

Subjects working with systems with co-occurrences of DS

- Put more effort in doing comprehension tasks
- Have few percentages of correct answers
- Spend more time

Co-occurrences of DS are sufficient to impact developer's comprehension of source code

Abdou Maiga

Introduction

Related Works

Comprehension

Fault-fixing

Context

Research Questions Independent Variables Dependent Variables Analysis Method Study Results

SMURF

Conclusion and Perspectives

Outline

Introduction

Related Works and Contributions

Impact of Design Smells on Comprehension

Impact of Design Smells on Fault-fixing

5 SMURF

Conclusion and Perspectives

Abdou Maiga

Introduction

Related Works

Comprehension

Fault-fixing

Context

Research Questions Independent Variables Dependent Variables Analysis Method Study Results

SMURF

Conclusion and Perspectives

Context

 \Rightarrow

We know that

- Design smells are prevalent in systems
- Several studies have shown that design smells negatively impact maintenance

However, none of them empirically investigated the impact of design smells on fault-fixing activities

Gather quantitative evidence on the relation between design smells, faults, and the developers' effort to fix the faults

Abdou Maiga

Introduction

Related Works

Comprehension

Fault-fixing

Context

Research Questions

Independent Variable Dependent Variables Analysis Method Study Results

SMURF

Conclusion and Perspectives

Research Questions

RQ1	Relation between number of DS in a class and its fault-proneness?
RQ2	Relation between duration of fixing period and the presence of DS?
RQ3	Relation between number of elements (fields and methods) impacted by fault- fixes and the presence of DS?
RQ4	Relation between entropy of fault-fixes and the presence of DS?
RQ5	Relation between fault-fixes and the num- ber of occurrences of DS before and after fault-fixes?

Abdou Maiga

Introduction

Related Works

Comprehension

Fault-fixing

Context

Independent Variables

Dependent Variable Analysis Method

SMURF

Conclusion and Perspectives

Independent Variables

RQ1	<i>HasF</i> : (Boolean) presence or not of fault in a class
(RQ2,RQ3,RQ4)	$HasDS_t$: (Boolean) presence or not of DS in a fault t
RQ5	$DS_{t,b}$: Number of occurrences of DS in a fault t before the fault-fix

Abdou Maiga

Introduction

Related Works

Comprehension

Fault-fixin

Context Research Questions Independent Variables

Dependent Variables

Analysis Method Study Results

SMURF

Conclusion and Perspectives

Dependent Variables

RQ1	DS_i : Number of occurrences of DS in class <i>i</i>
RQ2	D_t : Duration of fixing period (number of days be-
	tween date of report of the fault day of the fix)
RQ3	<i>Nbr_{Elts}</i> : Number of elements (methods and fields) impacted by a fault-fix
RQ4	E_t : Entropy of fault-fix
RQ5	$DS_{t,a}$: Number of occurrences of DS in a fault t after the fault-fix

Abdou Maiga

Introduction

Related Works

Comprehension

Fault-fixin

Contex

Research Questions Independent Variables Dependent Variables

Analysis Method

Study Result

SMURF

Conclusion and Perspectives

Analysis Methods

We use the following analysis methods:

- Non-parametric Mann-Whitney test
- Non-parametric effect size measure Cliff's d
- Multivariate regression analyses

Abdou Maiga

Introduction

Related Works

Comprehension

Fault-fixin

Conte

Research Questions Independent Variables Dependent Variables Analysis Method

Study Results

SMURF

Conclusion and Perspectives

Results				
RQ	ArgoUML	Eclipse	Mylyn	Rhino
RQ1 (Fault-prone)	\checkmark	\checkmark	\checkmark	\checkmark
RQ2 (Duration)	×	\checkmark	\checkmark	X
RQ3 (Elements)	х	\checkmark	\checkmark	\checkmark
RQ4 (Entropy)	\checkmark	\checkmark	\checkmark	\checkmark
RQ5 (Nbr DS)	\checkmark	\checkmark	\checkmark	\checkmark

Abdou Maiga

Introduction

Related Works

Comprehension

Fault-fixing

Contex

Research Questions Independent Variables Dependent Variables Analysis Method

Study Results

- **SMURF**
- Conclusion and Perspectives

Results

Quantitative evidence of impact of DS on fault-fixing activities

- Faulty classes have higher number of DS
- Faults involving DS take more time to be fixed and their fixes impact more fields and methods with higher entropy
- Fixing faults reduces the number of DS

 \Rightarrow Help developers to deal with DS

Abdou Maiga

Introduction

Related Works

Comprehension

Fault-fixing

SMURF

Description Research Questions Objects Subjects

Conclusion and Perspectives Outline

Introduction

Related Works and Contributions

Impact of Design Smells on Comprehension

Impact of Design Smells on Fault-fixing

5 SMURF

Conclusion and Perspectives

34 / 54

Abdou Maiga

Context

Introduction

Related Works

Comprehension

Fault-fixing

SMURF

Description Research Question Objects Subjects Study Results

Conclusion and Perspectives

We know from the study above that

- DS impact code source comprehension
- DS impact fault-fixing activities
- Automatically remove DS can improve the quality of source code and reduce maintenance cost

However previous approaches have some limitations

- They have limited precision and recall
- They require extensive knowledge of DS
- They cannot be applied on subsets of systems
- They did not integrate the subjectivity of the practitioners
- They are not incremental.

Abdou Maiga

Introduction

Related Works

- Comprehension
- Fault-fixing

SMURF

- Description Research Question Objects Subjects Study Results
- Conclusion and Perspectives

Contributions: SMURF

- SMURF approach to detect DS using SVM and practitioners' feedback
 - Classical learning systems with same precision as neural networks or higher
 - Can integrate users' feedback
 - SVM is robust to noises [Taylor and Cristianini, 2004;Rychetsky, 2001]

Abdou Maiga

Introduction

- Related Works
- Comprehension
- Fault-fixing

SMURF

Description

- Research Questic Objects Subjects Study Results
- Conclusion and Perspectives

37 / 54

Abdou Maiga

Introduction

Related Works

Comprehension

Fault-fixing

SMURF

Description

Research Questions

Objects Subjects Study Resul

Conclusion and Perspectives

Research Questions

RQ1,RQ2	How does the accuracy of SMURF com-
	pare with that of DETEX and BDTEX ?
RQ3	How does the accuracy of SMURF change
	when used in inter-system configuration?
RQ4	How does the accuracy of SMURF change
	when using users' feedback?

Abdou Maiga

Introduction

Related Works

Comprehension

Fault-fixing

SMURF

Description Research Questions

Objects

Subjects Study Result

Conclusion and Perspectives

Objects

Table : Description of the objects of the study

Names	Versions	# Lines of Code	# Classes	# Interfaces	
ArgoUML	0.19.8	113,017	1,230	67	
A design tool UML					
Azureus	2.3.0.6	191,963	1,449	546	
A peer-to-peer client that implements the protocol BitTorrent					
Xerces	2.7.0	71,217	513	162	
A syntaxic analyser					

Abdou Maiga

Introduction

Related Works

Comprehension

Fault-fixing

SMURF

Description Research Questions Objects

Subjects

Study Results

Conclusion and Perspectives

Subjects

The subjects of our study are the following four DS

Blob

- Functional Decomposition (FD)
- Spaghetti Code (SC)
- Swiss Army Knife (SAK)

We use these four DS because they well **known** and **previously studied** [Moha, 2010; Kohmh 2011]

Abdou Maiga

Introduction

- Related Works
- Comprehension
- Fault-fixing

SMURF

Description Research Question Objects Subjects

Study Results

Conclusion and Perspectives

Subsets of System: RQ11

Table : Precision of SMURF in subsets

DS	ArgoUML	Azureus	Xerces	Average
Blob	97.09	97.32	95.51	96.64
FD	70.68	72.01	66.93	69.87
SC	85.00	88.00	86.00	86.33
SAK	75.46	84.54	80.76	80.25

Table : Recall of SMURF in subsets

DS	ArgoUML	Azureus	Xerces	Average
Blob	84.09	91.33	95.29	90.24
FD	57.50	84.28	70.00	70.59
SC	71.00	89.00	86.00	82.00
SAK	77.14	85.71	75.50	79.45

Figure : Trends of precision and recall when increasing the size of subset for SC in Xerces

Abdou Maiga

Introduction

Related Works

Comprehension

Fault-fixing

SMURF

Description Research Questions Objects Subjects

Study Results

Conclusion and Perspectives Study Results

Complete System: $RQ1_2$

Table : Total recovered true occurrences of Blob by DETEX and SMURF

	DETEX	SMURF
ArgoUML	25	40
Azureus	38	48
Xerces	39	55
Total	102	143

• DETEX is not applicable on subsets of systems while SMURF has good precison and recall

 On entire systems, SMURF detects more true occurrences of Blob than DETEX

Introduction Related Works Comprehension Fault-fixing SMURF Description

Research Que Objects Subjects Study Results

- - - - -

Perspectives

The accuracy of SMURF compared with that of BDTEX

Figure : Trends in the increase of precision and recall when decreasing the probability of being a design smell for Blob in Xerces

Abdou Maiga

Introduction

- Related Works
- Comprehension
- Fault-fixing

SMURF

Description Research Questions Objects Subjects

Study Results

Conclusion and Perspectives

The accuracy of SMURF in inter-systems configuration

Table : Precision of SMURF in inter-systems

	ArgoUML (%)	Azureus (%)	Xerces (%)
Blob	92.00	96.00	89.00
FD	57.00	62.00	36.00
SC	77.00	74.00	91.00
SAK	56.00	73.00	90.00

Table : Recall of SMURF in inter-systems

	ArgoUML (%)	Azureus (%)	Xerces (%)
Blob	62.00	48.00	94.00
FD	40.00	100.00	20.00
SC	96.00	88.00	91.00
SAK	68.00	84.00	56.00

Abdou Maiga

Introduction

Related Works

Comprehension

Fault-fixing

SMURF

Description Research Question: Objects Subjects Study Results

Conclusion and

The accuracy of SMURF with feedback

Figure : Trends in the increase of precision and recall when integrating incremental feedback

Abdou Maiga

Introduction

- Related Works
- Comprehension
- Fault-fixing

SMURF

Description Research Question Objects Subjects

Study Results

Conclusion and Perspectives

Results

Incremental detection approach based on SVM and using users' feedback

- We test SMURF on 3 systems and 4 DS
- The accuracy of SMURF is greater than that of DETEX
- SMURF is more stable than the probabilistic approach BDTEX
- SMURF is an incremental detection approach: could be applied in continuous integration context

⇒ Make developers proactive and help to reduce maintenance costs

Wish!!! We have a feedback system to customise anti-pattern detection

Abdou Maiga

Introduction

Related Works

- Comprehension
- Fault-fixing
- SMURF

Conclusion and Perspectives

Outline

Introduction

- Related Works and Contributions
- Impact of Design Smells on Comprehension
- Impact of Design Smells on Fault-fixing

5 SMURF

Conclusion and Perspectives

Abdou Maiga

- Introduction
- Related Works
- Comprehension
- Fault-fixing
- SMURF

Conclusion and Perspectives

Conclusion 1/3

- Quantitative evidences of impact of DS on source code comprehension of systems
 - ⇒ More time to understand system with co-occurrences of Blob or Spaguetti Code with large effect size
 - ⇒ More effort to understand system with co-occurrences of Blob or Spaguetti Code with large effect size
 - ⇒ Lower percentage of good answers when performing task on system with co-occurrences of Blob or Spaguetti Code with large effect size

Developers should take rational decisions about their design quality to avoid the negative impact of DS on code source comprehension

Abdou Maiga

Introduction

Related Works

Comprehension

Fault-fixing

SMURF

Conclusion and Perspectives

Conclusion 2/3

Quantitative evidences of impact of DS on fault-fixing activities

- ⇒ The duration of the fixing period is longer for faults involving classes with DS
- ⇒ Fixing faults in classes with DS impacts more files, more fields/methods with higher entropy
- ⇒ After a fault is fixed, the number of occurrences of design smells in the classes involved in the fault decreases

Help developers to deal with DS when fixing a fault

Abdou Maiga

Introduction

Related Works

Comprehension

Fault-fixing

SMURF

Conclusion and Perspectives

Conclusion 3/3

- Incremental detection approach based on SVM and using users' feedback
 - ⇒ The accuracy of SMURF is greater than that of DETEX and BDTEX
 - ⇒ SMURF can be applied in both intra-system and inter-system configurations
 - ⇒ SMURF accuracy improves when using practitioners' feedback

Make developers proactive and help to reduce maintenance costs

Abdou Maiga

Introduction

Related Works

Comprehension

Fault-fixing

SMURF

Conclusion and Perspectives

Short Term Perspectives

- Replicate the studies in other contexts, with other subjects, questions, kind of design smells, and other systems
- Investigate the relation between the number of occurrences of design smells and the level of comprehension
- Study the impact of design pattern on source code comprehension and fault-fixing activities
- Use our incremental detection tool, SMURF, in real-world environments

Abdou Maiga

Introduction

Related Works

Comprehension

Fault-fixing

SMURF

Conclusion and Perspectives

Long Term Perspectives

- How long does a design smell Survive?
- What are the factors of introduction and propagation of design smells in software system?
- What are the factors of extinction of design smells?
- How to automatically remove and propose refactoring for design smells?

Abdou Maiga

- Introduction
- Related Works
- Comprehension
- Fault-fixing
- SMURF

Conclusion and Perspectives

Thesis

There is an **impact** of **design smells** on source code **comprehension** and **fault-fixing activities** and we can provide a **tool** for **accurate incremental** design smells **detection** in ASD context.

Contributions

- Quantitative evidences of impact of DS on source code comprehension of systems
 - ⇒ Help developers to take rational decisions about their design quality
- Quantitative evidences of impact of DS on fault-fixing activities
 - \Rightarrow Help developers to deal with DS
- Incremental detection approach based on SVM and using users' feedback
 - ⇒ Make developers proactive and help to reduce maintenance costs