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RÉSUMÉ

Prouver qu’un logiciel correspond à sa spécification ou exposer des erreurs cachées dans son

implémentation est une tâche de test très difficile, fastidieuse et peut coûter plus de 50% de

coût total du logiciel. Durant la phase de test du logiciel, la génération des données de test est

l’une des tâches les plus coûteuses. Par conséquent, l’automatisation de cette tâche permet

de réduire considérablement le coût du logiciel, le temps de développement et les délais de

commercialisation.

Plusieurs travaux de recherche ont proposé des approches automatisées pour générer des

données de test. Certains de ces travaux ont montré que les techniques de génération des

données de test qui sont basées sur des métaheuristiques (SB-STDG) peuvent générer au-

tomatiquement des données de test. Cependant, ces techniques sont très sensibles à leur

orientation qui peut avoir un impact sur l’ensemble du processus de génération des données

de test. Une insuffisance d’informations pertinentes sur le problème de génération des don-

nées de test peut affaiblir l’orientation et affecter négativement l’efficacité et l’effectivité de

SB-STDG.

Dans cette thèse, notre proposition de recherche est d’analyser statiquement le code source

pour identifier et extraire des informations pertinentes afin de les exploiter dans le proces-

sus de SB-STDG pourrait offrir davantage d’orientation et ainsi d’améliorer l’efficacité et

l’effectivité de SB-STDG. Pour extraire des informations pertinentes pour l’orientation de

SB-STDG, nous analysons de manière statique la structure interne du code source en se

concentrant sur six caractéristiques, i.e., les constantes, les instructions conditionnelles, les

arguments, les membres de données, les méthodes et les relations. En mettant l’accent sur

ces caractéristiques et en utilisant différentes techniques existantes d’analyse statique, i.e,

la programmation par contraintes (CP), la théorie du schéma et certains analyses statiques

légères, nous proposons quatre approches : (1) en mettant l’accent sur les arguments et les

instructions conditionnelles, nous définissons une approche hybride qui utilise les techniques

de CP pour guider SB-STDG à réduire son espace de recherche ; (2) en mettant l’accent sur

les instructions conditionnelles et en utilisant des techniques de CP, nous définissons deux

nouvelles métriques qui mesurent la difficulté à satisfaire une branche (i.e., condition), d’où

nous tirons deux nouvelles fonctions objectif pour guider SB-STDG ; (3) en mettant l’accent

sur les instructions conditionnelles et en utilisant la théorie du schéma, nous adaptons l’al-

gorithme génétique pour mieux répondre au problème de la génération de données de test ;

(4) en mettant l’accent sur les arguments, les instructions conditionnelles, les constantes,

les membres de données, les méthodes et les relations, et en utilisant des analyses statiques
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légères, nous définissons un générateur d’instance qui génère des données de test candidates

pertinentes et une nouvelle représentation du problème de génération des données de test

orienté-objet qui réduit implicitement l’espace de recherche de SB-STDG.

Nous montrons que les analyses statiques aident à améliorer l’efficacité et l’effectivité de

SB-STDG. Les résultats obtenus dans cette thèse montrent des améliorations importantes

en termes d’efficacité et d’effectivité. Ils sont prometteurs et nous espérons que d’autres re-

cherches dans le domaine de la génération des données de test pourraient améliorer davantage

l’efficacité ou l’effectivité.
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ABSTRACT

Proving that some software system corresponds to its specification or revealing hidden errors

in its implementation is a time consuming and tedious testing process, accounting for 50%

of the total software. Test-data generation is one of the most expensive parts of the soft-

ware testing phase. Therefore, automating this task can significantly reduce software cost,

development time, and time to market.

Many researchers have proposed automated approaches to generate test data. Among the

proposed approaches, the literature showed that Search-Based Software Test-data Generation

(SB-STDG) techniques can automatically generate test data. However, these techniques are

very sensitive to their guidance which impact the whole test-data generation process. The

insufficiency of information relevant about the test-data generation problem can weaken the

SB-STDG guidance and negatively affect its efficiency and effectiveness.

In this dissertation, our thesis is statically analyzing source code to identify and extract

relevant information to exploit them in the SB-STDG process could offer more guidance and

thus improve the efficiency and effectiveness of SB-STDG. To extract information relevant for

SB-STDG guidance, we statically analyze the internal structure of the source code focusing

on six features, i.e., constants, conditional statements, arguments, data members, methods,

and relationships. Focusing on these features and using different existing techniques of static

analysis, i.e., constraints programming (CP), schema theory, and some lightweight static

analyses, we propose four approaches: (1) focusing on arguments and conditional statements,

we define a hybrid approach that uses CP techniques to guide SB-STDG in reducing its

search space; (2) focusing on conditional statements and using CP techniques, we define two

new metrics that measure the difficulty to satisfy a branch, hence we derive two new fitness

functions to guide SB-STDG; (3) focusing on conditional statements and using schema theory,

we tailor genetic algorithm to better fit the problem of test-data generation; (4) focusing on

arguments, conditional statements, constants, data members, methods, and relationships,

and using lightweight static analyses, we define an instance generator that generates relevant

test-data candidates and a new representation of the problem of object-oriented test-data

generation that implicitly reduces the SB-STDG search space.

We show that using static analyses improve the SB-STDG efficiency and effectiveness. The

achieved results in this dissertation show an important improvements in terms of effectiveness

and efficiency. They are promising and we hope that further research in the field of test-data

generation might improve efficiency or effectiveness.
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CHAPTER 1

INTRODUCTION

In the field of Information Technology (IT), software testing exists since the creation of

the first computer system. In parallel to the digital revolution, software testing becomes

mandatory because of the increasing demands and needs in computer systems that must

behave systematically and that users can trust. Indeed, the consequences of poor software

testing may be dire: software crashes and/or security breaches, which, in critical systems,

may lead to financial losses or loss of life.

Critical systems are embedded in most of our daily activities. They are in transporta-

tion (e.g., avionics, rail, sea), in energy production and control systems (e.g., nuclear power

centers, oil extraction), and also in the medical field (computer-aided surgery, automated

medical treatments).

Poorly-tested critical systems have negatively affected our economy. Tassey (2002) reports

that, inadequate software infrastructure costs the U.S. economy about $60 billion per year.

Poorly-tested critical systems are at the root of the 1996 Ariane 5 incident during which

an undesirable behavior caused by a floating-point conversion error led to the rocket self-

destructing just 40 seconds after launching. The European Space Agency announced a delay

in the project, estimated a direct economic loss of 500 million U.S. dollars and, implicitly, a

loss of customers’ confidence to the benefits of competitors (Garfinkel, 2005).

The disasters caused by poorly-tested critical systems motivated all stakeholders to invest

in software testing. Software testing is a time consuming and tedious process, accounting for

more than 50% of the total software cost (Pressman, 1992; Myers, 1979) and any technique

reducing testing costs is likely to reduce the software development costs as a whole. Automatic

Test Data Generation (ATDG) techniques can significantly reduce software cost, development

time, and time to market (Ince, 1987). However generating a test-data set for an exhaustive

and thorough testing is often infeasible because of the possibly infinite execution space and

its high costs with respect to tight budget limitations. Techniques exist to select test data

in order to reduce testing cost without compromising the software quality. Such techniques

are recommended by several international standard (e.g., DO-178B for aircrafts, IEC 61513

for nuclear, IEC 50126 for railway.). For example, in the standard DO-178B (RTCA, 1992),

programs are classified into five levels (from E to A), each level representing the possible effect

of a program’s error on passengers’ safety. Level “A” has a catastrophic effect, Level “B” has

a dangerous effect, Level “C” has a major effect, Level “D” has a minor effect, and Level “E”
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has no effect on safety. The criterion for testing a program is defined by its classification in

the standard (RTCA, 1992; Kong et Yan, 2010): for example, a C-level program must be

tested by a test-data set that at least executes every program instruction once.

Black-box testing and white-box testing are the most dominant techniques in the field

of software testing. Black-box testing is concerned with validating the software functional-

ities disregarding its implementation, whereas white-box testing is concerned only with the

implementation of a software system (Myers, 1979).

1.1 Problem and Motivation

In this dissertation, we focus on white-box testing, also known as structural testing. Structural

testing is commonly used with unit testing wherein each unit is tested separately (e.g., a unit

is a procedure or function in a procedural programming language and a class in an object-

oriented programming language). A requirement of structural testing is expressed in terms

of the internal features of the Unit Under Test (UUT), i.e., an implementation (Vincenzi

et al., 2010): generally, a UUT is represented by a Control Flow Graph (CFG), then a test

requirement is expressed in terms of CFG nodes and/or edges. For example, if we consider

the function foo in Figure 1.1 as UUT, then a test requirement may be a test-data set that

can reach all edges in Figure 1.2, i.e., all-branch coverage.

The literature describes automated techniques and tools to satisfy a test requirement by

generating a test-data suite. Over the last two decades, researchers have focused mainly

on Search Based Software Test Data Generation (SB-STDG) or Constraint Based Software

Test Data Generation (CB-STDG) to generate test-data because these two approaches can

achieve high coverage.

CB-STDG is a static approach: to generate test data, CB-STDG statically translates

the test-data generation problem into a Constraint Satisfaction Problem (CSP), then uses

a solver, i.e., a tool that takes a CSP as input and either computes a solution or proves its

infeasibility. In the first case, the solution represents the test data needed to satisfy the test

requirement; in the second case, the test requirement is unreachable. SB-STDG is a dynamic

approach: to generate test data, SB-STDG starts by generating a random set of test-data

candidates (e.g., an initial population), then for each candidate test-datum, an instrumented

version of the UUT is executed and conditional statements are dynamically analyzed to

determine a fitness value, i.e., a score that estimates how far a test-datum candidate is from

the test target. Based on the fitness value and the search algorithm used, the current test-

data candidates are evolved to generate a new set of test-data candidates and the approach

continues, generating new sets of test-data candidates, until the test target is achieved or a
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1 int foo(int x, int y, int z){
2 int maxHash=hash(x);
3 boolean b=(maxHash<hash(y));
4 if(b){
5 maxHash=hash(y);
6 b=(maxHash<hash(z));
7 if(b)
8 maxHash=hash(z);
9 }

10 else {
11 b=(maxHash<hash(z));
12 if(b)
13 maxHash=hash(z);
14 }
15 return maxHash;
16 }

Figure 1.1: The foo function ———
——————–

START

¬b—

b

b

b

¬b ¬b—

Figure 1.2: Control flow graph of the
foo function

stopping criterion is reached.

Over the last decade, CB-STDG and SB-STDG approaches have been extensively ex-

plored (Collavizza et al., 2010; Gotlieb, 2009; Lakhotia et al., 2010; Malburg et Fraser, 2011;

Păsăreanu et Rungta, 2010; Staats et Pǎsǎreanu, 2010; Tillmann et de Halleux, 2008; Fraser

et Zeller, 2012). The main advantages of the CB-STDG approach are in its precision in

test-data generation and in its ability to prove that some execution paths are unreachable.

Yet, scalability issue is the major disadvantage of this approach, i.e., it cannot manage the

dynamic aspects of a UUT, e.g., dynamic structures, native function calls, and communica-

tion with the external environment (Tillmann et de Halleux, 2008). Thus, using CB-STDG,

it is not always possible to generate an exact test data due to source code complexity or un-

availability. For example, CB-STDG cannot generate test data that covers an execution path

containing a native function call, e.g., any execution path in the function foo is problematic

due to the native function call, hash, at Line 2 in Figure 1.1.

In contrast, SB-STDG approaches are scalable, i.e., they can deal with any sort of pro-

grams. But the efficiency and effectiveness of these approaches is sensitive to many factors:

the search-space size; the fitness function; and the search heuristic. It is inefficient to use

SB-STDG in a large search space without an efficient search heuristic and sufficient guidance.

For example, to generate a test datum to execute a path involving a branch over a boolean,

the fitness functions proposed in the literature may lack information to distinguish between

test-data candidates (McMinn, 2004), e.g., in Figure 1.1, generating test data to reach the

statement at Line 8 is difficult because the execution of the path leading to this line involves

two conditional statements over boolean variables, i.e., at Lines 4 and 7.
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CB-STDG derives its advantages from its static analyses that give it a global view on

the whole test-data generation problem, whereas SB-STDG derives its advantages from its

dynamic analyses that give it a complete view on a part of the test-data generation problem

(i.e., a part of the execution path leading to a test target) and allows it to deal with any

types of instructions. These different ways of analysis are also at the root of the disadvan-

tages of each approach: because CB-STDG uses static analyses, it cannot analyze some sort

of dynamic instructions (e.g., native function call) and because SB-STDG uses dynamic anal-

yses, it has only a partial view on the problem, i.e., only the executed part of the test-data

generation problem (e.g., execution path leading to a test target) is visible. Therefore, these

approaches use complementary analyses that give them a potential for combination.

Because SB-STDG is scalable, it is used more often than CB-STDG to generate test-

data in the software development industry (Parasoft, 2013). However, SB-STDG suffers

from problems related to search guidance, e.g., the fitness function and the search heuristic

(McMinn, 2004). These problems are less serious than the scalability issue and can be

dealt with by offering relevant information about the global view of a test-data generation

problem. Such information can be derived either directly, using static analyses, or indirectly,

using CB-STDG.

1.2 Thesis

In our previous work (Sakti et al., 2011; Bhattacharya et al., 2011), we reviewed and ana-

lyzed the problem of test-data generation to understand the standard analyses used with the

approaches SB-STDG and CB-STDG. We observed that there exist some internal features

of UUT that may influence the process of test-data generation and statically analyzing them

may lead to relevant information for the SB-STDG guidance. We identified six UUT features,

i.e., arguments, conditional-statements (i.e., branch-conditions), constants, data members,

methods, and relationship with other unite (e.g., inheritance, association, aggregation, or

method call).

Many other researchers (Alshraideh et Bottaci, 2006; Harman et al., 2007; Ribeiro et al.,

2008; McMinn et al., 2010; Baars et al., 2011; Zhang et al., 2011; Alshahwan et Harman, 2011;

Fraser et Zeller, 2011; McMinn et al., 2012a; Fraser et Arcuri, 2012; McMinn et al., 2012b)

also discussed the importance of static analyses for SB-STDG. Table 1.1 summaries UUT

features analyzed and programming language targeted in previous work: Arguments (Ar.),

Conditional Statements (C.S.), Constants (Co.), Data Members (D.M.), Methods (Me.),

relationship with other units (Re.), Object-Oriented language (O.O.), and Procedural Pro-

gramming (P.P.).
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Table 1.1: UUT features analyzed and programming language targeted in previous work.

Research work Ar. C.S. Co. D.M. Me. Re. O.O. P.P.
Harman et al. (2007)

√ √

McMinn et al. (2012a)
√ √

Ribeiro et al. (2008)
√ √

Zhang et al. (2011)
√ √

Baars et al. (2011)
√ √

Alshraideh et Bottaci (2006)
√ √ √

McMinn et al. (2010)
√ √ √

Alshahwan et Harman (2011)
√ √ √

Fraser et Zeller (2011)
√ √ √

Fraser et Arcuri (2012)
√ √ √

McMinn et al. (2012b)
√ √ √

Static analyses proposed in previous work does not consider all six features of a UUT

and does not explore static analysis techniques such as constraint programming and schema

theory. In addition, to the best of our knowledge, statically analyzing source code to extract

and exploit relevant information about UUT features to guide SB-STDG in the field of

object-oriented testing has not been analyzed yet except for constants. Thus, our thesis is:

Statically analyzing source code to identify and extract relevant information to

exploit them in the SB-STDG process either directly or through CB-STDG could

offer more guidance and thus improve the efficiency and effectiveness of SB-STDG

for object-oriented testing.

To prove our thesis, we define and adapt different static-analysis techniques to extract

and exploit relevant information about each UUT feature: (1) focusing on arguments of a

UUT, we define a CB-STDG approach and use it as static-analysis to guide SB-STDG in

reducing its search space; (2) focusing on conditional-statements (i.e., branch-conditions)

and using CP techniques, we define new fitness functions to guide SB-STDG; (3) focusing

on conditional-statements (i.e., branch-conditions) and using schema theory, we define a new

SB-STDG framework; (4) focusing on arguments, constants, data members, methods, and

relationship with other units, we define a new static analysis techniques for object oriented

test-data generation.
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1.3 Contributions

The main contributions of this thesis are focusing on the use of static analyses to identify

information relevant to guide SB-STDG search, extract them from the source code, and

exploit them in the test-data generation process. First, we review and analyze the two widely

used approaches in the field of automatic test-data generation, i.e., CB-STDG and SB-STDG,

to identify UUT features that may influence the test-data generation process. Second, we

enhance CB-STDG before using it as static analysis to guide SB-STDG. Finally, we propose

many complementary static analyses based on different techniques: (1) a static analysis based

on CP techniques (i.e., constraint arity and projection tightness (Pesant, 2005)) to improve

fitness functions used with CB-STDG; (2) a static analysis based on schema theory (Holland,

1975) to improve the CB-STDG process, in particularly to tailor GA to better fit the problem

of test-data generation; (3) many static analyses that focus on different UUT features (i.e.,

constants, data members, methods, branches, relationship with other unites) to offer relevant

information for SB-STDG about Object-Oriented Programming (OOP).

More specifically, the main contributions are:

1. CPA-STDG, a new CB-STDG approach whose goal is exploiting CP heuristics to miti-

gate CB-STDG deficiencies (e.g., the exploration of execution paths faces the combina-

torial explosion problem). CPA-STDG explores execution paths by using CP heuristics.

It uses CFG to model all execution paths and link them to constraints representing the

program statements. CPA-STDG has two main advantages: (1) exploring execution

paths in a solver can benefit from CP heuristics and avoid exploring a significant num-

ber of infeasible paths and (2) modeling a CFG keeps the program semantics and

facilitates identifying its internal structure, thus it could easily answer to different test

requirements. The results of this contribution were published in Actes des 7e Journées

Francophones de Programmation par Contraintes (JFPC) (Sakti et al., 2011) and the

3rd IEEE International Symposium on Search-based Software Engineering (SSBSE)

(Bhattacharya et al., 2011).

2. CSB-STDG, a new approach that combines CPA-STDG and SB-STDG to achieve

better code coverage. It simplifies the problem of test-data generation to solve it using

CPA-STDG and uses the solutions as a reduced search space with SB-STDG. The

results of this contribution were published in the 4th IEEE International Symposium

on Search Based Software Engineering (SSBSE) (Sakti et al., 2012).

3. CB-FF, a novel fitness functions based on branch “hardness” whose goal is using CP

techniques to better guide a SB-STDG approach, thus reach higher code coverage. It
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statically analyzes the test target to collect information about branches leading to it.

Then it defines a penalty value for each branch according to CP techniques, i.e., its arity

and its constrainedness. Branch penalties are used to determine how close a test-data

candidate is to reach a test target. The results of this contribution were published in the

10th International Conference on Integration of Artificial Intelligence and Operations

Research in Constraint Programming (CPAIOR) (Sakti et al., 2013).

4. Enhanced Genetic Algorithm Framework for Software Test Data Generation (EGAF-

STDG), a new SB-STDG approach that tailors GA to better match the problem of test-

data generation, thus reaching better coverage. It uses schema theory (Holland, 1975)

to analyze and restructure the problem and identify properties associated with better

performance, then it incorporates them in the evolution phase with all fundamental GA

operators (i.e., selection, crossover, and mutation). EGAF-STDG increases the code

coverage achieved by a simple GA by restructuring the problem of test-data generation

in a new representation wherein GA has a high likelihood to succeed.

5. Instance Generator and Problem Representation to Improve Object Oriented Code

Coverage (IG-PR-IOOCC), a new SB-STDG approach for unit-class testing that re-

duces the search space by analyzing statically the internal structure of a Class Under

Test (CUT), generating relevant instances of classes using diversification and seeding

strategies, and thus achieving better code coverage. The results of this contribution

were published in IEEE Transactions on Software Engineering (TSE) (Sakti et al.,

2014).

1.4 Organization of the Dissertation

The rest of this dissertation is organized as follows.

Chapter 2 AUTOMATIC TEST DATA GENERATION presents the techniques

and concepts that we use in this dissertation. The chapter starts by briefly describing the

test-data generation process. It continues by introducing the principles of SB-STDG and

CB-STDG.

Chapter 3 RELATED WORK presents works and research areas that are related to

our dissertation. The chapter starts by briefly presenting the state of the arts of CB-STDG

and SB-STDG. Next, it presents the state of the art of combining CB-STDG and SB-STDG.

It finishes with the state of the art of test-data generation approaches for object-oriented

programming.
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Chapter 4 CP APPROACH FOR SOFTWARE TEST DATA GENERATION

starts by describing the methodology that we propose to translate a test-data generation

problem into a constraints satisfaction problem. It continues with designing the modeling

constraints for control-flow criteria and data-flow criteria. It provides an empirical study to

compare our approach with two CB-STDG approaches from the literature. Then, it concludes

with a discussion of the results.

Chapter 5 COMBINING CB-STDG AND SB-STDG This chapter presents a hybrid

test-data generation approach that combines CB-STDG and SB-STDG. The chapter starts

by explaining the limitations of both approaches and shows the potential of their combination.

It continues by presenting different techniques of combination. Then, it provides an empirical

experimental comparison of the proposed approach with a CB-STDG from the literature. The

chapter concludes with a discussion of the results.

Chapter 6 CONSTRAINT BASED FITNESS FUNCTION presents an approach

that exploits constraint programming techniques to offer a new fitness function for SB-STDG.

The chapter starts by presenting the limitations of existing fitness functions. It continues with

presenting metrics to evaluate a test-data candidates. It provides an empirical experimental

comparison of the proposed fitness functions and the state of the art.

Chapter 7 SCHEMA THEORY OF GENETIC ALGORITHMS TO ANALYZE

AND IMPROVE SB-STDG presents the concept of schema theory and uses it to en-

hance evolutionary testing. It explains how to use information from schema theory in dif-

ferent search stages to get better performance. Also, it provides the details of an empirical

experimental study that compares the proposed approach to an existing evolutionary testing

approach.

Chapter 8 FURTHER STATIC ANALYSES TO IMPROVE SB-STDG presents

a new approach that exploits static analysis to enhance SB-STDG for OOP. It continues

presenting different weak points in the process of SB-STDG for Object-Oriented programming

and how to deal with them. It continues by describing an implementation, JTExpert, of the

approach. Also, it provides an empirical experimental comparison of the proposed approach

and the state of the art. The chapter concludes based on the results and discussion of

experiments.

Chapter 9 JTEXPERT: A LARGE SCALE EXPERIMENTATION presents an

adaptation of our approach IG-PR-IOOCC and its implementation JTExpert to raise excep-
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tions via branch coverage, i.e., an Exceptions-oriented Test-data Generation Approach. It

continues by presenting experimental results of applying JTExpert on a large open-source

software, the Apache Hadoop System.

Chapter 10 CONCLUSION AND FUTURE WORK revisits the main thesis and

contributions of this dissertation. It also describes potential opportunities for future research.
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Part I

Background
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CHAPTER 2

AUTOMATIC TEST DATA GENERATION

This chapter provides the details of the three main techniques, i.e., ATDG, SB-STDG, and

CB-STDG which we used in this dissertation. First, we briefly explain the ATDG process

for structural testing. Second, we explain the principle of SB-STDG and the main fitness

functions and search heuristics used in this approaches, i.e., random search, GAs, branch

distance, and approximation level which we enhance or compare with. Third, we explain

the principle of CB-STDG and the main techniques, i.e., POA and GOA we improve and

compare with.

Software testing is a main phase of the software development life cycle. It aims to find

faults or gain confidence in a software system. This phase requires an executable software

called software under test, an input data called test data or test input, and an expected output

called oracle (Machado et al., 2010). The combination of a test data and its oracle is called a

test case. Software testing consists of generating test data, generating an oracle for each test

data, and exercising the software under test by using the test data and comparing its outputs

to the oracle. The large or infinite input and output domains may make exhaustive testing

impossible, i.e., testing a software using all the possible inputs. To overcome this challenge

and make testing scalable without compromising the testing quality, Goodenough et Gerhart

(1975) defined a theory of test-data selection and the notion of test criteria. Since then, test

criteria have been a major research focus in the field of software testing. Consequentially,

a wide set of test criteria have been proposed, investigated, and classified into two testing

strategies, i.e., black-box testing and white-box testing (Myers, 1979). Black-box testing

is concerned with validating the software functionalities disregarding its implementation,

whereas white-box testing is concerned only with the implementation of a software system

(Myers, 1979). These two testing strategies are complementary, i.e., a missing functionality

cannot be revealed by white-box testing, unexpected functionality cannot be detected by

black-box testing. In this dissertation we are interested only in white-box testing.

2.1 White-box Testing

White-box Testing, also known as structural testing, is commonly used with unit testing

where each unit is tested separately (e.g., a unit is a procedure or a function in a procedural

programming language and it is a class in a object-oriented programming language). To
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determine the testing requirements, the internal features of a unit are used, i.e, implementa-

tion (Vincenzi et al., 2010): a unit is represented as a CFG and a test requirement called a

coverage criterion is expressed in terms of nodes and edges, e.g., it may be a subset of edges,

a subset of nodes, or a combination of thereof. Generally, to formally define a requirement

of white-box testing two items are used: a CFG and a coverage criteria.

2.1.1 Control Flow Graph (CFG)

CFG of a program is a directed graph whose nodes represents a sequence of instructions,

which together constitute a basic block, and edges represent possible transitions between

nodes (Ferrante et al., 1987). A CFG has a single input node called START and one output

node called END. For each node N of a CFG, there exists at least one path from START

to N and another from N to END. A complete execution path is a path from START to

END. Any program can be represented by a control flow graph. Figure 2.2 represents a CFG

of the function triangle shown in Figure 2.1. Such a structure is used to express different

structural test-criteria that are known as coverage criteria.

2.1.2 Coverage Criterion

A coverage criterion or, as originally defined by Goodenough et Gerhart (1975), selection

criterion, is a predicate that defines properties of a program that must be exercised. Formally,

it defines the set of CFG paths that must be traversed to test a program.

Structural coverage criteria divide in two categories: data-flow based and control-flow

based. Well-known control-flow based structural coverage criteria are all-nodes (known also as

all-statements), all-edges (known also as all-branches), or all-paths. Data-flow based coverage

criteria focuses on the interactions among variables and their effect on program statements.

A data-flow coverage criterion is expressed in terms of variable definitions and their usages

(e.g., all-def, all-use). To express a data-flow criterion over CFG nodes a Data Flow Analysis

(DFA) is required.

2.1.3 Data Flow Analysis

During program execution, a program instruction handles variables in two ways: def when

the variable value is changed, the CFG node that represents this statement is a def-node of

that variable and use when the variable value is used in an expression (e.g., referred in right

side of an assignment statement), the CFG node that represents this statement is a use-node

of that variable. A def or a use can be identified by a pair 〈v,Ni〉 where v is a program

variable and Ni is a CFG node. A use is split into two types: c-use if the use-node is a
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int NOT_A_TRIANGLE=0;

int SCALENE=1;

int EQUILATERAL=2;

int ISOSCELES=3;

01 int Triangle(int a, int b, int c)

02 {

03 int type;

04 int t;

05 if (a > b){

06-08 t = a; a = b; b = t;

09 }

10 if (a > c){

11-13 t = a; a = c; c = t;

14 }

15 if (b > c){

16-18 t = b; b = c; c = t;

19 }

20 if (a + b <= c){

21 type = NOT_A_TRIANGLE;

22 }

23 else{

24 type = SCALENE;

25 if (a == b && b == c){

26 type = EQUILATERAL;

27 }

28 else {

29 if (a == b || b == c){

30 type = ISOSCELES;

31 }

32 }

33 }

34 return type;

35 }

Figure 2.1: The triangle function.

Figure 2.2: The CFG corresponding to
triangle function.
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statement-node; p-use predicate use if the use-node is a decision-node. A triplet 〈v,Nd, Nu〉
is a def-use association if there exist a def-clear path between Nd and Nu with respect to the

variable v. A path is def-clear if it does not contains any new definition of that variable and

its first node Nd is a def-node of the variable v and its last node Nu is an use-node of that

variable. A node that prevents a path to be def-clear for a def-use 〈v,Nd, Nu〉 is a killer-node,

it is a def-node of v, located between Nd and Nu, that replaces the currently active definition

of v with its own definition. Data flow analysis is the process that determines all def-use

associations.

Example: coverage criterion The triangle program is a well benchmark (Bardin et al.,

2009; Botella et al., 2002; Williams et al., 2005). It allows users to identify a triangle by the

relative length of its three sides. The code in Figure 2.1 is an implementation of this program

(McMinn, 2004). The triangle function takes as input three integers and returns 0 if these

cannot be the lengths of the sides of a triangle; 1 if the parameters come from a scalene

triangle; 2 from an equilateral triangle; 3 from an isosceles triangle.

We suppose that the unit under test is the function Triangle in Figure 2.1 and the

coverage criterion requires to traverse all edges in Figure 2.2, i.e., all-edge or all-branch

coverage criterion. The requirement of this criterion is the set of all edges E = {〈05, 06 −
08〉, 〈05, 09〉, 〈10, 11−13〉, 〈10, 14〉, 〈15, 16−18〉, 〈15, 11−19〉, 〈20, 21〉, 〈20, 24〉, 〈25, 24〉, 〈25, 32〉,
〈29, 30〉, 〈29, 31〉} any edge in the CFG and not in E (e.g. 〈14, 15〉) it implicitly covered.

According to this requirement, the test-data generation task consists of finding a set of test

input T that covers all-branch. Formally, T is All-branches-adequate if and only if ∀e ∈ E,∃t ∈
T/triangle(at, bt, ct) traverse e. In the example the set T = {〈1, 2, 3〉, 〈6, 5, 4〉, 〈6, 6, 6〉, 〈4, 4, 6〉}
is All-branches-adequate because the four executions of the function triangle by using the

four 3-tuplet in T exercise all edges.

On this small example the test-data generation task is simple. However, this task is very

difficult for a real program. In general, generating test data manually is unproductive and

error-prone (Machado et al., 2010). Therefore, automating this testing task is crucial to

achieve a high level of code coverage. To make possible automating test-data generation,

many approaches have been developed since 1976 when the first automated test-data gen-

eration approaches appeared (Miller et Spooner, 1976; Clarke, 1976). The two widely used

approaches are SB-STDG and CB-STDG.

2.2 Search Based Software Test Data Generation (SB-STDG)

SB-STDG was introduced by Miller et Spooner (1976). To generate test inputs, SB-STDG

uses a search algorithm that is guided by an objective function or fitness function. The fitness
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function is defined according to a desirable test target. The commonly used fitness functions

are branch-distance and approach-level (McMinn, 2004). To generate test data, SB-STDG

starts by generating a random set of test-data candidates (e.g., an initial population). For

each test-datum candidate, an instrumented version of the Unit Under Test (UUT) is executed

and its fitness is computed. Based on the fitness value and the search algorithm used, the

current test-data candidates are evolved to generate a new set of test-data candidates. acSB-

STDG continues generating new set of test candidates until the test target is achieved or a

stopping criterion is reached.

2.2.1 Fitness Function

The fitness function assigns a score to each test-datum candidate by measuring how far a

test-datum candidate is from the test target. A dynamic family of fitness functions is used

in the literature. This family assigns a score to a test-datum candidate i by executing an

instrumented version of the UUT using i as input vector.

The approximation-level (Wegener et al., 2001) and branch-distance (Tracey et al., 1998)

measures are used to define fitness functions. These measures are respectively the number

of branches leading to the test target that were not executed by the test candidate and the

minimum required distance to satisfy the branch condition where the execution of the test

candidate has left the target path, e.g., the branch distance to satisfy the true branch of a

conditional statement at Line 25 in Figure 2.1 if(a==b && b==c) is equal to |a− b|+ |b− c|.
The values of a, b, and c are extracted during the execution of Line 25. In general, the branch

distance is used after a normalization, i.e., the branch distance is converted to a number in

the interval [0, 1] using either of the following formulations (Arcuri, 2010): η(δ) = 1−1.001−δ

or η(δ) = δ
δ+1

where δ is the branch distance.

For better accuracy, a new hybrid family of fitness functions has been proposed in the

literature: Baars et al. (2011) propose Symbolically Enhanced Fitness Function (fSE) and

in a previous work we propose Difficulty Level Fitness Functions (fDL, fDC) (Sakti et al.,

2013). In addition to the dynamic computation, this family uses static analyses that take

in consideration the non-executed branches. In addition to the score realized at the critical

branch, this family adds a score for each non-executed branch on which the test target is

control dependent.

The fitness function with the search heuristic are keys to the success of a SB-STDG

technique. This couple represent the heart of SB-STDG that may distinguish between two

SB-STDG techniques. In this dissertation, we use many fitness functions and mainly two

search heuristics: random search and Genetic Algorithm (GA).
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2.2.2 Random Search

Random search is the simplest among the search heuristics, it is largely used in software

testing because it may lead to a high level of coverage. The common random search relies

on generating a test-data candidate vector (i.e., a value for each input variable) randomly to

execute the instrumented unit and reach the targeted branch. It stops either if the generated

test candidate vector executes the targeted branch or if a stop condition is reached. For

example, in the triangle example to reach the branch 〈29, 30〉 or the statement at Line 30

in Figure 2.2 a random search randomly generates three integer values 〈av, bv, cv〉 to execute an

instrumented version of the function triangle, i.e., a version that contains some additional

statements for tracking the execution and variable values. If the statement at Line 30 is

executed then the search stops and a test input is returned otherwise the search restarts a

new iteration until a stopping criterion is met.

The main advantages of random search is that it is cheap, simple, and easy to implement

and it may reach a high level of code coverage. However, it is a blind and shallow search that

may not reach some important test targets if they are unlikely to be covered randomly. Thus,

random search does not ensure stable strength of coverage. There exist other sophisticated

search heuristics such as GA that keep advantages of random search while mitigating its

disadvantages.

2.2.3 Genetic Algorithm (GA)

GA is a meta-heuristic search technique that is based on the idea of natural genetics and

Darwin’s theory of biological evolution (Holland, 1975; Goldberg, 1989; Mitchell, 1999). It

supposes that new and fitter sets of individuals may be created by combining portions of

fittest individuals in the previous population generation. A GA aims to reach an optimal

solution of a problem by exploring potential solutions in its search space. A GA has typically

six main components: (1) a representation of a feasible solution to the problem, called chro-

mosome, each component of which is a gene; (2) a population of encoded individuals; (3) a

fitness function to assign a score to each individual; (4) a selection operator to select parents

according to their fitness; (5) a crossover operator to recombine and create new offspring;

and, (6) a mutation operator to diversify the population by introducing new offspring.

The GA processes populations of individuals, successively replacing one such population

with an evolved one. It works as follows:

1. Randomly generate a population of n individuals;

2. Evaluate the fitness f(i) of each individual i in the population;
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3. Exit if a stopping condition is fulfilled;

4. Repeat the following steps until n offspring have been created:

(a) Select a pair of parents from the current population;

(b) Recombine the two selected parents and create two new offspring;

(c) Mutate the two offspring.

5. Replace the population by the new one and return to Step 2.

As with any evolutionary search method, the way in which individuals are evolved is

the key factor in the success of a GA. The GA evolution phase involves three fundamental

operators: selection, crossover, and mutation.

Selection

A selection operator (scheme) selects individuals in the population for reproduction. A fitter

individual is likely to be selected to reproduce many times. In the literature, many selection

operators have been proposed for evolutionary algorithms. An analysis of commonly used

selection operators can be found in (Goldberg et Deb, 1991; Blickle et Thiele, 1996; Mitchell,

1999).

Crossover

A crossover operator recombines individuals via an exchange of genes between pairs of chro-

mosomes. It recombines individuals with the hypothesis that the fittest individuals can

produce even fitter ones. There are three commonly used crossover techniques: one-point,

two-point, and uniform. Depending on the crossover technique and a predefined probability

(i.e., crossover rate), the crossover randomly selects points of crossover (gene positions) and

exchanges genes between two parents to create new offspring.

Mutation

A mutation operator is a process wherein a gene is randomly modified to produce a new

chromosome. As with the crossover, the mutation occurs only with some probability (i.e.,

mutation rate). Any gene in a chromosome can be subject to mutation. A mutation operator

prevents the GA to be trapped in a local optima (i.e., phenomena of premature convergence).
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Schema Theory

Schema theory serves as the analysis tool for the GAs process to explain how and in which

class of problem GAs work well (Holland, 1975). If the search space can be split into sub-

spaces wherein chromosomes have some features in common, then GAs have the potential

to work well to solve such a problem. In this class of problem, GAs are well suited because

they works according to the divide-and-conquer principle but do not require that the sub-

problems be independent. Thus, the problem is solved using problem decomposition and

the assembly of the solution from sub-solutions (Watson et al., 1998). A hard problem is

reduced to a set of easier ones, solved more easily than the original one. Schema theory

has been originally defined for binary strings representation to provide a formal framework

for the informal building-block notion (Mitchell, 1999) but it can be adapted to any other

representation.

A schema is a pattern representing a subset of the search space wherein chromosomes

have some features in common (Holland, 1975). On binary strings, a schema is a template

of chromosomes drawn from the set {0, 1, ∗}, where the asterisk represents a wild card. For

example, a string str of one character coded by a chromosome of eight binary bits is an

instance of the schema “s = 0 ∗ ∗1 ∗ ∗ ∗ ∗” if and only if the str chromosome contains “0” at

the position 1 and “1” at the position 4. This example of schema has an order equal to 2 (the

number of fixed bits) and a length equal to 3 (the number of bits between the first and the

last fixed bits).

The fitness value of a schema is equal to the average fitness value of its instances. Individ-

uals from a schema having a fitness value higher than the average are likely to produce fitter

individuals (Holland, 1975). Therefore, schema theory can be used to analyze the potential

of using GAs with a given fitness function to solve the problem of test-data generation.

Evolutionary Testing

Evolutionary testing is a variant of SB-STDG that solves the test-data generation problem

using an evolutionary algorithm, e.g., a GA.

As example, let us suppose that the test requirements is reaching Line 26 (requires sides

of an equilateral triangle) in the function triangle defined in Figure 2.1. Let us apply the

GA steps presented in Subsection 2.2.3. We denote the iteration number by i, initialized

with value 0.

1. Generation of an initial population. Suppose that the size of the population is 5 and

the following population was randomly generated.

Pi ={ 〈5, 3, 2〉, 〈1, 1, 2〉, 〈3, 3, 2〉, 〈6, 4, 1〉, 〈4, 4, 7〉}
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2. Fitness evaluation. Assume that the fitness function used is approach-level (Wegener

et al., 2001) f(t) = lt + η(δt)

f(Pi) ={ 〈l1 = 2, δ1 = 1, f1 = 2.50〉, 〈l2 = 2, δ2 = 1, f2 = 2.50〉, 〈l3 = 1, δ3 = 1, f3 =

1.50〉, 〈l4 = 1, δ4 = 5, f4 = 1.83〉, 〈l5 = 1, δ5 = 3, f5 = 1.75〉}
Because the objective is a fitness value equal to 0, the best individual is the 5th one,

with the smallest fitness value.

3. Because no individual could reach Line 26, the search goes to the next steps that consist

of evolving the best individuals.

4. Evolution.

(a) The pair of individuals 〈5, 4〉 is selected for evolution;

(b) The recombination operator produced {〈6, 4, 7〉, 〈4, 4, 1〉}, in which the third gene

was swapped.

(c) Let us suppose that the mutation operator produced {〈5, 4, 7〉, 〈4, 4, 4〉}. The

second individual is a solution;

The two generated individuals are inserted in a new population Pnew. The operations

(a), (b), and (c) are repeated until the size of Pnew reaches step 5.

5. Pnew replaces Pi and a new iteration is started from 2. Because the new population

contains a solution, 〈4, 4, 4〉, the search is stopped at the second iteration.

In the example, the problem of test-data generation is encoded by a vector of three

integer values where an individual is a direct representation of the input variables. Thus, an

optimal solution is an individual that can reach the test target, i.e., which satisfies all control

dependent branches of the test target.

The example is simple to encode and easy to solve because it represents the problem of

test-data generation for procedural programming. Although, the encoding and the solving

process may be more complex when considering the problem for OOP.

2.2.4 SB-STDG for Object Oriented Programming

Test-data generation for OOP is challenging because of the features of OOP, e.g., abstraction,

encapsulation, and visibility that prevent direct access to some parts of the source code. When

considering the problem of test-data generation for OOP, SB-STDG must take into account

the state of the objects. Before invoking a method that may reach a test target, an instance

of the CUT and a sequence of method calls are required to put the CUT in a desirable state

to reach a test target.
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To address the accessibility problem, a SB-STDG approach must performs three actions:

(1) instantiate the CUT and all other required classes; (2) perform a sequence of method calls

to put the instance of the CUT in a desired state (i.e., a state that may help to reach the

test target); and, (3) call a method that may reach the test target. The problem is in finding

an adequate combination of these three actions to represent a test data to reach a given test

target. Solving this problem faces three difficulties: (D1) finding an adequate instance of the

CUT and of each required object; (D2) finding an adequate sequence of method calls to put

the instance of the CUT in a desired state; and, (D3) finding an adequate method to reach

the test target.

Therefore, the search problem consists of finding a means to instantiate the CUT (D1),

a sequence of method calls (D2+D3), and an instantiation for each required argument (D1).

To address the difficulties of test-data generation for unit-class testing, the most widely used

approach is exploring the whole search space of D1 and a reduced search space of D2+D3 that

bounds the length of sequences of method calls (Tonella, 2004; Pargas et al., 1999; Xie et al.,

2005; Arcuri et Yao, 2008; Wappler et Wegener, 2006; Fraser et Arcuri, 2011). Initially,

such an approach randomly generates instances of classes and sequences of method calls.

To generate a sequence of method calls, a length `r bounded by a constant L is randomly

generated, where L is specified by the user or chosen automatically by the approach, then

an algorithm iteratively and randomly selects an accessible method until the sequence length

reaches `r. Instances of classes and sequences of method calls are evolved or regenerated until

a stopping condition is reached.

2.3 Constraint Based Software Test Data Generation (CB-STDG)

CB-STDG was introduced in the 1970s (Clarke, 1976; Boyer et al., 1975). At that time,

limitations in hardware and decision algorithms prevented the development of CB-STDG.

In 1993, in parallel with the evolution of hardware and decision procedures, the work of

Demillo and Offut (DeMillo et Offutt, 1993) relaunched CB-STDG. During the two last

decades several researchers have shown interest in CB-STDG (Gotlieb et al., 2000; Collavizza

et Rueher, 2006; Bardin et al., 2009; Inkumsah et Xie, 2007; Visser et al., 2004; Baars et al.,

2011; Malburg et Fraser, 2011).

CB-STDG is an approach of ATDG that consists of using CP techniques to solve the

problem test-data generation.
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Supported CSP

Unsupported CSP Unsupported Type of constraints

Solver

Propagation

Recherche

Solution

Infeasible

? Timeout

Propagation

Search

Figure 2.3: An abstraction of a solver

2.3.1 Constraint Programming (CP)

CP is a high-level framework that uses several techniques (filtering, propagation, search

heuristics) to find solutions to combinatorial problems in a reasonable computational time.

These problems can be classified as NP-complete or NP-hard. The power of CP is in its

effectiveness in resolving problems, and its simplicity of use in different applications (Puget,

1995). CP is a technique to solve CSPs that uses logical inference within each constraint

and propagates it among constraints. It is usually combined with tree search (problem

decomposition) to make it deterministic.

A Constraint Satisfaction Problem (CSP) is a triplet (X, D, C) where X is a set of

variables {x1, ..., xn}, D is a set of domains {D1, ..., Dn}, and C is a set of relationships

over the set of variables, called constraints. Each domain Di is a set of possible values for

each xi. Each constraint expresses a property that must be satisfied by the values of the CSP

variables. An assignment of values to the CSP variables is a solution if and only if it satisfies

all constraints.

Although CP techniques have been designed for solving problems in logistics, production,

and scheduling; during the last two decades, the applications of CP increased and its tech-

niques have been adapted to effectively solve problems in others domains: hardware testing

and verification (real-time system) (Adir et Naveh, 2011; Moss, 2008, 2010; NAVEH et al.,

2007) as well as software testing and verification (Gupta, 2008).
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2.3.2 Solver

A solver is a tool that implements CP techniques. It takes a CSP as input and computes

a solution or proves its infeasibility. Figure 2.3 shows an abstraction of a solver and the

different answers that can be produced. When designing and implementing a solver, the aim

is creating a library that can easily be reused to solve CSPs. A solver typically is composed

of two layers: propagation and search. The propagation layer is based on mathematical

theories to reduce the search space. It ensure the local consistency of each constraint, i.e.,

it treats each constraint separately and removes any inconsistent value from the domains of

their variables. The search layer consists of fixing variables according to a certain strategy,

e.g., the variable with the smallest domain is randomly fixed to one value from its domain.

Each time a variable is fixed by the search layer, the propagation layer considers this change

and uses constraints in which that variable is involved to remove all inconsistent values from

the domains of other variables. After fixing a variable x to a value v, if the domain of any

other variable becomes empty then a backtrack is done by returning into the state before

fixing the variable x and the value v is removed from the domain of x. A solution is reached if

a solver can fix all variables. A CSP is proved infeasible if the domain of a variable becomes

empty and there is no backtrack possible.

2.3.3 CB-STDG principle

In general, to generate test inputs, CB-STDG translates the test-data generation problem into

a CSP, which is either solved or proved infeasible; in the first case, the solution represents

the test inputs needed to reach a given test target. A test-data generation problem may

generate complex constraints over different data types (e.g., integer, float, string, arrays)

and require a complex combination of theories that may be impossible to solve. Therefore,

the CB-STDG works well as long as we can translate the whole testing problem into a

CSP. It becomes problematic when CSP translation meets some complex instructions (e.g.,

recursive data structures, unbounded arrays, floating point numbers, different data types,

random memory access through pointers) or if a part of the UUT source-code is inaccessible,

dynamically generated, or a black box (e.g., native function calls, sensor interface). Therefore,

the effectiveness and limits of a CB-STDG approach essentially depend on two main things:

how the translation process generates the CSP and the solver used.

Several approaches have been proposed to translate the problem of test data generation

into a CSP, then solve it using a solver. Well known approaches are the path oriented

approach and the goal oriented approach. The main difference between these two approaches

is in the way a test data generation problem is translated into a CSP.
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2.3.4 Path Oriented Approach (POA)

The POA subdivides the test data generation problem into sub-problems, i.e., each path

leading to the test target is a sub-problem. One sub-problem at time is solved until the test

target is reached or a stopping condition is met. If the selected path is reachable then a test

input is generated to exercise that path otherwise a different sub-problem is selected. POA

builds sub-problems from a symbolic tree or by executing an instrumented version of a UUT

and then by generating the path condition over symbolic input variables.

The purpose of the POA is to generate a test-datum set to observe all possible behaviors of

a UUT, i.e., the objective is generating a test-data set from a symbolic execution tree, which

is an abstract representation of all execution paths. In practice, it is impossible to calculate

and solve constraints generated by all possible paths in a UUT (the number of paths is infinite

with the presence of loops or recursion). In the existence of recursion or loops there exist a

significant or infinite number of execution paths to explore. Some conventional approaches

of exploring trees are used (e.g., depth-first), which may face the combinatorial explosion in

some types of trees (Xie et al., 2009). Therefore, execution paths exploration strategy is the

main disadvantage of the POA. The straightforward solution to deal with this problem is by

bounding the depth of a execution path or the number of iterations of a loop with a small

constant K, where K is specified by the user or chosen automatically by the approach. The

problem with this solution is that a reachable path may become an unreachable.

Symbolic Execution (SE)

SE is a POA approach that was introduced in the 1970s (Clarke, 1976; King, 1976). It

is performed by executing a UUT using symbolic input variables instead of concrete input

values. When symbolic execution meet a variable assignation, this variable is symbolically

evaluated by replacing any variable in the assigned expression with its symbolic evaluation.

Thus, an expression of a conditional statement is symbolically evaluated and each of its

branches is assigned a symbolic expression. A program can be represented by a symbolic

execution tree whose nodes are conditional statements and an edge is a possible branch labeled

with its symbolic expression. The conjunction of edges’ labels throughout an execution path

in a symbolic execution tree forms a path condition. Solving a path condition generates test

inputs needed to exercise the equivalent path in the UUT.

As an example, in Figure 2.5, on the left side, the function foo returns the maximum

number among three integers. Let us suppose that the function foo is a UUT and the test

target is reaching Line 6 (max = z). A representation of the symbolic execution tree of the

function foo is given on the right side of Figure 2.5. To generate a test input that executes
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1 int foo(int x, int y, int z){
2 int max=x;
3 if(max<y){
4 max=y;
5 if(max<z)
6 max=z;
7 }
8 else
9 if(max<z)

10 max=z;
11 return max;
12 }

Figure 2.4: Symbolic execu-
tion example: foo function
is a UUT

tiny(X, Y, Z)

tinymax = X

tinyX < Y

tinyX < Z

¬(X < Y )

tinyreturn X

¬(X < Z)
tinymax = Z

X < Z

tinyreturn Z

tiny (X, Y, Z)

tinymax = Z

tinyreturn Z

tinymax = Y

X < Y

tinyY < Z

Y < Z

tinyreturn Y

¬(Y < Z)

Figure 2.5: Symbolic tree of foo func-
tion

the statement at Line 6, a symbolic execution approach explores all paths that start at the

root of the symbolic tee and end at the test target, i.e., paths going to Line 6. In this example,

there exist only one path that can reach the test target, highlighted in red in the symbolic

tree. Its constraint is (X < Y ) ∧ (Y < Z). The path condition is solved using a solver and

the test inputs are generated. The triplet (0, 1, 2) is a solution of that path condition and

the execution of the function foo using this solution, indeed, reaches the test target.

The static analysis of SE prevents it to deal with dynamic data structures (e.g., unbounded

arrays, recursive data structure) and dynamic instructions, such as unbounded loops or re-

cursion. Thus, the efficiency of SE is influenced by the solver limitations, i.e., unsupported

data type or instructions that cannot be symbolically evaluated (e.g., native function calls).

To mitigate these limitations, Godefroid et al. (2005) propose another POA called DSE.

Dynamic Symbolic Execution (DSE)

Due to the limitations of constraint solvers, static SE hasn’t been successful in test inputs

generation. DSE appeared as a booster of SE at the moment when SE had difficulty to take

its place in the field of automatic test-data generation. DSE also called concolic execution,

was used for the first time in 2003 by Larson et Austin (2003) to strengthen the test-data

suite, i.e., generating more than one test-datum for each test target. DSE in its original

version consists of running an instrumented version of the UUT with a simple input data

(e.g., randomly generated from the input domain) while a symbolic execution extracts the

executed path condition. Then, this path condition is solved to generate a new test-data

that may be relevant to generate an error (assertion). In 2005 DSE has been improved

by Godefroid et al. (2005) to generate test data that may discover new execution paths.
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1 int foo(int x, int y, int z){
2 x=hash(x);
3 int max=x;
4 if(max<y){
5 max=y;
6 if(max<z)
7 max=z;
8 }
9 else

10 if(max<z)
11 max=z;
12 return max;
13 }

Figure 2.6: Dynamic symbolic execution: foo function is a UUT

They proposed an incremental generation of test data by the hybridization of the symbolic

and concrete execution: during the concrete execution a path condition is extracted. The

extracted path condition is modified to derive a new one, then the derived path condition is

solved to generate a new test-data that may explore a different execution path.

DSE is a dynamic variant of SE. The main difference compared to SE is in the way DSE

simplifies complex constraints and explores execution paths: instead of the static exploration

of the symbolic tree used in SE, DSE dynamically explores execution paths and generates

path conditions.

In the general, DSE typically works as follows:

1. Randomly generate a first test data to start the DSE.

2. Dynamically explore an execution path and generate its path condition using the current

test data to execute an instrumented version of the UUT. The condition of the executed

path is extracted and complex expressions are replaced with their concrete values;

3. Exit if a stopping condition is met (e.g., the test target is reached).

4. Generate a new path condition: a new path condition is derived from the extracted

path condition by negating the last branch condition.

5. Generate a new test data: the new path condition is solved to generate a new test

inputs;

6. Replace the test data by the new one and return to step 2.

As example, let us assume that the function foo in Figure 2.4 is a UUT and the test

requirement is covering all-branches. Let us suppose that the triplet t0 = (0, 0, 0) is the first
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test data that was randomly generated. The execution of the function foo using t0 generates

the path condition cp0 = ¬(X < Y ) ∧ ¬(X < Z). To generate a new path condition, the

condition cp0 is derived by negating the last branch condition: cp
′
0 = ¬(X < Y ) ∧ (X < Z).

To generate a new test data, the path condition cp
′
0 is solved by using a CP solver suppose

that the solution returned is the triplet t1 = (5, 2, 7). The execution of the function foo

using t1 returns the path condition cp1 = ¬(X < Y ) ∧ (X < Z). Because the last branch

condition and its negation are already explored this condition is removed from the path

condition and the derived path condition is cp
′
1 = (X < Y ). Let us suppose that the

solving of cp
′
1 returns the triplet t2 = (1, 3, 6). The execution of the function foo using

t2 returns the path condition cp2 = (X < Y ) ∧ (Y < Z). The derived path condition is

cp
′
2 = (X < Y )∧¬(Y < Z). Let us suppose that solving cp

′
2 returns the triplet t3 = (1, 3, 3).

Thus, the test suite T = {t0, t1, t2, t3} satisfies all-branch requirement for the function foo.

With this example we showed how DSE explores execution paths and generates path

conditions. To show how DSE simplifies a constraint, let us assume that the function foo is

modified as in Fig. 2.6: at Line 2, we introduced a new instruction that assigns the value

of hash(x) to x. Because a solver cannot deal with the function call hash(x), the static

SE has no chance to generate test data for any test target in this modified example: by

replacing X with its new value hash(X) all path conditions cp0, cp1, cp2, cp2
′ become complex

to solve. To address this problem, instead of the symbolic expression hash(X), DSE uses its

concrete value extracted during the execution. Suppose that hash(0)=10, the path condition

cp0 become cp0 = ¬(10 < Y ) ∧ ¬(10 < Z).

The main advantage of POA approaches is in the decomposition of the test-data gener-

ation problem into sub-problems and solving only one sub-problem at time. On the other

hand, the exploration strategy of execution paths is the main disadvantage of the POA. To

mitigate some limitations of POA, Gotlieb et al. (2000) propose GOA.

2.3.5 Goal Oriented Approach (GOA)

The GOA (Gotlieb et al., 2000; Botella et al., 2002) is an alternative of static SE. It differs

from the SE in that it does not subdivide the test-data generation problem into sub-problems,

but translates the whole test-data generation problem into one CSP. The resulting CSP is

completed with constraints that represent a test target, i.e., a test requirement. A test data

is generated by solving the complete CSP. To generate a CSP for a UUT, the GOA works in

two stages: (1) the UUT is put in Static Single Assignment Form (SSA-Form) and (2) using

guarded constraints, each statement in the SSA-Form is directly translated into a simple or

guarded constraint. Both translation steps of the function foo are presented in Figures 2.7

and 2.8.
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1 int foo(int x0, int y0, int z0){
2 int max0−6;
3 max0= x0;
4 if(max0 < y0)
5 max1= y0;
6 if(max1 < z0)
7 max2= z0;
8 max3= ϕ(max1,max2);
9 }

10 else{
11 if(max0 < z0)
12 max4= z0;
13 max5= ϕ(max0,max4);
14 }
15 max6= ϕ(max3,max5);
16 return max6;
17 }

Figure 2.7: SSA-form of foo function —
————————–

1 Var int foo0, x0, y0, z0;
2 Var int max0−6;
3 max0 = x0;
4

5 (max0 < y0)⇒ max1 = y0;
6

7 (max0 < y0) ∧ (max1 < z0)⇒ max2 = z0;
8 (max0 < y0) ∧ (max1 < z0)⇒ max3 = max2;
9 (max0 < y0) ∧ ¬(max1 < z0)⇒ max3 = max1;

10

11

12 ¬(max0 < y0) ∧ (max0 < z0)⇒ max4 = z0;
13 ¬(max0 < y0) ∧ (max0 < z0)⇒ max5 = max4;
14 ¬(max0 < y0) ∧ ¬(max0 < y0)⇒ max5 = max0;
15 (max0 < y0)⇒ max6 = max3;
16 ¬(max0 < y0)⇒ max6 = max5;
17 foo0 = max6;

Figure 2.8: CSP of foo function using
GOA

A guarded constraint (Jaffar et Maher, 1994) also called conditional constraint, is a

constraint composed of two parts: a guard part and a goal, also called the body of the

guarded constraint. The addition of the goal to a CSP depends on the state of the former:

if the guard is implied (satisfied) by the state of the CSP, then the goal is inserted into the

CSP and the guarded constraint is removed; else if the negation of the guard is implied by

the state of the CSP then the guarded constraint is removed, otherwise, a solver keeps the

guarded constraint in a suspended state.

Static Single Assignment Form (SSA-Form)

The SSA-Form is a formal representation of a program that preserves the program semantics

(Cytron et al., 1991; Brandis et Mössenböck, 1994). It defines variables uniquely at each

assignment statement and each use can be reached from these definitions. For example, for a

variable V , a new derived variable Vi is generated at each new assignment of V encountered

in the program. The variable V is replaced by Vi in any statement that uses V until the

next definition of V . This renaming process is managed by a σ function: for a statement of

a variable X, it returns the number of previous assignment statements of X. In a program

that contains branches several derived variables of the same variable can reach the same

point. These derived variables must be merged into one variable that is used henceforth.

This variable is generated by a ϕ function: if a control instruction reaches the joint node

via branch number j, then the value returned by this function is the value of the operand

number j. A ϕ function is added to the end of each conditional statement. Figure 2.7 shows
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1 int sePb1(int i, int j){
2 int tab[5]={0,0,0,0,0};
3 tab[j] = 1;
4 if(tab[i]==1)
5 {
6 //test target;
7 }
8 }

Figure 2.9: Symbolic execution: aliases
problem

1 int i : [0,4];
2 int j : [0,4];
3 int tab0[5]={0,0,0,0,0};
4 int tab1[5];
5

6 for (int k=0;k<5;k++){
7 k = j ⇒ tab1[j] = 1;
8 k 6= j ⇒ tab1[j] = tab0[j];
9 }

10 tab1[i] = 1⇒ test target

11

12 tab1[i] = 1

Figure 2.10: GOA model to reach test tar-
get

the SSA-Form of the function foo

As example, let us suppose that the function foo is a UUT and the test requirement is

reaching Line 6. This line is translated into Line 7 in the SSA-Form presented in Figure 2.7.

Line 7 is control-dependent on the branch conditions at Line 6 and at Line 4. Therefore,

the constraint equivalent to the test target is tc = (max0 < y0) ∧ (max1 < z0), i.e., the

conjunction of the branch conditions on which the test target is control-dependent. The

resolution of the conjunction tc and the CSP of foo shown in Figure 2.8 leads to a test input

that can reach Line 6 in the function foo.

The advantages of GOA compared to SE are avoiding the expensive cost of the symbolic

evaluation and dealing efficiently with bounded arrays. For example, Figure 2.9 presents the

SE aliases problem: to reach the test target at Line 6, tab[i] and tab[j] must refer to

the same storage location, i.e., i and j must be equal, but SE cannot deduce this reality,

consequently it cannot reach the test target at Line 6. Contrary to SE, GOA can implicitly

deal with this problem: translating the test requirement of the testing problem presented

in Figure 2.9 yields the CSP in Figure. 2.10. Any CP solver will return a solution for this

model where i equals j.

The main advantage of SE compared to GOA is in decomposing the problem of test-data

generation: SE treats one execution path at a time; this may negatively influence performance

in the presence of infeasible paths because SE may try to prove many execution paths that

are infeasible for a same reason, e.g., two inconsistent conditions.
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CHAPTER 3

RELATED WORK

This chapter surveys previous work related to this research work in ATDG for software,

especially work that uses static approaches to improve SB-STDG.

3.1 Constraint Based Software Test Data Generation

CB-STDG is related to our research work in using CP techniques to solve the problem of

test-data generation.

3.1.1 Symbolic Execution

In the last decade two test data generation tools have been implemented based on SE: Sym-

bolic PathFinder (SPF) (Păsăreanu et Rungta, 2010) and PEX (Tillmann et de Halleux,

2008).

SPF is an open-source testing tool for Java programs that has been developed by NASA

Ames Research Center (Păsăreanu et Rungta, 2010). It is a part of the project Java

PathFinder (JPF) Visser et al. (2004) which is a model checker. SPF uses lazy initial-

ization (Khurshid et al., 2003) to deal with unbounded or recursive data structures (e.g.,

linked list). It does not require prior bound on inputs’ sizes, rather it initializes a required

inputs data-member when it is first accessed during symbolic execution. Also, to deal with

the solvers limitations, SPF gives the possibility to switch between several solvers: choco

(Choco, 2012) to deal with integers or real data types; cvc3 (Barrett et Tinelli, 2007) to deal

with linear constraints; IAsolver (IAsolver, 2012) to deal with interval arithmetic constraints.

Switching between solvers is useful as long as any generated path condition can be solved by

using only one specific solver. But this solution cannot deal with complex path conditions

that need different solvers or involve black-box or unavailable source code.

PEX (Tillmann et de Halleux, 2008) is a test inputs generator for .Net programs that

has been developed by Microsoft Research. Its aim is a high code coverage with a test

suite as small as possible. PEX keeps track of all generated test inputs and uses them in

a meta-strategy to select the next path to be explored, which allows PEX to reduce the

exploration cost of execution paths. To address the solver limitation PEX uses the powerful

theorem prover Z3 (Z3, 2012) that can deal with several theories (e.g., arithmetic, bitvectors,

and arrays). Z3 helps PEX to solve many problems related to the solver used. Thus, PEX
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monitors the UUT executions and analyses communications, i.e., exchanged data, between

UUT and its environment and generates an under-estimated model of the environment. This

model helps PEX to deal with some types of black-box or unavailable source code. However

complex environments cannot be treated with such solution. Thus, Z3 is not ideal and cannot

efficiently solve some constraints, e.g., non-linear constraints.

SE suffers from two main problems: the scalability problem because it cannot deal with

complex instructions and the exploration of a symbolic execution tree which faces the problem

of combinatorial explosion because of the exponential growth of the search space. Following,

we present research work dealing with these two problems.

3.1.2 Dynamic Symbolic Execution

To mitigate limitations of SE , DSE (Godefroid et al., 2005; Sen et Agha, 2006) uses con-

crete values that are extracted from an actual execution to simplify any complex constraint.

Researchers have explored different means to make symbolic execution more scalable: deal-

ing with pointers, strategies to explore execution paths, solvers to deal with special types of

constraints, and combining DSE with SB-STDG.

Scalability problem

CUTE (Sen et al., 2005) generates complex test-data to explore as many achievable paths

as possible. It proposes a DSE approach to address the problem of dynamic data structures

by generating two separate models of constraints: one over primitive types and another over

pointers. To solve the model over pointers, CUTE uses the theory of equality. It support

only two types of constraints: equality and disequality (e.g., x = y , x 6= y). Also, a linear

programming solver is used to solve constraints over integers.

To deal with complex expressions Păsăreanu et al. (2011) propose an incremental approach

to solve a path condition. The proposed approach consists of separating a path condition into

two constraints: SimplePC and ComplexPC. SimplePC is the part of the path condition that

contains no uninterpreted function, while ComplexPC contains only uninterpreted functions

(e.g., native function call). The approach solves SimplePC and, by using its solution, a

concrete value is computed for each uninterpreted function to simplify ComplexPC. ComplexPC

is simplified and conjuncted with SimplePC to generate an input data that explores a new

execution path.
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Exploration problem of symbolic execution tree

To address the problem of exploring a symbolic execution tree Xie et al. (2009) propose a

strategy based on a two fitness functions: path fitness function and branch fitness function.

The approach determines a distance for each executed path, i.e., measures how far is a path

from the test target (e.g., the branches that are not yet covered). A path fitness is equal

to the sum of branch distances (Tracey et al., 1998) of all its branches. The path to be

derived is selected among all execution paths according to its fitness value. To select the

branch to be negated the approach defines a second fitness function. A branch is evaluated

in terms of the gain (i.e., path fitness enhancement) that it brought to the derived paths by

its previous negations. This approach has been implemented as a plugin to PEX (Tillmann

et de Halleux, 2008), applied on 30 medium size programs, and compared with three other

strategies of exploration: random, PEX (default), and iterative deepening. Overall, the

approach is generally better, but for 8 programs it is that worse than random. This behavior

is caused by the proposed fitness function that does not focus on the test target, but tries

to reach the test target through the paths that are already covered. Consequently, the

exploration may hang in loops infinitely or until the maximum depth of symbolic execution

is reached.

To address the problem of exploring a symbolic execution tree Staats et Pǎsǎreanu (2010)

propose a strategy based on parallelism. The key idea behind their approach is partitioning

the symbolic execution tree into balanced partitions, then using a worker (task) to explore

each partition. The approach has been implemented as a plugin to Java Pathfinder (Visser

et al., 2004) and applied on a set of selected programs. The results show that the acceleration

of the execution time is correlated with the number of tasks used (workers) and can reach 90

%. The approach requires a complete generation of the symbolic execution tree that may be

expensive in the presence of loops and recursion. Also, in some cases only one partition may

contain the exploration problem, i.e., a worker may meet the exploration problem and hangs

indefinitely.

Many other tools have implemented DSE in its basic version and thus inherited its limita-

tions. PathCrawler (Williams et al., 2005) and Osmose (Bardin et Herrmann, 2008) are two

test data generation tools, which can generate a test data to cover all paths (PathCrawler

for C programs, Osmose for executables). The limitations mentioned above make these tools

useful only with restricted types of programs.

All the approaches mentioned in this subsection or the DSE in general replace a complex

expression or a uninterpreted function (i.e., unsupported function call by the solver) by its

concrete value of a previous execution, then it simplifies the constraint. This manipulation

can generate infeasible constraint, consequently it may miss the exploration of some execution
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paths and decrease code coverage.

3.1.3 Goal Oriented Approach

INKA (Gotlieb et al., 2000; Botella et al., 2002) is the first tool that implemented GOA to

generate test data for C programs. Yet INKA’s approach is independent of the programming

language. Although this approach can reach any instruction in a program it cannot be

automated to generate test data for a given coverage criterion. Contrary to the POA, GOA

has difficulty in identifying the required program instructions to achieve a given coverage

criterion.

Euclide (Bardin et al., 2009; Gotlieb, 2009) is a testing tool based on GOA. To address

the problem of identifying required instructions to achieve a given coverage criterion, Euclide

implements several algorithms to support all-statements or all-decisions coverage criteria, but

with an explicit identification of instructions to reach in the code. However this tool without

an appropriate algorithm cannot generate a test data to cover other coverage criteria, such

as all-paths.

3.1.4 Summary

CB-STDG is appropriate when the feasibility of an execution path can be determined from

the source code only. It is not appropriate when a program depends on its environment and

involves complex instructions (e.g., uninterpreted function). Besides, scalability is another

major problem that CB-STDG approaches faces.

3.2 Search Based Software Test Data Generation

SB-STDG approaches are related to our dissertation because we propose different static

analyses to improve them.

Many researchers have considered random search and genetic algorithms as potential

search heuristics for test-data generation (Michael et al., 2001; McMinn et al., 2006; Tracey

et al., 2000; Harman et McMinn, 2010; Baresel et al., 2002; Wegener et al., 2001; Parasoft,

2013; Andrews et al., 2006; Csallner et Smaragdakis, 2004; Pacheco et Ernst, 2005; Pacheco

et al., 2007; Oriat, 2005). We distinguish three broad categories of SB-STDG: random-testing

approaches, evolutionary-testing approaches, using static analyses to improve SB-STDG.

3.2.1 Random Testing

Because random testing scales to large systems, random test-data generation is a widely used

approach. It was explored in several works to generate test data that meets different coverage
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criteria (Parasoft, 2013; Andrews et al., 2006; Csallner et Smaragdakis, 2004; Pacheco et

Ernst, 2005; Pacheco et al., 2007; Oriat, 2005). JTest (Parasoft, 2013) is a commercial tool

that uses random testing to generate test data that meets structural coverage. Jartege (Oriat,

2005) randomly generates test driver programs to cover Java classes specified in JML. RUET-

J (Andrews et al., 2011) is an enhanced version of Jartege that adds some features, such as

the minimization of a test case suite. JCrasher (Csallner et Smaragdakis, 2004) generates

test data that is susceptible to detect program crashes by performing a random search. Eclat

and RANDOOP (Pacheco et Ernst, 2005; Pacheco et al., 2007) use random search to generate

test data that are likely to expose fault. To boost the random search, these two tools use a

dynamic pruning approach: they prune sequences of methods that violate some predefined

contracts. All these works use random search without sufficient guidance, therefore they

typically achieve low code coverage.

Zhang et al. (2011) use information from a dynamic analysis to sequences and use infor-

mation from a static analysis to diversify the generated sequences using relationship between

methods. Their static analysis focuses on methods and considers that two methods are re-

lated if the data members they read or write overlap. Effectively, this static analysis helps to

explore new program behaviors and states. However, static analyses may be more relevant for

SB-STDG if focused on different features of UUT and used to generate sequences or reduce

the search space.

3.2.2 Evolutionary Testing

To improve over random testing, global and local search algorithms have been implemented

in several ways. eToc (Tonella, 2004) is a pioneering tool that uses genetic algorithms to

generate test data that meet some structural criteria. It only deals with primitive types

and strings and, since its creation in 2004, it has not been maintained to better exploit the

strengths of recent testing approaches. EvoSuite (Fraser et Arcuri, 2011, 2013c) is also a tool

that automates test case generation using GA. Its objective is to achieve a high code coverage

with a small test suite. To achieve this objective, EvoSuite integrates recent state-of-the-art

approaches.

3.2.3 Static Analyses

Korel (1990) propose a dynamic data-flow analysis approach for path coverage. His approach

consists of analyzing the influence of each input variable on the successful sub-path traversed

during program execution. During a genetic evolution, only input variables that influence

the successful sub-path have their values changed.
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Harman et al. (2007); McMinn et al. (2012a) studied the impact of search-space reduction

on search-based test-data generation. In their study, for a given test-data generation problem

(e.g., a branch), they use a static-analysis approach (Harman et al., 2002; Binkley et Harman,

2004) to remove irrelevant input variables from the search space. The analyses proposed in

these approaches target procedural programming and focus on the arguments of a function

or procedure under test.

Ribeiro et al. (2008) use a purity analysis to reduce the size of the search space for

SB-STDG in OOP: all pure methods are discarded while generating the sequences of method

calls, i.e., pure methods are considered irrelevant to the test case generation process. However,

many impure methods may also be irrelevant; for example, a class containing a hundred

public methods that are impure just because they all invoke an impure public method m.

The method m is the most relevant method. Therefore, the purity analysis may reduce the

search space but still needs additional analysis to refine the set of relevant methods by keeping

only accessible methods that are at the roots of the tree of relevance. Further, the analysis

proposed by Ribeiro et al. (2008) only generates a set of relevant methods for the CUT.

An evolutionary testing schema theory has been previously defined and analyzed by Har-

man et McMinn (2010). They define an evolutionary testing schema as a set of individuals

that satisfy a constraint (branch) and whose order is the number of genes, i.e., arguments,

involved in the constraint. This means that all schemata may have a same order (e.g., a

input vector composed of one argument) which violates the building-blocks hypothesis that

underlies schema theory. The building-blocks hypothesis supposes that there exist a set of

schemata composed of a different number of building-block, i.e., have different order, and the

combination of lower-order schemata may build a fitter and higher-order schema. In addi-

tion, instead of defining a fitness function that reflects their schemata they propose the use

of the approach level and branch distance measure to compute the fitness value of a schema

using, whereas branch distance cannot be evaluated for a none executed branch (a schema).

Therefore, their schemata concept is useful to analyze only some particular cases of test-data

generation problem. In this research work, we adapt schema theory to analyze and improve

evolutionary testing for any test-data generation problem.

Using Seeding Strategies

Seeding strategy is a static analysis that focuses on constants appearing in the source code.

Many works propose different seeding strategies to improve SB-STDG (Alshraideh et Bottaci,

2006; McMinn et al., 2010; Alshahwan et Harman, 2011; Fraser et Zeller, 2011; Fraser et

Arcuri, 2012; McMinn et al., 2012b). When a branch condition involves constants, covering

such a branch may be challenging but it may become easier to reach if the set of constants
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exist in the source code used when generating instances of classes. Alshraideh et Bottaci

(2006) propose a seeding strategy and show that the seeding of string literals extracted from

the source code during the generation of instances may reach better level of code coverage

than a good fitness function. Alshahwan et Harman (2011) propose a dynamic seeding

strategy for Web applications by extracting constants constructed by the application as it

executes. Fraser et Arcuri (2012) study different seeding strategies and show that the use of

an adequate strategy can significantly improve the SB-STDG. To cover branches involving

strings, McMinn et al. (2012b) propose a seeding strategy that extracts string literals from

the results of Web queries.

The main difference among previous works is in using different sources of constants. All

previous approaches use a constant probability of seeding and seed either primitive types

or strings. Fraser et Arcuri (2012) show that a constant probability equal to 0.2 gave best

results compared to other values but this probability may be harmful in some cases. Indeed,

if the extracted set of constants contains only one value, it is undesirable to have 20% of a

population formed of the same value because it substantially reduces diversity. Therefore, it

is preferable to use a seeding strategy with a variable probability.

3.2.4 Summary

SB-STDG approaches scale well, but they are very sensitive to their guidance. It is inefficient

to use a SB-STDG approach in a large search space without sufficient guidance. Generally,

when the SB-STDG guidance is discussed, only the fitness function is considered, although the

ways that test-data candidates initially generated and modified during the search are another

potential means to guide SB-STDG. Also, conditional statements are typically considered

as the main source of information for guidance, although a source code is a rich body of

information, which can be analyzed and used to amplify the guidance (e.g., the way that

data members used in the source code). Previous work mainly focus on fitness function to

guide SB-STDG and few works use seeding strategies or sequences generation to amplify the

guidance of SB-STDG through the way that test-data candidates generated.

3.3 Combining SB-STDG and CB-STDG

Because, in this research work, we propose CSB-STDG an approach that combines SB-STDG

and CB-STDG the following paragraphs present and discuss previous approaches that com-

bine SB-STDG and CB-STDG.

EVACON (Inkumsah et Xie, 2007) was the first tool to combine a CB-STDG approach

and a SB-STDG approach. It bridges eToc (Tonella, 2004) and jCute (Sen et Agha, 2006)
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to generate test data for unit class testing. eToc is used to generate sequences of method

calls and jCute is used to generate values of arguments. In this approach, CB-STDG and

SB-STDG work in cooperation: each of them has a specific task to achieve. Thus, if one

approach fails in its task (e.g., CB-STDG cannot generate arguments’ values because the

path condition contains uninterpreted function) the other one cannot help and the whole

process of test data generation will fail. Therefore, this approach suffers from limitations of

both approaches.

To solve constraints over floating point, the CB-STDG tool PEX (Tillmann et de Halleux,

2008) has been extended by using FloPSy (Lakhotia et al., 2010), which is a SB-STDG

approach that solves floating point constraints. FloPSy deals with a specific issue by using

SB-STDG to help CB-STDG in solving constraints over floating point instructions. But

obtained results compared to a dedicated solver were not promising.

Baars et al. (2011) propose a fitness function based on symbolic execution. The proposed

fitness function analyses and approximates symbolic execution paths: some variables are

approximated and any branches involving these variables are ignored. Then, the fitness

value is computed based on the number of ignored conditions and the path distance (branch

distance). This fitness function uses constraint programming to enhance SB-STDG.

Malburg et Fraser (2011) propose a hybrid approach that combines GA and DSE on Java

PathFinder. This approach uses GA to generate the test inputs; during the GA evolution

the approach calls CB-STDG to explore a new branch of the program. CB-STDG is used

as a mutation operator that uses SE to derive a constraint path. Then it uses DSE to

solve this constraint. Therefore, the test data that is generated based on the combination is

actually generated using DSE. As explained in Section 2.3.4, DSE uses concrete values to

simplify complex expressions. It is well-known that these concrete values may make the path

constraint infeasible. In general, these concrete values are randomly chosen, in which case

DSE falls in a random search.

All approaches proposed to use CB-STDG or combine it with SB-STDG apply CB-STDG

on a whole UUT (Inkumsah et Xie, 2007; Lakhotia et al., 2010; Malburg et Fraser, 2011).

Therefore, these approaches are limited by the size and the complexity of the UUT and the

fact that the data-test generation problem is undecidable.
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Part II

CP Techniques to analyze and

improve SB-STDG
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CHAPTER 4

CP APPROACH FOR SOFTWARE TEST DATA GENERATION

The main aim of structural testing is to find the set of test data that can satisfy a given

coverage criterion, i.e., reaching some specific statements in the source code (e.g., statements,

branches, or paths). To achieve this aim, either SB-STDG or CB-STDG explore execution

paths according to a strategy: dynamically by executing an instrumented version of the source

code or statically by systematically or heuristically exploring the symbolic execution tree. In

this chapter, we present CPA-STDG, an approach that uses the techniques implemented in

CP solvers to explore execution paths in an efficient way. The approach models the CFG and

the implementation of a UUT in two different CSP then links them into one main CSP. The

integration of CFG modeling has several advantages over previous work, i.e., SE and GOA:

(1) it facilitates identifying the program statements required to satisfy a coverage criterion;

(2) it reduces the number of infeasible execution paths to explore; and, (3) it can answer to

different coverage criterion. CPA-STDG starts by modeling a program under test and its

CFG as a main constraint satisfaction problem. Then, a test coverage criterion is formulated

as a set of constraints (we call it, criterion-constraints) or a search heuristic. Each constraint

in the criterion-constraints is solved in conjunction with the main CSP, yielding a test-data

suite or proving the infeasibility of this constraint, i.e., a part of the UUT is unreachable.

We assume as input a function or procedure under test and a structural criterion to cover.

The approach produces a test-data suite, a set of covered criterion-constraints, and a set of

uncovered criterion-constraints if any.

We empirically evaluate CPA-STDG on different benchmarks to compare code coverage

and time required to generate test data with the state-of-the-art CB-STDG techniques. As

state-of-the-art CB-STDG techniques, we choose PathCrawler (Williams et al., 2005; Botella

et al., 2009), a representative of the POA family of techniques, and INKA (Gotlieb et al.,

2000) a representative of the GOA family of techniques.

4.1 Modeling Constraints of a Program and its CFG

CFG nodes and control dependency between them are the basis of our methodology to model

a program with its CFG by a CSP: each CFG node and variable declaration generates a CSP

variable; some control dependency relationships are translated into equivalence constraints;

and, each statement or conditional expression is translated into a guarded constraint.
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To translate a program using our approach, we propose three main steps: the SSA-Form

model; CFG constraints modeling; and the construction of the global CSP.

If a program under test contains two assignment statements of the same variable to two

different values (e.g., x = 1 and x = 2), it generates two inconsistent constraints. To avoid

this well known problem Gotlieb et al. (2000); Gotlieb (2009); Collavizza et Rueher (2006),

before translating the program to a CSP, we put it in a SSA-Form model.

4.1.1 Modeling Constraints of CFG

This step consists of modeling a program’s CFG as a preliminary CSP. We begin by gen-

erating the CFG. We distinguish between two classes of CFG nodes: decision-nodes and

statement-nodes. A decision-node is a node that has two outgoing arrows (i.e. it represents

a conditional statement). A statement-node is a node that accepts one incoming arrow and

one outgoing arrow (i.e., it represents a basic block that does not contain any conditional

statement). After generating the CFG, each node is codified according to its class and its

order in the the program: a decision-node is identified by a prefix D and an index i and a

statement-node is identified by a prefix S and an index j. After identifying nodes, we label

edges according to the original node: an edge outgoing from a statement-node is labeling by

1, an edge outgoing from a decision-node is labeled by 1 if it represents the true branch and

it is labeled by -1 it represents the false branch. During the generation of a CSP, a node

is translated into a variable whose domain is the set of labels of its outgoing edges and the

value 0 that represents that the node does not belong to the current execution path.

Decision-node

A decision-node is translated into an CSP integer variable with a small domain {-1, 0, 1}: -1

means that the false branch of a node is a part of the current execution path; 0 means that

a node is not a part of the current execution path; 1 means that the true branch of a node

is a part of the current execution path.

Statement-node

A statement-node is translated into an CSP integer variable with a small domain {0, 1}: 0

means that a node is not a part of the current execution path; 1 means that a node is a part

of the current execution path. A statement-node that makes a part of all execution paths

must be equal 1.
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Control dependency relationship

An immediate dominator Ferrante et al. (1987) is a relationship between two CFG nodes Di

and Nj. Di dominates Nj iff Di is a decision-node that appears in all paths from START

to Nj. Di is an immediate dominator of Nj iff it is the closest strict dominator on any path

from START to Nj.

If Di is an immediate dominator of Nj, then this relationship is translated into two

constraints:

Di 6= b⇔ Nj = 0,where b equal to 1 or -1 depending on the branch of Di that dominates Nj.

(4.1)

Di = b⇔ Nj 6= 0,where b equal to 1 or -1 depending on the branch of Di that dominates Nj.

(4.2)

These constraints model the logic of an execution path. The constraint 4.1 means that

if the immediate dominator does not belong to the current execution path, then the node

cannot be a part of the current execution path. The constraint 4.2 means that the node can

be a part of the current execution path iif its dominator belong to the current execution path.

Note, that if we fix a given node (e.g., test target that aims to reach a given branch or a

statement), the propagation will fix all nodes within this node is control dependent. Thus,

one path is explored at time, only real execution path are explored, and if a part of a path

is proved infeasible none path contains this part will be explored.

Conditional Statement with Multi-clauses

The Modified Condition/decision coverage criterion expresses its requirement in terms of

clauses in stead of CFG components. This coverage criterion requires more details that make

the decomposition of multi-clauses condition mandatory for identifying its testing require-

ments.

In order to show hidden branches in a multi-clauses decision-node, from every decision-

node, we derive a decision graph by breaking the multi-clauses expression into atomic con-

ditions. A multi-clauses condition uses two forms of logical expressions: conjunctive form or

disjunctive form. Each form can be expressed in terms of its atomic conditions. A conjunc-

tive (resp. disjunctive) form is true (resp. false) iff all its atomic conditions are true (resp.

false). The relationship between a conjunctive decision node Di and its derived conditions

nodes Dij is formally expressed by the constraints in Table 4.1. The relationship between a

disjunctive decision node Di and its derived conditions nodes Dij is expressed similarly as in

conjunctive form. To get the constraints table of disjunctive decomposition, we swap 1 and

-1 in Table 4.1.
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Table 4.1: Constraints table of a conjunctive condition

Di Di1 . . . Dij . . . Din

1 1 1 1 1 1
0 0 0 0 0 0

-1 -1 * * * *
...

...
...

...
...

...
-1 * * -1 * *
...

...
...

...
...

...
-1 * * * * -1

For an atomic decision, it is enough to add only one constraint expressed by the equality

between decision node variable Di and the derived condition node variable Di1 (Di = Di1).

For complicated expressions that combine conjunctive and disjunctive forms, it is preferable

to use intermediate nodes. Note, that the decomposition of decision nodes is not necessary

if the testing requirement does not involve the clause level.

To express the relationship between conditional statement and clauses the following con-

straint must to be inserted CFG constraints model:

table(τ),where τ is the constraints table. (4.3)

The global constraint table considers that the table τ contains explicitly the list of allowed

tuples (Régin, 2011). Therefore, variables involved in such a constraint must satisfy a tuple

in the table τ .

4.1.2 Modeling Constraints of Statements

The third step uses the preliminary CSP, the SSA-Form model, and the relationship between

a node and its statements to create a new global CSP. This means translating each statement

in the SSA-Form model into one or more constraints. In this section we also discuss some

particularities of variable declarations, expression assignments, and loops.

Variable Declaration

A variable declaration of a given variable V0 of a primitive type T (e.g. integer, character,

boolean) is translated into the global CSP by declaring a new variable V0 of type T . The

domain of V0 is extracted by analyzing the program, it can be bounded between two values

Vmin and Vmax, otherwise the domain contains all possible values of T (e.g., integer type is

defined in the range [-2−31, 231 − 1]).
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A declaration of a fixed-size array is translated by an array of similar size in the global

CSP. A declaration of an array t0 of variable size (dynamic allocation) is reflected in the

global CSP by an array with a bounded size: the maximum size is a predefined constant

Lmax and a variable lt0 is used to represents the actual size on an array. To ignore an index

exceeding the actual size lt0, we add some constraints to the CSP: these variables are fixed

to a constant and are ignored in all constraints.

Conditional Statement

A conditional statement controls the execution flow of a program according to the evaluation

of its expression. In the CFG, it is represented by a decision-node. For a given decision-node

Di that represents a conditional statement over a logical expression lexp, if its branch true is

a part of the current execution path, then its logical lexp is satisfied. This can be expressed

by by a guarded constraint as following:

Di = 1⇒ lexpσ(lexp),where lexpσ(lexp) represents lexp in the SSA-Form. (4.4)

Thus, if the branch false of Di is a part of the current execution path, then the negation of

lexp is satisfied. This can be expressed by by a guarded constraint as following:

Di = −1⇒ ¬(lexpσ(lexp)),where lexpσ(lexp) represents lexp in the SSA-Form. (4.5)

Assignment Statement

An assignment statement assigns an expression to a program variable. Every assignment

statement is translated by two guarded constraints: one to represent that an assignment

statement is a part of the current execution path and another to evaluate the assigned variable

if the statement is not a part of the current execution path.

Each statement-node Si represents a certain number of assignment statements in a pro-

gram under test. This relationship can be expressed on Si and every assignment statement s

in its content. If Si is a part of the current execution path, then s is executed and a equivalent

constraint must be satisfied. This can be expressed as a guarded constraint as following:

Si = 1⇒ sσ(s),where sσ(s) represents s in the SSA-Form. (4.6)

Thus, if Si is not a part of the current execution path, then the variable v assigned by s must

be evaluated. In the latter case the variable v keeps its already assigned value. This can be
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expressed by a guarded constraint as following:

Si = 0⇒ vσ(v) = vσ(v)−1,where vσ(v) represents v in the SSA-Form at the statement s.

(4.7)

Assignment Statement that assigns an Array Item In a program, an array is handled

by two groups of statements: reading and writing. Reading an array item is translated as

a scalar variable. In SSA-Form, writing an array item generates a new array variable that

contains the same items as its predecessor except that new item which contains a new value.

Therefore, an assignment of an array item is a lot of simple assignment statements wherein

all items are assigned new values and the constraints 4.6 and 4.7 must be inserted for each

item in the array. For example, the assignment t[j] = exp is translated into some constraints

as following:

Si = 1⇒ tσ(t)[k] =


expσ(exp) if k = j

tσ(t)−1[k] otherwise

(4.8)

Si = 0⇒ tσ(t) = tσ(t)−1 (4.9)

Or more formally as following:

∀0 ≤ k < Lmax, Si = 1⇒ (k = j ⇒ tσ(t)[k] = expσ(exp)) ∧ (k 6= j ⇒ tσ(t)[k] = tσ(t)−1[k)

∀0 ≤ k < Lmax, Si = 0⇒ tσ(t)[k] = tσ(t)−1[k]

Loop

Because CP is a deterministic approach we cannot model a loop with an infinite number of

iterations. In general, to deal with this limitation loops are bounded by a maximum number

of iterations, i.e., a small constant k-path (equal 1, 2, or 3) is used to limit the number of

loop iterations. We can model a loop in two different ways: first, we force a loop to stop at

most after k-path iterations, in this case some feasible paths may become infeasible; second,

we don’t force a loop to stop and we model just k-path iterations, after which the value of a

variable assigned inside a loop is unknown. We use the first way because it is widely used to

define coverage criterion.

To model loops as a first step we transform any program loop into a while loop. We

use a constant k-path to limit the number of iterations in a loop. Then, we unfold a loop

into embedded conditional-statements. With this transformations, a loop becomes a set of
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conditional-statements and the constraints 4.1, 4.2, 4.4, 4.5, 4.6, and 4.7 can be used to model

it. Therefore, loop contains k + 1 decision-nodes. To force the program to exit the loop at

most after k iterations, the last decision node Dk must be always different from the value 1.

For example, The result of translating a loop (while (c) v = exp;) is as following:

1. ∀ 0 < i ≤ k

• Applying the constraint 4.1 on decision-nodes: Di−1 6= 1⇔ Di = 0;

• Applying the constraint 4.2 on decision-nodes: Di−1 = 1⇔ Di 6= 0;

2. ∀ 0 ≤ i ≤ k

• Applying the constraint 4.1 on a decision-node and a statement-node: Di 6= 1 ⇔
Si = 0, where Si is the statement-node that represent s in the CFG at the ith

iteration;

• Applying the constraint 4.2 on a decision-node and a statement-node: Di = 1 ⇔
Si 6= 0;

• Applying the constraint 4.4: Di = 1⇒ cσi(c), where cσi(c) is the SSA-Form of c at

the ith iteration;

• Applying the constraint 4.5: Di = −1⇒ ¬(cσi(c));

• Applying the constraint 4.6: Si = 1⇒ vσi(v) = expσi(exp);

• Applying the constraint 4.7: Si = 0⇒ vσi(v) = vσi(v)−1;

3. Force the loop to stop at most after k iterations: Dk 6= 1.

4.2 Modeling Constraints of Coverage Criteria

The approach generates a main CSP mainly based on guarded constraints, where a guard is

expressed only in terms of a CFG node (i.e., integer variable with a narrow domain) and a

goal is expressed on another CFG node or a SSA-Form statement (i.e., complex expression).

In general, solvers treat a guarded constraint in a special way. A guarded constraint is

seen as two separated constraints, a guard constraint and a goal constraint, where the goal

constraint is ignored until the solver proves that the guard constraint is satisfied. Therefore,

the generated main CSP implicitly forces a solver to solve the problem in two stages: (1)

solving the CFG model to select one specific execution path, and (2) solving the statements

model to generate test data. Thus, such a CSP has three advantages: first, a solver treats

only simple constraints before selecting an execution path and can quickly prove whether a
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guard is satisfied or not because the domain of CFG nodes is small; second, a solver cannot

explore more than one execution path at a time, which is an implicit decomposition of the

problem; third, the generated CSP keeps all the program’s structural semantics that we could

benefit from to generate test data to cover any structural coverage criterion: A restriction of

the main CSP by some additional constraints or by a search strategy can limit and guide the

solution to a specific test-data set.

Generally, the aim of a structural test is to run a set of paths that meets a given coverage

criterion. This aim can be decomposed into a set of test-targets which are expressed in terms

of decision-nodes or statement-nodes. So, a test target can be expressed by a conjunction of

criterion-constraints on CSP variables that represent CFG’ nodes. Thus, we can represent a

test target by a set of pairs 〈variable, value〉 (variable = value), where variable is a CFG’

node and value is in {-1,0,1} for a decision-node and in {0,1} for a statement-node. A test

target may contains pairs from the same class or combined classes of nodes. A coverage

criterion can be expressed by a set of criterion-constraints (e.g., all-statements is expressed

by {{〈Si, 1〉} | 0 ≤ i < n, where n is the number of statement-nodes}). Then, we ask a solver

to generate a solution for every criterion-constraint in conjunction with main CSP. If the

CSP become unreachable, then we mark this test-target as infeasible. If the solver generate

a test-datum, we check if there exist another test-targets covered by this test-data, in which

case we remove them from the set of test-targets.

4.2.1 Control-flow Based Criteria

To generate a test-data set that covers a given coverage criterion, we must first generate the

set of criterion-constraints. Below, we give some representative sets of criterion-constraints

describing some control-flow based criteria.

1. All-statements: each criterion-constraint is a set that contains a single pair composed

of a statement node variable and the value 1 e.g., {{〈Si, 1〉} | 0 ≤ i < n, where n is the

number of statement-nodes }.

2. All-decisions: each partial objective is a set of a single pair which is composed of a

decision node variable and the value 1 or -1. The goal set contains all possible partial

objectives (e.g., {{〈Di, 1〉}, {〈Di,−1〉} | 0 ≤ i < n, where n is the number of decision-

nodes}).

3. In a similar fashion, we can generate test data for all-conditions, all-multiple-conditions

and all-conditions/decisions.
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4. Modified Condition/decision: We use the algorithm proposed in Foster (1984) to gen-

erate the test-targets.

Heuristic for Achieving All-paths Coverage To cover all-paths we can generate a set

of test-targets where each test-target is a path. This way seems like exploring all execution

paths using a symbolic-execution tree. This means an unreachable CSP to prove for each

infeasible path that can be expensive. Instead of this way of exploration, we propose to use the

main CSP with a search heuristic to generate test-data that cover all-paths. In our approach,

an execution path is an assignment of decision nodes. A first path can be covered by the first

solution reached by solving the main CSP. From this solution, we can construct the path

condition of this first path as the conjunction of equality logical expressions between decision-

nodes and their values (Di = vi). The insertion of the negation of this path condition in the

main CSP forces the solver to give another solution corresponding to a different path. We

continue using this mechanism: for every solution found, the negation of its path condition is

inserted in the main CSP, until the CSP becomes unreachable, which means that all feasible

paths are covered.

The described search heuristic can be implemented easily in a solver as follow: we define

for the main CSP a search strategy that begins by enumerating the decision-nodes (Di) on

the list of input parameters. Once a solution is found by the solver, the strategy backtracks

to the nearest node-decisions in the search tree.

Proof of Program Properties The proposed approach can be used to prove some pro-

gram properties. For example, to prove a post-condition, we formulate the equivalent con-

straint for this condition by replacing program variables with their equivalent variables in the

main CSP, then we solve the conjunction of the main CSP and the negation of this constraint,

if the CSP reachable, then there exists a path where the program violates the post-condition.

The solver returns the concerned execution path (i.e., an assignment of decision-nodes) and

the test datum that breaks the post-condition. If the CSP is unreachable, then there is no

path in the program that violates the post-condition.

4.2.2 Data-flow Based Criteria

The modeling method proposed in the previous sections allows considering all paths going

through any test target in the same CSP model. Solving such a generated model with

constraints that describe a data-flow test-target may generate a test-data to reach it or prove

that a data-flow test-target is unreachable which was impossible without the use of constraint

programming. Thus, the main aim of this subsection is analyzing a data-flow test-target and
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modeling it using constraints.

Informally, the key of any data-flow coverage criterion is the notion of def-use association,

which is the relation between two CFG nodes: the first one defines a program variable;

while the second uses that variable. A data-flow criterion is represented by a subset of all

def-use associations. Test-data generation for a data-flow criterion consists of identifying

an adequate set of def-use associations and their corresponding test-data set. Thus, test-

data generation for data-flow based criteria can be separated into two sub-problems: first,

data-flow analysis, which is concerned with the identification of def-use associations; second,

test-data generation, which is concerned with the selection of a set of def-use associations

that corresponds to the desired adequacy criterion and the generation of a test-data set that

satisfies this def-use set.

A def-use association can be formalized as a criterion-constraint over the main CSP vari-

ables. Thus a criterion is a set of criterion-constraints that characterize subpaths needed to

be executed.

Before analyzing the data-flow and giving a formal constraints that represents def-use

association, we introduce some relevant definitions and notations:

• In the rest of this chapter, we note a def-use association 〈v, nd, nu〉 by t.

• We denote by D(n) (resp. U(n)) the set of variables definitions (resp. uses) at node n.

• We denote by D(v) (resp. U(v)) the set of definitions (resp. uses) of the variable v.

• A predecessor of a node nj is a node ni that precedes nj in an execution path (in a

top-bottom traversal of the CFG) Allen (1970). nj is a successor of ni.

• A predecessor (resp. successor) is an immediate − predecessor (resp. immediate −
successor) Allen (1970) iff it precedes (resp. follows) immediately that node.

• We denote the set of predecessors by P (ni), the set of immediate-predecessors by P ∗(ni),

and the set of immediate-successors by S∗(ni).

P (nj) =
⋃

ni∈P ∗(nj)

P (ni) ∪ {ni}

The first step of data-flow based testing is the process of def-use analysis that determines

the set of all def-uses. This set can be determined using defs, uses, and an adapted version of

the algorithm Basic Reach Algorithm Allen et Cocke (1976). In this work, we assume that the

CFG does not contain cycles (loops are unfolded). Parsing the CFG from the node START

to the node END is enough to determine defs that can reach every node. The algorithm takes
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as input four parameters: D is the set of all definitions for every node; U is the set of all uses

for every node; P ∗ is the set of all immediate-predecessor for every node; S∗ is the set of all

immediate-successors for every node. The algorithm returns three sets: the first contains the

set of predecessors for each node, P ; the second contains the set of definitions that can reach

each node, it is denoted by R; the third contains all def-uses associations denoted by DU .

In order to generate these three sets the algorithm uses a set of auxiliary structures: A(ni)

is the set of available definitions immediately after a node ni; Ps(ni) is the set of preserved

definition after the node ni, which is the intersection of R(ni) and A(ni). For a decision-node

or a join-node, these three auxiliary sets are equal. The algorithm for generating the DU ,

R and P from a control flow graph information is given in Algo 1. The expressions of the

formula to generate each set is given below:

• R(nj) =
⋃

ni∈P ∗(nj)

A(ni)

• Ps(nj) = R(nj)− {〈v, ni〉|〈v, nj〉 ∈ D(nj)}

• A(nj) = Ps(nj) ∪D(nj)

Using the R and U sets, the set of def-use associations is constructed according to the

following formula:

DU(nu) = {t|〈v, nu〉 ∈ U(nu) ∧ 〈v, nd〉 ∈ R(nu)}
The distinction between c-use and p-use is done according to the class of nu: if nu is a

decision-node so DU(nu) is a set of p-use; else it is a set of c-use.

A def-use association is represented by a triplet t where the variable v is defined at nd,

used at nu, and there are paths from nd to nu that do not contains any killer-node. To

exercise that def-use association, the test data must trigger an execution path that passes

through nd and nu and not via any killer-node. We denote by K(t) the set of killer-nodes,

i.e., the set of statement-nodes that are located between the nodes nd and nu and define the

variable v. Formally, this set can be represented as follow.

K(t) = {ni|(ni 6= nd) ∧ (ni ∈ P (nu)− P (nd)) ∧ (〈v, ni〉 ∈ D(v))}

Using these definitions, a def-use association can be expressed as one or two logical ex-

pressions. The following expression is a generator of criterion-constraints. It generates one

criterion-constraint if the use node is a statement-node and two criterion-constraints if the

use node is a decision-node.

criterionConstraints(t) = {
∧

ni∈K(t)

(ni = 0) ∧ (nd = 1) ∧ (nu = val)}
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Algorithm 1 A data flow analysis algorithm.
Input: D,U, S∗, P ∗

Output: P, R, DU

1: for (each n in CFG) do
2: P (n)← nil
3: R(n)← nil
4: NbrP ∗(n)← 0
5: end for
6: stack S
7: S.push(START)
8: while (!S.Empty()) do
9: n← S.pop()

10: Ps(n)← R(n)
11: for (each 〈v,Nd〉 in R(n)) do
12: if (〈v,Nd〉 in D(n)) then
13: Ps(n)← Ps(n)− {〈v,Nd〉}
14: end if
15: end for
16: A(n)← Ps(n) ∪D(n)
17: for (each Ns in S∗(n)) do
18: P (Ns)← P (Ns) ∪ P (n) ∪ {n}
19: R(Ns)← R(Ns) ∪ A(n)
20: NbrP ∗(Ns) + +
21: if (P ∗(Ns).size() == NbrP ∗(Ns)) then
22: S.push(Ns)
23: DU(Ns)← Intersection(R(Ns), U(Ns))
24: end if
25: end for
26: end while

If nu is a statement-node, one criterion-constraint is generated in which the clause (nu =

val) is evaluated to (nu = 1). If nu is a decision-node, a second criterion-constraint is

generated in which the clause (nu = val) is evaluated to (nu = −1). This means that the use

is a p-use, so that both its edges must be exercised.

With the above expression, it is possible to formalize every def-use association as one or

two criterion-constraints, so a data-flow adequacy criterion can be represented by a set of

criterion-constraints that characterizes def-uses and needed to be exercised. To obtain a set

of test input that satisfies a data-flow adequacy criterion, it is enough to solve each criterion-

constraint in conjunction with the Main CSP (solve(criterionConstraints(t)∧MainCSP )),

which generates a test data or proves that some infeasible use-defs or def-clear paths are

infeasible. Below we give a representative set of criterion-constraints for the most-used data-
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flow adequacy criteria Rapps et Weyuker (1985).

• All-defs criterion is satisfied if the set of test data exercises at least one def-clear path

from every definition to its uses.

{
∨
t∈DU

criterionConstraints(t)|〈v, nd〉 ∈ D}

• All-uses criterion is satisfied if the set of test data exercises at least one def-clear path

for every def-use associations.

{criterionConstraints(t)|t ∈ DU}

• All-c-uses criterion is satisfied if the set of test data exercises at least one def-clear path

for every def-use associations that have a statement-node as use node.

{criterionConstraints(t)|(nu is a statement node) ∧ t ∈ DU}

• All-c-uses/some-p-uses criterion is satisfied if the set of test data satisfies All-c-uses or

in case a definition does not have any c-use, the test data exercises a def-clear path

from this definition to some of its p-use.

{criterionConstraints(t)|(nu is a statement node) ∧ t ∈ DU}⋃
{
∨
t∈DU

criterionConstraints(t)|c− uses(〈v, nd〉) = ∅}

• All-p-uses criterion is satisfied if the set of test data exercises at least one def-clear path

for every def-use association that has a condition-node as use node.

{criterionConstraints(t)|(nu is a decision node) ∧ t ∈ DU}

• All-p-uses/some-c-uses criterion is satisfied if the set of test data satisfies All-c-uses, in

case a definition does not have any p-use, the test data exercises a def-clear path from

this definition to some of its c-use.

{criterionConstraints(t)|(nu is a decision node) ∧ t ∈ DU}⋃
{
∨
t∈DU

criterionConstraints(t)|p− uses(〈v, nd〉) = ∅}
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• All-du-paths criterion is satisfied if the set of test data exercises all def-clear paths.

{criterionConstraints(t) ∧ def cleari|t ∈ DU ∧ def cleari ∈ def clear(t)}

where def clear(t) is the set of all def-clear paths between the nodes Nd and Nu ac-

cording to the variable v. It is possible to get this set by tracking def-clear paths Algo 1

but, in this work, for the All-du-paths criterion, we use a search strategy that generates

a data test for each def-clear path, which we detail in the next subsection.

Solving Constraints to Generate Test Data

Using the data-flow information, the search phase is split into three sub-phases called levels:

both the first and the second levels orient the search using a subset of the decision-nodes

variables because they have a small search space (variable domains are small: {−1, 0, 1}).
The third level orients the search using the program parameters and it has a large search space

(in general parameter domains are large). The first and the second levels allow to identify the

current execution path and to introduce, in a constraint store, goals of conditional constraints

that are conditioned by an assignment of decision-node variables. The third level looks for

an assignment of program parameters that can satisfy the chosen path. The search process

at the third level finishes in either two ways: first, a solutions is reached and stored with its

path (nodes assignment); second, a path is partially or completely proved as infeasible and

is stored as an assignment of a subset of nodes.

At the first level, the search process behavior depends on the selected coverage criterion. It

labels decision-node variables that are located between the def-node nd and the use-node nu:

variables that represent the decision-nodes that belong to the intersection of both predecessor

sets. Depending on the selected criterion, the first level defines its strategy that generates

either one test input for each criterion-constraint or one test input for each path in its search

tree that covers all def-clear paths. Using this latter strategy, All-du-paths is satisfied with

the same set if criterion-constraints as All-uses except that All-uses uses the first strategy.

As seen in Subsection 4.2.1, a data-flow adequacy criterion is a set of criterion-constraints

where each criterion-constraint is an assignment of some main CSP variables (nodes). In

general, more than one criterion-constraint can be satisfied with the same test data. To avoid

test data redundancy, before trying to solve any criterion-constraint, we check if there exists

a node assignment, in the generated-solution (resp. proved infeasible path) set, that satisfies

this criterion-constraint (resp. proves its unreachablity). If so we stop the solving process

before the search phase, which is the most expensive part of the CSP solving process. This

checking procedure includes: a static verification before starting the search and a dynamic



52

verification inside the search process at the end of the first level or at the end of the second

level.

4.3 Empirical Study

This section presents our evaluation of the proposed approach that explores execution-paths

using a CP solver for an efficient test-data generation. We investigate the advantages and

limitations of CPA-STDG by applying it on a set of different benchmarks and comparing it

to two different approaches (Gotlieb et al., 2000; Williams et al., 2005; Botella et al., 2009)

from the literature that also use a CP to generate test data. In a first case study we apply our

approach on a set of different benchmarks to show its applicability, usefulness, and efficiency

of our approach for data-flow based criteria. In a second case study we compare CPA-STDG

to two different approaches interesting in control-flow based criteria: using the criterion all-

branch coverage (Gotlieb et al., 2000) and using the criterion all-path coverage (Williams

et al., 2005; Botella et al., 2009).

4.3.1 Case Study 1: Data-flow Based Criteria

We follow the Goal Question Metric (Basili et Weiss, 1984) approach to show the applicability,

usefulness, and efficiency of our approach.

The context of our research includes six UUTs: four benchmarks from the testing liter-

ature and one well-known algorithm the Dijkstra (Ford, 2007). Table 4.2 summarizes the

six UUTs used in this study. Each line presents one of the UUT while columns show the

maximum number of iterations in a loop (kPath), the number of lines of code (LOC), the

number of linearly independent paths (LIP) the number of feasible execution paths that are

detected experimentally using a small domain, and the number of def-use associations.

Dijkstra consists of finding the shortest path among a set of paths. It takes as input a

graph represented as a bi-dimensional array, the array dimension, and a vertex source. It

Table 4.2: Experimental subjects.

UUT kPath #LOC #LIP #Feasible Paths #Def-use
Dijkstra 2 53 2501 29 232
Triangle 36 32 14 40
Tritype 34 57 10 52
Merge 2 29 72 17 64
Sample 2 18 24 20 52
Bsearch 2 18 10 8 46
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Figure 4.1: Search-heuristics scheme

returns an array that contains the shortest path from the source to any other vertex in the

graph. Its implementation contains a large number of infeasible paths and it uses overlapped

loops, which increases its cyclomatic complexity and its number of linearly-independent paths

(McCabe, 1976).

The others UUTs are well-known benchmarks in the CB-STDG literature: Tritype, Merge,

Bsearch, and Sample (Collavizza et Rueher, 2006; Gotlieb et al., 2000; McMinn, 2004;

Williams et al., 2005). In the literature, Tritype is available in two different implemen-

tations: we denote them by Triangle (McMinn, 2004) and Tritype (Collavizza et Rueher,

2006). Merge is the merge part of the merge sort algorithm. It takes as input four param-

eters, two sorted arrays and their lengths, and returns a sorted array. Sample is a program

that compares a reference value to contents of two arrays using two sequential loops; each

of them iterates a fixed number of iterations corresponding to the array length. Bsearch is

a function that takes as input an array and a value. It return true if the value exist in the

array otherwise it returns false. It uses a dichotomy search implemented in one loop.

Research Questions

This cas study aims at answering the following two research questions:

RQ1: Does our approach can generate test data for any data-flow coverage criterion in a

efficient way? This question shows the applicability and the usefulness of our approach.

RQ2: Does the proposed search strategy and checking process enhance or weaken the perfor-

mance of the proposed approach? This question shows the efficiency of our approach.

Analysis Methods

To answer RQ1 and RQ2, we have implemented our approach and applied it on the six UUTs.
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For each UUT and data-flow coverage criterion, we generate test data set and we observe

some indicators: the number of def-use associations needed to cover; the number of test data

generated; the number of def-use associations covered; the number of infeasible clear-path

proved; the number of infeasible clear-path avoided (i.e. an infeasible clear-path was used to

prune the search process); and the execution time.

We consider the execution time and the ratio between the number of test data generated

and def-use associations covered as indicators of efficiency. Thus, the number of infeasible

clear-path reused is an indicator of efficiency.

Parameters

To analyze the performance of our approach, we fix the domain of integer to [−106, 106] for

all the input variables. The maximum number of iterations in a loop and the maximum

length of an array are fixed to 2 (k-path = 2). During the search a test target is considered

infeasible either if the solver completes the search without finding a solution or for the UUT

Tritype the number of fails reaches 1000.

All experiments were performed using ILOG Solver 6.7 (IBM, 2009b), Microsoft Visual

C++ 2008, on Windows XP, Intel Core 2 Duo 2GHz, 2Go of memory.

Empirical Study Results

We now present the results of our empirical study.

RQ2: Does our approach can generate test data for any data-flow coverage cri-

terion in a effcient way? According to the result reported in the Tables 4.3 and 4.4, we

answer positively this question.

For Dijkstra, Table 4.3 reports all obtained results. Even though a significant total number

of infeasible clear-paths (587) are completely proved, on average, less than 0.07s, is needed

to cover a test target or to prove its infeasibility. Every def-use association either is covered

or is proved infeasible. Thus, we can say that, with the existence of infeasibles paths, 100%

coverage is reached for each data-flow criteria.

In less time, we also obtained the same percentage of coverage (100%) for Merge, Sample

and Bsearch. Contrary to these units, for both tritype versions, the All-du-paths criterion

does not reach 100% , because the test targets require to cover some infeasible paths that are

impossible to prove without using a complete enumeration of the search space. In the case

of tritype, all generated constraints are linear, so using a linear solver such as CPLEX (IBM,

2009a) may easily prove these infeasible paths, but this is not the case for any units.
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Table 4.3: results of applying CPA-STDG on Dijkstra program to reach different data-flow
coverage criteria (kPath=2)

Coverage
Criterion

#Criterion
Constraints

#Test
Data

Generated

#Infeasible
Clear-path

#Def-use
Covered

Time(s)

All-DU-Path 211 27 124 132 25.14
All-Use 211 15 124 87 12.07
All-p-Use-
Some-c-Use

145 13 86 59 2.65

All-p-Use 136 13 84 52 1.96
All-c-Use-
Some-p-Use

78 13 44 37 9.88

All-c-Use 75 13 40 35 8.67
All-Def 39 7 85 25 1.63
Total 895 101 587 427 70.15

Table 4.4: Results of applying CPA-STDG on different programs for All-DU-Paths coverage

UUT
#Criterion
Constraints

#Test
Data

Generated

#Infeasible
Clear-path

#Clear-
paths

Covered
Time(s)

Triangle 19 14 1+7 14+46 386.17
Tritype 21 9 1+0 9+24 64.21
Merge 36 13 4+0 13+34 0.07
Sample 40 13 3+0 13+38 0.28
Bsearch 28 3 6+10 3+9 0.03

RQ2: Does the proposed search strategy and checking process enhance or weake

the performance of the proposed approach? For the UUTs Dijkstra, Tritype, Merge,

and Sample, the solving process could not reuse any proved infeasible clear-paths to prune the

search. This can be explained the reason that all infeasible clear-paths are independent. The

set of covered clear-paths, which are detected at different check points, is five times greater

than the number of test data generated. For Triange and Bsearch, the solving process could

reuse proved infeasible clear-paths to prune the search many times. Only during the solving

process of Triangle, one infeasible clear-path is proved was reused to detect seven other

infeasible clear-paths. During the solving process of Bsearch, six infeasible clear-paths are

proved were reused to detect ten other infeasible clear-paths. All proved infeasible or covered

clear-paths are detected in one of the check points that are inserted in the three levels of

search strategy. Also, the search strategy and checking process are an important factor that
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increases the performance of the proposed approach. We thus answer yes for question RQ2.

4.3.2 Case Study 2: Control-flow Based Criteria

In this case study we compare CPA-STDG to two different approaches using two coverage

criteria: CPA-STDG compared to (Gotlieb et al., 2000) using the criterion all-branch coverage

and CPA-STDG compared to (Williams et al., 2005; Botella et al., 2009) using the criterion

all-path coverage. We based our comparisons on the time required to generate a test-data

set for a each coverage criterion. All experiments were performed using ILOG OPL Studio

3.7.1, on a Windows XP, Intel Core 2 Duo 2GHz, 2GB of memory. For the first comparison,

we limit the search time to 5 minutes.

Comparing Our Approach to a GOA

To compare CPA-STDG with the GOA proposed by Gotlieb et al. (2000), we translated the

triangle program into two CSPs. In a first version CSP1, we used the approach proposed

by Gotlieb et al. (2000) and in a second version CSP2, we use our approach. The tri type

function contains six conditional statements. Our goal is to achieve all-branch coverage. For

each CSP, we created a set of twelve equivalent constraints, one per branch. Then, we solved

each constraint in conjunction with CSP. Table 4.5 provides details of the results achieved

when solving CSPs.

In the first seven branches, the time required to solve the CSP1 which is generated

according to Gotlieb et al. (2000)’s approach is slightly better than the time required to

solve ours CSP2, one reason being that their approach contains only program variables,

whereas our approach also contains node variables, which requires an additional time during

search. Another reason is that these seven branches are easy to reach (not-triangle, scalene).

However, ours is more efficient in the last five branches, which are more complicated to achieve

(equilateral, isosceles). After five minutes waiting for each branch, the CSP1 generated by

Gotlieb et al. (2000)’s approach could not generate test-data to cover the last five branches

that represent 40% of the program, whereas our approach generated a test datum for every

branch.

Comparing Our Approach to a POA

To compare our approach with the POA (i.e., dynamic symbolic execution approach) pro-

posed by Williams et al. (2005) we used our approach to translate all programs they used

to evaluate their approach. Then we compared our results with those reported in (Williams
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Table 4.5: Comparing all-branch coverage with Gotlieb et al.’s approach on try type program.

Decision-node Branch
Time (s)

CSP1 CSP2

D0
1 0.01 0.01

-1 0.01 0.75

D1
1 0.77 0.95

-1 0.01 0.75

D2
1 0.01 0.09

-1 0.01 0.75

D3
1 0.01 0.01

-1 >300 0.75

D4
1 >300 0.01

-1 >300 0.75

D5
1 >300 0.01

-1 >300 0.75

Table 4.6: Comparing all-path coverage with PathCrawler (Williams et al., 2005) on try type,
Sample, and Merge programs

Program k-Path #feasible Paths
Our Approach PathCrawler (2005)

#test data Time (s) #test data Time (s)
try type - 10 10 0.001 14 0.010
Sample 3 240 240 0.060 241 0.270

Merge
2 17 17 0.080 19 -
5 321 321 0.148 337 0.780

10 20,481 20,481 28.640 20,993 116.000

et al., 2005) (Table 4.6) and with those recently published in (Botella et al., 2009) (Table

4.7).

Merge program asks for two sorted arrays, the number of items to copy from each of them

and returns a sorted array. This program contains three loops: the first one contains an if

statement, the second and the third cannot be executed together in a same feasible path,

so the number of feasible paths is 2 · k · 2k + 1, where k is the maximum allowed number

of iterations. Note, that this formula is not valid for the results published in (Botella et al.,

2009) because they limited the maximum number of items to copy from each array by ten.

By definition, a test datum which is generated for all k-paths coverage should not exceed

k iterations in a loop. The mechanism of test data generation based on partial path predicate

(incomplete path predicate) used in PathCrawler can generate some test data that exceed

this limit. These superfluous test data explain the difference in the number of test data

with our approach. We generated the exact number of test data equivalent to the number
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Table 4.7: Comparing all-path coverage with PathCrawler (Botella et al., 2009) on Merge
program.

k-Path #feasible Paths
Our Approach PathCrawler (2009)

#test data Time (s) #test data Time (s)
2 17 17 0.080 19 0.330
5 321 321 0.148 337 0.800

10 12,287 12,287 18.163 12,798 37.200
15 204,931 204,931 827.250 216,371 876.350

All-Paths(19) 705,431 705,431 5,486.953 705,431 3,407.980

of feasible paths, while PathCrawler generated more test data (512 superfluous test data for

k = 10), but they are not consistent with the chosen k: In (Williams et al., 2005) (on page

8), the test set generated by PathCrawler for the value of k = 2 contains two test data (12

and 17) that are not valid for this value, because these test data are run the first loop in

three iterations.

In terms of execution time our approach has proved its efficiency especially in the last

two programs (Merge and Sample) where it is almost five times faster than PathCrawler. In

our approach the time required for program translation was ignored because we did this task

manually and this time is not significant comparing to the time required to solve the global

CSP.

Generating a test data set to cover all paths without limiting the number of iterations

shows that PathCrawler is slightly more efficient. For a value of k greater than ten, the

number of iterations of the last two loops does not exceed ten. But our approach uses a

single value for k, which means an additional number of infeasible paths to prove. For k

less than or equal to ten our approach is clearly better than PathCrawler (Botella et al.,

2009). In practical terms, for a program that contains loops, the structural testing limits

the number of iterations by a small number that is usually equal to two or three. Generally,

the all-path coverage criterion without limitation on the number of iterations is not realistic

(Myers, 1979). We also observe that for k = 15, PathCrawler generates a set of 11,440 extra

test data that need extra time to apply.

4.3.3 Discussion

We also evaluated the performance of our novel approach in terms of required time to generate

a set of test data that covers a given data-flow criterion. The results showed the importance

of using constraint programming to generate test data, especially to prove the infeasibility of

some infeasible clear-paths.
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Yet, several threats potentially impact the validity of the results of our empirical study.

1. Threats to construct validity concern the relationship between theory and observation.

In our study, these threats can be due to the fact that five UUTs are from the literature,

even though previously-used to exemplify and study the structural testing (Collavizza

et Rueher, 2006; Gotlieb et al., 2000; McMinn, 2004; Williams et al., 2005), and thus

might represent real code. However, we used Dijkstra, which is a real program that is

used in several systems. Finally, to show the level of testing difficulty, we computed the

number of linearly-independent paths proposed by McCabe (1976). No UUT contains

pointers, dynamic allocation , floating-point numbers, and function calls. In general,

these are classical problems for constraint-based approaches and they are open research

questions.

2. Threats to internal validity concern external factors that may affect an independent

variable. We limited the number of loops iterations to 2 and the length of arrays in

function of k-path. These limitations are almost invariably used in the literature. We

also limited the domain size and the numbers of fails for tritype and triangle. We do

not claim that our approach is able to prove any infeasible test objective, these two

UUTs contain an example of infeasible path that our approach cannot prove so far.

We also translated UUT using a semi-automated method, we meticulously realized this

steps, and we took all necessary precautions to apply the approach as is. This step may

not influence the behavior of the approach.

3. Threats to external validity involve the generalization of our results. We evaluated

our novel approach on six UUTs to generate test data for seven data-flow criteria.

First experiments are promising but, of course, to validate the proposed approach more

experiments must be performed on larger units.

4. Threats to conclusion validity involve the relationship between the treatment and the

outcome. To overcome this threat, we inspected manually the results obtained for

two UUTs: Tritype and Triangle: we generated def-use associations manually and we

compared them with the results returned by the implementation. For both UUTs, both

generated use-def associations sets manual and automatic were the same. Finally, we

created a program that use our approach to generate test data for all-paths coverage.

It generated 14 data test for Triangle and 10 for Tritype, these numbers are exactly the

well-known numbers of feasible paths in these two UUTs.
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4.4 Summary

In this chapter, we introduced a new constraint-based approach for structural testing called

CPA-STDG. Its novelty is in exploring execution paths by using CP’s heuristics. The ap-

proach models a program with its CFG by a CSP to efficiently generate test data for many

coverage criteria. It is the first approach that can answer to different coverage criteria using

the same CSP model. We showed that modeling a program and its CFG by one CSP keeps

the program’s structural semantics and therefore it can generate test data for any structural

coverage criteria or test target. We have already given, in Section 4.1, some ways in which our

approach can be used to generate test data either for control-flow based criteria or data-flow

based criteria.

We validated our novel approach on six programs and seven well-defined data-flow criteria:

all combinations were performed, 42 experiments realized. The twelve most important of

them are reported in this work, they showed the effectiveness and efficiency of the new

approach. Thus, the results obtained from comparing CPA-STDG on different benchmarks

to different approaches, either POA or GOA, are very promising. Despite the scalability issue,

we can consider the obtained results as a very good starting point for using CPA-STDG to

guide SB-STDG.
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CHAPTER 5

COMBINING CB-STDG AND SB-STDG

Evolutionary testing uses a GA to generate test data. Traditionally, a random selection

is used to generate an initial population and also, less often, during the evolution process.

Such selection is likely to achieve lower coverage than a guided selection. Consequently, we

define two novel concepts: (1) a Constrained Population Generator (CPG) that generates a

diversified initial population that satisfies some test target constraints; and (2) a Constrained

Evolution Operator (CEO) that evolves test candidates according to some constraints of the

test target. Either the CPG or CEO may substantially increase the chance of reaching

adequate coverage with less effort. In this Chapter, we use CPA-STDG to model a relaxed

version of the UUT as a CSP. Based on this model and the test target, a CPG generates

an initial population. Then, an evolutionary algorithm uses a CEO and this population to

generate test input leading to the test target being covered. CSB-STDG combines CB-STDG

and SB-STDG and overcomes the limitations associated with each of them. Using eToc, an

open-source SB-STDG tool, we implement a prototype of this approach. We present the

empirical results of applying both CPG or CEO on three open-source programs and show

that CPG or CEO improve SB-STDG performance in terms of branch coverage by 11% while

reducing computation time.

5.1 Motivating Example

We use the program in Fig. 5.1 as a running example. It considers the problem of generating

a test input to reach Targets 1, 2, and 3. The three targets reflect different problems of test

input generation.

• Target 1 is easy to reach;

• Target 2 is unreachable because !(x ≤ 0||y ≤ 0)&!(x < y/2)&(y > 3×x) is unsatisfiable;

• Target 3 is hard to reach because it contains nested predicates and involves the native

function call, fun, that returns x2/y.

CB-STDG can generate test inputs for Target 1 and prove that Target 2 is unreachable.

However, if we suppose that the function fun cannot be handled by a particular constraint

solver, a static CB-STDG approach, SE or GOA, cannot generate test inputs for Target 3.

Thus, DSE can also fail to derive test inputs for Target 3 in a reasonable amount of time.
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1 int foo(int X, int Y){
2 if(X<=0 || Y<=0)
3 return 0;
4 int Z;
5 if ((X < Y/2)|| (Y==0))
6 Z= 1; //Target 1
7 else if (Y>3∗X)
8 Z=2; //Target 2
9 else{

10 Z = fun(X,Y);
11 if ((Z >8) && (Y==10))
12 if(Z==Y)
13 Z=3;//Target 3
14 }
15 return Z;
16 }

Figure 5.1: Motivating example for combining CB-STDG and SB-STDG

SB-STDG can derive test inputs for Target 1 but it takes more time than CB-STDG.

Therefore, if the search space is large, SB-STDG may take a very long time before generating

a test input for Target 3 (it needs x = 10 and y = 10). For Target 2, SB-STDG may search

forever without proving its infeasibility.

Target 3 is problematic for both approaches: it is a nested branch predicate McMinn

(2004) for SB-STDG and it contains an unsupported function for CB-STDG. However a

hybrid approach can take advantage of both to generate test input for Targets 1 and 3, and it

may prove the unreachability of Target 2. We confirmed this fact by generating a test input to

reach Target 3 using all three approaches: SB-STDG (eToc Tonella (2004) and a hill climbing

implementation), CPA-STDG Sakti et al. (2011), and a combination of these approaches. We

concluded that eToc and Hill Climbing were unable to generate test inputs to reach Target 3

after 45000 fitness calculations in domain [−20000, 20000]. As well, CPA-STDG was unable

to reach Target 3. However, a hybridization eToc+CPA-STDG (resp. HC+CPA-STDG) was

able to generate test input just after 200 (resp. 600) fitness calculations.

The key idea of our hybridization is to proceed in two phases. First, generating a relaxed

version of foo by replacing the function fun with an uninitialized variable typed as foo’s

return value. Then CPA-STDG uses the relaxed version to generate pseudo test inputs. In a

second phase, SB-STDG uses those pseudo test inputs as candidates to generate the actual

test inputs.

Now, consider for example the program in Fig.5.1. In order to reach Target 3, the con-

junction of the negation of the first three conditional statements and the last two conditional

statements must be fulfilled. For the last two conditions, z depends on fun(x, y)’s return

value. Using CPA-STDG Sakti et al. (2011) the path condition can be written as follow:
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not((x0 ≤ 0)||(y0 ≤ 0))∧not((x0 < y0/2)||(y0 = 0))∧not(y0 > 3×x0)∧z3 = fun(x0, y0)∧
((z3 > 8) ∧ (y0 = 10)) ∧ (z3 = y0).

The relaxed version is obtained by ignoring the constraint z3 = fun(x0, y0). Then, the

path condition becomes not((x0 ≤ 0)||(y0 ≤ 0)) ∧ not((x0 < y0/2)||(y0 = 0)) ∧ not(y0 >

3 × x0) ∧ ((z3 > 8) ∧ (y0 = 10)) ∧ (z3 = y). As the relaxed path condition is less restrictive

than the actual one, generated pseudo test inputs won’t necessarily trigger Target 3, but

they satisfy a big part of the path condition. By solving the relaxed constraint, we obtain

solutions of the form (x0 ≥ 5, y0 = 10). Therefore, the search space size has been reduced.

Using those pseudo test inputs as an initial population for an evolutionary algorithm can

reduce significantly the effort needed to generate test data.

In this example, only one path led to Target 3. If there are many paths that can reach the

test target, generating the test data that allows covering different paths or different branches

may assure a diversified population for SB-STDG.

5.2 CSB-STDG

The assumption underlying the research work presented in this Chapter supposes that using

a diversified initial population that partly satisfies the predicates leading to the test target

can reduce significantly the effort required to reach this test target. Our approach is called

CSB-STDG because it starts, in a first phase, by using CPA-STDG to generate an initial

population and then, in a second phase, it uses SB-STDG to generate test inputs. We propose

to replace the random generation of an initial population used by SB-STDG with a set of

pseudo test input generated using a CPA-STDG approach.

Fig. 5.2 presents the whole inputs search space of a program P : the parts A, B, C, D,

and E are the CPA-STDG solutions space of a relaxed version of P which are called pseudo

test inputs, while stars are actual test inputs. This example shows that a random test input

candidate is likely to be too far from an actual test inputs compared to some pseudo test

inputs. The parts C and E don’t contain any test input, so a pseudo input from these two

parts may also be far from an actual test input. A population that takes its candidates from

different parts is likely to be near of a test input, we call it a diversified population. We can

offer an acceptable level of diversity by generating a pseudo test input for every consistent

branch with the test target (all-branch), and a high level of diversity by generating a pseudo

test input for every path leads to the test target (all-path).
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Figure 5.2: Inputs search space.

5.2.1 Unit Under Test Relaxation

To avoid traditional CPA-STDG problems, we introduce a preliminary phase called program

relaxation. We propose to apply CPA-STDG on a relaxed version of the UUT. A relaxed UUT

version is a simplified version, of the original one, that contains only expressions supported

by the constraint solver: the expressions that generate constraints whose consistency can be

checked by the constraint solvers are kept in the relaxed version, while all the other expression

are relaxed or ignored, e.g., for an integer solver, expressions that can generate constraints

over string or float are ignored, unsupported operators (expressions) are relaxed, and a native

function call that returns an integer is relaxed.

A relaxed version is obtained by applying the following rules:

• Any unsupported expression (function call, operator) is relaxed: the expression is re-

placed by a new variable. Fig. 5.4 shows a relaxed version of intStr, which is shown

in Fig.5.3, for an integer solver. We suppose that the solver cannot handle the shift

operator, so the expression that uses this operator has been replaced by a new variable

R1. The variable R1 is not initialized. Therefore, when we will translate the relaxed

version into a CSP, the CSP variable R1 can take any integer value.

• Any statement over unsupported data type is ignored. In Fig. 5.4, The relaxed version

of intStr ignores the statement String s = S1+S2; and the condition s.equals(“OK”)

because those two expressions are over strings.

• For each data type that needs a different solver a new relaxed version is created. The

function intStr needs integer and string type as inputs. If we have an available solver

for string, then we generate another relaxed version over string. Fig. 5.5 shows a

relaxed version of intStr for a string solver.
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1 intStr(int X,int Y,
2 String S1, String S2){
3 int y= X<<Y;
4 int x=y+X/Y;
5 String s=S1+S2;
6 if((s.equals(‘‘OK”)
7 && x>0)
8 && s.length()>x)
9 return 1; //Target

10 return 0;
11 }

Figure 5.3: intStr function

1 intStr(int X,int Y){
2 int R1,R2;
3 int y= R1;
4 int x=y+X/Y;
5 if(
6 x>0)
7 && R2>x)
8 return 1; //Tar
9 return 0;

10 }

Figure 5.4: Relaxed ver-
sion for an integer solver

1 intStr(String S1,
2 String S2){
3

4 String s=S1+S2;
5 if((s.equals( ‘OK”)
6 )
7 )
8 return 1; //Tar
9 return 0;

10 }

Figure 5.5: Relaxed ver-
sion for a string solver

• For loops, CPA-STDG cannot model an unlimited number of iterations. In general a

constant k-path (equal 1, 2, or 3) is used to limit the number of loop iterations. We

can model a loop in two different ways: first, we force a loop to stop at most after

k-path iterations, in this case some feasible paths may become infeasible; second, we

don’t force a loop to stop and we model just k-path iterations, after which the value

of a variable assigned inside a loop is unknown. We use the second case and we relax

any variable assigned inside a loop just after this loop. The variable is assigned a new

uninitialized variable.

5.2.2 Collaboration between CPA-STDG and SB-STDG

Every test input generated is a result of a collaborative task between CPA-STDG and

SB-STDG: CPA-STDG generates a pseudo test input, and then SB-STDG generates an

actual test input. Our main contribution here is to define the information exchanged and

connection points that can make CPA-STDG useful for SB-STDG. SB-STDG needs new test

input candidates at three different points:

1. During the generation of the initial population;

2. When it restarts, i.e., when it reaches the attempt limit of evolving;

3. During its evolving procedure.

For the first and the second points, a CPA-STDG can generate the whole or a part of the

population. If CPA-STDG is unable to generate the required number (population size) of

candidates the usual generation procedure (random) can be called to complete the population.

We called this technique CPG. For the third point, CPA-STDG can participate to guide the

population evolution by discarding candidates that break the relaxed model and only allowing
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candidates that satisfy the relaxed model, we called this technique CEO. But frequent calls

to CPA-STDG seem to be too expensive in practice, this can weaken the main advantage of

evolutionary algorithms which is their speed. Therefore, we propose to limit the number of

CPA-STDG calls during the population evolving procedure.

5.3 Implementation

We have implemented an integer version (with an integer solver) of our approach CSB-STDG

by using a new implementation of our CPA-STDG Sakti et al. (2011) and by extending eToc

Tonella (2004). Fig. 5.6 shows the overview of the implementation, built over six components:

Program instrumentor, Constraint models Generator, CPA-STDG Core, a CEO, a CPG, and

SB-STDG Core. The main components are CPA-STDG Core and SB-STDG Core. These

two components communicate via shared target and population. They identify sub-targets

(branches) in the same way by using the Program Instrumentor component as a common

preprocessing phase.

In the architecture, the SB-STDG Core acts as the master and CPA-STDG Core plays

the role of slave. When SB-STDG Core needs test input candidates, it requests CPA-STDG

Core by sending its current test target. To answer the request, CPA-STDG Core uses CEO

or CPG and replies by sending a pseudo test input, proving the inaccessibility of the target,

or by simply saying that the execution time limit is reached. Then SB-STDG evolves its new

population. This process is repeated until the test target is covered or some condition limit

is met.

5.3.1 SB-STDG Core

We use eToc that implements a genetic algorithm to generate test cases for object oriented

testing. eToc begins with instrumenting the UUT to identify the test target and to keep trace

of the program execution. eToc generates a random initial population whose individuals are

a sequence of methods. eToc follows the GA principle: to evolve its population it uses a

crossover operator and four mutation operators. The main mutation operator that interests

us mutates method arguments. To adapt eToc to our requirements, we modified the argument

values generator from a random generator to a CPG. Thus, we modified one mutation

operator to make it a CEO.
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Figure 5.6: Implementation overview

5.3.2 CPA-STDG Core

Constraint Models Generator.

This component takes a UUT as input optionally instrumented with eToc program instru-

mentor. For each Java class method a specific structure of control flow graph is generated. In

addition, using the Choco1 language a constraint model for a relaxed version of this method is

generated. All generated models constitute a CSP Models Bank that is used by CPA-STDG

Core during test input generation.

Constrained Evolution Operator (CEO)

CEO can be implemented as crossover operator, mutation operator, or neighbourhood gen-

erator. In this work, we implemented CEO as a mutation operator. With a predefined

likelihood the genetic algorithm calls CEO by sending the methods under test, the current

test target, current parameters values, and the parameter to change. CEO uses this infor-

mation to choose the adequate CSP model and to fix the test target and parameters except

1Choco is an open source java constraint programming library. urlhttp://www.emn.fr/z-info/choco-
solver/pdf/choco-presentation.pdf
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those required to change. After that the model is solved and a new value is assigned to the

requested parameter. If the solver does not return a solution then all parameters are assigned

arbitrary values.

Constrained Population Generator (CPG)

When the eToc genetic algorithm starts or restarts, randomly it generates its chromosomes

(methods sequences), and then it calls CPG to generate parameters values. For each function

in the population, this generator check a queue of pseudo test inputs, if there is a pseudo

test input for this method, then the method’s parameters are assigned and this pseudo input

test is deleted. Otherwise the CPG generates a pseudo test input for each test target not

yet covered in this method. One of these pseudo test inputs is immediately assigned to this

method’s parameters, the rest are pushed into the queue. During solving test target if a

target is proved infeasible, then the generator drops it from the set of target to cover.

5.4 Empirical Study

The goal of our empirical study is to compare our proposed approach against previous work

and identify the best variant among the two proposed techniques in Section 5.2.2 and a

combination thereof. The quality focus is the performance of the CPG technique, the CEO

technique, CPG+CEO, CPA-STDG, and SB-STDG to generate test inputs set that covers

all-branches. The context of our research includes three case studies: Integer, BitSet, and

ArithmeticUtils were taken from the Java standard library and Apache Commons project2.

BitSet was previously used in evaluating white-box test generation tools Tonella (2004);

Inkumsah et Xie (2007). These classes have around 1000 lines of java code. The SB-STDG

used (eToc) was not able to manage array structures and long type. We fixed the long

type limitation by using int type instead, but we had to avoid testing methods over array

structures. Therefore, we tested the whole BitSet and ArithmticUtils, but only a part from

Integer because it contains array structure an input data for some methods. The number of

all branches is 285: 38 in Integer, 145 in BitSet, and 102 in ArithméticUtils. These classes

were chosen specifically because they contain function calls, loops, nested predicates, and

complex arithmetic operations over integers.

5.4.1 Research Questions

This case study aims at answering the following three research questions:

2The Apache Software Foundation. http://commons.apache.org

http://commons.apache.org
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RQ1: Can our approach CSB-STDG boost the SB-STDG performance in terms of branch

coverage and runtime? This question shows the applicability and the usefulness of our

approach.

RQ2: When and at what order of magnitude is using our approach useful for SB-STDG?

This question shows the effectiveness of our approach.

RQ3: Which of the three proposed techniques is best suited to generate test inputs in an

efficient way?

5.4.2 Parameters

As shown in the running example, during the empirical study we observed that the difference,

in terms of fitness calculations, between CSB-STDG and SB-STDG is very large. We think

that comparing approaches using this metric is unfair because CSB-STDG uses CPA-STDG

to reduce the number of fitness calculations. So to provide a fair comparison across the five

approaches (CPA-STDG, SB-STDG, CPG, CEO, CPG+CEO), we measure the cumulative

branch coverage achieved by these approaches every 10 seconds for a sufficient period of

runtime (300 s). This period was empirically determined as sufficient for all approaches. To

reduce the random aspect in the observed values, we repeated each computation 10 times.

We think that the default integer domain in eToc [−100, 100] is unrealistically small so to

get a meaningful empirical study, we chose to fix the domain for all the input variables to a

larger domain [−2 × 104, 2 × 104]. We kept the rest of eToc’s default parameters as is. We

used identical parameters values for all techniques.

For CPA-STDG, the solver uses the minDom variable selection heuristic on the CSP

variables that represent CFG nodes as a first goal and on CSP variables that represent

parameters as a second goal. The variable value is selected randomly from the reduced

domain. To make the study scalable, we restrict the solver runtime per test target to 500

ms. This avoids the solver hanging or consuming a large amount of time.

5.4.3 Analysis

Fig. 5.7 summarizes the branch coverage percentage in terms of execution time for the BitSet

class. Overall, the CPG technique is the most effective, achieving 89.5% branch coverage in

less than 40 s. Also, CEO and CPG+CEO reach 89.5% but after 70 s. eToc was unable to go

beyond 85.78%, which is attained after 120 s. CPA-STDG performs badly, its best attained

coverage is 78.94%. This figure shows that the proposed three techniques can improve the

efficiency of eToc in terms of percentage coverage and execution time.



70

0 50 100 150 200 250 300

75

80

85

90

Time (s)

B
ra

nc
h 

C
ov

er
ag

e 
%

CPG
CEO
CPG+CEO
eToc (SB-STDG)
CPA-STDG (CB-STDG)

Figure 5.7: Comparing all techniques on Integer.java

We analysed branch coverage percentage in terms of execution time on BitSet and on

ArithmeticUtils. We got two graphics that resemble Fig. 5.7 with a slight difference: eToc

starts better than the three proposed techniques for the first twenty seconds, but CPG rapidly

makes up for lost time outperforming eToc just after 20 s. Also CEO and CPG+CEO outper-

formed eToc, but they needed a little more time especially on ArithmeticUtils. CPA-STDG

performs always worse than even the weakest proposed techniques.

Finally, Fig. 5.8 reflects the achieved results for all classes Integer, BitSet, and Arith-

meticUtils. It confirms that the CPG technique is the most effective, and eToc starts better

than the proposed techniques during the first twenty seconds.
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Figure 5.8: Comparing all techniques on all the three java classes

5.4.4 Study Discussions

For the given classes, it is clear that CPG outperforms all techniques in terms of execution

time and branch coverage. Also CEO and CPG+CEO perform better than eToc. Therefore,

the proposed techniques boost SB-STDG implemented in eToc. This result may be due to

the kind of UUTs tried, which essentially use integer data types. More evidence is needed to

verify whether the advantage of the proposed techniques represents a general trend. Yet, on

the selected UUTs and the tool eToc we answer RQ1 by claiming that the CSB-STDG

techniques can boost the SB-STDG.

Over almost all graphics, we observed that eToc starts better than the proposed tech-
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niques. Therefore the latter are not useful for the first twenty seconds. This behaviour is due

to the frequency of solver calls: at the start time all targets are not yet covered even the easiest

one which can be covered randomly. Therefore, a combination that uses only SB-STDG for a

small lapse of time or until a certain number of fitness calculations and then uses CSB-STDG,

may perform better. Also, we observed that after this time the CSB-STDG techniques quickly

reach a high level of coverage. This is because at this moment CSB-STDG takes advantage

of both approaches: it includes branches which are covered either by SB-STDG, CPA-STDG

or by their combination. Thus, we answer RQ2 by claiming that the CSB-STDG is

more useful after the starting time.

Even though CEO and CPG+CEO outperform SB-STDG, we think that they don’t

perform as expected. On BitSet class these two techniques take a significant time before

beating SB-STDG. There are several factors that can influence the performance of the CEO.

First, the frequency of solver calls is very high; it makes a call for every mutation. Second, in

object oriented testing, a method under test does not necessarily contain the test target —

this can make the mutation operator useless. Third, the mutation that we used imposes to

fix part of the parameters which can make the CSP infeasible or hard to solve. These three

factors are the main sources of CEO weakness. CPG+CEO is indirectly influenced by these

factors by using CEO.

The CPG technique enhanced eToc by an average of 6.88% on all classes: 3.60% on

Integer, 5.65% on BitSet, and 11.37% on ArithmeticUtils. These values did not take into

account the proved infeasible branches: just on ArithmeticUtils CPG has proved 4 infeasible

branches. We confirmed manually that these branches were infeasible because they use in

their predicates some values out of the domain used. According to Inkumsah et Xie (2007)

the branches not covered by eToc are very difficult to cover. Therefore, a percentage ranging

between 3.6% and 11.37% is a good performance for CPG. Thus, we answer RQ3 by

claiming that CPG is more useful to generate test inputs.

5.4.5 Threats to Validity

The results showed the importance of using CSB-STDG to generate test data, especially to

improve the SB-STDG performance in terms of runtime and coverage.

Yet, several threats potentially impact the validity of the results of our empirical study.

A potential source of bias comes from the natural behaviour of any search based approach:

the random aspect in the observed values. This can influence the internal validity of the

experiments. In general, to overcome this problem, the approach should be applied multiple

times on samples with a reasonable size. In our empirical study, each experiment took 300

seconds and was repeated 10 times. The coverage was traced every 10 s. The observed values
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become stable after 120 s. Each tested class contains around 1,000 LOCs and more than 100

branches. Therefore, experiments provided a reasonable size of data from which we can draw

some conclusions, but more experiments are strongly recommended to confirm or refute such

conclusions.

Another source of bias comes from the eToc genetic algorithm parameters: we didn’t try

different combinations of parameters values to show empirically that the approach is robust

to eToc parameters. This can affect the internal validity of our empirical study.

Another potential source of bias includes the selection of the classes used in the empirical

study, which could potentially affect its external validity. The BitSet class has been used

to evaluate different structural testing approaches before Tonella (2004); Inkumsah et Xie

(2007), thus it is a good candidate for comparing the different proposed techniques. The two

other classes were chosen because they feature integers and because they contain common

problems in CPA-STDG and SB-STDG (e.g, path that contains nested predicates and native

function calls) and they represent widely used classes with non-trivial sizes.

5.5 Summary

In this Chapter, we presented a novel combination of SB-STDG and CPA-STDG to generate

test inputs, called CSB-STDG. The novelties of our approach lie in its use of a relaxed

version of a UUT with CPA-STDG and of CPA-STDG solutions (pseudo test inputs) as test

input candidates in service of SB-STDG. We identified three main points where CPA-STDG

can be useful for SB-STDG. For each point we proposed a technique of combination: a CPG

that uses CPA-STDG to generate test input candidates for SB-STDG; and a CEO that uses

CPA-STDG to evolve test input candidates. We implemented a prototype of this approach.

Then we compared three variants of CSB-STDG with CPA-STDG and SB-STDG. Results

of this comparison showed that CPG outperforms all techniques in terms of runtime and

branch coverage. It is able to reach 89.5% branch coverage in less than 40 s. Also CEO and

CPG+CEO perform better than SB-STDG in terms of branch coverage. The obtained results

are promising but more experiments must be performed using different sort of solvers (String,

floating point) to confirm if the absolute advantage of the proposed techniques represents a

general trend.
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CHAPTER 6

CONSTRAINT BASED FITNESS FUNCTION

One major limitation of SB-STDG is an insufficiently informed fitness function to guide search

toward a test target within nested branches. To address this problem we propose CB-FF, a

fitness function based on concepts well-known to the CP community, such as constrainedness

and arity, to evaluate test-data candidates. It statically analyzes the test target to collect

information about branches leading to it. Then it defines a penalty value for breaking each

branch according to its arity and its constrainedness. Branch penalties are used to determine

how close a test-data candidate is to reach a test target.

We empirically evaluate the proposed fitness functions on different benchmarks to com-

pare the number of evaluations required to generate test data with the state-of-the-art of

fitness functions, i.e., Approach Level (Wegener et al., 2001) and Symbolic Enhanced Fitness

Function (Baars et al., 2011). Preliminary experiments promise efficiency and effectiveness

for the new fitness functions.

6.1 Motivation

To generate test data, SB-STDG uses a meta-heuristic guided by a fitness function. The

approximation-level (Wegener et al., 2001) and branch-distance (Tracey et al., 1998) measures

are largely used for computing the fitness function value (McMinn, 2004). These measures

are respectively the number of branches leading to the test target that were not executed by

the test candidate and the minimum required distance to satisfy the branch condition where

the execution of the test candidate has left the target’s path (that branch is called the critical

branch).

Assume that our test target is reaching the statement at line 5 in the code fragment at

Fig. 6.1. The branch distance of a test candidate (a, b, c) is equal to |b − c|, from the first

branch. If this distance is equal to 0 then the first branch is satisfied and the branch distance

is computed according to the second branch (y > 0) which is equal to max(0, 1−b), and so on.

The approach level is an enhancement of the branch distance fitness that links each branch to

a level. The level of a branch is equal to the number of branches that separate it from the test

target. In Fig. 6.1 the branch at line 4 has level 1 because there is only one branch to satisfy

to reach the test target. The branch at line 3 has level 2 because there are two branches

to satisfy, and so on. The approach level fitness function (fAL) for a test candidate i and a
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1 sample(int x,int y,int z){
2 if(y==z)
3 if(y>0)
4 if(x==10)
5 ...//Target
6 }

Figure 6.1: Code fragment

branch b is fAL(i) = level(b) + η(i, b), where b is the critical branch of i. The second term

η is a normalized branch distance. Among the many methods to compute it (Arcuri, 2010),

we use δ
δ+1

where δ is the branch distance. This fitness function does not take into account

non-executed branches. SB-STDG is a dynamic approach: it executes the program under test

and observes its behavior. Therefore it only analyses executed branches. Suppose that we

have two test candidates i1 : (10,−30, 60) and i2 : (30,−20,−20) and we need to choose one

of them. The approach level fitness function chooses i2 (fAL(i2) = 2+ 21
22

= 2.9545) because it

cannot see that i1 (fAL(i1) = 3 + 90
91

= 3.9890) satisfies the branch at line 4. A careful static

analysis would detect that i2 needs more effort than i1 since it needs to change every value

whereas i1 could reach the target with a single change of the second value. Furthermore the

likelihood of randomly choosing the value 10 for x in a large domain is almost null.

Recently, Baars et al. (2011) proposed the Symbolically Enhanced Fitness Function (fSE)

that complements SB-STDG with a simple static analysis, i.e., symbolic execution: fSE(i) =∑
b∈P η(i, b) whether branch b is executed or not. For our example their fitness function also

chooses i2 (fSE(i2) = 0 + 21
22

+ 20
21

= 1.9068) over i1 (fSE(i1) = 90
91

+ 31
32

+ 0 = 1.9577) because

it does not prioritize branch “(x == 10)” — all branches are considered equal.

In summary: (normalized) branch distance is accurate to compare test candidates on the

same branch but can be misleading when comparing on different branches; approach level

corrects this by considering the critical branch’s rank on the path to the target but ignores

non-executed branches; symbolic enhanced, a hybrid approach that complements the dynamic

approach with static analysis, includes all branches on the path but does not consider their

rank or any other corrective adjustment. We propose branch hardness as such an adjustment,

complementing branch distance.

6.2 CB-FF Principle

We claim that test candidates that satisfy “hard” branches are more promising than those

that only satisfy “easier” branches. Therefore we consider the difficulty to satisfy a constraint

(i.e. a predicate used in a conditional statement or branch) as key information to measure
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the relevance of a test candidate. We propose a branch-hardness fitness function to guide a

SB-STDG approach toward test targets: it prioritizes branches according to how hard it is

to satisfy them. As in the Symbolic Enhanced approach, we combine SB-STDG with static

analysis of the non-executed branches, but additionally apply a hardness measure to every

branch.

Here the difficulty to satisfy a constraint c is linked to its arity and its projection tightness

(Pesant, 2005). The arity of a constraint c is the number of variables involved in c. For

example, in Figure 6.1 the arity of each branch is as following:

• arity(“y == x”) = arity(“!(y == x)”) = 2;

• arity(“y > 0”) = arity(“!(y > 0)”) = 1;

• arity(“x == 10”) = arity(“!(x == 10)”) = 1.

The lower the arity of the constraint, the less freedom we have to choose some of its variables

in order to modify the test-datum candidate. Correspondingly as a first indicator of hardness

we define the parameter α(c) = 1
arity(c)

that ranges between 0 and 1.

The projection tightness is the ratio of the (approximate) number of solutions of a con-

straint to the size of its search space (i.e. the Cartesian product of the domains of the

variables involved in c), in a way measuring the tightness of the projection of the constraint

onto the individual variables. For example, in Figure 6.1 let’s suppose that all domains (D)

are equal to [−99, 100], then the search space size, the approximate number of solutions, and

the projection tightness of each branch are as following:

• The search space size

– search space size(“y == x”) = search space size(“!(y == x)”) = 2002;

– search space size(“y > 0”) = search space size(“!(y > 0)”) = 200;

– search space size(“x == 10”) = search space size(“!(x == 10)”) = 200.

• The approximate number of solutions (Pesant, 2005)

– approximate number of solutions(“y == x”) = 200;

– approximate number of solutions(“!(y == x)”) = |D(y)||̇D(x)|−|D(y)∩D(x)| =
2002 − 200;

– approximate number of solutions(“y > 0”) = 100;

– approximate number of solutions(“!(y > 0)”) = 101;
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– approximate number of solutions(“x == 10”) = 1;

– approximate number of solutions(“!(x == 10)”) = 199.

• The projection tightness

– projection tightness(“y == x”) = 200
2002

;

– projection tightness(“!(y == x)”) = 39800
2002

;

– projection tightness(“y > 0”) = 100
200

;

– projection tightness(“!(y > 0)”) = 101
200

;

– projection tightness(“x == 10”) = 1
200

;

– projection tightness(“!(x == 10)”) = 199
200

.

A projection tightness close to 0 will indicate high constrainedness and hardness to satisfy

a constraint. Correspondingly as a second indicator of hardness we define the parameter

β(c) = 1− projection tightness(c) that ranges between 0 and 1.

In the following subsections, based on the two indicators of hardness we define two metrics

Difficulty Coefficient and Difficulty Level to complete the branch distance and use them to

express two fitness functions. These two metrics are designed to be used within meta-heuristic

search to solve an test-data generation problem.

6.2.1 Difficulty Coefficient (DC)

The DC is a real number greater than 1. It is a possible representation of the hardness of

a branch. Each constraint has its own DC that is determined according to its arity and

tightness. DC is calculated by the following formula,

DC(c) = B2 · α(c) +B · β(c) + 1,

where B > 1 is an amplification parameter. In this work we use B = 10.

In the expression of DC(c), we favor the indicator α(c) over the indicator β(c) because

we want to direct the search to keep solution candidates that satisfy constraints involving a

small number of variables, then we aim to change other variables that may evolve current

solution candidates to satisfy other constraints with a bigger arity.

To express a fitness function based on DC we use DC as a penalty coefficient for breaking

a constraint. The key idea behind this fitness function is determining a standard-branch-

distance, then sorting candidates according to their total standard-branch-distance.
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To compute a fitness value for a test candidate i on a set of branches (constraints) C we

apply the following formula:

fDC(i, C) =
∑
c∈C

DC(c) · η(i, c).

This fitness function penalizes a broken constraint in a relative manner, i.e., it determines

the penalty according to the DC and the normalized distance branch. In this way we may

prefer a candidate that satisfies a hard branch but breaks an easier one with a large normalized

distance, over another candidate that breaks the former with a small normalized distance but

satisfies the latter.

Now we come back to our example at Fig. 6.1 and apply this new fitness function. Assume

that all domains are equal to [−99, 100]. We compute DC for each branch as follows:

1. DC(“y == z”) = 102 · 0.5 + 10 · 0.995 + 1 = 60.95;

2. DC(“y > 0”) = 102 · 1 + 10 · 0.5 + 1 = 106;

3. DC(“x == 10”) = 102 · 1 + 10 · 0.995 + 1 = 110.95.

Then we use these DC values to compute a fitness value for each test candidate: fDC(i1, C) =

60.95· 90
91

+106· 31
32

+110.95· 0
1

= 162.9677; fDC(i2, C) = 60.95· 0
1
+106· 21

22
+110.95· 20

21
= 206.8485.

Contrary to fAL and fSE this fitness function makes the adequate choice by choosing the test

candidate i1 instead of i2. This type of decision may make fDC more efficient than fAL and

fSE.

6.2.2 Difficulty Level (DL).

DL is a representation of a relative hardness level of a constraint in a set of constraints. DL

determines a constant penalty of breaking a constraint in a set of constraints to satisfy. We

make the satisfaction of a hard constraint more important than satisfying all constraints at a

lesser level. To favor a constraint over all other easier constraints, its DL must to be greater

than the sum of DL values for all the constraints with a lower DC score. Therefore, we define

the DL as

DL(c, C) =

|C|, if r = 0

2r−1 · (|C|+ 1), if r > 0

where r is the rank (starting at 0) of c in the constraints set C in ascending order of DC.
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To get a fitness value based on DL for a test candidate i on a set of branches C we apply

the following formula:

fDL(i, C) =
∑
c∈C

`(i, c) + η(i, c), where `(i, c) =

0, if η(i, c) = 0

DL(c, C), if η(i, c) 6= 0

This fitness function allows to compare test candidates on different levels. It absolutely

favors test candidates that have a smaller penalty value, i.e, test candidates that satisfy

hard constraints. Contrary to the fitness function based on DC this one always prefers a

test candidate that satisfies a hard constraint and breaks all easier constraints over a test

candidate that breaks the hard constraint, even though it satisfies all the easier constraints.

6.3 Empirical Study

Our aim in this empirical study is to analyze the impact of our proposed fitness functions on

SB-STDG in terms of effectiveness and efficiency: SB-STDG is considered more efficient if

the new fitness functions are able to reduce the number of evaluations; it is considered more

effective if the new fitness functions are able to cover more targets. We compare our proposal

to the state of the art, fAL, fSE, and also to a natural combination of the two that applies

the branch level as a corrective coefficient to each term of fSE, which we denote fSEL.

To perform our empirical study, we select two widely used meta-heuristic algorithms:

Simulated Annealing (SA) and Evolutionary Algorithm (EA). To implement them we use

the open source library opt4j (Lukasiewycz et al., 2011). To define an optimization problem

in opt4j, the user needs only to define a fitness function and a representation of a test

candidate which, in our case, is a vector of integers. We defined a Java class that exports

a fitness evaluator for each fitness function: fAL; fSE; fSEL; fDC ; fDL. We kept all the

default parameters for both algorithms (EA and SA), with one exception. As a default the

mutation and the neighborhood operators make changes uniformly at random and so they

do not take into consideration the current value of the changed vector component of a test

candidate. Because fAL and fSE are highly dependent on branch distance and expect a change

close to the current value, to make the comparison more fair we defined new mutation and

neighborhood operators centered on the current value v: they select a new value uniformly

at random in the range [v − ε, v + ε], where ε represents 1% of the domain [−104, 104].

The study was performed on a well-studied benchmark, the triangle program (McMinn,

2004), and on 440 synthetic test targets that were randomly generated. A synthetic test

target is a simple program that contains a set of nested branches to be satisfied. To get

realistic test targets, every test target is generated carefully, branch by branch. Every branch
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Figure 6.2: SA on 440 test targets

must: i) keep the test target feasible; ii) involve two variables (80%) or a variable and a

constant (20%); iii) not be implied by the current test target. 1

Each search for test data that meets a test target was performed 20 times for every

combination of fitness function and meta-heuristic algorithm. If test data was not found

after 25000 (respectively 100000) fitness evaluations for EA (respectively SA), the search was

terminated. For all techniques, the 20 executions were performed using an identical set of 20

initial populations.

Experiments on the Triangle program show that all fitness functions perform in the same

1Benchmarks are available at http://www.crt.umontreal.ca/~quosseca/fichiers/

23-benchsCPAOR13.zip

http://www.crt.umontreal.ca/~quosseca/fichiers/23-benchsCPAOR13.zip
http://www.crt.umontreal.ca/~quosseca/fichiers/23-benchsCPAOR13.zip
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Figure 6.3: EA on 440 test targets

way on all branches except on the two branches that represent an isosceles and an equilateral

triangle —they need at least two out of three parameters to be equal. On these two branches

we observed that our fitness function fDL outperforms the others in terms of number of

evaluations necessary. Therefore fDL makes SB-STDG more efficient on Triangle, especially

on these two branches.

Fig. 6.2 and 6.3 show the coverage achieved by the EA and the SA on the 440 test

targets with respect to the number of evaluations. For each fitness function, a test target is

considered as covered if at least one execution out of 20 succeeded to generate a test data. If

more than one execution succeeded to do that, then the median value of evaluations is used.

These two plots confirm that the proposed fitness functions can enhance the effectiveness of
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SB-STDG: the search based on fDL or fDC is able to cover test targets that are not covered

by either fSE, fAL or their combination fSEL. All fitness functions perform similarly on easy

test targets but fDL and fDC outperform the rest on hard to reach test targets. The improved

effectiveness is particularly clear on the SA results, where we observe that our fitness fDL

can reach 90% coverage whereas the best of fSE, fAL and fSEL could not reach 45%.

In both Figures 6.2 and 6.3 we can observe that, from a certain point on, a given number

of fitness evaluations allows our fitness functions to cover more targets than fSE or fAL.

Therefore we may say that the proposed fitness functions improve the efficiency of SB-STDG.

6.4 Summary

In this chapter we defined two new metrics to measure the difficulty to satisfy a constraint

(i.e., branch) in the context of test-data generation for software testing. We used them to

propose new fitness functions that evaluate the distance from a test candidate to a given

test target. We presented results of an empirical study on a large number of benchmarks,

indicating that the search algorithms evolutionary algorithm and simulated annealing with

our new fitness functions are significantly more effective and efficient than with the largely

used fitness functions from the literature.
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Part III

Lightweight Static Analyses to

improve SB-STDG
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CHAPTER 7

SCHEMA THEORY OF GENETIC ALGORITHMS TO ANALYZE AND

IMPROVE SB-STDG

GA have been effective in solving many search and optimization problems. Software testing

is one field wherein GA have received much attention to solve the problem of test-data

generation. However, few works analyze this problem to see if it is a class of problem where

GA may work well. The schema theory is an analysis tool that theoretically explains how

and in witch class of problem GAs work well. In this chapter we use the schema theory to

analyze the problem of test-data generation. Based on this analysis we propose EGAF-STDG

an enhanced GA framework for software test-data generation. It uses a schema analysis to

identify performance schemata. To preserve these schemata during evolution phase and

maintain their diversity our framework provides a new selection strategy called pairwise-

selection as well as adaptive crossover and mutation operators.

We empirically evaluate EGAF-STDG on a set of synthetic programs to compare the

branch coverage and number of evaluations required to generate test data with the state-of-

the-art of evolutionary testing, i.e., DaimlerChrysler system for evolutionary testing Baresel

et al. (2002); Wegener et al. (2001). We show some preliminary experiments in which a high

branch coverage was obtained and the number of fitness evaluations was significantly reduced.

7.1 Schema Theory for Test-data Generation Problem

Test-data generation problem aims to generate an input vector (i.e, individual) that satisfies a

set of branch-conditions leading to a test target. Its search space can be split into subspaces

where each subspace represents the set of individuals satisfying a given subset of branch-

conditions. Thus, individuals are distinguishable by the subset of branch-conditions that

they satisfy. Therefore a schema can be defined as a set of individuals that satisfy a meta-

condition (i.e., a conjunction of branch-conditions), and its order is equal to the number

of conjuncts. An individual i is an instantiation of a schema, if and only if i satisfies its

meta-constraint. Thus, the set of schemata that present a problem of test-data generation

is all possible branch-conditions whereon the test target is control dependent. For example,

an UUT that takes three input arguments x1, x2, and x3, a test target t control dependent

on three branches b1, b2, and b3, can be modeled by a subset from the set of schemata given

in Table 7.1. Each schema represents an exponential number of sub-schemata, where a sub-
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Table 7.1: A set of possible schemata for a test target that is control dependent on three
branches (b1, b2, b3).

Schema Meta-constraint Pattern Order
s11 {(x1, x2, x3)|b1 is satisfied} b1 ∗ ∗ 1
s12 {(x1, x2, x3)|b2 is satisfied} ∗ b2 ∗ 1
s13 {(x1, x2, x3)|b3 is satisfied} ∗ ∗ b3 1
s21 {(x1, x2, x3)|b1 ∧ b2 is satisfied} b1 b2 ∗ 2
s22 {(x1, x2, x3)|b1 ∧ b3 is satisfied} b1 ∗ b3 2
s23 {(x1, x2, x3)|b2 ∧ b3 is satisfied} ∗ b2 b3 2
s31 {(x1, x2, x3)|b1 ∧ b2 ∧ c3 is satisfied} b1 b2 b3 3

schema is defined by the meta-constraint of the main schema while fixing one input argument

to a value from its domain.

Clearly the schema as defined is hierarchical structured: intermediate-order schemata

(e.g., s21,s23 ) play the role of stepping stones to go from lower-order schemata (e.g., s11,s12 )

to higher-order schemata (e.g., s31 ) (Mitchell et al., 1992). This is one essential feature for the

building-blocks hypothesis, i.e., partial schemata can construct better and better higher-order

schemata. Thus, individuals from a schema having a fitness value higher than the average

are likely to produce fitter individuals (Holland, 1975). Therefore a fitness function based

on the defined schema may work well under certain circumstances. Based on this schema we

can define different fitness functions for evolutionary testing. Mitchell et al. (1992) termed

this class of fitness functions Royal Road functions.

7.2 Royal Road Function

To define a royal road function for evolutionary testing we use the concept proposed by

Jones (1994). The fitness value is composed of two scores called PART and BONUS. PART

considers each building block individually in such a way that each building block receives a

fitness value. BONUS is to reward optimal building blocks that reach their optimal fitness

value. Because we define a building block by a branch-condition, we can define PART by a

straightforward assignment of its normalized branch distance (η) Arcuri (2010). If for some

reason an exact evaluation of a building block is impossible (e.g., a non-executed branch and

its expression is impossible to evaluate symbolically), then its PART can be overestimated by

assigning it the value 1. In this case, if we ignore the BONUS (e.g., BONUS=0) then we fall on

the Approach Level fitness function (fAL) (Wegener et al., 2001) and Symbolically Enhanced

fitness function (fSE) (Baars et al., 2011) expressions. Note that the main difference between
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these two fitness functions is that the latter complements the former by evaluating some

non-executed branches. This class of fitness function considers that all branches are directly

comparable or balanced, however the branch distances extracted form different branches

are more complicated to compare because each branch has its own features that should be

considered (e.g., a given branch may be more complex to satisfy than another). In previous

work Sakti et al. (2013) studied branch-hardness (i.e., the difficulty to satisfy a branch) and

showed that the Difficulty Coefficient (DC) is a good corrective metric to get comparable

branch distances among different branches. In this chapter, we use this metric to adjust

branch distances. Using this adjustment we fall on the Difficulty Coefficient fitness function

(fDC) expression (Sakti et al., 2013).

BONUS allows the revised class of royal road functions to outperform the simplest versions

of the royal road functions and other search algorithms. Thus, it is key to performance and

should not be ignored. Jones (1994) defines the BONUS as a way to classify individuals into

distinct levels (i.e., order of schema). The BONUS must be a distinctive value, i.e., from

the overall fitness value we can make the distinction between individuals from different order

of schemata. This means that the BONUS must be greater than the maximum value that

an individual can have from the sum of all PARTs. Since we define PART by a normalized

distance that is always upper-bounded by 1, the BONUS can be defined by the number of

branches. But this is an equitable reward regardless of the difficulty of satisfying a branch.

To take into account the branch-hardness, we use the Difficulty Level (DL) metric (Sakti

et al., 2013) to reward an optimal building block.

In general an evolutionary testing fitness function is a minimization function, so the

BONUS of each block must decrease its objective. By default the objective value must

contain the maximum summed BONUS that may appear in an objective value and when a

building block reaches its optimal value the BONUS is decreased. Since the optimal fitness

value of a block building is equal to 0, a simple equivalent expression may be obtained by

penalizing non-optimal building blocks instead to reward optimal building blocks. Therefore

unsatisfied branch is penalized by its BONUS, so a minimization royal road function for

evolutionary testing can be expressed as follows:

fRR(i, C) =
∑
c∈C′

(
BONUS(c) + PART (i, c)

)
=
∑
c∈C′

(
DL(c, C) + η

(
δ ·DC(c)

))
- C is the set of branches whereon the test target is control dependent;

- C ′ is the subset of C that contains unsatisfied branches by i;

- DL(c, C) and DC(c) as are defined in (Sakti et al., 2013).

In evolutionary testing, the level of dependency between building blocks may be very different
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from one instance to another. An instance may contain a set of strongly dependent building

blocks, however another may contain a set of building blocks that are weakly dependent or

totally independent. Because a hierarchical structure must take into account the conflicts

among fit schemata, the inter-dependency between building blocks, and intra-dependency

within building blocks (Watson et al., 1998), we cannot enforce a general subset of schemata

(i.e., a plan to follow) for all instances of the problem of test-data generation.

Note that the proposed formulation of the fitness function does not predict an exact

subset of schemata (plan). This is an advantage because it can deal with any instance of

the problem of test-data generation, but at the same time this is an inconvenience while its

landscape may significantly change from one instance to another. Therefore as any general

fitness function the proposed one may be deceptive in some instances of evolutionary testing.

The fitness function alone cannot perform well on every instance of evolutionary testing.

For further increases in power, in addition to a good fitness function the GA must exploit

features associated with good performance (Holland, 1975). In Holland’s words “unexploited

possibilities may contain the key to optimal performance, dooming the system to fruitless

search until they are implemented. There is only one insurance against these contingencies.

The adaptive system must, as an integral part of its search of “(schemata)”, persistently test

and incorporate structures properties associated with better performance.”

In the following subsections we propose some adaptive GA operators that use schema

analysis to detect and exploit some features related to evolutionary testing performance.

7.3 Pairwise Selection

The hope of a GA is finding the fit desired schemata at each generation. A distributed

population on schemata may answer this hope. Since fitter individuals may be from a same

schema, the selection operator must balance between fitness, diversity, and schemata. In

the literature there are several selection operators that balance between fitness and diversity

(Goldberg et Deb, 1991). Pairwise-Selection is a selection strategy that we propose to boost

the selection by taking into consideration the diversity in terms of schemata. To reach this

aim the selection operator must be able to identify schemata or distinguish between them.

From the overall fitness value it may be possible to know the order of schemata, however it

is impossible to identify an exact schema since many schemata may have the same order.

In evolutionary testing, we know a priori the optimal value of a fitness function (generally

branch distance is equal to 0), whence the schemata identification is possible by storing the

individual fitness value of each building block (branch distance of each individual branch)

and using them during the GA evolution phase. A schema detector can be defined as a binary



88

vector derived from the schema pattern by replacing the asterisks by 0 and constraints by

1. The scalar product of a branch distance vector and detector vector is equal to 0 if and

only if the individual is an instance of the schema. Further, the branch distance vectors

may be a good mean to measure the similarity or the distance between individuals in terms

of schemata. The similarity between two individuals is equal to the scalar product of their

branch distance vectors. The similarity is maximal if the two individuals are instances of the

same schema, it is minimal if the two individuals complement each other (it is equal to 0).

The pairwise selection combines two selection strategies to select individuals in a pair-

wise manner. The first individual is selected according to a selection strategy that takes

in consideration the fitness and the population diversity. The second individual is selected

using a selection strategy that is focused on the diversity in terms of schemata. The first

strategy sorts individuals according to a linear ranking method (Whitley, 1989; Pohlheim,

2006), after which the first individual is selected using stochastic universal sampling (Baker,

1987; Pohlheim, 2006). The second individual is selected to increase the likelihood of getting

a complement of the first individual using a tournament selection (Goldberg et Deb, 1991)

based on lowest similarity, and worst fitness in case of ties.

Pairwise selection has a good likelihood of diversifying the population in terms of schemata.

Further it couples two individuals that have a potential to generate fitter offspring.

7.4 Schema Analysis

It is well known that crossover and mutation operators disrupt schemata in a population.

The schema theorem shows that crossover and mutation rates are the main source of the

loss of schemata (Holland, 1975). Those rates are constant in evolutionary testing and are

randomly applied without any consideration of schemata. Adaptive rates may help to reduce

losses and make evolutionary testing more effective and efficient.

Since crossover and mutation operators perform on genes, comparison in terms of genes’

performances is a natural way to define adaptive crossover and mutation operator. The

contribution of each gene to the fitness may be an adequate indicator to adapt those two

operators. The question is how to determine the contribution of each input variable? To

answer this question we propose a schema analysis to identify the influence of each input

variable on each schema.

We say that an input variable v, influences a schema s if v influences any basic building-

block component in s. Since a basic building block is defined by an individual branch, we

keep Korel’s definition of influence (Korel, 1990) and we extend it with indirect influence. A

variable v indirectly influences a branch b if b is influenced by a variable w while a definition of
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w is in an execution block B and the execution of B depends on v value. Fig. 9.1 is a sample

source code wherein the input variable i indirectly influences the conditional statement at

Line 5.

The schema analysis generates an influence matrix that summarizes input variables in-

fluence on basic building blocks. An influence matrix is a UUT’s matrix that reflects the

dependency relationship between conditional statements and input variables: its lines are in-

put variables and its columns are conditional statements. A cell [v, c] of an influence matrix

is equal to 1 if the conditional statement c depends in any way on input variable v, else it is

equal to 0. Fig. 7.2 presents the influence matrix for foo function.

The schema analysis is a sort of data flow analysis. Therefore, with a slight modification

to a data flow analysis algorithm we can generate the influence matrix. In this chapter, we

assume that the control flow graph does not contain cycles (loops are unfolded kpath times)

and use an adapted version of the Basic Reach Algorithm (Allen et Cocke, 1976) to generate

the influence matrix.

Using the influence matrix an estimated input variable contribution can be determined in

each of the branch fitness. We assume that input variables involved in a branch contribute

equitably to its fitness value. Therefore a fitness value can be assigned to each input vari-

able by summing its contributions among all branches wherein it is involved in an influence

relationship.

7.4.1 Adaptive Crossover Operator.

The aim of any crossover operator is generating at least one offspring which is fitter than

each parent. To achieve this objective a crossover operator needs to detect the origin of the

fitness in each parent and exploit them to get fitter offspring. An adaptive uniform operator

can be developed for this propose that focuses only on one offspring wherein the fitter genes

are recombined. The adaptive uniform operator generates a main offspring and a secondary

offspring. The main offspring receives from the first parent all genes that have reached the

optimal fitness value then the remaining genes are chosen from both parents according to

fitness values of genes (i.e., the fitter gene of both genes is chosen). The secondary offspring

receives each gene from one parent with an equal probability.

Despite genes being linked by building blocks and the latter not being necessary indepen-

dent, this adaptive uniform crossover has a good likelihood of making a fitter offspring and

reducing the probability of losing schemata.
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1 foo(int i,int j,int k,int l ) {
2 int x=0;
3 if(i>0) //b1
4 x=j;
5 if (x>0 && k>0) //b2
6 if(l>0) //b3
7 return 1;
8

9 return 0;
10 }

Figure 7.1: foo function

b1 b2 b3

i 1 1 0

j 0 1 0

k 0 1 0

l 0 0 1

Figure 7.2: influence matrix for foo function

7.4.2 Adaptive Mutation Operator.

Two features define a mutation operator: the probability of changing a gene and the way

a gene is changed. A mutation operation can be considered successful if the new offspring

is fitter than its parent. To achieve this a mutation operator needs to detect the sources of

weakness from the fitness of the parent and change them in an adequate way. An adaptive

mutation operator can be developed to answer this. Instead of using an equal probability 1/`

to change each gene, the adaptive mutation operator uses a probability computed in terms

of the fitness value scored by each gene. It makes a distinction between two groups of genes:

optimal genes that have the optimal fitness value (0) and non-optimal genes that do not yet

reach the optimal fitness value. Only genes from the second group are subject to mutation

with an equal probability 1
|Sg| , where |Sg| is the number of genes in the second group (non-

optimal). Thus a mutated value is computed in terms of the min and the max of fitness

values of branches (building block) wherein the input variable (gene) is involved. A value r is

randomly selected from one of three intervals {[1,min], [min + 1,max], [max + 1, uBound]}
with probabilities {0.6, 0.3, 0.1}, then this value is added or subtracted to the current gene

value. A minimum width is required for each interval (e.g., for integers each interval must

contain at least 50 values otherwise the interval is modified to contain this number starting

from its lower bound).

7.5 Empirical Study

The main goal of our empirical study is to compare our proposed enhanced GA framework

against the state of the art and to analyze its impact in terms of effectiveness and efficiency

on evolutionary testing. Evolutionary testing is considered more efficient if the enhanced

GA framework is able to reduce the number of evaluations to achieve a given coverage; it is

considered more effective if the enhanced GA framework is able to cover more targets. To
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get a more revealing analysis we evaluate separately the four components in our enhanced

GA framework: the royal road function of evolutionary testing, the pairwise selection, the

adaptive crossover operator, and the adaptive mutation operator. This allows us to determine

the contribution of each component in the enhanced GA framework and to analyze each

research hypothesis. More precisely this case study aims at answering the following four

research questions:

(RQ1): Validation of evolutionary testing royal road function. Can an evolu-

tionary fitness function expressed according to the schema theory make evolutionary

testing more efficient or effective? This shows the impact of a fitness function expressed

according to the schema theory;

(RQ2): Validation of schemata diversity hypothesis. Is the pairwise selection able

to make evolutionary testing more efficient or effective? This shows the impact of

maintaining the population diversity in terms of schemata;

(RQ3): Performance of proposed adaptive crossover. Can the adaptive crossover

operator that combines fitter genes enhance evolutionary testing in terms of efficiency

of effectiveness? This shows the effect of preserving schemata by exploiting the sources

of performance;

(RQ4): Performance of proposed adaptive mutation. Can the adaptive mutation

operator that assigns high probability to“weaker”genes enhance evolutionary testing in

terms of efficiency of effectiveness? This shows the impact of incorporating structures

and properties associated with weaker performance to preserve schemata and mutate

individuals.

To ensure that we compare, indeed, with the state of the art a careful implementation

of the DaimlerChrysler system for evolutionary testing (DCS-ET) (Baresel et al., 2002; We-

gener et al., 2001) was set up by using the evolutionary computation for Java (ECJ) system

(Luke et al., 2010). We choose ECJ because it is founded on the same principles as DCS-ET:

both systems support breeding based on multi-populations, or Breeder Genetic Algorithm

(Mühlenbein et Schlierkamp-Voosen, 1993). The ECJ features have made our task reimple-

menting DCS-ET easy to achieve. DCS-ET has been largely studied and reimplemented in

the literature and it is always considered as the state of the art (Harman et McMinn, 2010).

In the next paragraph we give a brief description of DCS-ET (Wegener et al., 2001; Harman

et McMinn, 2010).

The population contains 300 individuals that are uniformly distributed over six sub-

populations. All sub-populations are evolved in parallel separately according to the following
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process: (1) Evaluation: according to a fitness function, a score is assigned to each individ-

ual; (2) Selection: individuals are selected using a linear ranking (Whitley, 1989; Pohlheim,

2006) with a selection pressure equal to 1.7 followed by stochastic universal selection (Baker,

1987; Pohlheim, 2006); (3) Crossover: parents are recombined by using a discrete recombi-

nation (Mühlenbein et Schlierkamp-Voosen, 1993); (4) Mutation: offsprings are mutated by

the breeder genetic algorithm mutation strategy (Mühlenbein et Schlierkamp-Voosen, 1993);

(5) Reinsertion: an elitist reinsertion strategy is adopted — it keeps the top 10% of the

current population; (6) Random Exchange: every 20 generations sub-populations randomly

exchange 10% of their individuals with one another; (7) Populations competition: every four

generations, the populations are ranked according to their progress in terms of performance

(mean fitness), and the size of each sub-population is updated, with weaker sub-populations

losing individuals in favor of stronger ones.

We enhanced DCS-ET by fRR, pairwise selection, adaptive crossover, and adaptive mu-

tation operators to get a first version of our framework EGAF-STDG.

The study was performed on 440 synthetic test targets that were randomly generated.

A synthetic test target is a simple Java program that contains a set of nested branches to

be satisfied (i.e., only the deeper branch is targeted). The search space and the number of

nested branches are the main factors in determining the difficulty of an evolutionary testing

problem. The search space grows exponentially with the number of input variables. To get

simple Java programs that represent different levels of difficulty the number of input variables

is varied from 2 to 9 and each test target contains at least a number of nested branches equal

to the number of input variables and at most is equal to double the number of input variables.

For each combination of the number of input variables and number of nested branches 10

simple Java programs are generated. We define each input variable as an integer that takes

its value from the large domain [2−30, 230]. Each simple Java program denotes a separate

search problem for which the size of the search space approximately ranges from 262 to 2279.

To get realistic test targets, every test target is generated carefully, branch by branch. Every

branch must: i) keep the test target feasible; ii) involve two input variables (80%) or an input

variable and a constant (20%); iii) not be implied by the current test target.1

Each search for test data that meets a test target was performed 20 times. This repetition

allows reducing the random aspect in the observed values. A set of 20 random number seeds

was used to seed the random number generators. If test data was not found after 30000

fitness evaluations for both DCS-ET and EGAF-STDG, the search was terminated.

1Benchmarks are available at http://www.crt.umontreal.ca/~quosseca/fichiers/

23-benchsCPAIOR13.zip

http://www.crt.umontreal.ca/~quosseca/fichiers/23-benchsCPAIOR13.zip
http://www.crt.umontreal.ca/~quosseca/fichiers/23-benchsCPAIOR13.zip
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7.5.1 Analysis

Table 7.2 summarizes the results of 8800 executions for each combination of framework,

BONUS, and PART. An execution is considered successful if it could generate a test datum.

To compute a maximum coverage (Max. Cov.), a branch is considered covered if test data

were found during at least one of the 20 executions. To compute a average coverage (Ave.

Cov.), a branch is considered covered if test data were found during at least teen of the 20

executions. The fRR with PART equal to the adjusted branch distance (δ ·DC) outperforms

fRR with the simple branch distance (δ). Thus in our framework (EGAF-STDG) fRR with

BONUS different from zero works better than with BONUS equal to 0, further fRR with

DL is better than with | C |. Contrary to our framework on DCS-ET the fRR with DL

or | C | slightly decreases the performance. This is because the fRR with BONUS different

from 0 favors higher-order schemata and these latter are overlapped, but DCS-ET uses sim-

ple crossover and mutation operators that disrupt schemata. Thus, we answer RQ1 by

claiming that the evolutionary testing royal road function can make evolution-

ary testing more effective and efficient if the schemata are preserved and their

diversity is maintained.

To measure the advantage of each proposed component the framework DCS-ET is mod-

ified step by step. First we replaced DCS-ET’s selection strategy by our pairwise selection,

then we changed the crossover operator to our adaptive one. After that we modified the

mutation rate of DCS-ET by making it adaptive. Finally we replaced the mutation way by

our proposed one. Figure 7.3 summarizes different changing steps that we did to pass from

DCS-ET to EGAF-STDG.

For our benchmark set of simple programs, in Table 7.2 and Figure 7.3 it is clear that

our framework significantly outperforms the DCS-ET framework both for branch coverage

and number of fitness evaluations required to cover a same number of branches. Also each

proposed operator alone performs better than its simple counterpart. The pairwise selection

could not show a significant enhancement in terms of branch coverage, but it is distinctly

better than the selection strategy used by DCS-ET in terms of number of evaluations. The

pairwise selection offers to the crossover operator a pair of individuals that complement

each other. According to the results the complementary between the crossed individuals

may diversify schemata and preserve them. Therefore, we answer RQ2 by claiming

that the pairwise selection is able to maintain the population diversity in terms

of schemata, thereby making evolutionary testing more efficient but not more

effective.

The proposed adaptive crossover does not show a meaningful difference compared to the

discrete crossover because of the complicated relationship between schemata: the latter are
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Table 7.2: Results of different expressions of the evolutionary testing royal road function on
both frameworks.

fRR SUCCESS EVALUATIONS Max. Cov. Ave. Cov.
BONUS PART DCS EGAF DCS EGAF DCS EGAF DCS EGAF

0
η(δ) 5,084 8,511 175,619,700 43,269,900 78.18 99.77 58.63 97.27

η(δ ·DC) 5,262 8,521 173,914,800 42,747,300 80.45 99.09 60.00 97.72

| C | η(δ) 5,048 8,515 175,827,000 43,021,200 77.72 99.54 56.59 97.27
η(δ ·DC) 5,248 8,528 173,948,400 42,644,100 78.86 99.77 58.86 97.50

DL
η(δ) 5,037 8,547 176,110,800 41,990,700 76.59 100.00 58.18 97.72

η(δ ·DC) 5,166 8,556 175,356,000 41,851,500 79.09 100.00 59.31 97.72

overlapped and strongly depend on each other. The dependency between schemata preserves

the combination of fitter genes to generate fitter schemata. This result may be due to the

kind of UUTs tried, which essentially use integer data types and their branches are highly

dependent on each other. More evidence is needed to draw a general conclusion about the

proposed crossover. Yet, on the selected UUTs and the proposed crossover operator we

answer RQ3 by claiming that combining fitter genes does not necessary generate

fitter schemata.

In the adaptive mutation operator, both the adaptive mutation rate (probability) and the

adaptive mutation strategy (value) significantly enhance the performance in terms of fitness

evaluations and branch coverage. The adaptive mutation rate orients the mutation operator

on the “weaker” genes by assigning them a high mutation rate, then allows it to outperform

its counterpart that uses equal probability regardless of gene performance. Thus the adap-

tive mutation strategy orients the mutation operator to choose potential values by using the

minimum and the maximum branch distances while favoring the neighborhood. This mu-

tation strategy outperforms the breeder mutation operator in terms of branch coverage and

fitness evaluations. Therefore, we answer RQ4 by claiming that incorporating struc-

tures and properties associated with weaker or better performance to preserve

schemata and mutate individuals can significantly enhance evolutionary testing.

7.6 Summary

In the last two decades, search based testing and in particular evolutionary testing have been

extensively applied to solve the problem of automated test data generation. However despite

the importance of the schema theory analysis for GA, its application to evolutionary testing

has posed many challenges. In order to establish a GA framework based on schema theory

analysis, this chapter provides a novel automated evolutionary testing framework. We (1)
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Figure 7.3: The branch coverage in terms of the average number of fitness evaluations.

have adapted schema theory for evolutionary testing, (2) have defined a royal road fitness

function for evolutionary testing, (3) have proposed a new selection strategy called pairwise

selection that combines two selection strategies to maintain the population diversity in terms

of schemata, (4) have proposed an adaptive crossover that dynamically changes its crossover

rate according to the schemata, and (5) have proposed an adaptive mutation operator that

dynamically changes its mutation rate and the way it mutates in terms of the schemata and

their performances. Preliminary experiments have been carried out on some randomly gen-

erated benchmark programs. A preliminary case study was carried out to frame the research

questions. Results indicate that (a) the proposed royal road function can make evolution-

ary testing more effective and efficient if the schemata are preserved and their diversity is
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maintained; (b) the pairwise selection is able to maintain the population diversity in terms

of schemata, thereby making evolutionary testing more efficient but not more effective; (c)

the proposed adaptive crossover does not show a meaningful difference comparing to the dis-

crete crossover, thereby combining fitter genes does not necessary generate fitter schemata;

(d) incorporating structures and properties associated with weaker or better performance to

preserve schemata and mutate individuals can significantly enhance evolutionary testing.
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CHAPTER 8

FURTHER STATIC ANALYSES TO IMPROVE SB-STDG

Search-based approaches have been extensively applied to solve the problem of software

test-data generation. Yet, test-data generation for object-oriented programming (OOP) is

challenging due to the features of OOP, e.g., abstraction, encapsulation, and visibility that

prevent direct access to some parts of the source code. To address this problem we present

IG-PR-IOOCC, a new automated search-based software test-data generation approach that

achieves high code coverage for unit-class testing. We first describe how we structure the

test-data generation problem for unit-class testing to generate relevant sequences of method

calls. Through a static analysis, we consider only methods or constructors changing the state

of the class-under-test or that may reach a test target. Then we introduce a generator of

instances of classes that is based on a family of means-of-instantiation including subclasses

and external factory methods. It also uses a seeding strategy and a diversification strategy

to increase the likelihood to reach a test target. Using a search heuristic to reach all test

targets at the same time, we implement our approach in a tool, JTExpert, that we evaluate

on more than a hundred Java classes from different open-source libraries. JTExpert gives

better results in terms of search time and code coverage than the state of the art, EvoSuite,

which uses traditional techniques.

8.1 Instance Generator and Problem Representation

A test-data generation problem is an instantiation of the CUT and a sequence of method

calls on that instance. The sequence of method calls can be split into two subsequences: (1)

putting the CUT instance in an adequate state; (2) targeting the test target. Because the first

subsequence aims to change the object state, we call it state-modifier methods and we call the

second subsequence target-viewfinder methods because it aims to reach a test target. Thus, a

representation of the test-data generation problem can be split into three main components:

a CUT-Instantiator, a sequence of state-modifier methods, and a target-viewfinder method.

8.1.1 Instance Generator

In the object-oriented paradigm, generally, calling a constructor or a method requires some

instances of classes. Given the large number of constructors and method calls needed for

solving a testing problem, the generation of instances of classes requires a particular attention.
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It is key to successful test-data generation because without an adequate instance of a CUT

or a needed objects the solving process may fail before it starts.

Means-of-instantiation

In our approach, we use the term means-of-instantiation to represent any means that allows

generating an instance of the CUT or more generally to instantiate a class. A means-of-

instantiation can be a constructor, a factory method, an accessible data member that is an

instance of the required class, or a method defined in another class that returns an instance

of the required class.

Means-of-instantiations can be categorized in two groups: internal and external. For a

given class c, a means-of-instantiation is internal if it is offered by c itself, i.e., defined in c.

A means-of-instantiation is external if it is defined in a class different from c.

To generate an instance of a given class our Instance Generator takes into account all

accessible means-of-instantiation offered in a program and according to our diversification

strategy one of them is selected. Thus, to instantiate a given class, our instance generator

considers five different families of means-of-instantiation: (1) All accessible constructors (if

there is no constructor defined the default one is considered); (2) all factory methods, i.e.,

all statics methods member returning an instance of that class; (3) all statics fields that are

instances of the class; (4) all external methods that return an instance of that class, i.e.,

methods that return an instance of a needed class and are defined outside of that class; (5)

recursively all means-of-instantiations of subclasses.

External Factory Methods and Anonymous Class Instantiation: In general,

to instantiate a given class, only the internal means-of-instantiations are considered (i.e.,

constructors, factory methods, and fields). However, external factory methods, i.e., a method

that returns an instance of a class and is defined outside of that class, may be a potential

means not only for generating instances but also for diversifying the generated instances.

Also, in some cases it may be the only solution to instantiate a class. For example, in Figure

8.1, an anonymous class defined at Line 4 is nested in the method keyIterator: there is a

very weak likelihood to cover branches in that anonymous class without instantiating it as a

CUT because all of its methods require an explicit call. One possible mean-of-instantiation

of that anonymous class is the method keyIterator, which returns an instance of that class.

Once that anonymous class is instantiated reaching its branches becomes a simple search

problem.

An anonymous class is instantiable if and only if the method wherein it is declared returns

its instance. Using such mean-of-instantiation, we can test an anonymous class separately

and directly call all of its public methods.
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1 public Iterator<K> keyIterator() {
2 reap();
3 final Iterator<IdentityWeakReference> iterator =
4 backingStore.keySet().iterator();
5 return new Iterator<K>() {
6 private Object next = null;
7 private boolean nextIsSet = false;
8 public boolean hasNext() {
9 · · ·

10 }
11 public K next() {
12 · · ·
13 }
14 public void remove() {
15 · · ·
16 }
17 private boolean setNext() {
18 · · ·
19 }
20 };
21 }

Figure 8.1: Skeleton of an anonymous class that can be instantiated, from class
org.apache.lucene.util.WeakIdentityMap

Subclasses: Subclasses (stubs) are always used to instantiate abstract classes or in-

terfaces but rarely to instantiate a class that offers some other means-of-instantiation (e.g.,

constructors). However, in some cases, using an instance of a subclass may be the only

means to cover protected methods or methods implemented in abstract classes. Also, using

means-of-instantiations offered by subclasses may significantly diversify generated instances,

especially for arguments.

Diversification Strategy

To diversify the generated instances of a given class, we assume that its means-of-instantiations

can split the search space into some subspaces where each means-of-instantiation is repre-

sented by a subspace. Generating required instances from different subspaces may increase

the diversity and the likelihood to reach a test target. To enlarge the number of subspaces

and have more diversity our Instance Generator takes into account all accessible means-of-

instantiations offered in a program.

In the presence of different means-of-instantiation, choosing between them to generate a

certain number of instances is problematic. For example, in the Joda-Time1 library, most

classes have more than a hundred means-of-instantiations, e.g., the class org.joda.time.base.

1Joda-Time: An open source library that provides a quality replacement for the Java date and time
classes. Available at http://www.joda.org/joda-time/
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AbstractPartial and the interface org.joda.time.ReadablePartial each have 225 differ-

ent means-of-instantiations through their subclasses. The complexity of these means-of-

instantiations vary greatly. For example, a mean-of-instantiation that does not need param-

eters is less complex than another that needs some instances of other classes, that needs an

instance of a class that is difficult to instantiate, or, for accessibility reason, that is“not instan-

tiable”. In some cases, instantiating a class using one of its complex means-of-instantiations

may be harmful, i.e., may negatively influence performance of a test-data generation search

(e.g., a means-of-instantiation involves complex computation operations in its implementa-

tion and requires significant time to be executed).

To balance diversity and complexity our selection strategy favors less complex means-

of-instantiations while diversifying generated instances. A probabilistic selection strategy is

implemented for this propose that diversifies the generated instances without compromising

performances. Such a selection strategy needs an evaluation of the complexity of a means-

of-instantiation.

A given means-of-instantiation mi can be considered complex if it fails to generate an

instance of a class because of one of the following reasons:

• mi involves complex computation;

• a precondition on its arguments is hard to satisfy;

• recursively one of its needed arguments is complex to instantiate.

To simplify the measurement of the complexity of a means-of-instantiation, we divide it

into two complexities: the complexity to execute a means-of-instantiation and the complexity

of instantiating its needed arguments. Initially, we suppose that the complexity to execute a

means-of-instantiation or instantiating a class is constant and equal to a constant IC (Initial

Complexity, equal to 20 in our approach). Formally an initial complexity of a means-of-

instantiation is measured according to the following formula:

C0
mi = (Nbr Arg + 1)× IC

This expression uses the number of arguments as a measure to evaluate the complexity

of a means-of-instantiation. Sometimes, preconditions or the complexity of instantiating an

argument may make a mean-of-instantiation that needs only one argument more complex

than another that requires many arguments. To take this observation into consideration, we

use the percentage of failure of generating instances to measure the complexity of a means-

of-instantiation, i.e., we attempt to generate a number of instances using the same means-of-

instantiation while observing the number of failures. Using such a computation, we obtain an
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accurate measure. However, evaluating the complexity of all means-of-instantiations before

the search may be expensive. To simplify the computation, we measure the complexity of a

means-of-instantiation on the fly while searching test data: initially, a complexity of a given

means-of-instantiation mi is evaluated to C0
mi, each time mi is called to generate an instance

of its returned class, its complexity measure is updated based on failures.

Our updating of the complexity measures is based on a penalty system. We use two types

of penalties:

• NON INSTANTIABLE PENALTY (NIP ): this penalty is assigned to a class c if our

instance generator could not generate an instance of c because c does not have any

mean-of-instantiation. This penalty should be big enough to reduce the likelihood (to

zero if possible) of the selection of a mean-of-instantiation that needs a non instantiable

class. In this work, we use NIP = 106.

• FAILURE PENALTY (FP ): this penalty describes the difficulty of executing a mean-

of-instantiation. Every time a mean-of-instantiation could not generate an instance of

its returned class, a failure penalty is added to its complexity measure. This may happen

if at least one parameter does not satisfy the means-of-instantiation preconditions or

time out of instantiation is reached. To allow other means to be selected, this penalty

should be bigger than the most complex mean-of-instantiation. In this work, FP =

10× IC.

Finally, the complexity of a means-of-instantiation is measured, at a time t, as follows:

Ct
mi = C0

mi + xtmi × FP + ytmi ×NIP

where xtmi represents the number of failures of mi until t; ytmi represents the number of failures

of mi caused by a non-instantiable argument until t.

Then it is possible to define a selection strategy based on the complexity measure to

select means-of-instantiations with low complexity. Such a strategy always favors means-of-

instantiations with low complexity, which may reduce the diversity of the generated instances.

To balance complexity and diversity, we use a cost of diversity (DCmi) that is determined

by a penalty system. Each time a means-of-instantiation succeeds to generate an instance of

a class, its diversity cost is increased by a constant DIVERSITY PENALTY (DPmi). This

constant is defined in term of complexity to keep an advantage for means-of-instantiations

with low complexity. Therefore, each means-of-instantiation has its ownDPmi, which depends

on its complexity. In our approach, DPmi and DCmi are computed as follows:
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DP t
mi =


0 mi fails

Ct
mi − C0

mi + IC mi succeeds

and:

DCt
mi =

∑
t′≤t

DP t
′

mi

To instantiate a given class c, each means-of-instantiation in its set of possible means-of-

instantiations Set MIc receives an instantiation probability proportionate to its own global

cost value GCt
mi = Ct

mi + DCt
mi and the total cost value of all other means-of-instantiations

TOTAL COST t =
∑

mi∈Set MIc
GCt

mi. The instantiation probability to use a means-of-

instantiation mi for instantiating c is determined according to the following formula:

ptmi =
TOTAL COST t −GCt

mi

(|Set MIc| − 1)× TOTAL COST t

This probability is used for the selection step through a roulette-wheel selection strategy.

Seeding Strategy of Constants

When a branch condition involves constants, covering such a branch may be challenging. To

deal with such a problem, many works (Alshraideh et Bottaci, 2006; Alshahwan et Harman,

2011; Fraser et Arcuri, 2012; McMinn et al., 2012b) propose different seeding strategies,

especially for strings and primitive types. We adopt a new seeding strategy, inspired by

the works (Alshraideh et Bottaci, 2006; Alshahwan et Harman, 2011; Fraser et Arcuri, 2012;

McMinn et al., 2012b) but with some differences: in addition to primitive and string, we

seed also object constants, and the seeding probability is defined for each data type and each

value in terms of the number of occurrences collected.

Seeding with a Variable Probability: In general, an instance generator seeds ex-

tracted constants with a fixed probability, i.e., for a primitive type or a string, a value is

randomly selected from the set of extracted constants with a certain fixed probabilities. The

study conducted by Fraser et Arcuri (2012) shows that a probability equal to 0.2 gave best

results compared to other values. It also shows that in some classes seeding can be harmful.

Indeed, if the extracted set of integer constants contains only one value, it is undesirable to

see 20% of a population formed of the same value because it substantially reduces diversity.

We experimentally observed that using a seeding strategy with a fixed probability equal to 0.2

indeed affects the coverage negatively in some classes, especially if the number of extracted

constants is small. Also, it is unbalanced to seed two constants with the same probability,



103

when one is used a hundred times, whereas the other is used only once in the source code.

Thus, each constant must have its own seeding probability according to the number of its

occurrences in the source code.

We propose a variable seeding probability that is based on the number of occurrences of

constants extracted from the source code. Empirically, we found that a probability equal to

0.05 is better than 0.2 if the number of extracted occurrences of constants is less than 10; oth-

erwise, as in previous works, we use a probability equal to 0.2. Thus, a constant with a large

number of occurrences in the source code has a higher likelihood of being selected. For exam-

ple, if the vector of integer constants exacted from the source code is {〈5, 2, 4, 5, 5, 1, 2, 3, 4〉}
then the seeding probability to generate an integer is equal to 0.05 because the number of

occurrences is less than ten and the probability to seed the value 5 is equal to 3
9
· 0.05.

Seeding the null constant: In general, when constants are discussed, only strings

and primitive types are considered, although any object may be a constant and this constant

may be extracted from the source code (e.g., array constant is often present in the source

code). We consider also the null constant. The null constant is often involved in a branch’s

condition that checks for a null object, i.e., it requires an equality between a variable and the

null constant. This type of condition is difficult to satisfy, but it may become easier with

a seeding strategy. In a OOP source code, there is often some branch involving the null

constant (e.g., object == null). If such branches are forgotten, there is a high likelihood

to generate null pointer exceptions. For example, in the library Apache Commons-Lang2,

in class org.apache.commons.lang3.ArrayUtils, among 1,096 branches 20% (170) have a

predicate involving the null constant. When we tested this class using EvoSuite (Fraser et

Arcuri, 2011, 2013c), only 24 branches out of 170 were covered, i.e., 14% coverage of branches

involving the null constant. This weak coverage does not mean that EvoSuite does not use

the null constant at all, but it does not use this constant enough to cover branches involving

the null constant. We think that EvoSuite does not use a systematic seeding strategy with

the null constant: perhaps it uses the null constant sometimes with some classes or when it

meets a difficult class to instantiate. However, to satisfy branches’ conditions that involve the

null constant, it is necessary to seed every class with this constant using an adequate seeding

probability. In this work, our instance generator systematically seeds the null constant while

generating instances of classes with a seeding probability equal to 0.05, i.e., for every one

hundred of instances, five null instances are used. We chose a probability equal to 0.05

because we have only one value to seed.

2Apache Commons-Lang provides extra methods for classes in the standard Java libraries. Available at
http://commons.apache.org/proper/commons-lang/
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8.1.2 A Representation of the Test-data Problem

To generate unit-test data using SBST techniques, the main component is the test-data

problem representation. The key idea behind our representation of the test-data generation

problem is in using a static analysis to determine relevant means-of-instantiations (CUT-

Instantiator), state-modifier methods, and target-viewfinder methods, and then use them to

generate test-data candidates.

CUT-Instantiator

To reach a test target in a non-static method, an instance of the CUT is required. Different

means can be used to generate that instance. If the test target is in a constructor or accessible

only via a constructor, then we call this type of constructor CUT-Instantiator. For a given

test target in a CUT, two reasons may make a constructor a CUT-Instantiator: (1) through

it the test target is reachable or (2) through it a data member can be modified.

A means-of-instantiation is considered a CUT-Instantiator if and only if it contains the

test target, contains a statement that modifies a data member, or calls an inaccessible method

directly or transitively via inaccessible methods and the latter contains the test target or

contains a statement that modifies a data member.

We denote the set of all CUT-Instantiator of a test target t in a CUT c by MIc,t. If

MIc,t is not empty then to generate potential instances of the CUT to reach t, only CUT-

Instantiators in MIc,t are considered, otherwise all means-of-instantiations of the CUT are

considered.

State-modifier Methods

Because of encapsulation, in general, the state of an instance is not directly accessible. To

address this accessibility problem, in a test datum, a sequence of method calls is used to put

an instance of a CUT in an adequate state by modifying some data members. Because the

aim of the sequence of method calls is changing the state of the CUT, instead of exploring

random sequences of method calls as previous works, we focus on methods that may modify

a data member.

To change the state of an instance of a CUT, we define state-modifier methods as all

accessible methods that may directly or indirectly assign to some data members a new value,

instantiate them or change their states by invoking one of their methods.

An accessible method is a state-modifier method if and only if it contains a statement

that modifies a data member or it calls an inaccessible method directly or transitively via

inaccessible methods and the latter contains a statement that modifies a data member.
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1 public class A{
2 private Map<String,Integer>Dm1;
3 private double Dm2;
4 public A(B b, C c, int i ) {· · · }
5 public void setDm1(String s, int i ) {Dm1.put(s,i);}
6 public void remDm1(int i) {Dm1.put(s,i);}
7 public void setDm2(double d) {Dm2=d;}
8 public mTV(C c, String s, int i) {
9 · · ·

10 mUT(c, ‘‘mTV”);
11 · · ·
12 }
13 private mUT(C c, String s) {
14 · · ·
15 //test target
16 · · ·
17 }
18 · · ·
19 }

Figure 8.2: Example of CUT

For example, in Fig. 8.2, the methods setDm1 and remDm1 are state-modifier methods

because they change the state of data member Dm1.

Generally, in a given class, not all methods are state-modifier. Thus, using the subset of

state-modifier methods instead of all methods to generate the sequence of method calls may

significantly reduce the number of possible sequences, i.e., the search space. We denote the

set of all state-modifiers for the ith declared data member in a class c by SMc,i.

Target-viewfinder Methods

A test target is either in an accessible or an inaccessible method of a CUT. Thus, it may

not be directly accessible. In general, in a test datum, the last method in the sequence of

method calls is called in the hope to reach the test target. Because a test target is already

known, instead of calling a method randomly, we focus only on methods that may reach the

test target. A target-viewfinder method aims to reach the test target.

An accessible method is considered a target-viewfinder method if and only if it contains the

test target or it calls an inaccessible method directly or transitively via inaccessible methods

and the latter contains the test target.

For example, in Fig. 8.2, if we consider that the test target is reaching Line 15, then the

accessible methodmTV is a target-viewfinder because it is accessible and calls the inaccessible

methodmUT that contains the test target. We denote the set of all target-viewfinder methods

for a given test target t in a CUT c by TVc,t.
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Static Analysis

For a CUT we use static analysis on the source code to extract its set of CUT-Instantiators,

state-modifier methods for each data member, and target-viewfinder methods. To determine

these three sets, static analysis identifies branches that modify the data members and ex-

ecution paths ascending from a branch to an accessible method. A branch can modify a

given data member dm if it contains a constructor call that assigns a new instance to dm; an

assignment statement wherein dm is on the left side; or, a method call on dm. Thus, static

analysis generates three types of information: (I1) information about all branch-modifiers

for each data-member; (I2) information about the parent of each branch; (I3) information

about all branch-callers for each inaccessible method. Using I1, I2, and I3, static analysis

can generate the set of state-modifier methods and a subset of CUT-Instantiators. When a

test target is defined, using I2 and I3, the set of CUT-Instantiators is completed and the set

of target-viewfinder methods is generated.

Domain-vector

A domain-vector represents the general skeleton of potential test-data candidates. For a given

test target, it is a vector composed of the set of CUT-Instantiators, followed by the set of

state-modifier methods for each data member and ending with the set of target-viewfinder

methods. Correspondingly, a solution is a vector that assigns to each component one instance

from its domain with a fixed list of needed instances of arguments. For a nested class (i.e,

local, member or anonymous class), its vector is extended with the parent class’s vector. We

fix an argument or input data by recursively defining its means-of-instantiations. Except

for the target-viewfinder method, any component in a solution vector can take an empty

assignment. Also, the means-of-instantiation of CUT in a solution vector can be empty if

and only if all methods in the CUT are static.

Thus, a presentation of a problem of test-data generation that aims to cover a target t in

a class c is as follow:

DVc,t 7−→ 〈{MIc,t ∪ {empty}}, {SMc,1 ∪ {empty}},
..., {SMc,n ∪ {empty}}, {TV (c, t)}〉

For example, if the class A in Fig. 8.2 is under test and the test target is Line 15 and the

constructor defined at Line 4 initializes a data member, then the domain-vector is defined

as: DVA,15 = 〈MIA,15, SMA,1, SMA,2, TVA,15〉

with:

• MIA,15 = {A(B,C, int)}
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• SMA,1 = {setDm1(String, int), remDm1(int), empty}

• SMA,2 = {setDim2(decimal), empty}

• TVA,15 = {mTV (C, String, int)}

In this example, a test data necessary uses the constructor A(B,C, int) to instantiate

the CUT and calls mTV (C, String, int) to reach the test target. To change the state of the

generated instance, a test datum calls the methods setDm1(String, int) or remDm1(int),

then it calls the method setDim2(decimal).

This example shows that the general form of a test datum is almost fixed by the domain

vector; it remain only a search algorithm to find adequate arguments to reach the test target.

8.2 Implementation

We have implemented our approach in a tool, JTExpert, that takes as inputs a classpath and

a Java file to be tested. JTExpert automatically produces a set of JUnit test cases Tahchiev

et al. (2010); JUnit (2013) that aims to cover all branches. JTExpert is completely automated,

works on ordinary Java source-code (.java), and does not need additional information. An

executable of JTExpert with all required libraries is available for download at https://

sites.google.com/site/saktiabdel/JTExpert.

JTExpert performs two phases: a preprocessing phase and a test-data generation phase.

8.2.1 Preprocessing

The preprocessing phase consists of instrumenting and collecting required information for the

second phase. To extract relevant information from the source code, we use static analysis

as a first phase before starting test-data generation. The Java file under test is parsed and

its Abstract Syntax Tree (AST) is generated. Before extracting data, each node in the AST

representing a branch or a method is encoded with its parent branch or method into a unique

code, i.e., an integer value.

We implement this phase in two main components: Instrumentor and Analyzers.

Instrumentor

To instrument the Java file under test, its AST is modified to call a specific method on

entering each branch. This method call takes as inputs the branch code and notifies the

testing process when the branch is executed. After the instrumentation, based on the AST,

a new version of the Java file under test is saved and compiled to generate its new Java

bytecode file (.class).

https://sites.google.com/site/saktiabdel/JTExpert
https://sites.google.com/site/saktiabdel/JTExpert
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Analyzers

This component generate the problem representation described in the previous section. To

extract the information needed for the problem representation and the instance generator,

several explorations of the AST are performed: (1) for each method, we identify the set of all

branches callers, i.e., branches wherein the method is called; (2) for each data member, we

identify the set of all branches modifiers, i.e., branches wherein the data member is modified;

(3) for strings and each primitive type, the set of constant values are saved.

To simplify the implementation of parsing the Java file under test and exploring the AST,

we used the parser provided with Eclipse JDT (development tools , JDT). JDT makes our

static analysis easy because it allows creating an AST visitor for each required information.

8.2.2 Test Data Generation

The test-data generation phase is the core of JTExpert to find the set of test data that

satisfies all-branch coverage criterion. We implement this phase into three main components:

Instance Generator, Search Heuristic, and Test Data generator.

Instance Generator

This component implements the generation of means-of-instantiations, the seeding strategy,

and the diversity strategy described in the previous section. Algorithm 2 presents the different

steps of instance generation and complexity measurement. The algorithm distinguishes be-

tween three types of classes: Atomic, Container, and any other type of classes (simple classes).

All primitive types, classes that encapsulate only primitive types, and the string class are con-

sidered Atomic. Each Atomic class has its own random generator that implements the seeding

strategy described in the previous section, which uses the whole domain corresponding to the

Atomic class (e.g., a short takes its value from the domain [−215, 215 − 1]). A Container is a

standard way for grouping objects (e.g., List and Array), i.e., it is an object that can contain

other objects, often referred to as its elements. All containers in Java are either simple ar-

rays, classes derived from the java.util.Collection interface, or classes derived from the

java.util.Map interface. The documentation of the Java Collections Framework3 gives an

exhaustive description of all containers that can be used in a Java program. The current

version of JTExpert treats these three types of collections as containers, whereas any other

collection that does not derive either from java.util.Collection or from java.util.Map

is considered as a simple class. Containers have many particular features (Visser et al., 2006;

3Java Collections Framework Overview: http://docs.oracle.com/javase/8/docs/technotes/guides/
collections/overview.html

http://docs.oracle.com/javase/8/docs/technotes/guides/collections/overview.html
http://docs.oracle.com/javase/8/docs/technotes/guides/collections/overview.html
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Algorithm 2 Instance Generator
Input: c is the class to be instantiated
Output: ic is an instance of c

1: if (c is Atomic) then
2: ic ← Atomic(c).getInstance()
3: else
4: if (c is Container) then
5: ic ← Container(c).getInstance()
6: else
7: if ( Set MIc == ∅ ) then
8: Cc ← NIP
9: return ClassNotInstantiable

10: end if
11: im← selectMeans()
12: for (each p in im.getParameters()) do
13: ip ← InstanceGenerator(p)
14: params.add(ip)
15: end for
16: ic ← im.getInstance(params)
17: if ( im.succeeds() ) then
18: DCt

mi ← DCt−1
mi +DP t

mi

19: else
20: Ct

mi ← Ct−1
mi + FP

21: if ( attempt < MAX ATTEMPT ) then
22: ic ← InstanceGenerator(c)
23: end if
24: end if
25: end if
26: end if
27: return ic

Arcuri et Yao, 2008). Test data that involves a container should be generated in a different

way than other objects. Instead of using means-of-instantiaitons to generate a container, we

implement a random instance generator to generate some types of container: it randomly

selects a bounded length then it recursively calls Algorithm 2 to generate all needed ele-

ments. For any other class, at Line 11, the set of all its possible means-of-instantiations is

generated and a mean-of-instantiation is selected. To generate this set, for a given class, we

use the Java Reflection API (Reflection, 2013) to get the means-of-instantiations offered by

that class and the open-source library Reflections (Reflections, 2013) to get subclasses and

external factory methods. After getting the set of all possible means-of-instantiations, an

instantiation probability is assigned to each means-of-instantiation according to its complex-
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ity and a roulette-wheel selection strategy is used to select a means-of-instantiation. Then,

all needed arguments are recursively instantiated at Line 13. Finally, at Line 16, an at-

tempt to generate an instance of the class is made, after which the complexity of the selected

mean-of-instantiation is updated.

Search Heuristic

We combine the proposed approach with a random search. Although random search is the

simplest among the search heuristics, it is largely used in software testing because it may

reach a high level of coverage (Arcuri et Yao, 2008; Parasoft, 2013; Andrews et al., 2006;

Csallner et Smaragdakis, 2004; Pacheco et Ernst, 2005; Pacheco et al., 2007; Oriat, 2005). It

also makes it easier to evaluate our proposal without having to isolate its effect from that of

a more sophisticated search.

The common random search relies on generating a candidate solution vector randomly to

execute the instrumented class and to reach the targeted branch. It stops either if the gen-

erated candidate solution vector executes the targeted branch or a stop condition is reached.

Such an implementation may hang the search in difficult or unreachable branches (Fraser et

Arcuri, 2013c).

In contrast, in JTExpert, a random search is implemented to target all uncovered branches

at the same time: it does not focus only on one branch, instead it generates a candidate solu-

tion uniformly at random for every uncovered branch. This implementation is likely to reach

a good branch coverage quickly because it does not waste efforts on unreachable branches and

it benefits from the significant number of branches that may be covered fortuitously. Lines

4 to 21 in Algorithm 4 are a pseudo-code of the search algorithm implemented in JTExpert.

Line 7 calls the generator of sequences of method calls that is presented in Algorithm 3.

The later uses the domain-vector and the instance generator to guide the random search. In

Algorithm 3, at Line 1, an instance of the CUT is generated using the instance generator and

the set of CUT-Generators. Hence the implemented random heuristic benefits from all the

features in our instance generator, e.g., the large number of means-of-instantiations. Lines

2 to 10 generate a sequence of state-modifier methods: at Line 4 a method is randomly se-

lected from the current set of state-modifier methods, then all required instances of classes

are generated in the loop for at Line 5. Finally, at Lines 12 to 16 a target-viewfinder method

is generated.

The instance generator and the domain-vector are at the core of our search heuristic. The

domain-vector guides the search by restricting the possible sequences of method calls. The

instance generator guides the search by diversifying instances of classes.
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Algorithm 3 Generator of Sequences of Method Calls
Input: DV domain vector; B branch to reach
Output: TDC a test data candidate

1: TDC.object← InstanceGenerator(CUT )
2: ntv ← DV.length− 2
3: for ( int i = 0; i < ntv; i+ +) do
4: m← randomly select a method from SMCUT,i

5: for (each p in m.getParameters()) do
6: ip ← InstanceGenerator(p)
7: params.add(ip)
8: end for
9: TDC.methods.add(m, params)

10: new params
11: end for
12: m← randomly select a method from TVCUT,B
13: for (each p in m.getParameters()) do
14: ip ← InstanceGenerator(p)
15: params.add(ip)
16: end for
17: TDC.methods.add(m, params)

Test Data generator

This component operates and coordinates other components to generate test data. It imple-

ments the skeleton of the whole process of test data generation. Algorithm 4 presents the

different steps of this component to satisfy the all branch coverage criterion for a file under

test. First, at Line 1, a file under test is instrumented and a new instrumented version of the

file is generated. The file is analyzed at Line 2 to get all relevant information (e.g., constants)

needed for the next steps. For each branch to be covered in the file, selected at Line 5, a

domain vector dv that represents the problem is generated at Lines 6 by an analyzer A. Lines

7 and 8 represent a guided random generation of a test-datum candidate to reach the branch

b. A test-datum candidate tdc is generated at Line 7 and executed at Line 8 using the Java

Reflection API (Reflection, 2013). If this tdc covers either b or some uncovered branches,

then it is inserted in the set of test data TD at Line 10 and all its covered branches are

removed from the set of test targets T . At Line 13, b is removed from T . If b is not covered

yet, then it is inserted in a waiting set of test targets WT at Line 15. When the search has

run through all branches (i.e., T becomes empty), then a new round starts by initializing T

with WT at Line 18. Finally, at Line 22, JDT is used to translate the set of test-data TD

into a Java file that contains test cases in JUnit format.



112

Algorithm 4 Test Data Generation.
Input: U is the unit under test
Output: TD a set of test data (in JUnit Format)

1: U ′ ← instrument(U)
2: A← analyse(U ′)
3: T ← A.getBranches2Cover()
4: while ( T ! = ∅ && !maxTime) do
5: b← randomly select a branch from T
6: dv ← A.getDV (b)
7: tdc← generateMethodsSequence(dv)
8: execute(tdc)
9: if (tdc.isTestData()) then

10: TD ← TD ∪ tdc
11: T.remove(tdc.getCoveredBranches())
12: end if
13: T.remove(b)
14: if (b /∈ tdc.getCoveredBranches()) then
15: WT.add(b)
16: end if
17: if ( T == ∅ ) then
18: T ← WT
19: WT.clear()
20: end if
21: end while
22: writeJUnitTestCases(TD)

8.3 Empirical Study

This section presents our evaluation of JTExpert for exploring restricted bounded method

sequences, instantiating classes by using the proposed diversification and seeding strategies,

and generating test data. We investigate the advantages and limitations of JTExpert by

comparing it with EvoSuite Fraser et Arcuri (2011, 2013c) that uses a genetic algorithm

to generate test data, which starts with an initial population of chromosomes (i.e., a set

of sequences of method calls) randomly generated from the set of all accessible methods.

When an argument is needed, EvoSuite randomly selects a means-of-instantiation to generate

an instance. In this study, we use version 20130905 of EvoSuite. We have performed the

experiments on a Oracle Grid Engine comprising 42 similar nodes, each of them equipped

with 2-dual core CPU 2.1 GHZ, 5GB of memory, a Fedora core 13 x86 64 as OS, and Java

Development Kit 7.
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Table 8.1: Experimental subjects.

Libraries #Java Files #Classes #Methodes #Branches #Lines #Instructions
Joda-Time 50 87 1,411 3,052 5,876 25,738
Barbecue 18 18 161 323 1,041 14,558
Commons-lang 5 6 366 1,942 2,134 9,139
Lucene 2 4 58 202 262 1,364
All 75 115 1,998 5,519 9,313 50,799

8.3.1 Experimental Setup

Empirical Study Subjects

The study was performed on 115 of classes from four open-source libraries. All the selected

CUTs have been previously used as benchmark to evaluate competing tools that participated

to the SBST contest of the Java unit-testing tool version 2013 Vos (2013) which EvoSuite

won Fraser et Arcuri (2013b). Some of these classes were also used in evaluating µTest Fraser

et Zeller (2012), which has become a part of EvoSuite Fraser et Arcuri (2013c). The set of

classes in this benchmark are carefully selected by the SBST contest committee of the Java

unit-testing tool to represent different challenges of unit-testing. Most of those classes are

complex for test generation Fraser et Zeller (2012). For example, in the library Joda-Time,

accessibility is a problem for several classes: only default access is possible, i.e., classes are

visible only in their packages. Also, many classes are difficult to access because they are

private and embedded as class members in other classes. Others are difficult to instantiate

because they do not offer any accessible constructor and can only be instantiated through

factory methods or accessible data members Fraser et Zeller (2012).

Table 8.1 lists the Java libraries that we used in our study. Each line presents one of the

libraries while columns show the library names, numbers of Java files under test, numbers of

classes, numbers of methods, numbers of branches, numbers of lines of code, and numbers

of instructions. These metrics are computed at the byte-code level using the JaCoCo tool

Hoffmann et al. (2012), so that no empty or comment line is included.

Procedure

In the SBST contest 2013 Vos (2013), tools were evaluated using two metrics: code coverage

and mutation score. In this study, we evaluate the two tools, JTExpert and EvoSuite, only

with code coverage because mutation score does not apply to our approach and the current

version of JTExpert does not generate assertions to kill mutants.

For every class in the benchmark, we generate complete test suites to cover all branches



114

with JTExpert and compare them with those generated by EvoSuite. Each tool applies on a

different level of source code: EvoSuite applies on Java bytecode (.class), whereas JTExpert

applies on Java source code (.java), which may generate differences in the observed coverage

of each tool because (1) the Java compiler translates some instructions over boolean into

conditional statements and (2) one conditional statement in the source code may be translated

into many conditional statements if it contains many clauses. To compare the approaches

needed, instead of the coverage measured by each tool, we use JaCoCo Hoffmann et al. (2012)

to measure the coverage: JTExpert and EvoSuite generate test suites and JaCoCo takes them

and measures their coverage, at the bytecode level, in terms of four metrics: method coverage,

branch coverage, line coverage, and instruction coverage. Each search for test data that meets

branch coverage for every CUT is performed 20 times. This repetition allows reducing any

random aspect in the observed values. A set of 20 random number seeds was used to seed

the random number generators. To make the experimentation scalable, for each execution, a

maximum of 200 seconds is allowed per search including the instrumentation and preliminary

analysis stages. If this time is spent by JTExpert or EvoSuite, the tool is asked to stop and,

after a maximum of 5 minutes, its process is forced to stop (killed). We stop at 200 seconds

because we observe empirically that, after this duration, the coverage progress of each tool

becomes very slow. In total, this experiment took (77× 20× 200× 2) = 616× 103 seconds,

i.e., more than seven days of computational time.

During all experiments, except the time-out parameter, EvoSuite is configured using its

default parameter settings, which according to Arcuri and Fraser Arcuri et Fraser (2011) work

well. Also, we configure EvoSuite to skip its test-case optimization phase that consists of

optimizing the number of generated test cases because this optimization slows down EvoSuite

and does not impact coverage.

Comparing JTExpert to EvoSuite

We compare JTExpert and EvoSuite using box-plots that represent the actual obtained

coverage values and an array showing the average coverage values. To compute the average

branch (respectively, method, line, or instruction) coverage achieved for a given library, the

number of all covered branches (respectively, methods, lines, or instructions) in all executions

is summed and divided by the total number of branches in the library multiplied by the

number of executions (20).

To identify the origin of any observed differences between JTExpert and EvoSuite, we

minutely analyze the classes wherein a significant difference of coverage is observed: for each

library, we create an Eclipse4 project containing the classes under test and the generated test

4https://www.eclipse.org

https://www.eclipse.org
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suites. Then we observe the branches covered by one tool and missed by the other using the

plugin EclEmma5. We make our interpretations according to the type of branches at the

root of the differences.

We also perform statistical tests on the coverage results. We choose Mann-Whitney U-test

Mann et Whitney (1947) and Vargha-Delaney’s Â12 effect size measure (Vargha et Delaney,

2000). Both measures are recommended as statistical tests to assess whether a novel random

testing technique is indeed useful (Arcuri et Briand, 2014).

• To assess the statistical significance of the average difference between JTExpert’s results

and EvoSuite’s, Mann-Whitney U-test Mann et Whitney (1947) is used and the p-

values are computed. Generally, the U-test is applied to compare whether the average

difference between two groups is really significant or if it is due to random chance.

The average difference between two groups is considered statistically significant if its

p-value is less than the traditional definition of significance (0.05). Because we make

multiple comparisons (20) according to Bonferroni adjustments the new threshold of

significance become 0.05
20

, or 0.0025 (Weisstein, 2014);

• The U-test may be statistically significant but the probability for JTExpert to out-

perform EvoSuite may be small. To assess this probability, we also compute Vargha-

Delaney’s Â12 effect size measure Vargha et Delaney (2000). The Â12 measures the

probability that JTExpert yields higher code coverage than EvoSuite, e.g., Â12 = 0.9

means JTExpert would obtain better results than EvoSuite 90% of the time.

Understanding JTExpert Behavior

To gain a better understanding of the behavior of our approach and the contribution of

each proposed component in its results, we carry out several different sets of experiments,

each one focusing on one of the proposed components. First, we analyze JTExpert without

any of its components (JTE-All) except a basic instance generator and the random search

that targets all branches at the same time. Then, for a given component (e.g., problem

representation, seeding strategy, diversification strategy) we analyze JTExpert coverage over

time in the absence of this component, its contribution being measured by the difference

observed between JTExpert and the version of JTExpert without this component.

Because we use JaCoCo to measure coverage, we can not get the progress of coverage over

time, so to get this information, we perform a set of experimentations: an experimentation

is performed for each search time in the set {10s, 30s, 50s, 100s, 150s, 200s}. Each experi-

5EclEmma is based on the JaCoCo code coverage library available at: https://www.eclipse.org

https://www.eclipse.org
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mentation was performed with the same conditions as the first one (20 executions for each

unit under test). The average branch coverage in terms of time is analyzed.

8.3.2 Results

All graphics and statistical analyses presented in this study are performed with R6 version

3.1.0 (Team et al., 2012).

8.3.3 Comparing JTExpert to EvoSuite

Figures 8.3a, 8.3b, 8.3c, 8.3d, and 8.3e report the box-plots of the achieved coverage in

200 seconds per CUT by each tool on the Joda-Time, Barbecue, Commons-lang, and Lucene

library, and all libraries together, respectively. Each box-plot compares JTExpert to EvoSuite

using the four metrics of code coverage offered by JaCoCo: methods, branches, lines, and

instructions.

Table 8.2 summarizes the results in terms of average coverage achieved by each tool at

200 s for each CUT. It shows the average of the four metrics. Triangles directed upward show

the points of comparison wherein JTExpert outperforms EvoSuite by a percentage ranging

from 2.5 % to 24 % while a square represents a difference of less than 2.5 %. Table 8.3 reports

the Â12 effect size measure as well as the p-values of the statistical U-test.

The benchmark Vos (2013) contains two other classes from the library Sqlsheet but we

do not report the results of these two classes because neither JTExpert nor Evosuite could

generate any test data. The challenge in these classes is generating an instance of the CUT.

These classes offer a constructor that needs two parameters: one is a URL and the other is a

string. The first parameter must be a URL referencing an existing Microsoft Excel file and

the second parameter must hold the name of an existing sheet in the file. The likelihood of

randomly instantiating this type of class is almost null. Hence, to automatically generate an

instance for such a class, the instance generator must understand the context of use of the

class, which we will tackle in our future work.

A glance at Figures 8.3a, 8.3b, 8.3c, 8.3d, 8.3e and Table 8.2 shows that JTExpert outper-

forms EvoSuite by covering test targets that EvoSuite failed to cover. Among 20 comparisons,

EvoSuite achieved almost the same performance as JTExpert for instruction coverage on Bar-

becue whereas JTExpert is dominant for all other metrics and libraries. The difference over

EvoSuite reached 23.91 % using the metric branch coverage on the library Commons-lang. In

total, JTExpert covers on average 3,952 instructions more than EvoSuite.

6Available at http://www.R-project.org
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Joda-Time. Barbecue. Commons-lang.

Lucene. All libraries.

Figure 8.3: Comparison of JTExpert and EvoSuite on all libraries in terms of method cover-
age, branch coverage, line coverage, and instruction coverage.

In Table 8.3, all U-test’s p-values are less than 10−4 thus less than the threshold of sig-

nificance 0.0025. To say that there is a difference, in all cases, is taking less than 20× 10−4

percent risk of being wrong. Thus, we conclude that there is a statistically significant dif-

ference between JTExpert’s results and EvoSuite’s. Also, almost all Â12 effect size measure

values are equal to 1. Therefore, JTExpert is practically certain to achieve a higher code

coverage than EvoSuite. Even when Â12 is less than 1, there is a high probability (at least

equal to 0.88) for JTExpert to achieve better coverage than EvoSuite.

To summarize, box-plots, average code coverage, Mann-Whitney U-test, and Vargha-

Delaney’s Â12 effect size measure results support the superiority of our approach over Evo-

Suite in terms of code coverage.

8.3.4 Comparing JTExpert and EvoSuite in Details

To better understand the origin of the observed differences in terms of code coverage between

JTExpert and EvoSuite, we analyze the code coverage at the class level. We would have



118

Table 8.2: Summary of the experimental results. Comparison with EvoSuite in terms of
average coverage.

Libraries Tools
% of average coverage in terms of

Methods Branches Lines Instructions

Joda-Time
EvoSuite 84.92 60.82 74.80 73.94
JTExpert N 91.33 N 69.01 N 82.90 N 82.09

Barbecue
EvoSuite 86.80 77.49 87.38 96.40
JTExpert N 89.75 N 82.89 N 89.94 � 97.02

Commons-lang
EvoSuite 83.72 61.15 73.54 76.12
JTExpert N 98.27 N 85.06 N 96.17 N 95.00

Lucene
EvoSuite 92.58 52.40 90.26 78.59
JTExpert N 99.91 N 57.15 N 95.17 N 81.53

All
EvoSuite 85.08 61.61 76.26 80.92
JTExpert N 92.73 N 75.04 N 86.82 N 88.70

Diff.
% +7.65 +13.43 +10.56 +7.78
# +152.85 +741.20 +983.45 +3,952.16

liked to automatically analyze the lower levels (e.g., methods, branches, statements) but the

JaCoCo reports do not offer us this information. Thus, we manually analyze and interpret

the code coverage on lower levels.

Figure 8.4 presents the box-plots of the branch coverage achieved by each tool on the

classes where a significant difference is observed. The coverage achieved on a given class is

compared between two vertical lines. Each comparison contains a box-plot for EvoSuite’s

coverage, a box-plot for JTEpert’s coverage, the name of the class, and the total number of

branches in that class written in brackets. In Figure 8.4, JTExpert has higher coverage than

EvoSuite’s on the first fourteen classes, from the left, that represent 60% of the total number

of branches under test. EvoSuite has higher coverage than JTExpert on the last seven classes

that represent 5.6% of the total number of branches under test. Evosuite achieved better

coverage in some small or medium size classes whereas JTExpert has higher coverage in

some other small or medium size classes and is dominant on large classes. Overall, Figure

8.4, supports the observation that JTExpert is more effective than EvoSuite on large classes.

This observation can be explained by the complexity of identifying a required sequence of

methods to reach a test target in a large class, i.e., a significant number of sub-classes and

methods substantially decreases the likelihood to get a relevant sequence without a static

analysis. The proposed problem presentation helps JTExpert to reach more test targets

efficiently by trying only relevant sequences of method calls, whereas EvoSuite may try a
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Table 8.3: Results of computing U-test and the Â12 effect size measure on JTExpert’s results
compared to EvoSuite’s.

Libraries
Comparing JTExpert to EvoSuite in terms of average coverage

Methods Branches Lines Instructions
U-test
(p)

Â12
U-test
(p)

Â12
U-test
(p)

Â12
U-test
(p)

Â12

Joda-Time 6.71e-08 1 6.76e-08 1 6.78e-08 1 1.45e-11 1
Barbecue 3.54e-07 0.96 6.95e-08 0.99 6.32e-08 1 1.05e-07 0.99
Commons-lang 3.27e-08 1 6.77e-08 1 6.67e-08 1 6.74e-08 1
Lucene 5.41e-09 1 8.98e-06 0.91 9.48e-06 0.90 3.88e-05 0.88
All 6.69e-08 1 1.45e-11 1 6.78e-08 1 6.79e-08 1

significant number of sequences of method calls without getting a good one.

Class org.joda.time.format.ISOPeriodFormat has five private data members and five

public methods. Each method contains two branches and uses a different data member for

its conditional statement. Figure 8.5 presents the source code of one of the methods. The

data member cAlternateWithWeeks is used and modified only by this method. Hence, to

reach both branches, the method must be called twice in a same sequence. All the other

methods follow same pattern. The twenty test suites generated by EvoSuite cover only the

five branches that require a null data member, whereas those generated by JTExpert cover

all ten branches, thanks to its problem representation that allows JTExpert to understand

that reaching those branches requires two calls of the methods.

Class net.sourceforge.barbecue.CompositeModule has a private data member, mod-

ules, and contains three loops over modules in three different methods. Figure 8.6 presents

a part of the source code of CompositeModule. To enter inside a loop, the list modules must

contain at least one item. Hence, to reach a given loop, the method add(Module module)

must be called before any method containing a loop. The twenty test suites generated with

EvoSuite could not enter in any loop, whereas those generated by JTExpert cover two of the

three loops. JTExpert missed covering the third loop because it is inside a protected method.

JTExpert’s problem representation makes the difference.

In package org.joda.time.format, classes DateTimeFormatterBuilder and Period-

FormatterBuilder contain seventeen class members: ten in DateTimeFormatterBuilder

and seven in PeriodFormatterBuilder. The classes contain 144 methods: 92 in DateTime-

FormatterBuilder and 52 in PeriodFormatterBuilder. EvoSuite has difficulty in reaching

methods declared in class members: the test suites generated with EvoSuite could not reach

44 methods whereas the test suites generated with JTExpert missed only 19 methods. The
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Figure 8.4: Comparison of JTExpert and EvoSuite on classes in terms of branch coverage.

19 methods missed by JTExpert are essentially in four class members: DateTimeFormatter-

Builder$Fraction, DateTimeFormatterBuilder$UnpaddedNumber, DateTimeFormatterBuilder

$FixedNumber, and PeriodFormatterBuilder$Composite. JTExpert was unable to in-

stantiate the first three class members because they do not offer any accessible means-of-

instantiation. EvoSuite could not or did not try to instantiate class members and reached a

weak coverage compared to JTExpert. Its problem representation and means-of-instantiations

make JTExpert more effective than EvoSuite by buildings more relevant sequences of meth-

ods and means-of-instantiations to reach methods in class members.

As shown in Figure 8.1, class org.apache.lucene.util.WeakIdentityMap contains an

anonymous class with two private data members, a private method, and three public methods.

Because there is no call to the three public methods, only a direct call can reach them. Also,

branches in the anonymous class depend on the state of its enclosing class, WeakIdentityMap.

Hence, to reach the methods in the anonymous class, an instance of this class is required in a
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1 public static PeriodFormatter alternateWithWeeks() {
2 if (cAlternateWithWeeks == null) {
3 cAlternateWithWeeks = new PeriodFormatterBuilder()
4 .appendLiteral(‘‘P”)
5 .printZeroAlways()
6 .minimumPrintedDigits(4)
7 .appendYears()
8 .minimumPrintedDigits(2)
9 .appendPrefix(‘‘W”)

10 .appendWeeks()
11 .appendDays()
12 .appendSeparatorIfFieldsAfter(‘‘T”)
13 .appendHours()
14 .appendMinutes()
15 .appendSecondsWithOptionalMillis()
16 .toFormatter();
17 }
18 return cAlternateWithWeeks;
19 }

Figure 8.5: Source code of method org.joda.time.format.ISOPeriodFormat. alternate-

WithWeeks()

relevant state. The twenty test suites generated by EvoSuite reached only two methods out of

four and could not cover any branch, whereas those generated by JTExpert reached the four

methods and covered 12 branches out of 16. Thanks to the means-of-instantiations that allow

JTExpert to instantiate an anonymous class and with the help of the problem representation,

JTExpert puts the instances of the class, WeakIdentityMap and the anonymous class in

desired states to reach the methods and branches inside the anonymous class.

EvoSuite could not generate test data for two classes: org.joda.time.field. Scaled-

DurationField and org.joda.time.field.PreciseDurationField. The source code of

EvoSuite is not available, so we cannot know the reason for this behavior but it may be due

1 public int widthInBars() {
2 int width = 0;
3 for (Iterator iterator = modules.iterator(); iterator.hasNext();) {
4 Module module = (Module) iterator.next();
5 width += module.widthInBars();
6 }
7 return width;
8 }
9

10 public void add(Module module) {
11 modules.add(module);
12 }

Figure 8.6: Part of the source code of class net.sourceforge.barbecue. CompositeModule
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to its inability to generate an instance of the CUT. Consequently, JTExpert outperforms

EvoSuite by covering eight out of 14 branches in ScaledDurationField and seven out of

eight in PreciseDurationField.

In class org.joda.time.convert.ConverterManager, on average, each test suite gener-

ated by EvoSuite missed 13 branches compared to a test suite generated by JTExpert. The

20 test suites generated by EvoSuite missed four branches that require a null object (e.g.,

if(object==null)). The 20 test suites generated by EvoSuite, on average, covered only

one of those four branches, whereas the test suites generated by JTExpert covered all four

branches. The seeding of a null constant benefits JTExpert.

Three classes from the library Commons-lang, ArrayUtils, BooleanUtils, and Num-

berUtils, contain a significant number of conditional statements to check null objects and

arrays of lengths equal to 0. Class ArrayUtils contains 170 branches requiring a null object

and 60 branches requiring an array of length 0. Class BooleanUtils contains 26 branches

requiring a null object and six branches requiring an array of length 0. Class NumberUtils

contains 30 branches requiring a null object and 12 branches requiring an array of length

0. The 20 test suites generated by EvoSuite reached 31 branches requiring a null object: 10

branches in ArrayUtils, 14 branches in BooleanUtils, and seven branches in NumberUtils.

These test suites could not reach the branches that required an array of length 0. In con-

trast, the test suites generated by JTExpert covered all branches requiring a null object or

an array of length 0. The generator of containers and the seeding of null constants benefits

JTExpert. The strategy used in EvoSuite to seed null constants is not enough and seeding

the constant null with a constant probability equal to 5% is necessary to reach all branches

involving that constant. Containers should be generated in a different way than other objects

as proposed in Section 8.2.2.

Class org.joda.time.MutableDateTime extends class BaseDateTime and defines 103

methods that are mostly setters that take integers as parameters. In class MutableDateTime,

there are no visible preconditions on the parameters but the parameters must satisfy the

preconditions defined in the superclass, e.g., a value must be an hour of the day in the range

[0,23] or a day of the week in the range [1,7]. These “hidden” preconditions make the task

of covering methods in MutableDateTime harder. The test suites generated by EvoSuite

could not cover 14 methods, whereas the test suites generated by JTExpert missed only four

methods. This difference comes from the seeding strategy and the search heuristic. The

seeding strategy offers adequate values that satisfy preconditions in the superclass but the

way each tool uses them is different: EvoSuite relies on a genetic algorithm. If its initial

population lacks values that satisfy the hidden preconditions, then EvoSuite may make a lot

of attempts using the same population before introducing new values through its mutation
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operator, whereas the random search in JTExpert uses different values. Further, the absence

of preconditions may make the GA blind and worst than a guided random search. Therefore,

the seeding strategy combined with the random search is at the root of the observed difference

between JTExpert and EvoSuite on class MutableDateTime.

Classes org.joda.time.field.FieldUtils and org.joda.time.DateTimeComparator

contain branches and return statements that rely on disjunctive and conjunctive conditions.

For such statements, the number of branches at the Java Bytecode level is different from at

the Java source code level. For example, to cover all branches in boolean foo(boolean a,

boolean b){return a && b;}, generates only one test data, whereas this function contains

four branches at the bytecode level. Thus JaCoCo favors EvoSuite that works with bytecode

and penalizes JTExpert. Consequently, EvoSuite reaches seven branches in class FieldUtils

and four branches in class DateTimeComparator more than JTExpert.

Class org.joda.time.convert. StringConverter contains 72 branches, 42 of which

are in method getDurationMillis(Object object) in which all the branches depend on

the return value of object.toString(): To reach more than 28 branches, the method ob-

ject.toString() must return a string that starts with the substring PT and finished with

S, i.e., gets the value as a string in the ISO8601 duration format. For example, “PT6H3M7S”

represents 6 hours, 3 minutes, 7 seconds. The method object.toString() must match

the toString() method of the class ReadableDuration. In the 20 test suites generated,

JTExpert failed to generate such an object, whereas EvoSuite generated the required ob-

jects. Consequently, EvoSuite outperforms JTExpert on class StringConverter with 29

branches. After inspecting JTExpert source code, we found that we restricted the list of

stubs to instantiate class java.lang.Object to some classes, e.g., Integer, String, and the

CUT. Thus, JTExpert could not generate an instance of a class that implements the interface

ReadableDuration. This limitation may be fixed by enlarging the list of stubs of the class

java.lang.Object to contain any other class that was instantiated during the search.

To summarize, the sample of classes analyzed above is representative because it covers

classes in which we observed differences between the two approaches. This analysis shows the

actual effects of the proposed components and clarifies the advantages and weaknesses of the

compared approaches. It also shows the types of test target for which JTExpert outperforms

Evosuite: branches involving a data member, branches requiring the null constant, branches

requiring a container or string with length equal to 0, methods that are declared inside classes

members or anonymous classes, and methods that contains hidden preconditions. Also, it

reveals the limitation in our generator for class java.lang.Object.
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Figure 8.7: Contribution of each proposed component in terms of average branch coverage
over time.

8.3.5 Understanding JTExpert behavior

We now quantify and measure the contribution of each component. Figure 8.7 shows the dif-

ference in terms of average branch coverage between JTExpert and six other versions wherein

at least one proposed component is disabled: JTExpert without all components (JTE-All),

JTExpert without the generator of sequences of method calls (JTE-Seq), JTExpert without

the seeding strategy (JTE-Seed), JTExpert without the variable probability in the seeding

strategy (JTE-Se%), JTExpert without the diversification strategy (JTE-Div), and JTExpert

without the instantiation of anonymous classes (JTE-Ano).

Figure 8.7 reflects the achieved results in terms of average branch coverage for all classes.

It shows that JTExpert performs better than Evosuite in terms of efficiency as well. JTExpert

is more efficient because, at 10 seconds, it reaches a high branch coverage, almost 70 %,
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whereas Evosuite reaches 31 % coverage at 10 seconds and 61 % at 200 seconds. There is

a large difference in terms of time required to reach the same level of coverage because

Evosuite does not reduce the search domain of D2 and D3 and because it does not have a

diversification strategy, its seeding strategy uses a fixed seeding probability, and it covers

only primitive types and strings. Also, the random search implemented in JTExpert does

not waste time with complex branches. Furthermore, the state-modifier methods, target-

viewfinder methods, and the instance generator guide the random search to quickly reach

less complex branches.

In a first experimentation, JTE-All, each proposed component was disabled or re-

placed with a simple version as explained in the next paragraphs. JTE-All performed better

than EvoSuite, especially on the Common-lang library and but is less effectiveness on Bar-

becue. For the two other libraries, Joda-Time and Lucene, EvoSuite performed better than

JTE-All.

On all libraries, JTE-All is more efficient than EvoSuite because at 10 s it reached 56%

branch coverage, whereas EvoSuite reach only 31%. This difference can be explain by the

different search heuristics implemented in JTE-All and EvoSuite: If EvoSuite generates an

initial population that lacks some methods leading to some easy branches, then it must wait

until the mutation operator injects them, whereas the random search used in JTE-All is more

likely to quickly select these methods in a sequence, hence it reaches more branches early.

At 200 s, EvoSuite (genetic algorithm) is supposed to outperform JTE-All (random

search) but we observed almost the same branch coverage. To understand this behavior,

we analyzed the branches reached on each class. Figure 8.8 presents the box-plots of the

achieved branch coverage with JTE-All and EvoSuite at 200 s on the classes where a signif-

icant difference was observed.

EvoSuite outperforms JTE-All on classes from different libraries, particularity Joda-time.

In these classes, branches are complex to reach because they are embedded in sub-classes

or private methods, e.g., org.joda.time.format. DateTimeFormatterBuilder contains

14 sub-classes. EvoSuite benefits from genetic algorithm to reach a complex test targets

compared to a random search.

JTE-All outperforms EvoSuite on three large classes in Commons-lang. Most of the

methods in these classes take containers as parameters: 208 methods in class ArrayUtils

and 13 in class NumberUtils use arrays. Also, the difficulty to reach branches in these classes

lies in the generation of diversified instances of the methods’ parameters. For example, a same

method may contain a condition requiring a null array, a condition requiring an array with

length equal to 0, and a condition requiring an array containing many elements. To cover

branches in such a method, it is enough to call it with different types of array, i.e., to have
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Figure 8.8: Comparison of JTE-All and EvoSuite on classes in terms of branch coverage at
200 s.

an array generator that generates diversified types of array.

We think that we could not see the difference between JTE-All and EvoSuite at 200 s

because the containers generator implemented in JTE-All hides the advantage of the genetic

algorithm implemented in EvoSuite on complex branches.

In a second experimentation, JTE-Seq, the generator of sequences of method calls was

replaced by a random generation of sequences of method calls. The comparison to JTExpert

in Figure 8.7 shows that the use of the proposed representation is beneficial for the search,

with an average branch coverage equal to 9.28 % at 200 s, where the average branch coverage

increased from 65.87 % to 75.15 %. The improvement is significant for the classes in Joda-

Time and Lucene: the average branch coverage for Joda-Time increases from 53.55 % to

69.01 % and for Lucene, from 47.20 % to 57.15 %. For the other libraries, the obtained results

are almost the same, i.e., there are no improvements. The better performance obtained on

Joda-Time and Lucene and not on Commons-lang and Barbecue can be explained by the

complex class structures found in the first two: in Joda-Time and Lucene, one Java file
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or class defines more than one class (e.g., the Java file DateTimeFormatterBuilder.java

defines 15 classes). A CUT that contains nested classes (e.g., member class, local class, or

anonymous class) needs guidance during the test-data generation. We show that the proposed

representation improves coverage, particularly for complex classes under test.

In a third experimentation, JTE-Ano, anonymous classes are tested through their

enclosing class, i.e., the closest accessible class that contains the anonymous CUT. The com-

parison to JTExpert in Figure 8.7 shows that the proposed means-of-instantiations of anony-

mous classes slightly enhances the search process, with an average branch coverage equal to

0.34 % at 200 s. This improvement may seem insignificant but such magnitude on all classes

was expected because such anonymous classes are rare in the chosen libraries. To estimate

the actual improvement that the instantiation of anonymous classes may bring, we analyzed

class org.apache.lucene.util.WeakIdentityMap separately. We found that the proposed

means-of-instantiations of anonymous class enhance significantly the average branch coverage

of this class, where the coverage increased from 39.77 % (JTE-Ano) to 71.47 % (JTExpert).

This is a large enhancement in terms of branch coverage because the anonymous class defined

in org.apache.lucene.util.WeakIdentityMap contains a significant number of branches.

In a fourth experimentation, JTE-Div, the diversification strategy was replaced by a

random selection of means-of-instantiations. The comparison to JTExpert in Figure 8.7 shows

that the proposed diversification strategy enhances the search process, with an increase of

average branch coverage equal to 1.28 % at 200 s, where the average branch coverage increased

from 73.87 % to 75.15 %. At first glance, this improvement seems insignificant. However, this

magnitude is expected because of the small number of classes that are hard to instantiate.

For example, class org.apache.lucene.util.FixedBitSet is hard to instantiate because

calling some of its constructors with random arguments may hang the test data generation

process. Thus, the diversification strategy is beneficial to the search, with an average branch

coverage equal to 26.53 %, where the coverage on this particular class passed from 26.09 %

to 52.62%. We show that the proposed diversification strategy of means-of-instantiations

improves coverage, especially for classes that defines some means-of-instantiations that may

be harmful with randomly generated arguments.

translated into many conditional statementsIn a fifth experimentation, JTE-Seed, the

proposed seeding enhancements were simply disabled, i.e., without seeding null and with a

constant seeding probability equals to 0.2. Thus, the seeding strategy used in this experimen-

tation is equivalent to one studied in Fraser et Arcuri (2012). The comparison to JTExpert

in Figure 8.7 shows that seeding null and using a variable seeding probability are beneficial

for the search, with an increase of average branch coverage equal to 5.60 % at 200 s, where the

average branch coverage increased from 69.65 % to 75.15 %. In this 5.60 % enhancement, the
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variable probability of seeding contributes by 1.08 % as shown in the graph JTE-Se% in Figure

8.7. The improvement is significant for the classes in Commons-lang and Lucene, with an en-

hancement almost equal to 10 %, where the average branch coverage increased from 75.63 %

to 85.06 % on Commons-lang and from 44.80 % to 57.15 % on Lucene. On Joda-Time and

Barbecue, the improvement is less significant, below 3 %. The significant enhancement on

the first two libraries can be explained by the significant number of branches that rely on null

pointer checks. The reason for the small improvement observed on Joda-Time and Barbecue

is the small number of conditions that they use to prevent null pointer exception. During the

execution of the test suites generated for these two libraries, we observed that a significant

number of null pointer exceptions occurred. Seeding null may be also beneficial to raise

null pointer exceptions. We conclude that seeding null improves the coverage, especially for

classes that systematically check for null pointers before using the instance of a class.

To summarize, every proposed component improves the coverage for all or some cases of

the CUT. The large difference in terms of code coverage achieved over EvoSuite comes from

the accumulated contributions of all proposed components.

8.3.6 Threats to Validity

The results showed that using JTExpert to generate test data, improves SBST performance

in terms of runtime and code coverage. Yet, several threats potentially impact the validity of

the results of our empirical study. We discuss in details these threads on our results, following

the guidelines provided in Yin (2014).

Construct validity threats concern the relationship between theory and observation. They

are mainly due to errors introduced in measurements. In our study, they related to the mea-

sure of the performance of a testing technique. We compared JTExpert and EvoSuite in

terms of coverage, which is widely used to measure the performance of a testing technique.

As a second measure of performance, we chose time rather than the number of fitness eval-

uations because a fitness evaluation has a different meaning in the two tools: in EvoSuite,

a chromosome is a set of test-data candidates and one evaluation may require the execution

of many test-data candidates Fraser et Arcuri (2013c) whereas in JTExpert, we evaluate

each test-data candidate separately. Moreover, time is the most important constraint in the

testing phase of an industrial system Ciupa et al. (2008).

Internal validity threats arise from the empirical study process methodology. A potential

threat comes from the natural behavior of any search-based approach: the random aspect in

the observed values, which may influence the internal validity of the experiments. In general,

to overcome this problem, the approach should be applied multiple times on samples with a

reasonable size an statistical tests should be used to estimate the probability of mistakenly



129

drawing some conclusions. In our empirical study, each experiment took 200 s and was

repeated 20 times. The libraries contain in total 50,799 instructions and 5,519 branches.

Also, we computed Mann-Whitney U -tests and evaluated Vargha-Delaney’s Â12 effect size

measure. Therefore, experiments used a reasonable size of data from which we can draw

some conclusions.

External validity threats concern the possibility to generalize our observations. A potential

threat is the selection of the libraries and classes used in the empirical study. All these libraries

and classes have been used to evaluate different structural testing approaches in the past Vos

(2013); Fraser et Zeller (2012), thus they are a good benchmark for evaluating our approach.

Another potential threat comes from the EvoSuite parameters: we did not try differ-

ent combinations of parameters values to show empirically that our approach is robust to

EvoSuite parameters. However, according to Arcuri and Fraser Arcuri et Fraser (2011), the

default configuration of EvoSuite performs well, but it may not be as good as a specific con-

figuration for each class. Because it is hard and impractical to find a best configuration for

each class, the default parameter settings of EvoSuite can be considered as a good practical

configuration.

Another thread is the choice of Java to implement our approach, which could potentially

affect its external validity. We implemented our prototype, JTExpert, to generate test data

for classes written in Java, although the presented components can be adapted to any OOP

language, e.g., C++. The choice of Java is technical because: (1) we believe that the best

programming language is the language that you master better, and in our laboratory Ptidej7,

we have an extensive experience in analyzing Java source code; (2) there are many available

open-source tools (e.g., JDT, Reflexions) that made our development task easier; (3) it is

much easier to debug the tool in Java; (4) it is easier to get a correspondence between a CUT,

its instrumented class, and its test-data suite. In the described implementation, we referred

to some APIs, such as the meta-data analyzer, Java Reflection API Reflection (2013), and

the AST generator, Eclipse JDT development tools (JDT), to ease our development task.

In general, for many OOP languages, there exist different meta-data analyzers and AST

generators. In the worst case, if the approach must be implemented for an OOP language for

which there is no meta-data analyzer or no AST generator, then four additional analyzers

must be developed: (1) to get all means-of-instantitions of a given class, (2) to get all branches

callers of a given method, (3) to get all branches modifiers of a given data member, and (4)

to extract constants from the source code.

Reliability validity threats concern the possibility of replicating our study. We attempted

7Ptidej: Pattern Trace Identification, Detection, and Enhancement in Java. Website:
http://www.ptidej.net
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to provide all the necessary details to replicate our study: analysis process is described in

detail in Section 9.2 and all the classes tested in this study are publicly available Vos (2013).

Moreover, all tools, JTExpert, EvoSuite, JaCoCo, Eclipse, EclEmma, and R, used in this

study are publicly available.

8.4 Summary

In the last decade, search-based software testing (SBST) has been extensively applied to

solve the problem of automated test-data generation for procedural programming as well as

for object-oriented programming (OOP). Yet, test-data generation for OOP is challenging

due to the features of OOP, e.g., abstraction, encapsulation, and visibility that prevent direct

access to some parts of the source code.

This chapter introduced an approach for OOP software test-data generation for unit-class

testing whose novelty relies on analyzing statically the internal structure of a class-under-test

(CUT) to reduce the search space and on a diversification strategy and seeding strategy. The

approach sees the test-data generation problem as facing three difficulties: (D1) obtaining an

instance of a CUT and other required objects; (D2) finding an adequate sequence of method

calls to put the instance of the class in a desired state; and, (D3) finding an adequate method

to reach the test target through it.

To solve D1, an instance generator based on a diversification strategy, instantiation of

anonymous classes, and a seeding strategy are proposed to boost the search. Instantiating a

class using different means-of-instantiations according to their complexities is beneficial to the

search with an increase of the average coverage equals to 1.28%, up to 26.53% in certain cases.

The instantiation of anonymous classes brought an enhancement to the average coverage equal

to 0.34% but up to 41% in the case of class org.apache.lucene.util.WeakIdentityMap.

Using a variable seeding probability for primitive types and seeding the null value for classes

while generating instances increase the average branch coverage by 5.60%.

To solve D2 and D3, only methods that may change an instance of the CUT state and

methods that may reach the test target are explored. This leads to a restructuring of the

test data generation problem that improved the branch coverage by 9.28%.

As a result, and contrary to earlier approaches that use a traditional representation of the

problem and randomly generate instances of objects, our approach and its implementation

JTExpert, find a test-data suite and achieve a high code coverage (70%) in less than 10 s.

We showed on more than a hundred classes taken from different open-source Java libraries

that JTExpert has a higher code coverage than EvoSuite and needs less time.

JTExpert currently relies on a guided random search and supports branch coverage. We

are working on adding further search algorithms, such as genetic algorithms and hill climbing.
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Also we are focusing on three research directions: (1) enlarging the scope of JTExpert to

support other structural testing criteria, such as data-flow coverage or mutation-coverage; (2)

enhancing the instances generator to generate instances of classes that require understanding

the context of their use; and, (3) studying the impact of seeding null with the instances of

objects on the generation of null pointer exceptions.
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CHAPTER 9

JTEXPERT: A LARGE SCALE EXPERIMENTATION

Exceptions are a subclass of software failures that may be results of erroneous inputs, hard-

ware faults or logical errors in the software code Tracey et al. (2000). An unhandled exception

in a software may generate undesirable behavior or lead to catastrophic consequences. Yet

generating test data to raise exceptions during the software testing phase is a challenging

task. Typically, it is easier to generate a test datum that covers a test target than generating

a test datum that raises an exception in that test target. Only a small fraction of the large

body of work on test-data generation are focusing on exceptions raising Tracey et al. (2000);

Bhattacharya et al. (2011); Csallner et Smaragdakis (2004); Fraser et Arcuri (2013a).

To evaluate the scalability of our approach IG-PR-IOOCC and its implementation JT-

Expert on large software, this chapter presents an adaptation of our Java tool, JTExpert,

to raise exceptions via branch coverage, i.e., an Exceptions-oriented Test-data Generation

Approach. Then, it presents the experimental results of applying JTExpert on a large open-

source software, the Apache Hadoop System. The results reveal 4,323 failures, two of them

leading to JVM crashes.

9.1 Exception-oriented Test-data Generation

9.1.1 Motivating Example

The Java function foo in Fig. 9.1 takes two integers i and j and an instance a of a class

A as input parameters, then it calls the method a.add(int) using the ratio of i and j as

parameter. Suppose that the function foo is under test and the test target is to cover all-

branch. Any randomly generated test data can cover this objective, e.g., t1 : 〈1, 2, newA()〉.
The problem with such a test data is its inability to detect unhandled exceptions: t1 cannot

reveal any unhandled exceptions in the source code of the function foo. Yet, this source

code contains at least two unhandled exceptions, i.e., if we execute the function foo using j

equals 0 then the Java Virtual Machine (JVM) will throws a DivisionByZeroException; if a

equals null then the JVM will throw a NullPointerException. Such unhandled exceptions

in a source code may lead to abnormal behavior. Therefore, it is important to generate a

test data suite covering the test targets and unhandled exceptions. An approach that aims

to generate test data for code coverage may improve the robustness of a program under test

by covering some exceptions.
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1 public void foo(int i,int j, A a) {
2

3

4

5

6 a.add(i/j);
7 }

Figure 9.1: A foo function

1 public void fooUExceptions(int i,int j, A a) {
2 try{
3 a.add(i/j); //branch 1
4 }catch(Throwable){
5 //branch 2
6 }
7 }

Figure 9.2: How we see the foo function

9.1.2 Principle

The assumption underlying our research work is that every branch in a CUT may contain

some unhandled exceptions. Typically, our approach sees any branch as surrounded by a

virtual try/catch and tries to cover both branches, try and catch. Fig. 9.2 shows how our

approach sees a branch: the actual block in a branch is surrounded by an virtual try/catch

from which a new branch is created. For example, to cover all-branches in the function foo

our approach stops search after generating a test data that reaches Line 6 in Fig. 9.1 and

does not raise any exception and another one that stops at Line 6 by raising an exception.

If our approach gets the input data 〈1, 2, newA()〉 that seems to cover all-branches in foo,

then it goes on looking for a second test-data such as 〈1, 2, null〉 to generate an exception.

9.1.3 Exceptions Classification and Analysis

Generally, any operating system (e.g., Lunix, MacOS) or programming language (e.g., C++,

Java) is supposed to offer constructs for handling exceptions. In Java, exceptions are classified

in three classes: Checked Exceptions, Unchecked Exceptions, and Errors. Checked Exceptions

must all be handled in the source code and are checked by the compiler, e.g., IOException.

A programmer is expected to check for these exceptions and handle them. Thus, it is unlikely

to find unhandled checked exceptions in source code. Unchecked Exceptions can be prevented

in the source code, for example to avoid a NullPointerException, a programmer can check

the nullity of any object before using it. Typically, this class features the most unhandled

exceptions in a source code. Errors indicate serious problems at runtime, e.g., a function

going into infinite recursive calls will cause the JVM to raise a StackOverflowError.

In this work, we focus on unhandled exceptions and crashes of the JVM. Unhandled

exceptions can be classified in two categories: expected exceptions and unexpected exceptions.

Expected exceptions are the subset of unchecked exceptions existing inside the CUT. A static

analysis can identify all statements that are concerned with this category of exceptions,

transform them to new branches, and cover them as branches Fraser et Arcuri (2013a).
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Unexpected exceptions are more difficult to raise than expected exceptions because we cannot

predict if a statement can throw an unexpected exception. Unexpected exceptions are the

set of errors, fatal errors, and exceptions thrown by a dependency of the CUT that are not

managed in the source code.

9.1.4 Test-data Generation to Raise Unhandled Exceptions

We can generate a test datum to reach an expected exception that is transformed to a

branch using SB-STDG and a search heuristic (e.g., Genetic Algorithm) McMinn (2004).

However, if we suppose that any branch may contain an unknown unhandled exception, then

a search heuristic will be insufficiently guided. Therefore, the random search implemented in

JTExpert may be more adequate.

During the search, JTExpert distinguishes test-data candidates by monitoring the branches

executed without considering thrown exceptions. Thus, an additional monitoring of raised

exceptions is required. This monitoring is possible via an executor of test-data candidates

that must catch all classes of exceptions and analyze them to filter unexpected exceptions. To

qualify an exception as unhandled, its origin statement should not be an exceptions thrower,

e.g., an exception explicitly thrown by an assert statement should not be considered as

unhandled exception. Thus, patterns of exceptions thrower are a key to determine whether

an exception is handled or unhandled.

9.2 Empirical Study

This section presents an evaluation of our approach IG-PR-IOOCC, its implementation JT-

Expert, and Exceptions-oriented Test-data Generation for raising unhandled exceptions de-

scribed in Section 9.1. We investigate the advantages and limitations of our approach by ap-

plying our adapted JTExpert tool on the large, widely-used, and well-tested Apache Hadoop

System. The Apache Hadoop framework allows the distributed processing of large data sets

across clusters of computers using simple programming models. The Hadoop System is com-

posed of four main modules: (1) Common is the common utilities that support other modules;

(2) Distributed File System is a distributed file system that provides high-throughput access

to application data; (3) YARN is a framework for job scheduling and cluster resource man-

agement; (4) MapReduce is a YARN-based system for parallel processing of large data sets.

Each module contains sub-modules: in total Hadoop contains around 43 sub-modules, 3,545

Java files, 7,531 classes, 88,971 methods, 148,691 branches, 421,032 lines, and 1,698,650 state-

ments. Most of the classes are complex for test-data generation because they have a number

of features that make them challenging for test-data generation:
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1. Running Hadoop is highly dependent on external configurations files: every Hadoop

module requires a particular configuration file that specifies many properties of the

execution environment. A missed or malformed property may prevent the instantiation

of certain classes and decrease the coverage.

2. Hadoop contains a file system: randomly instantiating its classes and executing meth-

ods is a high-risk task that can result in undesirable effects, corrupted files, data loss,

and even serious damages to the underlying operating system. Thus, the test operating

system must be very restrictive in terms of access rights. A solution to avoid this prob-

lem is to create a user with very restrictive access, e.g., that can only read classes under

test and dependencies, execute JTExpert, and write test data in a specific directory.

However, such restrictions may reduce source-code coverage.

3. Hadoop is composed of different types of applications: servers applications, client ap-

plications, web applications, protocols, and a distributed file system. Testing this sort

of applications requires the cooperation of some other applications. For example, let

us suppose that the CUT is a server application and some of its private methods are

executable only if that server gets a particular request from a client application via

a particular socket (port). Such a scenario is hard to automatically generate because

there is nothing in the source code of the server that points to a client class.

4. Hadoop is designed to run on many heterogeneous execution environments: different

hardware, operating systems, network connections. Thus, many parts of its code can

be run only on a particular environment. For example, the native Hadoop library does

not work with Cygwin or the Mac OS X platforms. Because we cannot use all possible

environments to generate test data, finding a test data is impossible for some parts of

the source code.

Automatically generating test data to reach a high code coverage for the Apache Hadoop

System is therefore a difficult task and we claim that redirecting a part of this effort to raise

unhandled exceptions in that project may be more interesting and beneficial for the Apache

Hadoop System.

For every Java class in Hadoop, we generated a complete test-data suite to cover all

branches according to our Exception-oriented Test-data Generation technique implemented

in our tool JTExpert. For each CUT, we allowed a maximum of 600 seconds for test-data

search. To perform the experiment, we used a Oracle Grid Engine comprising 42 similar

nodes, each of them equipped with 2-dual core CPU 2.1 GHZ, 5GB of memory, a Fedora core

13 x86 64 as OS, and JDK 7.
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9.2.1 Unhandled Exceptions Revealed

Table 9.1 summarizes unhandled exceptions raised in Hadoop. The test-data suites raise

16,046 unhandled exceptions, 4,322 of them not redundant because they point to different

lines in the source code. These unhandled exceptions affect 4,061 methods in 1,920 classes.

A large number of reported exceptions are unchecked exceptions. The NullPointerEx-

ception (NPE) is the most thrown unchecked exception: 13,663 NPE affecting 3,604 different

lines, 3,377 different methods, and 1,343 different classes. This exception is thrown when

the JVM attempts to execute a method or to access a field of a null object. The test

data suites threw many other unchecked exceptions: 658 ClassCastException, 326 Ille-

galArgumentException, 296 ArrayIndexOutOfBoundsException, and 492 other unchecked

exceptions. Such exceptions could be avoided by using some preconditions on the concerned

statements. For example, to avoid NPE a developer must ensure that an object is not null be-

fore using its methods or fields. Two reasons are behind the significant number of unchecked

exceptions: (1) multiple unhandled exceptions may be linked to the same root cause, e.g., a

static field assigned to null may be the root cause of hundreds of NPE; (2) developers tend to

insert the preconditions only if necessary for a current use rather than systematically insert-

ing preconditions on unchecked exceptions. Yet, such exceptions may harm evolution and

future use of an affected class.

The number of errors alerted is less significant comparing to unchecked exceptions, but

the former may be more serious. The test data suites threw four different types of errors:

602 NoClassDefFoundError (NCDFE), 75 UnsatisfiedLinkError, 2 StackOverflowError,

and 9 Fatal Error. The most thrown error is NCDFE that happens when JVM tries to load

in a class and no definition of the class could be found. A Fatal Error is the less thrown

error because it is difficult to raise, to reproduce, and to fix. It indicates that the JVM met

Table 9.1: Summary of Unhandled Exceptions Raised in Hadoop

Exception Alerted
Alerted in different

Lines Methods Classes
java.lang.NullPointerException (NPE) 13,663 3,604 3,377 1,343
java.lang.ClassCastException (CCE) 658 213 206 165
java.lang.NoClassDefFoundError (NCDFE) 602 87 86 86
java.lang.IllegalArgumentException (IAE) 326 104 102 100
java.lang.ArrayIndexOutOfBoundsException (AIOOBE) 296 119 108 71
Fatal Errors 9 2 2 2
Other Exceptions 492 193 180 153

All Exceptions 16,046 4,322 4,061 1,920
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a serious problem during the execution of a program. Because a fatal error forces the JVM

to quit abnormally, a test data generator cannot automatically detect such an exception or

create a test data to reproduce it. The best solution to reproduce a Fatal Error is keeping a

copy of the last test-datum candidate executed in the disk and considering it as an additional

test-data. To further understand and help to fix the 9 Fatal Error generated, we manually

analyzed their test data. We observed that most of them are directly or indirectly call-

ing the method org.apache.hadoop.io.WritableComparator.compareBytes(byte[] b1,

int s1, int l1,byte[] b2, int s2, int l2) using a null value for either b1 or b2:

we then concluded that this method is the root of one Fatal Error. Following the execu-

tion of this method, we found, in the class org.apache.hadoop.io.FastByteComparisons,

an inappropriate instantiation of the class sun.misc.Unsafe, i.e., Hadoop developers have

violated encapsulation rules by using reflection to get a private instance of the Unsafe

class. The problem is calling the method Unsafe.getLong using a null object leads to

JVM crashes due to an invalid memory access. The second Fatal Error points to the class

org.apache.hadoop.hdfs. ShortCircuitShm that also violates encapsulation rules to call

the method Unsafe.getLongVolatile with a null object, correspondingly the JVM crashes.

To confirm the reality of the raised exceptions, we randomly selected some exceptions (i.e.,

a number ranging between 10 and 30 of each type of exception), manually checked them and

confirmed their existence. Also, we searched Hadoop’s bugs and found that one of the two

Fatal Errors has been already reported1 to Apache HBase, which is based on Hadoop. The

bug report and the related discussion link the bug to a byte comparator without specifying

its origin. In contrast, we could find the root cause of that bug because we have different

test data to reproduce it.

9.3 Summary

In this chapter, we presented an adaptation of our approach IG-PR-IOOCC and its imple-

mentation JTExpert to raise exceptions via branch coverage, i.e., an Exceptions-oriented

Test-data Generation Approach. The results of applying JTExpert on the Apache Hadoop

System revealed 4,323 distinct failures two of them leading to JVM crashes. We confirmed

through a manual statistical check that all unhandled exceptions raised are real and there is

no false alert injected by JTExpert. Based on a reported bug in the Apache HBase project,

we could show that any raised exception can be met in a real application of Hadoop and a test

data may significantly facilitate fixing a failure. Therefore, we can conclude that JTExpert

scales well to large software and our approach, Exception-oriented Test-data Generation, is

useful for raising unhandled exceptions and very helpful for fixing them.

1http://comments.gmane.org/gmane.comp.java.hadoop.hbase.devel/39017

http://comments.gmane.org/gmane.comp.java.hadoop.hbase.devel/39017
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Part IV

Conclusion and Future Work
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CHAPTER 10

CONCLUSION AND FUTURE WORK

Test-data generation is an important stage of software development. Manually generating

test-data is a laborious and effort-consuming task. Many researchers (see Chapters 3) have

proposed automated approaches to generate test data. Among the proposed approaches

(Baars et al., 2011; Fraser et Zeller, 2011; Fraser et Arcuri, 2012) have proven to be efficient

in generating test data by using static analyses with SB-STDG. However, their analyses focus

only on one or two UUT features, i.e., constants and conditional statements. Deeper static

analyses on these two features and a focus on other UUT features, such as arguments, data

members, methods, and relationships with other units, could improve SB-STDG. Hence, in

this dissertation, our thesis was:

Statically analyzing source code to identify and extract relevant information to

exploit them in the SB-STDG process either directly or through CB-STDG offers

more guidance and thus improves the efficiency and effectiveness of SB-STDG for

object-oriented testing.

To prove our hypothesis, we proposed to consider many UUT features and analyzed them

to derive information relevant to better guide CB-STDG.

10.1 CP Techniques to Analyze and Improve SB-STDG

10.1.1 CPA-STDG

We proposed CPA-STDG, which uses CP techniques to analyze and model the UUT. CPA-STDG

models a program with its CFG by a CSP to efficiently explore execution paths, hence effi-

ciently generating test data. We showed that modeling a program and its CFG by one CSP

keeps the program structural semantics and therefore can helps to generate test data for any

structural coverage criteria. The results showed the usability and effectiveness of CPA-STDG

compared to the state of the art.

10.1.2 CSB-STDG

We proposed CSB-STDG, a new approach that combines CPA-STDG and SB-STDG to

achieve high degree of code coverage. CSB-STDG simplifies the problem of test-data gen-

eration by solving it with CPA-STDG and using the solutions as a reduced search space
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of SB-STDG. We identified two main steps, i.e., initial population and mutation operator,

where CPA-STDG can be useful for SB-STDG. In each step, CPA-STDG feeds SB-STDG

with relevant test-data candidates. We compared CSB-STDG with CPA-STDG and the

state of the art of SB-STDG, i.e., eToc (Tonella, 2004). The results showed that CSB-STDG

outperforms both techniques in terms of runtime and branch coverage. It could reach 89.5%

branch coverage in less than 40 s, whereas eToc could not go beyond 85.78%, which was

reached after 120 s. CPA-STDG performed badly: its best attained coverage is 78.94%.

10.1.3 CB-FF

We proposed fDC and fDL, two new fitness functions that analyze branch conditions and

assign a hardness value for each branch using CP techniques, i.e., arity and constrainedness

(Pesant, 2005). fDC and fDL prioritizes branches according to how hard they are to satisfy.

To evaluate a test-datum candidate, fDC and fDL consider branches leading to the test

target and use a hybrid evaluation. fDC and fDL dynamically compute a branch distance

for the traversed branches and statically compute a branch distance for each non-executed

branch, then all branch distances are adjusted by their hardness values and summed to

determine the test-datum candidate fitness value. The results of an empirical study on a

large number of benchmarks showed that evolutionary algorithm and simulated annealing

with our new fitness functions are significantly more effective and efficient than with the

largely used fitness functions from the literature, i.e., branch distance (Tracey et al., 1998),

approach level (Wegener et al., 2001), and symbolic enhanced Baars et al. (2011).

10.2 Schema Theory to Analyze and Improve SB-STDG

We proposed EGAF-STDG, aSB-STDG approach that uses schema theory (Holland, 1975) to

analyze and to tailor GA to better fit the test-data generation problem, thus reaching better

coverage. We adapted the general form of schema theory for the test-data generation prob-

lem. EGAF-STDG identifies structures and properties associated with better performance

by schema analysis, then incorporates them in the evolution phase with all fundamental GA

operators (selection, crossover, mutation). The results of the comparison of a simple GA

framework, i.e., (Baresel et al., 2002; Wegener et al., 2001; Harman et McMinn, 2010), for

software test-data generation and EGAF-STDG showed that the latter outperforms the for-

mer. Thus, EGAF-STDG significantly reduced the number of evaluations needed to reach a

given branch and achieved higher branch coverage than a simple GA framework.
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10.3 Lightweight Static Analyses to Improve SB-STDG

We proposed IG-PR-IOOCC, a SB-STDG approach for unit-class testing. IG-PR-IOOCC

relies on static analyses: (1) it statically analyzes the internal structure of a class-under-test

(CUT) to reduce the search space and to define a seeding strategy and, (2) it statically

analyzes the relationships between CUT and other classes to diversify class instances. IG-

PR-IOOCC considers that the problem of test-data generation faces three difficulties: (D1)

finding an adequate instance of the CUT and of each required class; (D2) finding an adequate

sequence of method calls to put the instance of the CUT in a desired state; and, (D3) finding

an adequate method to reach the test target. IG-PR-IOOCC reduces the search space of D2

and D3 by selecting sequences from a subset of methods that contains only methods relevant

to the test target. A method is relevant to D2 iff it may change the state of an instance of

the CUT and it is relevant for D3 iff it may reach the test target. To solve D1, we propose

an instance generator based on a diversification strategy, instantiation of anonymous classes,

and a seeding strategy to boost the search.

Results showed that IG-PR-IOOCC and its implementation JTExpert outperformed the

state of the art, i.e., EvoSuite Fraser et Arcuri (2011, 2013c). JTExpert found a test-data

suite and achieved a high code coverage (70%) in less than 10 s, whereas Evosuite reached 31 %

coverage at 10 seconds and 61 % at 200 seconds. We showed on more than a hundred classes

taken from different open-source Java libraries that JTExpert has a higher code coverage

than EvoSuite and needs less time.

To evaluate the scalability of IG-PR-IOOCC and its implementation JTExpert on large

software, we proposed an adaption of JTExpert to raise exceptions via branch coverage, i.e.,

an Exceptions-oriented Test-data Generation Approach. Then we applied it on a large open-

source software the Apache Hadoop System. The results revealed 4,323 failures, two of them

leading to JVM crashes.

10.4 Summary

This dissertation analyzed the benefits of using static analyses for SB-STDG. We identified

six UUT features that influence the process of test-data generation: data members, meth-

ods, arguments, conditional statements, constants, and relationships with other units. We

proposed four approaches that focus their static analyses on these six features: (1) focusing

on arguments and conditional-statements of a UUT and using CP techniques, we defined

CPA-STDG a CB-STDG approach and use it in the approach CSB-STDG as static analysis

to guide SB-STDG in reducing its search space; (2) focusing on conditional statements and

using CP techniques, we defined fDC and fDL two new fitness functions to guide SB-STDG;
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(3) focusing on conditional-statements and using schema theory, we defined EGAF-STDG, a

new SB-STDG framework; and, (4) focusing on arguments, conditional statements, constants,

data members, methods, and relationship with other units, we defined IG-PR-IOOCC a new

SB-STDG relying on static analysis techniques for object-oriented test-data generation. The

results proved our thesis: statically analyzing UUT features improves SB-STDG. We found

that analyzing more features provide more relevant information, hence better guidance for

SB-STDG to reach a high degree of code coverage. Thus, all previously mentioned UUT

features influence the process of test-data generation.

10.5 Limitations

Despite the above promising results, our thesis is threatened by the following limitations:

10.5.1 Limitations of CPA-STDG

CPA-STDG uses a code-to-code transformation, so it highly depends on the UUT source

code. In some real world program the source code may be complex (e.g., complex data

structures and part of the source code is a black box). In such cases, CPA-STDG alone could

not be used to generate test data. We observed in Chapter 5 that CPA-STDG could not

achieve a high code coverage. Because it uses the relaxation to simplify the source code,

hence it could not translate all test-data generation problem into an equivalent CSP.

CPA-STDG uses some modeling constraints that translates a single method or procedure

into an equivalent CSP. However, in OOP, a test-datum is a sequence of method calls. In

such case, CPA-STDG requires a generator of sequences of method calls that also must define

a test target to reach in each method of the sequence (e.g., a random sequences generator

and a random branch to reach in each method).

10.5.2 Limitations of CSB-STDG

CSB-STDG uses relaxation to simplify a UUT, then it calls CPA-STDG to generate some

potential test-data candidates. However, in some cases, an infeasible test-data generation

problem may generate a feasible relaxed one. In such cases, CSB-STDG lacks a main ad-

vantage of a CB-STDG approach, which proves the infeasibility of a test-data generation

problem. Therefore, CSB-STDG may not perform well in the presence of infeasible paths.

10.5.3 Limitations of CB-FF

CB-FF relies on symbolic-execution and relaxation. Even using relaxation to simplify com-

plex expressions, symbolically analyzing the whole source code to evaluate all branches in
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terms of arguments, data members, and global variables is a complex task; even more com-

plex if a symbolic evaluation must be performed for every execution. The unavailability of an

open-source symbolic-execution analyzer makes the implementation of CB-FF very difficult.

We implemented a simple symbolic-execution analyzer that can analyze a small number of

expressions and relax any other unsupported expression. Thus, to have better symbolic eval-

uation, we were obliged to perform our experiments on synthetic programs. Therefore, it is

possible that, on real programs, CB-FF performs differently.

10.5.4 Limitations of EGAF-STDG

EGAF-STDG uses CB-FF to define its fitness function. Therefore, EGAF-STDG inherits the

problem of symbolic evaluation of complex expressions. To validate EGAF-STDG, we used

the same symbolic-execution analyzer and benchmarks as for evaluating CB-FF. Therefore,

it is possible that, on real programs, EGAF-STDG performs differently.

10.5.5 Limitations of IG-PR-IOOCC

CPA-STDG, CSB-STDG, CB-FF, and EGAF-STDG use complex static analyses because

they use CP techniques. Contrary to previous approaches, IG-PR-IOOCC uses lightweight

static analyses instead of CP techniques. Hence, it is easy to implement and apply on real

programs, but it lacks the main advantage of a CB-STDG approach, which is proving the

infeasibility of a test-data generation problem. Therefore, IG-PR-IOOCC may not perform

well in the presence of infeasible paths. Also, among all JTExpert components, the random

search could be either a weak or advantageous link. Therefore, it is possible that with another

search algorithm IG-PR-IOOCC performs differently.

The implementation of IG-PR-IOOCC, JTExpert, is unsafe and may lead to an unde-

sirable system behavior during test-data generation process. To have better control over

JTExpert, we performed experimentations using a user with very restrictive access to the file

system. In such an environment JTExpert may not be allowed to execute some statements

in the UUT. This may negatively influence the code coverage.

During the experimentation, we observed that JTExpert generates a set of test data that

is difficult to follow and understand. Further, JTExpert does not generate an oracle for

each test datum. These two observations raise a question that the test data generated by

JTExpert, as it stands now, may not be reusable throughout a real software development

cycle. For example, Figure 10.1 shows a test datum that was automatically generated to test

class org.joda.time.Minutes. At first glance, this test datum seems difficult to follow and

understand. Analyzing the first six comment lines, we can understand that test datum calls
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1 /∗ Chromosome :
2 1)−−−−−>toStandardMinutes[]
3 2)−−−−−>parseMinutes[String],
4 3)−−−−−>plus[−606]
5 Covered Branches:[17, 1, 19, 2, 32, 20, 8, 30]∗/
6 @Test public void TestCase3() throws Throwable {
7 long clsUTMinutesP1P0P2P0P0P1P0P0P0P1=87525275727380863L;
8 DateTimeZone clsUTMinutesP1P0P2P0P0P1P0P0P0P2=(DateTimeZone)DateTimeZone.UTC;
9 DateTime clsUTMinutesP1P0P2P0P0P1P0P0P0=new DateTime(clsUTMinutesP1P0P2P0P0P1P0P0P0P1,←↩

clsUTMinutesP1P0P2P0P0P1P0P0P0P2);
10 DateTime.Property clsUTMinutesP1P0P2P0P0P1P0P0=clsUTMinutesP1P0P2P0P0P1P0P0P0.millisOfDay();
11 long clsUTMinutesP1P0P2P0P0P1P0P1=81L;
12 AbstractInstant clsUTMinutesP1P0P2P0P0P1P0=clsUTMinutesP1P0P2P0P0P1P0P0.addToCopy(←↩

clsUTMinutesP1P0P2P0P0P1P0P1);
13 Date clsUTMinutesP1P0P2P0P0P1=clsUTMinutesP1P0P2P0P0P1P0.toDate();
14 LocalDateTime clsUTMinutesP1P0P2P0P0=LocalDateTime.fromDateFields(clsUTMinutesP1P0P2P0P0P1);
15 LocalTime clsUTMinutesP1P0P2P0=clsUTMinutesP1P0P2P0P0.toLocalTime();
16 TimeZone clsUTMinutesP1P0P2P1P1=TimeZone.getDefault();
17 DateTimeZone clsUTMinutesP1P0P2P1=DateTimeZone.forTimeZone(clsUTMinutesP1P0P2P1P1);
18 ReadableInstant clsUTMinutesP1P0P2=clsUTMinutesP1P0P2P0.toDateTimeToday(clsUTMinutesP1P0P2P1);
19 Period clsUTMinutesP1P0=new Period((ReadableInstant)null,clsUTMinutesP1P0P2);
20 Minutes clsUTMinutes=clsUTMinutesP1P0.toStandardMinutes();
21 String clsUTMinutesP2P1=new String(‘‘p”);
22 Minutes clsUTMinutesP2=Minutes.parseMinutes(clsUTMinutesP2P1);
23 int clsUTMinutesP3P1=−606;
24 Minutes clsUTMinutesP3=clsUTMinutes.plus(clsUTMinutesP3P1);
25 }

Figure 10.1: A difficult to follow test datum that was automatically generated by JTExpert
to test class Minutes in package org.joda.time

three main methods. It generates an instance of the UUT by calling the method toStan-

dardMinutes() on an instance of class org.joda.time.Period and calls two methods on

the instance of the UUT, i.e., parseMinutes(“p") and plus(-606). Further analyzing the

test datum, we observe that the actual test starts at Line 20, ends at Line 24, and all the

lines before generating an instance of org.joda.time.Period. Lines 7 to 19 are not at the

heart of the test datum and they decrease both its readability and code quality. Also, this

test datum cannot reveal an error in the implementation because, after the method calls at

Lines 22 and 24, JTExpert did not insert assertions to check if the returned values are as

expected.

10.6 Future Work

In this dissertation, we have verified our thesis and showed that statically analyzing internal

UUT features improves SB-STDG.

Future work will be devoted to three research directions: (1) further experiments; (2)

broadening and enlarging static analyses on UUT features; and, (3) statically analyzing new

external sources to derive information about UUT that is relevant for test-cases generation.

Below, we describe how we will plan to extend the work presented in this dissertation.
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10.6.1 Further Experiments

We would like to extend the evaluations of our approaches, especially those involving CP

techniques, i.e., CPA-STDG, CSB-STDG, CB-FF, and EGAF-STDG. First, we plan to en-

hance the implementation of CPA-STDG to cover some complex expressions (e.g., shifting

operator). Second, IG-PR-IOOCC currently relies on a guided random search and supports

branch coverage. We are working on adding further search algorithms, such as genetic al-

gorithms and hill climbing. Also, we will follow three research directions: (1) enlarging the

scope of JTExpert to support other structural testing criteria, such as data-flow coverage or

mutation-coverage; (2) enhancing the instance generator to generate instances of classes that

require understanding the context of their use; and, (3) studying the impact of seeding null

with the instances of classes on the generation of null pointer exceptions. Finally, we would

like to apply our approaches on industrial systems instead of being limited to synthetic and

open-source programs.

10.6.2 Broadening and Enlarging Static Analyses on UUT Features

We observed that static analyses of UUT features improve the test-data generation process.

This line of research remains promising, because it may offer means to deepen the static

analyses on some features as well as to broaden them by adding some missing UUT features.

In the future, we want to extend our static analyses on method members and local classes.

In our research work, we analyzed and proposed techniques to cover private and public

methods, yet analyzing protected methods may improve further the code coverage. Protected

methods, are not directly accessible. They are visible only from the enclosing class and its

derived classes. In the absence of calls to a protected method there is no way to reach it

except with creating a stub derived from the enclosing class that explicitly calls the protected

method. We plan to use such a technique to cover any protected method.

We analyzed anonymous classes and proposed a technique to instantiate them and to

improve their code coverage. We would like to generalize that technique to cover any local

classes, hence further improving code coverage. We also plan to enlarge static analyses to

cover class members, i.e., nested classes, in particular private and protected class members.

10.6.3 Statically Analyzing External Resources from UUT

This line of research aims to improve the code coverage as well as the readability and quality

of generated test data.

In this research work, we stated some relationships between UUT and others units, i.e.,

subclasses, and showed the importance of this relationship in improving test-data generation.
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In some cases the test-data generation problem may depend on relationships between UUT

and external resources. In this case, a search that lacks this information and focuses only on

internal UUT features may fail to generate a test datum. For example, let us suppose that

the UUT takes as input a string that must be a path pointing to a configuration file. In such

a case, a search that does not have that information may fail to generate a test datum.

In general, the source code does not contain all relevant information about a UUT and

external resources such as specification documents or configuration files could be a precious

source of relevant information about UUT and may help to improve the test data and test-

cases generation process. Hence, in the future, we plan to identify external factors that

may influence the test-cases generation process and develop static analyses focusing on them.

External resources may also contain information relevant for oracle generation. Therefore,

we would like to use external resources linked to a UUT to generate a relevant oracle for each

test datum and improve the quality and readability of test cases.
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