
1

Instance Generator and Problem Representation
to Improve Object Oriented Code Coverage

Abdelilah Sakti, Gilles Pesant, and Yann-Gaël Guéhéneuc

Abstract—Search-based approaches have been extensively applied to solve the problem of software test-data generation. Yet, test-
data generation for object-oriented programming (OOP) is challenging due to the features of OOP, e.g., abstraction, encapsulation,
and visibility that prevent direct access to some parts of the source code. To address this problem we present a new automated
search-based software test-data generation approach that achieves high code coverage for unit-class testing. We first describe how
we structure the test-data generation problem for unit-class testing to generate relevant sequences of method calls. Through a static
analysis, we consider only methods or constructors changing the state of the class-under-test or that may reach a test target. Then
we introduce a generator of instances of classes that is based on a family of means-of-instantiation including subclasses and external
factory methods. It also uses a seeding strategy and a diversification strategy to increase the likelihood to reach a test target. Using
a search heuristic to reach all test targets at the same time, we implement our approach in a tool, JTExpert, that we evaluate on
more than a hundred Java classes from different open-source libraries. JTExpert gives better results in terms of search time and code
coverage than the state of the art, EvoSuite, which uses traditional techniques.

Index Terms—Automatic Test Data Generation, Search Based Software Testing, Unit Class Testing, Seeding Strategy, Diversification
Strategy, Java Testing.

F

1 INTRODUCTION

Software testing is a time consuming and tedious pro-
cess, accounting for more than 50% of the total software
cost [32]. The most expensive part of testing is test-data
generation. Automating this generation is particularly
challenging for unit-class testing due to the dynamic
nature and the complex features of object-oriented pro-
gramming languages (OOP), e.g., abstraction, encapsu-
lation, and visibility. These features prevent the direct
access to some parts of the source code and impose in-
direct accesses to such parts through accessible methods,
e.g., public methods [8]. This problem of source-code
accessibility leads to a decrease in code coverage.

To address the accessibility problem, a test-data gen-
erator must performs three actions: (1) instantiate the
class-under-test (CUT) and all other required classes; (2)
perform a sequence of method calls to put the instance
of the CUT in a desired state (i.e., a state that may
help to reach the test target); and, (3) call a method that
may reach the test target. The problem is in finding an
adequate combination of these three actions to represent
a test data to reach a given test target. Solving this
problem faces three difficulties: (D1) finding an adequate
instance of the CUT and of each required object; (D2)
finding an adequate sequence of method calls to put the
instance of the CUT in a desired state; and, (D3) finding
an adequate method to reach the test target.

Many approaches have been proposed to address the
problem of automating test-data generation and that fall
in Search Based Software Testing (SBST). SBST has been
successfully applied to solve the problem of test-data

generation [13], [28], [46]. SBST translates the test-data
generation problem into a search problem by providing
an abstract representation of a feasible solution to the
original problem and by searching an actual solution us-
ing a search heuristic guided by a fitness function. SBST
represents the problem of test-data generation for pro-
cedural programming by a vector of input data. When
considering the problem of test-data generation for OOP,
SBST must take into account the state of the objects.
Before invoking a method that may reach a test target, an
instance of the CUT and a sequence of method calls are
required to put the CUT in a desirable state to reach a test
target. Therefore, the search problem consists of finding a
means to instantiate the CUT (D1), a sequence of method
calls (D2+D3), and an instantiation for each required
argument (D1). To address the difficulties of test-data
generation for unit-class testing, the most widely used
approach is exploring the whole search space of D1 and
a reduced search space of D2+D3 that bounds the length
of sequences of method calls [7], [13], [37], [46], [50], [51].
Initially, such an approach randomly generates instances
of classes and sequences of method calls. To generate
a sequence of method calls, a length `r bounded by a
constant L is randomly generated, where L is specified
by the user or chosen automatically by the approach,
then an algorithm iteratively and randomly selects an
accessible method until the sequence length reaches `r.
Instances of classes and sequences of method calls are
evolved or regenerated until a stopping condition is
reached. With such an approach, the search space is large
because of four reasons: (1) there is no restriction on
methods to call; (2) there is no restriction on the length
of sequences of method calls; (3) the order of method

2

calls is undefined; (4) the possible instances of a CUT or
an argument may be ”unlimited”.

Because any class may have an ”unlimited” number
of possible instances, the search space of D1 is very
large. Splitting such search space into some subspaces
and generating required instances from different sub-
spaces may increase the likelihood to reach a test target.
Using different means-of-instantiation (e.g., constructors,
factory methods, subclasses) when generating instances
of classes can split the search space, generate diversified
instances, and speed up the automated test-data gener-
ation process. Further, as shown in previous work [1],
[2], [14], [30], a seeding strategy may help in solving the
test-data generation problem efficiently.

The search space of D2 and D3 may be reduced
by selecting sequences from a subset of methods that
contains only methods relevant to the test target. A
method is relevant to D2 iff it may change the state of
an instance of the CUT and it is relevant for D3 iff it
may reach the test target. A static analysis is required to
identify the set of relevant methods for each test target.
The representation of the problem of test-data generation
for OOP must be restructured to take into account the
results of the static analysis.

We propose a search-based approach for object-
oriented test-data generation that addresses D1, D2, and
D3. We focus on the branch coverage criterion and Java
language, although the approach can be extended to
other coverage criteria and OOP languages.

To solve D1, we hypothesize that diversifying the
needed instances of classes and seeding constants ex-
tracted from the source code when instantiating classes
may significantly ease the search. Thus, our approach
uses a customized instance generator that is based on
three main components:

1) Means-of-instantiation generator: It finds and pre-
pares the different means-of-instantiation existing
in the classpath. It is responsible for splitting the
search space of D1 into subspaces (i.e., a set of
possible instances that can be generated using a
same means-of-instantiation) where each subspace
is represented by a different means-of-instantiation.

2) Diversification strategy: It generates the needed
instances of a given class by using different means-
of-instantiations. The number of reuses of a same
means-of-instantiation depends on its complexity.
The proposed diversification strategy computes a
representative complexity measure for each means-
of-instantiation. Initially, it supposes that any class
requires a constant complexity to be instantiated
and a means-of-instantiation requires the total com-
plexity of its arguments, then it dynamically ad-
justs this measure at each attempt of instantiation.
Thus, our approach can use a probabilistic algo-
rithm to select a means-of-instantiation with low
complexity without compromising the diversity of
generated instances of a class.

3) Seeding strategy: For each primitive data type or

string, it collects constants from the source code,
generates new values, then seeds them while gen-
erating data. It defines a seeding probability for
each data type and each constant according to the
number of collected occurrences of the constants.
Also, it seeds the null constant with a constant
probability while generating instances of classes.

The proposed instance generator allows our approach
to better explore the search space, reaching more test
targets; thus increasing code coverage in less time.

To solve D2 and D3, we hypothesize that selecting
methods from the set of methods that may change the
state of an instance of the CUT and the set of methods
that may reach the test target is likely to generate rel-
evant sequences of method calls. The approach uses a
novel representation of the test-data generation problem
for unit class testing of OOP to explore only these rele-
vant sequences of method calls. It uses a static analysis
to determine the set of methods that are likely to change
the state of a given data member and the set of accessible
methods that contain a path to reach a test target. The
proposed representation allows our approach to avoid
the exploration of useless sequences and thus generate
tests faster with more coverage.

Using the collected information, the test-data gener-
ation problem is represented by a vector composed of
relevant means-of-instantiations of the CUT, methods
that are likely to change the object state by changing
a data member, and methods that may reach the test
target. Thus, the approach represents a test-data by: (1)
a means-of-instantiation of the CUT (i.e., it can be a
constructor, a method factory, a data field, or an external
method from the CUT); (2) a sequence of method calls
whose length is bounded by the number of declared data
members in the CUT, each method in a sequence being
called to put a given data member in a relevant state; (3)
a method call that is likely to reach the test target; (4) a
means-of-instantiation for each needed argument.

The approach was implemented in a tool, JTExpert,
that takes as inputs a classpath and a Java source file or
a directory that contains Java source files to be tested. It
automatically produces a set of JUnit [24], [44] test cases
(i.e, a Java source file that defines a method for each
test case) for every Java file under test. It is completely
automated, works on ordinary Java classes, and does not
need additional information.

JTExpert was evaluated on more than 100 classes
from different open-source libraries (Joda-Time, Barbe-
cue, Commons-lang, and Lucene), most of which present
a challenge for test-data generation approaches. Using
JaCoCo tool [22], the test-data set to cover all-branches
generated by JTExpert is compared to the one generated
by an existing test generation approach, EvoSuite [13].
The results of this comparison shows that JTExpert is
more effective than EvoSuite because it reaches a higher
code coverage while it requires less time.

The contributions of this paper are then as follows:
I) We propose a customized instance generator of

3

classes that is based on a means-of-instantiation gen-
erator, a seeding strategy, and a dynamic strategy to
diversify generated instances.

II) We propose a novel representation of the test-data
generation problem for unit class testing of OOP.

III) We describe an implementation of our test-data
generation approach, JTExpert.

IV) We report an empirical evaluation of JTExpert
on more than 100 classes from different open-source
libraries and a comparison to EvoSuite.

The remainder of the paper is organized as follows:
Section 2 summarizes related work. Section 3 describes
our approach. Section 4 describes the implementation of
our approach, JTExpert. Section 5 presents an experimen-
tal study comparing Evosuite with JTExpert. Section 6
concludes with future work.

2 RELATED WORK
Our approach is related to work on automated test-
data generation for unit class testing. Automatic test-data
generation is an active research area. The last decade
has witnessed an increased interest concerning object-
oriented test-data generation.

2.1 Static Analysis
Korel proposed a dynamic data-flow analysis approach
[26] for path coverage. His approach consists of analyz-
ing the influence of each input variable on the successful
sub-path traversed during program execution. During
a genetic algorithm evolution, only input variables that
influence the successful sub-path can have their values
changed. Also, Harman et al. [21], [29] studied the
impact of search-space reduction on search-based test-
data generation. In their study, for a given test-data gen-
eration problem (e.g., a branch), they use a static-analysis
approach described in [9], [20] to remove irrelevant input
variables from the search-space. The analyses proposed
in these approaches target procedural programming and
focus on the arguments of a function under test, whereas
our static analysis targets OOP and focuses on sequences
of method calls.

To improve over SBST, Ribeiro et al. [42] use a purity
analysis to reduce the size of the search space for SBST in
OOP: all pure methods are discarded while generating
the sequences of method calls, i.e., pure methods are
considered irrelevant to the test case generation process.
However, many impure methods may also be irrelevant;
for example, a class containing a hundred public meth-
ods that are impure just because they invoke another
impure public method m: the method m is the most
relevant method and it may be the only relevant method
if the hundred methods call m through a difficult branch
to reach. Therefore, the purity analysis may reduce the
search space but still needs additional analysis to refine
the set of relevant methods. In contrast to purity anal-
ysis, the analysis proposed in this work considers only
accessible methods that are in the roots of the tree of

relevance. Further, the analysis proposed by Ribeiro et al.
[42] differs from our analysis because it only generates
a set of relevant methods for the CUT, whereas our
analysis generates a set of relevant methods for each data
member. Because a test target does not necessary depend
on all data members, the relevant set of methods may
be reduced according to a given test target.

2.2 Seeding Strategy
Many work proposes different seeding strategies [1], [2],
[14], [17], [30], [31]: when a branch condition involves
constants, covering such a branch may be challenging
but it may become easier to reach if the set of constants
exist in the source code used when generating instances
of classes. Alshraideh and Bottaci [2] propose a seeding
strategy and show that the seeding of string literals
extracted from the source code during the generation
of instances is better than a good fitness function. Al-
shahwan and Harman [1] propose a dynamic seeding
strategy for Web applications by extracting constants
constructed by the application as it executes. Fraser and
Arcuri [14] study different seeding strategies and show
that the use of an adequate strategy can significantly
improve the SBST. To cover branches involving strings,
McMinn and al. [30] propose a seeding strategy that
extracts string literals from the results of Web queries.

The main difference among previous works is in using
different sources of constants. All previous approaches
use a constant probability of seeding and seed either
primitive types or strings. Fraser and Arcuri [14] show
that a constant probability equal to 0.2 gave best results
compared to other values but it may be harmful in
some cases. Indeed, if the extracted set of constants
contains only one value, it is undesirable to have 20%
of a population formed of the same value because it
substantially reduces diversity. Therefore, it is necessary
to use a seeding strategy with a variable probability.

Although the null constant is often present in the
source code, previous work did not discuss the seeding
of this constant, i.e., seeding the null constant with a
certain probability during instance generation. It con-
siders that constant as an ordinary instance that may
have been unintentionally discarded from some types of
classes, e.g., strings, or arrays. Hence, It may not use this
constant enough to cover branches involving the null
constant. Therefore, a systematic seeding strategy of the
null constant must to be defined.

2.3 Test Data Generation Approach
Because random testing scales to large systems, random
test-data generation is a widely used approach. It was ex-
plored in several works to generate test data that meets
different test objectives [3], [12], [33], [34], [35], [36]. JTest
[36] is a commercial tool that uses random testing to
generate test data that meets structural coverage. Jartege
[33] randomly generates test driver programs to cover
Java classes specified in JML. RUET-J [4] is a tool that

4

is as an enhanced version of Jartege which adds some
features, such as the minimization of a test case suite.
JCrasher [12] generates test data that is susceptible to
detect program crashes by performing a random search.
Eclat and RANDOOP [34], [35] use random search to
create tests that are likely to expose fault. To boost the
random search, these two tools use a dynamic prun-
ing approach: they prune sequences of methods that
violate some predefined contracts. All these works use
random search without enough guidance, therefore they
achieve low code coverage. In contrast to such tools,
our approach does not use random search blindly but
guides the generation of sequences of method calls and
instances of arguments.

To improve over random testing, global and local
search algorithms have been implemented in several
ways. eToc [46] is a pioneering tool that uses genetic al-
gorithms to generate test data that meet some structural
criteria. It only deals with primitive types and strings
and since its creation in 2004 it has not maintained to
better exploit the strengths of recent testing approaches.
EvoSuite [13], [16] is also a tool that automates test case
generation by using genetic algorithms. Its objective is
achieving a high code coverage with a small test suite.
To achieve this objective, EvoSuite integrates recent state-
of-the-art approaches.

As an alternative approach to SBST several approaches
implement symbolic execution techniques [11], [25], such
as JPF-symbc [38]. Such approaches are not scalable be-
cause they cannot deal with complex statements, native
function call, or external libraries [39]. To overcome this
limitation, dynamic symbolic execution [19], [43] uses
concrete values that are extracted from an actual execu-
tion to simplify any complex constraint but may fail to
generate test data for some test targets [39]. In addition
both approaches have in common the exploration of all
possible sequences of method calls (all paths), which
faces the problem of combinatorial explosion because of
the exponential growth of the search space [52].

Despite the large body of work on unit testing, pre-
vious work shares the use of a same problem represen-
tation that consists of generating sequences of method
calls from the whole set of accessible methods. Also,
the generation of instances of classes is always under-
estimated and random generation is usually used. As
we will discuss in Section 5.3, there are some types of
classes, such as sqlsheet1’ classes, that require sophisti-
cated algorithms to be instantiated.

Our approach differs from previous work in that it
provides a formal expressive representation of the test-
data generation problem that implicitly reduces the pos-
sible number of sequences of method calls. This is also
the first approach to provide a probabilistic algorithm to
generate a diversified set of needed instances of a class.

1. sqlsheet: An open source library that provides a JDBC driver for
MS Excel. Available at https://code.google.com/p/sqlsheet/

1 public Iterator<K> keyIterator() {
2 reap();
3 final Iterator<IdentityWeakReference> iterator =
4 backingStore.keySet().iterator();
5 return new Iterator<K>() {
6 private Object next = null;
7 private boolean nextIsSet = false;
8 public boolean hasNext() {
9 · · ·

10 }
11 public K next() {
12 · · ·
13 }
14 public void remove() {
15 · · ·
16 }
17 private boolean setNext() {
18 · · ·
19 }
20 };
21 }

Fig. 1: Skeleton of an anonymous class
that can be instantiated, from class
org.apache.lucene.util.WeakIdentityMap

3 APPROACH FOR UNIT CLASS TESTING

A test-data generation problem is an instantiation of the
CUT and a sequence of method calls on that instance.
The sequence of method calls can be split into two sub-
sequences: (1) putting the CUT instance in an adequate
state; (2) targeting the test target. Because the first sub-
sequence aims to change the object state, we call it state-
modifier methods and we call the second subsequence
target-viewfinder methods because it aims to reach a test
target. Thus, a representation of the test-data generation
problem can be split into three main components: a CUT-
Instantiator, a sequence of state-modifier methods, and a
target-viewfinder method.

3.1 Instance Generator

In the object-oriented paradigm, generally, calling a con-
structor or a method requires some instances of classes.
Given the large number of constructors and method calls
needed for solving a testing problem, the generation of
instances of classes requires a particular attention. It is
key to successful test-data generation because without
an adequate instance of a CUT or a needed objects the
solving process may fail before it starts.

3.1.1 Means-of-instantiation

In our approach, we use the term means-of-instantiation to
represent any means that allows generating an instance
of the CUT or more generally to instantiate a class. A
means-of-instantiation can be a constructor, a factory
method, an accessible data member that is an instance of
the required class, or a method defined in another class
that returns an instance of the required class.

Means-of-instantiations can be categorized in two
groups: internal and external. For a given class c, a

5

means-of-instantiation is internal if it is offered by c it-
self, i.e., defined in c. A means-of-instantiation is external
if it is defined in a class different from c.

To generate an instance of a given class our Instance
Generator takes into account all accessible means-of-
instantiation offered in a program and according to our
diversification strategy one of them is selected. Thus, to
instantiate a given class, our instance generator considers
five different families of means-of-instantiation: (1) All
accessible constructors (if there is no constructor defined
the default one is considered); (2) all factory methods,
i.e., all statics methods member returning an instance of
that class; (3) all statics fields that are instances of the
class; (4) all external methods that return an instance
of that class, i.e., methods that return an instance of a
needed class and are defined outside of that class; (5)
recursively all means-of-instantiations of subclasses.

External Factory Methods and Anonymous Class In-
stantiation: In general, to instantiate a given class, only
the internal means-of-instantiations are considered (i.e.,
constructors, factory methods, and fields). However, ex-
ternal factory methods, i.e., a method that returns an in-
stance of a class and is defined outside of that class, may
be a potential means not only for generating instances
but also for diversifying the generated instances. Also,
in some cases it may be the only solution to instantiate
a class. For example, in Figure 1, an anonymous class
defined at Line 4 is nested in the method keyIterator:
there is a very weak likelihood to cover branches in
that anonymous class without instantiating it as a CUT
because all of its methods require an explicit call. One
possible mean-of-instantiation of that anonymous class
is the method keyIterator, which returns an instance
of that class. Once that anonymous class is instantiated
reaching its branches becomes a simple search problem.

An anonymous class is instantiable if and only if the
method wherein it is declared returns its instance. Using
such mean-of-instantiation, we can test an anonymous
class separately and directly call all of its public methods.

Subclasses: Subclasses (stubs) are always used to
instantiate abstract classes or interfaces but rarely to
instantiate a class that offers some other means-of-
instantiation (e.g., constructors). However, in some cases,
using an instance of a subclass may be the only means
to cover protected methods or methods implemented in
abstract classes. Also, using means-of-instantiations of-
fered by subclasses may significantly diversify generated
instances, especially for arguments.

3.1.2 Diversification Strategy

To diversify the generated instances of a given class,
we assume that its means-of-instantiations can split the
search space into some subspaces where each means-of-
instantiation is represented by a subspace. Generating
required instances from different subspaces may increase
the diversity and the likelihood to reach a test target.
To enlarge the number of subspaces and have more

diversity our Instance Generator takes into account all
accessible means-of-instantiations offered in a program.

In the presence of different means-of-instantiation,
choosing between them to generate a certain num-
ber of instances is problematic. For example, in
the Joda-Time2 library, most classes have more than
a hundred means-of-instantiations, e.g., the class
org.joda.time.base.AbstractPartial and the
interface org.joda.time.ReadablePartial each
have 225 different means-of-instantiations through
their subclasses. The complexity of these means-of-
instantiations vary greatly. For example, a mean-of-
instantiation that does not need parameters is less com-
plex than another that needs some instances of other
classes, that needs an instance of a class that is difficult
to instantiate, or, for accessibility reason, that is ”not in-
stantiable”. In some cases, instantiating a class using one
of its complex means-of-instantiations may be harmful,
i.e., may negatively influence performance of a test-data
generation search (e.g., a means-of-instantiation involves
complex computation operations in its implementation
and requires significant time to be executed).

To balance diversity and complexity our selection
strategy favors less complex means-of-instantiations
while diversifying generated instances. A probabilistic
selection strategy is implemented for this propose that
diversifies the generated instances without compromis-
ing performances. Such a selection strategy needs an
evaluation of the complexity of a means-of-instantiation.

A given means-of-instantiation mi can be considered
complex if it fails to generate an instance of a class
because of one of the following reasons:
• mi involves complex computation;
• a precondition on its arguments is hard to satisfy;
• recursively one of its needed arguments is complex

to instantiate.
To simplify the measurement of the complexity of a

means-of-instantiation, we divide it into two complexi-
ties: the complexity to execute a means-of-instantiation
and the complexity of instantiating its needed argu-
ments. Initially, we suppose that the complexity to ex-
ecute a means-of-instantiation or instantiating a class is
constant and equal to a constant IC (Initial Complexity,
equal to 20 in our approach). Formally an initial com-
plexity of a means-of-instantiation is measured accord-
ing to the following formula:

C0
mi = (Nbr Arg + 1)× IC

This expression uses the number of arguments as
a measure to evaluate the complexity of a means-of-
instantiation. Sometimes, preconditions or the complex-
ity of instantiating an argument may make a mean-
of-instantiation that needs only one argument more
complex than another that requires many arguments.

2. Joda-Time: An open source library that provides a qual-
ity replacement for the Java date and time classes. Available at
http://www.joda.org/joda-time/

6

To take this observation into consideration, we use the
percentage of failure of generating instances to mea-
sure the complexity of a means-of-instantiation, i.e., we
attempt to generate a number of instances using the
same means-of-instantiation while observing the number
of failures. Using such a computation, we obtain an
accurate measure. However, evaluating the complexity
of all means-of-instantiations before the search may be
expensive. To simplify the computation, we measure the
complexity of a means-of-instantiation on the fly while
searching test data: initially, a complexity of a given
means-of-instantiation mi is evaluated to C0

mi, each time
mi is called to generate an instance of its returned class,
its complexity measure is updated based on failures.

Our updating of the complexity measures is based on
a penalty system. We use two types of penalties:
• NON INSTANTIABLE PENALTY (NIP): this

penalty is assigned to a class c if our instance
generator could not generate an instance of c be-
cause c does not have any mean-of-instantiation.
This penalty should be big enough to reduce the
likelihood (to zero if possible) of the selection of a
mean-of-instantiation that needs a non instantiable
class. In this work, we use NIP = 106.

• FAILURE PENALTY (FP): this penalty describes
the difficulty of executing a mean-of-instantiation.
Every time a mean-of-instantiation could not gen-
erate an instance of its returned class, a failure
penalty is added to its complexity measure. This
may happen if at least one parameter does not
satisfy the means-of-instantiation preconditions or
time out of instantiation is reached. To allow other
means to be selected, this penalty should be bigger
than the most complex mean-of-instantiation. In this
work, FP = 10× IC.

Finally, the complexity of a means-of-instantiation is
measured, at a time t, as follows:

Ct
mi = C0

mi + xtmi × FP + ytmi ×NIP

where xtmi represents the number of failures of mi until
t; ytmi represents the number of failures of mi caused by
a non-instantiable argument until t.

Then it is possible to define a selection strategy
based on the complexity measure to select means-of-
instantiations with low complexity. Such a strategy al-
ways favors means-of-instantiations with low complex-
ity, which may reduce the diversity of the generated
instances. To balance complexity and diversity, we use
a cost of diversity (DCmi) that is determined by a
penalty system. Each time a means-of-instantiation suc-
ceeds to generate an instance of a class, its diversity
cost is increased by a constant DIVERSITY PENALTY
(DPmi). This constant is defined in term of complexity
to keep an advantage for means-of-instantiations with
low complexity. Therefore, each means-of-instantiation
has its own DPmi, which depends on its complexity. In
our approach, DPmi and DCmi are computed as follows:

DP t
mi =

0 mi fails

Ct
mi − C0

mi + IC mi succeeds

and:
DCt

mi =
∑
t′≤t

DP t
′

mi

To instantiate a given class c, each means-of-
instantiation in its set of possible means-of-instantiations
Set MIc receives an instantiation probability propor-
tionate to its own global cost value GCt

mi = Ct
mi +

DCt
mi and the total cost value of all other means-of-

instantiations TOTAL COST t =
∑

mi∈Set MIc
GCt

mi.
The instantiation probability to use a means-of-
instantiation mi for instantiating c is determined accord-
ing to the following formula:

ptmi =
TOTAL COST t −GCt

mi

(|Set MIc| − 1)× TOTAL COST t

This probability is used for the selection step through
a roulette-wheel selection strategy.

3.1.3 Seeding Strategy of Constants
When a branch condition involves constants, covering
such a branch may be challenging. To deal with such a
problem, many works [1], [2], [14], [30] propose different
seeding strategies, especially for strings and primitive
types. We adopt a new seeding strategy, inspired by the
works [1], [2], [14], [30] but with some differences: in
addition to primitive and string, we seed also object
constants, and the seeding probability is defined for each
data type and each value in terms of the number of
occurrences collected.

Seeding with a Variable Probability: In general, an
instance generator seeds extracted constants with a fixed
probability, i.e., for a primitive type or a string, a value
is randomly selected from the set of extracted constants
with a certain fixed probabilities. The study conducted
by Fraser and Arcuri [14] shows that a probability equal
to 0.2 gave best results compared to other values. It
also shows that in some classes seeding can be harmful.
Indeed, if the extracted set of integer constants contains
only one value, it is undesirable to see 20% of a popu-
lation formed of the same value because it substantially
reduces diversity. We experimentally observed that using
a seeding strategy with a fixed probability equal to 0.2
indeed affects the coverage negatively in some classes,
especially if the number of extracted constants is small.
Also, it is unbalanced to seed two constants with the
same probability, when one is used a hundred times,
whereas the other is used only once in the source code.
Thus, each constant must have its own seeding proba-
bility according to the number of its occurrences in the
source code.

We propose a variable seeding probability that is based
on the number of occurrences of constants extracted from
the source code. Empirically, we found that a probability

7

equal to 0.05 is better than 0.2 if the number of extracted
occurrences of constants is less than 10; otherwise, as in
previous works, we use a probability equal to 0.2. Thus,
a constant with a large number of occurrences in the
source code has a higher likelihood of being selected.
For example, if the vector of integer constants exacted
from the source code is {〈5, 2, 4, 5, 5, 1, 2, 3, 4〉} then the
seeding probability to generate an integer is equal to 0.05
because the number of occurrences is less than ten and
the probability to seed the value 5 is equal to 3

9 · 0.05.
Seeding the null constant: In general, when con-

stants are discussed, only strings and primitive types
are considered, although any object may be a constant
and this constant may be extracted from the source
code (e.g., array constant is often present in the source
code). We consider also the null constant. The null
constant is often involved in a branch’s condition that
checks for a null object, i.e., it requires an equality
between a variable and the null constant. This type of
condition is difficult to satisfy, but it may become easier
with a seeding strategy. In a OOP source code, there
is often some branch involving the null constant (e.g.,
object == null). If such branches are forgotten, there
is a high likelihood to generate null pointer exceptions.
For example, in the library Apache Commons-Lang3,
in class org.apache.commons.lang3.ArrayUtils,
among 1,096 branches 20% (170) have a predicate in-
volving the null constant. When we tested this class
using EvoSuite [13], [16], only 24 branches out of 170
were covered, i.e., 14% coverage of branches involving
the null constant. This weak coverage does not mean
that EvoSuite does not use the null constant at all, but
it does not use this constant enough to cover branches
involving the null constant. We think that EvoSuite
does not use a systematic seeding strategy with the null
constant: perhaps it uses the null constant sometimes
with some classes or when it meets a difficult class
to instantiate. However, to satisfy branches’ conditions
that involve the null constant, it is necessary to seed
every class with this constant using an adequate seeding
probability. In this work, our instance generator sys-
tematically seeds the null constant while generating
instances of classes with a seeding probability equal to
0.05, i.e., for every one hundred of instances, five null
instances are used. We chose a probability equal to 0.05
because we have only one value to seed.

3.2 A Representation of the Test-data Problem

To generate unit-test data using SBST techniques, the
main component is the test-data problem represen-
tation. The key idea behind our representation of
the test-data generation problem is in using a static
analysis to determine relevant means-of-instantiations

3. Apache Commons-Lang provides extra methods
for classes in the standard Java libraries. Available at
http://commons.apache.org/proper/commons-lang/

1 public class A{
2 private Map<String,Integer>Dm1;
3 private double Dm2;
4 public A(B b, C c, int i) {· · · }
5 public void setDm1(String s, int i) {Dm1.put(s,i);}
6 public void remDm1(int i) {Dm1.put(s,i);}
7 public void setDm2(double d) {Dm2=d;}
8 public mTV(C c, String s, int i) {
9 · · ·

10 mUT(c, ”mTV”);
11 · · ·
12 }
13 private mUT(C c, String s) {
14 · · ·
15 //test target
16 · · ·
17 }
18 · · ·
19 }

Fig. 2: Example of CUT

(CUT-Instantiator), state-modifier methods, and target-
viewfinder methods, and then use them to generate test-
data candidates.

3.2.1 CUT-Instantiator
To reach a test target in a non-static method, an instance
of the CUT is required. Different means can be used to
generate that instance. If the test target is in a constructor
or accessible only via a constructor, then we call this type
of constructor CUT-Instantiator. For a given test target
in a CUT, two reasons may make a constructor a CUT-
Instantiator: (1) through it the test target is reachable or
(2) through it a data member can be modified.

A means-of-instantiation is considered a CUT-Instantiator
if and only if it contains the test target, contains a statement
that modifies a data member, or calls an inaccessible method
directly or transitively via inaccessible methods and the latter
contains the test target or contains a statement that modifies
a data member.

We denote the set of all CUT-Instantiator of a test
target t in a CUT c by MIc,t. If MIc,t is not empty then to
generate potential instances of the CUT to reach t, only
CUT-Instantiators in MIc,t are considered, otherwise all
means-of-instantiations of the CUT are considered.

3.2.2 State-modifier Methods
Because of encapsulation, in general, the state of an
instance is not directly accessible. To address this acces-
sibility problem, in a test datum, a sequence of method
calls is used to put an instance of a CUT in an adequate
state by modifying some data members. Because the aim
of ths sequence of method calls is changing the state
of the CUT, instead of exploring random sequences of
method calls as previous works, we focus on methods
that may modify a data member.

To change the state of an instance of a CUT, we define
state-modifier methods as all accessible methods that may
directly or indirectly assign to some data members a new
value, instantiate them or change their states by invoking
one of their methods.

8

An accessible method is a state-modifier method if and only
if it contains a statement that modifies a data member or
it calls an inaccessible method directly or transitively via
inaccessible methods and the latter contains a statement that
modifies a data member.

For example, in Fig. 2, the methods setDm1 and
remDm1 are state-modifier methods because they
change the state of data member Dm1.

Generally, in a given class, not all methods are state-
modifier. Thus, using the subset of state-modifier meth-
ods instead of all methods to generate the sequence of
method calls may significantly reduce the number of
possible sequences, i.e., the search space. We denote the
set of all state-modifiers for the ith declared data member
in a class c by SMc,i.

3.2.3 Target-viewfinder Methods

A test target is either in an accessible or an inaccessible
method of a CUT. Thus, it may not be directly accessible.
In general, in a test datum, the last method in the
sequence of method calls is called in the hope to reach
the test target. Because a test target is already known,
instead of calling a method randomly, we focus only
on methods that may reach the test target. A target-
viewfinder method aims to reach the test target.

An accessible method is considered a target-viewfinder
method if and only if it contains the test target or it calls
an inaccessible method directly or transitively via inaccessible
methods and the latter contains the test target.

For example, in Fig. 2, if we consider that the test
target is reaching Line 15, then the accessible method
mTV is a target-viewfinder because it is accessible and
calls the inaccessible method mUT that contains the
test target. We denote the set of all target-viewfinder
methods for a given test target t in a CUT c by TVc,t.

3.2.4 Static Analysis

For a CUT we use static analysis on the source code
to extract its set of CUT-Instantiators, state-modifier
methods for each data member, and target-viewfinder
methods. To determine these three sets, static analysis
identifies branches that modify the data members and
execution paths ascending from a branch to an accessible
method. A branch can modify a given data member dm if
it contains a constructor call that assigns a new instance
to dm; an assignment statement wherein dm is on the
left side; or, a method call on dm. Thus, static analysis
generates three types of information: (I1) information
about all branch-modifiers for each data-member; (I2)
information about the parent of each branch; (I3) in-
formation about all branch-callers for each inaccessible
method. Using I1, I2, and I3, static analysis can generate
the set of state-modifier methods and a subset of CUT-
Instantiators. When a test target is defined, using I2 and
I3, the set of CUT-Instantiators is completed and the set
of target-viewfinder methods is generated.

3.2.5 Domain-vector

A domain-vector represents the general skeleton of po-
tential test-data candidates. For a given test target, it is
a vector composed of the set of CUT-Instantiators, fol-
lowed by the set of state-modifier methods for each data
member and ending with the set of target-viewfinder
methods. Correspondingly, a solution is a vector that
assigns to each component one instance from its domain
with a fixed list of needed instances of arguments. For
a nested class (i.e, local, member or anonymous class),
its vector is extended with the parent class’s vector. We
fix an argument or input data by recursively defining its
means-of-instantiations. Except for the target-viewfinder
method, any component in a solution vector can take
an empty assignment. Also, the means-of-instantiation
of CUT in a solution vector can be empty if and only if
all methods in the CUT are static.

Thus, a presentation of a problem of test-data genera-
tion that aims to cover a target t in a class c is as follow:

DVc,t 7−→ 〈{MIc,t ∪ {empty}}, {SMc,1 ∪ {empty}},
..., {SMc,n ∪ {empty}}, {TV (c, t)}〉

For example, if the class A in Fig. 2 is under test and
the test target is Line 15 and the constructor defined at
Line 4 initializes a data member, then the domain-vector
is defined as: DVA,15 = 〈MIA,15, SMA,1, SMA,2, TVA,15〉

with:

• MIA,15 = {A(B,C, int)}
• SMA,1 = {setDm1(String, int), remDm1(int), empty}
• SMA,2 = {setDim2(decimal), empty}
• TVA,15 = {mTV (C, String, int)}

In this example, a test data necessary uses the con-
structor A(B,C, int) to instantiate the CUT and calls
mTV (C, String, int) to reach the test target. To change
the state of the generated instance, a test datum calls
the methods setDm1(String, int) or remDm1(int), then
it calls the method setDim2(decimal).

This example shows that the general form of a test
datum is almost fixed by the domain vector; it remain
only a search algorithm to find adequate arguments to
reach the test target.

4 IMPLEMENTATION

We have implemented our approach in a tool, JTExpert,
that takes as inputs a classpath and a Java file to be
tested. JTExpert automatically produces a set of JUnit
test cases [24], [44] that aims to cover all branches.
JTExpert is completely automated, works on ordinary
Java source-code (.java), and does not need addi-
tional information. An executable of JTExpert with all
required libraries is available for download at https:
//sites.google.com/site/saktiabdel/JTExpert.

JTExpert performs two phases: a preprocessing phase
and a test-data generation phase.

https://sites.google.com/site/saktiabdel/JTExpert
https://sites.google.com/site/saktiabdel/JTExpert

9

4.1 Preprocessing

The preprocessing phase consists of instrumenting and
collecting required information for the second phase.
To extract relevant information from the source code,
we use static analysis as a first phase before starting
test-data generation. The Java file under test is parsed
and its Abstract Syntax Tree (AST) is generated. Before
extracting data, each node in the AST representing a
branch or a method is encoded with its parent branch
or method into a unique code, i.e., an integer value.

We implement this phase in two main components:
Instrumentor and Analyzers.

4.1.1 Instrumentor
To instrument the Java file under test, its AST is modified
to call a specific method on entering each branch. This
method call takes as inputs the branch code and notifies
the testing process when the branch is executed. After
the instrumentation, based on the AST, a new version of
the Java file under test is saved and compiled to generate
its new Java bytecode file (.class).

4.1.2 Analyzers
This component generate the problem representation
described in the previous section. To extract the infor-
mation needed for the problem representation and the
instance generator, several explorations of the AST are
performed: (1) for each method, we identify the set of
all branches callers, i.e., branches wherein the method
is called; (2) for each data member, we identify the set
of all branches modifiers, i.e., branches wherein the data
member is modified; (3) for strings and each primitive
type, the set of constant values are saved.

To simplify the implementation of parsing the Java file
under test and exploring the AST, we used the parser
provided with Eclipse JDT [23]. JDT makes our static
analysis easy because it allows creating an AST visitor
for each required information.

4.2 Test Data Generation

The test-data generation phase is the core of JTExpert to
find the set of test data that satisfies all-branch coverage
criterion. We implement this phase into three main com-
ponents: Instance Generator, Search Heuristic, and Test
Data generator.

4.2.1 Instance Generator
This component implements the generation of means-
of-instantiations, the seeding strategy, and the diversity
strategy described in the previous section. Algorithm 1
presents the different steps of instance generation and
complexity measurement. The algorithm distinguishes
between three types of classes: Atomic, Container, and
any other type of classes (simple classes). All primitive
types, classes that encapsulate only primitive types, and
the string class are considered Atomic. Each Atomic

Algorithm 1 Instance Generator
Input: c is the class to be instantiated
Output: ic is an instance of c

1: if (c is Atomic) then
2: ic ← Atomic(c).getInstance()
3: else
4: if (c is Container) then
5: ic ← Container(c).getInstance()
6: else
7: if (Set MIc == ∅) then
8: Cc ← NIP
9: return ClassNotInstantiable

10: end if
11: im← selectMeans()
12: for (each p in im.getParameters()) do
13: ip ← InstanceGenerator(p)
14: params.add(ip)
15: end for
16: ic ← im.getInstance(params)
17: if (im.succeeds()) then
18: DCt

mi ← DCt−1
mi +DP t

mi

19: else
20: Ct

mi ← Ct−1
mi + FP

21: if (attempt < MAX ATTEMPT) then
22: ic ← InstanceGenerator(c)
23: end if
24: end if
25: end if
26: end if
27: return ic

class has its own random generator that implements
the seeding strategy described in the previous section,
which uses the whole domain corresponding to the
Atomic class (e.g., a short takes its value from the
domain [−215, 215−1]). A Container is a standard way for
grouping objects (e.g., List and Array), i.e., it is an object
that can contain other objects, often referred to as its
elements. All containers in Java are either simple arrays,
classes derived from the java.util.Collection in-
terface, or classes derived from the java.util.Map
interface. The documentation of the Java Collections
Framework4 gives an exhaustive description of all con-
tainers that can be used in a Java program. The current
version of JTExpert treats these three types of collec-
tions as containers, whereas any other collection that
does not derive either from java.util.Collection
or from java.util.Map is considered as a simple class.
Containers have many particular features [7], [48]. Test
data that involves a container should be generated in a
different way than other objects. Instead of using means-
of-instantiaitons to generate a container, we implement
a random instance generator to generate some types of
container: it randomly selects a bounded length then

4. Java Collections Framework Overview: http://docs.oracle.com/
javase/8/docs/technotes/guides/collections/overview.html

http://docs.oracle.com/javase/8/docs/technotes/guides/collections/overview.html
http://docs.oracle.com/javase/8/docs/technotes/guides/collections/overview.html

10

Algorithm 2 Generator of Sequences of Method Calls
Input: DV domain vector; B branch to reach
Output: TDC a test data candidate

1: TDC.object← InstanceGenerator(CUT)
2: ntv ← DV.length− 2
3: for (int i = 0; i < ntv; i++) do
4: m← randomly select a method from SMCUT,i

5: for (each p in m.getParameters()) do
6: ip ← InstanceGenerator(p)
7: params.add(ip)
8: end for
9: TDC.methods.add(m, params)

10: new params
11: end for
12: m← randomly select a method from TVCUT,B

13: for (each p in m.getParameters()) do
14: ip ← InstanceGenerator(p)
15: params.add(ip)
16: end for
17: TDC.methods.add(m, params)

it recursively calls Algorithm 1 to generate all needed
elements. For any other class, at Line 11, the set of all
its possible means-of-instantiations is generated and a
mean-of-instantiation is selected. To generate this set, for
a given class, we use the Java Reflection API [40] to get
the means-of-instantiations offered by that class and the
open-source library Reflections [41] to get subclasses and
external factory methods. After getting the set of all pos-
sible means-of-instantiations, an instantiation probability
is assigned to each means-of-instantiation according to
its complexity and a roulette-wheel selection strategy is
used to select a means-of-instantiation. Then, all needed
arguments are recursively instantiated at Line 13. Finally,
at Line 16, an attempt to generate an instance of the class
is made, after which the complexity of the selected mean-
of-instantiation is updated.

4.2.2 Search Heuristic
We combine the proposed approach with a random
search. Although random search is the simplest among
the search heuristics, it is largely used in software testing
because it may reach a high level of coverage [3], [7], [12],
[33], [34], [35], [36]. It also makes it easier to evaluate our
proposal without having to isolate its effect from that of
a more sophisticated search.

The common random search relies on generating a
candidate solution vector randomly to execute the in-
strumented class and to reach the targeted branch. It
stops either if the generated candidate solution vector
executes the targeted branch or a stop condition is
reached. Such an implementation may hang the search
in difficult or unreachable branches [16].

In contrast, in JTExpert, a random search is imple-
mented to target all uncovered branches at the same
time: it does not focus only on one branch, instead it

Algorithm 3 Test Data Generation.
Input: U is the unit under test
Output: TD a set of test data (in JUnit Format)

1: U ′ ← instrument(U)
2: A← analyse(U ′)
3: T ← A.getBranches2Cover()
4: while (T ! = ∅ && !maxTime) do
5: b← randomly select a branch from T
6: dv ← A.getDV (b)
7: tdc← generateMethodsSequence(dv)
8: execute(tdc)
9: if (tdc.isTestData()) then

10: TD ← TD ∪ tdc
11: T.remove(tdc.getCoveredBranches())
12: end if
13: T.remove(b)
14: if (b /∈ tdc.getCoveredBranches()) then
15: WT.add(b)
16: end if
17: if (T == ∅) then
18: T ←WT
19: WT.clear()
20: end if
21: end while
22: writeJUnitTestCases(TD)

generates a candidate solution uniformly at random for
every uncovered branch. This implementation is likely
to reach a good branch coverage quickly because it does
not waste efforts on unreachable branches and it benefits
from the significant number of branches that may be
covered fortuitously. Lines 4 to 21 in Algorithm 3 are a
pseudo-code of the search algorithm implemented in JT-
Expert. Line 7 calls the generator of sequences of method
calls that is presented in Algorithm 2. The later uses the
domain-vector and the instance generator to guide the
random search. In Algorithm 2, at Line 1, an instance
of the CUT is generated using the instance generator
and the set of CUT-Generators. Hence the implemented
random heuristic benefits from all the features in our
instance generator, e.g., the large number of means-
of-instantiations. Lines 2 to 10 generate a sequence of
state-modifier methods: at Line 4 a method is randomly
selected from the current set of state-modifier methods,
then all required instances of classes are generated in
the loop for at Line 5. Finally, at Lines 12 to 16 a target-
viewfinder method is generated.

The instance generator and the domain-vector are
at the core of our search heuristic. The domain-vector
guides the search by restricting the possible sequences
of method calls. The instance generator guides the search
by diversifying instances of classes.

4.2.3 Test Data generator

This component operates and coordinates other compo-
nents to generate test data. It implements the skeleton of

11

the whole process of test data generation. Algorithm 3
presents the different steps of this component to satisfy
the all branch coverage criterion for a file under test.
First, at Line 1, a file under test is instrumented and
a new instrumented version of the file is generated.
The file is analyzed at Line 2 to get all relevant infor-
mation (e.g., constants) needed for the next steps. For
each branch to be covered in the file, selected at Line
5, a domain vector dv that represents the problem is
generated at Lines 6 by an analyzer A. Lines 7 and 8
represent a guided random generation of a test-datum
candidate to reach the branch b. A test-datum candidate
tdc is generated at Line 7 and executed at Line 8 using
the Java Reflection API [40]. If this tdc covers either b or
some uncovered branches, then it is inserted in the set
of test data TD at Line 10 and all its covered branches
are removed from the set of test targets T . At Line 13,
b is removed from T . If b is not covered yet, then it is
inserted in a waiting set of test targets WT at Line 15.
When the search has run through all branches (i.e., T
becomes empty), then a new round starts by initializing
T with WT at Line 18. Finally, at Line 22, JDT is used
to translate the set of test-data TD into a Java file that
contains test cases in JUnit format.

5 EMPIRICAL STUDY

This section presents our evaluation of JTExpert for
exploring restricted bounded method sequences, instan-
tiating classes by using the proposed diversification and
seeding strategies, and generating test data. We inves-
tigate the advantages and limitations of JTExpert by
comparing it with EvoSuite [13], [16] that uses a genetic
algorithm to generate test data, which starts with an ini-
tial population of chromosomes (i.e., a set of sequences
of method calls) randomly generated from the set of all
accessible methods. When an argument is needed, Evo-
Suite randomly selects a means-of-instantiation to gen-
erate an instance. In this study, we use version 20130905
of EvoSuite. We have performed the experiments on a
Oracle Grid Engine comprising 42 similar nodes, each
of them equipped with 2-dual core CPU 2.1 GHZ, 5GB
of memory, a Fedora core 13 x86 64 as OS, and Java
Development Kit 7.

5.1 Experimental Setup

5.1.1 Empirical Study Subjects
The study was performed on 115 of classes from four
open-source libraries. All the selected CUTs have been
previously used as benchmark to evaluate competing
tools that participated to the SBST contest of the Java
unit-testing tool version 2013 [49] which EvoSuite won
[15]. Some of these classes were also used in evaluating
µTest [18], which has become a part of EvoSuite [16]. The
set of classes in this benchmark are carefully selected by
the SBST contest committee of the Java unit-testing tool
to represent different challenges of unit-testing. Most

of those classes are complex for test generation [18].
For example, in the library Joda-Time, accessibility is
a problem for several classes: only default access is
possible, i.e., classes are visible only in their packages.
Also, many classes are difficult to access because they
are private and embedded as class members in other
classes. Others are difficult to instantiate because they
do not offer any accessible constructor and can only
be instantiated through factory methods or accessible
data members [18]. Such accessibility problems create the
difficulties D1, D2, and D3 described in Section 1.

Table 1 lists the Java libraries that we used in our
study. Each line presents one of the libraries while
columns show the library names, numbers of Java files
under test, numbers of classes, numbers of methods,
numbers of branches, numbers of lines of code, and
numbers of instructions. These metrics are computed at
the byte-code level using the JaCoCo tool [22], so that
no empty or comment line is included.

5.1.2 Procedure
In the SBST contest 2013 [49], tools were evaluated using
two metrics: code coverage and mutation score. In this
study, we evaluate the two tools, JTExpert and EvoSuite,
only with code coverage because mutation score does
not apply to our approach and the current version of
JTExpert does not generate assertions to kill mutants.

For every class in the benchmark, we generate com-
plete test suites to cover all branches with JTExpert
and compare them with those generated by EvoSuite.
Each tool applies on a different level of source code:
EvoSuite applies on Java bytecode (.class), whereas
JTExpert applies on Java source code (.java), which
may generate differences in the observed coverage of
each tool because (1) the Java compiler translates some
instructions over boolean into conditional statements
and (2) one conditional statement in the source code
may be translated into many conditional statements if
it contains many clauses. To compare the approaches
needed, instead of the coverage measured by each tool,
we use JaCoCo [22] to measure the coverage: JTExpert
and EvoSuite generate test suites and JaCoCo takes them
and measures their coverage, at the bytecode level, in
terms of four metrics: method coverage, branch cover-
age, line coverage, and instruction coverage. Each search
for test data that meets branch coverage for every CUT is
performed 20 times. This repetition allows reducing any
random aspect in the observed values. The 20 executions
are performed using an identical set of seeds for random
number generation. To make the experimentation scal-
able, for each execution, a maximum of 200 seconds is
allowed per search including the instrumentation and
preliminary analysis stages. If this time is spent by
JTExpert or EvoSuite, the tool is asked to stop and,
after a maximum of 5 minutes, its process is forced
to stop (killed). We stop at 200 seconds because we
observe empirically that, after this duration, the coverage
progress of each tool becomes very slow. In total, this

12

Libraries #Java Files #Classes #Methodes #Branches #Lines #Instructions
Joda-Time 50 87 1,411 3,052 5,876 25,738
Barbecue 18 18 161 323 1,041 14,558
Commons-lang 5 6 366 1,942 2,134 9,139
Lucene 2 4 58 202 262 1,364
All 75 115 1,998 5,519 9,313 50,799

TABLE 1: Experimental subjects.

experiment took (77× 20× 200× 2) = 616× 103 seconds,
i.e., more than seven days of computational time.

During all experiments, except the time-out parame-
ter, EvoSuite is configured using its default parameter
settings, which according to Arcuri and Fraser [6] work
well. Also, we configure EvoSuite to skip its test-case op-
timization phase that consists of optimizing the number
of generated test cases because this optimization slows
down EvoSuite and does not impact coverage.

5.1.3 Comparing JTExpert to EvoSuite
We compare JTExpert and EvoSuite using box-plots that
represent the actual obtained coverage values and an
array showing the average coverage values. To com-
pute the average branch (respectively, method, line, or
instruction) coverage achieved for a given library, the
number of all covered branches (respectively, methods,
lines, or instructions) in all executions is summed and
divided by the total number of branches in the library
multiplied by the number of executions (20).

To identify the origin of any observed differences
between JTExpert and EvoSuite, we minutely analyze
the classes wherein a significant difference of coverage
is observed: for each library, we create an Eclipse5 project
containing the classes under test and the generated test
suites. Then we observe the branches covered by one tool
and missed by the other using the plugin EclEmma6.
We make our interpretations according to the type of
branches at the root of the differences.

We also perform statistical tests on the coverage re-
sults. We choose Mann-Whitney U-test [27] and Vargha-
Delaney’s Â12 effect size measure [47]. Both measures
are recommended as statistical tests to assess whether a
novel random testing technique is indeed useful [5].
• To assess the statistical significance of the aver-

age difference between JTExpert’s results and Evo-
Suite’s, Mann-Whitney U-test [27] is used and the p-
values are computed. Generally, the U-test is applied
to compare whether the average difference between
two groups is really significant or if it is due to
random chance. The average difference between two
groups is considered statistically significant if its p-
value is less than 0.05;

• The U-test may be statistically significant but the
probability for JTExpert to outperform EvoSuite
may be small. To assess this probability, we also

5. https://www.eclipse.org
6. EclEmma is based on the JaCoCo code coverage library available

at: https://www.eclipse.org

compute Vargha-Delaney’s Â12 effect size measure
[47]. The Â12 measures the probability that JTExpert
yields higher code coverage than EvoSuite, e.g.,
Â12 = 0.9 means JTExpert would obtain better
results than EvoSuite 90% of the time.

5.1.4 Understanding JTExpert Behavior
To gain a better understanding of the behavior of our
approach and the contribution of each proposed com-
ponent in its results, we carry out several different
sets of experiments, each one focusing on one of the
proposed components. First, we analyze JTExpert with-
out any of its components (JTE-All) except a basic
instance generator and the random search that targets
all branches at the same time. Then, for a given com-
ponent (e.g., problem representation, seeding strategy,
diversification strategy) that is proposed to reduce one
of the test-data generation difficulties D1, D2, or D3, we
analyze JTExpert coverage over time in the absence of
this component, its contribution being measured by the
difference observed between JTExpert and the version of
JTExpert without this component.

Because we use JaCoCo to measure coverage, we can
not get the progress of coverage over time, so to get this
information, we perform a set of experimentations: an
experimentation is performed for each search time in the
set {10s, 30s, 50s, 100s, 150s, 200s}. Each experimentation
was performed with the same conditions as the first one
(20 executions for each unit under test). The average
branch coverage in terms of time is analyzed.

5.2 Results
All graphics and statistical analyses presented in this
study are performed with R7 version 3.1.0 [45].

5.3 Comparing JTExpert to EvoSuite
Figures 3a, 3b, 3c, 3d, and 3e report the box-plots of
the achieved coverage in 200 seconds per CUT by each
tool on the Joda-Time, Barbecue, Commons-lang, and
Lucene library, and all libraries together, respectively.
Each box-plot compares JTExpert to EvoSuite using the
four metrics of code coverage offered by JaCoCo: meth-
ods, branches, lines, and instructions.

Table 2 summarizes the results in terms of average
coverage achieved by each tool at 200 s for each CUT.
It shows the average of the four metrics. Triangles di-
rected upward show the points of comparison wherein

7. Available at http://www.R-project.org

https://www.eclipse.org
https://www.eclipse.org

13

(a) Joda-Time. (b) Barbecue. (c) Commons-lang.

(d) Lucene. (e) All libraries.

Fig. 3: Comparison of JTExpert and EvoSuite on all libraries in terms of method coverage, branch coverage, line
coverage, and instruction coverage.

Libraries Tools % of average coverage in terms of
Methods Branches Lines Instructions

Joda-Time EvoSuite 84.92 60.82 74.80 73.94
JTExpert N 91.33 N 69.01 N 82.90 N 82.09

Barbecue EvoSuite 86.80 77.49 87.38 96.40
JTExpert N 89.75 N 82.89 N 89.94 � 97.02

Commons-lang EvoSuite 83.72 61.15 73.54 76.12
JTExpert N 98.27 N 85.06 N 96.17 N 95.00

Lucene EvoSuite 92.58 52.40 90.26 78.59
JTExpert N 99.91 N 57.15 N 95.17 N 81.53

All EvoSuite 85.08 61.61 76.26 80.92
JTExpert N 92.73 N 75.04 N 86.82 N 88.70

Diff. % +7.65 +13.43 +10.56 +7.78
+152.85 +741.20 +983.45 +3,952.16

TABLE 2: Summary of the experimental results. Comparison with EvoSuite in terms of average coverage.

JTExpert outperforms EvoSuite by a percentage ranging
from 2.5% to 24% while a square represents a difference
of less than 2.5%. Table 3 reports the Â12 effect size
measure as well as the p-values of the statistical U-test.

The benchmark [49] contains two other classes from
the library Sqlsheet but we do not report the results of
these two classes because neither JTExpert nor Evosuite
could generate any test data. The challenge in these
classes is generating an instance of the CUT. These
classes offer a constructor that needs two parameters:
one is a URL and the other is a string. The first parameter
must be a URL referencing an existing Microsoft Excel
file and the second parameter must hold the name of
an existing sheet in the file. The likelihood of randomly

instantiating this type of class is almost null. Hence, to
automatically generate an instance for such a class, the
instance generator must understand the context of use
of the class, which we will tackle in our future work.

A glance at Figures 3a, 3b, 3c, 3d, 3e and Table 2
shows that JTExpert outperforms EvoSuite by covering
test targets that EvoSuite failed to cover. Among 20
comparisons, EvoSuite achieved almost the same per-
formance as JTExpert for instruction coverage on Bar-
becue whereas JTExpert is dominant for all other met-
rics and libraries. The difference over EvoSuite reached
23.91% using the metric branch coverage on the library
Commons-lang. In total, JTExpert covers on average
3,952 instructions more than EvoSuite.

14

Libraries
Comparing JTExpert to EvoSuite in terms of average coverage

Methods Branches Lines Instructions
U-test (p) Â12 U-test (p) Â12 U-test (p) Â12 U-test (p) Â12

Joda-Time 6.71e-08 1 6.76e-08 1 6.78e-08 1 1.45e-11 1
Barbecue 3.54e-07 0.96 6.95e-08 0.99 6.32e-08 1 1.05e-07 0.99
Commons-lang 3.27e-08 1 6.77e-08 1 6.67e-08 1 6.74e-08 1
Lucene 5.41e-09 1 8.98e-06 0.91 9.48e-06 0.90 3.88e-05 0.88
All 6.69e-08 1 1.45e-11 1 6.78e-08 1 6.79e-08 1

TABLE 3: Results of computing U-test and the Â12 effect size measure on JTExpert’s results compared to EvoSuite’s.

In Table 3, all U-test’s p-values are less than 10−4.
To say that there is a difference, in all cases, is taking
less than 10−2 percent risk of being wrong. Thus, we
conclude that there is a statistically significant difference
between JTExpert’s results and EvoSuite’s. Also, almost
all Â12 effect size measure values are equal to 1. There-
fore, JTExpert is practically certain to achieve a higher
code coverage than EvoSuite. Even when Â12 is less than
1, there is a high probability (at least equal to 0.88) for
JTExpert to achieve better coverage than EvoSuite.

To summarize, box-plots, average code coverage,
Mann-Whitney U-test, and Vargha-Delaney?s Â12 effect
size measure results support the superiority of our ap-
proach over EvoSuite in terms of code coverage.

5.4 Comparing JTExpert and EvoSuite in Details

To better understand the origin of the observed differ-
ences in terms of code coverage between JTExpert and
EvoSuite, we analyze the code coverage at the class
level. We would have liked to automatically analyze the
lower levels (e.g., methods, branches, statements) but the
JaCoCo reports do not offer us this information. Thus,
we manually analyze and interpret the code coverage on
lower levels.

Figure 4 presents the box-plots of the branch coverage
achieved by each tool on the classes where a significant
difference is observed. The coverage achieved on a given
class is compared between two vertical lines. Each com-
parison contains a box-plot for EvoSuite’s coverage, a
box-plot for JTEpert’s coverage, the name of the class,
and the total number of branches in that class written in
brackets. In Figure 4, JTExpert has higher coverage than
EvoSuite’s on the first fourteen classes, from the left, that
represent 60% of the total number of branches under test.
EvoSuite has higher coverage than JTExpert on the last
seven classes that represent 5.6% of the total number of
branches under test. Evosuite achieved better coverage
in some small or medium size classes whereas JTExpert
has higher coverage in some other small or medium
size classes and is dominant on large classes. Overall,
Figure 4, supports the observation that JTExpert is more
effective than EvoSuite on large classes. This observation
can be explained by the complexity of identifying a
required sequence of methods to reach a test target in
a large class, i.e., a significant number of sub-classes
and methods substantially decreases the likelihood to
get a relevant sequence without a static analysis. The

1 public static PeriodFormatter alternateWithWeeks() {
2 if (cAlternateWithWeeks == null) {
3 cAlternateWithWeeks = new ←↩

PeriodFormatterBuilder()
4 .appendLiteral(”P”)
5 .printZeroAlways()
6 .minimumPrintedDigits(4)
7 .appendYears()
8 .minimumPrintedDigits(2)
9 .appendPrefix(”W”)

10 .appendWeeks()
11 .appendDays()
12 .appendSeparatorIfFieldsAfter(”T”)
13 .appendHours()
14 .appendMinutes()
15 .appendSecondsWithOptionalMillis()
16 .toFormatter();
17 }
18 return cAlternateWithWeeks;
19 }

Fig. 5: Source code of method
org.joda.time.format.ISOPeriodFormat.
alternateWithWeeks()

proposed problem presentation helps JTExpert to reach
more test targets efficiently by trying only relevant se-
quences of method calls, whereas EvoSuite may try a
significant number of sequences of method calls without
getting a good one.

Class org.joda.time.format.ISOPeriodFormat
has five private data members and five public methods.
Each method contains two branches and uses a different
data member for its conditional statement. Figure 5
presents the source code of one of the methods. The data
member cAlternateWithWeeks is used and modified
only by this method. Hence, to reach both branches,
the method must be called twice in a same sequence.
All the other methods follow same pattern. The twenty
test suites generated by EvoSuite cover only the five
branches that require a null data member, whereas those
generated by JTExpert cover all ten branches, thanks
to its problem representation that allows JTExpert to
understand that reaching those branches requires two
calls of the methods.

Class net.sourceforge.
barbecue.CompositeModule has a private data
member, modules, and contains three loops over
modules in three different methods. Figure 6 presents
a part of the source code of CompositeModule. To
enter inside a loop, the list modules must contain
at least one item. Hence, to reach a given loop, the

15

Fig. 4: Comparison of JTExpert and EvoSuite on classes in terms of branch coverage.

1 public int widthInBars() {
2 int width = 0;
3 for (Iterator iterator = modules.iterator(); iterator.←↩

hasNext();) {
4 Module module = (Module) iterator.next();
5 width += module.widthInBars();
6 }
7 return width;
8 }
9

10 public void add(Module module) {
11 modules.add(module);
12 }

Fig. 6: Part of the source code of class
net.sourceforge.barbecue.CompositeModule

method add(Module module) must be called before
any method containing a loop. The twenty test suites
generated with EvoSuite could not enter in any loop,
whereas those generated by JTExpert cover two of the
three loops. JTExpert missed covering the third loop
because it is inside a protected method. JTExpert’s
problem representation makes the difference.

Classes org.joda.time.format.
DateTimeFormatterBuilder and
PeriodFormatterBuilder contain seventeen class
members: ten in DateTimeFormatterBuilder and

seven in PeriodFormatterBuilder. The classes con-
tain 144 methods: 92 in DateTimeFormatterBuilder
and 52 in PeriodFormatterBuilder. EvoSuite
has difficulty in reaching methods declared in class
members: the test suites generated with EvoSuite
could not reach 44 methods whereas the test suites
generated with JTExpert missed only 19 methods. The 19
methods missed by JTExpert are essentially in four class
members: DateTimeFormatterBuilder$Fraction,
DateTimeFormatterBuilder$UnpaddedNumber,
DateTimeFormatterBuilder$FixedNumber, and
PeriodFormatterBuilder$Composite. JTExpert
was unable to instantiate the first three class members
because they do not offer any accessible means-of-
instantiation. EvoSuite could not or did not try to
instantiate class members and reached a weak coverage
compared to JTExpert. Its problem representation and
means-of-instantiations make JTExpert more effective
than EvoSuite by buildings more relevant sequences of
methods and means-of-instantiations to reach methods
in class members.

As shown in Figure 1, class
org.apache.lucene.util.WeakIdentityMap
contains an anonymous class with two private data
members, a private method, and three public methods.
Because there is no call to the three public methods,

16

only a direct call can reach them. Also, branches
in the anonymous class depend on the state of its
enclosing class, WeakIdentityMap. Hence, to reach
the methods in the anonymous class, an instance of
this class is required in a relevant state. The twenty
test suites generated by EvoSuite reached only two
methods out of four and could not cover any branch,
whereas those generated by JTExpert reached the four
methods and covered 12 branches out of 16. Thanks
to the means-of-instantiations that allow JTExpert to
instantiate an anonymous class and with the help of the
problem representation, JTExpert puts the instances of
the class, WeakIdentityMap and the anonymous class
in desired states to reach the methods and branches
inside the anonymous class.

EvoSuite could not generate test data for two classes:
org.joda.time.field.ScaledDurationField
and org.joda.time.field.
PreciseDurationField. The source code of EvoSuite
is not available, so we cannot know the reason
for this behavior but it may be due to its inability
to generate an instance of the CUT. Consequently,
JTExpert outperforms EvoSuite by covering eight out of
14 branches in ScaledDurationField and seven out
of eight in PreciseDurationField.

In class org.joda.time.convert.
ConverterManager, on average, each test suite
generated by EvoSuite missed 13 branches compared
to a test suite generated by JTExpert. The 20 test suites
generated by EvoSuite missed four branches that require
a null object (e.g., if(object==null)). The 20 test
suites generated by EvoSuite, on average, covered only
one of those four branches, whereas the test suites
generated by JTExpert covered all four branches. The
seeding of a null constant benefits JTExpert.

Three classes from the library Commons-lang,
ArrayUtils, BooleanUtils, and NumberUtils,
contain a significant number of conditional statements
to check null objects and arrays of lengths equal to 0.
Class ArrayUtils contains 170 branches requiring a
null object and 60 branches requiring an array of length
0. Class BooleanUtils contains 26 branches requiring
a null object and six branches requiring an array of
length 0. Class NumberUtils contains 30 branches
requiring a null object and 12 branches requiring
an array of length 0. The 20 test suites generated
by EvoSuite reached 31 branches requiring a null
object: 10 branches in ArrayUtils, 14 branches in
BooleanUtils, and seven branches in NumberUtils.
These test suites could not reach the branches that
required an array of length 0. In contrast, the test suites
generated by JTExpert covered all branches requiring a
null object or an array of length 0. The generator of
containers and the seeding of null constants benefits
JTExpert. The strategy used in EvoSuite to seed null
constants is not enough and seeding the constant null
with a constant probability equal to 5% is necessary to
reach all branches involving that constant. Containers

should be generated in a different way than other
objects as proposed in Section 4.2.1.

Class org.joda.time.MutableDateTime extends
class BaseDateTime and defines 103 methods that are
mostly setters that take integers as parameters. In class
MutableDateTime, there are no visible preconditions
on the parameters but the parameters must satisfy the
preconditions defined in the superclass, e.g., a value
must be an hour of the day in the range [0,23] or a
day of the week in the range [1,7]. These ”hidden”
preconditions make the task of covering methods in
MutableDateTime harder. The test suites generated by
EvoSuite could not cover 14 methods, whereas the test
suites generated by JTExpert missed only four methods.
This difference comes from the seeding strategy and
the search heuristic. The seeding strategy offers ade-
quate values that satisfy preconditions in the superclass
but the way each tool uses them is different: EvoSuite
relies on a genetic algorithm. If its initial population
lacks values that satisfy the hidden preconditions, then
EvoSuite may make a lot of attempts using the same
population before introducing new values through its
mutation operator, whereas the random search in JT-
Expert uses different values. Further, the absence of
preconditions may make the GA blind and worst than
a guided random search. Therefore, the seeding strategy
combined with the random search is at the root of the
observed difference between JTExpert and EvoSuite on
class MutableDateTime.

Classes org.joda.time.field.FieldUtils and
org.joda.time.DateTimeComparator contain
branches and return statements that rely on disjunctive
and conjunctive conditions. For such statements, the
number of branches at the Java Bytecode level is different
from at the Java source code level. For example, to cover
all branches in boolean foo(boolean a, boolean
b){return a && b;}, generates only one test data,
whereas this function contains four branches at the
bytecode level. Thus JaCoCo favors EvoSuite that works
with bytecode and penalizes JTExpert. Consequently,
EvoSuite reaches seven branches in class FieldUtils
and four branches in class DateTimeComparator
more than JTExpert.

Class org.joda.time.convert.
StringConverter contains 72 branches, 42 of
which are in method getDurationMillis(Object
object) in which all the branches depend on the
return value of object.toString(): To reach more
than 28 branches, the method object.toString()
must return a string that starts with the substring PT
and finished with S, i.e., gets the value as a string in the
ISO8601 duration format. For example, ”PT6H3M7S”
represents 6 hours, 3 minutes, 7 seconds. The method
object.toString() must match the toString()
method of the class ReadableDuration. In the 20 test
suites generated, JTExpert failed to generate such an
object, whereas EvoSuite generated the required objects.
Consequently, EvoSuite outperforms JTExpert on class

17

StringConverter with 29 branches. After inspecting
JTExpert source code, we found that we restricted the
list of stubs to instantiate class java.lang.Object to
some classes, e.g., Integer, String, and the CUT. Thus,
JTExpert could not generate an instance of a class that
implements the interface ReadableDuration. This
limitation may be fixed by enlarging the list of stubs
of the class java.lang.Object to contain any other
class that was instantiated during the search.

To summarize, the sample of classes analyzed above
is representative because it covers classes in which we
observed differences between the two approaches. This
analysis shows the actual effects of the proposed com-
ponents and clarifies the advantages and weaknesses
of the compared approaches. It also shows the types
of test target for which JTExpert outperforms Evosuite:
branches involving a data member, branches requiring
the null constant, branches requiring a container or
string with length equal to 0, methods that are de-
clared inside classes members or anonymous classes,
and methods that contains hidden preconditions. Also,
it reveals the limitation in our generator for class
java.lang.Object.

5.5 Understanding JTExpert behavior
We now quantify and measure the contribution of each
component. Figure 7 shows the difference in terms of
average branch coverage between JTExpert and six other
versions wherein at least one proposed component is
disabled: JTExpert without all components (JTE-All),
JTExpert without the generator of sequences of method
calls (JTE-Seq), JTExpert without the seeding strategy
(JTE-Seed), JTExpert without the variable probability in
the seeding strategy (JTE-Se%), JTExpert without the
diversification strategy (JTE-Div), and JTExpert without
the instantiation of anonymous classes (JTE-Ano).

Figure 7 reflects the achieved results in terms of aver-
age branch coverage for all classes. It shows that JTEx-
pert performs better than Evosuite in terms of efficiency
as well. JTExpert is more efficient because, at 10 seconds,
it reaches a high branch coverage, almost 70%, whereas
Evosuite reaches 31% coverage at 10 seconds and 61%
at 200 seconds. There is a large difference in terms of
time required to reach the same level of coverage because
Evosuite does not reduce the search domain of D2 and
D3 and because it does not have a diversification strat-
egy, its seeding strategy uses a fixed seeding probability,
and it covers only primitive types and strings. Also, the
random search implemented in JTExpert does not waste
time with complex branches. Furthermore, the state-
modifier methods, target-viewfinder methods, and the
instance generator guide the random search to quickly
reach less complex branches.

In a first experimentation, JTE-All, each proposed
component was disabled or replaced with a simple ver-
sion as explained in the next paragraphs. JTE-All per-
formed better than EvoSuite, especially on the Common-
lang library and but is less effectiveness on Barbecue. For

Fig. 8: Comparison of JTE-All and EvoSuite on classes
in terms of branch coverage at 200 s.

the two other libraries, Joda-Time and Lucene, EvoSuite
performed better than JTE-All.

On all libraries, JTE-All is more efficient than Evo-
Suite because at 10 s it reached 56% branch coverage,
whereas EvoSuite reach only 31%. This difference can be
explain by the different search heuristics implemented in
JTE-All and EvoSuite: If EvoSuite generates an initial
population that lacks some methods leading to some
easy branches, then it must wait until the mutation op-
erator injects them, whereas the random search used in
JTE-All is more likely to quickly select these methods
in a sequence, hence it reaches more branches early.

At 200 s, EvoSuite (genetic algorithm) is supposed to
outperform JTE-All (random search) but we observed
almost the same branch coverage. To understand this
behavior, we analyzed the branches reached on each
class. Figure 8 presents the box-plots of the achieved
branch coverage with JTE-All and EvoSuite at 200 s on
the classes where a significant difference was observed.

EvoSuite outperforms JTE-All on classes
from different libraries, particularity Joda-time.
In these classes, branches are complex to reach
because they are embedded in sub-classes or
private methods, e.g., org.joda.time.format.
DateTimeFormatterBuilder contains 14 sub-classes.
EvoSuite benefits from genetic algorithm to reach a
complex test targets compared to a random search.

JTE-All outperforms EvoSuite on three large classes
in Commons-lang. Most of the methods in these classes
take containers as parameters: 208 methods in class
ArrayUtils and 13 in class NumberUtils use arrays.
Also, the difficulty to reach branches in these classes lies

18

Fig. 7: Contribution of each proposed component in terms of average branch coverage over time.

in the generation of diversified instances of the methods’
parameters. For example, a same method may contain a
condition requiring a null array, a condition requiring an
array with length equal to 0, and a condition requiring
an array containing many elements. To cover branches in
such a method, it is enough to call it with different types
of array, i.e., to have an array generator that generates
diversified types of array.

We think that we could not see the difference between
JTE-All and EvoSuite at 200 s because the containers
generator implemented in JTE-All hides the advantage
of the genetic algorithm implemented in EvoSuite on
complex branches.

In a second experimentation, JTE-Seq, the generator
of sequences of method calls was replaced by a random
generation of sequences of method calls. The comparison
to JTExpert in Figure 7 shows that the use of the pro-
posed representation is beneficial for the search, with an
average branch coverage equal to 9.28% at 200 s, where
the average branch coverage increased from 65.87% to
75.15%. The improvement is significant for the classes
in Joda-Time and Lucene: the average branch coverage
for Joda-Time increases from 53.55% to 69.01% and for
Lucene, from 47.20% to 57.15%. For the other libraries,
the obtained results are almost the same, i.e., there are

no improvements. The better performance obtained on
Joda-Time and Lucene and not on Commons-lang and
Barbecue can be explained by the complex class struc-
tures found in the first two: in Joda-Time and Lucene,
one Java file or class defines more than one class (e.g., the
Java file DateTimeFormatterBuilder.java defines
15 classes). A CUT that contains nested classes (e.g.,
member class, local class, or anonymous class) needs
guidance during the test-data generation. We show that
the proposed representation improves coverage, partic-
ularly for complex classes under test.

In a third experimentation, JTE-Ano, anonymous
classes are tested through their enclosing class, i.e., the
closest accessible class that contains the anonymous
CUT. The comparison to JTExpert in Figure 7 shows
that the proposed means-of-instantiations of anony-
mous classes slightly enhances the search process, with
an average branch coverage equal to 0.34% at 200 s.
This improvement may seem insignificant but such
magnitude on all classes was expected because such
anonymous classes are rare in the chosen libraries.
To estimate the actual improvement that the instanti-
ation of anonymous classes may bring, we analyzed
class org.apache.lucene.util.WeakIdentityMap
separately. We found that the proposed means-of-

19

instantiations of anonymous class enhance significantly
the average branch coverage of this class, where the
coverage increased from 39.77% (JTE-Ano) to 71.47%
(JTExpert). This is a large enhancement in terms of
branch coverage because the anonymous class defined in
org.apache.lucene.util.WeakIdentityMap con-
tains a significant number of branches.

In a fourth experimentation, JTE-Div, the diver-
sification strategy was replaced by a random selec-
tion of means-of-instantiations. The comparison to JT-
Expert in Figure 7 shows that the proposed diversi-
fication strategy enhances the search process, with an
increase of average branch coverage equal to 1.28%
at 200 s, where the average branch coverage in-
creased from 73.87% to 75.15%. At first glance, this
improvement seems insignificant. However, this mag-
nitude is expected because of the small number of
classes that are hard to instantiate. For example, class
org.apache.lucene.util.FixedBitSet is hard to
instantiate because calling some of its constructors with
random arguments may hang the test data generation
process. Thus, the diversification strategy is beneficial
to the search, with an average branch coverage equal
to 26.53%, where the coverage on this particular class
passed from 26.09% to 52.62%. We show that the pro-
posed diversification strategy of means-of-instantiations
improves coverage, especially for classes that defines
some means-of-instantiations that may be harmful with
randomly generated arguments.

translated into many conditional statementsIn a fifth
experimentation, JTE-Seed, the proposed seeding en-
hancements were simply disabled, i.e., without seeding
null and with a constant seeding probability equals to
0.2. Thus, the seeding strategy used in this experimenta-
tion is equivalent to one studied in [14]. The comparison
to JTExpert in Figure 7 shows that seeding null and
using a variable seeding probability are beneficial for
the search, with an increase of average branch coverage
equal to 5.60% at 200 s, where the average branch
coverage increased from 69.65% to 75.15%. In this 5.60%
enhancement, the variable probability of seeding con-
tributes by 1.08% as shown in the graph JTE-Se% in
Figure 7. The improvement is significant for the classes
in Commons-lang and Lucene, with an enhancement
almost equal to 10%, where the average branch coverage
increased from 75.63% to 85.06% on Commons-lang and
from 44.80% to 57.15% on Lucene. On Joda-Time and
Barbecue, the improvement is less significant, below 3%.
The significant enhancement on the first two libraries
can be explained by the significant number of branches
that rely on null pointer checks. The reason for the small
improvement observed on Joda-Time and Barbecue is
the small number of conditions that they use to prevent
null pointer exception. During the execution of the test
suites generated for these two libraries, we observed that
a significant number of null pointer exceptions occurred.
Seeding null may be also beneficial to raise null pointer
exceptions. We conclude that seeding null improves the

coverage, especially for classes that systematically check
for null pointers before using the instance of a class.

To summarize, every proposed component improves
the coverage for all or some cases of the CUT. The
large difference in terms of code coverage achieved over
EvoSuite comes from the accumulated contributions of
all proposed components.

5.6 Threats to Validity

The results showed that using JTExpert to generate test
data, improves SBST performance in terms of runtime
and code coverage. Yet, several threats potentially im-
pact the validity of the results of our empirical study. We
discuss in details these threads on our results, following
the guidelines provided in [53].

Construct validity threats concern the relationship be-
tween theory and observation. They are mainly due to
errors introduced in measurements. In our study, they
related to the measure of the performance of a testing
technique. We compared JTExpert and EvoSuite in terms
of coverage, which is widely used to measure the per-
formance of a testing technique. As a second measure
of performance, we chose time rather than the number
of fitness evaluations because a fitness evaluation has
a different meaning in the two tools: in EvoSuite, a
chromosome is a set of test-data candidates and one
evaluation may require the execution of many test-data
candidates [16] whereas in JTExpert, we evaluate each
test-data candidate separately. Moreover, time is the
most important constraint in the testing phase of an
industrial system [10].

Internal validity threats arise from the empirical study
process methodology. A potential threat comes from the
natural behavior of any search-based approach: the ran-
dom aspect in the observed values, which may influence
the internal validity of the experiments. In general, to
overcome this problem, the approach should be applied
multiple times on samples with a reasonable size an sta-
tistical tests should be used to estimate the probability of
mistakenly drawing some conclusions. In our empirical
study, each experiment took 200 s and was repeated 20
times. The libraries contain in total 50,799 instructions
and 5,519 branches. Also, we computed Mann-Whitney
U -tests and evaluated Vargha-Delaney’s Â12 effect size
measure. Therefore, experiments used a reasonable size
of data from which we can draw some conclusions.

External validity threats concern the possibility to gen-
eralize our observations. A potential threat is the selec-
tion of the libraries and classes used in the empirical
study. All these libraries and classes have been used to
evaluate different structural testing approaches in the
past [18], [49], thus they are a good benchmark for
evaluating our approach.

Another potential threat comes from the EvoSuite
parameters: we did not try different combinations of
parameters values to show empirically that our approach
is robust to EvoSuite parameters. However, according

20

to Arcuri and Fraser [6], the default configuration of
EvoSuite performs well, but it may not be as good as
a specific configuration for each class. Because it is hard
and impractical to find a best configuration for each
class, the default parameter settings of EvoSuite can be
considered as a good practical configuration.

Another thread is the choice of Java to implement
our approach, which could potentially affect its external
validity. We implemented our prototype, JTExpert, to
generate test data for classes written in Java, although
the presented components can be adapted to any OOP
language, e.g., C++. The choice of Java is technical
because: (1) we believe that the best programming lan-
guage is the language that you master better, and in our
laboratory Ptidej8, we have an extensive experience in
analyzing Java source code; (2) there are many available
open-source tools (e.g., JDT, Reflexions) that made our
development task easier; (3) it is much easier to debug
the tool in Java; (4) it is easier to get a correspondence
between a CUT, its instrumented class, and its test-
data suite. In the described implementation, we referred
to some APIs, such as the meta-data analyzer, Java
Reflection API [40], and the AST generator, Eclipse JDT
[23], to ease our development task. In general, for many
OOP languages, there exist different meta-data analyzers
and AST generators. In the worst case, if the approach
must be implemented for an OOP language for which
there is no meta-data analyzer or no AST generator, then
four additional analyzers must be developed: (1) to get
all means-of-instantitions of a given class, (2) to get all
branches callers of a given method, (3) to get all branches
modifiers of a given data member, and (4) to extract
constants from the source code.

Reliability validity threats concern the possibility of
replicating our study. We attempted to provide all the
necessary details to replicate our study: analysis process
is described in detail in Section 5 and all the classes
tested in this study are publicly available [49]. Moreover,
all tools, JTExpert, EvoSuite, JaCoCo, Eclipse, EclEmma,
and R, used in this study are publicly available.

6 CONCLUSION

In the last decade, search-based software testing (SBST)
has been extensively applied to solve the problem of
automated test-data generation for procedural program-
ming as well as for object-oriented programming (OOP).
Yet, test-data generation for OOP is challenging due to
the features of OOP, e.g., abstraction, encapsulation, and
visibility that prevent direct access to some parts of the
source code.

This paper introduced an approach for OOP software
test-data generation for unit-class testing whose novelty
relies on analyzing statically the internal structure of a
class-under-test (CUT) to reduce the search space and
on a diversification strategy and seeding strategy. The

8. Ptidej: Pattern Trace Identification, Detection, and Enhancement
in Java. Website: http://www.ptidej.net

approach sees the test-data generation problem as facing
three difficulties: (D1) obtaining an instance of a CUT
and other required objects; (D2) finding an adequate
sequence of method calls to put the instance of the class
in a desired state; and, (D3) finding an adequate method
to reach the test target through it.

To solve D1, an instance generator based on a diversi-
fication strategy, instantiation of anonymous classes, and
a seeding strategy are proposed to boost the search. In-
stantiating a class using different means-of-instantiations
according to their complexities is beneficial to the search
with an increase of the average coverage equals to 1.28%,
up to 26.53% in certain cases. The instantiation of anony-
mous classes brought an enhancement to the average
coverage equal to 0.34% but up to 41% in the case of class
org.apache.lucene.util.WeakIdentityMap. Us-
ing a variable seeding probability for primitive types
and seeding the null value for classes while generating
instances increase the average branch coverage by 5.60%.

To solve D2 and D3, only methods that may change
an instance of the CUT state and methods that may reach
the test target are explored. This leads to a restructuring
of the test data generation problem that improved the
branch coverage by 9.28%.

As a result, and contrary to earlier approaches that
use a traditional representation of the problem and ran-
domly generate instances of objects, our approach and
its implementation JTExpert, find a test-data suite and
achieve a high code coverage (70%) in less than 10 s.
We showed on more than a hundred classes taken from
different open-source Java libraries that JTExpert has a
higher code coverage than EvoSuite and needs less time.

JTExpert currently relies on a guided random search
and supports branch coverage. We are working on
adding further search algorithms, such as genetic algo-
rithms and hill climbing. Also we are focusing on three
research directions: (1) enlarging the scope of JTExpert
to support other structural testing criteria, such as data-
flow coverage or mutation-coverage; (2) enhancing the
instances generator to generate instances of classes that
require understanding the context of their use; and, (3)
studying the impact of seeding null with the instances
of objects on the generation of null pointer exceptions.

REFERENCES
[1] Alshahwan, N., Harman, M.: Automated web application testing

using search based software engineering. In: Proceedings of the
2011 26th IEEE/ACM International Conference on Automated
Software Engineering. pp. 3–12. IEEE Computer Society (2011)

[2] Alshraideh, M., Bottaci, L.: Search-based software test data gen-
eration for string data using program-specific search operators.
Software Testing, Verification and Reliability 16(3), 175–203 (2006)

[3] Andrews, J.H., Haldar, S., Lei, Y., Li, F.C.H.: Tool support for
randomized unit testing. In: Proceedings of the 1st international
workshop on Random testing. pp. 36–45. ACM (2006)

[4] Andrews, J.H., Menzies, T., Li, F.C.: Genetic algorithms for ran-
domized unit testing. Software Engineering, IEEE Transactions on
37(1), 80–94 (2011)

[5] Arcuri, A., Briand, L.: A hitchhiker’s guide to statistical tests
for assessing randomized algorithms in software engineering.
Software Testing, Verification and Reliability 24(3), 219–250 (2014),
http://dx.doi.org/10.1002/stvr.1486

http://dx.doi.org/10.1002/stvr.1486

21

[6] Arcuri, A., Fraser, G.: On parameter tuning in search based
software engineering. In: Search Based Software Engineering,
Lecture Notes in Computer Science, vol. 6956, pp. 33–47. Springer
Berlin Heidelberg (2011)

[7] Arcuri, A., Yao, X.: Search based software testing of object-
oriented containers. Information Sciences 178(15), 3075–3095
(2008)

[8] Barbey, S., Strohmeier, A.: The problematics of testing object-
oriented software. In: SQM 94 Second Conference on Software
Quality Management. vol. 2, pp. 411–426. Citeseer (1994)

[9] Binkley, D., Harman, M.: Analysis and visualization of predicate
dependence on formal parameters and global variables. Software
Engineering, IEEE Transactions on 30(11), 715–735 (2004)

[10] Ciupa, I., Leitner, A., Oriol, M., Meyer, B.: Artoo. In: Software
Engineering, 2008. ICSE’08. ACM/IEEE 30th International Con-
ference on. pp. 71–80. IEEE (2008)

[11] Clarke, L.: A system to generate test data and symbolically
execute programs. Software Engineering, IEEE Transactions on
SE-2(3), 215 – 222 (sept 1976)

[12] Csallner, C., Smaragdakis, Y.: Jcrasher: an automatic robustness
tester for java. Software: Practice and Experience 34(11), 1025–
1050 (2004)

[13] Fraser, G., Arcuri, A.: Evosuite: automatic test suite generation
for object-oriented software. In: Proceedings of the 19th ACM
SIGSOFT symposium and the 13th European conference on Foun-
dations of software engineering. pp. 416–419. ACM (2011)

[14] Fraser, G., Arcuri, A.: The seed is strong: Seeding strategies in
search-based software testing. In: Software Testing, Verification
and Validation (ICST), 2012 IEEE Fifth International Conference
on. pp. 121–130. IEEE (2012)

[15] Fraser, G., Arcuri, A.: Evosuite at the sbst 2013 tool competition.
Software Testing Verification and Validation Workshop, IEEE
International Conference on 0, 406–409 (2013)

[16] Fraser, G., Arcuri, A.: Whole test suite generation. IEEE Transac-
tions on Software Engineering 39(2), 276 –291 (feb 2013)

[17] Fraser, G., Zeller, A.: Exploiting common object usage in test
case generation. In: Software Testing, Verification and Validation
(ICST), 2011 IEEE Fourth International Conference on. pp. 80–89.
IEEE (2011)

[18] Fraser, G., Zeller, A.: Mutation-driven generation of unit tests and
oracles. Software Engineering, IEEE Transactions on 38(2), 278–
292 (2012)

[19] Godefroid, P., Klarlund, N., Sen, K.: Dart: directed automated
random testing. SIGPLAN Not. 40, 213–223 (June 2005)

[20] Harman, M., Fox, C., Hierons, R., Hu, L., Danicic, S., Wegener,
J.: Vada: a transformation-based system for variable dependence
analysis. In: Source Code Analysis and Manipulation, 2002. Pro-
ceedings. Second IEEE International Workshop on. pp. 55–64
(2002)

[21] Harman, M., Hassoun, Y., Lakhotia, K., McMinn, P., Wegener, J.:
The impact of input domain reduction on search-based test data
generation. In: Proceedings of the the 6th joint meeting of the Eu-
ropean software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering. pp. 155–
164. ESEC-FSE ’07, ACM, New York, NY, USA (2007)

[22] Hoffmann, M.R., Janiczak, B., Mandrikov, E.: Jacoco is a free
code coverage library for java (2012), http://www.eclemma.org/
contact.html, [Online; accessed 01-OCT-2013]

[23] development tools (JDT), E.J.: The jdt project provides the tool
plug-ins that implement a java ide supporting the development
of any java application, including eclipse plug-ins. (2013), http:
//www.eclipse.org/jdt/, [Online; accessed 02-FEB-2013]

[24] JUnit: Junit is a simple framework to write repeatable tests. http:
//www.junit.org (2013), [Online; accessed 19-JUN-2013]

[25] King, J.C.: Symbolic execution and program testing. Commun.
ACM 19, 385–394 (July 1976)

[26] Korel, B.: Automated software test data generation. Software
Engineering, IEEE Transactions on 16(8), 870–879 (1990)

[27] Mann, H.B., Whitney, D.R.: On a test of whether one of two
random variables is stochastically larger than the other. The
annals of mathematical statistics pp. 50–60 (1947)

[28] McMinn, P.: Search-based software test data generation: a survey.
Software Testing Verification & Reliability 14, 105–156 (2004)

[29] McMinn, P., Harman, M., Lakhotia, K., Hassoun, Y., Wegener,
J.: Input domain reduction through irrelevant variable removal
and its effect on local, global, and hybrid search-based structural

test data generation. Software Engineering, IEEE Transactions on
38(2), 453–477 (2012)

[30] McMinn, P., Shahbaz, M., Stevenson, M.: Search-based test input
generation for string data types using the results of web queries.
In: Software Testing, Verification and Validation (ICST), 2012 IEEE
Fifth International Conference on. pp. 141–150. IEEE (2012)

[31] McMinn, P., Stevenson, M., Harman, M.: Reducing qualitative
human oracle costs associated with automatically generated test
data. In: Proceedings of the First International Workshop on
Software Test Output Validation. pp. 1–4. ACM (2010)

[32] Myers, G.J.: The art of software testing. John Wiley and Sons
(1979)

[33] Oriat, C.: Jartege: a tool for random generation of unit tests for
java classes. In: Quality of Software Architectures and Software
Quality, pp. 242–256. Springer (2005)

[34] Pacheco, C., Ernst, M.D.: Eclat: Automatic generation and classi-
fication of test inputs. Springer (2005)

[35] Pacheco, C., Lahiri, S.K., Ernst, M.D., Ball, T.: Feedback-directed
random test generation. In: Software Engineering, 2007. ICSE
2007. 29th International Conference on. pp. 75–84. IEEE (2007)

[36] Parasoft: Jtest: Java static analysis, code review, unit testing,
security (2013), http://www.parasoft.com, [Online; accessed 13-
OCT-2013]

[37] Pargas, R.P., Harrold, M.J., Peck, R.R.: Test-data generation using
genetic algorithms. Software Testing Verification and Reliability
9(4), 263–282 (1999)

[38] Păsăreanu, C.S., Rungta, N.: Symbolic pathfinder: symbolic exe-
cution of java bytecode. In: Pecheur, C., Andrews, J., Nitto, E.D.
(eds.) ASE. pp. 179–180. ACM (2010)

[39] Păsăreanu, C.S., Rungta, N., Visser, W.: Symbolic execution with
mixed concrete-symbolic solving. In: Proceedings of the 2011
International Symposium on Software Testing and Analysis. pp.
34–44. ISSTA ’11, ACM, New York, NY, USA (2011)

[40] Reflection: The java reflection api. http://docs.oracle.com/
javase/tutorial/reflect/ (2013), [Online; accessed 01-SEP-2013]

[41] Reflections: Java runtime metadata analysis. https://code.google.
com/p/reflections/ (2013), [Online; accessed 01-SEP-2013]

[42] Ribeiro, J.C.B., Zenha-Rela, M.A., de Vega, F.F.: Strongly-typed
genetic programming and purity analysis: input domain reduc-
tion for evolutionary testing problems. In: Proceedings of the 10th
annual conference on Genetic and evolutionary computation. pp.
1783–1784. ACM (2008)

[43] Sen, K., Agha, G.: Cute and jcute: concolic unit testing and
explicit path model-checking tools. In: Proceedings of the 18th
international conference on CAV. pp. 419–423. CAV’06, Springer-
Verlag, Berlin, Heidelberg (2006)

[44] Tahchiev, P., Leme, F., Massol, V., Gregory, G.: Junit in action (2011)
[45] Team, R.C., et al.: R: A language and environment for statistical

computing (2012)
[46] Tonella, P.: Evolutionary testing of classes. SIGSOFT Softw. Eng.

Notes 29(4), 119–128 (Jul 2004)
[47] Vargha, A., Delaney, H.D.: A critique and improvement of the

cl common language effect size statistics of mcgraw and wong.
Journal of Educational and Behavioral Statistics 25(2), 101–132
(2000)

[48] Visser, W., Păsăreanu, C.S., Pelánek, R.: Test input generation for
java containers using state matching. In: Proceedings of the 2006
international symposium on Software testing and analysis. pp.
37–48. ACM (2006)

[49] Vos, T.: Sbst contest: Java unit testing at the class level (2013),
http://sbstcontest.dsic.upv.es

[50] Wappler, S., Wegener, J.: Evolutionary unit testing of object-
oriented software using strongly-typed genetic programming.
In: Proceedings of the 8th annual conference on Genetic and
evolutionary computation. pp. 1925–1932. ACM (2006)

[51] Xie, T., Marinov, D., Schulte, W., Notkin, D.: Symstra: A frame-
work for generating object-oriented unit tests using symbolic
execution. In: Tools and Algorithms for the Construction and
Analysis of Systems, pp. 365–381. Springer (2005)

[52] Xie, T., Tillmann, N., de Halleux, J., Schulte, W.: Fitness-guided
path exploration in dynamic symbolic execution. In: Dependable
Systems Networks, 2009. DSN ’09. IEEE/IFIP International Con-
ference on. pp. 359 –368 (29 2009-july 2 2009)

[53] Yin, R.K.: Case study research: Design and methods. Sage publi-
cations (2014)

http://www.eclemma.org/contact.html
http://www.eclemma.org/contact.html
http://www.eclipse.org/jdt/
http://www.eclipse.org/jdt/
http://www.junit.org
http://www.junit.org
http://www.parasoft.com
http://docs.oracle.com/javase/tutorial/reflect/
http://docs.oracle.com/javase/tutorial/reflect/
https://code.google.com/p/reflections/
https://code.google.com/p/reflections/
http://sbstcontest.dsic.upv.es

22

Abdelilah Sakti is a PhD candidate in the
department of computer Science and software
engineering, École Polytechnique de Montréal,
Canada. He is proud being a member of Qu-
osséca research laboratory, Ptidej team, and
CiRRELT research center and supervised by
the professors Gilles Pesant and JYann-Gaël
Guéhéneuc. He holds a Master Sc.A. in software
engineering from École Polytechnique de Mon-
tral, Canada since 2012. He also holds a Master
Eng. in computer science from the Hassan II

University, Casablanca, Morocco since 2009. His research interests
are Software Testing, Constraint-based Software Testing, Search Based
Software Testing (SBST), Constrained-search Based Software Testing,
Automatic Test Data Generation (ATDG). He is currently working on
combining Constraint Programing (CP) and Search Based Software
Engineering techniques to improve the software-testing process, in
particular through using CP to better guide SBST for ATDG.

Gilles Pesant ...

JYann-Gaël Guéhéneuc is full professor at the
Department of computer and software engineer-
ing of École Polytechnique de Montréal where
he leads the Ptidej team on evaluating and
enhancing the quality of object-oriented pro-
grams by promoting the use of patterns, at the
language-, design-, or architectural-levels. He is
IEEE Senior Member since 2010. In 2009, he
was awarded the NSERC Research Chair Tier II
on Software Patterns and Patterns of Software.
He holds a Ph.D. in software engineering from

University of Nantes, France (under Professor Pierre Cointe’s supervi-
sion) since 2003 and an Engineering Diploma from cole des Mines of
Nantes since 1998. His Ph.D. thesis was funded by Object Technology
International, Inc. (now IBM OTI Labs.), where he worked in 1999 and
2000. His research interests are program understanding and program
quality during development and maintenance, in particular through the
use and the identification of recurring patterns. He was the first to use
explanation-based constraint programming in the context of software
engineering to identify occurrences of patterns. He is interested also in
empirical software engineering; he uses eye-trackers to understand and
to develop theories about program comprehension. He has published
many papers in international conferences and journals, including IEEE
TSE, Springer EMSE, ACM/IEEE ICSE, and IEEE ICSM.

	Introduction
	Related Work
	Static Analysis
	Seeding Strategy
	Test Data Generation Approach

	Approach for Unit Class Testing
	Instance Generator
	Means-of-instantiation
	Diversification Strategy
	Seeding Strategy of Constants

	A Representation of the Test-data Problem
	CUT-Instantiator
	State-modifier Methods
	Target-viewfinder Methods
	Static Analysis
	Domain-vector

	Implementation
	Preprocessing
	Instrumentor
	Analyzers

	Test Data Generation
	Instance Generator
	Search Heuristic
	Test Data generator

	Empirical Study
	Experimental Setup
	Empirical Study Subjects
	Procedure
	Comparing JTExpert to EvoSuite
	Understanding JTExpert Behavior

	Results
	Comparing JTExpert to EvoSuite
	Comparing JTExpert and EvoSuite in Details
	Understanding JTExpert behavior
	Threats to Validity

	Conclusion
	References
	Biographies
	Abdelilah Sakti
	Gilles Pesant
	JYann-Gaël Guéhéneuc

