
Received: 9 December 2017 Revised: 26 July 2018 Accepted: 6 August 2018

DOI: 10.1002/spe.2639

S U R V E Y PA P E R

A systematic literature review on the detection
of smells and their evolution in object-oriented and
service-oriented systems

Fatima Sabir1,2 Francis Palma3 Ghulam Rasool1 Yann-Gaël Guéhéneuc4 Naouel Moha5

1Department of Computer Science,
COMSATS University Islamabad, Lahore,
Pakistan
2Sharif College of Engineering and
Technology, UET Lahore, Pakistan
3Department of Computer Science,
Linnaeus University, Kalmar, Sweden
4Department of Computer Science,
Concordia University, Montréal, Quebec,
Canada
5Department of Computer Science,
University of Québec in Montréal,
Montréal, Quebec, Canada

Correspondence
Francis Palma, Department of Computer
Science, Linnaeus University, Kalmar,
Sweden.
Email: francispalmaphd@gmail.com

Summary

This systematic literature review paper investigates the key techniques employed
to identify smells in different paradigms of software engineering from
object-oriented (OO) to service-oriented (SO). In this review, we want to iden-
tify commonalities and differences in the identification of smells in OO and SO
systems. Our research method relies on an automatic search from the relevant
digital libraries to find the studies published since January 2000 on smells until
December 2017. We have conducted a pilot and author-based search that allows
us to select the 78 most relevant studies after applying inclusion and exclusion
criteria. We evaluated the studies based on the smell detection techniques and
the evolution of different methodologies in OO and SO. Among the 78 rele-
vant studies selected, we have identified six different studies in which linguistic
source code analysis received less attention from the researchers as compared
to the static source code analysis. Smells like the yo-yo problem, unnamed cou-
pling, intensive coupling, and interface bloat received considerably less attention
in the literature. We also identified a catalog of 30 smells infrequently reported
for SO systems and that require further attention. Moreover, a suite of 20 smells
reported for SO systems can also be detected using static source code metrics in
OO. Finally, our review highlighted three major research trends that are further
subdivided into 20 research patterns initiating the detection of smells toward
their correction.

KEYWORDS

antipatterns, design smells, object-oriented (OO) systems, service-oriented (SO) systems, smells

1 INTRODUCTION

Software systems are becoming increasingly complex due to the amount of and frequent changes in user requirements.
Researchers and developers adopted approaches to address the complexity of software systems and to implement user
requirements using structured and object-oriented (OO) software development. Object-oriented software development
focuses on the principles of modularity and reusability. It is possible to obtain flexibility via good-quality OO design
and standardized solutions, such as design patterns.1 Developers implement design patterns according to the soft-
ware requirements that are part of software architecture. A software architecture describes software elements and their

Softw Pract Exper. 2018;1–37. wileyonlinelibrary.com/journal/spe © 2018 John Wiley & Sons, Ltd. 1

https://doi.org/10.1002/spe.2639
http://orcid.org/0000-0001-7092-2244
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fspe.2639&domain=pdf&date_stamp=2018-10-03

2 SABIR ET AL.

FIGURE 1 The software architecture and programming paradigms

relationship2 at different levels of abstraction and with various forms, like classes and methods (OO) or services and servers
(service-oriented architecture [SOA]).3,4 Figure 1 shows the relationship of software architecture with the OO and SOA.

SOA is a software engineering paradigm that provides the foundation for the development of low-cost, rapid, and simple
components for a distributed environment.5,6 SOA relies on different types of services and may depend on the OO code
to build complex applications.5 The static behavior of the OO code and the dynamic nature of SOA are a challenge when
maintaining the quality of service (QoS) of service-oriented (SO) systems.5

The interest and significance of the SO paradigm are ever increasing. Surveys forecasted that about 80% of the appli-
cations are expected to be service and RESTful (Representational State Transfer) based by 2016.* Thus, microservices
are going to play a big role in enterprise-level application development. In today's distributed computing era, not only is
distributed computing at its top notch but also is distributed development getting more reliable and viable development
methodology. This helps the service computing paradigm dominate over the traditional development and computing
paradigms. However, there are still a significant number of enterprise systems still being developed and maintained using
other paradigms, for example, the OO paradigm.

Software requirements can be functional and nonfunctional. Although software developers are usually well aware of
functional and nonfunctional requirements, they tend to ignore proper design guidelines during the various stages of
software development under time pressure. This may lead to the introduction of smells in their systems. Software smells
are poor solutions to coding and design problems. Bad smells are introduced in software systems because the developers
have little to no idea of the system under design or they have very limited time to implement good design and coding
practices. As the system grows, smells may lead to serious problems related to maintenance and technical debts.7 Fowler
et al defined 22 code smells in OO and their various refactoring solutions.8

A recent study explains well the trade-off between delivering acceptable but immature systems under the constraint
of shorter time to delivery.9 This study also investigates why and when the code starts to “smell bad.” Releasing imma-
ture systems may lead to maintenance problems for the systems.10 A high-quality documentation is also recommended
to achieve and maintain design principles that may prevent and/or remove smells.11 Other studies report experiments
performed to assess the impact of good design on code comprehension,12 the effect of team size on source code quality,13

and human judgments on source code,14 whereas studies group smells into code smells, design smells, architectural
smells, and antipatterns. Smells are often reported as antipatterns15,16 or as code/design smells,17 which opens a debate
for researchers to have a consensus on the categorization of smells.

A number of studies reported antipatterns and code smells in different types of services, eg, antipatterns in SOAP
services and WSDL (Web Service Description Language) interfaces,18-20 in REST,21,22 and in SCA (Service Component
Architecture).23 The data sets used in these studies for their experimental validations relied on OO code. In addition, the
studies performed by Mateos et al.19,20 use contract-first and code-first techniques for the detection of smells from the Web
service registries.

A literature review may not necessarily be exhaustive but should be up to date and should include all major works
on a topic. The main purpose of our systematic literature review (SLR) is learning about research on bad smells in two
main programming paradigms (eg, OO and SO) and answers to related research questions (eg, RQ1 to RQ5 in this SLR).
We believe that a wider view of the state-of-the-art research work on bad smells provides researchers and practitioners
with an opportunity to gain a broader view of the contributions and gaps in the literature. To the best of our knowledge,
there is no such wide SLR study that emphasized on OO and SO, the two most common paradigms, by bringing these two
paradigms together, and then investigated studies to identify potential research opportunities and existing gaps.

Since the approaches employed for the identification of smells in SO systems are also based on static and dynamic analy-
ses, they may use approaches associated with OO smell identification. A detailed discussion on all the existing approaches
is redundant here and out of the scope of this paper because reviews and comparisons of various detection approaches

*https://searchmicroservices.techtarget.com/feature/SOA-must-keep-pace-with-connected-everything-trend-in-2016

https://searchmicroservices.techtarget.com/feature/SOA-must-keep-pace-with-connected-everything-trend-in-2016

SABIR ET AL. 3

already exist in the literature.24-27 We are interested in the evolution of the OO approaches used for the identification of
antipatterns for SOA systems. We want to show the connection between the two paradigms to provide research directions
for the reuse of OO approaches for the identification of smells in SO systems.

However, previous studies selected smells based on a single term query, like “code smell”25,26 or refactoring opportunities
for code smells.24,27 Therefore, an exhaustive discussion of all types of smells is missing in the literature. We want to provide
a complete and exhaustive state of the research on smells. Thus, it is essential to cover all terms associated with smells
like “code,” “design,” “architecture,” and “antipatterns.” Getting rid of any terms for the selection of primary studies
may not fulfill our criteria, as we define in Section 3, regarding the catalogs of smells reported by researchers in previous
studies. Consequently, we carry and report an SLR that focuses on the smells and their evolution in OO and SOA and
on the research trends that are covered well in OO approaches but received less attention in the SOA. We also report
existing research gaps for both OO and SOA smells. We gather and analyze a set of 78 highly relevant studies addressing
six state-of-the-art approaches for the detection of smells.

We extend the scope of this review for OO and SO systems by also including correction approaches after the year 2014,
thus complementing a previous SLR that reported on the correction of OO smells until the year 2014.27 Studies that focus
on the refactored pieces of code are out of the scope of our SLR28,29 because, in this study, we only consider the research
works that deal with the detection of smells. This SLR may assist researchers and practitioners investigating the issues
that received less attention in the literature regarding OO and SOA code smells and may lead to a new research trend by
shifting the research direction for undiscovered smells that can be detected by applying existing techniques or by using
novel techniques for both OO and SOA. This SLR will also help new researchers comprehend the smells and the various
techniques reported on their detection.

The remainder of this paper is organized as follows: Section 2 reviews previously published research on several types
of smells. Section 3 describes the method of conducting an SLR along with the review protocol followed in this study.
Section 4 reports the results of the questions examined in this SLR. Section 5 discusses open issues, whereas Section 6
concludes our findings and highlights future research trends.

2 RELATED WORK

Over the last two decades, research on smells has gained increased attention from software engineering practitioners
and researchers. There are some studies reported for smells, and researchers have performed various surveys and review
studies related to smells. A recent review reported different techniques for mining source code repository26 and presented
results after an analysis of the various systems used for the detection of code smells. The review in the work of Rasool and
Arshad26 presented various techniques already available for the detection of code smells along with variations in the results
of these techniques implemented by different tools for the detection of smells. Moreover, the review in the aforementioned
work26 focuses only on the code smells and excludes antipatterns, design smells, and architectural smells. Furthermore,
this review only focused on the detection of code smells from OO. We in this study, however, focus on all types of smells as
well as smells in the SO paradigm. Another review reported software defect prediction strategies available until the year
2012.30 All the literature mentioned above either covered a single paradigm24-26 or the smell like code clone31,32 or design
defect30 until the year 2012. Only one review is reported for code smells26 in the year 2015 but again focused on smells at
the code level and their detection techniques.

The state-of-the-art research works on smells reported in the literature by using various techniques from the areas of
artificial intelligence, machine learning, and image processing. The relationships among the smells are classified into
two categories: smells within classes and smells spreading across classes.33 The work of Mäntylä et al34 discusses the
correlations among different smells by knowing the frequency with which these pairs appear in the same modules. A
recent study proposed an approach for the detection and resolution of various kinds of smells by simplifying their detection
algorithms.35 We notice from the survey that an inappropriate sequence of refactoring may cause the introduction of
defects or smells.35 These smells are also known as antipatterns, and refactoring is applied to remove these antipatterns.36

Therefore, it is required to check which type of smells is correlated across various paradigms and what will be the action
to remove or refactor those smells from different paradigms.

Researchers presented various surveys and literature reviews in the field of software refactoring to remove smells.
Mens and Tourwé37 performed a comprehensive survey in software refactoring. Zhang et al25 performed an SLR on code
smells and discussed different refactoring approaches used for the correction of code smells after reviewing 39 studies.
Another literature review presented by Wangberg24 analyzed both code smells and refactoring after examining 46 studies.

4 SABIR ET AL.

TABLE 1 Overview of existing reviews

Time Span BS Domain BS Domain Studies Review
Ref Covered (General) Specific Reported Method Focus

26 1999-2015 CS OO 46 SLR Tools, techniques,
languages used by tools

31 Up to 2011 CC OO 213 SLR Method, tools for clone detection
32 Up to 2007 CC OO/SPL/AOS Exact studies Literature Taxonomy of clone detection

not reported survey techniques and tools
30 2000-2010 SWF OO 36 SLR Fault prediction in units

of software systems
39 2010-2012 SPL smells SPL 74 SLR Proposed techniques for SPL
37 1996-2003 BS OO Exact studies Literature Refactoring activities and their

not reported survey roles are discussed
24 2000-2009 CS/DS OO 46 SLR Methodological, empirical

contribution of code smell
w.r.t. refactoring

38 2001-2012 BS/DS/AP OO 94 SLR Model-driven
approaches to smells and
their effects on model quality

27 2001-2013 BS OO 47 SLR Refactoring activities
and opportunities
Focus on smell's evolution,

This study 2000-2017 BS/CS/AP/DS/AS OO/SO/REST/SOAP 78 SLR state-of-the-art approaches and
research trends in OO and SO

Abbreviations: AOS, Aspect Oriented Software Engineering; AP, antipatterns; AS, architectural smells; BS, Bad Smells; CC, Code Clones; CS, code smells;
DS, design smells; OO, object-oriented; REST, Representational State Transfer; SLR, systematic literature review; SO, software-oriented; SPL, software product
line; SWF, software fault.

This literature review is more beneficial in terms of empirical studies as well as refactoring opportunities that have an
impact on code quality.24 Another SLR reported existing approaches to refactoring the UML (Unified Modeling Language)
model.38 Refactoring options for a software product line is also reported in an SLR.39 A recent study by Al Dallal27 shows
that extract class and move method are the most reported techniques for the correction of code smells.

No such SLR covers all paradigms evolved from the year 2000 until 2017 ranging from smells to code smells, and then
from design smells to antipatterns for different software engineering paradigms. It is worth mentioning that different
state-of-the-art techniques are also evolved across paradigms and can be applied to various research problems. The SLR
presented in this paper examines overall state-of-the-art approaches for smells not only for OO but also for SO systems.
We added relevant studies on refactoring techniques that are not part of the recent SLR on refactoring.27

We also report the research strategies that evolved from the year 2000 until 2017 across paradigms like the use of par-
ticular algorithms, source code metrics, natural language processing, and machine learning. Moreover, we also report
the smells that gain maximum attention after examining the state-of-the-art approaches. This SLR will also help to know
about the current state-of-the-art approaches for software engineering and discusses which smells are still uncovered in
different research trends reported from the year 2000 until 2017. Table 1 summarizes the existing SLR for OO and SO
paradigms.

As Table 1 shows, existing reviews discuss either refactoring approaches or detection approaches. The search terms
associated with these approaches are mostly based on code smells. No such review discussed detection techniques and
their evolution that may help researchers investigate smells for SO systems. Moreover, refactoring approaches also focus
on either techniques used for refactoring27 or modeling techniques used for refactoring. Furthermore, research regarding
the impact of smells on different issues like maintenance, fault proneness, and the lexical impact of code is uncovered. All
these areas are comparatively new and mostly reported after the year 2013 for OO and SO systems. Most of these reviews
focus on code smells and do not consider the state-of-the-art techniques for architectural smells and antipatterns. This
may give the reader an incomplete review that discovered some smells reported as architectural smells or antipatterns.
We are unable to find any review that focuses on SO systems and techniques used for those that also evolve in OO and
SO paradigms. Previous studies have focused on classifications but do not discuss research trends that may help new
researchers initiate investigations on these smells.

SABIR ET AL. 5

FIGURE 2 Steps followed for a systematic literature review (SLR)

3 RESEARCH METHOD

This SLR reports the existing state-of-the-art approaches on smells from different software engineering paradigms. Brere-
ton et al suggested software engineering researchers apply evidence-based software engineering.40 The evidence-based
research was primarily introduced in the medical domain because expert opinion–based medical service is not as reliable
as advice-based health care services. In addition, to collect all relevant facts on research questions, performing an SLR
may also help practitioners find existing research gaps. We follow the guidelines proposed by Brereton et al40 to perform
this SLR in three main steps: planning, conducting, and reporting as shown in Figure 2.

This section describes the protocol we follow to perform this review. We also ensure to reduce the chances of search
bias. The protocol includes the selection of most appropriate research questions, rules for the study selection criteria,
identification of different studies, classification of studies, classification of dimensions for the attributes, and, finally, the
results of data extraction and analysis.

3.1 Planning the SLR
The main goal of evidence-based software engineering is to collect the most relevant evidence from research and investi-
gate the findings of evidence to evaluate research problems. The state-of-the-art smell techniques are evolved in OO and
SO paradigms. Identification of the existing review that is available for this paradigm is reported in Section 2. However,
none of the previously published reviews are similar to the review presented in this study. Most of the reviews were based
on code smells from the OO paradigm. In this SLR, we used the following terms to search for the primary studies.

6 SABIR ET AL.

TABLE 2 Research questions

ID Research Question Motivation

RQ1 What are the classifications of the state-of-the-art Identification of smell detection techniques followed
techniques employed in the detection of smells? by their classifications.
How the state-of-the-art approaches evolved Evolution of specific techniques in object- and service-

RQ2 across different paradigms starting from object- oriented systems.
oriented to service-oriented?

RQ3 What are the smells that are reported for a specific paradigm? Identification of unique smells for a specific paradigm.
RQ4 What is the correlation between smells across the paradigms? Smells that are repeatedly reported for different paradigms.
RQ5 What are the trends in research for smells from the year 2000 to 2017? Research trends followed in the domain of smells.

The search string is searched from the keywords, abstract, and title of each study from the year 2000 until
December 2017. Table 3 reports the results of our search.

Review protocol: In the following, we show the general criteria followed in this study to provide a more consistent
and focused review. We specify the research questions with the help of the following PICOC (Population, Intervention,
Comparison, Outcome, Context) criteria41:

• Population: OO software engineering (OOSE), SO computing, SO systems, services, REST, SOAP, WSDL;
• Interventions: smells, design smells, architectural smells, code smells, antipatterns, anti-pattern, anti-patterns;
• Comparison: a holistic comparison of the population to analyze the impact of recent research on smells, solutions,

methods, and techniques;
• Outcomes: a classification of state-of-the-art smell techniques that are used to identify or correct smells across

paradigms;
• Context: an exclusive focus on evidence collected from the state-of-the-art techniques on smells.

Through this SLR, we try to answer five research questions as stated in Table 2.

3.2 Conducting the SLR
This section presents the review protocol required to perform our SLR. We search for the relevant literature to conduct
the SLR.

3.2.1 Search process for studies
An effective search string is essential to select the most relevant studies. There is no such clear consensus on the types of
smell as design, code, and antipatterns. Therefore, we first go through the relevant reviews presented for smells to avoid
any overlapping, and then, we expand this review for OO and SO systems. We also check the most relevant keyword for
the review and check their synonyms, hyponyms, and alternatives. We rely on the Boolean operators like “AND,” “OR,”
and the wildcard characters (*) to formulate our search string. As we want to cover all types of smells starting from the
term code smell to design smell, then to architectural smell, and, finally, to antipatterns, we therefore use each search term
associated with smells starting with the help of the wildcard character (*) and “AND” operators to include the relationship
between population and intervention. General terms related to smells were searched from different digital libraries along
with keywords and full term-based search. Table 3 reports the result of each term associated with smells.

3.2.2 Study selection
To select the most relevant research studies, we applied a three-step process.
Step 1: We extracted 13 769 studies resulting from the generic keyword-based search strings from different digital libraries.
The keyword-based search also reports the articles from requirement engineering and performance antipatterns. Initially

SABIR ET AL. 7

TABLE 3 Number of studies found in selected digital libraries after a general term search

Sl No Term Search IEEE ACM Science Direct Wiley Springer Total

1 Code smell, code smells, code flaws 195 1586 86 1 32 1900
2 Antipattern/anti-pattern/antipatterns 48 1719 125 0 1 1893
3 Design smell, design smells, design flaws 135 6550 84 1 8 6778
4 Architectural smell/architectural smells 27 2048 382 0 0 2457
5 Smells 58 54 100 49 480 741

Total 463 11 957 777 51 521 13 769

Abbreviations: ACM, Association for Computing Machinery; IEEE, Institute of Electrical and Electronics Engineers.

extracted studies are further refined for the domain of software engineering, resulting in 2669 studies left in the pool for
review. A majority of the studies are removed from the ACM (Association for Computing Machinery) library because
terms associated with the research strings are also available in the domain other than software engineering.
Step 2: The collection of studies selected in Step 1 is further refined manually by covering index terms, abstract, title, and
their application domains (OO and SO). This process removes all studies from the domain of requirement engineering
and Android applications containing various terms related to smells. Duplication is removed among research studies
from the selected databases. The resultant provided 540 studies out of 2669 based on their matching definitions of smells
related to design, code, and architecture.
Step 3: Furthermore, studies are filtered following some exclusion and inclusion criteria. Only the studies from
well-known conferences are kept, and the rest is discarded. The inclusion criterion is based on the following.

• Journal articles are selected related to the domain of OO analysis, software maintenance, reverse engineering,
information and software technology, SOA, and Web service.

• Top-level conferences are selected when related to software maintenance, reverse engineering, OO technology,
evidence-based software engineering, and SO computing.

• In this SLR, we include all studies associated with the term smells (eg, code, design, antipatterns, and architectural
smells).

• Contextual data for each study are provided in the Excel sheet available online.§§§§§

On the other hand, the exclusion criterion includes the following.

• Articles of short length (less than five pages).
• Book chapters are not included.
• Workshop articles and lecture notes are not included.
• Software performance antipatterns and software requirement antipatterns are not added due to their irrelevancy to our

target domain as we are working on the evolution of smells in OO, and services and requirement and performance
could not be part of the evolution from one system to another.

• Research works published as a technical report.
• Research studies related to code clone, duplicate code, and copy-paste programming are not added since reviews exist

for them.
• Smells related to android systems are not added since, in this SLR, we are covering only the paradigm of OO and SO.
• Research studies that discussed single smell are also not added because we want to know which smells are mostly

discussed by tools, industry, and academia.

After applying Step 3, only 75 studies are left that satisfy the abovementioned inclusion and exclusion criteria. Finally,
the snowballing method42 is applied to check the reference list of the selected studies to minimize the chance of removal
of any relevant studies. Therefore, in an additional activity, 78 studies are selected in Step 4. Snowballing provides an
additional three studies43-45 mostly cited in different research studies and not included in selected searched databases.
Figure 3 shows the representation of study selection criteria.

The identification of smells is performed following an incremental process. In the first phase, we start with a primary
study and collect information on all reported smells. We then follow the process across all the primary studies for differ-
ent domains, and, finally, we get a pool of smells for a specific domain. In the second iteration, we run the process for
identification of smells and check whether these smells are already “reported” or “detected” or “corrected” in the area
other than OO; if yes, then we add those smells into the correlated smell section to check what types of smells are evolved

8 SABIR ET AL.

Step 3: 75 Studies
(Manual)

IEEE

Science Direct

ACM

Wiley

 Articles
(15 412) 2665 Articles

Study Selection Based on
keywords, Abstract, and Title

Unique Articles (500)

Review Abstracts

Inclusion/Exclusion Criteria

Quality Assessment Criteria

Reference Check for Additional
Important Articles

Step 1
(Automatic)

78 Final Studies Selected
(Manual)

Springer

Step 2
(Manual)

FIGURE 3 Study selection criteria. ACM, Association for Computing Machinery; IEEE, Institute of Electrical and Electronics Engineers

across paradigms. If we are not able to find that smell as “corrected” for SO systems, then we report this smell as “not cor-
rected.” A similar iteration is followed for techniques evolved in OO and SO to check the approach followed in a sequence
from the year 2000 until 2017. This iteration will also help identify trends in the research on smells.

3.2.3 Quality assessment
A number of techniques have been widely used by the academia for the quality assessment of studies in an SLR, for
instance, Dybå and Dingsøyr46 used the Critical Appraisal Skill Program and Al Dallal27 used Kitchenham guidelines for
quality assessment. In this SLR, we followed the PICOC47 and Brereton et al40 guidelines to prepare the quality checklist
as listed in Table 4. The checklist can further be divided into four basic quality aspects, including (1) the criteria to design
a study, (2) the method that describes the setup of the study, and (3) how the study is performed, the final conclusion is
drawn from the study, and implication contributions for the academia or industry. The quality assessment is based on the
response of “Yes,” “No,” and “Not Applicable.” Our SLR focused on the OO and SO paradigms. Therefore, some of the
quality assessment questions are not applicable to some studies and lie in the response group of “Not Applicable.” Our
78 primary studies are evaluated based on the quality checklist questions mentioned in Table 4.

The results derived in the quality assessment step demonstrate that the majority of the studies (ie, 74) clearly mentioned
about the bad smell identification techniques in contrast to the four studies that did not illustrate any discussion on the
identification techniques. These studies performed SLRs26,27 or discussed the applicability of machine learning techniques
for the identification of bad smells.15,48 All of the selected primary studies are classified completely based on the bad smell
identification techniques as they are further divided into two main categories and six subcategories. We also found 22
primary studies that evolved from one domain to another and three primary studies15,26,27 that are not applicable to the bad
smell evolution, as they belong to both the literature review and machine learning techniques. There are 55 studies that we
investigated, the complete analysis of which is discussed in Section 3. Most of the primary studies justified their research
methods. However, we noticed that some of the studies did not compare their results with state-of-the-art techniques and
belong to the domain of SO software engineering. These are the earliest research papers that performed the detection of
bad smells in the service domain and partially validated that their results as service-based systems are not open-source
and that it is difficult to perform the validations. Among the 78 primary studies, a maximum number of studies from the
OO paradigm, particularly on the detection of code smells, ie, 35 studies plus 15 other mixed studies, contributed to the
existing literature in a similar way as mentioned in RQ3 and RQ4. We also found some unique studies from the domain
of RESTful APIs (application programming interfaces) and on the impact of bad smells on software maintenance that

SABIR ET AL. 9

TABLE 4 Quality assessment criteria and results of primary studies

Design Questions to be Asked Yes No NA

QA1 Did the study state bad smell identification techniques clearly? 74 4 0
QA2 Are the primary studies classified based on the bad smell identification techniques? 78 0 0
QA3 Did the research methodology evolve from one domain (OO) to another? 20 55 3
QA4 Did the study classify based on the types/domain of bad smells? 75 0 3

Conduct
QA5 Did the data under analysis generated completely address the problem statement? 56 0 22
QA6 Did the study evaluate the proposed method and are the results explained well? 56 22 0

Analysis
QA7 Are the data sets clearly mentioned in primary studies? 64 9 5
QA8 Did the study apply any accuracy measures for evaluation? 26 35 17
QA9 Did the study explain the methods of statistical measure implementation? 43 35 0

QA10 Was the statistical technique of evaluation justified? 35 40 3
QA11 Was the method used for the research justified? 77 0 1
QA12 Did the study clearly state the purpose of analysis? 78 0 0

Conclusion
QA13 Did the primary study explain well all mentioned research questions? 50 15 13
QA14 Did the study compare their results with state-of-the-art techniques? 56 20 3
QA15 Did the study explain negative findings or discuss limitations? 72 2 4
QA16 Did the study explain well the validity threats? 71 3 4

Implications
QA17 Did the primary study contribute to existing techniques? 50 8 20
QA18 Did the primary study identify any new area of research? 18 26 34
QA19 Did the researchers discuss their findings in terms of contributions toward academia and industry? 56 20 3

Abbreviation: OO, object-oriented.

provided new notions to the existing techniques that provide information on RQ4 and RQ5. The quality assessment criteria
for QA16, QA17, and QA18 suggest meaningful information for the practitioners and academia that we discuss in detail in
Section 5. The quality assessment criteria for QA8, QA9, and QA10 belong to the validations of the tools/techniques used
in the primary studies. Moreover, QA14, QA15, and QA16 are also not applicable for some studies,26,27 as they discussed
their findings from the literature. Table 4 shows our quality assessment criteria and the findings based on those criteria.
The detailed evaluation of the primary studies is available online.§§§§§

3.2.4 Data extraction and analysis
We extracted data in Excel in a consistent format as presented in our online appendix,§§§§§ where we also present detailed
results. Data are extracted based on the research questions. We focus on the types of smells, ie, code, design, architectural,
and antipatterns, as they appear in the title, abstract, or index terms of an article. Our classification technique is based
on static, dynamic, empirical, methodological, and linguistic source code analysis. Research trends are collected after
examining the sequence of related research patterns over the past 17 years. Data extracted are evaluated, and disagreement
was discussed until the conclusive results are achieved. Many selected studies did not answer all the questions available
in our data extraction form. Table 5 presents the data extraction sheet designed for each research question.

3.2.5 Data synthesis
Quality criteria are based on the inclusion-exclusion criteria as defined above. Metadata analysis is performed after review-
ing the studies completely. Metadata analysis for each research question is clearly examined, and the answer is recorded
in an Excel sheet as presented online.§§§§§ We have verified basic contextual information reported for each research
question. A number of approaches are available for data synthesis, some of which maintain the qualitative form of the
evidence such as meta-ethnography, whereas some involve converting qualitative findings into a quantitative form such

10 SABIR ET AL.

TABLE 5 Data extraction sheet

Search Criteria Data Item Description

Identification number Reference number assigned to the article
Bibliography Year, Title, Source/Research Group

General Type of the article Conference Paper, Journal Paper/Tech Report
Study aims Summarizing notes about each study
Study designs Experimental, Case Study, Survey, Review
Behavioral source code analysis Source code analysis that uses source code metrics to examine

source code behavior

Dynamic source code analysis Analyzing the interrelationship of program entities after the
execution of and checking the behavior of the program

Algorithm-based analysis Studies that use a specific algorithm to detect smells from the source code

RQ1 Empirical source code analysis Studies that report the results of already established tools to
empirically evaluate the research problems and address some new findings

Methodological analysis Implements the already proposed methodology in a new way to
either correct or detect smells. These types of analysis compare
the results before and after the implementation of any specific method.

Linguistic source code analysis Checking the internal code quality like naming conventions of methods,
classes, etc

RQ2 Evolution of research for smells in Analysis of multiple research methodologies constantly repeated
OO and SO from paradigm to paradigm

RQ3 Smells reported for a specific paradigm Unique identification of smells for OO, SOAP services, REST, SCA, AOP, SPL
RQ4 Evolution of smells in OO and SO Identification of smells that are reported for OO, but also later

found in SO systems
Trends in research Unique trends for smell

RQ5 Detection,
Correction,
Maintenance, etc

Abbreviations: AOP, Aspect Oriented Programming; OO, object-oriented; REST, Representational State Transfer; SCA, Service Component Architecture;
SO, software-oriented; SPL, software product line.

as content analysis.49 Basic quality criteria for selecting studies discussed above are based on the guideline provided by
Kitchenham et al.50 There are different terms reported for the smells in the literature, but most of the smells are reported
as code smells (22 research studies), and only nine studies are reported as antipatterns. Data addressing our five research
questions are extracted from the 78 most relevant studies that satisfy all the quality criteria, including the PICOC and
the inclusion/exclusion checklist. Our goal is to collect the most relevant data from the studies selected to analyze the
state-of-the-art approaches in OO and SO paradigms. To investigate the key questions, three sets of data were extracted
from 78 studies.

1. Context data showing the context of each study, such as the source of data, experimental evaluation, application area,
and programming languages, are noted.

2. Qualitative data analysis based on the cause-effect relationship or reporting new ideas by using different properties
of the system under analysis.51

a. Ethnographic studies discuss the role of particular issues and describe the cause-effect relationship like the dis-
cussion on the literature review and findings from the literature to describe new opportunities like code smell
mining26 or refactoring opportunities27 or empirical evidence from history.52,53

b. Grounded theory used induction or observation and uses interviews, surveys, or observations.54,55

c. Phenomenology focuses on the “subjective reality” of an event or perceived by the study population as reported in
other works.56-58

SABIR ET AL. 11

3. Quantitative data extracted from the studies based on the predictive performance of the model or approach reported
in the study. The data are divided categorically, and the variable used to represent the result is mostly continuous.
However, some of the studies reported their results in both forms.

a. Categorical studies report their results predicting whether the smells are detected, corrected, or maintained in the
system under analysis. These results are reported using accuracy measures like precision or recall. In total, 26
studies used accuracy measures like precision and recall in this SLR.

b. Continuous studies reported their results by using similar measures like the mean standard error or measuring
the difference between expected and observed results like chi-square, correlation, logistic regression, and ranking
form. We found 21 studies that fall under this category, as they report their results by using statistical techniques to
validate their research model and present their findings. The most widely used technique for continuous studies
is correlation analysis (six studies) followed by regression analysis. Table 6 shows the complete list of studies in
this category with the techniques applied.

The distribution of studies with respect to the types of data they used is shown in Figure 4. We also show the frequency
of terms related to smells, eg, “antipatterns,” “architecture,” “unpleasant smell,” “code smell,” “design smell,” and “code
and design” from the literature in Table 7.

It is important to consider that 22 studies are reported as “Others” because they used a mixed approach and did not
report their results by using any measures. These types of studies have mostly focused on the key concepts that are
proposed but were not tested or validated. The complete information about these studies is provided online.§§§§§

TABLE 6 Techniques for continuous studies

Ref No Technique Used
35 Fisher's exact test
59 Mean, Median, SD, Correlation
20,60,61 Correlation
62,63 Wilcoxon signed-rank test
64 Correlation
65,66 Chi-square test
53 Regression analysis
67 Cliff's D and Kruskal-Wallis test, Holm's Mann
45 Cohen's kappa, Fleiss' kappa
68 Correlation analysis, Regression
69 Wilcoxon signed-rank test, Mean, Standard deviation, Median
68 Logistic regression model
70 Min, Median, Mean, Mode
71 Proportion, Odds ratio
72 PCA, Logistic regression
43 Logistic regression model, Odds ratio
73 Fisher's exact test, Odds ratio, Chi-squared

Abbreviations: PCA, principal component analysis; SD, standard deviation.

FIGURE 4 Distribution of studies with respect to the data analysis techniques [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com

12 SABIR ET AL.

TABLE 7 Frequency of smell terms in studies

Sl No Smell Type Frequency % Reference

1 Antipatterns 11 14.1 35,43,48,54,56,73-78

2 Architecture 15 19.23 18-23,59,60,62,79-82,83,84

3 Unpleasant smell 7 8.75 14,45,55,64,85-87

4 Code smell 24 30 26,27,41,52,53,58,61,63,68,69,72,88-99

5 Design smell 18 23.5 15,16,44,57,65,67,70,71,100-109

6 Code and design 3 3.85 7,81,110

Total 78 100

FIGURE 5 Data source used for the state-of-the-art research on smells. SLR, systematic literature review [Colour figure can be viewed at
wileyonlinelibrary.com]

Data synthesis is combined with the data extraction form to analyze the quantitative as well as qualitative data fully.
The data extraction form as reported in Table 5 provides complete information regarding each research question along
with the data synthesis reported in Figure 4. The information presented helps to look for the most applied statistical
methodology used by the industry for categorical, continuous, and qualitative studies. In total, 22 studies used a mixed
approach based on the quantitative and qualitative information. Some of them only discuss the concept or novel approach
and present findings or benefits of their approach.

Moreover, it is also observed that most of the studies have validated their research model on open-source systems.
Therefore, most of the results in the area of smells can be compared or tested by analyzing similar open-source systems.
Figure 5 reports 66 primary studies that use open-source systems and three other studies that use proprietary systems,
ie, other than open-source systems. We also found nine studies that do not rely on any target systems, open-source or
proprietary, to validate their results.

The validation criteria reported by the studies are either based on accuracy as a measure or by using statistical tech-
niques. We have found the highest number of research studies between the years 2013 and 2015 (18 studies). Moreover,
the research trend has been moved from static source code analysis to dynamic source code analysis, applying machine
learning, artificial intelligence, and genetic algorithms. Furthermore, smell detection has not gained much attention for
SO systems. Figure 6 shows the distribution of studies over the years. Fowler et al8 introduced the concept of code smells
in 1999, and the first paper reporting smells was published in 2001,111 followed by four studies in the year 2004 and two
studies in 2006. These are conference studies, and we are unable to find any journal studies in those years that fulfill the
criteria of selection for studies. The problem of identifying smells in the source code began to attract more research atten-
tion in the year 2010 with an average of more than six research studies per year. This observation highlights researchers'
interest and the importance of smells after the year 2009.

The research studies were published in 39 different venues. Over half of the studies are published in conferences, and
the rest are published in various journals. A slight shift from conference to journal articles shows the importance of
considering both conference and journal articles in this systematic review. Also, considering either journal articles or
conference articles will create a research bias and may provide the readers with an incomplete literature review. Further-
more, researchers are attracted more toward the conference of reverse engineering, software maintenance, whereas for
services, SO computing attracted more researchers.

There is less number of studies reported for SO software engineering compared to OO. This shows that research is now
shifting toward SO systems due to the high demand for Web services. Most of the studies for SOAP services are reported in
the International Journal of Web and Grid Services (four studies) and IEEE Transactions on Service-Oriented Computing

http://wileyonlinelibrary.com

SABIR ET AL. 13

FIGURE 6 Year-wise distribution of studies [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 7 Year-wise distribution of studies with respect to different paradigms. OOSWE, Object Oriented Software Engineering; SOA,
service-oriented architecture [Colour figure can be viewed at wileyonlinelibrary.com]

(one article). Moreover, we are unable to find any journal paper on REST service smells as well as the correction of smells
for REST services. This observation shows that this is a highly active area of research for the new researchers. Figure 7
presents studies over the past 16 years for the paradigms of OO and SO.

The authors of all the above studies are from academia and mainly working in research groups with support from
industry. Therefore, on the basis of this study's selection criteria, no strong evidence was found that gives strong implica-
tion whether research on smells is primarily conducted by the industry or the academic community. We also found some
references where academia solves the industry problems after collecting information from industry blogs like J2EE† and
INFOQ‡,18,22,80 and that provide tool support that solves the reported problems by industry blogs.

4 RESULTS AND DISCUSSION

RQ1: What are the classifications of the state-of-the-art techniques employed in the detection of smells?
The classification of the detection techniques for smells is also reported in a recent review,26 but it is focused only on the

smells discussed by Fowler et al.8 This focus creates a bias because smells other than Fowler's are not reported. Moreover,
the selection of studies covers January 2000 until December 2017.

Another SLR used the term “smell” for selecting studies, but focused only on studies that discussed multiple refac-
toring operations.27 It focused only on the refactoring for removing smells and not on the impacts of smells on system
performance and multiple approaches used for the detection of smells. We also found studies that discussed model-driven
approaches for smells until the year 201139 due to their research associated with the detection of smells. Moreover, we

†www.j2ee.com
‡www.infoq.com

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
www.j2ee.com
www.infoq.com

14 SABIR ET AL.

FIGURE 8 Distribution of primary studies based on source code analysis

also discussed studies that introduced correction approaches in addition to the detection techniques that were not con-
sidered in the most recent review.26 We divided the studies based on source code analysis and not based on the symptoms
associated with smells as reported in the work of Rasool and Arshad.26 The classification is divided into (1) static source
code analysis and (2) dynamic source code analysis.

Static source code analysis is a technique that examines the properties of smells and their impact without executing
systems. In contrast, the dynamic source code analysis examines the cause-and-effect relationship of smells during system
execution.

In the following, we group primary studies selected for this review into two major types: (1) dynamic source code
analysis and (2) static source code analysis. Most of the studies focused on static source code analysis as we found 70
primary studies under this category compared to eight for dynamic source code analysis. Figure 8 reports the total number
of studies reported for each type of analysis.

1. Static source code analysis
We further divide the group of static source code analysis into six subcategories as shown in Figure 7.
a. Behavioral source code analysis
Software systems undergo various changes, and a study28 reports that 98% of the literature on change impact analysis is

related to code analysis in comparison to 17% of the studies to architectural changes. We group multiple primary studies
into behavioral source code analysis that examines the program behavior without executing the source code. The behavioral
source code analysis uses different metrics to check program behavior like cohesion, coupling, depth of inheritance, and
lines of code using various source code metrics.

The detection of smells is not possible without any intermediary representation. This representation is used to extract
useful information from the application and to apply source code metrics to check the detection of smells. Therefore,
behavioral source code analysis is based on either informal description of flaws102 or using the textual description of rules
with the help of Domain Specific Language (DSL).17 Source code parsing is also applied using different parsers20,59,60,83

that make an intermediary representation of source code and apply source code metrics directly to this intermediary
representation. Some code smells are also reported in the literature after examining the version control histories and then
apply source code metrics.92 These types of studies help industry and academia to investigate the problems for a system
under analysis to improve its quality.

We also observed that metamodel101 and ontology110 are other forms of intermediary representations on which source
code metrics are applied to detect smells. Moreover, smell identification could be done by specifying them either in the
form of textual description64 that helps improve the WSDL document describing SO systems and OO systems100,103,106 or in
the form of UML specifications75 to improve the source code quality. Table 8 highlights the conditions used by the primary
studies for smell detection. It provides the primary studies reported for OO and SO systems.

b. Empirical source code analysis
Empirical source code analysis has been the technique to get information by using already established tools or

approaches directly or indirectly. Empirical source code analysis is analyzed either quantitatively or qualitatively.113 The
evidence collected from different techniques will help researchers answer questions that are clearly defined and collected
from different problem domains.113

SABIR ET AL. 15

TABLE 8 Studies used behavioral source code analysis

Ref No Smell Type Precondition Post Condition
102 DS Informal description of flaws Source code metrics
92 CS Change history extractor using SVN§ and CVS¶ Code smell detector applies for each

smell type
17 CS/DS Textual description is used for DSL to generate detection algorithms Source code metrics
112 CS/DS Parsing using JFLEX#and Java Cup|| Source code metrics
88 CS/DS None Source code metrics
101 DS Metamodel Source code metrics
110 CS, AP Ontology Source code metrics
44,64,100,103,106 DS, BS Smell properties are applied Source code metrics
75 AP UML specification is defined for each AP Correction approaches are defined
20,59,60,83 AS, AP Java to WSDL file Source code metrics

Abbreviations: AP, antipatterns; AS, architectural smells; CS, code smells; CVS, Concurrent Versions System; DS, design smells; DSL, Domain Specific
Language; SVN, Sub Versioning Number; UML, Unified Modeling Language; WSDL, Web Service Description Language.
§https://subversion.apache.org/
¶http://www.nongnu.org/cvs/
#http://jflex.de/
||http://czt.sourceforge.net/dev/java-cup/

Some smell detection techniques use empirical evidence collected by different already established tools to check the
associations among various versions of OO systems29,35,62 or an SLR to check the most relevant information presented for
either detection of code smells26,27,72 or correction of code smells109 or code decay.52

Empirical source code analysis mostly investigates the cause-effect relationship like smell versus maintenance effort,53,91

best practices of services in an open-source platform,77 class performance,68 change proneness of antipatterns and clones,73

refactoring suggestions58,67,68 after smell detection, or statistical techniques to check the relationship between already pre-
sented smell and design patterns.69 Table 9 summarizes the extracted information of 23 studies that rely on the empirical
source code analysis techniques.

c. Algorithm-based source code analysis
Some smell detection methods use more than one detection technique, like source code metrics. Some use genetic

algorithms,71,94,96 machine learning techniques,15,87 or image processing.57 These algorithms help solve the problem of
using a fixed threshold for the detection of smells71 and correction of smells using development history.96 Moreover, detec-
tion results from different repositories are used to implement machine learning techniques.15,87 These studies also open an
opportunity for the detection of smells and correction using machine learning algorithms with good precision and recall
as reported in our online appendix.§§§§§ Table 10 summarizes the information of all studies that use different algorithms.

d. Methodology-based source code analysis
Methodology-based source code analysis is used to implement an existing methodology in an alternative manner for

either detecting or correcting smells with the end goal of improving detection accuracy.
This type of source code analysis can be used to define a unique technique relying on already available tools or algo-

rithms to detect occurrences of smells. The studies in this aspect mainly focus on the quality of the source code before
and after implementation of specific methodologies, like performance comparison of different queries using some source
code metrics74 or using different tools for smell detection.97

Moreover, the NSGA-II (nondominated sorting genetic algorithm) algorithm is also used to check source code quality
before and after applying algorithms for the correction of smells.84 The effect of smells on system defects was also stud-
ied by considering five types of smells.41 This study showed that the switch statement has more influence on defects in
comparison to other smells under study. The studies reporting empirical source code analysis are presented in Table 11.

e. Linguistic source code analysis
This technique of source code analysis through linguistic quality assessment started in early 2015. There are only three

studies published in the OO paradigm that investigated linguistic antipatterns. These antipatterns are erroneously intro-
duced in the code when using wrong naming conventions of methods, classes, and variable names. The detection of
linguistic antipatterns is a new area of research receiving growing attention in the software engineering (SE) research
community. We were unable to find any study that reports the effect of linguistic antipatterns on system performance.
Moreover, it is required to implement correction approaches for linguistic antipatterns.

https://subversion.apache.org/
http://www.nongnu.org/cvs/
http://jflex.de/
http://czt.sourceforge.net/dev/java‐cup/

16 SABIR ET AL.

TABLE 9 Empirical source code analysis techniques

Ref Smell Types Precondition Post Condition

Twelve versions of Eclipse** and nine versions of
29 AP Mining the source code ArgoUML††are used to mine the repositories for

antipatterns and code smells
16 AP Change proneness and null pointer Results are validated in 11 releases of Eclipse

exception in classes are analyzed
35 AP DÉCOR‡‡ along with the PTIDEJ|| Macocha§§ mines version control systems for

tool suite to check static dependencies checking association among antipatterns
62 AS SO system FraSCAti¶¶is used Python script is used to check the commit with

for evaluation purposes changes and without changes
93 CS Mimec56 is used to record log Twelve code smells detected in the premaintenance

version using Borland together and InCode
53 CS Borland together and InCode## Mimec56 is used to check the developer's activity,

for the detection of code smell and then, maintenance effort is analyzed
91 CS Three developers are hired to Regression analysis is carried out to measure effort

perform maintenance tasks
43 CS Changes are counted using Logistic regression is applied to correlate the

CVS from Eclipse presence of antipatterns with the change process
Antipatterns are detected,

67 AP the MaDUM114 matrix is used Refactoring options are suggested to remove smells
to check the cost

65 DS Design smells are analyzed Design defects vs flaws classes
w.r.t. flaws classes

56 AP DÉCOR is used for the Odds ratio and Fisher's exact test are applied to check
detection of code smells the difference between mutated and nonmutated antipatterns

76 AP A set of guidelines is defined for WSDL Easy SOC plug-in developed for detection
Manual analysis of smell

61 CS frequency and source code Correlation is used to check the further relationship
metrics for the detection of smells

89 CS Eclipse plug-in is developed to Naïve Bayes and association rule mining are
check the location of source code applied to check the bug relationship in code

58 DS InCode|||| as an Eclipse plug-in Refactoring suggestions for code quality
to check the quality of the code

45 CS Different-smell detector is Kappa*** statistics are applied to check results
used to check smells in code

68 BS Mining the evolution of three Quantitative analysis of the classes participating in refactoring
open-source projects

69 CS Nine design patterns and Correlation, mean, and median are used to answer the
seven code smells are analyzed research problem

26,27,52 CS Kitchenham guideline to Reported code smell detection and correction approaches
collect relevant literature

73 AP DÉCOR for antipattern detection Cochange analysis and fault-proneness
and CC finder for clone detection identification with the Macocha model

77 AP A literature review of services collected Analysis of the Google Cloud platform, Stack
overflow, OCCI for best practices

Abbreviations: AP, antipatterns; AS, architectural smell; CS, code smell; CVS, Concurrent Versions System; DS, design smell; OCCI, Open Cloud
Computing Interface; MaDUM, Minimal Data Members Usage Matrix; PTIDEJ, Pattern Trace Identification, Detection, and Enhancement in
Java; SOC, Service Oriented Computing; SC, source code; SO, software-oriented; WSDL, Web Service Description Language.
**https://eclipse.org
††http://argouml.tigris.org/
‡‡http://ptidej.net/tools
§§http://www.ptidej.net/
¶¶http://frascati.ow2.org/
##https://marketplace.eclipse.org/content/incode-helium
||||https://marketplace.eclipse.org/content/incode-helium
***https://en.wikipedia.org/wiki/Cohen's_kappa

https://eclipse.org
http://argouml.tigris.org/
http://ptidej.net/tools
http://www.ptidej.net/
http://frascati.ow2.org/
https://marketplace.eclipse.org/content/incode-helium
https://marketplace.eclipse.org/content/incode-helium
https://en.wikipedia.org/wiki/Cohen\unhbox \voidb@x \hbox {$^\prime $}s_kappa

SABIR ET AL. 17

TABLE 10 Algorithm-based source code analysis

Ref No Smell Type Algorithm Domain Precondition Post Condition
15 AP ML 60 source code metric results are used SVM classifier is applied using

as training data sets from PROMISE††† WEKA‡‡‡

80 AS GA Base examples are collected from Different combinations of source
different Web service search engines code metrics are applied

71 CS GA GA is used for dynamic threshold Source code metrics are retrieved
adaptation from different tools

54 AP - Perl Script along with the PTIDEJ tool is used DÉCOR is used to detect
to compute metrics from 12 versions of antipatterns
Eclipse and nine versions of
ArgoUML

90 CS - The parallel evolutionary algorithm is Source code metric thresholds are
used set using the GA algorithm

104 AP Mathematics Antipatterns are formally defined Prolog rules are applied for detection
48 AP CG A set of metrics and their values are The similarity of the signature is

used to generate B-spline computed to detect antipatterns
94 CS GA GA is implemented with the help of NSGA-II125 is used for the correction of

source code metrics defects
108 DS BMS Initialization, training, memory Source code metric selection for

selection cell detection
86 BS Set of reference code for refactoring GA is applied
57 DS IP Input is the name of the method, Similarity scoring and bit-vector

association type among classes algorithm are applied to check smells
81 AP GA The PE-A algorithm is applied Different combinations of best

threshold source code metrics for
detection

87 BS ML Source code metric results from seven Naïve Bayes, Logistic, IB1, IB-k,
different software repositories VFI, J48, and random forest applied

96 CS GA Source code metrics NSGA-II is applied to check, detect, and
correct smells from development
history

115 CS ML 78 systems are studied, and different Combinations of different machine
source code metrics are analyzed learning algorithms are applied to

check the smells for each system
under analysis

78 AP ML/GA Source code metrics are used An evolutionary algorithm for
antipattern detection

Abbreviations: AP, antipatterns; AS, architectural smells; BMS, Biomedical Sciences; CG, conjugate gradient; CS, code smells; DS, design smells; GA, genetic
algorithm; IB1, instance-based learning algorithm; IB-k, instance-based k-nearest neighbor; IP, image processing; ML, machine learning; NSGA-II, non-
dominated sorting genetic algorithm; PE-A, parallel evolutionary algorithm; SVM, support vector machine; VFI, voting feature intervals.
†††http://promise.site.uottawa.ca/SERepository/
‡‡‡http://www.cs.waikato.ac.nz/ml/weka/

These techniques used several types of parsers like the Stanford Natural Language Parser to detect parts of speeches.
The LAPD (linguistic antipattern detector)70 tool is proposed for the detection of linguistic antipatterns based on the
natural language processing (NLP) parser to detect similarity between class names, variables, and methods by manually
implementing smell detection techniques to detect linguistic antipatterns. A recent study reported the effect of linguistic
antipatterns on change proneness.109 Table 12 highlights different conditions used for linguistic source code analysis.

2. Dynamic source code analysis
The smell detection techniques that rely on the dynamic source code analysis techniques mainly analyze the execution

states of the systems after their execution under real execution scenarios. Most architectural smell detection techniques
use dynamic source code analysis and belong to the paradigm of SOA,18,21-23,82 relying on DSL that helps generate algo-
rithms along with a service interface, using FraSCAti11 runtime support for static, dynamic, and lexical analyses. The
dynamic source code analysis also used dynamic threshold adaptation instead of fixed thresholds for smell detection.99

http://promise.site.uottawa.ca/SERepository/
http://www.cs.waikato.ac.nz/ml/weka/

18 SABIR ET AL.

TABLE 11 Methodological source code analysis

Ref No Smell Type Precondition Post Condition
74 AP Execution and transformation of Create an EMF representation of the ASG for

queries to make an ASG performance comparison
97 AP J-Deodorant,§§§ Check style,¶¶¶ and Extract Class, Encapsulate Fields, and Move

InCode are used for the detection of Method refactoring is applied using Jason 1.3.10###

smells and Eclipse Kepler||||||
84 AS Source code metrics and multiobjective NSGA-II is implemented to check source code

optimization approach quality before and after refactoring
79 AS Migration strategies are defined for Refactoring of WSDL document is applied,

legacy application to SO systems combining different thresholds of SC metrics
105 DS The CLIO approach is used to detect Modularity violation is calculated by comparing

structural and change coupling structural and change coupling
95 CS The tool is developed that runs in the Monitor invokes smell detection tool and warns

background to monitor changes developers
85 BS Pattern-based definitions are A survey is conducted to get consensus on revised

presented based on the symptoms of and improved definitions
smells

14 BS A two-part Web-based questionnaire Different options are analyzed like an evaluation of
is developed to get an opinion from developer perception, demographic effects, and
developers about smells experience of developers w.r.t. the code smells

41 CS Negative binomial regression is run Different suggestions are passed that helps
to check the faults in investigated researchers for refactoring
systems

Abbreviations: AP, antipatterns; AS, architectural smell; ASG, abstract syntax graph; CS, code smell; DS, design smell; EMF, Eclipse
Modeling Framework; NSGA-II, nondominated sorting genetic algorithm; SC, source code; SO, software-oriented; WSDL, Web Service
Description Language.
§§§https://marketplace.eclipse.org/content/jdeodorant
¶¶¶checkstyle.sourceforge.net/
###https://sourceforge.net/projects/jason/files/jason/version%201.3.10/
||||||www.eclipse.org/downloads/packages/release/Kepler/SR

A genetic algorithm along with tuning machine is applied to check the results with inferred settings, default settings,
and with a tuning algorithm.99 We found eight studies that reported dynamic source code analysis for OO. The complete
information about the different techniques implemented using dynamic source code analysis is presented in Table 13.

Summary on RQ1: Research on smells analyzes the target systems by applying source code–level metrics that help
investigate systems by using lexical properties. Research in the domain of smells also empirically validates findings using
statistical measures after investigating the cause-effect relationship with some independent variables, like the numbers
of defects. A recent shift toward the use of different algorithms from machine learning as well as artificial intelligence
also helps detect design smells and may improve the performance of detection techniques. These algorithms are reported
for the detection of smells in both OO and SO paradigms. We have identified a few studies that reported the use of lexical
analysis70,71 and dynamic source code analysis.22

To conclude, while the concern is about the classification of state-of-the-art approaches, it is worthy to note that much
work has been done on the static and dynamic analyses of OO and SO systems; however, very few contributions have
been made by checking the linguistic quality in these systems. In particular, very little research effort has been made to
ensure the quality of the identifiers for methods/classes/interfaces, services/operations, and parameters/messages, ie, if
the OO and SO systems are of sound quality in terms of linguistic quality. Thus, more attention is required not only on
the static and dynamic attributes but also on the linguistic/semantic quality of such systems.

RQ2: How did the state-of-the-art approaches evolve across different paradigms starting from OO to SO?
There are a number of different detection and correction techniques that crossed domains. These approaches mostly

focused on source code analysis and evolved from detection to correction in OO and SOA. We extracted data from 78 pri-
mary studies and presented the extracted results in an Excel sheet available online.§§§§§ The attributes selected for the
extraction for each study are reported in Section 3. The analysis results give us a clear idea about the evolution of the
state-of-the-art approaches in OO and SOA. We divided the research methodology of 78 primary studies in five different
categories. As we are interested in OO and SOA, we divided the research techniques reported for OO-related primary

https://marketplace.eclipse.org/content/jdeodorant
checkstyle.sourceforge.net/
https://sourceforge.net/projects/jason/files/jason/version%201.3.10/
http://www.eclipse.org/downloads/packages/release/Kepler/SR

SABIR ET AL. 19

TABLE 12 Linguistic source code analysis

Ref Paradigm Precondition Post Condition
70 OO 1. Check methods, attributes, and leading Seven open-source system archives are used to

comments using the Stanford Natural check linguistic antipatterns using an LAPD, then
Language Parser online questionnaires are designed to check the
2. The semantic relation is analyzed using developers' perception toward linguistic
WordNet**** and implemented as an Eclipse antipatterns (LAPs)
plug-in

109 OO Linguistic antipatterns are defined Case examples are given to analyze the LAPs
22 SO Syntactic and semantic similarities are The DOLAR‡‡‡‡ tool is developed to detect linguistic

studies using the Stanford Parser†††† and antipatterns from REST APIs
a WordNet lexical database

71 OO Lexical and design smells are detected in Fault proneness is checked for design smells vs
30 releases of three projects: ANT,§§§§ lexical smells
ArgoUML,¶¶¶¶and Apache####

72 OO Structural metrics are applied Principal component analysis along with
different statistic measures is used to evaluate the
subject system

Abbreviations: API, application programming interface; LAPs, linguistic antipatterns; LAPD, linguistic antipattern detector;
OO, object-oriented; REST, Representational State Transfer; SO, software-oriented.
****https://wordnet.princeton.edu/
††††http://nlp.stanford.edu:8080/parser/
‡‡‡‡http://sofa.uqam.ca
§§§§http://ant.apache.org/
¶¶¶¶https://sourceforge.net/projects/argouml/
####http://www.apache.org

TABLE 13 Dynamic source code analysis techniques

Ref No Smell Type Precondition Post Condition
18 AS DSL is used along with algorithm generation to map Static, dynamic, and lexical source

rules code metrics
21 AS DSL is used along with a service interface to invoke Wrapping REST API with

the services by using FraSCAti and Apache CXF|||||||| FraSCAti SCA analysis
runtime support

22 AS DSL is used along with a service interface to invoke WordNet, Core NLP is used to
the services by using FraSCAti and Apache CXF analyze lexical properties
runtime support

23 AS DSL along with FraSCAti runtime support Source code metrics
82 AS Association rule mining to check the association among Source code metrics

execution of services
63 CS Detect smells on the client side Check detected smells on the server side
98 CS Mining the source code through SVN The SrcML***** toolkit and a MARKOS†††††

code analyzer are used
99 CS Tuning machine is applied on an inferring set to check Smells are checked and refactored

the most appropriated thresholds after applying dynamic threshold
adaptation

Abbreviations: API, application programming interface; AS, architectural smells; CS, code smells; DSL, Domain Specific Language; NLP, natural
language processing; REST, Representational State Transfer; SCA, Service Component Architecture; SVN, Sub Versioning Number.
||||||||https://github.com/apache/cxf
*****http://www.srcml.org/about-srcml.html
†††††http://markosproject.sourceforge.net/downloads/

studies that also crossed to SOA. The detection and correction approaches used source code metrics or source code analy-
ses as the primary techniques, further combined with other research techniques for the identification of smells. As shown
in the following, we use pre- and post-conditions because techniques primarily used behavioral analysis of systems as a
prerequisite.116

https://wordnet.princeton.edu/
http://nlp.stanford.edu:8080/parser/
http://sofa.uqam.ca
http://ant.apache.org/
https://sourceforge.net/projects/argouml/
http://www.apache.org
https://github.com/apache/cxf
http://www.srcml.org/about-srcml.html
http://markosproject.sourceforge.net/downloads/

20 SABIR ET AL.

FIGURE 9 Source code metrics in object-oriented (OO) and software-oriented

a. Source code metrics
Source code metrics quantify the application features in the OO design knowledge base. These metrics are selected

based on the OO design principles. Moreover, these principles are the core of OO design that further classifies knowledge
based on their definitions and different rules used for these definitions. There should be concrete knowledge about the
selection of suitable metrics to check if these metrics are a valid indicator of detected smell or not. However, most of the
source code metrics are not applied directly to the source code. A literature review indicates that parsing is the activity
mostly used to get the intermediary representation of source code, and then, source code metrics are applied to check
various quality indicators for the applications.101,102,112 It is also observed that OO source code metrics are used for SO
systems to check the quality of the services by detecting several types of defects in services or in their interfaces.20,59,60

Figure 9 reports the condition used for source code metric–based evolution.
The primary studies used source code metrics for OOSE to evolve into SO software engineering. All studies used an

intermediate representation of source code for the detection of smells across two paradigms.
b. Mining the source code using SVN or CVS
There are a number of studies that report the detection of smells through mining source code using version control

systems. Software developers often rely on subversion to keep track of the current and historical versions of files like source
code, Web pages, and documentation. Software version history is often used to check the relationship between different
quality indicators, with respect to the system performance and solution, ie, refactoring, for a specific problem. These
types of studies often use development history of the various releases of the system to check the relationship between
two different variables like smells vs maintenance effort53,91 or smell vs quality of code after refactoring68 or smell vs
change history information about the different versions of the systems92 by examining the history using the Sub Versioning
Number (SVN) or the Concurrent Versions System (CVS) after collecting commits for each change. Approaches also
use versioning history with the algorithm called HIST (Historical Information for Smell deTection)92,98 and function as
follows.

1. Versioning systems are used to extract changes in source code.
2. The locations of the changes from versioning systems are given as input.
3. A change history extractor like the SVN or CVS is used to mine the versioning systems, reporting the complete

information change. This is performed by comparing the folder and snapshot of change. The SrcML‡‡‡‡‡ toolkit is
used to parse the source code to find cases of change. Then, the code smell detector is applied for smells.

c. Domain Specific Language
Domain analysis is a process that uses specific information required to develop software systems in such a way that is

making the desired system reusable for the creation of a new system.117 The DSLs that are proposed for code, design, and
architectural smells are based on the following steps.

1. Key characteristics of smells from the literature are gathered, and rules to discover them within code or design are
designed manually.

2. The next step is to check the measurable properties by using low-, high-, and medium-threshold implementation.
3. Lexical properties using WordNet are examined. Moreover, the properties can be combined using set operators like

Union (UNION) and Intersection (INTER) to build more complex detection rules.
4. Classification of the key characteristics is used to divide the properties further.
5. Finally, a DSL is proposed to describe smells in terms of their measurable, structural, and lexical properties via a

rule card using a set of operators.

‡‡‡‡‡http://www.srcml.org/tools/index.html

http://www.srcml.org/tools/index.html

SABIR ET AL. 21

FIGURE 10 Domain Specific Language (DSL) evolves in object-oriented (OO) and software-oriented

FIGURE 11 Genetic algorithm evolves in object-oriented (OO) and software-oriented

We observed from the SLR of code and design smells that methods based on a DSL mostly rely on the Backus-Naur
form for the specification of smells and the boxplot statistical technique for adjusting the threshold values of source code
metrics. This technique evolved from OO17,112 to SO21-23,40 as shown in Figure 10.

d. Genetic algorithm
Smell detection and correction approaches also use genetic algorithms to improve system quality by detecting smells

as well as suggesting refactoring opportunities to correct them.84,86,94,96 The main benefits of using such approaches are
as follows.

1. Genetic algorithms only require defect examples and not different defect types.
2. It is not required to write the detection and correction rules.
3. Metrics with related threshold values are not required, which may cause problems in the case of different thresholds

reported in the literature.
4. The effort required to perform refactoring is also considered for the detection and correction of smells.
5. Already discovered smell results are used as learning examples.
6. Derived detection rules are used to select the best refactoring solutions from a list.
7. Refactoring solutions provide suggestions of the best alternative on the set of defects.
8. Mutation and crossover operators are applied with given probabilities, the resultant is evaluated using a fitness

function, and the process is repeated until the stop criteria are met.
9. The algorithm, called NSGA-II, having the precision for the detection of smells and correction of about 87% both for

the OO86,94,96 as well as Web services.84 Figure 11 shows the relevant studies based on the genetic algorithm.

e. Parallel evolutionary algorithm
The evolutionary algorithms (EAs) and the particle swarm optimization process are used to reduce the computational

complexity of the search process. The algorithm is based on the following main features.

1. Parallelization allows speeding up the search process.
2. Exchanging information between different search methods.
3. Using several types of EAs reduces the sensitivity of different parameters used for the detection of smells.
4. Iterations are independent of the problem.
5. The parallelization process uses a single solution from the search space. The solution uses a set of detection rules

that help detect a specific type of code smell.
6. Parallelization is used to generate a detection rule, and then, the genetic algorithm is used for the detection. Finally,

the set of the best candidates as a solution is selected.
7. The parallel evolutionary algorithm (PE-A) was reported primarily for OO90 and then adapted for Web service

antipattern detection.81 The criteria for implementing the PE-A are presented in Figure 12.

Summary on RQ2: After examining the studies from the last 17 years, we identified five different approaches that
evolved in OO and SO. These approaches are now quite matured with the ability to provide highly accurate detection
results for both OO and SO paradigms. We investigated their steps involved in the identification or correction of smells.

22 SABIR ET AL.

FIGURE 12 The parallel evolutionary algorithm evolves in object-oriented (OO) and software-oriented

However, in the literature, the technique related to mining the source code using versioning systems is still not applied for
Web services. We did not find any study that discusses the effect of smells across the different versions of service interface
APIs. Source code metrics are the only technique used repeatedly; however, much work is still needed to be done for Web
services by introducing some novel metrics, which would help investigate the QoS issues for Web services.

To conclude, while the concern is the evolution of approaches from OO to SO systems, we found that the use of opti-
mization algorithms is common across the paradigms. In addition, for the OO paradigms, it was largely feasible to analyze
source code metrics than the SO systems, which is due to the availability of the source code of OO systems with ease as
compared to SO systems. For the same reason, mining the SVN/CVS is a lot more possible in the OO paradigm. All these
analyses in the SO paradigm are possible only at the interface level. Practitioners should take initiatives to open their
source code to academia.

RQ3: What are the smells that are studied for a specific paradigm?
a. Smells reported in OO
A key argument for investigating smells is that certain smells are emphasized more in the literature than others. More-

over, there are different terms provided in the literature for smells like code smells, design smells, architectural smells, and
lexical smells that may confuse researchers on which category a smell belongs. The term “code smell” was first introduced
by Fowler et al8 with corresponding refactoring opportunities. Later, Brown et al36 introduced the term “antipatterns” and
divided them into three categories: software development, architectural, and project management antipatterns. There-
fore, the smells were later reported in the literature as design, architectural, and code smells and commonly referred to
as smells.

We search the relevant literature on bad software smells and identify various smells that are reported as code smells,
design smells, architectural smells, and antipatterns. Most of the relevant studies reported and analyzed Feature Envy as
code- and design-level smells. To the best of our knowledge, we did not find this smell reported as architectural smells.
Table 14 describes the number of reported smells and their categorization as bad, code, design, and architectural smells
in the literature. In Table 14, the Frequency column shows that Feature Envy gains utmost attention from researchers.
In contrast, much study is still required to be done for the detection of smells like the yo-yo problem, unnamed coupling,
extensive coupling, and so on, which gained less attention so far in the software engineering (SE) research community.

If we consider the category of smells defined by Fowler et al8 and the antipatterns as defined by Brown et al,36 then
the total number of smells comes to 46. If we examine the literature review from the year 2000 until 2017, we find, in
total, 22 smells among the ones defined by Fowler et al.8 In addition, we were unable to find few smells as reported by
Brown et al.36 Table 14 lists all the smells reported as code, design, and architectural smells. However, no studies
were found exploring the smells like Dead End, Reinvent the Wheel, Primitive Obsession, Inappropriate Intimacy, Golden
Hammer, and Incomplete Library Class. Moreover, there is no template described for code smells as reported for antipat-
terns in the literature.36 The correction of code smells might improve the understandability and maintainability of the
source code. However, one can remove the antipatterns at the design level, which may lessen the number of smells at the
code level. Therefore, to improve the system quality, one should remove both antipatterns and code-level smells, which
exist at the design and code levels, respectively.

Mäntylä et al34 and Wake33 proposed a classification for smells. Moha et al17 divided the code smells and antipatterns as
inter- and intraclass smells based on structural, lexical, and measurable properties. Another classification of smells was
reported in the literature that divides the code smell detection approaches into seven broad categories.90 However, this
categorization90 is based on the approaches used to handle smells and not based on the properties of the smells. In this
paper, we categorize the smells reported in the literature based on the properties associated with each smell and follow
the criteria defined by Mäntylä et al.34 We collect the relevant definition and properties of each smell from the litera-
ture and then divide those smells in different classifications like code smells, design smells, antipatterns, and architec-
tural smells. Moreover, Mäntylä et al34 focused only on the code smells defined by Fowler et al,8 and not on the antipattern

SABIR ET AL. 23

TABLE 14 Smells reported in the literature from the object-oriented paradigm

Sl No Smell Name Type of Smell Ref No Frequency

1 Feature Envy BS, CS, DS 17,44,45,52-55,58,61,65,68,69,72,76,86,87,90,92,93,97,98,100,101,106,109 25
4 God Class AS, BS, CS, DS 17,45,52-54,58,61,65,69,75,76,88,93,100-102,104,106 19
2 Blob BS, CS, DS, AS 16,29,35,43,48,67,68,71,73,84,90,92,94,96,98,103,108,110,112 18
3 Data Class CS, DS 52,53,58,61,65,69,76,88-90,93,95,96,101,102,104,106,109 18
5 Long Parameter List AP, BS, CS, DS 14,16,29,35,45,67,68,71,73,76,86,87,89,90,95,103,109,112 17
6 Spaghetti Code AP, AS, CS, DS 16,29,35,43,67,68,71,84,90,94,96,103,108,110,112 15
7 Shotgun Surgery CS, DS 17,53,61,67,71,76,90,92,93,98,100,101,103,106,109 15
8 Duplicated Code BS, CS, DS 14,45,53,54,57,58,61,67,71,76,88,93,95,103,109 15
9 Large Class AP, BS, CS, DS 14,16,29,35,44,45,57,76,86,89,95,103,109,110,112 15

11 Long Method AP, BS, CS, DS 16,29,35,45,68,73,76,87,89,95,103,108-110,112 15
10 Speculative Generality AP, BS, CS, DS 16,29,35,43,61,67,68,84,85,96,108,109,112 13
12 Lazy Class AP, BS, CS, DS 16,29,35,44,68,72,86,87,90,109,110,112 12
13 Refused Parent Bequest CS, DS 17,53,54,61,68,73,93,100,101,106,109,112 11
14 Functional Decomposition AS, CS, DS 29,43,67,71,84,90,94,96,103,108,112 11
15 Message Chain BS, CS, DS 41,67-69,71,73,85,87,103,109 9
16 Data Clump BS, CS, DS 41,53,69,85,93,97,109,110 8
17 Swiss Army Knife AP, CS, DS 16,29,35,67,71,103,112 7
18 Divergent Change CS, C&D, DS 67,71,92,98,103,109 6
19 Switch Statement BS, CS 85,87,89,95,99,109 6
20 Comment CS, C&D, DS 67,71,103,109,110 5
21 Parallel Inheritance CS 89,92,98,109 4
22 Misplaced Class CS, DS 53,93,101,106 4
23 Class Data Should be Private AP, CS, DS 16,29,35,68,73 4
24 Poltergeist AS, CS, DS 57,75,104,110 4
25 God Method CS 53,54,93 3
26 Anti-Singleton AP, DS 16,29,35,73 3
27 Complex Class AP, DS 16,29,35,73 3
28 Middle Man BS, CS 41,87,109,110 4
29 Brain Class CS, DS 52,61,65 3
30 Public Fields CS 95,97 2
31 Schizophrenic Class CS 61,69 2
32 God Package DS 101,106 2
33 Wide Subsystem Interface DS 101,106 2
34 Decorator BS, DS 45,106 2
35 Global Variables C&D, DS 67,71 2
36 No Polymorphism C&D, DS 67,71 2
37 Procedure Class C&D, DS 67,71 2
38 Brain Method CS 61 1
39 Common Methods in Sibling Class CS 95 1
40 Extensive Coupling CS 61 1
41 External Duplication CS 69 1
42 Idle Cut Point CS 72 1
43 Intensive Coupling CS 61 1
44 Redundant Cut Point CS 72 1
45 Traditional Breaker CS 61 1
46 Adapter DS 93 1
47 Code Clone DS 105 1
48 Cyclic Inheritance DS 57 1
49 Cyclic Dependency DS 105 1
50 Delegated DS 44 1

(Continues)

24 SABIR ET AL.

TABLE 14 (Continued)

51 Interface Bloat DS 104 1
52 Missing Association Class DS 57 1
53 Observer DS 104 1
54 Poor Inheritance Hierarchy DS 105 1
55 Unnamed Coupling DS 105 1
56 Yo-yo Problem DS 104 1

Abbreviations: AP, antipatterns; AS, architectural smell; C&D, Code and Design; CS, code smell; DS, design smell.

properties as defined by Brown et al.36 Therefore, we also use the classification of design smells and antipatterns reported
in the work of Ganea et al.58 The partition of smells according to the classification reported in the literature is discussed
in the following.

The Bloater: Bloater describes something in the source code that has grown rapidly and, thus, not possible to handle
effectively. The smells in this category are Blob, God Class, God Method, Data Clump, Long Method, Large Class, Primitive
Obsession, Long Parameter List, Complex Class, and God Package. It is very difficult to modify or maintain large codes
that further transformed into the Long Method, Large Class, or God Class. This is also true for the Long Parameter List
and Data Clump as they are often found with a long list of parameters. The God Package smell is only reported in two
studies,101,106 whereas the God Method is found in three studies.53,54,93 The Data Clump smell is also reported in several
studies.53,69,85,93,97,109,110 The smells that are reported by the maximum number of studies include Blob and God Class, 18
and 19 times, respectively. The complete list of references that studied the Bloater group of smells is presented in Table 14.

Object-Oriented Abusers: The smells in the OO abuser category include Switch Statements, Temporary Field, Refused
Bequest, Alternative Classes with Different Interfaces, Parallel Inheritance Hierarchies and Poor Inheritance Hierarchies,
Class Data Should be Private, Global Variables, No Polymorphism, Procedural Class, Public Fields, Missing Association,
Cyclic Inheritance, Idle Cut Point, Redundant Cut Point, Traditional Breaker, Adapter, Code Clone, External Duplication,
and Cyclic Dependency. This categorization is often related to the smells where the solution does not fully utilize all the
benefits of OO design. The Refused Bequest smell is based on this definition because it violates the rule of inheritance
design, which is one of the fundamental principles of OO design. Moreover, the Alternative Classes with Different Inter-
faces smell also suffers from the common interface for closely related classes. This shows an example of misusing the OO
principles. Similarly, the Violation of Polymorphism, Use of Public Data Members, and Class with Missing and No Associa-
tions also fall in the abusers category. However, these smells are not reported in Fowler's catalog of smells. Several studies
under this category of smells ignored Parent Bequest,17,53,54,61,68,93,100,101,106,109,112 whereas the No Polymorphism and Procedu-
ral Class smells were studied in only two studies.67,71 Similarly, the Cyclic Inheritance smell is reported in only one primary
study that clearly shows a research gap for this smell.

The Encapsulators: The encapsulators often deal with the communication mechanism or encapsulation. The smells
in this category are Message Chains, Common Method in Sibling Class, and Poltergeist. These types of smells are often
interdependent, where the removal of one smell may cause the introduction of another smell when it is removed. The
potential solution for this category of smells is to restructure the class hierarchy by moving a method to another class.
However, care must be taken such that the move does not introduce the Common Method in Sibling Class smell. The
encapsulator smells are mostly based on how the object, data, and operations are accessed. The studies that reported the
smells in the category of encapsulators mostly consider the Message Chain smell,67-69,71,85,87,103,109 the Middle Man smell
is reported three times in the literature,87,109,110 and the Common Method in Sibling Class is reported only once.95 More
studies are required in this category.

The Coupler: These types of smells are strongly related to some properties of the class that may hinder the reusability of
the software. The Schizophrenic Class, Message Chain, Middle Man, Incomplete Library Class Feature Envy, Inappropriate
Intimacy, Intensive Coupling, Extensive Coupling, and Unnamed Coupling smells belong to this category. These smells are
largely related to the property of coupling and often misuse or overuse the coupling. The research on smells reported
Feature Envy as a maximum number of smells detected, corrected, and/or considered for maintenance (ie, 25 times) as
compared to Intensive/Extensive Coupling.61

The Design Rule Abusers: These types of smells violate the rules to design the classes or overall programs. These
types of smells are erroneously introduced by the programmers in a way that they might consider them as patterns (ie,
good practice), but later, they turn into antipatterns (ie, poor practice). Design rule abusers can be further divided as
the use of wrong programming approaches like Boat Anchor, Lava Flow, or Wrong Methodology by using Copy-Paste

SABIR ET AL. 25

TABLE 15 Smells that are reported repeatedly in the services literature

Sl No Smell Name Reference No Frequency

1 God Object Web Service 17,18,23,62,81,82,100,101,106 9
2 Low-Cohesive Operation 18-20,59,60,81,83 7
3 Ambiguous Names 19,20,59,60,80,83 6
4 Chatty Service 18,23,62,80-82 6
5 Data Web Service 18,23,62,80-82 6
6 Duplicated Web Service 18,23,62,81,82 5
7 Enclosed Data Model 19,20,59,60,83 5
8 Redundant Data Model 19,20,59,60,83 5
9 Whatever Types 19,20,59,60,83 5

10 Empty Messages 20,59,60,83 4
11 Bloated Service 23,62,82 3
12 Bottleneck Service 23,62,82 3
13 Nobody Home 23,62,82 3
14 Sand Pile 23,62,82 3
15 Service Chain 23,62,82 3
16 Stove Pipe 23,62,82 3
17 The Knot 23,62,82 3
18 CRUDy Interface 18,81 2
19 Fine-Grained Web Service 18,81 2

Programming, Golden Hammer, Defactoring, Spaghetti Code, Anti-Singleton, Misplaced Class, Wide Subsys Interface, and
the Yo-yo Problem. The trend toward the smells as defined by Brown et al36 is not observed much as we found that only
the Spaghetti Code is reported in a substantial number of studies16,29,35,43,67,68,71,84,90,94,96,103,108,110,112 as compared to the Yo-yo
Problem.104 However, we are unable to find any relevant study that reports Boat Anchor and Lava Flow smells.

The Lexical Abuser: Fowler et al8 defined code smells in code comments that are smells when the comments do not
contain information corresponding to the source code and its behavior, which Moha et al17 later reported as lexical smells
if they do not match with the internal code behavior. Recently, a study reports the catalog of lexical smells based on the
internal code structure.70 This catalog considers the method, class naming conventions, as well as method return types to
define lexical smells.70 The complete list of these smells is available online.§§§§§

Table 14 reports the name of the smells along with their category as reported in the corresponding research article. The
studies reported in this SLR include 58 smells. However, we do not add Code Clone or Copy Code to this category as it is
not included in our review protocol. In Table 14, we report 56 smells along with their frequency.

In Table 14, we can observe that the smells reported by Brown et al36 as antipatterns still did not receive significant
attention from the researchers and were not studied thoroughly in the literature. Moreover, a number of new smells are
introduced in the literature like Code Clone, Unnamed Coupling, and God Package in addition to the smells defined by
Fowler et al.8

b. Smells reported in SO systems
1. Smells that received more attention: SOA is a promising architectural style that facilitates the development of low-cost,

reliable, and flexible services usable or accessible over the Internet.47 This architectural style can be implemented using
technologies like REST, SOAP, SCA, RPC, and J2EE. The detection of smells in the services is a quite new but challenging
area that is receiving increased attention in the SE research community. There are a number of smells that are detected
in different SOA technologies like SOAP,18,81 REST,21,22 and SCA.23 Moreover, we also found several studies that reported
smells for the WSDL file that is the core specification of the SOAP Web services. Table 15 highlights the frequency for a
specific smell reported in the SO systems literature. It is also to be noted that there are more than ten smells reported only
once in the services domain like Breaking Self-Descriptiveness, Content Negotiation, and Ignoring MIME Type.21 The REST
architectural style is the area where we identify the gap for the detection of various service antipatterns in SO systems.

2. Smells that received less attention: We also found several smells from different SOA technologies that are reported only
once in the literature. These smells are detected based on static and dynamic source code analyses by computing different

§§§§§http://research.ciitlahore.edu.pk/Groups/SERC/SOA.aspx

http://research.ciitlahore.edu.pk/Groups/SERC/SOA.aspx

26 SABIR ET AL.

TABLE 16 Smells reported for the first time in the services literature

Ref BSD CN CvCLRN DNU DOR DSSS FH HvNHN IC IMT ISC ILC LDFINT LFDS LFEBAOD
19 √ √
79 √ √ √ √ √ √ √
80

21 √ √ √ √ √
22 √ √

Abbreviations: BSD, Breaking Self-Descriptiveness; CN, Content Negotiation; CvCLRN, Contextualized vs Contextless Resource Name; DNU, Detected Not
Used; DOR, Detect Operation that Receive; DSSS, Detect Semantically Similar Services and Operations; FH, Forgetting Hypermedia; HvNHN, Hierarchal
vs Non-Hierarchical Node; IC, Ignoring Cache; ILC, Inappropriate or Lacking Comments; IMT, Ignoring MIME Type; ISC, Ignoring Self-Descriptiveness;
LDFINT, Look for Data Types For Inconsistent Names and Types; LFDS, Look For Data types that subsumes other Data types; LFEBAOD, Look For Error
Information Being Exchanged as Output Data.

TABLE 17 Smells reported for the first time in the services literature

Ref LFRDD LSDASI LFCWSDL MC MS NS RPT RC SINS SPN TVA TTG TTP UCFISM VCU
19 √ √
79 √ √ √ √
80 √ √
21 √ √ √ √
22 √ √ √

Abbreviations: MC, Misusing Cookies; LFRDD, Look for Redundant Data type Definition; LSDASI, Look for Shard dependencies among Service Imple-
mentation; LFCWSDL, Look for Comments in WSDL; MS, Multi Service; NS, Nano Service; RPT, Redundant Port Type; RC, Response Cache; SINS, Share
Inappropriate Names for Service elements; SPN, Singularized vs Pluralized Nodes; TTG, Tunneling Through Get; TTP, Tunneling Through Post; TVA, Tidy
vs Amorphous URI; UCFISM, Undercover Fault Information within Standard Message; VCU, Verb less vs Cruddy URI.

properties and detected instances of each antipattern in the related services. Most of these antipatterns are related to REST
services and reported after the year 2014. Tables 16 and 17 report the findings of those smells that received less attention
from SOA technologies.

Summary on RQ3: This research question about the smells (reported for a specific domain) is useful for the future
research directions. Our findings suggest that most of the study is performed to investigate God Class, Feature Envy, Data
Class, and Blob. In total, researchers discussed 56 smells. Researchers used static or dynamic source code analysis for the
identification of smells, but attention must be given to those smells that still took less attention like Unnamed Coupling,
Poor Inheritance Hierarchy, and the Yo-yo Problem. Similarly, there is a need for an investigation on smells that received
less attention in the SO paradigm. Most of the smells belong to REST services and still did not receive much attention, as
they need dynamic analysis of the service interface. The techniques used in the OO for static source code analysis are not
applicable to REST services because the method for using a class in OO and the method for consuming services in the SO
paradigm are not conceptually similar. Most of the attention is given to smell detection for the WSDL interface for Web
services. The SOAP services are also analyzed using dynamic properties like availability, throughput, and response time.

To conclude, this research question ideally focuses on the wide range of smells, studied in the literature in OO and
SO systems. Overall, the OO domains include a large set of smells; however, not all of them have been analyzed for
their automatic detection. In particular, a few smells like Feature Envy, God Class, Blob, Data Class, Long Parameter List,
Spaghetti Code, Shotgun Surgery, Duplicated Code, Large Class, and Long Method received more attention than others.
However, there are still 45 other smells as reported in Table 14 that did not receive much attention from the researchers.
As compared to OO smells, the studies' list of smells in the SO literature is very small, ie, only 19 smells. As the software
concept has already diverted into the Web era that is service based, researchers should put more effort on SO smells to
ensure high-quality service-based systems.

RQ4: What is the correlation between smells across the paradigms?
The studies in the literature considered different smells that are evolved in OO and other domains of software engi-

neering. These smells are also studied and analyzed in the paradigm of SOA. This research question will cover the
evolution history of source code measures used for the identification of smells in OO and SO and the smells evolved
in OO and SOA. The OO uses classes as compared to services that use interfaces. However, services used by the clients
are also embedded using classes and methods; thus, there is a need to study the evolution of smells in OO and SO.

SABIR ET AL. 27

Moreover, SO systems can be implemented by using various technologies, and there are different tools, eg, Java2WSDL,
used to generate a representation of services from OO code.19,20,79 SOAP services can be implemented using the code-first
or contract-first approach,20,79 and OO source code metrics can be reused to detect antipatterns for the code-first approach.
If OO code is smelly, then the interface generated using an automated tool will be also smelly.20 Therefore, source code
metrics are highly used by researchers to extract smells from Web services.

Intermediate representations are useful for the identification of smells both for SOA and OO and enable researchers
to extract properties of smells. SOA relies on services that generally gather and implement low-cohesive operations in
comparison to OO where cohesion must be high for a class or sets of methods. LCOM (Lack of COhesion among Method)
may be used for both OO and SOA, but the threshold values may vary as reported in previous studies.18,81

Evolution of smells across the paradigms: Out of the 78 most relevant studies investigated in this paper, we identified
four studies that belong to the OO paradigm and reported code comments as the smell that evolves to SO and reported by
two SO primary studies.19,79 It is worth mentioning that source code measures used for the identification of smells for SO
systems are also reported for OOSE. The primary studies that reported the smell Comments across different paradigms
are shown in Table 18. The detailed descriptions of these smells with the approaches used for their detection are reported
online.§§§§§ Code comments are the property used by the developers in both OO and SOA. However, the property used
for the identification of COMMENT may have different thresholds.

TABLE 18 Smells evolved in object-oriented (OO) and
software-oriented

Sl No Smell Name OO Ref No Services Ref No

1 Comments 67,71,103,109,110 19,79

TABLE 19 Source code metrics used for the detection of service smells

Sl No Smell Name Ref No Frequency Metrics Used

1 God Object Web Service 17,18,23,81,100,101,62,82,106 9 COH, NOD, RT, Av
2 Low-Cohesive Operation 18-20,59,60,81,83 7 NOD, ANIO, WMC, LCOM3
3 Ambiguous Names 19,20,59,78,80,83 6 ALS, RGTS, NVMS, NVOS
4 Chatty Service 18,23,62,78,80-82 6 COH, ANAO, NOD, RT, Av
5 Data Web Service 18,23,62,78,80-82 6 COH, ANPT, ANAO
6 Duplicated Web Service 18,23,62,81,82 5 ARIM, ANIO
7 Enclosed Data Model 19,20,59,60,83 5 CBO
8 Redundant Data Model 19,20,59,60,83 5 WMC
9 Whatever Types 19,20,59,60,83 5 ATC

10 Empty Messages 20,59,60,83 4 WMC
11 Bloated Service 23,62,82 3 NOI, NMD, TNP, COH
12 Bottleneck Service 23,62,82 3 CPL, Av, RT
13 Nobody Home 23,62,82 3 NIR, NMI
14 Sand Pile 23,62,82 3 NIR, NMI
15 Service Chain 23,62,82 3 NTMI, Av
16 Stove Pipe 23,62,82 3 NUM, NMD, ANIM
17 The Knot 23,62,82 3 CPL, COH, Av, RT
18 CRUDy Interface 18,81 2 NCO, ANAO, NOD, RT, Av
19 Fine-Grained Web Service 18,81 2 NOD, CPL, COH
20 Chatty Service 78 2 COH, CBO

Abbreviations: ALS, Average Length of Signature; ANAO, Average Number of Accessor Operations; ANIO, Average Number
of Identical Operations; ANIM, Average Number of Identical Messages; ANP, Average Number of Parameters in Opera-
tions; ANPT, Average Number of Primitive Types; ARIM, Average Ratio of Identical Message; ATC, Abstract Type Count;
Av, Availability; CBO, Coupling Between Objects; COH, Cohesion; CPL, Coupling; LCOM3, Lack of Cohesion Method 3;
NCO, Number of CRUDy Operations; NIR, Number of Incoming References; NMD, Number of Messages Declared; NMI,
Number of Method Invocation; NOD, Number Of Operations Declared; NOI, Number Of Identical Operations; NTMI,
Number of Transitive Method Invocation; NUM, Number of Utility Methods; NVMS, Number of Verbs in Method Signa-
ture; NVOS, Number of Verbs in Operation Signature; RGTS, Ratio of General Terms in Signature; RT, Response Time;
WMC, Weighted Method Complexity.

28 SABIR ET AL.

Source code metrics used for smell detection in OO and SO: SOA is an emerging and a new challenging area that
is gaining increased research attention. The smells reported for the services paradigm initiated to be introduced after the
year 2010. It is worth mentioning that the smells reported for this paradigm also rely on source code metrics that are
primarily used by OO smells. However, it is noted that smells from SO systems are based on static, dynamic, and linguistic
analysis of source code, documentation, and service interfaces, eg, WSDL files. Table 19 shows the source code metrics
used for the detection of smells in services in the literature.

The metrics used for the identification of 20 smells reported for SOA used source code metrics that have been previously
reported for OO. For example, identification of the God Object Web Service used cohesion metrics (eg, LCOM3) and oper-
ation identification metrics (eg, NOD) that are also used for the identification of smells in OO,26 but the threshold values
may vary for SOA in comparison to OO. The LCOM3 value must be high for OO,7,26 but it should be low for SOA.118,119

Summary on RQ4: In answering RQ4 on the smells and source code measures that evolved in OO and SO, we identified
many source code metrics that were used for the identification of OO smells but later reused for the identification of smells
related to SO systems. More smells could be investigated and detected after examining the complete list of information
already available in blogs, websites, and books related to SO systems using the source code–level metrics that belong to the
widely known CKMJ¶¶¶¶¶ suite to discover and even define new antipatterns in the SO paradigm. Some studies also used
source code metrics as a prerequisite for smell identification,35,45,56,65 and then, different statistical measures are applied
to investigate the effect of smells on subject systems. Therefore, we also used these source code measures to investigate
the effect of smells on different versions of SO systems, defect prediction, and maintenance. We are more interested in
investigating the approach used for the smell identification rather than the characteristics of the smells because OO and
SOA smells are not directly comparable. For example, for the Multi Service antipattern in SO systems and the God Class
antipattern in OO systems, their presence is at different granularity levels. Thus, the detection methodology may be the
same, but conditions used to implement these approaches vary like threshold values for measures, implementation of
metrics at the code level or at the interface level, and the presentation of intermediary source code representation.19,20

To conclude, while studying the correlation between smells across the paradigms, our SLR found that researchers tried
to map service interfaces in SO with the classes/interfaces in OO and operations in SO with the methods in OO, for
example, the God Object Web Service in SO vs the God Class in OO and Data Web Service in SO vs the Data Class in OO.
Although this mapping may be useful for reusing some of the OO metrics and smells in SO paradigms, such mapping does
not always hold. In particular, consider the fact that analysis in SO cannot be performed at the fine-grained statement
level like in OO systems. This limitation by large hinders the qualitative and quantitative analyses of service artifacts in
the SO paradigm.

RQ5: What are the trends in research on smells from January 2000 to December 2017?
Our study collected relevant research studies based on the Kitchenham guidelines50 as described in Section 3. We have

observed a clear research trend for the detection and correction techniques of smells. The research started in the year
2000 on the detection of smells in OO systems and slowly moving toward the correction of detected and reported smells.

On the basis of our literature review, we can group research trends on smells into three principal categories, ie, detection,
correction, and the impact of smells. Figure 13 reports the main research trends in the domain of smells along with their
subdomains. Figure 13 provides general trends associated with smells. These research trends are still not reported for SO
smells. Figure 13 also reports a new trend toward the impact of smells on software system evolution also reported for SO
smells.78 Table 20 summarizes the trend of the research on the smells. Major studies focused on the detection by using
source code metrics with the help of different algorithms. Most of the primary studies that use the genetic algorithm and
development history for the detection of smells also reply mainly on source code metrics.

Summary on RQ5: In answering RQ5 on the research trends in the domain of smells, we found a corpus of 34 research
studies on the detection of smells. We observed (1) the studies on the relationship between smells and change proneness
and maintenance and (2) the studies on intersmell relationships, both started after the year 2010. A new research gap was
filled by introducing smells in SOAP and REST services. Moreover, there is no study published on the correction of REST
antipatterns. The NLP techniques are also used for the detection and correction of smells in OO68,102 to the detection of
REST linguistic antipatterns.22 The intersmell relationships and the impact of smells on the maintenance of services in
the SO paradigm have not yet been studied.

To conclude, while investigating the research trends on bad smells, we found that significant effort has been made in
detecting bad smells; however, very little research has been conducted in refactoring those smells or in recommending
solutions to the detected smells. One reason could be while detecting smells in both OO and SO paradigms, perhaps, it is

¶¶¶¶¶https://www.dmst.aueb.gr/dds/sw/ckjm/doc/indexw.html

SABIR ET AL. 29

FIGURE 13 General classification of research trend

TABLE 20 Trends in research from the years 2000 to 2017

Trend Name Frequency Year Ref No

Smell detection 34 2001-2015 16,27,29,48,54,58,62-65,70,72,74,82,83,87-90,93-96,101,103-110

Smells vs maintenance 2 2013 53,91

Smell detection using machine learning 2 2011-2012 15,57

Detection of WSDL antipatterns 2 2011-2015 59,60,79-81

Smells and code quality 2 2012, 2015 67,71

Detection of antipatterns from services 2 2013-2014 18,20

Linguistic antipatterns 2 2015-2017 71,109

Smell impact on software changeability 1 2009 43

Smell detection using image processing 1 2010 56

Ontological relationship of smells 1 2010 110

Antipattern detection by mining execution traces 1 2013 17

Antipatterns and fault proneness 1 2013 35

Impact of smell on system quality 1 2013 93

Change proneness of service pattern and antipatterns 1 2014 23

Smell correction using the development history 1 2015 14

Detection of REST linguistic antipatterns 1 2015 22

WSDL refactoring 1 2015 19

Performance comparison of smell detection techniques 1 2015 100

Source code versioning for code smell detection 1 2015 92

Evolution of code smells 1 2017 78

Abbreviations: REST, Representational State Transfer; WSDL, Web Service Description Language.

a little too late to detect and even correct those smells after a while at the time when the systems are already in operation.
Therefore, an IDE-based (Integrated Development Environment) smell detection and correction framework is required
so that developers can ensure good-quality software artifacts since the early development stage.

5 DISCUSSION AND OPEN ISSUES

In total, we reviewed 78 highly relevant studies out of the collection of 506 studies published between January 2000 and
December 2017. Previous surveys focused either on only code clones123,124 (ie, a type of smell) or smells or refactoring

30 SABIR ET AL.

activities in the OO paradigm. After we collected the most relevant studies related to the evolution of smells in OO and
SO, we analyzed techniques applied to detect smells. Most of the studies18,19,60,79-82 reporting the detection of smells for SO
systems are at the interface level, unlike in the OO paradigm where analyses are mainly done at the source code level.
Moreover, while few studies reported the detection of smells in SO systems at the architectural level,21,81,112 the correction
of these architectural smells is not yet studied and requires further research.

Fowler et al8 identified 22 code smells and suggested their refactoring opportunities. Since then, the research on smells
had been gaining increased attention, and different research studies were published from the year 2000 until 2017.
However, the term “code smells” later reported in the literature included various forms of code, design, and architec-
tural smells. The development and architectural antipatterns reported in the work of Brown et al36 also focus on Fowler
code smells. Antipatterns like the Blob and Functional Decomposition are reported for the first time as antipatterns by
Brown et al,36 but later, they are also described as code and design smells. Table 14 shows the Blob as code, design, and
architectural smells and antipatterns. Therefore, the SE research community does not have a clear consensus on smells.
Moreover, the detection approaches for these smells have also varied results due to the availability of multiple source
code metrics for the same systems. For example, one can measure the cohesion by using LCOM, LCOM1, LCOM2, or
LCOM3.120

Moreover, the research community does not always validate their results using precision or recall. We found 15
studies14,16,26,35,44,45,53,61,68,69,75,76,85,106,110 where the precision and recall to measure the accuracy could not be applied because
these studies focused on cause-effect relationships, ie, examples include the impact of smells on the developers' main-
tenance effort, change proneness, and so on. One study measured the performance of their research model by using
correlation analysis.63 However, in total, 13 studies did not validate their results at all.

Apache is an open-source ecosystem, and Xerces is an Apache project that has various libraries for source code parsing.
More than 90% of the plug-ins reported for the validation of the detection techniques are for Eclipse. We provided our
complete findings and detailed discussion on those tools online.§§§§§

While moving toward smell detection in SO systems, most of the studies20,59,60 are dependent on the techniques to
develop the SO systems as the code-first or contract-first approaches. To the best of our knowledge, only one research
paper studied smells in RESTful APIs. However, the APIs used for the study are not open-source, and the definitions of
smells are mostly focused on QoS issues. Future research should include the impact of smells on different versions of
APIs to investigate the evolving smells.

The research on smells is quite mature in terms of a number of studies as well as different state-of-the-art techniques
for the OO paradigm. However, the detection of smells in SO systems was introduced only after the year 2010. It is diffi-
cult to validate the detection or correction techniques of smells for SO systems because open-source SO systems are not
greatly available, unlike OO systems. In addition, there is no technical support available from the industry to validate
the proposed techniques and their results. This research on the impact of smells will also help in confirming the benefits
of design patterns in SO systems as opposed to the antipatterns. The area is still open for researchers to study different
state-of-the-art smell detection and correction techniques for the improvement of the quality of REST and SOAP systems.

A large number of the studies reported negative impacts of smells on software systems. Few studies have investigated
the occurrences of smells across different versions of software systems.53,68,91,92 More investigation should be carried out to
measure the cause-effect relationship of design patterns vs antipatterns (ie, smells) as well as their impact on the system's
overall performance over the long run. The studies focus more on the detection (ie, 39 studies in total) as compared to
the maintenance effort. Some of the studies also use version control systems for investigating smells.92 We did not find
any study investigating more than ten smells by using SVN or CVS.54,88,96,98 Recently, multiple studies have concluded that
smells have an adverse impact on software quality.58,61,68

Validation criteria for studies
Several studies validated their proposed detection techniques.30,81,82 Mostly, the journal articles used specific valida-

tion techniques to validate their results about specific approaches. Several studies (see, eg, the work of Salehie et al103)
used accuracy measures, like precision and recall, to validate their techniques. We also found 20 studies that measured
cause-effect relationships, like the impacts of smells on systems' maintenance53,93,94 and code quality.58,68 Moreover, the
most widely used technique for the assessment of the impacts of smells is based on correlation analysis (eg, five studies)
as compared to the Wilcoxon signed-rank test and regression analysis (eg, three studies each). The reference lists of these
studies are presented in Table 6.

The implications for research and academia
An SLR provides directions for researchers who want to understand the research trends in a specific field. This SLR

provides an updated state-of-the-art approach on smells initially for the OO domain and then expands the scope for the

SABIR ET AL. 31

SO paradigm. It also provides guidelines for practitioners working in the software industry to apply the smell detection/
correction techniques during software development. The major implications for the academic community working in the
area of bad smells are as follows.

• The results of the study are evident in showing that methods based on the static source code analysis received more
attention as compared to the dynamic source code analysis. The software industry is revolutionized by adopting
various techniques for software development. Therefore, it will be more appropriate, providing complete execution
traces online, which will help practitioners pay more attention toward the improvement of the QoS.

• Researchers used algorithms from the area of machine learning and artificial intelligence for the identification of bad
smells. The practitioners can change their coding practices and rely on these algorithms for the identification and
correction of bad smells, which is having issues in improving detection precision and recall.

• RESTful API providers do not provide the complete version history as per software engineering guidelines.121 This
hinders practitioners to investigate the cause of the evolution of bad smells in service-based systems that continuously
evolve. A complete change-log of services related to the SO paradigm should be made available online, which may help
new developers to avoid common design/coding mistakes, ie, bad smells. Thus, this will help the industry to further
improve the availability and performance issues for service-based systems.

• There is a rapid shift toward the use of industry blogs, especially from INFOQ and J2EE for the identification of new
research trends. It will be more helpful if the industry provides some practical standards/guidelines on design patterns
along with hands-on examples for service-based systems that may help academia contending with the de facto industry
standards.

• There exists an extensive quantity of validation studies reported for OO systems as, often, their versions and codes
are publicly available, ie, open source, but we did not find such an extensive validation for bad smells in Web APIs
and service-based systems. This is because the service providers often do not provide server-side code retrieval oppor-
tunity to the academia working in the SO paradigm. The more recent service providers in the market can benefit
from complete version history that can help client APIs to investigate their technical difficulties in their services more
resourcefully and capably.

• As the SE research community could not find the most appropriate classification of smells, it is essential to develop
an automatic oracle for all types of smells, which can be useful for the industry and academics to apply standardized
coding practices.

Nevertheless, it is a difficult and time-consuming task to manually classify and detect smells. Therefore, we believe that
an expert advice is required from both the academia and industry to provide a catalog on the categories of smells and their
detection approaches for those defined by Brown et al36 and Fowler et al.8

For the researchers, a number of prospects are still open: an automatic detection technique of smells as part of an IDE
can be implemented for Eclipse, Visual Studio, or other mainstream development IDEs for developers and designers to
avoid smells. In this way, software development tools can rely on the smell detector in helping the developers to design
and implement higher-quality systems.

A comprehensive, industrial smell management tool with fully automated detection support and friendly visualization
of the variants of smells, as and when they propagate through code segments, would help developers. Existing smell
detection techniques can be reorganized so that developers can be more assisted in the detection of smells. An origin
analysis of smells should also be studied to locate the root cause of smells in systems across their multiple versions.

Threats to validity
The validity of this study mainly concerns the relevant research questions and their conclusion, ie, the relationship

between the conclusion and findings.122

We try to maximize internal validity by applying all the terms associated with smells as reported in Table 14. We also
try to maximize internal validity by checking the quality of references with the help of two independent researchers.
However, we might have missed some studies that used other terms associated with smells or reported bad smells for
Android or iOS development.

To maximize construct validity, after reading the abstracts and recording all results, we reported measures in an Excel
sheet. We followed the guidelines proposed by Brereton et al40 and Kitchenham et al.50 Yet, we performed manual analyses,
and the relevancy of different terms associated with smell may limit our findings.

Finally, external validity concerns whether we can generalize our results to other studies that may pertain to Android
or iOS development. However, in this study, we focus only on two paradigms, eg, OO and SOA, and we keep the other
paradigms as our future work.

32 SABIR ET AL.

Moreover, the main threat for this study is the number of terms associated with this SLR. For example, “smells” can be
described as “antipattern” or “anti-pattern” or design smell or architectural anomalies or architectural degradation, and so
on. We tried to be particularly cautious in data extraction. We searched manually the strings “architectural degradation”
or “code anomalies” or “design anomalies.” Therefore, although we cover two paradigms in OO and SOA, we might be
missing a few relevant studies. Data extraction was carried by two independent researchers who also ensured that the
kept/discarded studies are strictly satisfying the PICOC and our inclusion/exclusion criteria as discussed in Section 3.
However, other quality checklists can be applied that may increase or decrease the research bias and may lead to different
results.

6 CONCLUSION AND FUTURE WORK

Smells are classified in the literature as code smells, design smells, architectural smells, and antipatterns. We analyzed
the most relevant research studies published between January 2000 and December 2017 in different online libraries and
investigated five key research questions.

RQ1: What are the classifications of the state-of-the-art techniques employed in the detection of smells?

Findings: Mainly two techniques are used in the literature: (1) static source code analysis (eg,
behavioral source code analysis, empirical source code analysis, algorithm-based source code analysis,
methodology-based source code analysis, and linguistic source code analysis) and (2) dynamic source code
analysis based on dynamic threshold adaptation, eg, using a genetic algorithm, instead of fixed thresholds
for smell detection.

RQ2: How did the state-of-the-art approaches evolve across different paradigms starting from OO to SO?

Findings: A number of different detection techniques that crossed domains are based on (1) source code
metrics, (2) mining the source code using SVN or CVS, (3) DSL, (4) genetic algorithm, and (5) PE-A.

RQ3: What are the smells that are studied for a specific paradigm?

Findings: In OO, most of the relevant studies reported and analyzed Feature Envy as code- and design-level
smell. In contrast, much study is still required to be done for the detection of smells like the Yo-yo Problem,
Unnamed Coupling, Extensive Coupling, and so on, which gained less attention so far in the SE research com-
munity. In SO, antipatterns/smells that received most attention include God Object Web Service, Low-Cohesive
Operation, Ambiguous Names, Chatty Service, and Data Web Service.

RQ4: What is the correlation between smells across the paradigms?

Findings: The metrics used for the identification of 20 smells reported for SOA used source code metrics that
have also been previously reported for OO. The identification of the God Object Web Service used cohesion
metrics (eg, LCOM3) and operation identification metrics (eg, NOD) that are also used for the identification
of smells in OO. However, the threshold values may vary for SOA in comparison to OO.

RQ5: What are the trends in research on smells from January 2000 to December 2017?

Findings: We found a corpus of 34 research studies on the detection of smells. A new research gap was filled
by introducing smells in SOAP and REST services. Moreover, there is no study published on the correction
of REST antipatterns. The NLP techniques are also used for the detection and correction of smells in OO to
the detection of REST linguistic antipatterns.

SABIR ET AL. 33

We identified several issues that should be considered and receive more attention from researchers. We also found
several related research activities that must be explored. We advised researchers to pay more attention to linguistic smells
that are gaining popularity in the last five years. Moreover, research on the correction of lexical smells requires further
investigation. The intersmell relationship for lexical smells and performance evaluations of lexical design patterns vs
antipatterns are yet to be studied. Refactoring is a major area that is well researched for OO smells but not yet for SCA and
REST smells due to their complex nature. Developers' maintenance effort for smells in SO systems is still not addressed
in the recent studies. We were also unable to find any antipatterns detected in Java Enterprise systems, although their
detections were performed on SCA systems.23

ORCID

Francis Palma http://orcid.org/0000-0001-7092-2244

REFERENCES
1. Meyer B. Object-Oriented Software Construction. 2nd ed. New York, NY: Prentice Hall; 1988.
2. Bass L, Clements P, Kazman R. Software Architecture in Practice. 2nd ed. Boston, MA: Addison-Wesley; 2003.
3. Breivold HP, Larsson M. Component-based and service-oriented software engineering: key concepts and principles. In: Proceedings of

the 33rd EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO); 2007; Lubeck, Germany.
4. Baghdadi Y. Service-oriented software engineering: a guidance framework for service engineering methods. Int J Syst Serv-Oriented Eng.

2015;5(2):1-19.
5. Papazoglou MP, Traverso P, Dustdar S, Leymann F. Service-oriented computing: a research roadmap. Int J Coop Inf Syst.

2008;17(02):223-255.
6. Papazoglou MP. Service-oriented computing: concepts, characteristics and directions. In: Proceedings of the Fourth International

Conference on Web Information Systems Engineering (WISE); 2003; Rome, Italy.
7. Booch G. Object-Oriented Analysis & Design With Applications. London, UK: Pearson Education; 2006.
8. Fowler M, Beck K, Brant J, Opdyke W, Roberts D. Refactoring: Improving the Design of Existing Code. Boston, MA: Addison-Wesley

Professional; 1999.
9. Tufano M, Palomba F, Bavota G, et al. When and why your code starts to smell bad. In: Proceedings of the 37th International Conference

on Software Engineering-Volume 1 (ICSE); 2015; Florence, Italy.
10. Izurieta C. Decay and Grime Buildup in Evolving Object Oriented Design Patterns [dissertation]. Fort Collins, CO: Colorado State

University; 2009.
11. Gravino C, Risi M, Scanniello G, Tortora G. Does the documentation of design pattern instances impact on source code comprehension?

Results From Two Controlled Experiments. Paper presented at: 2011 18th Working Conference on Reverse Engineering (WCRE); 2011;
Limerick, Ireland.

12. Prechelt L, Unger-Lamprecht B, Philippsen M, Tichy WF. Two controlled experiments assessing the usefulness of design pattern
documentation in program maintenance. IEEE Trans Softw Eng. 2002;28:595-606.

13. Biffl S, Gutjahr W. Influence of team size and defect detection technique on inspection effectiveness. In: Proceedings of the 7th
International Symposium on Software Metrics (METRICS); 2001; London, UK.

14. Mäntylä MV, Vanhanen J, Lassenius C. Bad smells-humans as code critics. In: Proceedings of the 20th IEEE International Conference
on Software Maintenance; 2004; Chicago, IL.

15. Maiga A, Ali N, Bhattacharya N, Sabane A, Gueheneuc Y-G, Aimeur E. SMURF: a SVM-based incremental anti-pattern detection
approach. Paper presented at: 2012 19th Working Conference on Reverse Engineering (WCRE); 2012; Kingston, Canada.

16. Khomh F, Vaucher S, Guéhéneuc Y-G, Sahraoui H. BDTEX: a GQM-based Bayesian approach for the detection of antipatterns. J Syst
Softw. 2011;84:559-572.

17. Moha N, Guéhéneuc Y-G, Duchien L, Le Meur A-F. DECOR: a method for the specification and detection of code and design smells.
IEEE Trans Softw Eng. 2010;36:20-36.

18. Palma F, Moha N, Tremblay G, Guéhéneuc Y-G. Specification and detection of SOA antipatterns in web services. In: Proceedings of the
European Conference on Software Architecture; 2014; Vienna, Austria.

19. Mateos C, Rodriguez JM, Zunino A. A tool to improve code-first web services discoverability through text mining techniques. Softw Pract
Exper. 2015;45:925-948.

20. Coscia JLO, Mateos C, Crasso M, Zunino A. Anti-pattern free code-first web services for state-of-the-art Java WSDL generation tools.
Int J Web Grid Serv. 2013;9:107-126.

21. Palma F, Dubois J, Moha N, Guéhéneuc Y-G. Detection of REST patterns and antipatterns: a heuristics-based approach. In: Proceedings
of the International Conference on Service-Oriented Computing; 2014; Paris, France.

22. Palma F, Gonzalez-Huerta J, Moha N, Guéhéneuc Y-G, Tremblay G. Are RESTful APIs well-designed? Detection of their linguistic (anti)
patterns. In: Proceedings of the International Conference on Service-Oriented Computing; 2015; Goa, India.

http://orcid.org/0000-0001-7092-2244
http://orcid.org/0000-0001-7092-2244

34 SABIR ET AL.

23. Palma F, Nayrolles M, Moha N, Guéhéneuc Y-G, Baudry B, Jézéquel J-M. SOA antipatterns: an approach for their specification and
detection. Int J Coop Inf Syst. 2013;22:1341004.

24. Wangberg R. A Literature Review on Code Smells and Refactoring [master thesis]. Oslo, Norway: University of Oslo; 2010.
25. Zhang M, Hall T, Baddoo N. Code bad smells: a review of current knowledge. J Softw Maint Evol Res Pract. 2011;23:179-202.
26. Rasool G, Arshad Z. A review of code smell mining techniques. J Softw: Evol Process. 2015;27:867-895.
27. Al Dallal J. Identifying refactoring opportunities in object-oriented code: a systematic literature review. Inf Softw Technol.

2015;58:231-249.
28. Lehnert S. A Review of Software Change Impact Analysis. Technical Report. Ilmenau, Germany: Ilmenau University of Technology; 2011.
29. Soares G, Gheyi R, Murphy-Hill E, Johnson B. Comparing approaches to analyze refactoring activity on software repositories. J Syst Softw.

2013;86:1006-1022.
30. Hall T, Beecham S, Bowes D, Gray D, Counsell S. A systematic literature review on fault prediction performance in software engineering.

IEEE Trans Softw Eng. 2012;38:1276-1304.
31. Rattan D, Bhatia R, Singh M. Software clone detection: a systematic review. Inf Softw Technol. 2013;55:1165-1199.
32. Roy CK, Cordy JR. A Survey on Software Clone Detection Research. Technical Report. Kingston, Canada: School of Computing, Queen's

University; 2007. TR No 2007-541.
33. Wake WC. Refactoring Workbook. Boston, MA: Addison-Wesley Professional; 2004.
34. Mäntylä M, Vanhanen J, Lassenius C. A taxonomy and an initial empirical study of bad smells in code. In: Proceedings of the International

Conference on Software Maintenance (ICSM); 2003; Monterey, CA.
35. Jaafar F, Guéhéneuc Y-G, Hamel S, Khomh F. Mining the relationship between anti-patterns dependencies and fault-proneness. In:

Proceedings of the 2013 20th Working Conference on Reverse Engineering (WCRE); 2013; Koblenz, Germany.
36. Brown WH, Malveau RC, McCormick HW, Mowbray TJ. Anti Patterns: Refactoring Software, Architectures, and Projects in Crisis.

Hoboken, NJ: John Wiley & Sons, Inc.; 1998.
37. Mens T, Tourwé T. A survey of software refactoring. IEEE Trans Softw Eng. 2004;30:126-139.
38. Misbhauddin M, Alshayeb M. UML model refactoring: a systematic literature review. Empir Softw Eng. 2015;20:206-251.
39. Laguna MA, Crespo Y. A systematic mapping study on software product line evolution: from legacy system reengineering to product line

refactoring. Sci Comput Program. 2013;78:1010-1034.
40. Brereton P, Kitchenham BA, Budgen D, Turner M, Khalil M. Lessons from applying the systematic literature review process within the

software engineering domain. J Syst Softw. 2007;80:571-583.
41. Hall T, Zhang M, Bowes D, Sun Y. Some code smells have a significant but small effect on faults. ACM Trans Softw Eng Methodol. 2014;23.

Article No. 33.
42. Wohlin C. Guidelines for snowballing in systematic literature studies and a replication in software engineering. In: Proceedings of the

18th International Conference on Evaluation and Assessment in Software Engineering (EASE); 2014; London, UK.
43. Khomh F, Di Penta M, Yann-Gaël G, Giuliano A. An Exploratory Study of the Impact of Software Changeability. 2009.
44. Kreimer J. Adaptive detection of design flaws. Electron Notes Theor Comput Sci. 2005;141:117-136.
45. Fontana FA, Braione P, Zanoni M. Automatic detection of bad smells in code: an experimental assessment. J Object Technol.

2012;11(2):1-38.
46. Dybå T, Dingsøyr T. Empirical studies of agile software development: a systematic review. Inf Softw Technol. 2008;50(9-10):833-859.
47. Erl T. Service-Oriented Architecture: Concepts, Technology, and Design. Boston, MA: Pearson Education Inc; 2005.
48. Oliveto R, Khomh F, Antoniol G, Guéhéneuc Y-G. Numerical signatures of antipatterns: an approach based on B-splines. Paper presented

at: 2010 14th European Conference on Software Maintenance and Reengineering (CSMR); 2010; Madrid, Spain.
49. Cruzes DS, Dybå T. Research synthesis in software engineering: a tertiary study. Inf Softw Technol. 2011;53:440-455.
50. Kitchenham B, Brereton OP, Budgen D, Turner M, Bailey J, Linkman S. Systematic literature reviews in software engineering—a

systematic literature review. Inf Softw Technol. 2009;51:7-15.
51. Atkinson P, Hammersley M. Ethnography and Participant Observation. 1994.
52. Bandi A, Williams BJ, Allen EB. Empirical evidence of code decay: a systematic mapping study. Paper presented at: 2013 20th Working

Conference on Reverse Engineering (WCRE); 2013; Koblenz, Germany.
53. Yamashita A, Moonen L. To what extent can maintenance problems be predicted by code smell detection? - an empirical study. Inf Softw

Technol. 2013;55:2223-2242.
54. Taba SES, Khomh F, Zou Y, Hassan AE, Nagappan M. Predicting bugs using antipatterns. Paper presented at: 2013 IEEE International

Conference on Software Maintenance; 2013; Eindhoven, The Netherlands.
55. Liu H, Ma Z, Shao W, Niu Z. Schedule of bad smell detection and resolution: a new way to save effort. IEEE Trans Softw Eng.

2012;38:220-235.
56. Jaafar F, Khomh F, Guéhéneuc Y-G, Zulkernine M. Anti-pattern mutations and fault-proneness. In: Proceedings of the 2014 14th

International Conference on Quality Software (QSIC); 2014; Dallas, TX.
57. Polášek I, Líška P, Kelemen J, Lang J. On extended similarity scoring and bit-vector algorithms for design smell detection. Paper presented

at: 2012 IEEE 16th International Conference on Intelligent Engineering Systems (INES); 2012; Lisbon, Portugal.
58. Ganea G, Verebi I, Marinescu R. Continuous quality assessment with inCode. Sci Comput Program. 2015;134;19-36.

SABIR ET AL. 35

59. Kitchenham B, Charters S. Guidelines for Performing Systematic Literature Reviews in Software Engineering. Technical Report. Durham,
UK: University of Durham; 2007. Version 2.3: EBSE Technical Report EBSE-2007-01.

60. Coscia JLO, Mateos C, Crasso M, Zunino A. Avoiding WSDL bad practices in code-first web services. In: Proceedings of the 12th Argentine
Symposium on Software Engineering (ASSE)-40th JAIIO; 2011; Córdoba, Argentina.

61. Fontana FA, Ferme V, Marino A, Walter B, Martenka P. Investigating the impact of code smells on system's quality: an empirical study on
systems of different application domains. In: Proceedings of the 2013 IEEE International Conference on Software Maintenance (ICSM);
2013; Eindhoven, The Netherlands.

62. Palma F, An L, Khomh F, Moha N, Guéhéneuc Y-G. Investigating the change-proneness of service patterns and antipatterns. Paper
presented at: 2014 IEEE 7th International Conference on Service-Oriented Computing and Applications (SOCA); 2014; Matsue, Japan.

63. Nguyen HV, Nguyen HA, Nguyen TT, Nguyen AT, Nguyen TN. Detection of embedded code smells in dynamic web applications.
In: 2012 Proceedings of the 27th IEEE/ACM International Conference on Automated Software Engineering; 2012; Essen, Germany.

64. Mateos C, Crasso M, Zunino A, Coscia JLO. Revising WSDL documents: why and how, part 2. IEEE Internet Comput. 2013;17:46-53.
65. Marinescu R, Marinescu C. Are the clients of flawed classes (also) defect prone? Paper presented at: 2011 IEEE 11th International Working

Conference on Source Code Analysis and Manipulation; 2011; Williamsburg, VI.
66. Khomh F, Di Penta M, Guéhéneuc Y-G, Antoniol G. An exploratory study of the impact of antipatterns on class change-and

fault-proneness. Empir Softw Eng. 2012;17:243-275.
67. Sabané A, Di Penta M, Antoniol G, Guéhéneuc Y-G. A study on the relation between antipatterns and the cost of class unit testing. Paper

presented at: 2013 17th European Conference on Software Maintenance and Reengineering; 2013; Genova, Italy.
68. Bavota G, De Lucia A, Di Penta M, Oliveto R, Palomba F. An experimental investigation on the innate relationship between quality and

refactoring. J Syst Softw. 2015;107:1-14.
69. Walter B, Alkhaeir T. The relationship between design patterns and code smells: an exploratory study. Inf Softw Technol. 2016;74:127-142.
70. Arnaoudova V, Di Penta M, Antoniol G. Linguistic antipatterns: what they are and how developers perceive them. Empir Softw Eng.

2016;21:104-158.
71. Guerrouj L, Kermansaravi Z, Arnaoudova V, et al. Investigating the relation between lexical smells and change- and fault-proneness: an

empirical study. Softw Qual J. 2015;25(3):641-670.
72. Abebe SL, Arnaoudova V, Tonella P, Antoniol G, Guéhéneuc Y-G. Can lexicon bad smells improve fault prediction? Paper presented at:

2012 19th Working Conference on Reverse Engineering; 2012; Kingston, Canada.
73. Jaafar F, Lozano A, Guéhéneuc Y-G, Mens K. Analyzing software evolution and quality by extracting asynchrony change patterns. J Syst

Softw. 2017;131:311-322.
74. Ujhelyi Z, Szőke G, Horváth Á, et al. Performance comparison of query-based techniques for anti-pattern detection. Inf Softw Technol.

2015;65:147-165.
75. Llano MT, Pooley R. UML specification and correction of object-oriented anti-patterns. Paper presented at: Fourth International

Conference on Software Engineering Advances; 2009; Porto, Portugal.
76. Rodriguez JM, Crasso M, Mateos C, Zunino A. Best practices for describing, consuming, and discovering web services: a comprehensive

toolset. Softw Pract Exper. 2013;43:613-639.
77. Petrillo F, Merle P, Moha N, Guéhéneuc Y-G. Are REST APIs for cloud computing well-designed? An exploratory study. Paper presented

at: The 14th International Conference on Service-Oriented Computing; 2016; Banff, Canada.
78. Wang H, Kessentini M, Ouni A. Prediction of web services evolution. Paper presented at: The 14th International Conference on

Service-Oriented Computing; 2016; Banff, Canada.
79. Salvatierra G, Mateos C, Crasso M, Zunino A. Towards a computer assisted approach for migrating legacy systems to SOA. Paper presented

at: 12th International Conference on Computational Science and Its Applications; 2012; Salvador de Bahia, Brazil.
80. Ouni A, Gaikovina Kula R, Kessentini M, Inoue K. Web service antipatterns detection using genetic programming. In: Proceedings of

the 2015 Annual Conference on Genetic and Evolutionary Computation; 2015; Madrid, Spain.
81. Ouni A, Kessentini M, Inoue K, Cinnéide MO. Search-based web service antipatterns detection. IEEE Trans Serv Comput.

2015;10(4):603-617.
82. Nayrolles M, Moha N, Valtchev P. Improving SOA antipatterns detection in service-based systems by mining execution traces. Paper

presented at: 2013 20th Working Conference on Reverse Engineering (WCRE); 2013; Koblenz, Germany.
83. Coscia JLO, Mateos C, Crasso M, Zunino A. Refactoring code-first web services for early avoiding WSDL anti-patterns: approach and

comprehensive assessment. Sci Comput Program. 2014;89:374-407.
84. Ouni A, Kessentini M, Sahraoui H, Hamdi MS. Search-based refactoring: towards semantics preservation. Paper presented at: 2012 28th

IEEE International Conference on Software Maintenance (ICSM); 2012; Trento, Italy.
85. Petticrew M, Roberts H. Systematic Reviews in the Social Sciences: A Practical Guide. Hoboken, NJ: John Wiley & Sons; 2008.
86. Kessentini M, Mahaouachi R, Ghedira K. What you like in design use to correct bad-smells. Softw Qual J. 2013;21:551-571.
87. Maneerat N, Muenchaisri P. Bad-smell prediction from software design model using machine learning techniques. Paper presented at:

2011 Eighth International Joint Conference on Computer Science and Software Engineering (JCSSE); 2011; Nakhon Pathom, Thailand.
88. Fontana FA, Ferme V, Spinelli S. Investigating the impact of code smells debt on quality code evaluation. In: Proceedings of the Third

International Workshop on Managing Technical Debt; 2012; Zürich, Switzerland.
89. Danphitsanuphan P, Suwantada T. Code smell detecting tool and code smell-structure bug relationship. Paper presented at: 2012 Spring

Congress on Engineering and Technology; 2012; Xi'an, China.

36 SABIR ET AL.

90. Kessentini W, Kessentini M, Sahraoui H, Bechikh S, Ouni A. A cooperative parallel search-based software engineering approach for
code-smells detection. IEEE Trans Softw Eng. 2014;40:841-861.

91. Sjøberg DI, Yamashita A, Anda BC, Mockus A, Dybå T. Quantifying the effect of code smells on maintenance effort. IEEE Trans Softw
Eng. 2013;39:1144-1156.

92. Palomba F, Bavota G, Di Penta M, Oliveto R, De Lucia A, Poshyvanyk D. Detecting bad smells in source code using change history infor-
mation. Paper presented at: 2013 IEEE/ACM 28th International Conference on Automated Software Engineering (ASE); 2013; Silicon
Valley, CA.

93. Yamashita A, Moonen L. Exploring the impact of inter-smell relations on software maintainability: an empirical study. Paper presented
at: 2013 35th International Conference on Software Engineering (ICSE); 2013; San Francisco, CA.

94. Ouni A, Kessentini M, Sahraoui H, Boukadoum M. Maintainability defects detection and correction: a multi-objective approach. Autom
Softw Eng. 2013;20:47-79.

95. Liu H, Guo X, Shao W. Monitor-based instant software refactoring. IEEE Trans Softw Eng. 2013;39:1112-1126.
96. Ouni A, Kessentini M, Sahraoui H, Inoue K, Hamdi MS. Improving multi-objective code-smells correction using development history.

J Syst Softw. 2015;105:18-39.
97. dos Santos Neto BF, Ribeiro M, da Silva VT, Braga C, de Lucena CJP, de Barros Costa E. AutoRefactoring: a platform to build refactoring

agents. Expert Syst Appl. 2015;42:1652-1664.
98. Palomba F, Bavota G, Di Penta M, Oliveto R, Poshyvanyk D, De Lucia A. Mining version histories for detecting code smells. IEEE Trans

Softw Eng. 2015;41(5):462-489.
99. Liu H, Liu Q, Niu Z, Liu Y. Dynamic and automatic feedback-based threshold adaptation for code smell detection. IEEE Trans Softw Eng.

2016;42:544-558.
100. Marinescu R. Measurement and quality in object-oriented design. Paper presented at: 21st IEEE International Conference on Software

Maintenance (ICSM); 2005; Budapest, Hungary.
101. Marinescu R. Detection strategies: metrics-based rules for detecting design flaws. In: Proceedings of the 20th IEEE International

Conference on Software Maintenance (ICSM); 2004; Chicago, IL.
102. Munro MJ. Product metrics for automatic identification of “bad smell” design problems in Java source-code. Paper presented at: IEEE

International Symposium on Software Metrics; 2005; Como, Italy.
103. Salehie M, Li S, Tahvildari L. A metric-based heuristic framework to detect object-oriented design flaws. Paper presented at: International

Conference on Program Comprehension; 2006; Athens, Greece.
104. Stoianov A, Şora I. Detecting patterns and antipatterns in software using Prolog rules. Paper presented at: 2010 International Joint

Conference on Computational Cybernetics and Technical Informatics (ICCC-CONTI); 2010; Timisoara, Romania.
105. Wong S, Cai Y, Kim M, Dalton M. Detecting software modularity violations. In: Proceedings of the 33rd International Conference on

Software Engineering; 2011; Waikiki, HI.
106. Marinescu R, Raţiu D. Quantifying the quality of object-oriented design: the factor-strategy model. In: Proceedings of the 11th Working

Conference on Reverse Engineering; 2004; Delft, The Netherlands.
107. Trifu A, Seng O, Genssler T. Automated design flaw correction in object-oriented systems. In: Proceedings of the Eighth Euromicro

Working Conference on Software Maintenance and Reengineering (CSMR); 2004; Tempere, Finland.
108. Hassaine S, Khomh F, Guéhéneuc Y-G, Hamel S. IDS: an immune-inspired approach for the detection of software design smells. Paper

presented at: 2010 Seventh International Conference on the Quality of Information and Communications Technology; 2010; Porto,
Portugal.

109. Arnaoudova V, Di Penta M, Antoniol G, Guéhéneuc Y-G. A new family of software anti-patterns: linguistic anti-patterns. Paper presented
at: 2013 17th European Conference on Software Maintenance and Reengineering; 2013; Genova, Italy.

110. Luo Y, Hoss A, Carver DL. An ontological identification of relationships between anti-patterns and code smells. Paper presented at: 2010
IEEE Aerospace Conference; 2010; Big Sky, MT.

111. Simon F, Steinbrückner F, Lewerentz C. Metrics-based refactoring. Paper presented at: Fifth European Conference on Software
Maintenance and Reengineering; 2001; Lisbon, Portugal.

112. Moha N, Guéhéneuc Y-G, Le Meur A-F, Duchien L, Tiberghien A. From a domain analysis to the specification and detection of code and
design smells. Form Asp Comput. 2010;22:345-361.

113. Sjøberg DI, Dybå T, Jorgensen M. The future of empirical methods in software engineering research. Paper presented at 2007 Future of
Software Engineering (FOSE); 2007; Minneapolis, MN.

114. Bashir I, Goel AL. Testing Object-Oriented Software: Life Cycle Solutions. New York, NY: Springer Science & Business Media; 2012.
115. Fontana FA, Mäntylä MV, Zanoni M, Marino A. Comparing and experimenting machine learning techniques for code smell detection.

Empir Softw Eng. 2016;21:1143-1191.
116. Lehnert S. A taxonomy for software change impact analysis. In: Proceedings of the 12th International Workshop on Principles of Software

Evolution and the 7th annual ERCIM Workshop on Software Evolution; 2011; Szeged, Hungary.
117. Karsai G, Krahn H, Pinkernell C, Rumpe B, Schindler M, Völkel S. Design guidelines for domain specific languages. arXiv preprint

arXiv:1409.2378; 2014.
118. Král J, Žemlička M. Crucial service-oriented antipatterns. Int J Adv Softw. 2008;2:160-171. International Academy, Research and Industry

Association.
119. Heß A, Johnston E, Kushmerick N. ASSAM: A Tool for Semi-Automatically Annotating Semantic Web Services. In: McIlraith SA,

Plexousakis D, van Harmelen F, eds. Berlin, Germany: Springer; 2004:320-334. Lecture Notes in Computer Science; vol. 3298.

SABIR ET AL. 37

120. Etzkorn LH, Gholston SE, Fortune JL, et al. A comparison of cohesion metrics for object-oriented systems. Inf Softw Technol.
2004;46:677-687.

121. D'Ambros M, Gall H, Lanza M, Pinzger M. Analysing software repositories to understand software evolution. In: Software Evolution.
Berlin, Germany: Springer; 2008:37-67.

122. Feldt R, Magazinius A. Validity threats in empirical software engineering research—an initial survey. Paper presented at: The 22nd
International Conference on Software Engineering and Knowledge Engineering (SEKE); 2010; Redwood City, CA.

123. Roy CK, Cordy JR, Koschke R. Comparison and evaluation of code clone detection techniques and tools: a qualitative approach.
Sci Comput Program. 2009;74:470-495.

124. Pate JR, Tairas R, Kraft NA. Clone evolution: a systematic review. J Softw: Evol Process. 2013;25:261-283.
125. Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput.

2002;6(2):182-197.

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section at the end of the article.

How to cite this article: Sabir F, Palma F, Rasool G, Guéhéneuc Y-G, Moha N. A systematic literature review
on the detection of smells and their evolution in object-oriented and service-oriented systems. Softw Pract Exper.
2018;1–37. https://doi.org/10.1002/spe.2639

https://doi.org/10.1002/spe.2639
https://doi.org/10.1002/spe.2639

	A systematic literature review on the detection of smells and their evolution in object-oriented and service-oriented systems
	Abstract
	INTRODUCTION
	RELATED WORK
	RESEARCH METHOD
	Planning the SLR
	Conducting the SLR
	Search process for studies
	Study selection
	Quality assessment
	Data extraction and analysis
	Data synthesis

	RESULTS AND DISCUSSION
	DISCUSSION AND OPEN ISSUES
	CONCLUSION AND FUTURE WORK
	REFERENCES

