
PROJECT AND REPORT - 1 SOEN 6971, SUMMER 2024

PROJECT REPORT

ON

ENHANCING THE PTIDEJ TOOL SUITE -

PATTERN TRACE IDENTIFICATION DETECTION AND ENHANCEMENT IN

JAVA

SUBMITTED TO

Dr. YANN-GAËL GUÉHÉNEUC, Ph.D., eng.

DEPARTMENT OF COMPUTER SCIENCE AND SOFTWARE ENGINEERING

IN PARTIAL FULFILMENT OF THE AWARD OF THE DEGREE

OF

MASTER OF ENGINEERING

IN

SOFTWARE ENGINEERING

BY

VISHNU RAMESHBABU

CONCORDIA UNIVERSITY



BONAFIDE CERTIFICATE

Certificate that this project report on “Pattern Trace Identification Detection and

Enhancement in Java”, is the bonafide work of “VISHNU RAMESHBABU”

(STUDENT ID : 40233562), who carried out the project work under my supervision.

2



ABSTRACT

This summer project was aimed to integrating PlantUML into the Ptidej Tool Suite Swing

GUI (Pattern Trace Identification Detection and Enhancement in Java), such that its

libraries can be used to enhance the visualisation and comprehension of the design and

implementation of software programs, in particular the different types of relationships

among classes, such as aggregation, association, composition, etc., and design decisions,

such as design patterns. The project also included converting some existing Java projects

composing the Ptidej Tool Suite to the Maven build system for easy compilation, testing,

and deployment and to provide consistent builds and a centralised dependency

management. The project finally included integrating additional logger features to the

existing logging mechanism of the application, to ease the analysis of debugging

information wherever required.

3



TABLE OF CONTENTS

TITLE

ABSTRACT 3

LIST OF FIGURES 7

LIST OF SYMBOLS, ABBREVIATIONS AND FILE
EXTENSIONS

8

1.0 INTRODUCTION 9

1.1 GENERAL

1.2 TECHNOLOGY STACK

1.3 DEPENDENCIES

9

10

11

2.0 PROJECT GOAL

2.1 OBJECTIVES

2.2 EXISTING SYSTEM

2.3 PROPOSED METHOD

2.4 SYSTEM FLOW

2.5 SYSTEM DESIGN

12

12

12

12

13

13

3.0 PROJECT DESCRIPTION 15

3.1 INTEGRATION OF PLANTUML LIBRARY 15

3.1.1 PLANTUML STRING GENERATOR 15

4



3.1.2 TESTING PLANTUML GENERATOR

3.2 ENHANCEMENT OF PTIDEJ UI

3.3 CONVERSION OF EXISTING PROJECTS TO MAVEN

3.4 INTEGRATING LOG4J2

17

17

17

18

4.0 IMPLEMENTATION 19

4.1 SETTING UP PTIDEJ

4.2 IMPLEMENTING PLANTUML GENERATOR

4.2.1 PLANTUML VISITOR CLASS

4.2.2 DESIGNING THE PLANTUML VISITOR CLASS

4.3 USER INTERFACE FOR PLANTUML VISUALIZATION

4.3.1 TOOLBAR INTEGRATION

4.3.2 PLANTUML DIAGRAM DISPLAY WINDOW

4.4 CONVERTING PROJECTS TO MAVEN

4.4.1 INITIAL STEPS

4.4.2 BUILD AND DEPENDENCIES

4.5 INTEGRATING LOG4J2

4.5.1 LOGGING PROPERTIES

4.5.2 LOGGER WRAPPER

19

19

19

20

27

27

30

40

41

43

46

47

48

5.0 RESULTS, TESTING AND VALIDATION 55

5.1 RESULTS

5.1.1 PLANTUML CODE AND IMAGE

55

55

5



5.1.2 PTIDEJ LOGGING OUTPUT 60

5.2 TESTING AND VALIDATION 62

6.0 CONCLUSION AND FUTURE SCOPE

6.1 CONCLUSION

6.2 FUTURE SCOPE

64

64

64

REFERENCES 65

6



LIST OF FIGURES

FIGURE NO NAME OF THE FIGURE PAGE NO

2.1 SYSTEM FLOW FOR PLANTUML
IMAGE GENERATION

13

2.2 PROJECTS USING MAVEN SYSTEM 14

2.3 LOG4J2 IMPLEMENTATION 14

3.1 VISITOR INTERFACE HIERARCHY 16

3.2 SEQUENCE DIAGRAM OF LOGGER 18

4.1 SEQUENCE DIAGRAM OF PLANTUML GENERATION 27

4.2 FILE CHOOSER WINDOW 29

4.3 WINDOW FRAME 33

4.4 MAVEN DIALOG BOX 41

5.1 FACADE2 CLASS FILE CONTENTS 55

5.2 SELECTING LOAD PLANTUML PROJECT 56

5.3 SELECTING DEMIMA FACADE.PTIDEJ 56

5.4 PLANTUML WINDOW IMAGE VISUALISATION 57

5.5 PLANTUML IMAGE OF FACADE2 60

5.6 LOGGER OUTPUT TO CONSOLE 61

5.7 LOG FILE OUTPUT 61

5.8 JUNIT TESTING RESULTS - PLANTUML CODE 63

5.9 JUNIT TESTING RESULTS - PLANTUML IMAGE 63

7



LIST OF SYMBOLS, ABBREVIATIONS AND FILE EXTENSIONS

● -- association
● O-- aggregation
● *-- composition
● --^ classes
● ..^ interfaces
● Ptidej Pattern Trace Identification Detection and Enhancement in Java
● UI User Interface
● UML Unified Modelling Language
● API Application Programming Interface
● JAR Java Archive Resource file
● AST Abstract Syntax Tree
● .ptidej File extension that contains Name and JavaCode as variables.
● JDK Java Development Kit
● IDE Interactive Development Environment
● JSON Javascript Object Notation
● YAML YAML Ain't Markup Language

8



CHAPTER - 1

INTRODUCTION

1.1 GENERAL

The Ptidej Tool Suite is a software tool built in Java to identify, detect, and analyse

design patterns in object-oriented programs, in Java, C++, etc. It provides PADL, Pattern

and Abstract-level Description Language, which is a meta model to describe and analyse

programs at different abstraction levels. When a package or collection of packages is

selected as a source input, parser instantiate PADL models that can then be visualised to

show the classes and interface entities present in the project/package and establish

relationships between each entity.

The main task was set to develop a Visitor that visits each entity in an abstract model that

contains package, classes, interfaces hierarchically and checks if the relationship between

classes or interfaces is an aggregation, association, or a composition relationship. If it is

available then, accordingly, the generator should build a string that conforms to the

PlantUML domain-specific language (DSL) of representing classes and relationships

along with integrating the PlantUML library itself into Ptidej and creating a separate

feature that enhances the current visualization capabilities.

FEATURES

The features to be built in Ptidej are

1) Visualizing PADL models using PlantUML Library.

2) Converting non-Maven projects, like Caffeine, to Maven.

3) Implementing Log4j2 alongside existing custom loggers.

9



1.2 TECHNOLOGY STACK

This section contains the technology stack that is used to run Ptidej and dependencies that

were used to implement the required features.

JDK 21

Java Development Kit 21 is a minimum requirement to run Ptidej. The JDK provides a

development environment used for developing Java applications and provides a vast set

of libraries. It also provides a Java Runtime Environment, a Java Virtual Machine, along

with the compiler and other tools.

MAVEN

For the development of these features, Maven 3.9.6 is required as a build automation tool.

It is primarily used for managing dependencies, configuring goals for during the build

process and provides a defined life cycle, like clean, test, verify, and build. It also fetches

external dependencies from the central Maven repository and also from the local

repository and keeps it up to date through an XML file called pom.xml.

ECLIPSE IDE

This project is mainly developed using Eclipse IDE and it is a versatile tool specifically

for developing Java applications. Eclipse IDE provides a rich GUI which consists of

project explorer to view the various packages, folders of a workspace, debugger that uses

breakpoints to pause the execution at a desired point in the program. It also provides easy

integration with external tools like gradle, maven, git features, etc.

10



1.3 DEPENDENCIES

PLANTUML LIBRARY

PlantUML Library is a versatile tool that helps in generating UML diagrams like

sequence diagram, usecase diagram, object diagram, class diagram etc and also supports

generating uml diagrams using JSON data convention, YAML data, etc. The PlantUML

Library can be downloaded from its official website https://PlantUML.com/download

This library can be downloaded as a compiled JAR, to ease its integration in Ptidej.

JUNIT

JUNIT is a standard testing framework used for the verification of Java applications. It

supports a test-driven development approach by enabling test automation, as it provides

the means to build and run test suites.

It provides annotations like @Before and @After, which specifies whether a method

should be run before or after test methods as the former annotation can be used to set any

necessary resources required for the test methods and the latter annotation can be used to

clean up or terminate any open connections.

Likewise there are many such annotations, which are useful. Also, assertions like

assertEqual, assertFalse, etc. can be used to check methods if the values

compared are equal or if it evaluates to false, respectively.

11

https://plantuml.com/download


CHAPTER - 2
PROJECT GOAL

2.1 OBJECTIVE

Major milestones of the Ptidej project includes:

1. Integrating PlantUML library with existing system to enhance visualization.

2. Implementing the standard directory structure in existing projects to use Maven.

3.Additional logging features using log4j2 to existing logging capabilities in the system.

2.2 EXISTING SYSTEM

The existing GUI uses Java AWT and Java Swing to display boxes and lines to represent

classes, interfaces, and their relationships. It does not have advanced visualisation

capabilities and could benefit from a library like PlantUML. Existing logging mechanism

uses a custom class that extends PrintWriter class to write to both File and

console but using an advanced logger system like Log4j2 would enhance the

debugging process and help to search a specific execution trace much quicker and offers

a centralised point to configure the logger. Finally, a few projects in Ptidej do not use

Maven yet as dependency management and build tools, which would make them easier to

compile, test, and deploy.

2.3 PROPOSED METHOD

Regarding the implementation of PlantUML, the proposed method is to create a separate

Visitor class to visit the Abstract model that is obtained after reading the input class files.

Then, it would add the PlantUML library as part of the project and use the methods to

visualize the elements as a separate feature within the application.

12



Then, the approach is to convert projects into Maven and configuring their dependencies

through pom.xml files and arrange the class files and the resources in a standard project

structure expected by Maven.

Finally, to add log4j2 as a dependency to Ptidej and configure it to output a specific

pattern for easy analysis of traces, the approach is to create wrapper classes to channel

both ProxyConsole and logger output through a single wrapper.

2.4 SYSTEM FLOW

For PlantUML, a visitor class is designed to generate the appropriate PlantUML DSL

This PlantUML DSL is then used to generate the respective PlantUML image by sending

this as an input to the PlantUML library. The system flow is presented in the flowchart in

Fig 2.1.

Fig 2.1 System Flow for PlantUML Image Generation

2.5 SYSTEM DESIGN

Four projects in Ptidej must be converted into Maven projects, namely Caffeine,

Caffeine Analyses, Caffeine Examples, and Caffeine Tests. It is designed to work as

depicted in Fig 2.2

13



Fig 2.2 Projects using Maven System

For integrating Log4J2, we write two wrapper classes, LoggerWriter wrapper class, for

generating logger instance based on Log4J2 and another wrapper to combine both print

Writer methods and loggerWriter methods which can be used to nest similar writer

classes.

Fig 2.3 Log4j2 Implementation

14



CHAPTER 3

PROJECT DESCRIPTION

In this chapter we can review the various modules/processes developed for Ptidej for the

duration of the summer project.

● Integration of PlantUML Library.

● Conversion of Existing Projects to Maven.

● Implementing Log4j2 feature.

3.1 INTEGRATION OF THE PlantUML LIBRARY

To achieve offline visualization of PlantUML diagrams, we must add the PlantUML

library JAR file. First we need to visit https://PlantUML.com/download to download the

compiled JAR under any appropriate licence listed. Then, we add the JAR to the

resources directory of the PADL Analyses project. This project is where the code

related to generating the PlantUML code will be implemented. This library should also be

added as a dependency to Maven which ensures the project’s build.

3.1.1 PLANTUML INPUT GENERATOR

Before we integrate the PlantUML library, we first require a Visitor class to visit each

package, class, method, and field of a PADL model, which is obtained from the

AbstractRepresentationWindow when a .ptidej file is opened as an input. The

Visitor class consists of a StringBuilder, which is used to create an instance of the

PlantUML DSL as the visitor visits each entity.

A .ptidej file contains ‘Name’ that contains the title of the UI window that lists the

checkboxes and visualises the classes and interfaces. ‘Java code’ contains the

directory/class path of the packages separated by semicolon (;)

15

https://plantuml.com/download


The visitor class implements the IGenerator interface, which implements a IVisitor

interface. The visitor class can be defined as a design pattern that isolates the algorithm

used on the object structure which is an Abstract Syntax Tree (AST). Instead of

modifying the AST every time when we need to add a new algorithm to perform a set of

operations on the elements.

Fig 3.1 Visitor Interface Hierarchy

To create an instance of the PlantUML DSL, we create a separate Visitor class that has

specific operations: open, close, and visit methods. Open methods are used to find the

implemented interfaces, inherited/inheriting classes by running an iterator on the

constituents. The close methods are usually to reset the current entity and perform any

required operations before it exits the entity. The visit methods in this context are used to

apply the logic, which is to construct relationships between identified entities. As for

each visit method, the StringBuilder will be updated with appropriate code as specified

by the PlantUML DSL.

16



3.1.2 TESTING PLANTUML GENERATOR

Test cases are mandatory whenever a feature is built because they validate the expected

behaviour and ensures that the feature does not break when changed. There are also two

types of testing done for this feature, which is JUnit testing (standalone tests) and

integration testing (testing the feature on the entire application).

JUnit testing involved verifying the methods by comparing the generated PlantUML code

against a pre-generated code stored in a text file and also against an incorrect PlantUML

code. The reason being that, if the implementation of the feature would change in the

future, this test can serve as a validation point.

3.2 ENHANCEMENT OF THE PTIDEJ UI

The Existing user interface of Ptidej must be modified to accommodate the visualization

of PlantUML DSL within the application. There are two major steps to output the

visualization, one is to create an option in the context menu and an icon in the toolbar for

the user to select an input file from the file explorer. The next step would then be creating

a separate window frame to output the generated image along with the available classes

and interfaces listed as dropdown checkboxes.

3.3 CONVERSION OF EXISTING PROJECTS TO MAVEN

In Ptidej, some existing projects like Caffeine, Caffeine Analyses, Caffeine Examples and

Caffeine tests do not follow the directory structure and build environment of Maven. This

was a pending issue because there is a need for a centralized dependency management

using a single pom.xml, segregating resources, Java files, libraries into separate

subdirectories, which gives flexible project management and ease building and

deployment in any environment. This integration with Maven helps large applications

like Ptidej, which has many projects and many dependencies among projects.

17



3.4 INTEGRATING LOG4J2

Log4J2 is the logging tool by Apache logging services that has significant improvements

over its initial version and the ‘2’ in Log4j2 represents the 2nd version. It has six different

types of severity levels which are trace, debug, info, warn, error, fatal in ascending order.

It is part of the Apache family of libraries that can be included in the project as a

dependency in Maven.

Log4J2 has a set of default configurations but can be modified by including a properties

file. It can be configured to output to console and file and also define the pattern of the

log message, specifically for each output type. It can also be configured to set which

severity level to output and to which directory the log file should be written and if it is an

append type or generating a new log file for each day/hour etc.

Fig 3.2 Sequence Diagram of Logger

18



CHAPTER 4

IMPLEMENTATION

4.1 SETTING UP PTIDEJ

First, we must ensure JDK 21 is installed in the work environment, and if not, it can be

downloaded from Oracle official website, and based on the OS Environment and

architecture, the respective installer can be download to require Eclipse IDE 2024-03 to

be installed and Maven 3.9.6 should be installed within Eclipse using Eclipse

marketplace.

Then, the project must be cloned from https://github.com/ptidejteam/

ptidej-Ptidej. After that we need to import ptidej into Eclipse as a maven project.

Once the project is built, we can select the projectViewer class located at DeMIMA UI

Standalone Swing project/ptidej/viewer/ and then run as a Java

application. We could also run the entire ptidej application from the JAR file of the

project using a single line command,

java -jar "DeMIMA UI Viewer Standalone Swing/target/

demima-ui-viewer-swing-1.0.0-jar-with-dependencies.jar"

4.2 IMPLEMENTING PLANTUML GENERATOR

4.2.1 PLANTUML VISITOR CLASS

The Ptidej application has an object structure implemented in the IAbstractModel

interface and is a composite model. This IAbstractModel serves as abstract class, which

is further implemented by IIdiomModel, which describes high level design patterns in a

19



given set of class files and ICodeModel, which describes the code structure of classes.

Once an input is given, the model generator generates an intermediate ICodeModel,

which is then further analysed to give an IIdiomModel.

The IIdiomModel implements IAbstractModel, it has the provision to accept an instance

of a IVisitor. The generate(final IGenerator aBuilder) can be used to

send in the instance of the PlantUML visitor class that can return a string type.

4.2.2 DESIGNING THE PLANTUML VISITOR CLASS

As the Visitor interface is implemented in the PlantUML visitor class, we can implement

open/close methods for entities and visit methods for entity relationships and entity

fields, method invocation and parameters. For the purpose of PlantUML, we implement

open and close only for the class and interface types and visit methods for aggregation,

association and composition types only.

In this code snippet, we can see IGenerator being implemented and two StringBuilder

instances are created. The PlantUMLBuilder to append the general PlantUML Code

that creates the structure and identifies classes and interfaces.

PlantUMLBuilderRelationship is used to generate intended relationships

between entities. We then create currentEntity, a IFirstClassEntity type

variable that holds the currentEntity being referenced.

PlantUMLGenerator() - The constructor appends the first line of the output with

@startuml PlantUML convention, which indicates the start of the PlantUML code.

getCode() - This is used to return the final output of the string builder.

20



public class PlantUMLGenerator implements IGenerator {

protected final StringBuilder PlantUMLBuilder =new StringBuilder();

protected final StringBuilder PlantUMLBuilderRelationship = new

StringBuilder();

private IFirstClassEntity currentEntity;

public PlantUMLGenerator() {

this.PlantUMLBuilder.append("\n@startuml\n");

}

public String getCode() {

return this.PlantUMLBuilder.toString();

}

public void reset() {

PlantUMLBuilder.setLength(0);

}

OPEN METHODS

open(IClass cls) - In this code snippet, an overloaded method accepts the IClass abstract

type. The currentEntity is set with the cls variable. Here we obtain the className and

check if the entity is an abstract class and append the string to the stringBuilder instance.

An iterator is obtained on the inherited entities.The FirstClassEntity types create an

iterator for both inherited classes and interface and we can use this iterator because the

IClass extends IFirstClassEntity. As per the PlantUML DSL, ‘--^’ symbol is used to

indicate the currentEntity inherits from the class entity. For interfaces, the ‘..^’ is used to

indicates the current entity implements the interface entity.

public void open(IClass cls) {

currentEntity = cls;

String className = String.valueOf(cls.getName());

21



PlantUMLBuilder.append("\n");

if (cls.isAbstract()) {

PlantUMLBuilder.append("abstract ");

}

this.PlantUMLBuilder.append("class " + className + " {");

PlantUMLBuilder.append("\n");

Iterator iterator = cls.getIteratorOnInheritedEntities();

if (iterator.hasNext()) {

while (iterator.hasNext()) {

IFirstClassEntity entity = (IFirstClassEntity)

iterator.next();

if

(String.valueOf(entity.getName()).equals("Object")) {

continue;

}

this.PlantUMLBuilderRelationship.append("\n");

this.PlantUMLBuilderRelationship.append(entity.getName());

this.PlantUMLBuilderRelationship.append(" --^

");

this.PlantUMLBuilderRelationship.append(className);

if (iterator.hasNext()) {

this.PlantUMLBuilderRelationship.append("\n");

}

}

}

iterator = cls.getIteratorOnImplementedInterfaces();

if (iterator.hasNext()) {

while (iterator.hasNext()) {

this.PlantUMLBuilderRelationship.append("\n");

22



this.PlantUMLBuilderRelationship.append(((IFirstClassEntity)

(iterator.next())).getName());

this.PlantUMLBuilderRelationship.append(" ..^ ");

this.PlantUMLBuilderRelationship.append(className);

if (iterator.hasNext()) {

this.PlantUMLBuilderRelationship.append("\n");

}

}

}

}

open(IInterface iInterface) - For interface entities, it is similar to the open(IClass

cls) method, except that the name ‘interface’ is added to the stringBuilder and we use

the ‘--^’ to represent the inheritance of interface entities with the current interface entity

this.PlantUMLBuilder.append("interface " +

interfaceName + " {\n");

iterator =

iInterface.getIteratorOnInheritingEntities();

if (iterator.hasNext()) {

while (iterator.hasNext()) {

IFirstClassEntity entity =

(IFirstClassEntity) iterator.next();

this.PlantUMLBuilderRelationship.append("\n");

this.PlantUMLBuilderRelationship.append(entity.getName() );

this.PlantUMLBuilderRelationship.append("

--^ ");

23



this.PlantUMLBuilderRelationship.append(interfaceName);

if (iterator.hasNext()) {

this.PlantUMLBuilderRelationship.append("\n");

}

}

CLOSE METHODS

Close methods ensure that the entities are closed for modification, meaning that its visit is

finished. It is used to properly close the elements when the elements are processed and

ensure the results are properly appended.

close(IAbstractModel model) - This method adds newlines and appends the value of the

relationship string builder and finally appends ‘@enduml’ which indicates the end of the

PlantUML code.

public void close(IAbstractModel model) {

this.PlantUMLBuilder.append("\n" +

this.PlantUMLBuilderRelationship.toString() + "\n");

this.PlantUMLBuilder.append("@enduml");

}

close(IClass cls) & close(IInterface iface) - Both these methods append a closing braces

and a new line to indicate the closure of a class or an interface.

24



public void close(IInterface iface) {

currentEntity = null;

this.PlantUMLBuilder.append("\n}\n");

}

public void close(IClass cls) {

currentEntity = null;

this.PlantUMLBuilder.append("\n}\n");

}

VISIT METHODS

Visit methods handles the relationship type between different identified entities:

visit(final IAggregation aggregation) - This method handles the entities that has

aggregation style relationship by adding ‘o--’ between the entity names of the current and

the target entities and appends ‘: aggregation’ at the end of the string as per the

PlantUML DSL. One of the outputs of this method is given in the example:

Example: ModelGraph o-- Constituent: aggregation

visit(final IComposition composition) - This method handles the entities that has

composition style relationship by adding ‘*--’ between the entity names of the current

and the target entities and appends ‘: composition’.

Example: Implementation-- IPrimitiveFactory: composition

visit(final IAssociation association) - This method handles the entities that has

association style relationship by adding ‘--’ between the entity names of the current and

25



the target entities and appends ‘: association’ at the end of the string as per the PlantUML

DSL.

Example: Specialisation -- Point : association

public void visit(final IAggregation aggregation) {

if (currentEntity != null) {

this.PlantUMLBuilderRelationship.append(currentEntity.getName())

.append(" o--

").append(aggregation.getTargetEntity().getName()).append('

').append(": aggregation\n");

}

}

public void visit(IAssociation association) {

if (currentEntity != null) {

PlantUMLBuilderRelationship.append("\n").append(currentEntity.ge

tName()).append(" --

").append(association.getTargetEntity().getName()).append('

').append(": association\n");

}

}

public void visit(IComposition composition) {

if (currentEntity != null) {

PlantUMLBuilderRelationship.append("\n").append(currentEntity.ge

tName()).append(" *--

").append(composition.getTargetEntity().getName()).append('

').append(": composition\n");

}

}

26



Fig 4.1 Sequence Diagram of PlantUML Generation

4.3 USER INTERFACE FOR PLANTUML VISUALIZATION

This user interface change comprises the visualisation of PlantUML diagrams as an

additional feature to Ptidej.

4.3.1 TOOLBAR INTEGRATION

An icon is to be added to the toolbar and for this, two entries need to be added in the

PtidejResourceBundle.java class file. The variable reference to load PlantUML

based window is added in the toolbar by using ptidej.viewer.ui.ToolBar. An icon is

defined in a similar fashion.

27



{ "ptidej.viewer.ui.ToolBar::CMD_LOAD_PlantUML_PROJECT",

"Load PlantUML Project" },

{"ptidej.viewer.ui.ToolBar::CMD_LOAD_PlantUML_PROJECT_ICON",

"OpenHierarchical24.gif" },

In addition, a static final String variable containing the value must be created in

Resource.java, because this variable will then be referenced to add in toolbar and

load the respective actions. It is used for internationalisation.

public static final String LOAD_PlantUML_PROJECT =

"LOAD_PlantUML_PROJECT";

In Toolbar.java, the load_PlantUML_project variable is referenced to add it

as a button, groupName and to enable the button.

this.addToolbarButton(Resources.LOAD_PlantUML_PROJECT,

Resources.FILE,true);

In FileAction.java, we need to define the action to be performed when the icon is

clicked. Once it is checked, we can call a method loadPlantUMLProject().

public void actionPerformed(final ActionEvent anActionEvent)

{final String action = anActionEvent .getActionCommand();

if (action.equals(Resources.NEW_GRAPHICAL_PROJECT)) {

this.createGraphicalProject();}

else if (action.equals(Resources.LOAD_PlantUML_PROJECT)) {

this.loadPlantUMLProject(); }

28



loadPlantUMLProject() - This method is used to define the file chooser using

Utils.loadFile that takes the unique instance of DesktopFrame, multiselection boolean

false, set the title of dialog window, the file type to accept and filter description name.

private void loadPlantUMLProject() {

final File file =Utils.loadFile(DesktopFrame.getInstance(),
false,"Choose Ptidej project file", "ptidej", "Ptidej project
files");

if (file == null) { return; }
final Properties properties = new Properties();
try {

properties.load(new FileInputStream(file)); }
catch (final IOException e) { e.printStackTrace

(ProxyConsole.getInstance().errorOutput()); return;}
DesktopPane.getInstance().createPlantUMLModelWindow();

this.processSelectedFile(file);}

Fig 4.2 File Chooser Window

29



Then, an instance of properties is created and the file is loaded into an instance of

FileInputStream. After that, an unique instance of DesktopPane is created and

createPlantUMLWindow() is called. Then, processSelectedfile(final

File file) is called, sending the file as input and with this, the multiple file paths in

the .ptidej file input that contain all the classes will be processed iteratively and a

respective AbstractModel will be created.

In DesktopPane.java,we create an instance of SourcePlantUMLModelWindow

and set it as the current desktop window.

public void createPlantUMLModelWindow() {

final AbstractRepresentationWindow window =

new SourcePlantUMLModelWindow();

this.currentDesktopWindow = window;

this.setWindowProperties(window);

this.currentDesktopWindow = window;

}

4.3.2 PLANTUML DIAGRAM DISPLAYWINDOW

After we have created an instance of sourcePlantUMLWindow, the constructor sets

outputImage path and the modelStatistics. Then, the content pane is set with the border

layout and the dimensions. The tree pane is added with listeners and to list the elements.

A canvas panel is then created to display the image and add it to the scroll pane and the

background viewport is set accordingly along with the vertical and horizontal scrollbar

listeners and renderers. The entire window is split into two using JSplitPane with the tree

pane on the left and the canvas pane on the right.

public SourcePlantUMLModelWindow() {

30



this.setImagePath("../OutputUML.png");

this.modelStatistics = new SilentModelStatistics();

this.getContentPane().setLayout(new BorderLayout());

this.treeRoot = new DefaultMutableTreeNode();

this.treeRoot.setUserObject(new JLabel(""));

this.tree = new JTree(this.treeRoot);

this.tree.addTreeWillExpandListener(new

TreeWillExpandListener() {

public void treeWillCollapse(final

TreeExpansionEvent aTreeExpansionEvent) throws

ExpandVetoException {

if (aTreeExpansionEvent.getPath().getPathCount() < 2) {

throw new ExpandVetoException(new

TreeExpansionEvent(SourcePlantUMLModelWindow.this.tree, null));

} }

public void treeWillExpand(TreeExpansionEvent event) throws

ExpandVetoException {

}

});

final TreeCellRenderer renderer = new HierarchicalTreeCell

Renderer();

this.tree.setCellRenderer(renderer);

this.tree.setCellEditor(new HierarchicalTreeCellEditor());

this.tree.setEditable(true);

this.canvasPanel = new CanvasPanel();

final ScrollPane scrollPane = new ScrollPane

(this.canvasPanel);

scrollPane.getViewport().setBackground(Color.WHITE);

scrollPane.getHorizontalScrollBar().addAdjustmentListener(new

AdjustmentListener() {

public void adjustmentValueChanged(final AdjustmentEvent e) {

SourcePlantUMLModelWindow.this.canvasPanel.repaint(); } });

31



scrollPane.getVerticalScrollBar().addAdjustmentListener(new

AdjustmentListener() { public void adjustmentValueChanged(final

AdjustmentEvent e) {

SourcePlantUMLModelWindow.this.canvasPanel.repaint();}});

this.imageLabel = new JLabel();

scrollPane.setViewportView(imageLabel);

final JSplitPane treeAndGraphSplitPane = new JSplitPane

(JSplitPane.HORIZONTAL_SPLIT, new ScrollPane(this.tree),

scrollPane);

treeAndGraphSplitPane.setOneTouchExpandable(true);

treeAndGraphSplitPane.setDividerLocation(200);

this.getContentPane().add(treeAndGraphSplitPane,

BorderLayout.CENTER); }

32



Fig 4.3 Window Frame

SETTING SPECIFICS OF SOURCE MODEL

After the constructor is called, the sourceModelSpecifics() method will be called by the

SwingWorker when the done() method is executed. This ensures the tree is built with the

tree node elements by calling the getIteratorOnTopLevelEntities() from the

sourceModel variable. This gives an iterator on the entities that can be added to the root

tree node which is done by calling the processSourceModel(). Also at the beginning of

the method call, the PlantUMLGenerator() method is called followed by setImage().

The former method generates the PlantUML code and subsequently generates the image

by referencing the source model and sending an instance of the PlantUML visitor class.

The latter sets the image to the imageLabel by reading the image.

33



@Override

protected void setSourceModelSpecifics() {

PlantUMLImageGenerator();

setImage();

this.treeRoot.setUserObject(new HierarchicalTreeCell

(this.getBuilder(), this.sourceModel,this.DISPLAY_ALL_LISTENER,

this.SELECTION_ALL_LISTENER));

this.treeRoot.removeAllChildren();

final Iterator iterator =

this.sourceModel.getIteratorOnTopLevelEntities ();

while (iterator.hasNext()) {

final IFirstClassEntity firstClassEntity = (IFirstClassEntity)

iterator.next();

this.processSourceModel(this.treeRoot, this.awtCanvas,

this.canvas, this.sourceGraph, firstClassEntity,

firstClassEntity);}

this.tree.expandRow(0);

final Iterator iteratorOnGraphModelListeners =

DesktopPane.getInstance().getIteratorOnGraphModelListeners();

while (iteratorOnGraphModelListeners.hasNext()) {

final IGraphModelListener graphModelListener =

(IGraphModelListener) iteratorOnGraphModelListeners.next();

graphModelListener.graphModelAvailable(new

SourceAndGraphModelEvent(DesktopPane.getInstance().getAbstractRe

presentationWindow())); } }

34



GENERATING PLANTUML CODE AND IMAGE

Once the PlantUMLImageGenerator() is called, necessary flags and catch blocks are

set to ensure that the image is generated and possible errors are handled. The imagePath

is retrieved from the getImagePath() and set to the Outputstream, then the

modelGenerator() is called which returns the uml code. Then, the resultant umlCode is

sent to a new instance of SourceStringReader(String), a PlantUML library specific

class, which sets the reader variable. This variable is used to call the outputImage()

method where the Outputstream png variable is sent to write the image in the

outputstream. Then getDescription() is used to retrieve the status of the generation and is

used for error handling.

The ModelGenerator() method creates an instance of the PlantUMLGenerator Visitor

class and sends it to the generate() method of the sourceModel, which accepts this visitor

to traverse the model and returns the string of the PlantUML code using getCode() on the

visitor.

The setImage() method sets the image to the image label and sets the horizontal and

vertical alignments, by reading the image from the imagePath.

public boolean PlantUMLImageGenerator() {

OutputStream png = null;

boolean imageGeneratedFlag = false;

try {

png = new FileOutputStream(getImagePath());

} catch (FileNotFoundException e) {

e.printStackTrace();

imageGeneratedFlag = false;

}

try {

35



String umlCode = this.modelGenerator();

SourceStringReader reader = new SourceStringReader

(umlCode);

String desc =reader.outputImage(png).getDescription();

if (desc.equals("Error")) { String errorMessage =

"Unable to process UMLCode"; throw new FileSystemException

(errorMessage);

}

ProxyConsole.getInstance().normalOutput().println("PlantUML

Image generated successfully.");

imageGeneratedFlag = true;

} catch (UnsupportedSourceModelException e) {

imageGeneratedFlag = false;

e.printStackTrace();

} catch (IOException e) {

imageGeneratedFlag = false;

e.printStackTrace();

}

return imageGeneratedFlag;

}

public String modelGenerator() throws

UnsupportedSourceModelException {

String finUMLContent = new String();

try {

PlantUMLGenerator PlantUMLGeneratorNew = new

PlantUMLGenerator();

this.getSourceModel().generate(PlantUMLGeneratorNew);

System.out.println(PlantUMLGeneratorNew.getCode());

36



String umlContent = (String)PlantUMLGeneratorNew.getCode();

String timeStamp = new Timestamp(System.currentTimeMillis()

).toString().split(" ")[0];

System.out.println(timeStamp);

finUMLContent = umlContent;

} catch (Exception e) {

e.printStackTrace();

}

return finUMLContent;

}

public void setImage() {

File imageFile = new File(getImagePath());

Image image = null;

try {

image = ImageIO.read(imageFile);

this.imageLabel.setIcon(new ImageIcon(image));

this.imageLabel.setHorizontalAlignment(JLabel.CENTER);

this.imageLabel.setVerticalAlignment(JLabel.CENTER);

} catch (IOException e) {

e.printStackTrace();

}

this.revalidate();

this.repaint();

}

SELECTION LISTENERS

There are two listeners, SELECTION_LISTENER one to select the checkbox of an

individual tree node and SELECTION_ALL_LISTENER to iteratively select all the

checkboxes of the tree nodes present in the tree pane.

37



private final ItemListener SELECTION_ALL_LISTENER = new

ItemListener() {

public void itemStateChanged(final ItemEvent anEvent) {

final DefaultMutableTreeNode root =

SourcePlantUMLModelWindow.this.treeRoot;

final Enumeration enumeration = root.depthFirstEnumeration();

while (enumeration.hasMoreElements()) {

final DefaultMutableTreeNode node = (DefaultMutableTreeNode)

enumeration.nextElement();

final HierarchicalTreeCell cell = (HierarchicalTreeCell)

node.getUserObject();

final IConstituent sourceConstituent =cell.getConstituent();

if (sourceConstituent instanceof IFirstClassEntity) {

final Constituent graphConstituent =

SourcePlantUMLModelWindow.this.sourceGraph.getEntity(sourceConst

ituent.getDisplayID());

if (graphConstituent != null) {

if (anEvent.getStateChange() ==

ItemEvent.SELECTED) {

cell.setSelectedWithoutNotification(true);

graphConstituent.isSelected(true);

}

else if (anEvent.getStateChange() ==

ItemEvent.DESELECTED) {

cell.setSelectedWithoutNotification(false);

graphConstituent.isSelected(false);

}

}

}

} }};

38



DISPLAY LISTENERS

Similar to Selection listeners, there are also two display listeners,

DISPLAY_LISTENER to select an individual tree node and display that particular

constituent on the Image Pane. DISPLAY_ALL_LISTENER is implemented to display

all the constituents on the Image pane. Here, based on the selection, it adds the

constituents to the setOfEntitiesToDisplay variable present in the window variable. This

window variable holds the current window which is then retrieved from the unique

instance of the DesktopPane using getAbstractRepresentationWindow().
{

private final ItemListener DISPLAY_ALL_LISTENER = new

ItemListener()

public void itemStateChanged(final ItemEvent anEvent) {

final SourcePlantUMLModelWindow window =

(SourcePlantUMLModelWindow) DesktopPane.getInstance()

.getAbstractRepresentationWindow();

final DefaultMutableTreeNode root =

SourcePlantUMLModelWindow.this.treeRoot;

if (anEvent.getStateChange() ==

ItemEvent.DESELECTED) {

((HierarchicalTreeCell)

root.getUserObject()).setSelectedWithoutNotification(false);

((HierarchicalTreeCell)

root.getUserObject()).setSpecialedWithoutNotification(false);

}

final Enumeration enumeration = root.depthFirstEnumeration();

while (enumeration.hasMoreElements()) {

final DefaultMutableTreeNode node =

(DefaultMutableTreeNode) enumeration.nextElement();

final HierarchicalTreeCell cell = (HierarchicalTreeCell)

39



node.getUserObject(); final IConstituent sourceConstituent =

cell.getConstituent();

if (sourceConstituent instanceof IFirstClassEntity) {

if (anEvent.getStateChange() == ItemEvent.SELECTED) {

cell.setDisplayedWithoutNotification(true);

window.setOfEntitiesToDisplay.add(sourceConstituent);

} else if (anEvent.getStateChange() ==

ItemEvent.DESELECTED) {

cell.setDisplayedWithoutNotification(false);

window.setOfEntitiesToDisplay.remove(sourceConstituent);

cell.setSelectedWithoutNotification(false);

window.setOfEntitiesToSelect.remove(sourceConstituent);

}

}

}

SourcePlantUMLModelWindow.this.updateWindowDisplay();

}

};

4.4 CONVERTING PROJECTS TO MAVEN

There are four existing projects in Ptidej that require Maven integration: Caffeine,

Caffeine Tests, Caffeine Analyses, and Caffeine Examples. Caffeine is a tool that

analyses the execution trace of Java applications dynamically instead of a static analysis.

It uses the Java platform debug architecture to generate the execution trace and Prolog

coroutine to perform queries over the traces. The reason is that, if a maintainer must

understand the behaviour of a program, they perform static analyses and documentation

to arrive at a conclusion but it might be error prone.

40



4.4.1 INITIAL STEPS

First we can start the process with the Caffeine project, by right clicking and selecting

Configure → Convert to Maven project. A dialog window is opened with fields Group

Id, Artifact Id, version, packaging, which has jar, war, and pom options, name and

description. We can give net.ptidej.caffeine in groupId and leave the rest of the options

as such and select finish. Also, the Group Id and Artificat Id cannot have white spaces in

them and should be separated by the ‘-’ convention.

4.4 Maven Dialog box

This dialog will generate a pom.xml file which holds the build information of the

specified project, a target folder which is used to contain the temporary files that is

created during the project build and a bin folder that contains the compiled classes.

41



INITIAL POM.XML STRUCTURE

The pom.xml is generated and it provides some default and input values provided to it.

It includes a src directory and resource but for the project, it isn’t necessary and it can be

removed. Instead, we can create a sub-directory /main that has a nested directory

/java, which translates to src/main/java. Similarly, we create src/main/resources

to hold the resources that can be referred and src/main/test that contains the test

packages.

<projectxmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

https://maven.apache.org/xsd/maven-4.0.0.xsd">

<modelVersion>4.0.0</modelVersion>

<groupId>net.ptidej.caffeine</groupId>

<artifactId>Caffeine</artifactId>

<version>0.0.1-SNAPSHOT</version>

<build>

<plugins>

<plugin>

<artifactId>maven-compiler-plugin</artifactId>

<version>3.8.1</version>

<configuration>

<release>21</release>

</configuration>

</plugin>

</plugins>

</build>

</project>

42



As we have four projects and they reference one another, they can be grouped into

net.ptidej. We create a new <parent> tag and add net.ptidej to the new <groupId>,

all-ptidej in the new <artificatId> tag and 1.0.0 version to the new <version> tag and

enclose it with the closing tag </parent>. This will ensure that this project will belong to

the net.ptidej group and under net.ptidej.caffeine.

4.4.2 BUILD AND DEPENDENCIES

Apart from the default maven-compiler-plugin, we add maven-install-plugin. This install

plugin will have certain goals configured, which is to build the external JAR resources

from the src/main/resources folder. There are three jars to build, cfparse.jar, javaassist.jar,

and JIProlog.jar and the intended goal command is install-file which is enclosed within

<goal> tag. In configuration, we specify the path, groupId, packaging, artificatId, version

of the JAR file to be built.

<executions>

<execution>

<id>install-cfparse</id>

<phase>validate</phase>

<goals>

<goal>install-file</goal>

</goals>

<configuration>

<file>src/main/resources/cfparse.jar</file>

<groupId>com.ibm.toad</groupId>

<artifactId>cfparse</artifactId>

<version>1.0</version>

<packaging>jar</packaging>

<generatePom>true</generatePom>

</configuration>

43



</execution>

<execution>

<id>install-javassist</id>

<phase>validate</phase>

<goals>

<goal>install-file</goal>

</goals>

<configuration>

<file>src/main/resources/javassist.jar</file>

<groupId>javassist</groupId>

<artifactId>javassist</artifactId>

<version>1.0</version>

<packaging>jar</packaging>

<generatePom>true</generatePom>

</configuration>

</execution>

<execution>

<id>install-JIProlog</id>

<phase>validate</phase>

<goals>

<goal>install-file</goal>

</goals>

<configuration>

<file>src/main/resources/JIProlog.jar</file>

<groupId>JIProlog </groupId>

<artifactId>JIProlog</artifactId>

<version>1.0</version>

<packaging>jar</packaging>

<generatePom>true</generatePom>

</configuration>

</execution>

</executions>

44



For dependencies we can create a <dependency> tag for each dependency along with

their Artifact Id, Group Id, and version. Other projects can also be added as dependencies

in addition to the external JAR files or external standard libraries. This addition will

download any external library if it is available from the Maven repository.

<dependencies>

<dependency>

<groupId>net.ptidej.cpl</groupId>

<artifactId>cpl-core</artifactId>

<version>1.0.0</version>

</dependency>

<dependency>

<groupId>com.ibm.toad</groupId>

<artifactId>cfparse</artifactId>

<version>1.0</version>

</dependency>

<dependency>

<groupId>javassist</groupId>

<artifactId>javassist</artifactId>

<version>1.0</version>

</dependency>

<dependency>

<groupId>JIProlog</groupId>

<artifactId>JIProlog</artifactId>

<version>1.0</version>

</dependency>

</dependencies>

The same can be performed for Caffeine Analyses and Caffeine Examples except that it

need not refer to all the dependencies or the build goals and instead it can just add

45



Caffeine just to their dependencies and need not build Caffeine as it is already built.

For Caffeine Tests, we can add maven-jar-plugin to define MANIFEST.mf files and

allow the capability to build jar files. Another plugin is the maven-surefire-plugin which

is used during the test phase of the build lifecycle to execute the unit tests of an

application.

Once this is set, we can use maven clean, validate and install commands to build maven

projects.

4.5 INTEGRATING LOG4J2

Logging capabilities are required to print and store the execution traces, error messages

or any non-trivial messages for debugging purposes. Ptidej currently has a custom logger

called ProxyConsole, which has four PrintWriter output types, debug, error,

normal, and warning outputs and PrintWriter is used to write to an output stream.

There are more existing classes which are used in proxyconsole.

AutoFlushPrintWriter class extends the PrintWriter class and overrides the

write() method with buffer array, position and length, to write to the outputstream

each time any bytes are added to the buffer. UnclosablePrintWriter class also

extends the PrintWriter class to prevent the printwriter from being closed by another

program, like Eclipse. It overrides the close() method to perform nothing except to

print an empty string.

We will integrate Log4J2 with ProxyConsole and provide an abstraction, such that the

users who use proxyConsole APIs will not know that they also use Log4J2: it will write

using the PrintWriter methods and Log4J2 methods in parallel.

46



4.5.1 LOGGING PROPERTIES

The logger needs to be configured with a rootLogger and the logger level can be set

to DEBUG and appender names can be assigned for printing and writing to console and

file respectively.

For printing to console, STDOUT is the appender name and console.type is Console. In

addition, we can specify the layout type as PatternLayout and define a custom pattern to

follow.

The same can be done when writing to a log file, by defining LOGFILE as appender

name, file type as File, directory path of the log file, threshold level to debug, and the

pattern layout and pattern which is similar to the console type.

rootLogger=DEBUG, STDOUT, LOGFILE

appender.console.type = Console

appender.console.name = STDOUT

appender.console.layout.type = PatternLayout

appender.console.layout.pattern = [%-5level] %d{yyyy-MM-dd

HH:mm:ss.SSS} [%t] [%X{className}] - %msg%n

appender.file.type = File

appender.file.name = LOGFILE

appender.file.fileName= logs/log4j.log

appender.file.layout.type=PatternLayout

appender.file.layout.pattern=[%-5level] %d{yyyy-MM-dd

HH:mm:ss.SSS} [%t] [%X{className}] - %msg%n

appender.file.filter.threshold.type = ThresholdFilter

appender.file.filter.threshold.level = debug

47



4.5.2 LOGGERWRAPPER

In ProxyConsole, we can define constants for each threshold level. For each respective

output type, we will set a new instance of the MultiChannelPrintWriter. An

example would be:

this.debugOutput = new MultiChannelPrintWriter(new

PrintWriter(new LoggerWriter(WARN)), messageWriter);

The LoggerWriter class extends the Writer Class and this instance is casted to a

PrintWriter since, PrintWriter also extends Writer class

First, we create a separate class called LoggerWriter, which extends Writer for

creating logger instances and to receive threshold log level. The constructor receives the

threshold level which is used to create the logger instance. It has getters and setters to

return the logger and threshold level.

The loggerWrite() method takes a StringBuilder. This method has a switch case that

checks for the threshold level Type by retrieving it from logger.getLoggerLevelType()

for the specific loggerWriter instance. Based on the type, it will match the threshold level

type and retrieve the logger using getLoggerWriter() and outputs the message using

debug(), info(), trace(), error(), or warn().

We then override the abstract methods of the Writer class like flush(), write() and close().

For flush and close methods we don’t implement any functionality but for write(), it

accepts char[] , offset and length parameters. We receive the messages to be logged in

the char[] and we convert it to a String builder by traversing the array using the offset and

length. Offset param specifies from where the message starts and length gives the total

length of the messages

48



public class LoggerWriter extends Writer {

private Logger logger;

private String loggerLevelType;

private static final String DEBUG = "debug";

private static final String INFO = "info";

private static final String WARN = "warn";

private static final String TRACE = "trace";

private static final String ERROR = "error";

public LoggerWriter(final String loggerType) {

this.loggerLevelType = loggerType;

this.logger = LogManager.getLogger();

}

public Logger getLoggerWriter() {

return this.logger;

}

public void setLoggerWriter(Logger logger) {

this.logger = logger;

}

public void setLoggerLevelType(String loggerLevelType) {

this.loggerLevelType = loggerLevelType;

}

public String getLoggerLevelType() {

return this.loggerLevelType;

}

private void loggerWrite(final StringBuilder message) {

switch (this.getLoggerLevelType()) {

case DEBUG:

this.getLoggerWriter().debug(message);

break;

49



case INFO:

this.getLoggerWriter().info(message);

break;

case TRACE:

this.getLoggerWriter().trace(message);

break;

case ERROR:

this.getLoggerWriter().error(message);

break;

case WARN:

this.getLoggerWriter().warn(message);

break;

default:

}

}

@Override

public void write(char[] cbuf, int off, int len) throws

IOException {

StringBuilder messageBuilder = new StringBuilder();

boolean carraigeAndNewLineSkip = false;

if (len == 2 && (cbuf[0] == '\r') && cbuf[1] == '\n')

{

carraigeAndNewLineSkip = true;

}

for (int i = 0; i < len; i++) {

messageBuilder.append(cbuf[i]);

}

if (!carraigeAndNewLineSkip) {

loggerWrite(messageBuilder);

}

}

@Override

50



public void flush() throws IOException {

// Nothing to do for Log4J

}

@Override

public void close() throws IOException {

// Nothing to do for Log4J

}

}

Secondly, we will have to create a class called MultiChannelPrintWriter that extends

PrintWriter to handle instances of the PrintWriter and loggerWriter methods. It has two

constructors to receive both PrintWriter instances.

It overrides the write(final char[] buf, final int pos, final int len) method to flush the

contents in the buffer and overrides four other methods from PrintWriterClass,

print(final char charc), print(final String message), println(final char charc), and

println(final String message). Print methods print char or a string does not provide a

newline while printing and println does the same except it prints in a newline.

All these methods make use of the Thread.currentThread().getStackTrace() method.

This method returns an array that contains the stack trace entities that are executed in the

current Thread. Furthermore, we can use the getClassName() on the 4th entry in the

stacktrace, and add the obtained class name value on the map ThreadContext as

‘className’. This is significant because in the thread properties we refer to the

className to print it along with the time stamp and method name. We can instruct the

logger to use this context by calling the respective print/println method which by

using reflecting calls the write() method of the loggerWriter class which then calls the

51



loggerWrite() method and once it is done, we can clear the ThreadContext map. After

this we can call the print/println method of the printWriter along with the message.

Even though this class accepts two PrintWriter class instances, during initialization of

MultiChannelPrintWriter class in ProxyConsole class, we create an instance of

LoggerWriter, which extends a Writer class and implements the parent class methods in

own class. At run time, due to reflection only, the write() method of LoggerWriter will

be executed and not the Writer class methods itself.

package util.io;

import java.io.IOException;

/*

*

* @author Vishnu Rameshbabu

* @since 2024/07/11

*/

import java.io.PrintWriter;

import java.io.Writer;

import org.apache.logging.log4j.ThreadContext;

public class MultiChannelPrintWriter extends PrintWriter {

private PrintWriter printWriter1;

private PrintWriter printWriter2;

public MultiChannelPrintWriter(final Writer writer) {

super(writer, true);

}

public MultiChannelPrintWriter(final PrintWriter writer1,

final PrintWriter writer2) {

super(writer2, true);

this.printWriter1 = writer1;

this.printWriter2 = writer2;

}

52



public void write(final char[] buf, final int pos, final

int len) {

super.write(buf, pos, len);

this.flush();

}

public void print(final char charc) {

StackTraceElement[] stackTrace = Thread.currentThread()

.getStackTrace();

String className = stackTrace[3].getClassName();

ThreadContext.put("className", className);

ThreadContext.clearAll();

this.printWriter1.print(charc);

this.printWriter2.print(charc);

}

public void print(final String message) {

StackTraceElement[] stackTrace = Thread. currentThread()

.getStackTrace();

String className = stackTrace[3].getClassName();

ThreadContext.put("className", className);

this.printWriter1.print(message);

this.printWriter2.print(message);

}

public void println(final char charc) {

StackTraceElement[] stackTrace = Thread. currentThread()

.getStackTrace();

String className = stackTrace[3].getClassName();

ThreadContext.put("className", className);

this.printWriter1.println(charc);

this.printWriter2.println(charc);

}

public void println(final String message) {

53



StackTraceElement[] stackTrace = Thread.currentThread().

getStackTrace();

String className = stackTrace[3].getClassName();

ThreadContext.put("className", className);

this.printWriter1.println(message);

this.printWriter2.println(message);

}

}

54



CHAPTER - 5

RESULTS, TESTING AND VALIDATION

5.1 RESULTS

5.1.1 PLANTUML CODE AND IMAGE

We will select a target folder that contains .class files called Facade 2 present in the

DeMIMA project and write the directory path terminated by a semicolon (;). We can

save the file as a DeMIMA Facade.ptidej file in any directory path.

Fig - 5.1 Facade2 class File contents

DeMIMA Facacde.ptidej contents:

[Ptidej Project]

Name = DeMIMA Facade2

JavaCode = ../DeMIMA/target/test-classes/ptidej/example/facade2/;

55



In Eclipse, we run /DeMIMA UI Viewer Standalone

Swing/src/main/java/ptidej/viewer/ ProjectViewer.java as a Java

Application. This starts the Ptidej application and once started we can select the .ptidej

file, which was created earlier. We can select the 4th folder icon from the left, which

shows Load PlantUML Project help text.

Fig - 5.2 Selecting Load PlantUML Project

Then, we can select DeMIMA Facade.ptidej from the file chooser.

Fig - 5.3 Selecting DeMIMA Facade.ptidej

56



After selecting the required .ptidej file, a separate window frame is generated with the

collapsible tree nodes on the left pane and the PlantUML image on the right pane. If we

drag the console window from the button represented by an up and down arrow key, we

can see the corresponding PlantUML code being generated.

Fig - 5.4 PlantUMLWindow Image Visualization

GENERATED PLANTUML CODE

The code below is the code generated by the PlantUML visitor:

Loading class files in: ../DeMIMA/target/ test-classes/ ptidej/

example/facade2/

@startuml

class BytecodeStream {

}

class CodeGenerator {

57



}

class Compiler {

}

class Main {

}

class Parser {

}

abstract class ProgramNode {

}

class ProgramNodeBuilder {

}

class RISCCodeGenerator {

}

class Scanner {

}

class StackMachineCodeGenerator {

}

class StatementNode {

}

class Symbol {

}

class Token {

}

BytecodeStream -- Object : association

CodeGenerator -- Object : association

CodeGenerator -- PrintStream : association

CodeGenerator o-- PrintStream : aggregation

Compiler -- Object : association

Compiler o-- Parser : aggregation

Compiler o-- CodeGenerator : aggregation

Compiler -- Parser : association

Compiler -- CodeGenerator : association

58



Compiler o-- PrintStream : aggregation

Main -- Object : association

Main -- Compiler : association

Parser -- Object : association

Parser -- Scanner : association

Parser o-- Scanner : aggregation

ProgramNode -- Object : association

ProgramNodeBuilder -- Object : association

RISCCodeGenerator --^ CodeGenerator

RISCCodeGenerator -- CodeGenerator : association

Scanner -- Object : association

Scanner o-- PrintStream : aggregation

StackMachineCodeGenerator --^ CodeGenerator

StackMachineCodeGenerator -- CodeGenerator : association

StatementNode --^ ProgramNode

StatementNode -- ProgramNode : association

StatementNode -- PrintStream : association

StatementNode -- Object : association

StatementNode o-- PrintStream : aggregation

Symbol -- Object : association

Token -- Object : association

@enduml

2024-08-04

PlantUML Image generated successfully.

59



OUTPUT

The image below is the image generated by PlantUML and shown in the GUI of Ptidej:

Fig - 5.5 PlantUML Image of Facade2

5.1.2 PTIDEJ LOGGING OUTPUT

As we launched the projectViewer.java which is the entry point for the ptidej

application, the console prints out [WARN] messages, which is done by Log4J2

logger and the warning messages in red are printed by the proxyConsole.java.

This log contains the threshold level, timestamp, thread name, the class that outputs the

log, and the actual message, as example:

[WARN] 2024-08-04 18:48:50.627 [AWT-EventQueue-0]

[util.lang.ConcreteReceiverGuard] -

Please do not instantiate metrics directly to allow

efficient caching, use the methods of

"pom.metrics.MetricsRepository" to obtain metric instances.

60



Fig - 5.6 Logger output to Console

For the Logger file, in this image, we could see the log file generated in the logs folder in

DeMIMA UI Viewer Standalone Swing project.

Fig - 5.7 Log File Output

61



5.2 TESTING AND VALIDATION

For PlantUML code testing must be done to validate if the generated output is correct

when checked against the intended output for the same. JUnit4 can be used to write the

test cases and the test suite for generating PlantUML Code.

A new package is created in the src/test/java as padl.analysis.PlantUMLGenerator.test

and another package padl.analysis.PlantUMLGenerator.test.exampleFile. is created to

store the correct PlantUML code of ../DeMIMA/target/test-classes/ptidej/example/

composite2 in a .txt file. This txt file is then tested against the actual generation of

composite2 target classes to ensure the code works properly.

Other test cases include the confirmation that the generated image is tested against the

correct output of the image by comparing the byte stream. Both the images are read using

ImageIO.read() and the respective results are assigned to an instance of

BufferedImage and the individual data array size is obtained. First, both the sizes are

compared and if it is the same, we will then proceed to compare the individual image’s

data array element with one another. A threshold of 99.8% is set to ensure both the

generated image and the test image are the one and the same. A 0.2% error margin is set,

just in case, if the PlantUML JAR gets an update and the pixels change.

62



Fig - 5.8 JUnit Testing Results of PlantUML Code

Fig - 5.9 JUnit Testing Results of PlantUML Output Image

63



CHAPTER 6

CONCLUSION AND FUTURE SCOPE

6.1 CONCLUSION

The proposed method has highlighted the features to be added and integrated and

standard convention to project structures. This project has satisfied the requirements

stated with proven testing and validation methods to ensure the added feature work.

6.2 FUTUREWORK

Ptidej can be enhanced, by adding a feature that can be added to dynamically manipulate

PlantUML code which helps to generate PlantUML diagrams when an entity is selected

in the Tree node.

64



REFERENCES

[1] https://PlantUML.com/

[2] https://logging.apache.org/log4j/2.x/manual/configuration.html

[3] Y.-G. Guéhéneuc, R. Douence, and N. Jussien, "No Java without caffeine: A tool for

dynamic analysis of Java programs," Proceedings 17th IEEE International Conference on

Automated Software Engineering,, Edinburgh, UK, 2002, pp. 117-126, doi:

10.1109/ASE.2002.1115000.

[4] https://maven.apache.org/surefire/maven-surefire-plugin/

65


