
Comp 490 – Final Report

Split-EZ

Pascal Archambault – 40060852

April 2020

1 Abstract

Needing to split everyday expenses with roommates inspired Split-EZ’s develop-
ment throughout this winter semester. This project is composed of two parts: a
mobile application interfacing with the user and a receipt analysis API that uses
various computer vision techniques to read and extract data off of the picture of
a receipt. The project was developed to termination, and an empirical analysis
of the API’s performance was conducted. Results show that the algorithm has a
precision of 34.38% and a recall of 45.83%. These results could be improved and
many solutions, such as using a neural network based approach, are proposed
to improve the overall project in the short, medium, and long term.

2 Introduction

As fellow students can attest, splitting cost of living expenses between many
people can be quite troublesome. Thus, alongside my personal interests in
machine learning, computer vision, and mobile applications, I decided to work
on a proper solution. Split-EZ is a mobile application that helps organize bills
and lets you split them with an indefinite amount of people by simply taking a
picture.

3 Background

This project is my first foray into the fields of computer vision and machine
learning, as well as modern Android development. As such, a lot of research was
required, and some functionalities did not work as well as intended. However,
this project allowed me to gain a lot of valuable experience in those fields, as
well as guide me towards future endeavours.

1



4 Problem Statement

Splitting bills between people seems to be a problem that people have all the
time, yet there are no readily available solutions for it. There exist certain
applications extracting features out of a receipt, but they either do not apply to
that exact problem, or they are not free. As such, there is a need for a free
mobile application that splits one or many receipts between different
people simply and easily.

5 Project Details

5.1 Features

5.1.1 Overview

To avoid any confusion, let’s define the user as “someone interacting with the
application”, as there is no account feature. Following this definition, the typical
application flow for a user goes as follows:

1. Create a group

2. Add members to the group

3. Take a picture

4. Validate receipt items

5. Save receipt

Other features accessible to the user include: modify/delete any of the created
entities, e.g., group members, and visualize the total amount owed by other
members of the group, etc.

5.1.2 Detailed Features

For the sake of brevity, I will only detail a few key features of the application
as they offer enough intuition about the application’s behavior.

Adding a group: A user can add a group by simply giving it a name. There
is no limit as to how many groups a user can create.

Adding a member to group: When a group is created, members need to
be added for the bill to be split amongst more than just the user. As such, a
user can add a member by specifying the member’s name. There is no limit as
to how many members a group can have.

Taking a picture: A user can take a picture of a receipt, which will then
be analysed by the API. The API will then send a response containing every
receipt item and their detected price back to the mobile application. Once the

2



mobile application receives the response, it will display a list of items found and
their price to the user, which will need to correct and validate the presented
information.

Saving a receipt: Once the user validates every entry returned by the API,
they can save all the receipt items under a receipt, which will be split amongst
people.

5.2 Architecture

Two major components compose this app: a mobile application, allowing inter-
action with a user, and a single REST API that reads and analyses a picture of
a receipt to return the relevant information to the mobile app.

Figure 1: Application Architecture

5.3 Design

Split-EZ’s goal is to be simple and quick to use. As such, the flow of the applica-
tion is as streamlined as possible. This is reflected both by the limited amount
of features available on the app, as well as the overall application flow.

The choice of separating the application into two parts, namely the mobile
application and the REST API, also reflects the goal of simplicity. Because the
burden of processing and analysing the image is relegated to the API, more
phones can use the application. Since most phones have subpar hardware com-
pared to a computer in the same price range, the algorithm’s execution is both
faster and cheaper.

Furthermore, due to time constraints and other factors such as health issues,

3



certain planned features either had to be cut or reduced in scope. Such features
include user accounts and payment through the mobile application.

5.4 Implementation

5.4.1 Mobile Application

Split-EZ’s mobile application is built using Google’s Flutter framework. Flutter
allows the creation of Dart components, which can then be put together to cre-
ate new components. Flutter is a recent framework released in May 2017 with
a lot of documentation and a strong community, which makes it perfect for the
development of a new Android app.

Flutter’s novelty is not the only reason it was chosen to build the mobile appli-
cation. Its “component-based” approach makes designing and building appli-
cations simple and straightforward, allowing for more development time on the
API. Flutter also facilitates access to the hardware of the phone, allowing us to
easily access the camera.

5.4.2 Reading the Receipt

Reading and analysing the receipt is all done through a Python REST API us-
ing Flask, OpenCV, and PyTesseract. Flask is a uniquely Python library that
provides us with many tools related to building a REST API, like a develop-
ment server, API endpoint management, request parsing, etc. Flask was chosen
because it makes implementing an API much faster and easier than having to
manage a web server and having to manually parse incoming requests. It is
also the REST API library I am most familiar with. OpenCV is an established
open-source computer vision library that allows us to manipulate and process
the image. Such manipulations include cropping, changing the color mode,
applying different filters, etc. PyTesseract is an optical character recognition
library wrapping around the Google Tesseract OCR engine. It allows us to de-
tect text within a given image.

Python was chosen because it is the language I am most familiar with, which
lets me focus on the logic of the algorithm rather than waste time on debugging
or language-specific implementation. Python also has certain advantages over
other languages. There is a strong Python community, which makes finding
information easy. It is also a language with an increasing amount of usage, both
in academia and industry, due to a plethora of computational and scientific li-
braries. Thus becoming more proficient in Python is a clear advantage.

Once a request to analyse an image of a receipt has been received by the REST
API, feature extraction is done. Extracting the important data, e.g., item, price,
from the receipt is done in two parts. First, we use OpenCV to preprocess the
image, cleaning, and cropping it to a standard format. Cropping is done in two

4



parts: Canny edge detection, which identifies lines in the picture, and a custom
algorithm, which iterates over every detected line, finding 4 lines making a box
and cropping the picture down to our detected box. From the cropped and
cleaned receipt image, we apply optical character recognition using PyTesseract
to extract the relevant data. The Tesseract OCR engine groups letter together
into words, forming clusters as it recognizes close by letters. The output of
the Tesseract OCR engine corresponds to a list of such clusters. The output
of Tesseract is then parsed using a set of rules and regex to extract the price
out of each cluster, since one cluster corresponds to one receipt item. Once the
clusters have been parsed, a response to the mobile application sending JSON
data containing each receipt item’s data.

Figure 2: Edge Detection And Cropping Process

6 Study

6.1 Methodology

The purpose of this study is to assess the performance, in terms of precision and
recall, of the receipt analysis algorithm. We are not interested in the execution
speed of the algorithm, because receipts have many intrinsic factors that may
impact the time it takes to identify every receipt item, such as its condition, the
character print, non-alphabetical characters, etc.

I randomly selected a sample of 18 receipts from 4 different businesses out of a
population of hundreds of receipts amassed from my day to day life. As such,
our sample contains receipts of varying sizes, lengths, and conditions. Every
receipt picture has been taken at the same time of day, against the same black
background. We define a “correct” identification as identifying either the price
of an item or part of its name, while an “incorrect” identification corresponds to
noise returned by the algorithm. Figure 3 shows an example of receipt feature
identification.

5



Figure 3: Receipt Analysis Example

Table 1: Receipt Analysis Results
Business Correct Identification Missed Identification Incorrect Identification Sample Size
IGA 2 4 7 4
Marché Newon 6 11 15 8
Maxi 12 9 16 3
Tim Hortons 2 2 4 3
Total 22 26 42 18

6.2 Results

From the data in table 1, we conclude that the receipt analysis algorithm has
a precision of 34.38% and a recall of 45.83%. In other words, 34.38% of our
identifications were correct, while we could only identify 45.38% valid items out
of receipts. These metrics show that a computer vision approach can extract
and recognize certain receipt features out of an image. However, due to the
unstructured nature of image data, there is a lot of noise introduced when tak-
ing a picture of a receipt. Preprocessing the image allows for the reduction of
certain sources of noise like angle, distance, and frame. Receipts themselves in-
troduce a lot of variance in our results when trying to extract certain features.
The receipt’s overall condition, as well as the ink quality, the typeface, and the
language, are examples of such intrinsic features.

Therefore, we cannot conclude whether this algorithm fails to identify relevant
data with higher precision because of its inherent logic or intrinsic limitations.

6



7 Discussion

This project came from a place of passion, where I set out to complete a project
based on an idea that would add value to my daily life. However, in retrospect,
I may have bitten more than I could chew. While I knew the REST API part
of the project would not be perfect, I still wanted to make the most out of it.
However, work on the mobile application took more time than expected, thus
slowed the development of the project, leaving less time to work on the more
complex features.

I also encountered a stall in the development of the API, as a lot of work
resulted in no tangible benefits since a lot of time was spent learning and toying
with machine learning and neural networks. In fact, nothing was conclusive, as
it would either require thousands of images of receipts in good condition that I
do not possess. There are certain ways to acquire this much data, but it mostly
relies on paid services generating receipts based on a template. This approach
might work if I were to always analyse receipts from the same store, but would
fail when we have more than one type of receipt. I believe that training a neural
network to extract features from many receipts is impossible with my means, as
I would require access to thousands of pictures of receipts from different busi-
nesses, akin to the type of data accounting departments at large companies have
access to.

The ambitious scope of the project led me to delve into multiple fields and
gain a better understanding of how to approach certain problems. Thus, even
though the project’s overall practicality may not be what it could have been,
the learning aspect of the project was a resounding success.

8 Future Improvements

8.1 Short Term

The only part which could be improved in the short term would be the cropping
process. As the custom algorithm’s current implementation is pretty naive, it
could benefit from some refactoring in order to be executed in parallel, making
its run time much faster. However, no small changes could be made to improve
the precision of the algorithm.

8.2 Medium Term

With a few additional months, it may be possible to increase the precision of
the algorithm by implementing a neural network able to extract the relevant
portions of text and price data that interest us, instead of having to do OCR
over the whole image. This would decrease both the overall amount of false
negatives and false positives.

7



The concept of user accounts could also be introduced to the application. This
would let users manage all of their receipt operations in the cloud, as well as
better, manage their groups and group members.

8.3 Long Term

The most obvious long term improvement that could be made would be to de-
velop a custom neural network able to extract a label and a price out of the
receipt, no matter their relative position.

The mobile application could also receive a few additional core features. Users
could pay their debt to other users directly through the application, or they
could see an outline of what the algorithm sees in real-time through the camera
before snapping a picture, etc.

9 Conclusion

Even though the project does not function at a production level, and ended
being much smaller in scope than first designed, it still managed to see the end
of development into something concrete. Working on Split-EZ has rewarded
me with plenty of experience in mobile development and computer vision, but
has also helped me step foot in the bigger fields of machine learning and neural
networks.

8


