

COMP 6971

SEODIN: An Open Data Infrastructure

Concordia University

Name: Satnam Singh

ID: 40059599

Term: Summer 2018

Content

1. Introduction 2

2. Section 1
Process
Future Scope

3
3
5

3. Section 2
Design Patterns from SOEN 6461

6

4. Section 3
Enabling GUI Access to DigitalOcean droplet

7

5. Section 4
Conclusion

7

6. References 8

1

Introduction

This project is divided into three sections. Section 1 is about deploying and

advancing the SEODIN application [1], which is a Web application to provide public

access to research data. It involves building a monolithic application using JHipster,

uploading data to the SQL database, configuring a platform on DigitalOcean,

deploying the SEODIN application to DigitalOcean and enabling public access to the

application by configuring DNS information on the Ptidej website.

Section 2 deals with the implementation of some design-patterns in Java which were

taught in SOEN 6461 and upon successful implementation, could be used to

illustrate the concepts in future iterations of the course.

Section 3 describes the first step undertaken to provide a hosting of Windows 2000

remotely to consolidate the resources of Ptidej team on the same server. The first

step in doing this was to enable GUI access to a remote machine or droplet on

DigitalOcean and installing VirtualBox on it which would be used to run a virtual

instance of the Windows 2000 image.

Finally, Section 4 provides a conclusion to the activities done and the results

achieved in the summer project.

2

Section 1

Process

The work done can be broadly classified in the following steps:

1. Making the local environment ready to build a Web application using JHipster

[2] by installing the dependencies including but not limited to Yarn, Gradle,

Node.js, Yeoman, Java8 and JH​ipster [2]. After this step, we have a local

environment which is ready to build an application using JHipster.

2. Forking the existing SEODIN JHipster [3] application on GitHub to become

familiar with the entities used for the SQL tables and the user interface. It was

difficult to get the original code running because of the deprecated versions of

the dependencies - a problem which was only augmented by the various

property files of Gradle/Maven/Docker, which require understanding of the

various components involved in them. At the end of this step, we would have

the existing code of SEODIN on the local environment and we would be

familiar with the entities and the motivation behind their creation.

3. Getting the research data from the archive in Google Drive, extract it and

upload it to the application’s SQL database using scripts prepared for each

type of data/entities. After successful completion of this step, we would be

able to navigate to the entities on the SEODIN application in the browser and

view the uploaded data. Some basic CRUD operations can also be

performed.

4. Downloading the research videos from an existing archive and uploading

them to YouTube with the relevant license under the SEODIN channel for

public access. For this purpose, creating a project on Google Cloud Platfo​rm

to use the YouTube API. Running a script (in Python) to access all videos in a

directory on the local machine, uploading them to YouTube and save the

unique id generated. While Google provides a script which can be used for

this purpose, it requires getting used how a project is made on GCP, how the

security tokens are generated and used to authenticate the API. Once all the

3

videos are uploaded successfully, they can be viewed on the YouTube

website with public access.

5. Pasting a link to the YouTube video on the related page of the SEODIN app.

Also, pasting the link to the related page on SEODIN in the description of the

YouTube ​video. This would help to cross reference videos from the SEODIN

website to YouTube.

6. At this step, the application is running successfully on the local machine. We

can start the application on any port, open it in a web browser, view or edit the

entity data, and see the links to the videos on YouTube.

7. The next step entails deploying it to a cloud hosting service. Analysing the

cost-value of the major cloud services and found Digital Ocean to be the most

cost-effective.

8. Creating a droplet and setting up a similar environment on Digital Ocean with

all the dependencies required to run the application with the same versions

used to build the application. While reproducing this step in the future, it would

be helpful to make a list of dependencies installed in Step 1 along with their

versions to avoid any version compatibility related issues.

9. Deploying the application on the configured droplet by building a .war file of

the application or using Docker image. A few difficulties were faced while

performing this step, mostly as consequence of unfamiliarity with Gradle

configuration files.

10.Configuring Apache Virtual Hosts [4] or any similar method to expose the

SEODIN application to public using the existing Ptidej domain name.

Successfully doing this step will result in a working link like “seodin.ptidej.net”.

4

Future Scope
There is a lot that can be done with the SEODIN application to ease the access to its

data to potential users.

1. The application is currently built using a monolithic architecture, which is

difficult to scale, modify and debug. A transition to service oriented

architecture, using microservices that do only one task can provide an answer

to the problems posed by the monolithic architecture.

2. The present setup allows the users to view the data in a very structured way,

reducing the ways in which it can be downloaded. This makes it difficult to

fetch only custom fields, process and store them. A better approach could be

to provide a URI which takes input fields and provide them in a standardized

JSON format. For example, if all data for a developer with developer id “dev1”

is required, a URI should be able to handle a POST request with dev_id =

“dev1” and return a payload with the relevant data. If multiple developer ids

are provided in the request, then a JSON should be prepared with a list of

data fields for all the dev_ids requested.

To achieve this, the use-cases must be identified for which the data

can be requested from the application. Then, seperate APIs could be built to

fetch the data from SQL and return in a format which confirms with a standard

like “JSON API” [5].

3. While deploying the application on a droplet on DigitalOcean, the version of

dependencies must match with the version that was used on the local

machine where the application was built. At times, it is cumbersome to debug

issues due to version mismatches. A utility/script could be built to automate

the process.

4. While there is an option to manually resize the Digital Ocean droplets to allow

the application to scale in the future, it is not automatic and must be

commissioned manually. If such is the requirement, a transition can be made

to PAAS providers, which have the option to scale up/down the application

automatically based on the volume of traffic.

5

Section 2

Design Patterns from SOEN 6461
Along with working on the SEODIN application, some design patterns, taught in

SOEN 6461 were also implemented in Java to be reused in future installment of the

course. The following is a list of the design patterns implemented with the real world

analogy from which the implementation is motivated.

1. Association

a. Aggregation DP: A team of players.

b. Composition DP: Human anatomy.

2. Decorator DP: Optional Extras while purchasing cars.

3. Abstract Factory DP: Selection of different sorting techniques based on

choice.

4. Iterator DP: Customer support tickets.

5. Observer DP: Messaging in a Slack group.

6. Singleton DP: Initialization of a shared behaviour.

7. Template DP: (Similar) steps in message transfer in multiple messaging

services.

URL: https://github.com/singhsatnam/design-patterns

6

Section 3

Enabling GUI access to Digital Ocean droplet

This composes the first step in deploying a Windows 2000 VM on Digital Ocean to

consolidate all the virtual assets of the Ptidej Team on the same servers. A Windows

OS image is not officially provided or supported by DigitalOcean. In order to have a

working Windows platform, the following two steps were considered and tried.

Eventually, the second approach was found to be feasible and was implemented.

1. Installing Windows on DigitalOcean:- DigitalOcean does not yet support

droplets running Windows OS. This approach, though not officially supported

by Digital Ocean, is a work-around to run Windows on DigitalOcean.

However, based on the requirement of Windows 2000, this approach has to

be abandoned as only Windows 8 and 10 were viable options.

2. Running Windows 2000 image on VirtualBox:- A linux droplet was created on

Digital Ocean and GUI access to the droplet was enabled using Virtual

Network Computing [6]. Hence, it was possible to install and run VirtualBox on

the droplet with the end purpose to host a Windows 2000 image on it.

Section 4

Conclusion
Over the summer, the three activities were done as described above. There is still

work which requires to be done to further the tasks undertook in the three activities.

For example, SEODIN application is still being worked upon, the implementation of

the design-patterns is being improved and the logistic problems related to the

deployment of a working Windows 2000 image virtually are being evaluated and

resolved.

7

Besides these activities, a quiz based on concurrent programming in Erlang was also

hosted on HackerRank as a weekly activity for the Ptidej team.

References
1. SEODIN application Background:

http://www.ptidej.net/publications/documents/170919+Seodin.doc.pdf

2. JHipster: https://www.jhipster.tech/production/

3. https://github.com/ptidejteam/seodin

4. Virtual Hosts on Digital Ocean:

https://www.digitalocean.com/community/tutorials/how-to-set-up-apache-virtu

al-hosts-on-ubuntu-16-04

5. JSON.API: http://jsonapi.org/

6. Configuring VNC on Digital Ocean:

https://www.digitalocean.com/community/tutorials/how-to-install-and-configure

-vnc-on-ubuntu-16-04

8

