

Little Computer People

SOEN-6971

PROJECT AND REPORT

PROJECT REPORT

NAME ID

URMIL KANSARA 40037747

TEJAS SADRANI 40041572

VAIBHAV JAIN 40046891

1. Abstract

Design patterns is a tricky concept, a software practice that is found to solve known

problems and can be used in many applications having the same intent. However

it is tricky to figure out the intents as there is always a scope to use more than one

design pattern for a same problem. Here is an explanatory project work by building

a simulation game, to give brief idea of all the design patterns that can be used in

a single application with the main intent for organizing code thus improving

software design, for a better future maintainability and scalability.

2. Introduction

Little computer people (LCP) is a simulation game where it represents fully

furnished house on a computer. There is no winning condition and it shows the

sideways view of the inside of a 3-story house. In this game, a person does the

task that is carried out in daily routine of an individual like cooking, sleeping,

bathing, eating, playing, office, etc. After the game starts an animated character

will move and roam around the house to perform the daily routine activities

described above. Players can interact with this animated character and command

him to do the particular task like watching TV, opening fridge etc. The house in

which person moves and perform the tasks is shown in single screen in 2D. There

is only one person and there can be pets based on the requirement of the game.

Figure 1

3. Motivation

The main idea behind developing this game is to implement all the design patterns

in an agile way. Design patterns makes it easier to reuse successful designs and

architectures by providing solutions to the common design problems. However,

figuring out their applicability’s depends on many factors may be related to the

issue or the project we are building.

This project aims at figuring out the DP’s in an articulate fashion, that can be used

along with each other in conjunction to produce a better software design that

considers many factors, mainly increasing abstraction for users and clients for

whom the application is built.

4. Methodology

The simulation game under consideration is build by using core java concepts with

design patterns to make a better implementation of the code. We have used java

swings basic UI to render the simulation of persons movement based on various

factors(a).

We build our code based on simple notion, a house is a composite object that

carries various things inside out hence composite pattern. The composite pattern

describes a group of objects that is treated the same way as a single instance of

the same type of object(b). Hence a house has floors, floors has rooms and rooms

have another furniture objects. A composite gives us a notion of house as a whole

object.

Coming to building and constructing the house where simulation takes place on

specific time intervals according to the documentation(a), here factory design

pattern is used. Where a factory is a class that creates whole structure of

composites and provides that to the client, leaving the burden of object creation to

the system and not on the clients. Thus, clients just need to ask for an object of a

specific kind and factory will deliver this object on the safe hands.

Singleton pattern is used where factory is used, a singleton DP is used when

exactly one object is needed to coordinate actions across the system. So in here

a factory object is such an object that all the clients can refer and can be used to

make different objects of composite types. Thus for us a factory is a singleton

object.

Observer design pattern is used for the runners, be it tester or a UI runner. In here,

a observer which is essentially a client checks for addition for composites and if

the composites are build one over the other or not. It is a push and pull model

where clients push and pings the system if one object is added inside the other or

not and there is when system pings back or notifies the client for the addition if it

took place. Based on this client acts accordingly.

With an aim to build a simplistic version of a LCP simulation game, we

implemented a Model View Controller (MVC) architectural design model along with

Observer pattern. It was an effort to use extreme programming effort with iterative

software development approach to make a modular design and deliver several

working coherent modules in small increments or builds.

Model View Controller

Model View Controller design aims at decomposing an interactive system into

three components, namely: Model, View and Controller.

Model - The model represents data and the rules that govern access to and

updates of this data. In enterprise software, a model often serves as a software

approximation of a real world process.

View - The view renders the contents of a model. It specifies exactly how the model

data should be presented. If the model data changes, the view must update its

presentation as needed. This can be achieved by using a push model, in which the

view registers itself with the model for change notifications, or a pull model, in

which the view is responsible for calling the model when it needs to retrieve the

most current data.

Controller - The controller translates the user's interactions with the view into

actions that the model will perform. In a stand-alone GUI client, user interactions

could be button clicks or menu selections. Depending on the context, a controller

may also select a new view -- for example, an action on a particular click event

may result in rendering a completely new view.

Figure 2

5. Design Decisions

As any challenging applications requires attention on design decisions, same for

this, now and then there have been assumptions and decisions made for the code

to be much cleaner and simpler for client’s use.

Composite pattern

Figure 3

As can be seen in figure 3, here there is one for all object named IDisplayable.

IDisplayable is the composite object which can represent any object of the building.

Here composite pattern is used for the raw objects or the model data objects in

use. Viz. There is a building that comprises of rooms, person and pets, and rooms

in turn comprises of furniture’s of various kinds bifurcated into two categories

namely, moveable and unmovable. All these objects are composites of type

IDisplayable.

 Factory Pattern and Singleton Pattern

Figure 4

Here, factory pattern is used in order to create instances of all other classes that

represent entities in LCP such as floor, room, building, person etc. This class that

acts as the factory class to instantiate other classes should not be instantiated itself

twice. To fulfil that requirement, we used singleton pattern and restricted the

instantiation of factory class at the time of initialization phase. This ensures the

central control for creating instances in a execution environment and also results

in efficient memory utilisation and garbage collection.

Factory class is responsible for creation of composite objects so that a level of

indirection is made and all client knows is the api factory provides for creation of

raw objects. Singleton pattern is used within Factory, so that clients can refer to

only single object of factory class, because it is never required for any class to

have more than one instance of factory. All client does is requests a static class

factory by calling its method and factory in the end gives the object that client

requires based on the permission.

MVC Runner

The game runner here is multithreaded as we have followed MVC architecture.

View and models are the threads in this game. We are using Observer pattern to

integrate this architecture. Logical aspect of the game is written in controller for

example when a person moves it updates the model and model notifies the

observers about the change.

As the figure 4 goes, this is how MVC was implemented. Various Models

(Displayable,LCPDriver,DisplayDimension, etc) manages the behavior and data of

the application domain. Once it gets a change state query request from the View

(LCPView) that are registered to the model, they respond to instructions to change

the state from controller (LCPController etc).

• Here we have built an event-driven system where the model notifies observers

(usually views) which have been registered to the models, whenever there is

change in information or state, so that they can react

Views on the other hand renders the model into a form suitable for visualization or

interaction, in a form of UI (user interface). If the model data changes, the view

must update its presentation as needed.

• Here we have developed a push and pull model where view registers itself with

the model for the change notifications, thus following observer pattern.

Controllers are designed to handle input and initiate a response based on the

event by making calls on appropriate model objects.Thus accept various input from

the user and instruct the model to perform operations. • The controller translates

the stimulated interactions with the view it is associated with, into actions that the

model will perform that may use some additional/changed data gathered in a user-

interactive view.

• Controller is also responsible for invoking new views upon conditions.

Figure 5

6. Results

Here two test runners were created, one follows simple JUnit test case named

“CreationalTest.java”, where tests for creation of the whole building along with its

object is tested upon (as seen in figure 8). Second one is “ButtonGrid.java”, which

is based on swing UI (as seen in the figure 6 and 7).

In swing UI, there are partition of colors based on the rooms and floors. So far for

understanding purpose we only have created and decorated one room with all

kinds of object according to figure 1. A person based on multithreading of MVC

can move from one spot to the other, however the checks for the object penetration

are yet to be figured out in the next builds.

Figure 6 - Room 5 on the bottom is kitchen with utilities of kitchen as in figure 1

Figure 7 - Person which has skin color moves till the fridge but moves over the

table

Figure 8

7. Future Work

A comprehensive simulation system can be built with strategies of person to move

from one room to the other in a seamless manner. Here a decorator can be used

where a furniture for instance, can be decorated as penetrable or impenetrable.

Based on that a movement of object can differ and may require to make several

decisions on which tile it should go if there is an impenetrable object on its way.

Based on the decorations, display can also be tweaked in a way if person can go

around the table or through the table for example. Assumptions for screen sizes

can be made more dynamic based on the screen size that client offers. UI can be

improvised using images instead of colors over JPanels. Last but not the least,

code requires a lot of refactoring that needs to be done for dead code, linguistic

antipatterns.

8. Conclusion

It is always interesting to build something, but it adds more weight to it if it is done

in more articulate fashion and then is when using design patterns helps your code

look much more cleaner. Not only cleaner but a client will be happiest to have a

code built with less burden on his shoulders. A design patterns has many intents

but the main intent that every design pattern focuses on is to build a code that

helps client use the system seamlessly.

A explanatory work for using various design patterns with Little Computer People

simulation platform is a good example to look and learn design patterns at its core.

Much future work is needed to be done for the former statement to be true, but in

the end design patterns are a good coding practice that can be used along any

project based on its intent and problem under consideration.

9. References

a. https://en.wikipedia.org/wiki/Little_Computer_People

b. https://en.wikipedia.org/wiki/Composite_pattern

c. https://en.wikipedia.org/wiki/Little_Computer_People

https://en.wikipedia.org/wiki/Little_Computer_People
https://en.wikipedia.org/wiki/Composite_pattern
https://en.wikipedia.org/wiki/Little_Computer_People

