
Ptidej ANTLR4 C# Parser
- A SOEN6971 project -

Project Report

Adrien Poupa

Supervisor

Yann-Gaël Guéhéneuc

Concordia University
Faculty of Engineering and Computer Science

Faculty of Engineering
and Computer Science

Concordia University
http://www.concordia.ca

Title:
Ptidej ANTLR4 C# Parser

Theme:
Development project conducted at Concordia

Project Period:
Summer Semester 2018

Participant:
Adrien Poupa

Supervisor:
Yann-Gaël Guéhéneuc

Copies: 3

Page Numbers: 44

Date of Completion:
August 31, 2018

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

http://www.concordia.ca
https://creativecommons.org/licenses/by-nc/4.0/

Contents

Abstract 4

Acknowledgement 5

1 Introduction 6

2 The Ptidej Tool Suite 7
2.1 Overview . 7
2.2 Installation . 9
2.3 PADL Models . 11

2.3.1 Levels of abstraction . 11
2.3.2 Relationships . 12
2.3.3 Visiting PADL models . 14

3 The ANTLR4 Library 17
3.1 Context-free Languages . 17
3.2 LL(*) Parser . 18
3.3 Parsers, Lexers, Tokens . 19
3.4 Applications of ANTLR4 . 19
3.5 ANTLR3 vs. ANTLR4 . 20
3.6 Using Parse Trees . 20

3.6.1 Building Parse Trees . 20
3.6.2 Traversing Parse Trees: Listeners and Visitors 22

2

4 Parsing C# Code in the Ptidej Tool Suite with ANTLR4 24
4.1 Existing Work . 24
4.2 Installing ANTLR4 . 25
4.3 Choosing Between a Listener and a Visitor 25
4.4 Finding an ANTLR4 C# Grammar . 25
4.5 Generating Lexer, Parser and Visitor . 25
4.6 Implementing the C# PADL Parser . 29

4.6.1 Instantiating the Project . 30
4.6.2 Parsing the Project . 34
4.6.3 Implementing the Builder . 36

4.7 Testing the Project . 40
4.8 Challenges Encountered . 41
4.9 Future Work . 42

5 Conclusion 43

Bibliography 44

3

Abstract

Ptidej (Pattern Trace Identification, Detection, and Enhancement in Java) is a soft-
ware program written in Java, that provides tools to enhance and evaluate the quality
of object-oriented programs, by promoting the use of patterns, at the language or
architectural-levels.

Ptidej analyzes programs using a meta-model, PADL (Pattern and Abstract-level De-
scription Language). This meta-model is fed by language-specific PADL parser pack-
ages. Such packages exist for Java and C++.

The purpose of this project is to create a PADL parser for the C# language, using
the latest ANTLR4 (ANother Tool for Language Recognition) library available. The
question investigated is: How to create an efficient PADL parser for the C# language,
based on the ANTLR4 library?

A new C# PADL parser has been created, based on previous work done by Yann-Gaël
Guéhéneuc and others from the Ptidej Team. C# code was parsed using an ANTLR4
C# grammar, and the PADL model was fed using visitors on the parse trees generated
by the grammar.

Results were validated using a range of unit tests: based on an oracle, we confirmed
that the PADL model generated by our code was working and conform to what was
expected.

It is hoped that this project will help to integrate the C# parsing feature to the Ptidej
software program.

Keywords: Ptidej, PADL, ANTLR4, C#

4

Acknowledgement

I would like to express my sincere gratitude to my supervisor Dr Yann-Gaël Guéhéneuc
for giving me the opportunity to work on this project as well as providing his highly
appreciated guidance, comments and suggestions throughout the course of the project.

His input has been invaluable for me to understand the underlying mechanisms of
the Ptidej tool suite and choosing the best approaches to solve the problems I encoun-
tered.

5

Chapter 1

Introduction

Ptidej (Pattern Trace Identification, Detection, and Enhancement in Java) is a software
program written by the Ptidej Team, lead by Yann-Gaël Guéhéneuc. It is written in
Java and relies on the Eclipse platform. Its purpose is to to provide tools to enhance
and evaluate the quality of object-oriented programs, by promoting the use of pat-
terns, at the language or architectural-levels.

Ptidej analyzes programs using a meta-model, PADL (Pattern and Abstract-level De-
scription Language). The meta-model is fed by language-specific PADL parser pack-
ages. There are packages for Java and C++.

There were already two C# available in the project (PADL Creator C# v1 and PADL
Creator C# v2); they were deemed to be working well but relied on a legacy version
of the ANTLR library. Therefore, the purpose of this project is to create a PADL parser
for the C# language, using the latest ANTLR library available at the time of the project
(version 4).

A new C# PADL parser was created, based on previous work done by Yann-Gaël
Guéhéneuc and others from the Ptidej Team. The parser works by taking C# code as
an input, parsing it using an ANTLR4 C# grammar, then the PADL model is fed using
visitors on the parse trees generated by the grammar. The visitors are provided by the
ANTLR4 library.

The final results were validated using a range of unit tests: using an oracle, we con-
firmed that the PADL meta-model generated by our code was working and conform
to what we expected.

6

Chapter 2

The Ptidej Tool Suite

2.1 Overview

Ptidej is a tool suite that analyzes other software. It relies on PADL, a semi-language
independent model. Ptidej provides various interfaces that can be used to plug new
parsers to the PADL model, thus offering the possibility to support new programming
languages such as C# without having to modify the core of Ptidej.

The Ptidej tool suite is based on the following:

• CPL

• EPI

• JavaParser

• JChoco

• Mendel

• PADL - PADL Analyses

• PADL Creator AOL

• PADL Creator AspectJ

• PADL Creator C#

• PADL Creator C++

• ADL Creator ClassFile

• PADL Creator JavaFile

• PADL Design Motifs

7

• PADL Generator

• PADL Micro-pattern Analysis

• PADL Statements

• PADL Statements Creator AOL

• PADL Statements Creator ClassFile

• POM

• Ptidej

• Ptidej Solver 4

• Ptidej Solver Metrics

• Ptidej UI

• Ptidej UI Analyses

• Ptidej UI AspectJ

• Ptidej UI C++

• Ptidej UI Layouts

• Ptidej UI Primitives AWT

• Ptidej UI Viewer

• Ptidej UI Viewer Extensions

• Ptidej UI Viewer Standalone Swing

• SAD

• SAD Rules

• SQUAD

Some have not been mentioned for the sake of simplicity. For the project, I have
created two new packages: PADL Creator C# v3 and PADL Creator C# v3 Tests. In-
deed, PADL Creator C# v1, PADL Creator C# v2 and their associated test packages
already existed before I began working on the project, but they were more of a POC
(proof of concept) than a working product.

The PADL Creator C# v2 was using ANTLR3 to parse the code; after extensive studies
of the best solution to parse C# code, I chose to rewrite it using the newer ANTLR4
library.

8

2.2 Installation

The first step of the project was to install and run the Ptidej tool suite. To do so, I have
followed the instructions available on the BitBucket repository.

First, one has to clone the BitBucket repository. Then, the project can be opened
in the Eclipse IDE. The Plug-in Development Environment (PDE) must be installed.

Once it is installed, because most of the packages need it to work, one has to se-
lect the /PADL/META-INF/MANIFEST.MF file, right click the MANIFEST.MF file, selecting
Plug-in Tools, Update Classpath, Select All and then Finish. When this is done, two
steps should be done to make sure that the installation was successful: [2]

• Run the jUnit tests from the POM Test package as shown in figure 2.1

• Run the Ptidej UI Viewer Standalone Swing as a Java application to actually
run Ptidej (see figure 2.2)

Figure 2.1: POM Tests; some tests are expected to fail

9

https://bitbucket.org/ptidejteam/ptidej-5
https://bitbucket.org/ptidejteam/ptidej-5

Figure 2.2: Ptidej main window

10

2.3 PADL Models

PADL is an acronym for Pattern and Abstract-level Description Language.

2.3.1 Levels of abstraction

It is used by the Ptidej tool suite to reflect other programs at different levels of abstrac-
tions [3]. Those levels are:

• ICodeLevelModel: lowest model of abstraction, containing information that is
directly extracted from the sourcecode of the program (class names, function
names, etc).

• IIdiomLevelModel: second level of abstraction, containing more specific infor-
mation such as class relationships (inheritance, implementation).

• IDesignLevelModel: contains more advanced knowledge, like design motifs and
design smells.

• IDesignMotif: a design motif.

The PADL package also provides two interfaces: [3]

• IAbstractModelSerialiser: used to serialize or deserialize a PADL model; this
is useful for saving a PADL model and reloading it later without having to re-
compute it

• ICodeLevelModelCreator: the interface that has to be implemented for every
new language that will be parsed as a PADL model. Ptidej currently supports
Java, C/C++, AOL and AspectJ. For the needs of the project, I have created a
new builder for C#.

11

2.3.2 Relationships

PADL models describe relationships between classes, as accurately as possible.

Class relationships are important because they allow to understand how a program
works. There are seven types of relationships, from the most constraining to the least
constraining. The figure 2.3 shows how they interact with each other. For the follow-
ing, it is assumed that the class X has a relationship with the class Y [3].

• IContainerComposition: X contains a reference to an instance of Y, and has the
ability to create or remove such references.

• IComposition: X contains a reference to an instance of Y, with no ability to create
or remove such references.

• IContainerAggregation: X contains a reference to an instance of Y, that can
possibly be shared, and has the ability to create or remove such references.

• IAggregation: X contains a reference to an instance of Y, that can possibly be
shared, with no ability to create or remove such references.

• IAssociation: X calls one or more functions of Y, through one of more of Y’s
instances.

• ICreation: X creates one or more instances of Y.

• IUseRelationship: X uses Y; for example, a function of X has a local variable of
type Y.

12

Figure 2.3: PADL relationships seen by Ptidej [3]

13

2.3.3 Visiting PADL models

The PADL model provides two kinds of visitors. Visitors, according to the Gang of
Four:

“Represent an operation to be performed on the elements of an object structure.
Visitor lets you define a new operation without changing the classes of the elements
on which it operates [7, p.366].” The figure 2.4 is a diagram of how the visitor pattern
can be implemented.

Figure 2.4: The Visitor pattern described in the Gang of Four book [7, p.369]

14

The visitor pattern is used for PADL models exploration because it is a convenient way
to perform operations on objects within a given object structure depending on their
concrete classes. It also allows doing unrelated and distinct operations on different
object types without having to implement the visiting actions in each of their con-
crete classes, avoiding an unnecessary overhead. In addition, it enforces a consistent
traversal of the models for all and any Visitor rather than to let Visitors decide how to
traverse models.

PADL visitors allow third-party software to explore the models generated from the
original source code. Those visitors are named IGenerator and IWalker. Listing 2.1
is an example of how a visitor could be used in a third-party software to visit a PADL
model:

// Create the walker
final IWalker walker = new SomeWalkerImplementation();

// Create the PADL code level model from a PADL creator
final ICodeLevelModel codeLevelModel =

Factory.getInstance().createCodeLevelModel(aName);
codeLevelModel.create(new SomePADLCreator(aSourceFileOrDirectory));

// Analyze the code level model
final IIdiomLevelModel idiomLevelModel = (IIdiomLevelModel) new

AACRelationshipsAnalysis().invoke(codeLevelModel);

// Walk the model using the walker and display the results
idiomLevelModel.walk(walker);
System.out.println(walker.getResult());

Listing 2.1: Using visitors to explore a PADL model [3]

15

The following is a sequence diagram of the PADL visitors: when a program asks to
walk a model, it opens the file from the computer’s hard drive, then the model asks
for a walk of the class, which is once again opened from the computer’s hard drive,
and the same process repeats for each method of the class, and each statement of each
method.

Once everything has been visited, methods, classes and statements visitors are closed
in this order. The figure 2.5 shows a sequence diagram of the PADL model visitor.

Figure 2.5: Sequence diagram of the PADL model visitor [5]

16

Chapter 3

The ANTLR4 Library

3.1 Context-free Languages

ANTLR, is a parser generator for context-free languages. It is provided as a Java
library. Grammars can be classified in four categories. Figure 3.1 shows the scope of
each type of grammar.

Figure 3.1: Chomsky Classification of Grammars

As shown in table 3.1, each grammar is associated to a type.

Grammar Type Grammar Accepted Language Accepted
Type 0 Unrestricted grammar Recursively enumerable language
Type 1 Context-sensitive grammar Context-sensitive language
Type 2 Context-free grammar Context-free language
Type 3 Regular grammar Regular language

Table 3.1: Chomsky’s four Types of Grammars [12]

17

The type in which we are interested, that is, type 2, is constrained by the following:
language must be such that A→ x, where A is nonterminal and x is a string of termi-
nal and/or non terminal.

In the formal language theory, a language can be defined as strings that are strained by
some rules. Equivalently, some human languages such as English are based on groups
of words that are separated by spaces. Thus, a valid sentence in the language must
follow the rules of the grammar. Context-free languages are languages generated by
context-free grammars [8].

3.2 LL(*) Parser

ANTLR parses input from left to right, performing a leftmost derivation. An LL parser
is an LL(k) parser if it uses k tokens of lookahead when parsing an input. Lookahead
means that the parser will "look ahead" of the stream to see what the next token(s)
are, and will make a decision based on them.

An LL(*) parser is not restricted by the k number of lookahead tokens. LL parsing
roughly corresponds to the Polish notation [6]. An example of the Polish notation is
given in table 3.2. Thus, when given a parse tree, an LL parser will perform a pre-order
traversal.

Notation Type Expression
In-fix 1 + 2
Post-fix (Polish) + 1 2

Table 3.2: In-fix and Post-fix notation for the addition of 1 and 2

18

3.3 Parsers, Lexers, Tokens

A lexer, also known as a tokenizer, is applied first to the input the we want to parse. It
explodes the input into tokens. Tokens are defined in the parser, each of them having
a specific meaning and an unique identifier. They can be grouped by types; integers,
identifiers or floating numbers for example.

The tokenization process is similar to how our brain reads English: we see sentences
as a stream of words (tokens) rather than as a whole, at least for sentences that we
are not used to see. Our brain looks at words individually, sorts them by type and
recognizes the grammatical structure after that [10, p. 10].

Tokens are then parsed by the parser, which producing a parse tree [13] as shown
by figure 3.2.

Figure 3.2: Data flow of a language recognizer [11]

3.4 Applications of ANTLR4

ANTLR4 is widely used to parse, validate, execute or process data. It is used by big
names such as Twitter for its search engine, Hadoop or the NetBeans IDE [10, p. xi]. Its
possibilities are diverse, from building JSON parsers, file readers configuration, wiki
markup to doing DNA pattern matching [10, p. xi].

Using a grammar, ANTLR4 generates a parser that will be used to generate parse
trees. Then, ANTLR4 provides a listener and a visitor that can be used to visit the
trees.

19

3.5 ANTLR3 vs. ANTLR4

ANTLR4 uses an LL(*)-like parser, named Adaptive LL(*) or ALL(*), whereas ANTLR3
used a classical LL(*) parser. Unlike ANTLR3, ANTLR4 "performs grammar analysis
dynamically at runtime rather than statically, before the generated parser executes"
[10, p. xiii]. ANTLR4 also features an easier syntax for grammar rules and eliminates
grammar ambiguities.

In ANTLR3, users had to extend the grammar by adding tree construction opera-
tions; this is no longer the case in ANTLR4, because it automatically creates a listener
and a visitor that can be used to traverse the trees. Therefore, the grammar and the
actions to perform are decoupled.

3.6 Using Parse Trees

3.6.1 Building Parse Trees

As explained above, parse trees are generated automatically by the ANTLR4 library’s
parser. In Java, the ANTLR4 classes used to apply the lexer, extract the tokens and
apply the parser to generate the parse tree are: CharStream, Lexer, Token, Parser,
ParseTree and TokenStream [10, p. 16]. Figure 3.3 depicts the correspondence between
Java classes and ANTLR4 concepts.

Figure 3.3: Correspondence between Java classes and parsing treatment in ANTLR4 [10, p. 16]

20

The memory footprint as reduced as much as possible by sharing data among ANTLR4
data structures. As shown in the diagram above, the TokenStream regroups tokens,
and each token is made of one or more characters. Each token contains its characters,
recording their start and stop indexes. No tokens are associated to white spaces [10,
p. 16].

The following figure shows that RuleNode (subtree roots) and TerminalNode (leaf
nodes) are extending ParseTree. ParseTree provides methods that are expected for a
node of a tree, that are getChild(), getParent() and getText(). Therefore, RuleNode
and TerminalNode provide them as well.

Specific Context classes are created by the library’s parser: StatContext, AssignContext,
and ExprContext. Context objects gather the information known about the recognition
of a rule: start and stop tokens, sub-elements of the rule [10, p. 17]. Figure 3.4 shows
how an expression is exploded into tokens.

Figure 3.4: Parse Tree and Parse Tree Node Class Names [10, p. 17]

21

3.6.2 Traversing Parse Trees: Listeners and Visitors

We could write code for traversing the parse trees that ANTLR4 has generated for us,
but there is no need to do so as the library has two built-in mechanisms to perform
this action.

Listeners

The support of listeners is provided by the ParseTreeWalker and ParseTreeListener
classes. Specific subclasses of those two classes are generated for each grammar
file by ANTLR4. ParseTreeWalker walks the parse tree and trigger calls to listener,
ParseTreeListener.

For a given rule, assign for example, the ParseTreeListener specific class will con-
tain two function, enterAssign and exitAssign. Those will be triggered by the
ParseTreeWalker when it finds the relevant nodes [10, p. 18]. The figure 3.5 shows
those calls.

Figure 3.5: ParseTreeWalker’s depth-first traversal [10, p. 18]

The figure 3.6 shows the ParseTreeWalker call sequence for the previous example of
sp = 100.

22

Figure 3.6: ParseTreeWalker call sequence [10, p. 19]

Visitors

Visitors give more control to the user than listeners, allowing them to control the walk
of the parse trees by calling methods to visit children directly. Thus, one can bypass
the call to a specific visit method if it is not needed. In the figure 3.7, one can see that
when a visitor is launched, the method visitStat is first called, which is then calling
the visit method with its children as arguments to keep walking [10, p. 19].

Figure 3.7: ParseTreeVisitor call sequence [10, p. 19]

The thick lines show the depth-first traversal of the parse tree while the thin lines show
the visitor internal method call sequence [10, p. 19].

When generating a visitor, ANTLR4 creates an interface specific to the parser and
an empty implementation that one can modify without having to manually override
each method of the interface [10, p. 20].

23

Chapter 4

Parsing C# Code in the Ptidej Tool
Suite with ANTLR4

4.1 Existing Work

Previous work had already been done to support C# parsing in the Ptidej Tool Suite.
In 2009, Gerardo Cepeda Porras worked on the C# support and created four packages:

• PADL Creator C# v1

• PADL Creator C# v1 Tests

• PADL Creator C# v2

• PADL Creator C# v2 Tests

The first version was incomplete, and more of a feasibility study than a working prod-
uct. However, studying the second version was very interesting: it was based on
ANTLR3, version 3.2. The lexer, the parser and the tokens were generated automati-
cally from the C# ANTLR3 grammar.

Since this was the way to do it in ANTLR3, the parse tree was traversed manually, us-
ing homemade recursive methods such as findNextInherits, findNextSiblingOfType
or findPreviousSiblingOfType. They were complex and repetitive.

Those projects contained a test file and some test cases, which were complete and
working out of the box. After an extensive review, I decided to use them for the new
developments.

24

Overall, studying those packages has been helpful and I decided to follow the adage,
"Do not reinvent the wheel" [4]. Instead of discarding all previous work as irrelevant,
I chose to upgrade it incrementally. That is, upgrading from ANTL3 to ANTLR4 and
making sure the unit tests do not fail.

4.2 Installing ANTLR4

I used the latest ANTLR4 version available at the time of the project, that is, 4.7.1
(released December 10, 2017) [9]. I downloaded the antlr-4.7.1-complete.jar and
included it as a referenced library in the new PADL Creator C# v3 package.

4.3 Choosing Between a Listener and a Visitor

As explained previously, ANTLR4 offers two means to traverse the parse tree gener-
ated by the parser: a listener or a visitor. After looking at the possibilities and the
behavior of each of those options, I decided to use the visitor. It is more flexible than
the listener and suits the needs of the Ptidej Tool Suite better.

4.4 Finding an ANTLR4 C# Grammar

To generate the required parser, ANTLR4 needs a grammar. Fortunately, there exists
an official one in the antlr/grammars-v4 GitHub repository [1]. It offers two files,
CSharpLexer.g4 and CSharpParser.g4 that will be used by the ANTLR4 library to
generate the Java files (see next section).

4.5 Generating Lexer, Parser and Visitor

Once ANTLR4 is setup in the project, the next step is to generate the required files.
Using the antlr-4.7.1-complete.jar file and the g4 grammar files mentioned above,
we can generate the Java parser, lexer and visitor files. Listing 4.1 shows the commands
we have to run:

java -jar antlr-4.7.1-complete.jar -visitor -no-listener CSharpLexer.g4
java -jar antlr-4.7.1-complete.jar -visitor -no-listener CSharpParser.g4

Listing 4.1: Commands required to generate the lexer, the parser and their visitors

By default, ANTLR4 generates a listener and no visitor. As we want the opposite,
we use the options "-visitor" to generate the visitor and "-no-listener" to prevent the

25

listener generation.

When this is done, we have the following new files:

• CSharpLexer.java: lexer

• CSharpParser.java: parser

• CSharpParserVisitor.java: visitor interface

• CSharpBaseVisitor.java: default, empty implementation of CSharpParserVisitor

The lexer contains what is needed to tokenize the input: the list of tokens and rule
names. The parser also has the tokens, the rules names. Actions can be performed
when a rules is triggered, as seen in listing 4.2:

public class CSharpParser extends Parser {
public static final int

BYTE_ORDER_MARK=1, SINGLE_LINE_DOC_COMMENT=2, DELIMITED_DOC_COMMENT=3,
...

public static final int
RULE_compilation_unit = 0, RULE_namespace_or_type_name = 1, RULE_type = 2,
...

public static final String[] ruleNames = {
"compilation_unit", "namespace_or_type_name", "type", "base_type",

"simple_type",
...

}
}

Listing 4.2: The parser file generated by the ANTLR4 library for the C# grammar

The generated parser contains 17,625 lines of code.

26

The visitor interface contains 240 methods similar to visitCompilation_unit. They
return the generic type T (the actual visitor) and take the context as parameter (see
listing 4.3). The context has information about the current node, its parents and chil-
dren.

/**
* This interface defines a complete generic visitor for a parse tree produced
* by {@link CSharpParser}.
*
* @param <T> The return type of the visit operation. Use {@link Void} for
* operations with no return type.
*/
public interface CSharpParserVisitor<T> extends ParseTreeVisitor<T> {

/**
* Visit a parse tree produced by {@link CSharpParser#compilation_unit}.
* @param ctx the parse tree
* @return the visitor result
*/
T visitCompilation_unit(CSharpParser.Compilation_unitContext ctx);

...
}

Listing 4.3: The interface of the visitor generated by the ANTLR4 library for the C# grammar

27

Finally, the parser itself is a default implementation of the interface. Every methods
ends by calling visitChildren, which will visit the children of the current node. An
excerpt of the visitor generated can be seen in listing 4.4.

/**
* This class provides an empty implementation of {@link CSharpParserVisitor},
* which can be extended to create a visitor which only needs to handle a

subset
* of the available methods.
*
* @param <T> The return type of the visit operation. Use {@link Void} for
* operations with no return type.
*/
public class CSharpParserBaseVisitor<T> extends AbstractParseTreeVisitor<T>

implements CSharpParserVisitor<T> {
/**
* {@inheritDoc}
*
* <p>The default implementation returns the result of calling
* {@link #visitChildren} on {@code ctx}.</p>
*/
@Override public T

visitCompilation_unit(CSharpParser.Compilation_unitContext ctx) { return
visitChildren(ctx); }

...
}

Listing 4.4: The visitor generated by the ANTLR4 library for the C# grammar

28

4.6 Implementing the C# PADL Parser

The C# PADL Parser is implemented in four packages:

• padl.creator.csharpfile.v3: contains the CSharpCreator.java file, entry point
of the project

• padl.creator.csharpfile.v3.parser: contains the lexer, parser and its visitors

• padl.creator.csharpfile.v3.parser.builder: interface for the BuilderContext
and CodeBuilder

• padl.creator.csharpfile.v3.parser.builder.impl: actual implementation of
the builder

29

4.6.1 Instantiating the Project

The padl.creator.csharpfile.v3.CSharpCreator file is the first one to be called
when parsing a new C# project. First, it creates the ICodeLevelModel from the padl.kernel
package using the ModelGenerator, as shown in listing 4.5:

/**
* Parses the given File(s) (should be a C# source file) and return it’s

modelized version.
* Uses the ModelGenerator.
* @param source either the File object representing the C# source file or a

File object
* representing a directory of C# source files.
* @return the PADL model of the given C# source(s) file(s).
* @throws CreationException
* @throws java.io.IOException
*/
public static ICodeLevelModel parse(final String aSourceFileOrDirectory)

throws CreationException {
return ModelGenerator.generateModelFromCSharpFiles("C# Model",

aSourceFileOrDirectory);
}

/**
* Create the CSharpCreator
* @param aSourceFileOrDirectory source file or directory to be created as a

String
* Will be converted to File
*/
public CSharpCreator(final String aSourceFileOrDirectory) {

this.source = new File(aSourceFileOrDirectory);
}

Listing 4.5: The first two functions used to parse C# projects in PADL

30

Then, in listing 4.6, the ModelGenerator.generateModelFromCSharpFiles function call
the create function of the CSharpCreator:

/**
* Perform 2 passes to create the CSharp model
*/
public void create(final ICodeLevelModel aCodeLevelModel)

throws CreationException {
try {

// 1st pass that identifies the Classes and Interfaces
if (this.source.isDirectory()) {

for (final File input : this.source.listFiles()) {
if (!input.isHidden()) {

this.readFileFirstPass(input, aCodeLevelModel);
}

}
}
else {

this.readFileFirstPass(this.source, aCodeLevelModel);
}

// 2nd pass that detects Interaction between Classes and Interfaces
...

}
catch (final IOException | RecognitionException e) {

e.printStackTrace(ProxyConsole.getInstance().errorOutput());
throw new CreationException(e.getMessage());

}
}

Listing 4.6: The first two functions used to parse C# projects in PADL

31

Here, we perform two passes on the project to simplify the work of the parser. The
first pass takes care of identifying the definition of classes and interfaces, whereas the
second pass does the rest of the work. Each pass means a different visitor. Finally, 4.7
shows how a pass is performed:

/**
* Setup a pass: create the lexer and the parser
* @param source
* @param aCodeLevelModel
* @return
* @throws IOException
* @throws RecognitionException
*/
private CSharpParser setUpPass(final File source, final ICodeLevelModel

aCodeLevelModel)
throws IOException, RecognitionException {

// sanity check
if (source == null || !source.exists() || source.isDirectory()) {

throw new IOException("Cannot find C# source files in " + source);
}
final InputStream in =

new FileInputStream(source);
final CSharpLexer lexer = new CSharpLexer(CharStreams.fromStream(in,

StandardCharsets.UTF_8));
return new CSharpParser(new CommonTokenStream(lexer));

}

/**
* Perform the first pass
* @param source
* @param aCodeLevelModel
* @throws IOException
* @throws RecognitionException
*/
private void readFileFirstPass(final File source, final ICodeLevelModel

aCodeLevelModel)
throws IOException, RecognitionException {

final CSharpParser parser = this.setUpPass(source, aCodeLevelModel);
final CSharpParserVisitor<?> visitor =

new CSharpParserInitialVisitor<Object>(aCodeLevelModel);
this.visitParseTree(parser, visitor);

}

32

/**
* Visit the parse tree generated by the parser
* @param parser
* @param visitor
*/
private void visitParseTree(final CSharpParser parser, final

CSharpParserVisitor<?> visitor) {
final ParseTree tree = parser.compilation_unit();
visitor.visit(tree);

}

Listing 4.7: Performing a pass in the CSharpCreator

33

4.6.2 Parsing the Project

In the padl.creator.csharpfile.v3.parser, the lexer, parser and visitor generated by
the ANTLR4 library. In this part, we will only focus on code that was specifically writ-
ten for the project and not generated code, which has already been described above. I
have created two additional visitors extending the default CSharpParserBaseVisitor
one. This way, there is a single visitor per pass, without having to duplicate the code
and I can simply override the methods that I need.

Initial Visitor

For the first pass, the visitor, CSharpParserInitialVisitor, overrides the visitClass_definition
and visitInterface_definition functions. We want to get the name of the classes
and interfaces as well as their visibility (private, protected, public), as listing 4.8 shows:

@Override public T
visitClass_definition(CSharpParser.Class_definitionContext ctx) {

try {
// Initial reader
final CodeBuilder builder = new InitialClassBuilderImpl(null);
final BuilderContext builderContext = new BuilderContext(model);
builder.create(ctx, builderContext);
this.model.addConstituent((IConstituentOfModel) builder

.close());
} catch (CreationException e) {

e.printStackTrace();
}
return visitChildren(ctx);

}

Listing 4.8: Excerpt of the initial visitor

34

Advanced Visitor

In the second pass, the visitor, CSharpParserAdvancedlVisitor, focuses on the rela-
tionships between classes and interfaces. It overrides the following functions:

• visitClass_definition

• visitInterface_definition

• visitConstructor_declaration

• visitMethod_declaration

• visitField_declaration

• visitInterface_member_declaration

ANTLR4 makes it easy to know at what moment the function is triggered by the vis-
itor. The functions follow a general scheme: first, create the appropriate CodeBuilder
(ClassBuilderImpl for example), then a BuilderContext, then run the Builder using
the BuilderContext and the context given by ANTLR4. This is shown in listing 4.9.

@Override public T
visitClass_definition(CSharpParser.Class_definitionContext ctx) {

try {
// Second pass reader
final CodeBuilder builder =

new ClassBuilderImpl(
this.codeElements.isEmpty() ? null

: this.codeElements.peek());
final BuilderContext builderContext = new BuilderContext(model);
builder.create(ctx, builderContext);
this.codeElements.push(builder);

} catch (CreationException e) {
e.printStackTrace();

}
return visitChildren(ctx);

}

Listing 4.9: Excerpt of the advanced visitor

35

4.6.3 Implementing the Builder

The padl.creator.csharpfile.v3.parser.builder.impl package is where the work
gets done. It contains the following classes:

• AbstractClassBuilderImpl: abstract class, extended by InitialClassBuilderImpl
and InitialInterfaceBuilderImpl. Contains the findNextInherits method to
add inherited entities or interfaces to the PADL model.

• AbstractPADLCodeBuilder: implements the CodeBuilder interface, extended by
AbstractClassBuilderImpl, ClassMemberBuilderImpl, InterfaceMethodBuilderImpl,
MethodBuilderImpl.

• ClassBuilderImpl: creates a new class in the PADL model.

• ClassConstructorBuilderImpl: extracts the information of the constructor of a
class to insert them into the PADL model.

• ClassMemberBuilderImpl: extracts the information of a class member (also known
as attribute in Java) to insert them into the PADL model.

• InitialClassBuilderImpl: extracts the basic information about a class: name,
visibility and abstraction.

• InitialInterfaceBuilderImpl: extracts the basic information about an inter-
face: name and visibility.

• InterfaceBuilderImpl: extracts the information about an interface: name, visi-
bility and inheritance.

• InterfaceMethodBuilderImpl: extracts the information about the methods of-
fered by an interface: name, arguments, return type.

• MethodBuilderImpl: extracts the information about the methods implemented
by a class: name, arguments, return type.

• Util: a collection of static functions used throughout the project.

The figure 4.1 shows the UML class diagram for the builder implementation.

36

Figure 4.1: Builder Implementation UML Class Diagram

In the following, I will not detail all the functions of the package, but some patterns.

A fundamental concept of this project is to extract the list of the "futures" tokens,
that is, child tokens of the current node. The current node is given by the ctx argu-
ment coming from the visitor, but only contains the first level of children. Thus, in
listing 4.10, I use a custom in-order traversal of the current node’s children and flatten
them into a list of Tokens, in the getFlatTokenList function:

/**
* Retrieves all Tokens from the {@code tree} in an in-order sequence.
* @param tree the parse tee to get all tokens from.
* @return all Tokens from the {@code tree} in an in-order sequence.
* https://stackoverflow.com/a/22770561
*/
public static List<Token> getFlatTokenList(ParseTree tree) {

List<Token> tokens = new ArrayList<Token>();
Util.inOrderTraversal(tokens, tree);
return tokens;

}
/**
* Makes an in-order traversal over {@code parent} (recursively) collecting
* all Tokens of the terminal nodes it encounters.
* @param tokens the list of tokens.
* @param parent the current parent node to inspect for terminal nodes.
*/
private static void inOrderTraversal(List<Token> tokens, ParseTree parent) {

// Iterate over all child nodes of ‘parent‘.
for (int i = 0; i < parent.getChildCount(); i++) {

// Get the i-th child node of ‘parent‘.
ParseTree child = parent.getChild(i);
if (child instanceof TerminalNode) {

// We found a leaf/terminal, add its Token to our list.
TerminalNode node = (TerminalNode) child;
tokens.add(node.getSymbol());

}
else {

// No leaf/terminal node, recursively call this method.
inOrderTraversal(tokens, child);

}
}

}

Listing 4.10: Excerpt of the Util class: getting a flat list of tokens

38

Listing 4.11 is an example of how this function is used; in the InitialInterfaceBuilderImpl,
an interface is added to the PADL model by extracting its name:

public void create(final ParseTree node, final BuilderContext context)
throws CreationException {

final List<Token> tokens = Util.getFlatTokenList(node);

final Token interfaceNameElement = Util.getFirstTokenWithType(tokens,
CSharpParser.IDENTIFIER);

Listing 4.11: Excerpt of the InitialInterfaceBuilderImpl class: creating an interface for PADL

CSharpParser.IDENTIFIER means the IDENTIFIER token present in the CSharpParser,
which is used for class or function names. The getFirstTokenWithType function is a
simple loop on the token list, as shown in listing 4.12:

public static Token getFirstTokenWithType(List<Token> tokens, int
tokenType) {

for (Token token: tokens) {
if (token.getType() == tokenType) {

return token;
}

}
return null;

}

Listing 4.12: Excerpt of the Util class: getting the first token of a given type

39

4.7 Testing the Project

To test the correct behavior of the project, I used the test file that was already available
in the version 2 of the C# parser package. It consists of 8 assertions of the PADL model
generated by the parser when it is given seven C# files: two plain, simple classes;
an interface and its implementation; several inheritances; constructor, destructor and
attributes; a switch case. The test function is as seen in listing 4.13:

public void testParser() throws CreationException {
final ICodeLevelModel model =

CSharpCreator.parse("../PADL Creator C# v3 Tests/rsc/parser_oracles");

// make sure we got our right number of classes
assertEquals(11, model.getNumberOfConstituents());

// make sure we got the ’Line’ class
assertNotNull(model.getConstituentFromName("Line"));
// make sure the superclass was found
assertNotNull(((IClass) model.getConstituentFromName("Line"))

.getInheritedEntityFromName("DrawingObject".toCharArray()));

// make sure we got the interface
assertNotNull(model.getConstituentFromName("IMyInterface"));
// make sure the implementation was found
assertNotNull(((IClass) model

.getConstituentFromName("InterfaceImplementer"))

.getImplementedInterface("IMyInterface".toCharArray()));

// make sure we got the class member of Outputclass
assertTrue(((IClass) model.getConstituentFromName("OutputClass"))

.doesContainConstituentWithName("myString".toCharArray()));

// make sure we got the method and parameter ’myChoice’ of method
makeDecision

assertTrue(((IClass) model.getConstituentFromName("MethodParams"))
.doesContainConstituentWithName("makedecision".toCharArray()));

assertNotNull(((IMethod) ((IClass) model
.getConstituentFromName("MethodParams"))
.getConstituentFromName("makedecision"))
.getConstituentFromName("myChoice"));

}

Listing 4.13: Excerpt of the TestCreatorCSharpv3 class

40

4.8 Challenges Encountered

The first challenge I encountered was to understand ANTLR4’s logic. At the beginning
of the project, I was not very familiar with ANTLR in general. I read a few tutorials on
the Internet, but nothing came close to reading Terence Parr’s "The Definitive ANTLR
4 Reference", which I have heavily used to describe ANTLR4 in Chapter 2. I recom-
mend reading the book to understand the underlying mechanisms of ANTLR4, as well
as seeing the library in action: many real-life applications are available in the book.

Then, when I fully understood how the library worked, the next challenge was to
find the right visitor in which to hook the actions. This is what took most of my time.
Even though the function names are self-explanatory, sometimes, the information re-
quired by PADL were at a higher level of the parse tree, or way below the current level.

I solved the first problem by calling the parent of the actual context node, or even
higher up; for the visitMethod_declaration, taking care of creating the methods in
the PADL model, I called the ctx.parent.parent, and even the ctx.parent.parent.parent
for the visitField_declaration method that creates fields (attributes) in the PADL
model. This is safe to use because if those methods are triggered, we know that the
class contains fields for example.

For the second issue, traversing the descending nodes, I came across the "token flat-
tenization" technique while looking for answers on StackOverflow, and it struck me:
this in-order traversal generating a list of tokens was the easiest way to access all the
descending tokens, since by default ANTLR4 only gives direct access to the children
of a node and not the grand children, their children and so on unlike ANTLR3. To
extract basic information of "close" tokens (that is, not more than a few levels down)
because the context already reduces the number of tokens, this was the best solution.

41

4.9 Future Work

While the unit tests are passing, I am not entirely satisfied with them. I think they
should be extended and more test cases should be added. To do so, one could imple-
ment some of the design patterns from the Gang of Four book in C# and test them
using unit tests.

We could also systematically each feature of the C# language, and integrate those
that are not supported.

With the current test files, it takes about two seconds to run the ANTLR parser and
generate the PADL model. We should see if it can scale to accommodate bigger code
bases.

Preprocessor directives support could be added. Those directives begin with a # sym-
bol and are similar to C’s and C++’s ones. There exists a grammar in the same repos-
itory as the one I have used for those directives that could be used.

Next, once the reliability of the package has been proven, it should be added to the
Ptidej Tool Suite UI so that regular users can use it directly from the user interface
without having to write code to run it.

42

Chapter 5

Conclusion

Overall, this has been a very interesting project. I learned a lot about ANTLR, parsing
and lexical analysis in general. I did not really think about how IDE’s, code editors or
compilers could do syntax parsing before, but now I can see how it can be done.

I am also now much more familiar with the visitor pattern, that I did not apply in
real life until now.

This project was also the occasion to discover in details the Ptidej Tool Suite, that I
will probably use in the future to analyze software I want to be more familiar with.

Similarly, coming from an IntelliJ Idea background, this project brought me to the
Eclipse world, that I now master.

If you want to check it out, my work is now in the official repositories of the Ptidej
Tool Suite, in BitBucket and GitHub.

In case you have questions, comments, suggestions or have found a bug, please do
not hesitate to contact me. You can find my contact details below.

Adrien Poupa
adrien@poupa.fr

https://adrien.poupa.fr

43

https://bitbucket.org/ptidejteam/ptidej-5
https://github.com/ptidejteam/v5.2
mailto: adrien@poupa.fr
https://adrien.poupa.fr

Bibliography

[1] Christian Wulf et al. ANTLR4 C# grammar. https://github.com/antlr/grammars-
v4/tree/master/csharp. 2018.

[2] Yann-Gaël Guéhéneuc et al. How to Download, Install, and Contribute to the Ptidej
Tool Suite. https://wiki.ptidej.net/doku.php?id=welcome_package_for_
new_members. 2018.

[3] Yann-Gaël Guéhéneuc et al. PADL. https://wiki.ptidej.net/doku.php?id=
padl. 2018.

[4] Jeff Atwood. Don’t Reinvent The Wheel, Unless You Plan on Learning More About
Wheels. https://blog.codinghorror.com/dont-reinvent-the-wheel-unless-
you-plan-on-learning-more-about-wheels/. 2009.

[5] Yann-Gaël Guéhéneuc. Understanding PADL Visitor. http://www.ptidej.net/
team/photos/180306-UnderstandingPADLVisitor/plfng_view. 2018.

[6] Josh Haberman. LL and LR Parsing Demystified. http://blog.reverberate.org/
2013/07/ll-and-lr-parsing-demystified.html. 2013.

[7] Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. 1994.

[8] Karleigh Moore and Alex Chumbley. Context Free Languages. https://brilliant.
org/wiki/context-free-languages/. 2018.

[9] Terence Parr. Download ANTLR. http://www.antlr.org/download.html. 2018.

[10] Terence Parr. The Definitive ANTLR 4 Reference. 2012.

[11] Gabriele Tomassetti. The ANTLR Mega Tutorial. https://tomassetti.me/antlr-
mega-tutorial. 2017.

[12] tutorialspoint.com. Chomsky Classification of Grammars. https://www.tutorialspoint.
com/automata_theory/chomsky_classification_of_grammars.htm. 2018.

[13] Wikipedia. Lexical Analysis. https://en.wikipedia.org/wiki/Lexical_analysis.
2018.

44

https://github.com/antlr/grammars-v4/tree/master/csharp
https://github.com/antlr/grammars-v4/tree/master/csharp
https://wiki.ptidej.net/doku.php?id=welcome_package_for_new_members
https://wiki.ptidej.net/doku.php?id=welcome_package_for_new_members
https://wiki.ptidej.net/doku.php?id=padl
https://wiki.ptidej.net/doku.php?id=padl
https://blog.codinghorror.com/dont-reinvent-the-wheel-unless-you-plan-on-learning-more-about-wheels/
https://blog.codinghorror.com/dont-reinvent-the-wheel-unless-you-plan-on-learning-more-about-wheels/
http://www.ptidej.net/team/photos/180306 - Understanding PADL Visitor/plfng_view
http://www.ptidej.net/team/photos/180306 - Understanding PADL Visitor/plfng_view
http://blog.reverberate.org/2013/07/ll-and-lr-parsing-demystified.html
http://blog.reverberate.org/2013/07/ll-and-lr-parsing-demystified.html
https://brilliant.org/wiki/context-free-languages/
https://brilliant.org/wiki/context-free-languages/
http://www.antlr.org/download.html
https://tomassetti.me/antlr-mega-tutorial
https://tomassetti.me/antlr-mega-tutorial
https://www.tutorialspoint.com/automata_theory/chomsky_classification_of_grammars.htm
https://www.tutorialspoint.com/automata_theory/chomsky_classification_of_grammars.htm
https://en.wikipedia.org/wiki/Lexical_analysis

	Front page
	English title page
	Contents
	Abstract
	Acknowledgement
	1 Introduction
	2 The Ptidej Tool Suite
	2.1 Overview
	2.2 Installation
	2.3 PADL Models
	2.3.1 Levels of abstraction
	2.3.2 Relationships
	2.3.3 Visiting PADL models

	3 The ANTLR4 Library
	3.1 Context-free Languages
	3.2 LL(*) Parser
	3.3 Parsers, Lexers, Tokens
	3.4 Applications of ANTLR4
	3.5 ANTLR3 vs. ANTLR4
	3.6 Using Parse Trees
	3.6.1 Building Parse Trees
	3.6.2 Traversing Parse Trees: Listeners and Visitors

	4 Parsing C# Code in the Ptidej Tool Suite with ANTLR4
	4.1 Existing Work
	4.2 Installing ANTLR4
	4.3 Choosing Between a Listener and a Visitor
	4.4 Finding an ANTLR4 C# Grammar
	4.5 Generating Lexer, Parser and Visitor
	4.6 Implementing the C# PADL Parser
	4.6.1 Instantiating the Project
	4.6.2 Parsing the Project
	4.6.3 Implementing the Builder

	4.7 Testing the Project
	4.8 Challenges Encountered
	4.9 Future Work

	5 Conclusion
	Bibliography

