

Project Report by:
Dipti Ranjan Sahu

IIT Bombay

SEODIN
Guide: Dr. Fabio Petrillo

Professor: Prof. Yann-Gaël Guéhéneuc

Github: https://github.com/ptidej/seodin

 1

CONTENTS

ABSTRACT 2

INTRODUCTION 2

PROJECT DESIGN 3

PROJECT IMPLEMENTATION 4

PERFORMANCE EVALUATION 6

CONCLUSION 7

FUTURE WORK 7

REFERENCES 7

 2

Abstract

This project aims at developing an open data web application to manage a library of
software engineering studies. The web application will have access to a database
containing large number of software studies, which can be used for study or research
purposes. A study will contain different types of artifacts, arranged in different
subdirectories. A study contains different interviews and think-alouds (audios, videos
and notes), contributed by several developers. The project will also contain the source-
code, test-cases, defects and interaction-logs of the studies. One can easily access the
existing studies, or can contribute to a new or existing study by uploading his/her
work. This web application uses spring boot web security configuration, which
provides the HTTP basic security for all end points. The graphical user interface (GUI)
of the application is quite simple and user-friendly.

Introduction

Motivation:

The Ptidej team develops theories, methods, and tools, to understand, evaluate, and
improve the quality of software systems by promoting the use of idioms, design
patterns, and architectural patterns. It wants to formalize patterns, to identify
occurrences of patterns, and to improve the identified occurrences. It also wants to
evaluate experimentally the impact of patterns on the quality of software systems.
This project leads us to connecting various studies that are available in the software
engineering community, and identifying patterns common to them, thus making them
more useful.

Project Objective:

The primary objective of the project is to provide users access to numerous studies by
different developers. Firstly, the web application must have the required security
feature, not to be mishandled by anonymous users. The web application should provide
the API for handling the application software. It will help in consuming REST API,
i.e. it can handle create, retrieve, update and delete (CRUD) of the entities. It will also
allow searching artifacts by name, developer or study-title. There will also be audio
streaming player to listen to audio files and video streaming player to watch videos
online. It will prevent users from downloading audio and video files.

 3

Project Design

Model Class Diagram:

Figure 1. Overall system

 4

A researcher/user can access any study. A study is contributed by different developers.
The study is also linked to software systems, tasks and scripts. There are also other
entities such as interviews, think-alouds, audios, notes, videos, source codes, test
cases, defects, issues, interaction logs, diaries, design patterns. All these items are
considered as artifacts and interlinked with each other as seen in the Figure 1. These
can be searched by study-title, developer or the artifact tag.

Relationships between different entities (One to Many):

 Study to Developers
 Study to Software Systems
 Study to Scripts
 Study to Tasks
 Software System to Source Codes
 Software System to Diaries
 Task to Diaries
 Software System to Test Cases
 Software System to Think Alouds
 Source Code to Design Patterns
 Developer to Interviews

 Developer to Diaries
 Developer to Think Alouds
 Developer to Defects
 Developer to Test Cases
 Developer to Interactive Logs
 Interview to Audios
 Interview to Videos
 Interview to Notes
 Think Aloud to Notes
 Think Aloud to Videos

Project Implementation

Completed Project Subsystems:

 Primary framework including the authentication system
 REST API
 Export Operation
 Video Streaming Player
 Search Module

Primary Framework:

This application is generated using JHipster 4.5.3, you can find the documentation
and help at http://www.jhipster.tech/v2-documentation/. JHipster provides tools to
generate a project with a Java stack on the server side (using Spring Boot) and a
responsive Web front-end on the client side (with Angular and Bootstrap). It can also
create microservice stack with support for Netflix OSS, Docker and Kubernetes. The
application uses Spring Boot Web Security Configuration to provide HTTP basic
security for all end points. It also provides an authentication manager bean with in-
memory store and a single user, an application event publisher to publish successful
or unsuccessful authentication and denied access. It ignores insecure paths for
common static resource locations. It gives different privileges to users and

 5

administrators. Users have the right to access the studies, contribute to them, while
administrators have the right to change the architecture of the project or add more
functions to the applications.

REST API:

The application also provides and uses an API, which allows to create, retrieve, update
and delete (CRUD) of the entities. Different categories for the entities are defined
using JHipster generator. The dependencies and the relationships between different
categories are later defined using the JHipster generator similarly. For details of how
to create entities and define relationships, refer the manual. The administrative panel
gives the right to make changes in the attributes of the entities, or change the existing
data itself.

Export Operation:

We created an export function for downloading a study, organized into subdirectories.
The study to be exported is identified by matching its ID against the database. The
study is wrapped as a JSON object. Developers, software systems, tasks and scripts
related to this study are identified by the study title in the respective repositories.
Similarly, entities related to those developers, software systems, tasks and scripts are
identified by the following tags in different repositories. The study JSON object
contained developers, software systems, tasks and scripts that were also further
divided into subcategories. Hence, all the entities related to that study gets wrapped
as a JSON object in the hierarchical way as shown in the class diagram. This function
downloads a study on a standalone computer, which can be used for further detail
analysis and research activities.

Video Streaming Player:

We created a simple video streaming player using flowplayer and real time messaging
protocol (RTMP) plugin. Real-Time Messaging Protocol was initially a proprietary
protocol developed by Macromedia for streaming audio, video and data over the
Internet, between a Flash player and a server. The video player streamed a video from
a known server using real time messaging protocol. We tried different types of players
and different types of plugin and finally we came to the conclusion that RTMP plugin
is the best for streaming videos. It is a basic video stream player and needs to be
integrated with our main application.

 6

Search Module:

For easiness in finding a particular study, we built a search module that uses elastic
search for finding the study by their titles, and displaying the required results in the
table. We also worked on the graphical presentation of the selected study. On clicking
the particular study, a table of interviews and think alouds related to that study
expand. Furthermore, when an interview is clicked, a popup dialog appears that
contains three subsections, i.e. videos, audios and notes related to that interview.
Similarly, when a think aloud is clicked, a dialog box for audios and notes pops out.

Performance Evaluation

Testing Strategy:

The web application was checked after every sprint, i.e. around every alternate
Fridays. The development of the application was followed by an agile process. At every
meeting, some new work was being assigned and some new changes to the existing
application was proposed, with focus on process adaptability and user satisfaction.
The new changes and additions were implemented and represented in the next sprint.
The web application was run on other computers using internal server and against a
huge amount of data in database.

Testing Results:

There were several computers involved, in development of the web application. The
application was hosted by one of the computers. The other computers were used to test
the speed and effectiveness of the application. It began with a slow start of loading for
first time on the other computers. After being loaded once, the web application was
smooth and robust, and exhibited no major faults. It worked quite well with the large
amount of data.

Problem Faced:

 Video streaming player was difficult to implement, and further hard to integrate
it in the main application.

 We lacked server for uploading our videos, and then streaming it from the server.
 It took some time around 2-3 sec for opening the application for the first time

with the huge database.

 7

Conclusion

JHipster is a new technology and it combines lots of good things and provides many
benefit. It brings out the Spring Boot security, Swagger API, AngularJS, HTML5, CSS
and lots more. It is a good concept to learn and I am sure it will be helpful in the future.

The web application has lots of utilities and benefits. It will bring a whole lot of
software engineering projects accessible by a user, who can use for his own studies or
research work. The project is more than half complete and will be full-fledged in short
time and can help in bringing the world one step closer to internet of things.

Future Work

 The import function was not built. It is needed to be done using some code because
we would be importing a large amount of data, which is not possible manually.

 Video and audio streaming player needs to be implemented in the main app.
 The application needs a good graphical interface to make it look attractive.

References

 http://www.jhipster.tech/
 https://spring.io/blog/2015/02/10/introducing-jhipster
 https://www.tutorialspoint.com/restful/restful_introduction.htm
 http://www.jhipster.tech/api-gateway/
 http://www.jhipster.tech/creating-an-entity/
 http://www.jhipster.tech/jdl-studio/
 http://www.jhipster.tech/using-dtos/
 https://flowplayer.com/docs/setup.html
 http://flash.flowplayer.org/plugins/streaming/pseudostreaming.html
 http://flash.flowplayer.org/plugins/streaming/rtmp.html
 http://www.jhipster.tech/using-elasticsearch/
 https://www.w3schools.com/howto/howto_css_modals.asp

