

Thibault PERE – Hugo VAUTRIN

2 2

SUMMARY

Acknowledgments... 4

Introduction ... 5

PART I- Development .. 7

I: Polytechnique Montreal ... 7

II: Context and Challenges ... 8

III: Choices and Solutions ..12

IV: Methods and Tools ...13

V: Results and Discussions ...17

PART II- Project Management .. 20

Conclusion ... 21

References ... 22

Glossary ... 23

Appendices .. 2525

Thibault PERE – Hugo VAUTRIN

3 3

TABLE OF FIGURES

Figure 1 : Montreal City .. 4

Figure 2 : Green IT, a hot topic ... 5

Figure 3 : Polytechnique’s logo .. 7

Figure 4 : Quality of Service? ... 8

Figure 5 : Insert film with Local Sharding-Based Router and Priority Queue 10

Figure 6 : Google Datacenter ... 10

Figure 7 : Comparative Table of Tools ... 12

Figure 8 : PowerAPI ... 13

Figure 9 : Hypervisor, native versus hosted ... 14

Figure 10 : The architecture we used for our tests ... 15

Figure 11 : Comparison of Proxy Algorithms .. 17

Figure 12 : Comparison of Sharding Algorithms ... 18

Figure 13 : University of Toronto (August 2014) ... 21

Thibault PERE – Hugo VAUTRIN

4 4

Figure 1: Montreal City

Acknowledgments

We would like to express our sincere gratitude to Naouel Moha and Foutse Khomh -our
tutors- for their continuous support during this internship, for their motivation and enthusiasm.
Their guidance helped us during these three exciting months.

Besides them, we would like to thank Yann-Gaël Guéhéneuc for giving us the

opportunity to come here for our internship.

Our gratitude also goes to Clément De Figueiredo and Benjamin José-Scheidt for their
help and time at our arrival in Montreal. Also, we thank our friends who accompanied us to this
wonderful city: Fabien Dos Santos, Simon Haioun-Viet and Alexandre Laffaille for all the great
moments spent together and all the fun we have had in the last three months.

In particular, we are grateful to Bram Adams for his kindness and his time at our arrival
in Polytechnique but also to Francis Gagnon and Jean-Marc Chevalier for their great help during
the installation of our architecture.

Last but not least, we would like to thank Tiberiu Stratulat for his help at the beginning of
this internship.

Thibault PERE – Hugo VAUTRIN

5 5

Figure 2: Green IT, a hot topic

Introduction

In recent years, there have been a rapid growth of cloud environments and cloud
oriented software. Reducing the energy usage of this kind of solution is becoming more and
more important (cf. References: Software solutions). Indeed, the new goal of software engineers
is to reduce the energy consumption by making use of good design and implementation
decisions. In fact, our intuition is that energy consumption can be reduced by designing more
energy efficient software. They can use for example cloud patterns: they are general reusable
solution to a commonly occurring problem within a given context in software design for a cloud

application. However, engineers
have a large number of possible
implementations at their disposal
but few feedback about their
utilization in concrete context of
cloud environment.
 Moreover, Cloud Patterns
can have a great impact on Quality
of Service (QoS) but can be less
performant in term of energy
consumption: there is a trade-off to
make here (cf. Appendix a).

 Our fourth year’s internship takes place within this problematic, in the École
Polytechnique de Montréal 1, an engineering school affiliated to the Université de Montréal.

Under the supervision of Prof. Foutse Khomh 2 (École Polytechnique de Montréal), Prof.
Naouel Moha 3 (Université du Québec à Montréal 4) and Prof. Yann-Gaël Guéhéneuc 5 (École
Polytechnique de Montréal) in the SWAT laboratory 6, we have done several different missions
during this internship.
During this internship, we targeted three main missions: the first one was about doing research
on sharding, replication, reading articles. We also assisted two other French students at UQAM
for tests and implementations of their study about the impact of cloud patterns on Quality of
Service.
The second one was a research of tools in order to measure energy consumption, setting up
architecture for our research project at Polytechnique with servers, replication and sharding
design.
Last but not least, the third part of our work placement consisted in performing tests and
collecting data and discussing them.

1 www.polymtl.ca
2 www.khomh.net
3 www.naouelmoha.net
4 www.uqam.ca
5 www.yann-gael.gueheneuc.net
6 www.swat.polymtl.ca

Thibault PERE – Hugo VAUTRIN

6 6

This report will focus first on describing our environment during our 3 months internship

in Montreal: context and challenges of our missions, choices we made, methods and tools used,
and results with discussions. We will also describe our project management.

At the end of this report, you will find a conclusion about this internship and all the

references we used.

Thibault PERE – Hugo VAUTRIN

7 7

PART I - Development

I: Polytechnique Montreal

The École Polytechnique de Montréal is an

engineering school affiliated with the Université de
Montréal in Montréal (Quebec, Canada). The École
Polytechnique is known for its dynamic research split
among seven departments such as the Computer and
Software Engineering Department.

This internship was found through the
intermediary of Yann-Gaël Guéhéneuc who is
Professor at the Computer and Software Engineering
Department. He leads the Ptidej Team (Pattern Trace Identification, Detection, and
Enhancement in Java), and aim at developing theories, methods, and tools, to evaluate and to
improve the quality of object-oriented programs by promoting the use of idioms, design patterns,
and architectural patterns.
With his help, we obtained this work placement under the supervision of Foutse Khomh and
Naouel Moha for a period of three months (June 2 to August 29).

Foutse Khomh is an Assistant Professor at the École

Polytechnique de Montréal where he also leads the SWAT Team on
software analytics and cloud engineering research.

Naouel Moha is currently associate professor at the Department
of Informatics at the Université du Québec à Montréal (UQAM) and
adjunct director of the institutional research centre LATECE. Her
research work focuses on software quality, maintenance and evolution.

Figure 3 : Polytechnique’s logo

Thibault PERE – Hugo VAUTRIN

8 8

II: Context and Challenges

In a cloud context, Cloud Patterns seems to be good solutions when facing design
problems in this kind of environment. They are, most of the time, inspired by Design Pattern
from Object-Oriented Software or Service Oriented Architecture (SOA) where they are
considered to be good solutions to recurrent design problems.

At our arrival at Polytechnique, there were already two students working with Foutse

Khomh and Naouel Moha at the UQAM since January 2014.
With the collaboration of Geoffrey Hecht, PhD student of UQAM and Université Lille 1, they
performed an empirical study of the Impact of Cloud Patterns on the Quality of Service (Figure 4
for more details) of cloud based software systems. They studied the following 3 Cloud Patterns:

§ Local Database Proxy

§ Local Sharding-Based Router
§ and Priority Message Queue Patterns 7

7 read Glossary for more information about these three patterns

Figure 4: Quality of Service?

Thibault PERE – Hugo VAUTRIN

9 9

This is where we started our internship. Clément and Benjamin, the two students already
here, were leaving at the end of June and we had to keep up their work.

To fulfill this first goal, we were first asked to:

§ read articles to learn more about Cloud Patterns

§ meet Clément and Benjamin for having more information about the study

§ attend meetings with all the team composed of Foutse Khomh, Naouel Moha,
Geoffrey Hecht, Clément De Figueiredo and Benjamin José-Scheidt

§ gain knowledge of the source code of the project
§ do some research about the Local Sharding-Based Router pattern which was still not

implemented by Clément and Benjamin because they were lacking time

After Clément and Benjamin left the team, we were asked to finish all the missing tests

for the article that the team intended to submit to the CloudCom conference, under the name:

“An Empirical Study of the Impact of Cloud Patterns on Quality of Service (QoS)
- The Case of Local Database Proxy, Local Sharding-Based Router -

and Priority Queue Patterns”

Conducting these tests consisted of three steps; the first one was about configuring the
work environment when then second one was running tests and the last one was collecting and
sending results to Geoffrey Hecht. Then he would be able to incorporate them in their paper.
During the configuration stage, we had to set up MySQL to match with our needs. We also
needed to have the right architecture to deploy the Cloud application used for the tests.
Concerning the tests, we had three different setups to test: one with only sharding, one with
sharding and message queue and one with sharding and proxy.
The aim of these tests was to increase little by little the amount of request to see in which case
a setup is better than another (for example, we want to say in which situation the proxy pattern
is better than the sharding pattern and which implementation of the pattern is better).

Figure 5 is an example of the result we had after the testing phase. It concerns the Local
Sharding-Based Router with the Priority Message Queue with write request. The results show
that the combination of these two different patterns affects significantly (and in good terms) the
QoS.

Comment: Modulo, Lookup and Consistent are three different algorithms that can be used to
implement the Sharding design (cf. Appendix a).

Thibault PERE – Hugo VAUTRIN

10 10

Figure 5: Insert film with Local Sharding-Based Router and Priority Queue

Figure 6: Google Datacenter

Thibault PERE – Hugo VAUTRIN

11 11

This paper with all its experiments aims to show three important results:

§ the pattern effect is not always significant and can even be negative in some cases

§ the usage of different algorithms to implement patterns affects QoS to a lesser
extend compare to the choice of pattern

§ the interaction of patterns affects significantly the QoS

At the end of this work about the impact of cloud patterns on QoS, we were asked by
Foutse Khomh to continue this project but on energy consumption.

Thibault PERE – Hugo VAUTRIN

12 12

III: Choices and Solutions

Energy consumption is nowadays a hot topic, given the widespread of cloud
environment. However, there are not a lot of tools available to track the energy consumption of
a software or to monitor it (for machine, there are quite some).

Our first challenge was to review the literature to find a tool -hardware or software- that could be
used to monitor the energy consumption of a software process.

According to this table (Figure 7) and after a meeting with Foutse Khomh, we decided to
use PowerAPI because it allows us to monitor the exact process we want and this seemed quite
interesting.

Figure 7: Comparative Table of Tools

Thibault PERE – Hugo VAUTRIN

13 13

IV: Methods and Tools

PowerAPI

PowerAPI is a framework designed to monitor energy consumption of processes. We will

now see how it works.

We can see on the top of Figure 8 that we need to know an important thing: the PID
(Process Identifier) of the process to monitor. PowerAPI can monitor a list of processes if
needed, but next steps are the same.
Then all you have to do is use the framework. This framework permits you different
configurations.

Step 1: choose how you want PowerAPI to monitor. Two ways are possible for Linux (using /
proc files or using SIGAR library) and one way for Window (SIGAR library). The result will be
independent of the chosen way.

Step 2: define the output type. It depends on the future use of your results: tables, console or
chart. In our study, we chose to use tables to allow us to process data easily. We will have
some examples of this later.

Step 3: choose which hardware component you want to listen, indeed you can monitor the
energy consumption of a process on the CPU, the Disk or the memory. You can obviously
monitor all three.

PowerAPI is able to know the energy consumption thanks to formulae using information
from sensors taken during a chosen period of time, for example each X second. You can define
X as an integer.

Figure 8: PowerAPI

Thibault PERE – Hugo VAUTRIN

14 14

Architecture

The application

The test application (A Java Web Application developed with the Java Development Kit

1.7) is hosted on a GlassFish 4 Application Server. It is located on an 8 Go RAM, 50 Go DD,
Ubuntu Server 14.04.

This application is a distributed application (client-server) which communicates over
REST calls.

Databases and virtualization

As database management system, we have chosen MySQL for the following reasons:

§ light
§ efficient
§ give enough utilities and tools to implement our patterns

§ one of the most popular database management system for Cloud application

To host our databases, we have three different physical servers. Each server is running

through a native hypervisor (in our case we have chosen ESXi, a native hypervisor as explained
in the figure 9).
This hypervisor allows us to create virtual machines: each server hosts 4 Virtual Machines (2
Virtual CPU, 1Go RAM, 20 Go DD, MySQL 5.6, OpenSSH Server, Ubuntu Server 14.04).

Figure 10 presents an overview of the architecture that was used during these three months.

Figure 9: Hypervisor, native versus hosted

Thibault PERE – Hugo VAUTRIN

15 15

Methods

In order to study the impact of the three design patterns:
§ Local Database Proxy

§ Local Sharding Based Router
§ and Priority Message Queue

We decided to implement them in a java web application for specific testing phase: we

developed several algorithms to test our patterns and obtain metrics like response time or
latency. To do so, we needed different test scenarios (test cases). These test cases will be
described later. With these experiments, we have obtained several results. We will also discuss
about these results later.

Our null hypothesis was:

H0: Design Patterns doesn’t have any effect on Energy Consumption

We planned to refute this hypothesis by proving with several test cases that, design
patterns in a cloud environment have indeed effect on energy consumption.

Figure 10: The architecture we used for our tests

Thibault PERE – Hugo VAUTRIN

16 16

Test Cases

To answer our research question, we did multiple experimentations with the application
designed specifically to test our three cloud patterns.

In order to have realistic results, we decided to implement in our application a realistic
test case. In the next paragraph, we will describe a test case that was created and used for the
Local Database Proxy.

Realistic Scenarios for our tests (Cloud Application and Environment)
Number of Repetition: 3

Number of Clients: {500; 1500; 3000}
Environment: 1 MASTER - 4 SLAVES (2:2)
Databases: 100 movies

What does a client do?

a. 1 READ - CONNEXION

b. SLEEP (5s) - READ THE MENU

c. 10 READ - CONSULTING 10 MOVIES

d. SLEEP (30s) - THINKING, SEARCHING ONLINE, CHATTING...
e. 5 READ - CONSULTING 5 OVER MOVIES

f. SLEEP (10s) - TAKING A DECISION

g. 1 WRITE - RENTING A MOVIE

h. SLEEP (5s) - READING THE VALIDATION OF THE RENT

i. LOGOFF - LOGGING OF THE SERVICE

READ: a read request to the database
SLEEP(x): the client is waiting x seconds before going to the next step
WRITE: a write request to the database
LOGOFF: the client is disconnecting from the service

This test case represents a realistic use of a cloud application by a client in a rental
movie cloud application environment.

Thibault PERE – Hugo VAUTRIN

17 17

V: Results and Discussions

 In this part, we are going to present you some of the result we have obtained during our
study and we will focus on the results of the Proxy pattern implementation and the sharding
pattern implementation.
We will now see the result of the test we described previously. As you can see on the figure 11,
algorithms and patterns have an effect on energy consumption. With this test we can say that as
expected not using the Proxy pattern consume less than any implementation of this one.
Indeed, Proxy pattern need the server to do some actions to decide where he will send clients
requests. These actions consume energy. Each algorithm has a different way to decide where
to send clients request, impacting performance and energy as proved before.

An important aim of our study was to give an idea of the difference between two solutions in
terms of energy. We can therefore say that:

§ with 500 clients the difference between No Proxy and Custom is about the same energy
consumption of a classical use of a hair dryer (48 weeks per year and 30 minutes per
day)

§ with 1500 clients the difference between No Proxy and Custom is about the same
energy consumption of a classical use of a coffee maker (335 days per year and 10
minutes per day)

§ with 3000 clients the difference between No Proxy and Custom is about the same
energy consumption of a LCD TV in eve mode during a whole year

Figure 11: Comparison of Proxy Algorithms

Thibault PERE – Hugo VAUTRIN

18 18

 With these results and the article wrote by Clément and Benjamin (in appendix),
software designers are able to take decision: for example, is it better for me to use Custom
algorithm (which consume more but is better in term of performance) than No Proxy?

 Concerning the Sharding pattern, the test case was the same as the one we used for the
proxy pattern because we wanted to have the same scale between this two patterns for
comparison. The goal is also the same, we wanted to see if the sharding pattern has an impact
on energy consumption and if so, if his different implementations have also an impact. The
sharding pattern has three different implementations we studied:

§ Modulo
§ Consistent
§ Look Up

The figure 12 shows our results for the sharding pattern and its three implementations.

§ with 500 clients the difference between Look Up and Modulo is about the same energy

consumption of a lamp energy saving bulb (5 hours a day)
§ with 1500 clients the difference between Modulo and Look Up is about the same energy

consumption of a LCD TV in eve mode during a year
§ with 3000 clients the difference between Modulo and Look Up is about the same energy

consumption of a classical use of an hair dryer (48 weeks per year and 30 minutes per
day)

Figure 12: Comparison of Sharding Algorithms

Thibault PERE – Hugo VAUTRIN

19 19

We can refute our null hypothesis which was “H0: Design Patterns doesn’t have

any effect on Energy Consumption”. Indeed, our first results show us that Design
Patterns have an effect on Energy Consumption and that there is a trade-off to make
between Energy Consumption and Quality of Service. There is still research to do in this
area. Software can be design to consume less energy and we have to because Cloud
computing is becoming such a huge thing, we have to reduced its impact on the
environment by making Green IT.

Thibault PERE – Hugo VAUTRIN

20 20

PART II- Project Management

To realize this internship as well as it was possible, we needed to organize ourselves. At

the beginning of this work placement, we had a documentation phase. We decided to share all
the work (researches and readings). Each of us had some articles to read and summarize into a
shared document. Then we were able to easily know key information about the work of the
other. It worked well and allowed us to save a lot of time.

In a second part, we had two fronts to lead. The first one was about ending tests as we
described earlier. The second was about trying to understand how PowerAPI works, be aware
of the environment it needs and master the tool. One of us was in charge of carrying out the first
one when the other carried out the second. The good thing with this solution was that both of us
took time to develop new skills and knowledge. For example Thibault learned a lot about
MySQL configurations, architecture stuffs while Hugo learned a lot about the Linux kernel, Scala
language and Maven software. All these new skills were useful as we will see in the next step.

 In a third part, we had to realize our own tests for our own study. To do so, we decided
to work together and to gather our knowledge to configure our architecture, install our tools and
start all the work described in this report. This working method was in our opinion good for two
reasons: we had only one computer to realize all these tests so splitting the work would have
not been faster. We shared all the knowledge learned, which end up saving us a lot of time.

 We also did a weekly meeting with Naouel Moha and Foutse Khomh to discuss about
the work we did since the last meeting. That was really helpful and allowed us to keep
objectives in mind. We also used it to correct little by little some mistakes we did instead of
doing it at the end of the internship and have a work overload.

Thibault PERE – Hugo VAUTRIN

21 21

Conclusion

Overall, this internship was a great experience. We gained a lot of experience, especially
in design patterns, databases, and hardware architecture. Moreover, Polytechnique Montreal
has offered us opportunities to set up a good architecture for our study in a safe and private
environment.

We are still discussing about the possibility of publishing an article about our study. Also,
it is expected that some new students will pick up and continue our work.

In review, this internship has been an excellent and rewarding experience. We are
grateful and thankful that we got to experience and learn so many things and also to discover
Montreal, this wonderful city.

Figure 13: University of Toronto (August 2014) - Fabien, Simon, Alexandre, Hugo and Thibault

Thibault PERE – Hugo VAUTRIN

22 22

References

Hardware Solutions
DUSTIN MCINTIRE, KEI HO, BERNIE YIP, AMARJEET SINGH, WINSTON WU, AND WILLIAM
J. KAISER. The Low Power Energy Aware Processing (LEAP): Embedded Networked Sensor
System. IPSN’06. 2006

DIGVIJAY SINGH, PETER A. H. PETERSON, PETER L. REIHER AND WILLIAM J. KAISER.
The Atom LEAP Platform For Energy-Efficient Embedded Computing: Architecture, Operation,
and System Implementation. http://tastytronic.net/~pedro/docs/leapwhitepaper.pdf.

ABRAM HINDLE, ALEX WILSON, KENT RASMUSSEN, E. JED BARLOW, JOSHUA CHARLES
CAMPBELL, STEPHEN ROMANSKY.
GreenMiner: A Hardware Based Mining Software Repositories Software Energy Consumption
Framework. MSR’14. http://dl.acm.org/citation.cfm?doid=2597073.2597097. 2014

Software Solutions
TAO LI, LIZY KURIAN JOHN.
Run-time Modeling and Estimation of Operating System Power Consumption. SIGMETRICS’03.
2003

MARIO LINARES-VÁSQUEZ, ROCCO OLIVETO, GABRIELE BAVOTA, MASSIMILIANO DI
PENTA, CARLOS BERNAL-CÁRDENAS, DENYS POSHYVANYK.
Mining Energy-Greedy API Usage Patterns in Android Apps: An Empirical Study. MSR’14.
http://dl.acm.org/citation.cfm?doid=2597073.2597085. 2014

NADINE AMSEL, BILL TOMLINSON.
Green Tracker: A Tool for Estimating the Energy Consumption of Software. CHI. 2010

IRENE MANOTAS, LORI POLLOCK, JAMES CLAUSE.
SEEDS: A Software Engineer’s Energy-Optimization Decision Support Framework. ICSE 14.
http://dl.acm.org/citation.cfm?doid=2568225.2568297. 2014

DING LI, ANGELICA HUYEN TRAN, WILLIAM G. J. HALFOND.
Making Web Applications More Energy Efficient for OLED Smartphones. ICSE 14.
http://dl.acm.org/citation.cfm?doid=2568225.2568321. 2014

Middleware Solutions
NIMA NIKZAD, OCTAV CHIPARA, WILLIAM G. GRISWOLD.
APE: An Annotation Language and Middleware for Energy-Efficient Mobile Application
Development. ICSE 14. http://dx.doi.org/10.1145/2568225.2568288. 2014

Patterns
STEVE STRAUCH, VASILIOS ANDRIKOPOULOS, UWE BREITENBUCHER, SANTIAGO
GOMEZ SAEZ, OLIVER KOPP, FRANK LEYMANN.
Using Patterns to Move the Application Data Layer to the Cloud: The Fifth International
Conferences on Pervasive Patterns and Applications. 2013

Thibault PERE – Hugo VAUTRIN

23 23

Glossary

Cloud:

A type of computing that relies on sharing computing resources rather than having
local servers or personal devices to handle applications

Cloud Pattern:

A design pattern for a cloud application

Database Proxy:
 See Replication

Design Pattern:

A general reusable solution to a commonly occurring problem within a given context
in software design

Framework:

A reusable set of libraries or classes for a software system

Hypervisor:

A piece of computer software, firmware or hardware that creates and runs virtual
machines

Maven:

A software project management and comprehension tool. It is able to create links
and dependencies between projects

MySQL:

An open-source relational database management system owned by Oracle
Corporation

Priority Message Queue:

A software engineering component used for inter-process communication or inter-
thread communication

Ptidej Team:

Pattern Trace Identification, Detection, and Enhancements in Java

QoS (Quality of Service):

The overall performance of a service, particularly seen by the users

Read request:

A request to a database in order to consult data

Replication (Database Proxy):

A technique that involves sharing information to ensure consistency between
redundant resources to improve reliability, fault-tolerance and accessibility

Thibault PERE – Hugo VAUTRIN

24 24

REST (Representational State Transfer):
An architectural style consisting of a coordinated set of architectural constraints
applied to components, connectors, and data elements, within a distributed
hypermedia system

Scala:

A programming language considered as an evolution of Java

Sharding:

A type of database partitioning that is used to separate very large databases into
smaller, faster data shards.

SOA (Service Oriented Architecture):

A software design and software architecture design pattern based on distinct pieces
of software providing application functionality as services to other applications

SWAT Team:

The SoftWare Analytics and Technologies Lab

Virtual machine:

An emulation of a particular computer system and functions of a real or hypothetical
computer

Write request:
 A request to a database in order to create data

Thibault PERE – Hugo VAUTRIN

25 25

a - An Empirical Study of the Impact of Cloud

Patterns on Quality of Service (QoS) - The Case of

Local Database Proxy, Local Sharding-Based Router -

and Priority Queue Patterns (8 pages)

An Empirical Study of the Impact of Cloud Patterns

on Quality of Service (QoS)
— The Case of Local Database Proxy, Local Sharding-Based Router —

and Priority Queue Patterns

Geoffrey Hecht1,2, Benjamin Jose-Scheidt1, Clément De Figueiredo1, Naouel Moha1, Foutse Khomh3

1Université du Québec à Montréal, Canada, 2Université Lille 1, France, 3SWAT, École Polytechnique de Montréal, Canada

geoffrey.hecht@courrier.uqam.ca, {benjamin.josescheidt, clement.defigueiredo}@viacesi.fr

moha.naouel@uqam.ca, foutse.khomh@polymtl.ca

Abstract—Cloud patterns are described as good solutions to
recurring design problems in a cloud context. These patterns are
often inherited from Service Oriented Architectures or Object-
Oriented Architectures where they are considered good practices.
However, there is a lack of studies that assess the benefits of
these patterns for cloud applications. In this paper, we conduct
an empirical study on a RESTful application deployed in the
cloud, to investigate the individual and the combined impact of
three cloud patterns (i.e., Local Database proxy, Local Sharding-
Based Router and Priority Queue Patterns) on Quality of Service
(QoS). We measure the QoS using the application’s response
time, average, and maximum number of requests processed
per seconds. Results show that cloud patterns doesn’t always
improve the response time of an application. In the case of the
Local Database proxy pattern, the choice of algorithm used to
route requests has an impact on response time, as well as the
average and maximum number of requests processed per second.
Combinations of patterns can significantly affect the QoS of
applications. Developers and software architects can make use
of these results to guide their design decisions.

Keywords—Cloud Patterns, Replication, Sharding, Priority
Queue, QoS.

I. INTRODUCTION

Design Patterns are general and reusable solutions to recur-

ring design problems. They were first introduced in software

engineering by Beck and Cunningham [1] in 1987 but really

gained popularity only after the publication of the book of

Gamma et al. [2] in 1994. Since then, design patterns have

been applied to all field of software engineering, includ-

ing Software Architecture [3], Service Oriented Architecture

(SOA) [4] and Cloud Computing [5]–[10].

Most cloud patterns like Proxy Service, message queue or

Composed Service were adopted from SOA or parallel com-

puting [9]. These patterns were refined to take into account the

specificities and requirements of the cloud. For example, the

message queue pattern is usually used to allow asynchronous

messaging between two components. In the cloud context,

this pattern is used to reduce coupling between components

and thus allowing a better scalability and availability of the

overall application [6]. Therefore the message queue pattern

is supposed to improve architecture quality as well as Quality

of Service (QoS).

Despite several benchmarks and studies [11]–[15] compar-

ing cloud solutions and technologies that use patterns (e.g.,

NoSQL databases that use database sharding and message

queue patterns or message-oriented middleware), to the best

of our knowledge, there is a lack of studies that empirically

investigate the impact of multiple cloud patterns on the QoS of

applications. Consequently the benefits and tradeoffs of cloud

patterns are mostly intuitively discovered and not properly

validated. Moreover, the available benchmarks evaluated pat-

terns in isolation and did not considered possible interactions

between multiple patterns.

In this paper, we evaluate the impact on QoS of three cloud

patterns : the Local Database Proxy, Local Sharding-Based

Router and Priority Queue Patterns. The study is performed

using a RESTful cloud-based, data-centered and service based

application implemented with different combinations of the

aforementioned patterns. To measure the QoS we rely on the

following three metrics : response time, average and maximum

queries processed per second. Our objective is to provide

evidence to confirm or refute the claimed efficiency of these

patterns and comprehend the interplay between them.

The rest of the paper is organized as follows. We provide

some background information describing the studied patterns

in Section II. Section III presents related works on the impact

of design patterns. Section IV presents the design of our

experiments and section V discusses the obtained results.

Section VI concludes our study and outlines some avenues

for future works.

II. BACKGROUND

In this section, we briefly present the three patterns under

study in this paper and outline their benefits for cloud appli-

cations as identified in the literature.

Local Database Proxy : The Local Database proxy pattern

provides a read scalability on a relational database by using

data replication between master/slave databases and a proxy

to route requests [7]. All write requests are handled by the

master and replicated on its slaves while read requests are

processed by the slaves. Unlike usual replication mechanisms

where application components access a predetermined replica

[16], with this pattern, components must use a local proxy

whenever they need to retrieve or write data. The proxy has the

responsibility to distribute requests between master and slaves

depending of their type and workload. Slaves may be added or

removed during the execution to gain elasticity. It should be

noted that this pattern is not suitable when there is a need to

scale with write request since there is a risk of bottleneck on

the master database. This pattern is described by Strauch et al.

[7] in their work about Non-functional Data Layer Patterns for

Cloud Applications. Using the Local Database Proxy pattern,

Microsoft [16] provided guidelines for the replication in a

cloud application. These two works recommend implementing

the Local Database Proxy pattern to improve the scalability

for data reads, as well as the availability and resiliency of

applications. The risk of bottlenecks on the master database

and the lack of strategy for write requests are listed among

the limitations of this pattern. To the best of our knowledge,

no work has empirically investigated the impact of the Local

Database Proxy pattern on the QoS of applications.

Local Sharding-Based Router : The Local Sharding-Based

Router is recommended when the need for scalability concerns

read and write operations [7]. Data are split among multiple

databases into functional groups called shards, requests are

processed by a local router to determine the suitable databases.

Data are split horizontally i.e., on rows, and each split must be

independent as much as possible to avoid joins and to benefit

from the sharding. Multiple strategies can be used to determine

the sharding logic, a range of value, a specific shard key or

hashing can be used to distribute data among the databases

[17]. In addition, this pattern can used a replication mechanism

for each shard to ensure a strong resilience. This pattern is also

described by [7] and [17]. The Local Sharding-Based Router

pattern is recommended to improve the overall scalability of

the storage when data can be split into independent shards.

The impact of this pattern on the QoS of applications is yet

to be investigated, which is the purpose of the study presented

in this paper.

Priority Message Queue : Message Queues are First In

First Out (FIFO) queues typically used to delegate tasks to

background processing or to allow asynchronous communica-

tions between components. When different types of messages

exist, a Priority Message Queue can be used to gain flexibility.

Priority values are set by the sending component. Messages

with high priority values are received and processed more

quickly than those with lower priority values [5]. Multiple

simple message queues can be used to implement a priority

message queue, considering a different priority for each queue.

Message Queues are considered good practices for cloud

applications, to design loosely coupled components and to

improve scalability [6].

III. RELATED WORK

In this section, we discuss the relevant literature about the

impact of patterns on software quality.

Impact of Object-oriented design patterns : Several

works exists in the literature to assess the impact of design

patterns on software quality [18], [19], software maintainabil-

ity [20], [21] and code complexity [22]. Overall, these studies

found that design patterns do not always improve the quality

of applications. Khomh and Guéhéneuc [18] claim that design

patterns should be used with caution during software devel-

opment because they may actually impede software quality.

Object Oriented design patterns are usually not supposed to

increase performance, nevertheless, Aras et. al [23] have found

that design patterns can have a positive effect on the perfor-

mance of scientific applications despite the overhead that they

add. Of course the results of these studies cannot be directly

generalize to cloud patterns which usually focus on scalability,

however they provide hints about the possible benefits–or–

downside of cloud patterns. Clearing up the impact of cloud

patterns on QoS is important to help software development

teams make good design decisions.

Evaluation of Cloud Patterns : Ardagna et al. [24] em-

pirically evaluated the performance of five scalability patterns

for Platform as a service (PaaS) : Single, Shared, Clustered,

Multiple Shared and Multiple Clustered Platform Patterns. To

compare the performance of these patterns they measured the

response time and the number of transactions per second.

They also explored the effects of the addition and the removal

of virtual resources. Tudorica et al. [12] and Burtica et al.

[13] provide a comprehensive comparison and evaluation of

no-SQL databases which make use of multiple sharding and

replication strategies to increase performance. However they

did not considered the impact of these solutions on the QoS of

the overall application and the association with others patterns.

Similarly, Cattel [11] examined no-SQL and SQL data stores

designed to scale by using replication and sharding. His work

highlighted the lack of studies and benchmarks on these solu-

tions. Message oriented middlewares have been benchmarked

by Sachs et al. [14] and the performance of priority queues

has been evaluated by Alwakeel et al. [15]. In these works, the

message queue is evaluated as a technical solution in isolation,

without considering any application context. The message

queue is just considered as a solution to allow asynchronous

messaging.

IV. STUDY DESIGN

This section presents the design of our study, which aims

to understand the impact of cloud patterns on the QoS of

applications and investigate potential interactions between

these patterns. We select three cloud patterns (i.e., Local

Database proxy, Local Sharding-Based Router and Priority

Queue Patterns) which are described as good design practices

by both academic and practitioners and address the following

research questions:

1) Does the implementation of Local Database proxy, Lo-

cal Sharding-Based Router or Priority Message Queue

Patterns affect the QoS of cloud applications?

2) Do interactions among Local Database proxy, Local

Sharding-Based Router and Priority Message Queue

Patterns affect the QoS of cloud applications?

To answer these research questions, we perform a series

of experimentations with multiple versions of an application

designed specifically to test the aforementioned cloud patterns.

The Local Database proxy and Local Sharding-based router

patterns were implemented with different algorithms which are

explained in section IV-C. In total we analyze eight versions of

the application which are summarized in Table I. The Priority

Message Queue was combined with the two others patterns in

some experiments. The application was built around an SQL

Database. The results were collected by performing a series of

stress tests on the application (varying the number of requests)

and tracing their executions. The same test sets were used for

all the experimentations in order ensure comparable results.

The remainder of this section elaborates more on the details

of our experimentations.

A. Objects

The application used in this study is hosted on a GlassFish 4

application server. It is a distributed application (client-server),

which communicates through REST calls. We choose MySQL

as database management system because it’s light, efficient

and provides enough utilities and tools to perform and tune

the implementation of every pattern. Moreover, MySQL is one

of the most popular database for Cloud applications [25]. We

use the Sakila sample database [26] provided by MySQL. It’s

a good sample for experiments because it contains a large

number of records and it is consistent with existing databases.

Sakila is composed of 16 tables, 7 views and procedures and

about 50,000 records. The test application was fully developed

with the Java Development Kit 1.7 and is composed of about

3,500 lines of code and its size is 6 MB. It has a class library

project which is shared between the client and the server

project.

The master node has the following characteristics : 2 virtual

processors (CPU : Intel Xeon X5650) with 4GB RAM and

40GB disk space. This node is a virtual machine of a server

located on a separate network. We have 8 slave database nodes

: 4 on one server having each one virtual processor (CPU :

Intel QuadCore i5) with 256 MB RAM and 10 GB disk space.

The 4 others on a second server having other characteristics :

each Virtual Machine has one virtual processor (CPU : Intel

Core 2 Duo), 256 MB RAM and 10 GB disk space. All the

hardware is connected on a private network behind a switch.

All the servers are running Ubuntu 14.04 LTS as operating

system.

B. Design

In order to assess the benefits and the trade-offs of the

Local Database Proxy, the Local Sharding-Based Router and

the Priority Message Queue design patterns, we implemented

these patterns in the application described in Section IV-A and

test them through the scenarios described in Section IV-C. In

total we obtained 8 versions of the application as presented in

Table I. The basic version E0 don’t use any pattern. Versions

E1 to E3 implement Local Database Proxy with Random Allo-

cation, Round-Robin and a Custom load balancing algorithm.
Versions E4 to E6 implements the Local Sharding-Based

Router with three sharding algorithms : Modulo, Lookup

and consistent hashing. Version E7 implements the Priority

Message Queue.

TABLE I
EXPERIMENTAL DESIGNS

Pattern Algorithm Code Version

Basic Version E0

Local Database Proxy
Random Allocation E1
Round-Robin E2
Custom Load Balancing E3

Local Sharding-Based Router
Modulo Algorithm E4
Lookup Algorithm E5
Consistent Hashing E6

Priority Message Queue E7

C. Procedure

Experimentations were orchestrated using the different types

of requests described in Table II. For each type of request,

we simulated a client sending the request to a server 1000,

2500, 5000, 7500 and 10000 times. Each experimentation

was performed five times in order to obtain an average and

with different amount of transactions (from 1 to 100 000). It

should be noted that the variation between two instances of

an experiment never exceeded a few hundreds milliseconds

under heavy loads. In the following, we describe the specific

experiments that were performed for each pattern.

TABLE II
TYPES OF REQUEST

Read 1 Select a single film

Read 2 Select customer inventory

Random read Random between simple read 1 and 2

Aggregation Select overdue DVD’s for a customer

Write Insert a film

Local Database Proxy Pattern : We performed two imple-

mentations of this pattern using respectively, the Random Allo-

cation Strategy and the Round-Robin Allocation Strategy [27].

We also implemented a Custom Load Balancing Strategy to

test a more reactive strategy.

The proxy is located between server and clients. A first

REST web service exposes a set of methods which are hitting

the database regarding different algorithms. These methods are

used in order to test the local database proxy pattern. The

queries are built using parameters such as the ID of a select

passed over the REST call. Once the query is built, it is sent

to the proxy.

The first work of the proxy is to identify if it is a read or a

write query. To do this, it analyses the first word of the query :

if it starts with “SELECT” then it is a read query, otherwise it

is a write. The next step is to route the query to a slave node.

The random algorithm chooses randomly an instance of the

pool. The round-robin chooses the next instance that has not

yet been used in the “round”, i.e., the first, then the second,

then the third,..., finally the first and so on. The customised

algorithm uses two metrics to evaluate the best slave node to

choose : the ping response time between the server and each

slave, and the number of active connections on the slaves. To

monitor these metrics, a thread is started every 500ms as long

as there are queries that has to be executed. Finally, once the

slave is chosen, the query is executed and the result is sent

back to the function that was called. In order to simplify the

tests, we chose to only send back IDs (number identifier), so

we don’t need to serialize any data. If the result sent from the

slave node is null, the query is executed on the master node

in order to be sure that the replication did not failed. At last,

if the result is null, the response sent to the client has the http

no content status. If not, the result is sent back to the client

using the http ok response status.

Local Sharding-based Router Pattern : To test this pattern

we used multiple shards hosted separately. Each shard has the

same database structure in order to fit with the requirements of

sharding algorithms [28]. The first work of the local sharding-

based router is to correctly identify which part of the database

should be sharded. According to Maxym Kharchenko’s Art of

Database Sharding [29], we chose two tables of a modified

version of the Sakila database [26]. To facilitate the tests, we

removed all of the relationships in both the rental and film

tables since the sharding is adapted only for independent data.

We chose three commonly used sharding algorithms : Mod-

ulo algorithm, Look-up algorithm and the Consistent Hashing

algorithm. The modulo algorithm divides the request primary

key by the number of running shards, the remainder is the

server number who will handle the request.

The second sharding algorithm used is the Look-up strategy.

This algorithm consists in an array with a larger amount of

elements than the number of server nodes available. Refer-

ences to the server node are randomly placed in this array such

that every node receives the same share of slots. To determine

which node should be used, the key is divided by the number

of slots and the remainder is used as index in the array.

The third sharding algorithm used is the Consistent Hashing.

For each request, a value is computed for each node. This value

is composed of the hash of the key and the node. Then, the

server with the longest hash value processes the request. The

hash algorithms recommended for this sharding algorithm are

MD5 and SHA-1.

Priority Message Queue Pattern : Requests are annotated

with different priority numbers and sent in the priority mes-

sage queue of our test application. All requests are ordered

according to their priority and are then processed by database

services in this order.

D. Independent Variables

Local Database proxy, Local Sharding-Based Router, and

Priority Message Queue Patterns, as well as the algorithms

presented in Table I are the independent variables of our study.

E. Dependent Variables

The dependant variables measure the performance of the

patterns in term of response time and amount of queries
executed per second. The result is a tri-dimensional com-

parison between response time, average number of queries

and maximum number of queries executed per second. These

measures were taken by the test application itself during every

experimentation.

The response time measured in these experiments is the

overall response time of the application when executing all the

queries. This metric is measured in milliseconds. We choose

these metrics because it reflects the capacity of the application

to scale with the number of requests. We are only considering

results where all the request are processed successfully.

The other metrics are the average and maximum number of

queries executed by the application during one second. As we

are studying database-related patterns, these metrics are useful

to compare the effectiveness of these patterns for database load

balancing.

F. Hypotheses

To answer our two research questions we formulate the

following null hypotheses, where E0, Ex (x ∈ {1 . . . 6}), and

E7 are the different versions of the application described in

Table I:

• HR1

x
: There is no difference between the response time

of design Ex and design E0.

• HR2

x
: There is no difference between the average

number of queries processed per second by design Ex

and design E0.

• HR3

x
: There is no difference between the maximum

number of queries processed per second by design Ex

and design E0.

• HR1

x7
: The response time of the combination of designs

Ex and E7 is not different from the response time of each

design taken separately.

• HR2

x7
: The average number of queries processed per

second by the combination of designs Ex and E7 is not

different from the average number of queries processed

per second by each design taken separately.

• HR3

x7
: The maximum number of queries processed per

second by the combination of designs Ex and E7 is not

different from the maximum number of queries processed

per second by each design taken separately.

G. Analysis Method

We performed the Mann-Whitney U test [30] to test HR1

x
,

HR2

x
, HR3

x
, HR1

x7
, HR2

x7
, HR3

x7
. We also computed the

Cliff’s δ effect size [31] to quantify the importance of the

difference between metrics values. We selected the Cliff’s δ

effect size because it is reported to be more robust and reliable

than the Cohen’s d effect size [32]. All the tests are performed

using a 95% confidence level (i.e., p-value < 0.05).

Mann-Whitney U test is a non-parametric statistical test that

assesses whether two independent distributions are the same or

if one distribution tends to have higher values. Non-parametric

statistical tests make no assumptions about the distributions of

the metrics. Cliff’s δ is a non-parametric effect size measure

which represents the degree of overlap between two sample

distributions [31]. It ranges from -1 (if all selected values in

Fig. 1. Select a film with Local Database Proxy Fig. 2. Select customer inventory with Local Database Proxy

Fig. 3. Random select between film and customer inventory Fig. 4. Insert film with Local Database Proxy and Priority Queue

the first group are larger than the second group) to +1 (if all

selected values in the first group are smaller than the second

group). It is zero when two sample distributions are identical

[33]. Interpreting the Effect Sizes : Cohen’s d is mapped to

Cliff’s δ via the percentage of non-overlap as shown in Table

III [31]. Cohen [34] states that a medium effect size represents

a difference likely to be visible to a careful observer, while a

large effect is noticeably larger than medium.

TABLE III
MAPPING COHEN’S d TO CLIFF’S δ.

Cohen’s Standard Cohen’s d % of Non-overlap Cliff’s δ

small 0.20 14.7% 0.147
medium 0.50 33.0% 0.330

large 0.80 47.4% 0.474

Replication Package All the data collected in our study are

publicly available at http://goo.gl/B9upx8.

V. CASE STUDY RESULTS

This section presents and discusses the results of our re-

search questions.

A. Does the implementation of Local Database proxy, Local

Sharding-Based Router or Priority Message Queue Patterns

affect the QoS of cloud applications?

Table IV and V summarises the results of Mann–Whitney

U test and Cliff’s δ effect sizes for each metrics. Significant

results are marked in bold.

Response time : Results of Table IV and V show that there

is no statistically significant difference between the overall re-

sponse time of applications implementing the studied patterns

and the application not implementing any of the three patterns,

hence we cannot reject HR1

x
for all Ex (x ∈ {1 . . . 6}).

However, Figures 1 to 6, as well as effect size values show

that all three patterns have a slightly positive impact on the

response time of the applications (i.e., the response time

is lower), in all the scenarios with the exception of Local

TABLE IV
p-VALUE OF MANN–WHITNEY U TEST AND CLIFF’S δ EFFECT SIZE FOR RANDOM SELECTS BETWEEN FILM AND CUSTOMER INVENTORIES

Overall Response Time Average Query per Second Maximum Query per Second
p-value Effect Size p-value Effect Size p-value Effect Size

E0, E1 1.68× 10
−1 -0.52 <0.05 0.80 <0.05 0.80

E0, E2 1.68× 10
−1 -0.68 <0.05 0.80 <0.05 0.80

E0, E3 1.68× 10
−1 -0.68 <0.05 0.80 <0.05 0.80

E0, E4 2.11× 10
−1 0.48 <0.05 -1 <0.05 -1

E0, E5 2.11× 10
−1 0.48 <0.05 -1 <0.05 -1

E0, E6 2.11× 10
−1 0.48 <0.05 -1 <0.05 -1

E0, E7 2.61× 10
−1 -0.44 <0.05 0.72 7.18× 10

−2 0.48

E1, E1 + E7 3.15× 10
−1 -0.28 7.44× 10

−2 0.60 <0.05 0.80

E2, E2 + E7 3.74× 10
−1 -0.20 7.12× 10

−2 0.72 <0.05 0.84

E3, E3 + E7 3.74× 10
−1 -0.20 1.05× 10

−1 0.64 <0.05 0.84

E4, E4 + E7 5× 10
−1 -0.00 3.37× 10

−1 -0.20 4.58× 10
−1 0.08

E5, E5 + E7 4.36× 10
−1 -0.12 4.16× 10

−1 -0.04 2.28× 10
−1 0.32

E6, E6 + E7 5× 10
−1 -0.08 5× 10

−1 0.12 7.06× 10
−2 0.72

TABLE V
p-VALUE OF MANN–WHITNEY U TEST AND CLIFF’S δ EFFECT SIZE FOR INSERT A FILM

Overall Response Time Average Query per Second Maximum Query per Second
p-value Effect Size p-value Effect Size p-value Effect Size

E0, E1 4.36× 10
−1 0.16 2.33× 10

−1 -0.40 2.05× 10
−1 -0.44

E0, E2 4.36× 10
−1 0.16 2.83× 10

−1 -0.32 1.94× 10
−1 -0.44

E0, E3 4.36× 10
−1 0.16 2.33× 10

−1 -0.40 2.84× 10
−1 -0.32

E0, E4 1.68× 10
−1 -0.52 <0.05 0.80 <0.05 0.80

E0, E5 1.68× 10
−1 -0.52 <0.05 0.80 <0.05 0.80

E0, E6 1.68× 10
−1 -0.52 <0.05 0.80 <0.05 0.80

E0, E7 3.15× 10
−1 -0.08 3.15× 10

−1 0.28 1.57× 10
−1 0.52

E1, E1 + E7 4.36× 10
−1 -0.12 1.30× 10

−1 0.60 <0.05 -1

E2, E2 + E7 4.36× 10
−1 -0.12 1.30× 10

−1 0.60 3.71× 10
−1 0.32

E3, E3 + E7 4.36× 10
−1 -0.12 1.30× 10

−1 0.60 3.14× 10
−1 -0.12

E4, E1 + E4 1.31× 10
−1 -0.6 1.22× 10

−1 0.76 1.31× 10
−1 0.76

E5, E1 + E5 2.11× 10
−1 -0.44 9.81× 10

−2 0.84 1.30× 10
−1 0.76

E6, E1 + E6 2.11× 10
−1 -0.44 8.22× 10

−2 0.88 <0.05 0.84

Fig. 5. Insert film with Local Sharding-Based Router and Priority Queue Fig. 6. Insert film

Sharding-Based Router on read requests (see E4 on Figure 3).

Also, Figures 1 to 6 show that the impact of these patterns

increases with the number of requests, suggesting that:

☛

✡

✟

✠

When the number of requests is very large, Local

Database proxy and Priority Message Queue Pat-

terns can have a positive impact on the response

time of an application.

Average number of query processed per second : Results

of Table IV and V show that for random selects between film

and customer inventories, there is a statistically significant

difference between the average number of query processed per

second by applications implementing the studied patterns and

the application not implementing any of the three patterns,

and the effect size is large. Hence we reject HR2

x
for all

Ex (x ∈ {1 . . . 6}). We also obtained statistically significant

results with read requests, for all implementations of Local

Database proxy and Priority Message Queue. By contrast, we

obtained lower numbers of requests processed per second with

the Local Sharding-Based Router. We explain this result by

the overhead induced by the sharding algorithms. For write

requests, we obtained statistically significant results only for

designs E4, E5 and E6 (the effect size is large); hence we

reject HR2

4
, HR2

5
, and HR2

6
.

☛

✡

✟

✠

Overall, results show that Local Database proxy and

Priority Message Queue can increase the average

number of query processed per second by an ap-

plication. This increase is statistically significant in

most cases.

Maximum number of query processed per second :

Results for the maximum number of query processed per

second are similar to the results obtained for the average

number of query processed per second, except for the Priority

Message Queue (see IV and V).

In general, we can conclude that Local Database proxy,

Local Sharding-Based Router and Priority Message Queue

Patterns have a positive impact on the ability of applications

to handle heavy loads of read and write queries, as suggested

by the literature [5], [7]. More specifically, the Local-Database

Proxy is a good design solution for applications experiencing

heavy loads of read requests, while the Local Sharding-Based

Router is more adequate for applications handling huge write

requests loads. The Priority Message Queue pattern has only

a moderate effect on both types of requests.

The results of our study also show that the load balancing

and sharding algorithms implementing the patterns also affect

the QoS of the applications. Round Robin and Consistent

Hashing algorithms produced the best results in all our ex-

perimentations. However, given the small differences in effect

sizes observed among the different variants of the patterns (i.e.,

with different algorithms), it appears that:
☛

✡

✟

✠

The choice of pattern is more important than the

choice of a particular algorithm (for the implemen-

tation of the pattern) since it has a bigger impact

on the QoS.

B. Do interactions among Local Database proxy, Local

Sharding-Based Router and Priority Message Queue Patterns

affect the QoS of cloud applications?

Regarding response time, results from Figures 3 and 5 and

Table IV and V show that the addition of the Message Queue

pattern to an application implementing Local Database proxy

or Local Sharding-Based Router patterns does improve the

overall response time of the application, but this improvement

is not statistically significant. Therefore, we cannot reject

HR1

x7
for all Ex (x ∈ {1 . . . 6}).

Regarding the number of queries processed per second,

we obtained significant differences between the maximum

number of queries processed per second by designs E1 + E7,

E2 + E7, and E3 + E7, when performing random selects

between film and customer inventories. We reject HR3

17
,

HR3

27
, and HR3

37
in this case.

✎

✍

☞

✌

A combination of the Priority Message Queue pat-

tern with Local Database proxy or Local Sharding-

Based Router patterns can improve the QoS of an

application experiencing heavy loads of read and

write requests. More analysis are desirable to better

understand the interplay between these patterns.

C. Threats to Validity

In this section, we discuss the threats to validity of our study

based on the guidelines provided by Wohlin et al. [35].

Construct validity threats concern the relation between

theory and observations. In this study, they could be due to

measurement errors. We instrumented the different versions

of the application described in Section IV-A, to generate

execution logs from which we computed response time, aver-

age, and maximum numbers of queries processed per second.

We repeated each experimentation five times and computed

average values, in order to mitigate the potential biases that

could be induced by perturbations on the network or the

hardware, and our tracing.

Internal validity concern our selection of subject systems

and analysis methods. Despite the usage of a well known

benchmark (the Sakila sample database [26]) and well-know

patterns and algorithms, some of our findings may still be

specific to our studied application which was designed specif-

ically for the experiments. Future studies should consider using

different applications.

External validity threats concern the possibility to generalise

our findings. Further validation should be done on different

cloud applications and with different cloud patterns to broaden

our understanding of the impact of cloud patterns on the QoS

of applications. One major challenge however is the difficulty

to find open-source applications running on the cloud, and in

which the studied patterns are implemented. It is because of

this limitation that we implemented a complete cloud based

application for the purpose of our study.

Reliability validity threats concern the possibility of repli-

cating this study. We attempt to provide all the necessary

details to replicate our study. All the data used in this study

are available online1.

Finally, the conclusion validity threats refer to the relation

between the treatment and the outcome. We paid attention not

1http://goo.gl/B9upx8

to violate the assumptions of the performed statistical tests. We

mainly used non-parametric tests that do not require making

assumptions about the distribution of the metrics.

VI. CONCLUSION AND FUTURE WORK

Cloud patterns are always described in the literature as

good practices, without considering applications contexts and

interactions with other patterns. In this paper, we performed a

series of experiments with different versions of a cloud based

RESTful application implementing the Local Database Proxy,

the Local Sharding-Based Router and the Priority Queue

patterns. We assessed the impact of these patterns on the

QoS of the application through measurements of the overall

response time, the average and maximum number of requests

processed by the application per second. Results show that

these patterns and their combinations can increase the QoS

of applications. The Local Database proxy is more adapted

for applications experiencing heavy loads of read requests,

while the Local Sharding-Based Router is more appropriate

for applications handling huge write requests loads. The

Priority Message Queue pattern has only a moderate effect

on both types of requests. The impact of Priority Message

Queue is larger under heavy loads, especially on the average

number of requests processed per second. We also found that

Round Robin and Consistent Hashing algorithms are good

implementation choices for Local Database proxy and Local

Sharding-Based Router patterns, respectively. However, the

choice of a pattern seems to have a bigger effect on the QoS

than the choice of a particular algorithm. These results provide

important guidelines for software organisations developing and

deploying cloud based applications with MSQL databases. In

the future, we plan to expand our study to investigate a broader

variety of cloud applications and more cloud patterns. We also

plan to investigate other aspects of the sustainability of cloud

applications, such as the energy consumption.

REFERENCES

[1] K. Beck and W. Cunningham, “Using Pattern Languages for Object-
Oriented Programs,” Tech. Rep., Sep. 1987.

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns:

elements of reusable object-oriented software. Pearson Education, 1994.
[3] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann, Pattern-Oriented

Software Architecture, Patterns for Concurrent and Networked Objects.
John Wiley & Sons, 2013, vol. 2.

[4] M. Endrei, J. Ang, A. Arsanjani, S. Chua, P. Comte, P. Krogdahl,
M. Luo, and T. Newling, Patterns: service-oriented architecture and

web services. IBM Corporation, International Technical Support
Organization, 2004.

[5] A. Homer, J. Sharp, L. Brader, M. N. Narumoto, and T. Swanson, Cloud

Design Patterns Prescriptive Architecture Guidance for Cloud Appli-

cations (Microsoft patterns practices). Microsoft patterns practices,
February 2014.

[6] J. Varia, “Architecting for the cloud: Best practices,” Amazon Web

Services, 2010.
[7] S. Strauch, V. Andrikopoulos, U. Breitenbuecher, O. Kopp, and F. Leyr-

nann, “Non-functional data layer patterns for cloud applications,” in
Cloud Computing Technology and Science (CloudCom), 2012 IEEE 4th

International Conference on. IEEE, 2012, pp. 601–605.
[8] S. Strauch, V. Andrikopoulos, U. Breitenbücher, S. Gómez Sáez,

O. Kopp, and F. Leymann, “Using patterns to move the application
data layer to the cloud,” in PATTERNS 2013, The Fifth International

Conferences on Pervasive Patterns and Applications, 2013, pp. 26–33.

[9] D. Petcu, “Identifying cloud computing usage patterns,” in Cluster

Computing Workshops and Posters (CLUSTER WORKSHOPS), 2010

IEEE International Conference on. IEEE, 2010, pp. 1–8.
[10] C. Fehling, F. Leymann, R. Retter, W. Schupeck, and P. Arbitter, Cloud

Computing Patterns: Fundamentals to Design, Build, and Manage Cloud

Applications. Springer Publishing Company, Incorporated, 2014.
[11] R. Cattell, “Scalable sql and nosql data stores,” ACM SIGMOD Record,

vol. 39, no. 4, pp. 12–27, 2011.
[12] B. G. Tudorica and C. Bucur, “A comparison between several nosql

databases with comments and notes,” in Roedunet International Confer-

ence (RoEduNet), 2011 10th. IEEE, 2011, pp. 1–5.
[13] R. Burtica, E. M. Mocanu, M. I. Andreica, and N. Tapus, “Practical

application and evaluation of no-sql databases in cloud computing,” in
Systems Conference (SysCon), 2012 IEEE International. IEEE, 2012,
pp. 1–6.

[14] K. Sachs, S. Kounev, J. Bacon, and A. Buchmann, “Performance eval-
uation of message-oriented middleware using the specjms2007 bench-
mark,” Performance Evaluation, vol. 66, no. 8, pp. 410–434, 2009.

[15] S. S. Alwakeel and H. Almansour, “Modeling and performance evalua-
tion of message-oriented middleware with priority queuing,” Information

Technology Journal, vol. 10, no. 1, pp. 61–70, 2011.
[16] “Data Replication and Synchronization Guidance,” http://msdn.

microsoft.com/en-us/library/dn589787.aspx/, 2014, [Online; accessed
May-2014].

[17] “Sharding Pattern,” http://msdn.microsoft.com/en-us/library/dn589797.
aspx, 2014, [Online; accessed May-2014].

[18] F. Khomh and Y.-G. Guéhéneuc, “Do design patterns impact software
quality positively?” in Software Maintenance and Reengineering, 2008.

CSMR 2008. 12th European Conference on. IEEE, 2008, pp. 274–278.
[19] P. Wendorff, “Assessment of design patterns during software reengi-

neering: Lessons learned from a large commercial project,” in Software

Maintenance and Reengineering, 2001. Fifth European Conference on.
IEEE, 2001, pp. 77–84.

[20] M. Vokáč, W. Tichy, D. I. Sjøberg, E. Arisholm, and M. Aldrin,
“A controlled experiment comparing the maintainability of programs
designed with and without design patterns—a replication in a real
programming environment,” Empirical Software Engineering, vol. 9,
no. 3, pp. 149–195, 2004.

[21] A. Ampatzoglou and A. Chatzigeorgiou, “Evaluation of object-oriented
design patterns in game development,” Information and Software Tech-

nology, vol. 49, no. 5, pp. 445–454, 2007.
[22] L. Prechelt, B. Unger, W. F. Tichy, P. Brossler, and L. G. Votta, “A

controlled experiment in maintenance: comparing design patterns to
simpler solutions,” Software Engineering, IEEE Transactions on, vol. 27,
no. 12, pp. 1134–1144, 2001.

[23] K. Aras, T. Cickovski, and J. A. Izaguirre, “Empirical evaluation of
design patterns in scientific application,” 2005.

[24] C. A. Ardagna, E. Damiani, F. Frati, D. Rebeccani, and M. Ughetti,
“Scalability patterns for platform-as-a-service,” in Cloud Computing

(CLOUD), 2012 IEEE 5th International Conference on. IEEE, 2012,
pp. 718–725.

[25] “MySQL in the Cloud,” http://www.mysql.com/why-mysql/cloud/,
2014, [Online; accessed July-2014].

[26] “Mysql sakila sample database,” http://dev.mysql.com/doc/sakila/en/,
2014.

[27] D. Haney and K. S. Madsen, “Load-balancing for mysql,” Kobenhavns

Universitet, 2003.
[28] “Sharding algorithms,” http://kennethxu.blogspot.fr/2012/11/

sharding-algorithm.html, November 2012.
[29] M. Kharchenko, “The art of database sharding,” 2012.
[30] D. J. Sheskin, Handbook of parametric and nonparametric statistical

procedures. crc Press, 2003.
[31] J. Romano, J. D. Kromrey, J. Coraggio, and J. Skowronek, “Appropriate

statistics for ordinal level data: Should we really be using t-test and
cohen’sd for evaluating group differences on the nsse and other surveys,”
in annual meeting of the Florida Association of Institutional Research,
2006, pp. 1–33.

[32] J. Cohen, Statistical power analysis for the behavioral sciences (rev.
Lawrence Erlbaum Associates, Inc, 1977.

[33] N. Cliff, “Dominance statistics: Ordinal analyses to answer ordinal
questions.” Psychological Bulletin, vol. 114, no. 3, p. 494, 1993.

[34] J. Cohen, “A power primer.” Psychological bulletin, vol. 112, no. 1, p.
155, 1992.

[35] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in software engineering. Springer, 2012.

Title

An Empirical Study of the Impact of Cloud Patterns on Quality of Service (QoS) and Energy
Consumption (Green IT)

Key-words

Cloud Patterns, Replication, Sharding, Priority Queue, Energy Consumption

Abstract

Cloud patterns are described as good solutions to recurring problems in a cloud context:
lowering the response time, having a low latency, being scalable and having a high availability.
However, there is a lack of studies around their impact on energy consumption which is nowadays
a hot topic. During this internship, we conducted a study on a RESTful application deployed in the
cloud to investigate the individual and the combined impact of three cloud patterns (i.e. Local
Database Proxy, Local Sharding Based Router and Priority Queue Patterns) on Energy
Consumption. This study follows a recent study about the impact of these three patterns on Quality
of Service (QoS). We measure the Energy Consumption using PowerAPI, a framework designed
in Scala by the INRIA to monitor energy consumption of processes such as MySQL. Results show
that design patterns and their different implementations have an impact on the energy consumption
of the cloud application.
Developers and software architects can make use of these results to guide their design decisions:
between QoS and energy consumption, there is a trade-off to make.

Titre

Une étude empirique de l'impact des patrons de conception Cloud sur la qualité de service (QoS)
et la consommation d'énergie (Green IT)

Mots-clés

Patron de Conception Cloud, Réplication, Sharding, Queue de Priorité, Consommation
énergétique

Résumé

 Les patrons de conception de génie logiciel pour le Cloud sont décrits comme étant de
bonne solution pour répondre à des problèmes récurant liés au Cloud comme la latence, le temps
de réponse, la scalabilité mais aussi la disponibilité. Cependant, on note un manque de recherche
en ce qui concerne l’impact de ces patrons sur la consommation énergétique qui est un sujet très
discuté actuellement. Pendant ce stage, nous avons mené une étude sur une application REST
déployée dans le Cloud pour pouvoir étudier l’impact de trois patrons (i.e. Local Database Proxy,
Local Sharding Based Router and Priority Queue Patterns) sur la consommation énergétique de
façon individuel mais aussi en les combinant. Cette étude fait suite à une précédente étude
s'intéressant à l'impact de ces trois patrons sur la Qualité de Service. Nous avons mesuré la
consommation énergétique de notre application en utilisant PowerAPI, un framework développé
en Scala par l’INRIA et permettant de suivre la consommation énergétique de processus comme
MySQL. Les résultats ont montré que les patrons de conceptions et leurs différentes
implémentations ont un impact sur la consommation énergétique de l’application cloud.
Les développeurs et ingénieurs logiciels peuvent utiliser ces résultats pour prendre des décisions
dans leurs choix de conception: entre la performance et la consommation énergétique, il y a un
compromis à faire.

