Notes On ORAJ’s design and implementation

by David St-Hilaire
August 30, 2006

Contents

[L_Introduction 2

[2__Technical specification of the projecti 3
IGeneral project architecturd 3
lalgo graph package’s desien and architecturd 3
Notes on the data structures in ORAY 6

lorgi algo r)a(‘kagfﬁsj_eﬁign_a.nd_an;hmlmd 8
lorajio r)a(‘kagfﬁs_deﬁigl]_a.nd_ammlmd 9

lozag. gui package’s design and architecturd 12
13__Contributor’s guidd 13
[Addition of a New Algorithnd 13
uﬁeﬂs_glﬁ.d.d ‘ 15
ey e D
l5_Metrics analysid 16
6__Operations Research algorithms 16
lz_Conclusion 20
B_Anknmd.edgm.enié 20

1 Introduction

Operations research is a vast field of study which possesses many concrete
applications and that is also closely related to computer science. Many com-
mercial software of applied operations research currently exist on the market,
but to this day and to the best of our knowledge, none existed as open source
software projects.

An applied operations research open source project would be of great ben-
efit to the community because it will be possible to use that software in its
whole or just some of its modules and because the community will be able
to contribute to the advancement of the project. Thus, the more people that
would use and contribute to the project, the better and more complete the
software will become, benefiting from the experience of many programmers
or users of completely different background fields.

Our project focuses on such ideals that promote free operations research
software of good quality. The project was named ORAJ, which stands for
Operations Research Algorithms in Java [I] and which also means thunder-
storm in French. The project has currently three main different uses. First,
it implements different types of graphs that constitute the basis of a majority
of operations research algorithms. Secondly, the project collects algorithm
to apply on these graphs. Finally, a graphical user interface exists to enable
an easy usage of thoses algorithms for non-programming users.

To ensure the quality of the software, its detailed design follows best prac-
tices, in particula design patterns. The GoF [0] design patterns Decorator,
Observer and Abstract Factory were used in ORAJ’s design/implementation.
By using these patterns, the modularity and reusability of the software is
promoted. Indeed, a modular open source software facilitates the concurent
contributions of different programmers, if each one focuses on different mod-
ules. Also, reusable and modular software promotes the different ways that
the software can be used by different users. For example, a user might use
the software through its graphical user interface, but another might just want
to include an algorithm implementation in his own software.

2 Technical specification of the project

General project architecture

The project is divided into four main modules. These modules are delimited
in four main packages. Figure [l shows the general package structure of
ORAJ. The first module, oraj.graph, constitutes the core of the project. It
contains the different graph implementations that are used by the algorithms
and by the graphical user interface (GUI). The second module is located in
the oraj.algo package. This package contains all the implemented algorithms
that operates on the graph model defined in oraj.graph. The third module,
in the oraj.io package, is an independant module containaining utilities to
export graphs from the oraj.graph package to XML files and to parse XML
files into graphs. The last module is the graphical user interface which is
located in the package oraj.gui. This GUI is an interface that makes possible
an easy use of the algorithms for users not familiar with programming. This
package depends on all the other packages because it is an interface providing
all the capabilities implemented in the software.

algo.graph package’s design and architecture

To factorize some common code between the different graph implementa-
tions, a set of abstract classes (BasicEdge, BasicVertex, BasicGraph) was
created. These contain partial implementation that roughly corresponds to
the behaviour of a directed graph. Thus, a graph implementation could either
extend theses classes and overwrite the methods that need some modifica-
tions.

The family of classes extending IFactory are the application in ORAJ of
the Abstract Factory design pattern. Figure Bl illustrates the Abstract Fac-
tory pattern implementation. The use of this pattern reveals itself in the
implementation of the input/output package and of the GUI package. Tt
abstracts and standardizes the creation of graph elements thus making this
process standard and completely flexible as an [Factory reference might point
toward a DirectedFactory or an UndirectedFactory element. We also added
the functionnality getIFactory() to the IGraph, IVertex and IEdge interface
so that the type of a graph can be easily obtained. An other elegant use of
this design pattern is achieved through the definition of Euclidean graphs.

or aj

or aph
i o
[]
[] []
e
|m rected | |unm rected | |euc\ i dean |
1
_________ - h
/|\ ! 1
1 ! 1
1 ! 1
1 1 1
al go 1 1 1
1 1
L ™ — ! !
[oe][] [on] [+] . !
|_ gui 1
t sp
[]]
It our const ructi on <—-=-=-=-=-=-=--- m
[] []

Figure 1: ORAJ’s global package diagram. Some of the inner package are
illustrated to show the content of the main packages, but not all of the inner

packages are shown.

<<interface>>

IFactory

<<interface>>

IVertex

+creat el Vert ex()

DirectedFactory UndirectedFactory | DirectedVertex | | UndirectedGraph |
I 1 | |
1

Figure 2: Diagram illustrating the accomplishment of the Abstract Factory
design pattern.

An Euclidean graph IFactory takes an [Factory as parameter at construction.
Thus an Euclidean graph can be either directed by passing a DirectedFactory
as parameter or undirected by passing an UndirectedFactory as parameter.

It is possible to add information on graph elements by using the Dec-
orator design pattern. The use of this design pattern is shown in Figure
Bl This implementaion is particular because a Component has bidirection-
nal references to adjacent elements in the decorator scheme. It can access
the element that is decorating and the element decorating it. The need of
bidirectionnal references comes from the fact that at one point, the IGraph
element might have a references pointing the an inner decorator element, but
not the core implementation. This means that to be able to access all data
stored in this element, it must be possible to go to the highest decorator and
then go through all the decorator elements until the core implementation
is reached. A way to improve this would be to make sure that the IGraph
element always possess a reference to the innermost element, the core im-
plementation. Then access to the decorator would be from the interior and
going toward the exterior of the decorator shell, until the highest decorator
is reached. This has not yet been implemented.

Two types of decorators have been implemented in ORAJ, external decora-
tors and internal decorators. External and internal decorators distinguishes
decorators that adds data supplied and known by the user and decorators
that adds data only known by the internal procedures of ORAJ, such as
an Algorithm implementation, and should not be known by a user. For
example, if an algorithm needs to construct a certain path, it might use a

PreceedingVertexDecorator layer but, this process should be transparent to
a user that person does not need to know how the algorithms operate. The
user only wants to input a graph and get the result from the algorithm. In
contrast, a user who wants to set Cartesian coordinates to a vertex will use
a CartesianCoordVertexDecorator and will be aware of the presence of this
layer in the graph used.

Detailled explanation on the implementation of Euclidean graphs must
be given because this process has hacked a bit the architecture mentionned
above. Euclidean graphs are conceptually considered as a graph type, and
thus should be implemented as a core implementation of the interface IGraph.
But, in fact, the difference between an Fuclidean graph and a normal graph
is the presence of additionnal data, which are Cartesian coordinates for the
vertices and a distance for the edges. Still, an EuclideanFactory has been
implemented which takes as argument another [Factory, see pageld For tech-
nical reasons that are related to the I/O module and the use of a consistant
[Factory interface, this factory does NOT return an FEuclideanVertex or an
EuclideanEdge when calling the methods createVertex or createEdge. A user
will need to explicitly add this layer by himself. For example:

IFactory factory = new EuclideanFactory(new DirectedFactory);
IVertex euclideanDirectedVert
= new EuclideanVertex(factory.createVertex(), xCoord, yCoord);

This use is certainly everything but intuitive, but it is the only way so far
that it can be compatible with the graph readers and writers located in the
oraj.io package.

Notes on the data structures in ORAJ

The data structure used to represent graphs in ORAJ is close to an adjacency
list abstract data type (ADT). Edges only know the two associated vertices.
The vertex elements, upon instanciation, have no references to adjacent ver-
tices. Only once the vertices were inserted in the graph, the edges may be
added into the graph, and the neighbouring vertex references are updated.
Thus, once all elements have been correctly added in a graph, a vertex knows
all its adjacent vertices by enumerating all its out-going edges and looking at
the destination vertices. A code example is shown in Figure H] that illustrates
the case in which a user wanted to retreive the vertex going from an IVertex

<<interface>>
IVertex 1.2

-decoratingVertex
-decor at edVer t ex

+get Decor at ed()
+get Decor ati ng()

+aMet hod()

[l L <<interf >
I nterface>:
i VertexDecorator <> .
BasicVertex ICartesianVertexDecorator
+aMet hod() +aMet hod()
DirectedVertex UndirectedVertex / CartesianCoordinatesVertexDecorator
+aMet hod() /
B ?
public aMet hod{
this. get Decor at ed. aMet hod() ; EuclideanVertex
}

(a) Decorator design pattern implementation

o

core
element
(basic impl)

\ Inner
. Decorator Element

Decorator Efement

(b) Example of the uses of decorators

Figure 3: Decorator usage illustration. ORAJ’s Decorator implementation is
illustrated in @ An example of the usage of a decorator is shown in .
In this example, an inner element can access it’s core element by calling the
getDecorated() method (B(bJJa) or it can access it’s outter element by calling

the getDecorating() method (B(b)lb).
7

IEdge searchedEdge = null;

Iterator edgelt = vertA.getOutEdges();

IEdge currentEdge;

while(edgelIt.hasNext() && searchedEdge == null){
currentEdge = (IEdge)edgelt.next();
if (currentEdge.getDestination() .vertexEquals(vertB)){

searchedEdge = currentEdge;

}

}

return searchedEdge;

Figure 4: Example code that finds the edges going from vertA to vertB.

'vert A’ and going to an [Vertex 'vertB’.

Figure B illustrates the choice of the abstract data structure implied by
the interfaces of the oraj.graph.core package and used in the implementation

of ORAJ.

oraj.algo package’s design and architecture

The behaviour of an algorithm is defined by the abstract class Algorithm
from the orayj.algo.core package. Figure @ illustrates the sequence of calls oc-
curing when preparing an algorithm instance and executing the algorithm on
a certain graph. This class possesses two abstract methods, getAlgoName()
and execute(). The first method is used in the GUI to display the algorithm
name and the second method defines the algorithm itself. The initialisation
process of an algorithm should be made through the verify AndPrepareAlgo()
method, which locates the class named AlgoNameGraphVerificator, where
AlgoName is the name of the algotithm, which should be a class extending
the class GraphVerifier and be located in the same package as the algorithm
implementation. Then, the GraphVerifier class, if found, is instanciated and
used to verify that all the required external decorators are present, if applica-
ble, and to initialize the internal decorators. This verification is achieved by
implementing the required abstract methods of the GraphVerifier abstract
class in the appropriatly named Algorithm’s graph verificator. All the meth-
ods which are not needed should be implemented as empty body methods.

B

out edges:

(o}

out edges:

OA | OoC

Figure 5: Diagram illustration the ADT used in ORAJ to represent graphs.
Every vertex knows only its adjacent vertices by enumerating its out-going
edges list and verifying the destination of each of does.

Current algorithm implementations are located in separate packages in
the oraj.algo package. In particular, algorithms which are related to the
travelling salesman problem are currently in the oraj.algo.tsp package.

oraj.io package’s design and architecture

The input/output module is a simple parser that exports a graph into an
XML data file format and that imports an XML file into a graph. The
XML file format focuses on simplicity for users unfamiliar with such data file
formats. A simple example is shown below.

<?xml version=’1.0° 7>
<!DOCTYPE graph SYSTEM "graph.dtd">

<graph title="ExampleOfDirectedEuclideanGraph"
type="directed" euclidean="true">

<vertex name="A">
<EuclideanVertex x="0" y="0"/>
</vertex>

Actor

i
1: verifyAndPrepareAlgo)

<<new>>

:GraphVerifier

1.1 new T
1.2.1: for all elements: verifyExternalDecorators()

1.2.2: for all elements: preparelnternalDecorators()

rHr

e — — —

1.2: prepare

€ — — —

1
I
I
I
|
I
I
I
I
I
I
I
I
I
I
I
I
|
¢ — — — —
I
I
I

-
|
|
|
2 execute() ><

Figure 6: Sequence diagram illustration the use case of preparing and exe-
cuting an algorithm.

10

<vertex name="B">
<EuclideanVertex x="2" y="2"/>

</vertex>

<vertex name="C">
<EuclideanVertex x="-2" y="5"/>

</vertex>

<edge name="eAB" src="A" dest="B">
<EuclideanEdge />

</edge>

<edge name="eAC" src="A" dest="C">
<EuclideanEdge />

</edge>

</graph>

The file graph.dtd is used to validate the general structure of the XML
file but this verification is not strict to enable the use of reflection to create
or read a graph. A strict document type definition (DTD) would need to
hard code all the existing decorators, which would deprive the software of
flexibility. Thus, a graph is strictly defined has possessing only edge and ver-
tex XML elements, but the vertex and edge elements may hold any elements
nested inside them. The expected use is as follow, vertex and edge inner
elements must be external decorators that are to be added to the core vertex
or edge element. These decorators XML elements must have the exact same
name as the external decorator class that will be instantiated. A decorator
XML element’s attribute name has no importance in the xml file, but these
attributes order must be the same order of appearance as in the decorator
class decorators. As in the example above, the EuclideanVertex(IVertex dec-
orated vertex, Double xCoord, Double yCoord) may be added to a vertex by
adding the attribute

<EuclideanVertex x=’aDoubleValue’ y=’anotherDoubleValue’ />
but may not be
<EuclideanVertex y=’aDoubleValue’ x=’anotherDoubleValue’ />

because the instance EuclideanVertex decorator will have aDoubleValue as
its x coordinate and anotherDoubleValue as its y coordinate, because the

11

constructor located in the EuclideanVertex class has the order of parameters
appearance: xValue, yValue. Finally, a decorator element may not have any
element nested inside it. The graph.dtd file is well documented and should be
referenced for further explanations on the file format used.

As mentioned above, the implementation of the I/O package was achieved
through the use of reflexion. For example, when a reader reads a decorator,
it searches the oraj.graph.decorator.implementation.external package and try
to locate the corresponding class. If found, the constructor with the corre-
sponding number of arguments will be retrieved and the new instance will
be created by using the parameters found in the XML decorator element as
values for the constructor’s parameters. Thus, an algorithm implementation
should not have more than one constructor for a given number of parameters.
The use of reflection implies that no decorator names were hard coded and
when some new external decorators are added in the futur, no changes will
be required in either the reader nor the writer.

An extra tool has been added in the oraj.io.util package to create random
graphs from certain parameters. These parameters are the number of ver-
tices, the type of graph (directed or undirected) and the percentage of com-
pleteness between 0 to 1.0. Thus, a graph with 0 completeness will possess no
edges and a graph with 1.0 completeness will be a complete graph. A graph
with a percentage of completeness of x, stricly between 0 and 1.0, will possess
x % N, where N is the number of arcs/edges present if the graph whould be
complete and these arcs/edges will be added randomly in the graph.

oraj.gut package’s design and architecture

The GUI package contains Swing elements used to create a simple interface
that can be used to apply implemented algorithms on graphs created from
an XML file. Again, reflection was used to create the menu items associ-
ated with the implemented algorithms to ensure that the addition of new
algorithms to ORAJ will not require any modifications to the GUI. All class
contained in the oraj.algo package that extends the Algorithm abstract class
are used to create a menu item, assuming that no errors happened during
the instantiation of the Algorithm.

The GUI divides in two small modules. oraj.gui.graphdisplay allows diplay-

12

ing a graph instance in a modified JPanel (GraphDisplay). The GraphDis-
play class uses the OrajModel class as its model, following MVC architetural
pattern. Thus, the graph is contained in the model and the GraphDisplay
displays the graph. Controllers in the graphdisplay package are mainly used
to manage events relevant to the graph display. The GraphDisplay can be
included in a JPanel which adds a functionnal bar that adds different func-
tionnalities such as vertex selection from a list on the graph displayed.

In the package oraj.gui can be found the main graphical user interface classes
and interfaces. The main gui frame, named Oraj extends the javax.swing.JFrame
class and is the access point to the graphical user interface. This Oraj class is
also designed following an MVC approach, the Oraj class being the view, the
OrajGuiController being the controller of that view, and the OrajGuiModel
being the model. OrajGuiModel serves as model to both Oraj and GraphDis-
play and extra care must be taken to ensure that both GraphDisplay and
the main frame are linked to the same model to keep coherence in the GUI.
In the main frame, the event controller as been kept in the view class for
simplicity and the controller has the responsability of modifying the model
as needed. This frame enables the imporation and exportation of graphs, the
application of all implemented algorithms on that graph, and the generation
of a random graph.

Messages between GUI elements are not sent through the MVC architecture
to the model. Instead, a more flexible and easy to modify implementation
was chosen, with the Observer design pattern. Figure [illustrates the col-
laboration diagram of the selection of a new root vertex by clicking directly
on the GraphDisplay instance.

3 Contributor’s guide

Addition of a New Algorithm

The suggested steps for the implementation of a new algorithm in ORAJ are
as follow.

1. Create an appropriate package in the root packate oraj.algo.

2. (optionnal): If internal decorators must be implemented to add data

13

i 1.1.1: setCurrentRootVertex(newRoot)
1.1.1.1: notifylVertexSelectionListeners(newRoot)
<<IGraphNotifier>>

click's on a vertex (mouse pressed) 1.1: SelectedVertexChanged(newRoot) OraiGuiModel 1.1.1.1.3: selectedIVertexChanged(newRoot)
<<IGraphSelectionListener>>

:Oraj

<<IVertexSelectionNotifier>>
GraphDisplayController

1.1.1.1.1: selectedVertexChanged(newRoot) 1.1.1.1.2: selectedIVertexChanged(newRoot)

1: NotifylVertexSelectionListeners(newRoot)

<<IGraphSelectionListener>>
GraphDisplay <<IGraphSelectoinListener>>
GraphDisplayGui

Figure 7: Collaboration diagram which illustrates the selection of a new root
vertex by clicking directly on the graph display instance.

on the graph used by the algorithm, a new internal decorator should be
implemented in the algo.graph.decorator.implementation.internal pack-
age by extending the abstract class. {Graph,Vertex,Edge}Decorator.
If desired, an interface can also be created, defining the behaviour ex-
pected by that decorator and placed in the oraj.graph.decorator.internal
package.

3. Implement a new class extending GraphVerifier. In the verifyExter-
nalDecorator methods, a GraphVerifierException should be thrown if
the scanned graph is problematic. For examples, please refer to the
already implemented GraphVerifiers.

4. Implement a new class extending the abstract class Algorithm. This
class must implement the two abstract methods getAlgoName() and
execute(). The execute method should execute the algorithm on the
initial graph and set the resulting graph at the end of the execution
of the algorithm by calling the method super.setResult(IGraph result-
Graph). This graph must be built manually by the contributor so that
it reflects the result of the algorithm. The toString() method should
return a String which, if the execute() method has been run, should
return a verbose output of the algorithm’s results. Others ascessors
can be implemented for the usage of programming-capable users.

14

4 User’s guide

Simple IGraph Creation

The graph creation process is quite simple. The process divides in two major
steps: instantiation and insertion of vertices and edges in the graph. The
first sub-step of the instantiation process is the instantiation of the desired
[Graph implementation. The second sub-step is the instantiation of all the
vertices with the corresponding I'Vertex implementation. The third sub-step
is the instantiation of the [Edges which marks the end of the instantiation
step. The IEdges are instantiated last because they need references on the
[Vertex on which they are associated at instantiation. The first sub-step
of the insertion step is, the insertion of the IVertices in the IGraph. The
second sub-step is the insertion of the IEdges instances in the graph, which
marks the end of the insertion process. Here is a short example of a directed
Euclidean graph creation containing two vertices and one edge linking them
together.

IFactory factory = new EuclideanFactory(new DirectedFactory());

IGraph g = factory.createGraph(’graphName’);

IVertex vl = new EuclideanVertex(factory.createVertex(’vertexName’), x, y);
IVertex v2 = new EuclideanVertex(factory.createVertex(’vertexName2’), x2, y2);
IEdge e = new EuclideanEdge(factory.createEdge(’edgeName’, vi1, v2));
g.addVertex(vl);

g.addVertex(v2);

g.addEdge (e) ;

Usage of an Algorithm

The use of an algorithms is straighforward. After instantiating of the desired
algorithm, the initial graph should be set, if it has not been done at instan-
tiation. Then, the graph should be verified by the verifyAndPrepareAlgo()
method to ensure that the graph is in a correct state before running the al-
gorithm. This step has been explicitly extracted from the execute() method
to add more flexibility. Thus, a user knowing that the graph used is ready,
he can omit the verification to increase the performance. Here is an example
of the usage of an algorithm class with a graph g.

Algorithm algo = new Dijkstra();

15

algo.setGraph(g) ;
algo.verifyAndPrepareAlgo();
algo.execute();
System.out.println(algo);

5 Metrics analysis

Oraj’s metrics were first extracted using POM [I0]. Then, the results were
visualized using the VERSO metric visualisation tool [T1]. FigureRillustrates
the results obtained. It can be seen in that coupling is limited to the
3 main core interfaces IGraph, IVertex and IEdge, which are extensively
used by all other classes. In contrast the other classes are relatively weakly
coupled. In , we can see that core packages, in bright red, are used by
all other packages, but other modules are independent from one another.
Thus, modifications of the oraj.graph.core package would have numerous
repercutions on the entire software, but changes in specific modules should
be relatively transparent.

6 Operations Research algorithms

Eight algorithms for different operations research problems are implemented
so far. The problems solved by the implemented algorithms are the shortest
path from a root node to a destination node, the minimal spanning tree, and
the travelling salesman problem (heuristic approaches). These problems can
be summerized as stated below:

e Shortest Path Problem: The goal is to find the shortest path, if
any, from a root vertex to a destination vertex. Depending on the
implementing algorithm, negative cost edges might or might not be
accepted in the graph used by the algorithm. The implementation is
such that an Algorithm instance resolving a shortest path problem in
ORAJ can take either directed or undirected graphs. The implemented
algorithms are:

— Digkstra: This is the classic shortest path problem algorithm. This
algorithm does not support negative cost edges. Running the Di-
jkstra algorithm in ORAJ on a graph with a chosen root vertex

16

:‘

'4

o o000
10014

|
119
KA RN
hd] ¢e¢710000
(b) ORAJ’s package dependencies blue to red

Figure 8: VERSO’s output of two different metrics mapping. First, in
, the coupling of the classes are map from blue (weakly coupled) to red
(strongly coupled). Then, in , the package dependencies were mapped
from blue to red.

17

will find the shortest path from that root vertex to all other ver-
tices in the graph. If no such path exists, the cost will be set to
positive infinity.

— Bellman-Ford: Bellman-Ford algorithm improves the Dijkstra by
accepting negative cost edges, as long as no negative cost cycles
are found in the graph. A negative cost cycle is a cycle such that
the sum of the costs of its edges is smaller than zero.

— Floyd-Warshall: Floyd-Warshall [8] computes the shortest path
from a root vertex to all the other vertices in the graph but does
this calculations for all vertices in the graph as the root node. This
algorithm can take negative cost edges as long as no negative cost
cycles exists and is more optimized than the Dijkstra or Bellman
algorithms.

e Minimal spanning tree: A minimal spanning tree is the set of undi-
rected edges that connects all vertices, if possible, with the minimal cost
sum. In wikipedia’s words [B] “A minimum spanning tree is in fact the
minimum-cost subgraph connecting all vertices, since subgraphs con-
taining cycles necessarily have more total weight.”. The only imple-
mented algorithm is:

— Prim: The Prim algorithm elegantly solves the minimal spanning
tree problem with no restriction on the costs of the edges. The
input graph has to be an undirected graph because this problem
is only defined on such graphs.

e Travelling salesman problem: The goal is to find the lowest cost cy-
cle path that includes all vertices of the graph. The complexity of this
problem rapidely increases defined only upon complete graphs. This
problem which may look simple at first sight may with the vertex num-
ber. Solving this problem exactly implies a computationnal complexity
of [[V||!; where ||V is the number of vertices. Since this is impractical
for most interesting problems, heuristic approaches are used instead of
exact methods. In the field of operations research, a solution to the
travelling salesman problem (which may not be optimal) is often called
a tour. Thus, different tour generation heuristics may be used. The
first type is called tour construction and builds a tour following certain
heuristic rules, but does not use any other information on the graph

18

except a root vertex. A second type of heuristic is the tour amelioration
heuristic. This type of heuristic takes a non-optimal solution and try
the improve it. More information on the travelling salesman problem
and on the implemented heuristics may be found in the litterature [.
The implemented algorithms are:

— Nearest neighbor: This tour construction heuristic starts with a
root node. Then, it adds to the current initial path the edge going
to the closest node from this newly added vertex and this closest
vertex is added automatically to the current path. This step is
repeated until all vertices are included in the path. To finalize the
path and create a tour, the edge going from the last vertex added
to the root vertex is automatically added to the path to create the
tour. This heuristic is repeated for all vertex in the graph as root
vertex and returns the best solution found.

— Clark and Wright’s savings: The Clark and Wright’s savings heuris-
tic begins by creating ||V|| times, where ||V is the number of
vertices, two nodes subtours that all originates from a root ver-
tex, or depot vertex and contains one of the other vertices (for all
vertices). Then, savings are computed. A saving’s value is com-
puted as the sum of the edge’s ID + DJ - 1J costs where D is the
depot node, T is a vertex at the start/end of a subtour A and J
is the vertex at the start/end of a subtour B (where A # B). A
saving is chosen such that the fusion of the two subtours gives a
minimal saving value. Then, the two subtours included in that
saving are melted into one subtour. Then, the next lowest valid
saving is taken and two subtours are again put into one. This is
done until all subtours are put together into a single subtour, or
tour. Again, this heuristic is automatically ran on all vertices as
the depot node and the best solution is kept and returned.

— Nearest insertion: The nearest insertion heuristic begins by creat-
ing a subtour of only two vertices, the depot and the closest vertex
to this depot. Then, while not all the vertices are in the subtour,
the closest vertex to the subtour is inserted in the subtour in the
position that minimizes the size of the subtour. This heuristic is
ran automatically with all vertices and the best solution is kept
and returned.

19

— Farthest insertion: The farthest insertion heuristic is very simi-
lar to the nearest insertion heuristic. The only difference lies in
the selection of next the vertex, in the selection step. Instead of
adding the closest vertex to the subtour, the farthest vertex from
the subtour is selected as the next vertex to insert. It is important
to note that the insertion step remains the same as in the nearest
insertion heuristic: This selected vertex is inserted in the position
that minimizes the subtour total cost. This heuristic is automat-
ically used on all vertices as depot node and the best subtour is
returned.

7 Conclusion

The contribution of the author to this project as been rich and varied in his
training in computer science, notably in software engeneering and operations
research. The author was able to learn the usage of the development platform
Eclipse and the use of the concurrent version system (CVS). It was the first
time that the author had the chance to contribute to an already existing open
source project. He also had the chance to push the ORAJ project onto the
world of open source software by posting the ORAJ project on the renouned
open soure software repository, sourceforge. He had the chance to design and
implement 117 classes using design patterns to improve the software quality.
In operations research, the author was able to achieve new knowledge in
the traveling salesman problem heuristics by sucessfully implmenting four
different tour construction tsp heuristics. Finally, this project has not only
made the author improves in his coding technique but also in his project
management abilities, thanks to his two project co-supervisors Dr. Yann-
Gaél Guéhéneuc and Dr. Jean-Yves Potvin.

8 Acknowledgments

This project’s achievement was greatly supported by the members of the
GEODES lab of the university of Montreal and by the two co-supervisor
of the project, Dr. Yann-Gaél Géhéneuc and Dr. Jean-Yves Potvin. This
project was supported financially by NSERC undergraduate student research
award.

20

References

1]
2]
3]
[4]
[5]
[6]
[7]

8]

[9]

[10]

[11]

http://sourceforge.net/projects/oraj.
http://en.wikipedia.org/wiki/Dijkstra algorithm.
http://en.wikipedia.org/wiki/Bellman-Ford algorithm|
http://en.wikipedia.org/wiki/Floyd/,27s_algorithm.
http://en.wikipedia.org/wiki/Minimal_spanning_tree.
http://en.wikipedia.org/wiki/Prim-Jarnik algorithm.

L. Bodin, B. Golden, A. Assad, and M. Ball. Routing and scheduling of
vehicules and crews. volume 10, pages 63211, 1983.

T. H. Cormen, C. E. Leiserson, and R. Rivest. Introduction to Algo-
rithms. 1990.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns,
Elements of Reusable Object-Oriented Software. Professional Computing
Series. 1995.

Y .-G. Guéhéneuc and H. Albin-Amiot. Recovering binary class relation-
ships: Putting icing on the

UML cake. In D. C. Schmidt, editor, proceedings of the 19" confer-
ence on Object-Oriented Programming, Systems, Languages, and Appli-
cations. ACM Press, October 2004.

G. Langelier, H. A. Sahraoui, and P. Poulin. Visualization-based analysis
of quality for large-scale software systems. In IEEE/ACM International
Conference on Automated Software Engineering 2005, pages 214-223,
Nov. 2005.

21

http://sourceforge.net/projects/oraj
http://en.wikipedia.org/wiki/Dijkstra_algorithm
http://en.wikipedia.org/wiki/Bellman-Ford_algorithm
http://en.wikipedia.org/wiki/Floyd%27s_algorithm
http://en.wikipedia.org/wiki/Minimal_spanning_tree
http://en.wikipedia.org/wiki/Prim-Jarnik_algorithm

	Introduction
	Technical specification of the project
	General project architecture
	algo.graph package's design and architecture
	Notes on the data structures in ORAJ
	oraj.algo package's design and architecture
	oraj.io package's design and architecture
	oraj.gui package's design and architecture

	Contributor's guide
	Addition of a New Algorithm

	User's guide
	Simple IGraph Creation
	Usage of an Algorithm

	Metrics analysis
	Operations Research algorithms
	Conclusion
	Acknowledgments

